1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static cl::opt<unsigned> LocationAnalysisSizeLimit( 171 "singlevarlocation-input-bb-limit", 172 cl::desc("Maximum block size to analyze for single-location variables"), 173 cl::init(30000), cl::Hidden); 174 175 static const char *const DWARFGroupName = "dwarf"; 176 static const char *const DWARFGroupDescription = "DWARF Emission"; 177 static const char *const DbgTimerName = "writer"; 178 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 179 static constexpr unsigned ULEB128PadSize = 4; 180 181 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 182 getActiveStreamer().EmitInt8( 183 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 184 : dwarf::OperationEncodingString(Op)); 185 } 186 187 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 188 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 189 } 190 191 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 192 getActiveStreamer().emitULEB128(Value, Twine(Value)); 193 } 194 195 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 196 getActiveStreamer().EmitInt8(Value, Twine(Value)); 197 } 198 199 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 200 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 201 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 202 } 203 204 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 205 unsigned MachineReg) { 206 // This information is not available while emitting .debug_loc entries. 207 return false; 208 } 209 210 void DebugLocDwarfExpression::enableTemporaryBuffer() { 211 assert(!IsBuffering && "Already buffering?"); 212 if (!TmpBuf) 213 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 214 IsBuffering = true; 215 } 216 217 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 218 219 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 220 return TmpBuf ? TmpBuf->Bytes.size() : 0; 221 } 222 223 void DebugLocDwarfExpression::commitTemporaryBuffer() { 224 if (!TmpBuf) 225 return; 226 for (auto Byte : enumerate(TmpBuf->Bytes)) { 227 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 228 ? TmpBuf->Comments[Byte.index()].c_str() 229 : ""; 230 OutBS.EmitInt8(Byte.value(), Comment); 231 } 232 TmpBuf->Bytes.clear(); 233 TmpBuf->Comments.clear(); 234 } 235 236 const DIType *DbgVariable::getType() const { 237 return getVariable()->getType(); 238 } 239 240 /// Get .debug_loc entry for the instruction range starting at MI. 241 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 242 const DIExpression *Expr = MI->getDebugExpression(); 243 assert(MI->getNumOperands() == 4); 244 if (MI->getDebugOperand(0).isReg()) { 245 auto RegOp = MI->getDebugOperand(0); 246 auto Op1 = MI->getDebugOffset(); 247 // If the second operand is an immediate, this is a 248 // register-indirect address. 249 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 250 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 251 return DbgValueLoc(Expr, MLoc); 252 } 253 if (MI->getDebugOperand(0).isTargetIndex()) { 254 auto Op = MI->getDebugOperand(0); 255 return DbgValueLoc(Expr, 256 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 257 } 258 if (MI->getDebugOperand(0).isImm()) 259 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 260 if (MI->getDebugOperand(0).isFPImm()) 261 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 262 if (MI->getDebugOperand(0).isCImm()) 263 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 264 265 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 266 } 267 268 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 269 assert(FrameIndexExprs.empty() && "Already initialized?"); 270 assert(!ValueLoc.get() && "Already initialized?"); 271 272 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 273 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 274 "Wrong inlined-at"); 275 276 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 277 if (auto *E = DbgValue->getDebugExpression()) 278 if (E->getNumElements()) 279 FrameIndexExprs.push_back({0, E}); 280 } 281 282 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 283 if (FrameIndexExprs.size() == 1) 284 return FrameIndexExprs; 285 286 assert(llvm::all_of(FrameIndexExprs, 287 [](const FrameIndexExpr &A) { 288 return A.Expr->isFragment(); 289 }) && 290 "multiple FI expressions without DW_OP_LLVM_fragment"); 291 llvm::sort(FrameIndexExprs, 292 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 293 return A.Expr->getFragmentInfo()->OffsetInBits < 294 B.Expr->getFragmentInfo()->OffsetInBits; 295 }); 296 297 return FrameIndexExprs; 298 } 299 300 void DbgVariable::addMMIEntry(const DbgVariable &V) { 301 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 302 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 303 assert(V.getVariable() == getVariable() && "conflicting variable"); 304 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 305 306 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 307 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 308 309 // FIXME: This logic should not be necessary anymore, as we now have proper 310 // deduplication. However, without it, we currently run into the assertion 311 // below, which means that we are likely dealing with broken input, i.e. two 312 // non-fragment entries for the same variable at different frame indices. 313 if (FrameIndexExprs.size()) { 314 auto *Expr = FrameIndexExprs.back().Expr; 315 if (!Expr || !Expr->isFragment()) 316 return; 317 } 318 319 for (const auto &FIE : V.FrameIndexExprs) 320 // Ignore duplicate entries. 321 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 322 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 323 })) 324 FrameIndexExprs.push_back(FIE); 325 326 assert((FrameIndexExprs.size() == 1 || 327 llvm::all_of(FrameIndexExprs, 328 [](FrameIndexExpr &FIE) { 329 return FIE.Expr && FIE.Expr->isFragment(); 330 })) && 331 "conflicting locations for variable"); 332 } 333 334 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 335 bool GenerateTypeUnits, 336 DebuggerKind Tuning, 337 const Triple &TT) { 338 // Honor an explicit request. 339 if (AccelTables != AccelTableKind::Default) 340 return AccelTables; 341 342 // Accelerator tables with type units are currently not supported. 343 if (GenerateTypeUnits) 344 return AccelTableKind::None; 345 346 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 347 // always implies debug_names. For lower standard versions we use apple 348 // accelerator tables on apple platforms and debug_names elsewhere. 349 if (DwarfVersion >= 5) 350 return AccelTableKind::Dwarf; 351 if (Tuning == DebuggerKind::LLDB) 352 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 353 : AccelTableKind::Dwarf; 354 return AccelTableKind::None; 355 } 356 357 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 358 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 359 InfoHolder(A, "info_string", DIEValueAllocator), 360 SkeletonHolder(A, "skel_string", DIEValueAllocator), 361 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 362 const Triple &TT = Asm->TM.getTargetTriple(); 363 364 // Make sure we know our "debugger tuning". The target option takes 365 // precedence; fall back to triple-based defaults. 366 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 367 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 368 else if (IsDarwin) 369 DebuggerTuning = DebuggerKind::LLDB; 370 else if (TT.isPS4CPU()) 371 DebuggerTuning = DebuggerKind::SCE; 372 else 373 DebuggerTuning = DebuggerKind::GDB; 374 375 if (DwarfInlinedStrings == Default) 376 UseInlineStrings = TT.isNVPTX(); 377 else 378 UseInlineStrings = DwarfInlinedStrings == Enable; 379 380 UseLocSection = !TT.isNVPTX(); 381 382 HasAppleExtensionAttributes = tuneForLLDB(); 383 384 // Handle split DWARF. 385 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 386 387 // SCE defaults to linkage names only for abstract subprograms. 388 if (DwarfLinkageNames == DefaultLinkageNames) 389 UseAllLinkageNames = !tuneForSCE(); 390 else 391 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 392 393 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 394 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 395 : MMI->getModule()->getDwarfVersion(); 396 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 397 DwarfVersion = 398 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 399 400 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 401 402 // Use sections as references. Force for NVPTX. 403 if (DwarfSectionsAsReferences == Default) 404 UseSectionsAsReferences = TT.isNVPTX(); 405 else 406 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 407 408 // Don't generate type units for unsupported object file formats. 409 GenerateTypeUnits = 410 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 411 412 TheAccelTableKind = computeAccelTableKind( 413 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 414 415 // Work around a GDB bug. GDB doesn't support the standard opcode; 416 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 417 // is defined as of DWARF 3. 418 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 419 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 420 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 421 422 // GDB does not fully support the DWARF 4 representation for bitfields. 423 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 424 425 // The DWARF v5 string offsets table has - possibly shared - contributions 426 // from each compile and type unit each preceded by a header. The string 427 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 428 // a monolithic string offsets table without any header. 429 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 430 431 // Emit call-site-param debug info for GDB and LLDB, if the target supports 432 // the debug entry values feature. It can also be enabled explicitly. 433 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 434 (tuneForGDB() || tuneForLLDB())) || 435 EmitDwarfDebugEntryValues; 436 437 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 438 } 439 440 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 441 DwarfDebug::~DwarfDebug() = default; 442 443 static bool isObjCClass(StringRef Name) { 444 return Name.startswith("+") || Name.startswith("-"); 445 } 446 447 static bool hasObjCCategory(StringRef Name) { 448 if (!isObjCClass(Name)) 449 return false; 450 451 return Name.find(") ") != StringRef::npos; 452 } 453 454 static void getObjCClassCategory(StringRef In, StringRef &Class, 455 StringRef &Category) { 456 if (!hasObjCCategory(In)) { 457 Class = In.slice(In.find('[') + 1, In.find(' ')); 458 Category = ""; 459 return; 460 } 461 462 Class = In.slice(In.find('[') + 1, In.find('(')); 463 Category = In.slice(In.find('[') + 1, In.find(' ')); 464 } 465 466 static StringRef getObjCMethodName(StringRef In) { 467 return In.slice(In.find(' ') + 1, In.find(']')); 468 } 469 470 // Add the various names to the Dwarf accelerator table names. 471 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 472 const DISubprogram *SP, DIE &Die) { 473 if (getAccelTableKind() != AccelTableKind::Apple && 474 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 475 return; 476 477 if (!SP->isDefinition()) 478 return; 479 480 if (SP->getName() != "") 481 addAccelName(CU, SP->getName(), Die); 482 483 // If the linkage name is different than the name, go ahead and output that as 484 // well into the name table. Only do that if we are going to actually emit 485 // that name. 486 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 487 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 488 addAccelName(CU, SP->getLinkageName(), Die); 489 490 // If this is an Objective-C selector name add it to the ObjC accelerator 491 // too. 492 if (isObjCClass(SP->getName())) { 493 StringRef Class, Category; 494 getObjCClassCategory(SP->getName(), Class, Category); 495 addAccelObjC(CU, Class, Die); 496 if (Category != "") 497 addAccelObjC(CU, Category, Die); 498 // Also add the base method name to the name table. 499 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 500 } 501 } 502 503 /// Check whether we should create a DIE for the given Scope, return true 504 /// if we don't create a DIE (the corresponding DIE is null). 505 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 506 if (Scope->isAbstractScope()) 507 return false; 508 509 // We don't create a DIE if there is no Range. 510 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 511 if (Ranges.empty()) 512 return true; 513 514 if (Ranges.size() > 1) 515 return false; 516 517 // We don't create a DIE if we have a single Range and the end label 518 // is null. 519 return !getLabelAfterInsn(Ranges.front().second); 520 } 521 522 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 523 F(CU); 524 if (auto *SkelCU = CU.getSkeleton()) 525 if (CU.getCUNode()->getSplitDebugInlining()) 526 F(*SkelCU); 527 } 528 529 bool DwarfDebug::shareAcrossDWOCUs() const { 530 return SplitDwarfCrossCuReferences; 531 } 532 533 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 534 LexicalScope *Scope) { 535 assert(Scope && Scope->getScopeNode()); 536 assert(Scope->isAbstractScope()); 537 assert(!Scope->getInlinedAt()); 538 539 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 540 541 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 542 // was inlined from another compile unit. 543 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 544 // Avoid building the original CU if it won't be used 545 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 546 else { 547 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 548 if (auto *SkelCU = CU.getSkeleton()) { 549 (shareAcrossDWOCUs() ? CU : SrcCU) 550 .constructAbstractSubprogramScopeDIE(Scope); 551 if (CU.getCUNode()->getSplitDebugInlining()) 552 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 553 } else 554 CU.constructAbstractSubprogramScopeDIE(Scope); 555 } 556 } 557 558 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 559 DICompileUnit *Unit = SP->getUnit(); 560 assert(SP->isDefinition() && "Subprogram not a definition"); 561 assert(Unit && "Subprogram definition without parent unit"); 562 auto &CU = getOrCreateDwarfCompileUnit(Unit); 563 return *CU.getOrCreateSubprogramDIE(SP); 564 } 565 566 /// Represents a parameter whose call site value can be described by applying a 567 /// debug expression to a register in the forwarded register worklist. 568 struct FwdRegParamInfo { 569 /// The described parameter register. 570 unsigned ParamReg; 571 572 /// Debug expression that has been built up when walking through the 573 /// instruction chain that produces the parameter's value. 574 const DIExpression *Expr; 575 }; 576 577 /// Register worklist for finding call site values. 578 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 579 580 /// Append the expression \p Addition to \p Original and return the result. 581 static const DIExpression *combineDIExpressions(const DIExpression *Original, 582 const DIExpression *Addition) { 583 std::vector<uint64_t> Elts = Addition->getElements().vec(); 584 // Avoid multiple DW_OP_stack_values. 585 if (Original->isImplicit() && Addition->isImplicit()) 586 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 587 const DIExpression *CombinedExpr = 588 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 589 return CombinedExpr; 590 } 591 592 /// Emit call site parameter entries that are described by the given value and 593 /// debug expression. 594 template <typename ValT> 595 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 596 ArrayRef<FwdRegParamInfo> DescribedParams, 597 ParamSet &Params) { 598 for (auto Param : DescribedParams) { 599 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 600 601 // TODO: Entry value operations can currently not be combined with any 602 // other expressions, so we can't emit call site entries in those cases. 603 if (ShouldCombineExpressions && Expr->isEntryValue()) 604 continue; 605 606 // If a parameter's call site value is produced by a chain of 607 // instructions we may have already created an expression for the 608 // parameter when walking through the instructions. Append that to the 609 // base expression. 610 const DIExpression *CombinedExpr = 611 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 612 : Expr; 613 assert((!CombinedExpr || CombinedExpr->isValid()) && 614 "Combined debug expression is invalid"); 615 616 DbgValueLoc DbgLocVal(CombinedExpr, Val); 617 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 618 Params.push_back(CSParm); 619 ++NumCSParams; 620 } 621 } 622 623 /// Add \p Reg to the worklist, if it's not already present, and mark that the 624 /// given parameter registers' values can (potentially) be described using 625 /// that register and an debug expression. 626 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 627 const DIExpression *Expr, 628 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 629 auto I = Worklist.insert({Reg, {}}); 630 auto &ParamsForFwdReg = I.first->second; 631 for (auto Param : ParamsToAdd) { 632 assert(none_of(ParamsForFwdReg, 633 [Param](const FwdRegParamInfo &D) { 634 return D.ParamReg == Param.ParamReg; 635 }) && 636 "Same parameter described twice by forwarding reg"); 637 638 // If a parameter's call site value is produced by a chain of 639 // instructions we may have already created an expression for the 640 // parameter when walking through the instructions. Append that to the 641 // new expression. 642 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 643 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 644 } 645 } 646 647 /// Interpret values loaded into registers by \p CurMI. 648 static void interpretValues(const MachineInstr *CurMI, 649 FwdRegWorklist &ForwardedRegWorklist, 650 ParamSet &Params) { 651 652 const MachineFunction *MF = CurMI->getMF(); 653 const DIExpression *EmptyExpr = 654 DIExpression::get(MF->getFunction().getContext(), {}); 655 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 656 const auto &TII = *MF->getSubtarget().getInstrInfo(); 657 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 658 659 // If an instruction defines more than one item in the worklist, we may run 660 // into situations where a worklist register's value is (potentially) 661 // described by the previous value of another register that is also defined 662 // by that instruction. 663 // 664 // This can for example occur in cases like this: 665 // 666 // $r1 = mov 123 667 // $r0, $r1 = mvrr $r1, 456 668 // call @foo, $r0, $r1 669 // 670 // When describing $r1's value for the mvrr instruction, we need to make sure 671 // that we don't finalize an entry value for $r0, as that is dependent on the 672 // previous value of $r1 (123 rather than 456). 673 // 674 // In order to not have to distinguish between those cases when finalizing 675 // entry values, we simply postpone adding new parameter registers to the 676 // worklist, by first keeping them in this temporary container until the 677 // instruction has been handled. 678 FwdRegWorklist TmpWorklistItems; 679 680 // If the MI is an instruction defining one or more parameters' forwarding 681 // registers, add those defines. 682 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 683 SmallSetVector<unsigned, 4> &Defs) { 684 if (MI.isDebugInstr()) 685 return; 686 687 for (const MachineOperand &MO : MI.operands()) { 688 if (MO.isReg() && MO.isDef() && 689 Register::isPhysicalRegister(MO.getReg())) { 690 for (auto FwdReg : ForwardedRegWorklist) 691 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 692 Defs.insert(FwdReg.first); 693 } 694 } 695 }; 696 697 // Set of worklist registers that are defined by this instruction. 698 SmallSetVector<unsigned, 4> FwdRegDefs; 699 700 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 701 if (FwdRegDefs.empty()) 702 return; 703 704 for (auto ParamFwdReg : FwdRegDefs) { 705 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 706 if (ParamValue->first.isImm()) { 707 int64_t Val = ParamValue->first.getImm(); 708 finishCallSiteParams(Val, ParamValue->second, 709 ForwardedRegWorklist[ParamFwdReg], Params); 710 } else if (ParamValue->first.isReg()) { 711 Register RegLoc = ParamValue->first.getReg(); 712 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 713 Register FP = TRI.getFrameRegister(*MF); 714 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 715 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 716 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 717 finishCallSiteParams(MLoc, ParamValue->second, 718 ForwardedRegWorklist[ParamFwdReg], Params); 719 } else { 720 // ParamFwdReg was described by the non-callee saved register 721 // RegLoc. Mark that the call site values for the parameters are 722 // dependent on that register instead of ParamFwdReg. Since RegLoc 723 // may be a register that will be handled in this iteration, we 724 // postpone adding the items to the worklist, and instead keep them 725 // in a temporary container. 726 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 727 ForwardedRegWorklist[ParamFwdReg]); 728 } 729 } 730 } 731 } 732 733 // Remove all registers that this instruction defines from the worklist. 734 for (auto ParamFwdReg : FwdRegDefs) 735 ForwardedRegWorklist.erase(ParamFwdReg); 736 737 // Now that we are done handling this instruction, add items from the 738 // temporary worklist to the real one. 739 for (auto New : TmpWorklistItems) 740 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 741 TmpWorklistItems.clear(); 742 } 743 744 static bool interpretNextInstr(const MachineInstr *CurMI, 745 FwdRegWorklist &ForwardedRegWorklist, 746 ParamSet &Params) { 747 // Skip bundle headers. 748 if (CurMI->isBundle()) 749 return true; 750 751 // If the next instruction is a call we can not interpret parameter's 752 // forwarding registers or we finished the interpretation of all 753 // parameters. 754 if (CurMI->isCall()) 755 return false; 756 757 if (ForwardedRegWorklist.empty()) 758 return false; 759 760 // Avoid NOP description. 761 if (CurMI->getNumOperands() == 0) 762 return true; 763 764 interpretValues(CurMI, ForwardedRegWorklist, Params); 765 766 return true; 767 } 768 769 /// Try to interpret values loaded into registers that forward parameters 770 /// for \p CallMI. Store parameters with interpreted value into \p Params. 771 static void collectCallSiteParameters(const MachineInstr *CallMI, 772 ParamSet &Params) { 773 const MachineFunction *MF = CallMI->getMF(); 774 auto CalleesMap = MF->getCallSitesInfo(); 775 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 776 777 // There is no information for the call instruction. 778 if (CallFwdRegsInfo == CalleesMap.end()) 779 return; 780 781 const MachineBasicBlock *MBB = CallMI->getParent(); 782 783 // Skip the call instruction. 784 auto I = std::next(CallMI->getReverseIterator()); 785 786 FwdRegWorklist ForwardedRegWorklist; 787 788 const DIExpression *EmptyExpr = 789 DIExpression::get(MF->getFunction().getContext(), {}); 790 791 // Add all the forwarding registers into the ForwardedRegWorklist. 792 for (auto ArgReg : CallFwdRegsInfo->second) { 793 bool InsertedReg = 794 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 795 .second; 796 assert(InsertedReg && "Single register used to forward two arguments?"); 797 (void)InsertedReg; 798 } 799 800 // We erase, from the ForwardedRegWorklist, those forwarding registers for 801 // which we successfully describe a loaded value (by using 802 // the describeLoadedValue()). For those remaining arguments in the working 803 // list, for which we do not describe a loaded value by 804 // the describeLoadedValue(), we try to generate an entry value expression 805 // for their call site value description, if the call is within the entry MBB. 806 // TODO: Handle situations when call site parameter value can be described 807 // as the entry value within basic blocks other than the first one. 808 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 809 810 // Search for a loading value in forwarding registers inside call delay slot. 811 if (CallMI->hasDelaySlot()) { 812 auto Suc = std::next(CallMI->getIterator()); 813 // Only one-instruction delay slot is supported. 814 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 815 (void)BundleEnd; 816 assert(std::next(Suc) == BundleEnd && 817 "More than one instruction in call delay slot"); 818 // Try to interpret value loaded by instruction. 819 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 820 return; 821 } 822 823 // Search for a loading value in forwarding registers. 824 for (; I != MBB->rend(); ++I) { 825 // Try to interpret values loaded by instruction. 826 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 827 return; 828 } 829 830 // Emit the call site parameter's value as an entry value. 831 if (ShouldTryEmitEntryVals) { 832 // Create an expression where the register's entry value is used. 833 DIExpression *EntryExpr = DIExpression::get( 834 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 835 for (auto RegEntry : ForwardedRegWorklist) { 836 MachineLocation MLoc(RegEntry.first); 837 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 838 } 839 } 840 } 841 842 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 843 DwarfCompileUnit &CU, DIE &ScopeDIE, 844 const MachineFunction &MF) { 845 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 846 // the subprogram is required to have one. 847 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 848 return; 849 850 // Use DW_AT_call_all_calls to express that call site entries are present 851 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 852 // because one of its requirements is not met: call site entries for 853 // optimized-out calls are elided. 854 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 855 856 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 857 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 858 859 // Delay slot support check. 860 auto delaySlotSupported = [&](const MachineInstr &MI) { 861 if (!MI.isBundledWithSucc()) 862 return false; 863 auto Suc = std::next(MI.getIterator()); 864 auto CallInstrBundle = getBundleStart(MI.getIterator()); 865 (void)CallInstrBundle; 866 auto DelaySlotBundle = getBundleStart(Suc); 867 (void)DelaySlotBundle; 868 // Ensure that label after call is following delay slot instruction. 869 // Ex. CALL_INSTRUCTION { 870 // DELAY_SLOT_INSTRUCTION } 871 // LABEL_AFTER_CALL 872 assert(getLabelAfterInsn(&*CallInstrBundle) == 873 getLabelAfterInsn(&*DelaySlotBundle) && 874 "Call and its successor instruction don't have same label after."); 875 return true; 876 }; 877 878 // Emit call site entries for each call or tail call in the function. 879 for (const MachineBasicBlock &MBB : MF) { 880 for (const MachineInstr &MI : MBB.instrs()) { 881 // Bundles with call in them will pass the isCall() test below but do not 882 // have callee operand information so skip them here. Iterator will 883 // eventually reach the call MI. 884 if (MI.isBundle()) 885 continue; 886 887 // Skip instructions which aren't calls. Both calls and tail-calling jump 888 // instructions (e.g TAILJMPd64) are classified correctly here. 889 if (!MI.isCandidateForCallSiteEntry()) 890 continue; 891 892 // Skip instructions marked as frame setup, as they are not interesting to 893 // the user. 894 if (MI.getFlag(MachineInstr::FrameSetup)) 895 continue; 896 897 // Check if delay slot support is enabled. 898 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 899 return; 900 901 // If this is a direct call, find the callee's subprogram. 902 // In the case of an indirect call find the register that holds 903 // the callee. 904 const MachineOperand &CalleeOp = MI.getOperand(0); 905 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 906 continue; 907 908 unsigned CallReg = 0; 909 DIE *CalleeDIE = nullptr; 910 const Function *CalleeDecl = nullptr; 911 if (CalleeOp.isReg()) { 912 CallReg = CalleeOp.getReg(); 913 if (!CallReg) 914 continue; 915 } else { 916 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 917 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 918 continue; 919 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 920 921 if (CalleeSP->isDefinition()) { 922 // Ensure that a subprogram DIE for the callee is available in the 923 // appropriate CU. 924 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 925 } else { 926 // Create the declaration DIE if it is missing. This is required to 927 // support compilation of old bitcode with an incomplete list of 928 // retained metadata. 929 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 930 } 931 assert(CalleeDIE && "Must have a DIE for the callee"); 932 } 933 934 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 935 936 bool IsTail = TII->isTailCall(MI); 937 938 // If MI is in a bundle, the label was created after the bundle since 939 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 940 // to search for that label below. 941 const MachineInstr *TopLevelCallMI = 942 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 943 944 // For non-tail calls, the return PC is needed to disambiguate paths in 945 // the call graph which could lead to some target function. For tail 946 // calls, no return PC information is needed, unless tuning for GDB in 947 // DWARF4 mode in which case we fake a return PC for compatibility. 948 const MCSymbol *PCAddr = 949 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 950 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 951 : nullptr; 952 953 // For tail calls, it's necessary to record the address of the branch 954 // instruction so that the debugger can show where the tail call occurred. 955 const MCSymbol *CallAddr = 956 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 957 958 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 959 960 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 961 << (CalleeDecl ? CalleeDecl->getName() 962 : StringRef(MF.getSubtarget() 963 .getRegisterInfo() 964 ->getName(CallReg))) 965 << (IsTail ? " [IsTail]" : "") << "\n"); 966 967 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 968 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 969 970 // Optionally emit call-site-param debug info. 971 if (emitDebugEntryValues()) { 972 ParamSet Params; 973 // Try to interpret values of call site parameters. 974 collectCallSiteParameters(&MI, Params); 975 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 976 } 977 } 978 } 979 } 980 981 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 982 if (!U.hasDwarfPubSections()) 983 return; 984 985 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 986 } 987 988 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 989 DwarfCompileUnit &NewCU) { 990 DIE &Die = NewCU.getUnitDie(); 991 StringRef FN = DIUnit->getFilename(); 992 993 StringRef Producer = DIUnit->getProducer(); 994 StringRef Flags = DIUnit->getFlags(); 995 if (!Flags.empty() && !useAppleExtensionAttributes()) { 996 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 997 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 998 } else 999 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1000 1001 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1002 DIUnit->getSourceLanguage()); 1003 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1004 StringRef SysRoot = DIUnit->getSysRoot(); 1005 if (!SysRoot.empty()) 1006 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1007 StringRef SDK = DIUnit->getSDK(); 1008 if (!SDK.empty()) 1009 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1010 1011 // Add DW_str_offsets_base to the unit DIE, except for split units. 1012 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1013 NewCU.addStringOffsetsStart(); 1014 1015 if (!useSplitDwarf()) { 1016 NewCU.initStmtList(); 1017 1018 // If we're using split dwarf the compilation dir is going to be in the 1019 // skeleton CU and so we don't need to duplicate it here. 1020 if (!CompilationDir.empty()) 1021 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1022 addGnuPubAttributes(NewCU, Die); 1023 } 1024 1025 if (useAppleExtensionAttributes()) { 1026 if (DIUnit->isOptimized()) 1027 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1028 1029 StringRef Flags = DIUnit->getFlags(); 1030 if (!Flags.empty()) 1031 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1032 1033 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1034 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1035 dwarf::DW_FORM_data1, RVer); 1036 } 1037 1038 if (DIUnit->getDWOId()) { 1039 // This CU is either a clang module DWO or a skeleton CU. 1040 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1041 DIUnit->getDWOId()); 1042 if (!DIUnit->getSplitDebugFilename().empty()) { 1043 // This is a prefabricated skeleton CU. 1044 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1045 ? dwarf::DW_AT_dwo_name 1046 : dwarf::DW_AT_GNU_dwo_name; 1047 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1048 } 1049 } 1050 } 1051 // Create new DwarfCompileUnit for the given metadata node with tag 1052 // DW_TAG_compile_unit. 1053 DwarfCompileUnit & 1054 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1055 if (auto *CU = CUMap.lookup(DIUnit)) 1056 return *CU; 1057 1058 CompilationDir = DIUnit->getDirectory(); 1059 1060 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1061 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1062 DwarfCompileUnit &NewCU = *OwnedUnit; 1063 InfoHolder.addUnit(std::move(OwnedUnit)); 1064 1065 for (auto *IE : DIUnit->getImportedEntities()) 1066 NewCU.addImportedEntity(IE); 1067 1068 // LTO with assembly output shares a single line table amongst multiple CUs. 1069 // To avoid the compilation directory being ambiguous, let the line table 1070 // explicitly describe the directory of all files, never relying on the 1071 // compilation directory. 1072 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1073 Asm->OutStreamer->emitDwarfFile0Directive( 1074 CompilationDir, DIUnit->getFilename(), 1075 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 1076 NewCU.getUniqueID()); 1077 1078 if (useSplitDwarf()) { 1079 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1080 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1081 } else { 1082 finishUnitAttributes(DIUnit, NewCU); 1083 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1084 } 1085 1086 CUMap.insert({DIUnit, &NewCU}); 1087 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1088 return NewCU; 1089 } 1090 1091 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1092 const DIImportedEntity *N) { 1093 if (isa<DILocalScope>(N->getScope())) 1094 return; 1095 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1096 D->addChild(TheCU.constructImportedEntityDIE(N)); 1097 } 1098 1099 /// Sort and unique GVEs by comparing their fragment offset. 1100 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1101 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1102 llvm::sort( 1103 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1104 // Sort order: first null exprs, then exprs without fragment 1105 // info, then sort by fragment offset in bits. 1106 // FIXME: Come up with a more comprehensive comparator so 1107 // the sorting isn't non-deterministic, and so the following 1108 // std::unique call works correctly. 1109 if (!A.Expr || !B.Expr) 1110 return !!B.Expr; 1111 auto FragmentA = A.Expr->getFragmentInfo(); 1112 auto FragmentB = B.Expr->getFragmentInfo(); 1113 if (!FragmentA || !FragmentB) 1114 return !!FragmentB; 1115 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1116 }); 1117 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1118 [](DwarfCompileUnit::GlobalExpr A, 1119 DwarfCompileUnit::GlobalExpr B) { 1120 return A.Expr == B.Expr; 1121 }), 1122 GVEs.end()); 1123 return GVEs; 1124 } 1125 1126 // Emit all Dwarf sections that should come prior to the content. Create 1127 // global DIEs and emit initial debug info sections. This is invoked by 1128 // the target AsmPrinter. 1129 void DwarfDebug::beginModule() { 1130 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1131 DWARFGroupDescription, TimePassesIsEnabled); 1132 if (DisableDebugInfoPrinting) { 1133 MMI->setDebugInfoAvailability(false); 1134 return; 1135 } 1136 1137 const Module *M = MMI->getModule(); 1138 1139 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1140 M->debug_compile_units_end()); 1141 // Tell MMI whether we have debug info. 1142 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1143 "DebugInfoAvailabilty initialized unexpectedly"); 1144 SingleCU = NumDebugCUs == 1; 1145 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1146 GVMap; 1147 for (const GlobalVariable &Global : M->globals()) { 1148 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1149 Global.getDebugInfo(GVs); 1150 for (auto *GVE : GVs) 1151 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1152 } 1153 1154 // Create the symbol that designates the start of the unit's contribution 1155 // to the string offsets table. In a split DWARF scenario, only the skeleton 1156 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1157 if (useSegmentedStringOffsetsTable()) 1158 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1159 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1160 1161 1162 // Create the symbols that designates the start of the DWARF v5 range list 1163 // and locations list tables. They are located past the table headers. 1164 if (getDwarfVersion() >= 5) { 1165 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1166 Holder.setRnglistsTableBaseSym( 1167 Asm->createTempSymbol("rnglists_table_base")); 1168 1169 if (useSplitDwarf()) 1170 InfoHolder.setRnglistsTableBaseSym( 1171 Asm->createTempSymbol("rnglists_dwo_table_base")); 1172 } 1173 1174 // Create the symbol that points to the first entry following the debug 1175 // address table (.debug_addr) header. 1176 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1177 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1178 1179 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1180 // FIXME: Move local imported entities into a list attached to the 1181 // subprogram, then this search won't be needed and a 1182 // getImportedEntities().empty() test should go below with the rest. 1183 bool HasNonLocalImportedEntities = llvm::any_of( 1184 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1185 return !isa<DILocalScope>(IE->getScope()); 1186 }); 1187 1188 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1189 CUNode->getRetainedTypes().empty() && 1190 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1191 continue; 1192 1193 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1194 1195 // Global Variables. 1196 for (auto *GVE : CUNode->getGlobalVariables()) { 1197 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1198 // already know about the variable and it isn't adding a constant 1199 // expression. 1200 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1201 auto *Expr = GVE->getExpression(); 1202 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1203 GVMapEntry.push_back({nullptr, Expr}); 1204 } 1205 DenseSet<DIGlobalVariable *> Processed; 1206 for (auto *GVE : CUNode->getGlobalVariables()) { 1207 DIGlobalVariable *GV = GVE->getVariable(); 1208 if (Processed.insert(GV).second) 1209 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1210 } 1211 1212 for (auto *Ty : CUNode->getEnumTypes()) { 1213 // The enum types array by design contains pointers to 1214 // MDNodes rather than DIRefs. Unique them here. 1215 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1216 } 1217 for (auto *Ty : CUNode->getRetainedTypes()) { 1218 // The retained types array by design contains pointers to 1219 // MDNodes rather than DIRefs. Unique them here. 1220 if (DIType *RT = dyn_cast<DIType>(Ty)) 1221 // There is no point in force-emitting a forward declaration. 1222 CU.getOrCreateTypeDIE(RT); 1223 } 1224 // Emit imported_modules last so that the relevant context is already 1225 // available. 1226 for (auto *IE : CUNode->getImportedEntities()) 1227 constructAndAddImportedEntityDIE(CU, IE); 1228 } 1229 } 1230 1231 void DwarfDebug::finishEntityDefinitions() { 1232 for (const auto &Entity : ConcreteEntities) { 1233 DIE *Die = Entity->getDIE(); 1234 assert(Die); 1235 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1236 // in the ConcreteEntities list, rather than looking it up again here. 1237 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1238 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1239 assert(Unit); 1240 Unit->finishEntityDefinition(Entity.get()); 1241 } 1242 } 1243 1244 void DwarfDebug::finishSubprogramDefinitions() { 1245 for (const DISubprogram *SP : ProcessedSPNodes) { 1246 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1247 forBothCUs( 1248 getOrCreateDwarfCompileUnit(SP->getUnit()), 1249 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1250 } 1251 } 1252 1253 void DwarfDebug::finalizeModuleInfo() { 1254 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1255 1256 finishSubprogramDefinitions(); 1257 1258 finishEntityDefinitions(); 1259 1260 // Include the DWO file name in the hash if there's more than one CU. 1261 // This handles ThinLTO's situation where imported CUs may very easily be 1262 // duplicate with the same CU partially imported into another ThinLTO unit. 1263 StringRef DWOName; 1264 if (CUMap.size() > 1) 1265 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1266 1267 // Handle anything that needs to be done on a per-unit basis after 1268 // all other generation. 1269 for (const auto &P : CUMap) { 1270 auto &TheCU = *P.second; 1271 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1272 continue; 1273 // Emit DW_AT_containing_type attribute to connect types with their 1274 // vtable holding type. 1275 TheCU.constructContainingTypeDIEs(); 1276 1277 // Add CU specific attributes if we need to add any. 1278 // If we're splitting the dwarf out now that we've got the entire 1279 // CU then add the dwo id to it. 1280 auto *SkCU = TheCU.getSkeleton(); 1281 1282 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1283 1284 if (HasSplitUnit) { 1285 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1286 ? dwarf::DW_AT_dwo_name 1287 : dwarf::DW_AT_GNU_dwo_name; 1288 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1289 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1290 Asm->TM.Options.MCOptions.SplitDwarfFile); 1291 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1292 Asm->TM.Options.MCOptions.SplitDwarfFile); 1293 // Emit a unique identifier for this CU. 1294 uint64_t ID = 1295 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1296 if (getDwarfVersion() >= 5) { 1297 TheCU.setDWOId(ID); 1298 SkCU->setDWOId(ID); 1299 } else { 1300 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1301 dwarf::DW_FORM_data8, ID); 1302 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1303 dwarf::DW_FORM_data8, ID); 1304 } 1305 1306 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1307 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1308 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1309 Sym, Sym); 1310 } 1311 } else if (SkCU) { 1312 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1313 } 1314 1315 // If we have code split among multiple sections or non-contiguous 1316 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1317 // remain in the .o file, otherwise add a DW_AT_low_pc. 1318 // FIXME: We should use ranges allow reordering of code ala 1319 // .subsections_via_symbols in mach-o. This would mean turning on 1320 // ranges for all subprogram DIEs for mach-o. 1321 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1322 1323 if (unsigned NumRanges = TheCU.getRanges().size()) { 1324 if (NumRanges > 1 && useRangesSection()) 1325 // A DW_AT_low_pc attribute may also be specified in combination with 1326 // DW_AT_ranges to specify the default base address for use in 1327 // location lists (see Section 2.6.2) and range lists (see Section 1328 // 2.17.3). 1329 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1330 else 1331 U.setBaseAddress(TheCU.getRanges().front().Begin); 1332 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1333 } 1334 1335 // We don't keep track of which addresses are used in which CU so this 1336 // is a bit pessimistic under LTO. 1337 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1338 U.addAddrTableBase(); 1339 1340 if (getDwarfVersion() >= 5) { 1341 if (U.hasRangeLists()) 1342 U.addRnglistsBase(); 1343 1344 if (!DebugLocs.getLists().empty()) { 1345 if (!useSplitDwarf()) 1346 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1347 DebugLocs.getSym(), 1348 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1349 } 1350 } 1351 1352 auto *CUNode = cast<DICompileUnit>(P.first); 1353 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1354 // attribute. 1355 if (CUNode->getMacros()) { 1356 if (getDwarfVersion() >= 5) { 1357 if (useSplitDwarf()) 1358 TheCU.addSectionDelta( 1359 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1360 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1361 else 1362 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros, 1363 U.getMacroLabelBegin(), 1364 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1365 } else { 1366 if (useSplitDwarf()) 1367 TheCU.addSectionDelta( 1368 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1369 U.getMacroLabelBegin(), 1370 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1371 else 1372 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1373 U.getMacroLabelBegin(), 1374 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1375 } 1376 } 1377 } 1378 1379 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1380 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1381 if (CUNode->getDWOId()) 1382 getOrCreateDwarfCompileUnit(CUNode); 1383 1384 // Compute DIE offsets and sizes. 1385 InfoHolder.computeSizeAndOffsets(); 1386 if (useSplitDwarf()) 1387 SkeletonHolder.computeSizeAndOffsets(); 1388 } 1389 1390 // Emit all Dwarf sections that should come after the content. 1391 void DwarfDebug::endModule() { 1392 assert(CurFn == nullptr); 1393 assert(CurMI == nullptr); 1394 1395 for (const auto &P : CUMap) { 1396 auto &CU = *P.second; 1397 CU.createBaseTypeDIEs(); 1398 } 1399 1400 // If we aren't actually generating debug info (check beginModule - 1401 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1402 // llvm.dbg.cu metadata node) 1403 if (!MMI->hasDebugInfo()) 1404 return; 1405 1406 // Finalize the debug info for the module. 1407 finalizeModuleInfo(); 1408 1409 if (useSplitDwarf()) 1410 // Emit debug_loc.dwo/debug_loclists.dwo section. 1411 emitDebugLocDWO(); 1412 else 1413 // Emit debug_loc/debug_loclists section. 1414 emitDebugLoc(); 1415 1416 // Corresponding abbreviations into a abbrev section. 1417 emitAbbreviations(); 1418 1419 // Emit all the DIEs into a debug info section. 1420 emitDebugInfo(); 1421 1422 // Emit info into a debug aranges section. 1423 if (GenerateARangeSection) 1424 emitDebugARanges(); 1425 1426 // Emit info into a debug ranges section. 1427 emitDebugRanges(); 1428 1429 if (useSplitDwarf()) 1430 // Emit info into a debug macinfo.dwo section. 1431 emitDebugMacinfoDWO(); 1432 else 1433 // Emit info into a debug macinfo/macro section. 1434 emitDebugMacinfo(); 1435 1436 emitDebugStr(); 1437 1438 if (useSplitDwarf()) { 1439 emitDebugStrDWO(); 1440 emitDebugInfoDWO(); 1441 emitDebugAbbrevDWO(); 1442 emitDebugLineDWO(); 1443 emitDebugRangesDWO(); 1444 } 1445 1446 emitDebugAddr(); 1447 1448 // Emit info into the dwarf accelerator table sections. 1449 switch (getAccelTableKind()) { 1450 case AccelTableKind::Apple: 1451 emitAccelNames(); 1452 emitAccelObjC(); 1453 emitAccelNamespaces(); 1454 emitAccelTypes(); 1455 break; 1456 case AccelTableKind::Dwarf: 1457 emitAccelDebugNames(); 1458 break; 1459 case AccelTableKind::None: 1460 break; 1461 case AccelTableKind::Default: 1462 llvm_unreachable("Default should have already been resolved."); 1463 } 1464 1465 // Emit the pubnames and pubtypes sections if requested. 1466 emitDebugPubSections(); 1467 1468 // clean up. 1469 // FIXME: AbstractVariables.clear(); 1470 } 1471 1472 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1473 const DINode *Node, 1474 const MDNode *ScopeNode) { 1475 if (CU.getExistingAbstractEntity(Node)) 1476 return; 1477 1478 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1479 cast<DILocalScope>(ScopeNode))); 1480 } 1481 1482 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1483 const DINode *Node, const MDNode *ScopeNode) { 1484 if (CU.getExistingAbstractEntity(Node)) 1485 return; 1486 1487 if (LexicalScope *Scope = 1488 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1489 CU.createAbstractEntity(Node, Scope); 1490 } 1491 1492 // Collect variable information from side table maintained by MF. 1493 void DwarfDebug::collectVariableInfoFromMFTable( 1494 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1495 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1496 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1497 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1498 if (!VI.Var) 1499 continue; 1500 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1501 "Expected inlined-at fields to agree"); 1502 1503 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1504 Processed.insert(Var); 1505 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1506 1507 // If variable scope is not found then skip this variable. 1508 if (!Scope) { 1509 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1510 << ", no variable scope found\n"); 1511 continue; 1512 } 1513 1514 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1515 auto RegVar = std::make_unique<DbgVariable>( 1516 cast<DILocalVariable>(Var.first), Var.second); 1517 RegVar->initializeMMI(VI.Expr, VI.Slot); 1518 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1519 << "\n"); 1520 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1521 DbgVar->addMMIEntry(*RegVar); 1522 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1523 MFVars.insert({Var, RegVar.get()}); 1524 ConcreteEntities.push_back(std::move(RegVar)); 1525 } 1526 } 1527 } 1528 1529 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1530 /// enclosing lexical scope. The check ensures there are no other instructions 1531 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1532 /// either open or otherwise rolls off the end of the scope. 1533 static bool validThroughout(LexicalScopes &LScopes, 1534 const MachineInstr *DbgValue, 1535 const MachineInstr *RangeEnd) { 1536 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1537 auto MBB = DbgValue->getParent(); 1538 auto DL = DbgValue->getDebugLoc(); 1539 auto *LScope = LScopes.findLexicalScope(DL); 1540 // Scope doesn't exist; this is a dead DBG_VALUE. 1541 if (!LScope) 1542 return false; 1543 auto &LSRange = LScope->getRanges(); 1544 if (LSRange.size() == 0) 1545 return false; 1546 1547 1548 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1549 const MachineInstr *LScopeBegin = LSRange.front().first; 1550 // Early exit if the lexical scope begins outside of the current block. 1551 if (LScopeBegin->getParent() != MBB) 1552 return false; 1553 1554 // If there are instructions belonging to our scope in another block, and 1555 // we're not a constant (see DWARF2 comment below), then we can't be 1556 // validThroughout. 1557 const MachineInstr *LScopeEnd = LSRange.back().second; 1558 if (RangeEnd && LScopeEnd->getParent() != MBB) 1559 return false; 1560 1561 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1562 for (++Pred; Pred != MBB->rend(); ++Pred) { 1563 if (Pred->getFlag(MachineInstr::FrameSetup)) 1564 break; 1565 auto PredDL = Pred->getDebugLoc(); 1566 if (!PredDL || Pred->isMetaInstruction()) 1567 continue; 1568 // Check whether the instruction preceding the DBG_VALUE is in the same 1569 // (sub)scope as the DBG_VALUE. 1570 if (DL->getScope() == PredDL->getScope()) 1571 return false; 1572 auto *PredScope = LScopes.findLexicalScope(PredDL); 1573 if (!PredScope || LScope->dominates(PredScope)) 1574 return false; 1575 } 1576 1577 // If the range of the DBG_VALUE is open-ended, report success. 1578 if (!RangeEnd) 1579 return true; 1580 1581 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1582 // throughout the function. This is a hack, presumably for DWARF v2 and not 1583 // necessarily correct. It would be much better to use a dbg.declare instead 1584 // if we know the constant is live throughout the scope. 1585 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1586 return true; 1587 1588 // Now check for situations where an "open-ended" DBG_VALUE isn't enough to 1589 // determine eligibility for a single location, e.g. nested scopes, inlined 1590 // functions. 1591 // FIXME: For now we just handle a simple (but common) case where the scope 1592 // is contained in MBB. We could be smarter here. 1593 // 1594 // At this point we know that our scope ends in MBB. So, if RangeEnd exists 1595 // outside of the block we can ignore it; the location is just leaking outside 1596 // its scope. 1597 assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB"); 1598 if (RangeEnd->getParent() != DbgValue->getParent()) 1599 return true; 1600 1601 // The location range and variable's enclosing scope are both contained within 1602 // MBB, test if location terminates before end of scope. 1603 for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I) 1604 if (&*I == LScopeEnd) 1605 return false; 1606 1607 // There's a single location which starts at the scope start, and ends at or 1608 // after the scope end. 1609 return true; 1610 } 1611 1612 /// Build the location list for all DBG_VALUEs in the function that 1613 /// describe the same variable. The resulting DebugLocEntries will have 1614 /// strict monotonically increasing begin addresses and will never 1615 /// overlap. If the resulting list has only one entry that is valid 1616 /// throughout variable's scope return true. 1617 // 1618 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1619 // different kinds of history map entries. One thing to be aware of is that if 1620 // a debug value is ended by another entry (rather than being valid until the 1621 // end of the function), that entry's instruction may or may not be included in 1622 // the range, depending on if the entry is a clobbering entry (it has an 1623 // instruction that clobbers one or more preceding locations), or if it is an 1624 // (overlapping) debug value entry. This distinction can be seen in the example 1625 // below. The first debug value is ended by the clobbering entry 2, and the 1626 // second and third debug values are ended by the overlapping debug value entry 1627 // 4. 1628 // 1629 // Input: 1630 // 1631 // History map entries [type, end index, mi] 1632 // 1633 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1634 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1635 // 2 | | [Clobber, $reg0 = [...], -, -] 1636 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1637 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1638 // 1639 // Output [start, end) [Value...]: 1640 // 1641 // [0-1) [(reg0, fragment 0, 32)] 1642 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1643 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1644 // [4-) [(@g, fragment 0, 96)] 1645 bool DwarfDebug::buildLocationList( 1646 SmallVectorImpl<DebugLocEntry> &DebugLoc, 1647 const DbgValueHistoryMap::Entries &Entries, 1648 DenseSet<const MachineBasicBlock *> &VeryLargeBlocks) { 1649 using OpenRange = 1650 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1651 SmallVector<OpenRange, 4> OpenRanges; 1652 bool isSafeForSingleLocation = true; 1653 const MachineInstr *StartDebugMI = nullptr; 1654 const MachineInstr *EndMI = nullptr; 1655 1656 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1657 const MachineInstr *Instr = EI->getInstr(); 1658 1659 // Remove all values that are no longer live. 1660 size_t Index = std::distance(EB, EI); 1661 auto Last = 1662 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1663 OpenRanges.erase(Last, OpenRanges.end()); 1664 1665 // If we are dealing with a clobbering entry, this iteration will result in 1666 // a location list entry starting after the clobbering instruction. 1667 const MCSymbol *StartLabel = 1668 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1669 assert(StartLabel && 1670 "Forgot label before/after instruction starting a range!"); 1671 1672 const MCSymbol *EndLabel; 1673 if (std::next(EI) == Entries.end()) { 1674 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1675 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1676 if (EI->isClobber()) 1677 EndMI = EI->getInstr(); 1678 } 1679 else if (std::next(EI)->isClobber()) 1680 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1681 else 1682 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1683 assert(EndLabel && "Forgot label after instruction ending a range!"); 1684 1685 if (EI->isDbgValue()) 1686 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1687 1688 // If this history map entry has a debug value, add that to the list of 1689 // open ranges and check if its location is valid for a single value 1690 // location. 1691 if (EI->isDbgValue()) { 1692 // Do not add undef debug values, as they are redundant information in 1693 // the location list entries. An undef debug results in an empty location 1694 // description. If there are any non-undef fragments then padding pieces 1695 // with empty location descriptions will automatically be inserted, and if 1696 // all fragments are undef then the whole location list entry is 1697 // redundant. 1698 if (!Instr->isUndefDebugValue()) { 1699 auto Value = getDebugLocValue(Instr); 1700 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1701 1702 // TODO: Add support for single value fragment locations. 1703 if (Instr->getDebugExpression()->isFragment()) 1704 isSafeForSingleLocation = false; 1705 1706 if (!StartDebugMI) 1707 StartDebugMI = Instr; 1708 } else { 1709 isSafeForSingleLocation = false; 1710 } 1711 } 1712 1713 // Location list entries with empty location descriptions are redundant 1714 // information in DWARF, so do not emit those. 1715 if (OpenRanges.empty()) 1716 continue; 1717 1718 // Omit entries with empty ranges as they do not have any effect in DWARF. 1719 if (StartLabel == EndLabel) { 1720 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1721 continue; 1722 } 1723 1724 SmallVector<DbgValueLoc, 4> Values; 1725 for (auto &R : OpenRanges) 1726 Values.push_back(R.second); 1727 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1728 1729 // Attempt to coalesce the ranges of two otherwise identical 1730 // DebugLocEntries. 1731 auto CurEntry = DebugLoc.rbegin(); 1732 LLVM_DEBUG({ 1733 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1734 for (auto &Value : CurEntry->getValues()) 1735 Value.dump(); 1736 dbgs() << "-----\n"; 1737 }); 1738 1739 auto PrevEntry = std::next(CurEntry); 1740 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1741 DebugLoc.pop_back(); 1742 } 1743 1744 // If there's a single entry, safe for a single location, and not part of 1745 // an over-sized basic block, then ask validThroughout whether this 1746 // location can be represented as a single variable location. 1747 if (DebugLoc.size() != 1 || !isSafeForSingleLocation) 1748 return false; 1749 if (VeryLargeBlocks.count(StartDebugMI->getParent())) 1750 return false; 1751 return validThroughout(LScopes, StartDebugMI, EndMI); 1752 } 1753 1754 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1755 LexicalScope &Scope, 1756 const DINode *Node, 1757 const DILocation *Location, 1758 const MCSymbol *Sym) { 1759 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1760 if (isa<const DILocalVariable>(Node)) { 1761 ConcreteEntities.push_back( 1762 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1763 Location)); 1764 InfoHolder.addScopeVariable(&Scope, 1765 cast<DbgVariable>(ConcreteEntities.back().get())); 1766 } else if (isa<const DILabel>(Node)) { 1767 ConcreteEntities.push_back( 1768 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1769 Location, Sym)); 1770 InfoHolder.addScopeLabel(&Scope, 1771 cast<DbgLabel>(ConcreteEntities.back().get())); 1772 } 1773 return ConcreteEntities.back().get(); 1774 } 1775 1776 // Find variables for each lexical scope. 1777 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1778 const DISubprogram *SP, 1779 DenseSet<InlinedEntity> &Processed) { 1780 // Grab the variable info that was squirreled away in the MMI side-table. 1781 collectVariableInfoFromMFTable(TheCU, Processed); 1782 1783 // Identify blocks that are unreasonably sized, so that we can later 1784 // skip lexical scope analysis over them. 1785 DenseSet<const MachineBasicBlock *> VeryLargeBlocks; 1786 for (const auto &MBB : *CurFn) 1787 if (MBB.size() > LocationAnalysisSizeLimit) 1788 VeryLargeBlocks.insert(&MBB); 1789 1790 for (const auto &I : DbgValues) { 1791 InlinedEntity IV = I.first; 1792 if (Processed.count(IV)) 1793 continue; 1794 1795 // Instruction ranges, specifying where IV is accessible. 1796 const auto &HistoryMapEntries = I.second; 1797 if (HistoryMapEntries.empty()) 1798 continue; 1799 1800 LexicalScope *Scope = nullptr; 1801 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1802 if (const DILocation *IA = IV.second) 1803 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1804 else 1805 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1806 // If variable scope is not found then skip this variable. 1807 if (!Scope) 1808 continue; 1809 1810 Processed.insert(IV); 1811 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1812 *Scope, LocalVar, IV.second)); 1813 1814 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1815 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1816 1817 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1818 // If the history map contains a single debug value, there may be an 1819 // additional entry which clobbers the debug value. 1820 size_t HistSize = HistoryMapEntries.size(); 1821 bool SingleValueWithClobber = 1822 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1823 if (HistSize == 1 || SingleValueWithClobber) { 1824 const auto *End = 1825 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1826 if (VeryLargeBlocks.count(MInsn->getParent()) == 0 && 1827 validThroughout(LScopes, MInsn, End)) { 1828 RegVar->initializeDbgValue(MInsn); 1829 continue; 1830 } 1831 } 1832 1833 // Do not emit location lists if .debug_loc secton is disabled. 1834 if (!useLocSection()) 1835 continue; 1836 1837 // Handle multiple DBG_VALUE instructions describing one variable. 1838 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1839 1840 // Build the location list for this variable. 1841 SmallVector<DebugLocEntry, 8> Entries; 1842 bool isValidSingleLocation = 1843 buildLocationList(Entries, HistoryMapEntries, VeryLargeBlocks); 1844 1845 // Check whether buildLocationList managed to merge all locations to one 1846 // that is valid throughout the variable's scope. If so, produce single 1847 // value location. 1848 if (isValidSingleLocation) { 1849 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1850 continue; 1851 } 1852 1853 // If the variable has a DIBasicType, extract it. Basic types cannot have 1854 // unique identifiers, so don't bother resolving the type with the 1855 // identifier map. 1856 const DIBasicType *BT = dyn_cast<DIBasicType>( 1857 static_cast<const Metadata *>(LocalVar->getType())); 1858 1859 // Finalize the entry by lowering it into a DWARF bytestream. 1860 for (auto &Entry : Entries) 1861 Entry.finalize(*Asm, List, BT, TheCU); 1862 } 1863 1864 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1865 // DWARF-related DbgLabel. 1866 for (const auto &I : DbgLabels) { 1867 InlinedEntity IL = I.first; 1868 const MachineInstr *MI = I.second; 1869 if (MI == nullptr) 1870 continue; 1871 1872 LexicalScope *Scope = nullptr; 1873 const DILabel *Label = cast<DILabel>(IL.first); 1874 // The scope could have an extra lexical block file. 1875 const DILocalScope *LocalScope = 1876 Label->getScope()->getNonLexicalBlockFileScope(); 1877 // Get inlined DILocation if it is inlined label. 1878 if (const DILocation *IA = IL.second) 1879 Scope = LScopes.findInlinedScope(LocalScope, IA); 1880 else 1881 Scope = LScopes.findLexicalScope(LocalScope); 1882 // If label scope is not found then skip this label. 1883 if (!Scope) 1884 continue; 1885 1886 Processed.insert(IL); 1887 /// At this point, the temporary label is created. 1888 /// Save the temporary label to DbgLabel entity to get the 1889 /// actually address when generating Dwarf DIE. 1890 MCSymbol *Sym = getLabelBeforeInsn(MI); 1891 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1892 } 1893 1894 // Collect info for variables/labels that were optimized out. 1895 for (const DINode *DN : SP->getRetainedNodes()) { 1896 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1897 continue; 1898 LexicalScope *Scope = nullptr; 1899 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1900 Scope = LScopes.findLexicalScope(DV->getScope()); 1901 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1902 Scope = LScopes.findLexicalScope(DL->getScope()); 1903 } 1904 1905 if (Scope) 1906 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1907 } 1908 } 1909 1910 // Process beginning of an instruction. 1911 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1912 const MachineFunction &MF = *MI->getMF(); 1913 const auto *SP = MF.getFunction().getSubprogram(); 1914 bool NoDebug = 1915 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1916 1917 // Delay slot support check. 1918 auto delaySlotSupported = [](const MachineInstr &MI) { 1919 if (!MI.isBundledWithSucc()) 1920 return false; 1921 auto Suc = std::next(MI.getIterator()); 1922 (void)Suc; 1923 // Ensure that delay slot instruction is successor of the call instruction. 1924 // Ex. CALL_INSTRUCTION { 1925 // DELAY_SLOT_INSTRUCTION } 1926 assert(Suc->isBundledWithPred() && 1927 "Call bundle instructions are out of order"); 1928 return true; 1929 }; 1930 1931 // When describing calls, we need a label for the call instruction. 1932 if (!NoDebug && SP->areAllCallsDescribed() && 1933 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1934 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1935 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1936 bool IsTail = TII->isTailCall(*MI); 1937 // For tail calls, we need the address of the branch instruction for 1938 // DW_AT_call_pc. 1939 if (IsTail) 1940 requestLabelBeforeInsn(MI); 1941 // For non-tail calls, we need the return address for the call for 1942 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1943 // tail calls as well. 1944 requestLabelAfterInsn(MI); 1945 } 1946 1947 DebugHandlerBase::beginInstruction(MI); 1948 assert(CurMI); 1949 1950 if (NoDebug) 1951 return; 1952 1953 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1954 // If the instruction is part of the function frame setup code, do not emit 1955 // any line record, as there is no correspondence with any user code. 1956 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1957 return; 1958 const DebugLoc &DL = MI->getDebugLoc(); 1959 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1960 // the last line number actually emitted, to see if it was line 0. 1961 unsigned LastAsmLine = 1962 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1963 1964 if (DL == PrevInstLoc) { 1965 // If we have an ongoing unspecified location, nothing to do here. 1966 if (!DL) 1967 return; 1968 // We have an explicit location, same as the previous location. 1969 // But we might be coming back to it after a line 0 record. 1970 if (LastAsmLine == 0 && DL.getLine() != 0) { 1971 // Reinstate the source location but not marked as a statement. 1972 const MDNode *Scope = DL.getScope(); 1973 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1974 } 1975 return; 1976 } 1977 1978 if (!DL) { 1979 // We have an unspecified location, which might want to be line 0. 1980 // If we have already emitted a line-0 record, don't repeat it. 1981 if (LastAsmLine == 0) 1982 return; 1983 // If user said Don't Do That, don't do that. 1984 if (UnknownLocations == Disable) 1985 return; 1986 // See if we have a reason to emit a line-0 record now. 1987 // Reasons to emit a line-0 record include: 1988 // - User asked for it (UnknownLocations). 1989 // - Instruction has a label, so it's referenced from somewhere else, 1990 // possibly debug information; we want it to have a source location. 1991 // - Instruction is at the top of a block; we don't want to inherit the 1992 // location from the physically previous (maybe unrelated) block. 1993 if (UnknownLocations == Enable || PrevLabel || 1994 (PrevInstBB && PrevInstBB != MI->getParent())) { 1995 // Preserve the file and column numbers, if we can, to save space in 1996 // the encoded line table. 1997 // Do not update PrevInstLoc, it remembers the last non-0 line. 1998 const MDNode *Scope = nullptr; 1999 unsigned Column = 0; 2000 if (PrevInstLoc) { 2001 Scope = PrevInstLoc.getScope(); 2002 Column = PrevInstLoc.getCol(); 2003 } 2004 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2005 } 2006 return; 2007 } 2008 2009 // We have an explicit location, different from the previous location. 2010 // Don't repeat a line-0 record, but otherwise emit the new location. 2011 // (The new location might be an explicit line 0, which we do emit.) 2012 if (DL.getLine() == 0 && LastAsmLine == 0) 2013 return; 2014 unsigned Flags = 0; 2015 if (DL == PrologEndLoc) { 2016 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2017 PrologEndLoc = DebugLoc(); 2018 } 2019 // If the line changed, we call that a new statement; unless we went to 2020 // line 0 and came back, in which case it is not a new statement. 2021 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2022 if (DL.getLine() && DL.getLine() != OldLine) 2023 Flags |= DWARF2_FLAG_IS_STMT; 2024 2025 const MDNode *Scope = DL.getScope(); 2026 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2027 2028 // If we're not at line 0, remember this location. 2029 if (DL.getLine()) 2030 PrevInstLoc = DL; 2031 } 2032 2033 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2034 // First known non-DBG_VALUE and non-frame setup location marks 2035 // the beginning of the function body. 2036 for (const auto &MBB : *MF) 2037 for (const auto &MI : MBB) 2038 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2039 MI.getDebugLoc()) 2040 return MI.getDebugLoc(); 2041 return DebugLoc(); 2042 } 2043 2044 /// Register a source line with debug info. Returns the unique label that was 2045 /// emitted and which provides correspondence to the source line list. 2046 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2047 const MDNode *S, unsigned Flags, unsigned CUID, 2048 uint16_t DwarfVersion, 2049 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2050 StringRef Fn; 2051 unsigned FileNo = 1; 2052 unsigned Discriminator = 0; 2053 if (auto *Scope = cast_or_null<DIScope>(S)) { 2054 Fn = Scope->getFilename(); 2055 if (Line != 0 && DwarfVersion >= 4) 2056 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2057 Discriminator = LBF->getDiscriminator(); 2058 2059 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2060 .getOrCreateSourceID(Scope->getFile()); 2061 } 2062 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2063 Discriminator, Fn); 2064 } 2065 2066 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2067 unsigned CUID) { 2068 // Get beginning of function. 2069 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2070 // Ensure the compile unit is created if the function is called before 2071 // beginFunction(). 2072 (void)getOrCreateDwarfCompileUnit( 2073 MF.getFunction().getSubprogram()->getUnit()); 2074 // We'd like to list the prologue as "not statements" but GDB behaves 2075 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2076 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2077 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2078 CUID, getDwarfVersion(), getUnits()); 2079 return PrologEndLoc; 2080 } 2081 return DebugLoc(); 2082 } 2083 2084 // Gather pre-function debug information. Assumes being called immediately 2085 // after the function entry point has been emitted. 2086 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2087 CurFn = MF; 2088 2089 auto *SP = MF->getFunction().getSubprogram(); 2090 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2091 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2092 return; 2093 2094 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2095 2096 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2097 // belongs to so that we add to the correct per-cu line table in the 2098 // non-asm case. 2099 if (Asm->OutStreamer->hasRawTextSupport()) 2100 // Use a single line table if we are generating assembly. 2101 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2102 else 2103 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2104 2105 // Record beginning of function. 2106 PrologEndLoc = emitInitialLocDirective( 2107 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2108 } 2109 2110 void DwarfDebug::skippedNonDebugFunction() { 2111 // If we don't have a subprogram for this function then there will be a hole 2112 // in the range information. Keep note of this by setting the previously used 2113 // section to nullptr. 2114 PrevCU = nullptr; 2115 CurFn = nullptr; 2116 } 2117 2118 // Gather and emit post-function debug information. 2119 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2120 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2121 2122 assert(CurFn == MF && 2123 "endFunction should be called with the same function as beginFunction"); 2124 2125 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2126 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2127 2128 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2129 assert(!FnScope || SP == FnScope->getScopeNode()); 2130 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2131 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2132 PrevLabel = nullptr; 2133 CurFn = nullptr; 2134 return; 2135 } 2136 2137 DenseSet<InlinedEntity> Processed; 2138 collectEntityInfo(TheCU, SP, Processed); 2139 2140 // Add the range of this function to the list of ranges for the CU. 2141 // With basic block sections, add ranges for all basic block sections. 2142 for (const auto &R : Asm->MBBSectionRanges) 2143 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2144 2145 // Under -gmlt, skip building the subprogram if there are no inlined 2146 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2147 // is still needed as we need its source location. 2148 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2149 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2150 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2151 assert(InfoHolder.getScopeVariables().empty()); 2152 PrevLabel = nullptr; 2153 CurFn = nullptr; 2154 return; 2155 } 2156 2157 #ifndef NDEBUG 2158 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2159 #endif 2160 // Construct abstract scopes. 2161 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2162 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2163 for (const DINode *DN : SP->getRetainedNodes()) { 2164 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2165 continue; 2166 2167 const MDNode *Scope = nullptr; 2168 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2169 Scope = DV->getScope(); 2170 else if (auto *DL = dyn_cast<DILabel>(DN)) 2171 Scope = DL->getScope(); 2172 else 2173 llvm_unreachable("Unexpected DI type!"); 2174 2175 // Collect info for variables/labels that were optimized out. 2176 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2177 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2178 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2179 } 2180 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2181 } 2182 2183 ProcessedSPNodes.insert(SP); 2184 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2185 if (auto *SkelCU = TheCU.getSkeleton()) 2186 if (!LScopes.getAbstractScopesList().empty() && 2187 TheCU.getCUNode()->getSplitDebugInlining()) 2188 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2189 2190 // Construct call site entries. 2191 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2192 2193 // Clear debug info 2194 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2195 // DbgVariables except those that are also in AbstractVariables (since they 2196 // can be used cross-function) 2197 InfoHolder.getScopeVariables().clear(); 2198 InfoHolder.getScopeLabels().clear(); 2199 PrevLabel = nullptr; 2200 CurFn = nullptr; 2201 } 2202 2203 // Register a source line with debug info. Returns the unique label that was 2204 // emitted and which provides correspondence to the source line list. 2205 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2206 unsigned Flags) { 2207 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2208 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2209 getDwarfVersion(), getUnits()); 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // Emit Methods 2214 //===----------------------------------------------------------------------===// 2215 2216 // Emit the debug info section. 2217 void DwarfDebug::emitDebugInfo() { 2218 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2219 Holder.emitUnits(/* UseOffsets */ false); 2220 } 2221 2222 // Emit the abbreviation section. 2223 void DwarfDebug::emitAbbreviations() { 2224 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2225 2226 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2227 } 2228 2229 void DwarfDebug::emitStringOffsetsTableHeader() { 2230 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2231 Holder.getStringPool().emitStringOffsetsTableHeader( 2232 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2233 Holder.getStringOffsetsStartSym()); 2234 } 2235 2236 template <typename AccelTableT> 2237 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2238 StringRef TableName) { 2239 Asm->OutStreamer->SwitchSection(Section); 2240 2241 // Emit the full data. 2242 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2243 } 2244 2245 void DwarfDebug::emitAccelDebugNames() { 2246 // Don't emit anything if we have no compilation units to index. 2247 if (getUnits().empty()) 2248 return; 2249 2250 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2251 } 2252 2253 // Emit visible names into a hashed accelerator table section. 2254 void DwarfDebug::emitAccelNames() { 2255 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2256 "Names"); 2257 } 2258 2259 // Emit objective C classes and categories into a hashed accelerator table 2260 // section. 2261 void DwarfDebug::emitAccelObjC() { 2262 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2263 "ObjC"); 2264 } 2265 2266 // Emit namespace dies into a hashed accelerator table. 2267 void DwarfDebug::emitAccelNamespaces() { 2268 emitAccel(AccelNamespace, 2269 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2270 "namespac"); 2271 } 2272 2273 // Emit type dies into a hashed accelerator table. 2274 void DwarfDebug::emitAccelTypes() { 2275 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2276 "types"); 2277 } 2278 2279 // Public name handling. 2280 // The format for the various pubnames: 2281 // 2282 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2283 // for the DIE that is named. 2284 // 2285 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2286 // into the CU and the index value is computed according to the type of value 2287 // for the DIE that is named. 2288 // 2289 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2290 // it's the offset within the debug_info/debug_types dwo section, however, the 2291 // reference in the pubname header doesn't change. 2292 2293 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2294 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2295 const DIE *Die) { 2296 // Entities that ended up only in a Type Unit reference the CU instead (since 2297 // the pub entry has offsets within the CU there's no real offset that can be 2298 // provided anyway). As it happens all such entities (namespaces and types, 2299 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2300 // not to be true it would be necessary to persist this information from the 2301 // point at which the entry is added to the index data structure - since by 2302 // the time the index is built from that, the original type/namespace DIE in a 2303 // type unit has already been destroyed so it can't be queried for properties 2304 // like tag, etc. 2305 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2306 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2307 dwarf::GIEL_EXTERNAL); 2308 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2309 2310 // We could have a specification DIE that has our most of our knowledge, 2311 // look for that now. 2312 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2313 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2314 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2315 Linkage = dwarf::GIEL_EXTERNAL; 2316 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2317 Linkage = dwarf::GIEL_EXTERNAL; 2318 2319 switch (Die->getTag()) { 2320 case dwarf::DW_TAG_class_type: 2321 case dwarf::DW_TAG_structure_type: 2322 case dwarf::DW_TAG_union_type: 2323 case dwarf::DW_TAG_enumeration_type: 2324 return dwarf::PubIndexEntryDescriptor( 2325 dwarf::GIEK_TYPE, 2326 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2327 ? dwarf::GIEL_EXTERNAL 2328 : dwarf::GIEL_STATIC); 2329 case dwarf::DW_TAG_typedef: 2330 case dwarf::DW_TAG_base_type: 2331 case dwarf::DW_TAG_subrange_type: 2332 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2333 case dwarf::DW_TAG_namespace: 2334 return dwarf::GIEK_TYPE; 2335 case dwarf::DW_TAG_subprogram: 2336 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2337 case dwarf::DW_TAG_variable: 2338 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2339 case dwarf::DW_TAG_enumerator: 2340 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2341 dwarf::GIEL_STATIC); 2342 default: 2343 return dwarf::GIEK_NONE; 2344 } 2345 } 2346 2347 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2348 /// pubtypes sections. 2349 void DwarfDebug::emitDebugPubSections() { 2350 for (const auto &NU : CUMap) { 2351 DwarfCompileUnit *TheU = NU.second; 2352 if (!TheU->hasDwarfPubSections()) 2353 continue; 2354 2355 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2356 DICompileUnit::DebugNameTableKind::GNU; 2357 2358 Asm->OutStreamer->SwitchSection( 2359 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2360 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2361 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2362 2363 Asm->OutStreamer->SwitchSection( 2364 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2365 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2366 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2367 } 2368 } 2369 2370 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2371 if (useSectionsAsReferences()) 2372 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2373 CU.getDebugSectionOffset()); 2374 else 2375 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2376 } 2377 2378 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2379 DwarfCompileUnit *TheU, 2380 const StringMap<const DIE *> &Globals) { 2381 if (auto *Skeleton = TheU->getSkeleton()) 2382 TheU = Skeleton; 2383 2384 // Emit the header. 2385 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2386 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2387 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2388 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2389 2390 Asm->OutStreamer->emitLabel(BeginLabel); 2391 2392 Asm->OutStreamer->AddComment("DWARF Version"); 2393 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2394 2395 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2396 emitSectionReference(*TheU); 2397 2398 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2399 Asm->emitInt32(TheU->getLength()); 2400 2401 // Emit the pubnames for this compilation unit. 2402 for (const auto &GI : Globals) { 2403 const char *Name = GI.getKeyData(); 2404 const DIE *Entity = GI.second; 2405 2406 Asm->OutStreamer->AddComment("DIE offset"); 2407 Asm->emitInt32(Entity->getOffset()); 2408 2409 if (GnuStyle) { 2410 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2411 Asm->OutStreamer->AddComment( 2412 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2413 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2414 Asm->emitInt8(Desc.toBits()); 2415 } 2416 2417 Asm->OutStreamer->AddComment("External Name"); 2418 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2419 } 2420 2421 Asm->OutStreamer->AddComment("End Mark"); 2422 Asm->emitInt32(0); 2423 Asm->OutStreamer->emitLabel(EndLabel); 2424 } 2425 2426 /// Emit null-terminated strings into a debug str section. 2427 void DwarfDebug::emitDebugStr() { 2428 MCSection *StringOffsetsSection = nullptr; 2429 if (useSegmentedStringOffsetsTable()) { 2430 emitStringOffsetsTableHeader(); 2431 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2432 } 2433 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2434 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2435 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2436 } 2437 2438 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2439 const DebugLocStream::Entry &Entry, 2440 const DwarfCompileUnit *CU) { 2441 auto &&Comments = DebugLocs.getComments(Entry); 2442 auto Comment = Comments.begin(); 2443 auto End = Comments.end(); 2444 2445 // The expressions are inserted into a byte stream rather early (see 2446 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2447 // need to reference a base_type DIE the offset of that DIE is not yet known. 2448 // To deal with this we instead insert a placeholder early and then extract 2449 // it here and replace it with the real reference. 2450 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2451 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2452 DebugLocs.getBytes(Entry).size()), 2453 Asm->getDataLayout().isLittleEndian(), PtrSize); 2454 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2455 2456 using Encoding = DWARFExpression::Operation::Encoding; 2457 uint64_t Offset = 0; 2458 for (auto &Op : Expr) { 2459 assert(Op.getCode() != dwarf::DW_OP_const_type && 2460 "3 operand ops not yet supported"); 2461 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2462 Offset++; 2463 for (unsigned I = 0; I < 2; ++I) { 2464 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2465 continue; 2466 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2467 uint64_t Offset = 2468 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2469 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2470 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2471 // Make sure comments stay aligned. 2472 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2473 if (Comment != End) 2474 Comment++; 2475 } else { 2476 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2477 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2478 } 2479 Offset = Op.getOperandEndOffset(I); 2480 } 2481 assert(Offset == Op.getEndOffset()); 2482 } 2483 } 2484 2485 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2486 const DbgValueLoc &Value, 2487 DwarfExpression &DwarfExpr) { 2488 auto *DIExpr = Value.getExpression(); 2489 DIExpressionCursor ExprCursor(DIExpr); 2490 DwarfExpr.addFragmentOffset(DIExpr); 2491 // Regular entry. 2492 if (Value.isInt()) { 2493 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2494 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2495 DwarfExpr.addSignedConstant(Value.getInt()); 2496 else 2497 DwarfExpr.addUnsignedConstant(Value.getInt()); 2498 } else if (Value.isLocation()) { 2499 MachineLocation Location = Value.getLoc(); 2500 DwarfExpr.setLocation(Location, DIExpr); 2501 DIExpressionCursor Cursor(DIExpr); 2502 2503 if (DIExpr->isEntryValue()) 2504 DwarfExpr.beginEntryValueExpression(Cursor); 2505 2506 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2507 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2508 return; 2509 return DwarfExpr.addExpression(std::move(Cursor)); 2510 } else if (Value.isTargetIndexLocation()) { 2511 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2512 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2513 // encoding is supported. 2514 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2515 } else if (Value.isConstantFP()) { 2516 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2517 DwarfExpr.addUnsignedConstant(RawBytes); 2518 } 2519 DwarfExpr.addExpression(std::move(ExprCursor)); 2520 } 2521 2522 void DebugLocEntry::finalize(const AsmPrinter &AP, 2523 DebugLocStream::ListBuilder &List, 2524 const DIBasicType *BT, 2525 DwarfCompileUnit &TheCU) { 2526 assert(!Values.empty() && 2527 "location list entries without values are redundant"); 2528 assert(Begin != End && "unexpected location list entry with empty range"); 2529 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2530 BufferByteStreamer Streamer = Entry.getStreamer(); 2531 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2532 const DbgValueLoc &Value = Values[0]; 2533 if (Value.isFragment()) { 2534 // Emit all fragments that belong to the same variable and range. 2535 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2536 return P.isFragment(); 2537 }) && "all values are expected to be fragments"); 2538 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2539 2540 for (auto Fragment : Values) 2541 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2542 2543 } else { 2544 assert(Values.size() == 1 && "only fragments may have >1 value"); 2545 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2546 } 2547 DwarfExpr.finalize(); 2548 if (DwarfExpr.TagOffset) 2549 List.setTagOffset(*DwarfExpr.TagOffset); 2550 } 2551 2552 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2553 const DwarfCompileUnit *CU) { 2554 // Emit the size. 2555 Asm->OutStreamer->AddComment("Loc expr size"); 2556 if (getDwarfVersion() >= 5) 2557 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2558 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2559 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2560 else { 2561 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2562 // can do. 2563 Asm->emitInt16(0); 2564 return; 2565 } 2566 // Emit the entry. 2567 APByteStreamer Streamer(*Asm); 2568 emitDebugLocEntry(Streamer, Entry, CU); 2569 } 2570 2571 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2572 // that designates the end of the table for the caller to emit when the table is 2573 // complete. 2574 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2575 const DwarfFile &Holder) { 2576 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2577 2578 Asm->OutStreamer->AddComment("Offset entry count"); 2579 Asm->emitInt32(Holder.getRangeLists().size()); 2580 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2581 2582 for (const RangeSpanList &List : Holder.getRangeLists()) 2583 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2584 2585 return TableEnd; 2586 } 2587 2588 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2589 // designates the end of the table for the caller to emit when the table is 2590 // complete. 2591 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2592 const DwarfDebug &DD) { 2593 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2594 2595 const auto &DebugLocs = DD.getDebugLocs(); 2596 2597 Asm->OutStreamer->AddComment("Offset entry count"); 2598 Asm->emitInt32(DebugLocs.getLists().size()); 2599 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2600 2601 for (const auto &List : DebugLocs.getLists()) 2602 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2603 2604 return TableEnd; 2605 } 2606 2607 template <typename Ranges, typename PayloadEmitter> 2608 static void emitRangeList( 2609 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2610 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2611 unsigned StartxLength, unsigned EndOfList, 2612 StringRef (*StringifyEnum)(unsigned), 2613 bool ShouldUseBaseAddress, 2614 PayloadEmitter EmitPayload) { 2615 2616 auto Size = Asm->MAI->getCodePointerSize(); 2617 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2618 2619 // Emit our symbol so we can find the beginning of the range. 2620 Asm->OutStreamer->emitLabel(Sym); 2621 2622 // Gather all the ranges that apply to the same section so they can share 2623 // a base address entry. 2624 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2625 2626 for (const auto &Range : R) 2627 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2628 2629 const MCSymbol *CUBase = CU.getBaseAddress(); 2630 bool BaseIsSet = false; 2631 for (const auto &P : SectionRanges) { 2632 auto *Base = CUBase; 2633 if (!Base && ShouldUseBaseAddress) { 2634 const MCSymbol *Begin = P.second.front()->Begin; 2635 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2636 if (!UseDwarf5) { 2637 Base = NewBase; 2638 BaseIsSet = true; 2639 Asm->OutStreamer->emitIntValue(-1, Size); 2640 Asm->OutStreamer->AddComment(" base address"); 2641 Asm->OutStreamer->emitSymbolValue(Base, Size); 2642 } else if (NewBase != Begin || P.second.size() > 1) { 2643 // Only use a base address if 2644 // * the existing pool address doesn't match (NewBase != Begin) 2645 // * or, there's more than one entry to share the base address 2646 Base = NewBase; 2647 BaseIsSet = true; 2648 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2649 Asm->emitInt8(BaseAddressx); 2650 Asm->OutStreamer->AddComment(" base address index"); 2651 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2652 } 2653 } else if (BaseIsSet && !UseDwarf5) { 2654 BaseIsSet = false; 2655 assert(!Base); 2656 Asm->OutStreamer->emitIntValue(-1, Size); 2657 Asm->OutStreamer->emitIntValue(0, Size); 2658 } 2659 2660 for (const auto *RS : P.second) { 2661 const MCSymbol *Begin = RS->Begin; 2662 const MCSymbol *End = RS->End; 2663 assert(Begin && "Range without a begin symbol?"); 2664 assert(End && "Range without an end symbol?"); 2665 if (Base) { 2666 if (UseDwarf5) { 2667 // Emit offset_pair when we have a base. 2668 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2669 Asm->emitInt8(OffsetPair); 2670 Asm->OutStreamer->AddComment(" starting offset"); 2671 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2672 Asm->OutStreamer->AddComment(" ending offset"); 2673 Asm->emitLabelDifferenceAsULEB128(End, Base); 2674 } else { 2675 Asm->emitLabelDifference(Begin, Base, Size); 2676 Asm->emitLabelDifference(End, Base, Size); 2677 } 2678 } else if (UseDwarf5) { 2679 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2680 Asm->emitInt8(StartxLength); 2681 Asm->OutStreamer->AddComment(" start index"); 2682 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2683 Asm->OutStreamer->AddComment(" length"); 2684 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2685 } else { 2686 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2687 Asm->OutStreamer->emitSymbolValue(End, Size); 2688 } 2689 EmitPayload(*RS); 2690 } 2691 } 2692 2693 if (UseDwarf5) { 2694 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2695 Asm->emitInt8(EndOfList); 2696 } else { 2697 // Terminate the list with two 0 values. 2698 Asm->OutStreamer->emitIntValue(0, Size); 2699 Asm->OutStreamer->emitIntValue(0, Size); 2700 } 2701 } 2702 2703 // Handles emission of both debug_loclist / debug_loclist.dwo 2704 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2705 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2706 *List.CU, dwarf::DW_LLE_base_addressx, 2707 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2708 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2709 /* ShouldUseBaseAddress */ true, 2710 [&](const DebugLocStream::Entry &E) { 2711 DD.emitDebugLocEntryLocation(E, List.CU); 2712 }); 2713 } 2714 2715 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2716 if (DebugLocs.getLists().empty()) 2717 return; 2718 2719 Asm->OutStreamer->SwitchSection(Sec); 2720 2721 MCSymbol *TableEnd = nullptr; 2722 if (getDwarfVersion() >= 5) 2723 TableEnd = emitLoclistsTableHeader(Asm, *this); 2724 2725 for (const auto &List : DebugLocs.getLists()) 2726 emitLocList(*this, Asm, List); 2727 2728 if (TableEnd) 2729 Asm->OutStreamer->emitLabel(TableEnd); 2730 } 2731 2732 // Emit locations into the .debug_loc/.debug_loclists section. 2733 void DwarfDebug::emitDebugLoc() { 2734 emitDebugLocImpl( 2735 getDwarfVersion() >= 5 2736 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2737 : Asm->getObjFileLowering().getDwarfLocSection()); 2738 } 2739 2740 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2741 void DwarfDebug::emitDebugLocDWO() { 2742 if (getDwarfVersion() >= 5) { 2743 emitDebugLocImpl( 2744 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2745 2746 return; 2747 } 2748 2749 for (const auto &List : DebugLocs.getLists()) { 2750 Asm->OutStreamer->SwitchSection( 2751 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2752 Asm->OutStreamer->emitLabel(List.Label); 2753 2754 for (const auto &Entry : DebugLocs.getEntries(List)) { 2755 // GDB only supports startx_length in pre-standard split-DWARF. 2756 // (in v5 standard loclists, it currently* /only/ supports base_address + 2757 // offset_pair, so the implementations can't really share much since they 2758 // need to use different representations) 2759 // * as of October 2018, at least 2760 // 2761 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2762 // addresses in the address pool to minimize object size/relocations. 2763 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2764 unsigned idx = AddrPool.getIndex(Entry.Begin); 2765 Asm->emitULEB128(idx); 2766 // Also the pre-standard encoding is slightly different, emitting this as 2767 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2768 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2769 emitDebugLocEntryLocation(Entry, List.CU); 2770 } 2771 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2772 } 2773 } 2774 2775 struct ArangeSpan { 2776 const MCSymbol *Start, *End; 2777 }; 2778 2779 // Emit a debug aranges section, containing a CU lookup for any 2780 // address we can tie back to a CU. 2781 void DwarfDebug::emitDebugARanges() { 2782 // Provides a unique id per text section. 2783 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2784 2785 // Filter labels by section. 2786 for (const SymbolCU &SCU : ArangeLabels) { 2787 if (SCU.Sym->isInSection()) { 2788 // Make a note of this symbol and it's section. 2789 MCSection *Section = &SCU.Sym->getSection(); 2790 if (!Section->getKind().isMetadata()) 2791 SectionMap[Section].push_back(SCU); 2792 } else { 2793 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2794 // appear in the output. This sucks as we rely on sections to build 2795 // arange spans. We can do it without, but it's icky. 2796 SectionMap[nullptr].push_back(SCU); 2797 } 2798 } 2799 2800 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2801 2802 for (auto &I : SectionMap) { 2803 MCSection *Section = I.first; 2804 SmallVector<SymbolCU, 8> &List = I.second; 2805 if (List.size() < 1) 2806 continue; 2807 2808 // If we have no section (e.g. common), just write out 2809 // individual spans for each symbol. 2810 if (!Section) { 2811 for (const SymbolCU &Cur : List) { 2812 ArangeSpan Span; 2813 Span.Start = Cur.Sym; 2814 Span.End = nullptr; 2815 assert(Cur.CU); 2816 Spans[Cur.CU].push_back(Span); 2817 } 2818 continue; 2819 } 2820 2821 // Sort the symbols by offset within the section. 2822 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2823 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2824 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2825 2826 // Symbols with no order assigned should be placed at the end. 2827 // (e.g. section end labels) 2828 if (IA == 0) 2829 return false; 2830 if (IB == 0) 2831 return true; 2832 return IA < IB; 2833 }); 2834 2835 // Insert a final terminator. 2836 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2837 2838 // Build spans between each label. 2839 const MCSymbol *StartSym = List[0].Sym; 2840 for (size_t n = 1, e = List.size(); n < e; n++) { 2841 const SymbolCU &Prev = List[n - 1]; 2842 const SymbolCU &Cur = List[n]; 2843 2844 // Try and build the longest span we can within the same CU. 2845 if (Cur.CU != Prev.CU) { 2846 ArangeSpan Span; 2847 Span.Start = StartSym; 2848 Span.End = Cur.Sym; 2849 assert(Prev.CU); 2850 Spans[Prev.CU].push_back(Span); 2851 StartSym = Cur.Sym; 2852 } 2853 } 2854 } 2855 2856 // Start the dwarf aranges section. 2857 Asm->OutStreamer->SwitchSection( 2858 Asm->getObjFileLowering().getDwarfARangesSection()); 2859 2860 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2861 2862 // Build a list of CUs used. 2863 std::vector<DwarfCompileUnit *> CUs; 2864 for (const auto &it : Spans) { 2865 DwarfCompileUnit *CU = it.first; 2866 CUs.push_back(CU); 2867 } 2868 2869 // Sort the CU list (again, to ensure consistent output order). 2870 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2871 return A->getUniqueID() < B->getUniqueID(); 2872 }); 2873 2874 // Emit an arange table for each CU we used. 2875 for (DwarfCompileUnit *CU : CUs) { 2876 std::vector<ArangeSpan> &List = Spans[CU]; 2877 2878 // Describe the skeleton CU's offset and length, not the dwo file's. 2879 if (auto *Skel = CU->getSkeleton()) 2880 CU = Skel; 2881 2882 // Emit size of content not including length itself. 2883 unsigned ContentSize = 2884 sizeof(int16_t) + // DWARF ARange version number 2885 sizeof(int32_t) + // Offset of CU in the .debug_info section 2886 sizeof(int8_t) + // Pointer Size (in bytes) 2887 sizeof(int8_t); // Segment Size (in bytes) 2888 2889 unsigned TupleSize = PtrSize * 2; 2890 2891 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2892 unsigned Padding = 2893 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2894 2895 ContentSize += Padding; 2896 ContentSize += (List.size() + 1) * TupleSize; 2897 2898 // For each compile unit, write the list of spans it covers. 2899 Asm->OutStreamer->AddComment("Length of ARange Set"); 2900 Asm->emitInt32(ContentSize); 2901 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2902 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2903 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2904 emitSectionReference(*CU); 2905 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2906 Asm->emitInt8(PtrSize); 2907 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2908 Asm->emitInt8(0); 2909 2910 Asm->OutStreamer->emitFill(Padding, 0xff); 2911 2912 for (const ArangeSpan &Span : List) { 2913 Asm->emitLabelReference(Span.Start, PtrSize); 2914 2915 // Calculate the size as being from the span start to it's end. 2916 if (Span.End) { 2917 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2918 } else { 2919 // For symbols without an end marker (e.g. common), we 2920 // write a single arange entry containing just that one symbol. 2921 uint64_t Size = SymSize[Span.Start]; 2922 if (Size == 0) 2923 Size = 1; 2924 2925 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2926 } 2927 } 2928 2929 Asm->OutStreamer->AddComment("ARange terminator"); 2930 Asm->OutStreamer->emitIntValue(0, PtrSize); 2931 Asm->OutStreamer->emitIntValue(0, PtrSize); 2932 } 2933 } 2934 2935 /// Emit a single range list. We handle both DWARF v5 and earlier. 2936 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2937 const RangeSpanList &List) { 2938 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2939 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2940 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2941 llvm::dwarf::RangeListEncodingString, 2942 List.CU->getCUNode()->getRangesBaseAddress() || 2943 DD.getDwarfVersion() >= 5, 2944 [](auto) {}); 2945 } 2946 2947 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2948 if (Holder.getRangeLists().empty()) 2949 return; 2950 2951 assert(useRangesSection()); 2952 assert(!CUMap.empty()); 2953 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2954 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2955 })); 2956 2957 Asm->OutStreamer->SwitchSection(Section); 2958 2959 MCSymbol *TableEnd = nullptr; 2960 if (getDwarfVersion() >= 5) 2961 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2962 2963 for (const RangeSpanList &List : Holder.getRangeLists()) 2964 emitRangeList(*this, Asm, List); 2965 2966 if (TableEnd) 2967 Asm->OutStreamer->emitLabel(TableEnd); 2968 } 2969 2970 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2971 /// .debug_rnglists section. 2972 void DwarfDebug::emitDebugRanges() { 2973 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2974 2975 emitDebugRangesImpl(Holder, 2976 getDwarfVersion() >= 5 2977 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2978 : Asm->getObjFileLowering().getDwarfRangesSection()); 2979 } 2980 2981 void DwarfDebug::emitDebugRangesDWO() { 2982 emitDebugRangesImpl(InfoHolder, 2983 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2984 } 2985 2986 /// Emit the header of a DWARF 5 macro section. 2987 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2988 const DwarfCompileUnit &CU) { 2989 enum HeaderFlagMask { 2990 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2991 #include "llvm/BinaryFormat/Dwarf.def" 2992 }; 2993 uint8_t Flags = 0; 2994 Asm->OutStreamer->AddComment("Macro information version"); 2995 Asm->emitInt16(5); 2996 // We are setting Offset and line offset flags unconditionally here, 2997 // since we're only supporting DWARF32 and line offset should be mostly 2998 // present. 2999 // FIXME: Add support for DWARF64. 3000 Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET; 3001 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3002 Asm->emitInt8(Flags); 3003 Asm->OutStreamer->AddComment("debug_line_offset"); 3004 Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4); 3005 } 3006 3007 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3008 for (auto *MN : Nodes) { 3009 if (auto *M = dyn_cast<DIMacro>(MN)) 3010 emitMacro(*M); 3011 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3012 emitMacroFile(*F, U); 3013 else 3014 llvm_unreachable("Unexpected DI type!"); 3015 } 3016 } 3017 3018 void DwarfDebug::emitMacro(DIMacro &M) { 3019 StringRef Name = M.getName(); 3020 StringRef Value = M.getValue(); 3021 bool UseMacro = getDwarfVersion() >= 5; 3022 3023 if (UseMacro) { 3024 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3025 ? dwarf::DW_MACRO_define_strx 3026 : dwarf::DW_MACRO_undef_strx; 3027 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3028 Asm->emitULEB128(Type); 3029 Asm->OutStreamer->AddComment("Line Number"); 3030 Asm->emitULEB128(M.getLine()); 3031 Asm->OutStreamer->AddComment("Macro String"); 3032 if (!Value.empty()) 3033 Asm->emitULEB128(this->InfoHolder.getStringPool() 3034 .getIndexedEntry(*Asm, (Name + " " + Value).str()) 3035 .getIndex()); 3036 else 3037 // DW_MACRO_undef_strx doesn't have a value, so just emit the macro 3038 // string. 3039 Asm->emitULEB128(this->InfoHolder.getStringPool() 3040 .getIndexedEntry(*Asm, (Name).str()) 3041 .getIndex()); 3042 } else { 3043 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3044 Asm->emitULEB128(M.getMacinfoType()); 3045 Asm->OutStreamer->AddComment("Line Number"); 3046 Asm->emitULEB128(M.getLine()); 3047 Asm->OutStreamer->AddComment("Macro String"); 3048 Asm->OutStreamer->emitBytes(Name); 3049 if (!Value.empty()) { 3050 // There should be one space between macro name and macro value. 3051 Asm->emitInt8(' '); 3052 Asm->OutStreamer->AddComment("Macro Value="); 3053 Asm->OutStreamer->emitBytes(Value); 3054 } 3055 Asm->emitInt8('\0'); 3056 } 3057 } 3058 3059 void DwarfDebug::emitMacroFileImpl( 3060 DIMacroFile &F, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3061 StringRef (*MacroFormToString)(unsigned Form)) { 3062 3063 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3064 Asm->emitULEB128(StartFile); 3065 Asm->OutStreamer->AddComment("Line Number"); 3066 Asm->emitULEB128(F.getLine()); 3067 Asm->OutStreamer->AddComment("File Number"); 3068 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 3069 handleMacroNodes(F.getElements(), U); 3070 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3071 Asm->emitULEB128(EndFile); 3072 } 3073 3074 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3075 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3076 // so for readibility/uniformity, We are explicitly emitting those. 3077 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3078 bool UseMacro = getDwarfVersion() >= 5; 3079 if (UseMacro) 3080 emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file, 3081 dwarf::DW_MACRO_end_file, dwarf::MacroString); 3082 else 3083 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3084 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3085 } 3086 3087 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3088 for (const auto &P : CUMap) { 3089 auto &TheCU = *P.second; 3090 auto *SkCU = TheCU.getSkeleton(); 3091 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3092 auto *CUNode = cast<DICompileUnit>(P.first); 3093 DIMacroNodeArray Macros = CUNode->getMacros(); 3094 if (Macros.empty()) 3095 continue; 3096 Asm->OutStreamer->SwitchSection(Section); 3097 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3098 if (getDwarfVersion() >= 5) 3099 emitMacroHeader(Asm, *this, U); 3100 handleMacroNodes(Macros, U); 3101 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3102 Asm->emitInt8(0); 3103 } 3104 } 3105 3106 /// Emit macros into a debug macinfo/macro section. 3107 void DwarfDebug::emitDebugMacinfo() { 3108 auto &ObjLower = Asm->getObjFileLowering(); 3109 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3110 ? ObjLower.getDwarfMacroSection() 3111 : ObjLower.getDwarfMacinfoSection()); 3112 } 3113 3114 void DwarfDebug::emitDebugMacinfoDWO() { 3115 auto &ObjLower = Asm->getObjFileLowering(); 3116 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3117 ? ObjLower.getDwarfMacroDWOSection() 3118 : ObjLower.getDwarfMacinfoDWOSection()); 3119 } 3120 3121 // DWARF5 Experimental Separate Dwarf emitters. 3122 3123 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3124 std::unique_ptr<DwarfCompileUnit> NewU) { 3125 3126 if (!CompilationDir.empty()) 3127 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3128 addGnuPubAttributes(*NewU, Die); 3129 3130 SkeletonHolder.addUnit(std::move(NewU)); 3131 } 3132 3133 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3134 3135 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3136 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3137 UnitKind::Skeleton); 3138 DwarfCompileUnit &NewCU = *OwnedUnit; 3139 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3140 3141 NewCU.initStmtList(); 3142 3143 if (useSegmentedStringOffsetsTable()) 3144 NewCU.addStringOffsetsStart(); 3145 3146 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3147 3148 return NewCU; 3149 } 3150 3151 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3152 // compile units that would normally be in debug_info. 3153 void DwarfDebug::emitDebugInfoDWO() { 3154 assert(useSplitDwarf() && "No split dwarf debug info?"); 3155 // Don't emit relocations into the dwo file. 3156 InfoHolder.emitUnits(/* UseOffsets */ true); 3157 } 3158 3159 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3160 // abbreviations for the .debug_info.dwo section. 3161 void DwarfDebug::emitDebugAbbrevDWO() { 3162 assert(useSplitDwarf() && "No split dwarf?"); 3163 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3164 } 3165 3166 void DwarfDebug::emitDebugLineDWO() { 3167 assert(useSplitDwarf() && "No split dwarf?"); 3168 SplitTypeUnitFileTable.Emit( 3169 *Asm->OutStreamer, MCDwarfLineTableParams(), 3170 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3171 } 3172 3173 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3174 assert(useSplitDwarf() && "No split dwarf?"); 3175 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3176 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3177 InfoHolder.getStringOffsetsStartSym()); 3178 } 3179 3180 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3181 // string section and is identical in format to traditional .debug_str 3182 // sections. 3183 void DwarfDebug::emitDebugStrDWO() { 3184 if (useSegmentedStringOffsetsTable()) 3185 emitStringOffsetsTableHeaderDWO(); 3186 assert(useSplitDwarf() && "No split dwarf?"); 3187 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3188 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3189 OffSec, /* UseRelativeOffsets = */ false); 3190 } 3191 3192 // Emit address pool. 3193 void DwarfDebug::emitDebugAddr() { 3194 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3195 } 3196 3197 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3198 if (!useSplitDwarf()) 3199 return nullptr; 3200 const DICompileUnit *DIUnit = CU.getCUNode(); 3201 SplitTypeUnitFileTable.maybeSetRootFile( 3202 DIUnit->getDirectory(), DIUnit->getFilename(), 3203 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3204 return &SplitTypeUnitFileTable; 3205 } 3206 3207 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3208 MD5 Hash; 3209 Hash.update(Identifier); 3210 // ... take the least significant 8 bytes and return those. Our MD5 3211 // implementation always returns its results in little endian, so we actually 3212 // need the "high" word. 3213 MD5::MD5Result Result; 3214 Hash.final(Result); 3215 return Result.high(); 3216 } 3217 3218 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3219 StringRef Identifier, DIE &RefDie, 3220 const DICompositeType *CTy) { 3221 // Fast path if we're building some type units and one has already used the 3222 // address pool we know we're going to throw away all this work anyway, so 3223 // don't bother building dependent types. 3224 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3225 return; 3226 3227 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3228 if (!Ins.second) { 3229 CU.addDIETypeSignature(RefDie, Ins.first->second); 3230 return; 3231 } 3232 3233 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3234 AddrPool.resetUsedFlag(); 3235 3236 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3237 getDwoLineTable(CU)); 3238 DwarfTypeUnit &NewTU = *OwnedUnit; 3239 DIE &UnitDie = NewTU.getUnitDie(); 3240 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3241 3242 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3243 CU.getLanguage()); 3244 3245 uint64_t Signature = makeTypeSignature(Identifier); 3246 NewTU.setTypeSignature(Signature); 3247 Ins.first->second = Signature; 3248 3249 if (useSplitDwarf()) { 3250 MCSection *Section = 3251 getDwarfVersion() <= 4 3252 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3253 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3254 NewTU.setSection(Section); 3255 } else { 3256 MCSection *Section = 3257 getDwarfVersion() <= 4 3258 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3259 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3260 NewTU.setSection(Section); 3261 // Non-split type units reuse the compile unit's line table. 3262 CU.applyStmtList(UnitDie); 3263 } 3264 3265 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3266 // units. 3267 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3268 NewTU.addStringOffsetsStart(); 3269 3270 NewTU.setType(NewTU.createTypeDIE(CTy)); 3271 3272 if (TopLevelType) { 3273 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3274 TypeUnitsUnderConstruction.clear(); 3275 3276 // Types referencing entries in the address table cannot be placed in type 3277 // units. 3278 if (AddrPool.hasBeenUsed()) { 3279 3280 // Remove all the types built while building this type. 3281 // This is pessimistic as some of these types might not be dependent on 3282 // the type that used an address. 3283 for (const auto &TU : TypeUnitsToAdd) 3284 TypeSignatures.erase(TU.second); 3285 3286 // Construct this type in the CU directly. 3287 // This is inefficient because all the dependent types will be rebuilt 3288 // from scratch, including building them in type units, discovering that 3289 // they depend on addresses, throwing them out and rebuilding them. 3290 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3291 return; 3292 } 3293 3294 // If the type wasn't dependent on fission addresses, finish adding the type 3295 // and all its dependent types. 3296 for (auto &TU : TypeUnitsToAdd) { 3297 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3298 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3299 } 3300 } 3301 CU.addDIETypeSignature(RefDie, Signature); 3302 } 3303 3304 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3305 : DD(DD), 3306 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3307 DD->TypeUnitsUnderConstruction.clear(); 3308 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3309 } 3310 3311 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3312 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3313 DD->AddrPool.resetUsedFlag(); 3314 } 3315 3316 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3317 return NonTypeUnitContext(this); 3318 } 3319 3320 // Add the Name along with its companion DIE to the appropriate accelerator 3321 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3322 // AccelTableKind::Apple, we use the table we got as an argument). If 3323 // accelerator tables are disabled, this function does nothing. 3324 template <typename DataT> 3325 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3326 AccelTable<DataT> &AppleAccel, StringRef Name, 3327 const DIE &Die) { 3328 if (getAccelTableKind() == AccelTableKind::None) 3329 return; 3330 3331 if (getAccelTableKind() != AccelTableKind::Apple && 3332 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3333 return; 3334 3335 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3336 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3337 3338 switch (getAccelTableKind()) { 3339 case AccelTableKind::Apple: 3340 AppleAccel.addName(Ref, Die); 3341 break; 3342 case AccelTableKind::Dwarf: 3343 AccelDebugNames.addName(Ref, Die); 3344 break; 3345 case AccelTableKind::Default: 3346 llvm_unreachable("Default should have already been resolved."); 3347 case AccelTableKind::None: 3348 llvm_unreachable("None handled above"); 3349 } 3350 } 3351 3352 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3353 const DIE &Die) { 3354 addAccelNameImpl(CU, AccelNames, Name, Die); 3355 } 3356 3357 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3358 const DIE &Die) { 3359 // ObjC names go only into the Apple accelerator tables. 3360 if (getAccelTableKind() == AccelTableKind::Apple) 3361 addAccelNameImpl(CU, AccelObjC, Name, Die); 3362 } 3363 3364 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3365 const DIE &Die) { 3366 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3367 } 3368 3369 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3370 const DIE &Die, char Flags) { 3371 addAccelNameImpl(CU, AccelTypes, Name, Die); 3372 } 3373 3374 uint16_t DwarfDebug::getDwarfVersion() const { 3375 return Asm->OutStreamer->getContext().getDwarfVersion(); 3376 } 3377 3378 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3379 return SectionLabels.find(S)->second; 3380 } 3381 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3382 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3383 if (useSplitDwarf() || getDwarfVersion() >= 5) 3384 AddrPool.getIndex(S); 3385 } 3386