1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 const bool IsVariadic = MI->isDebugValueList(); 239 assert(MI->getNumOperands() >= 3); 240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 241 for (const MachineOperand &Op : MI->debug_operands()) { 242 if (Op.isReg()) { 243 MachineLocation MLoc(Op.getReg(), 244 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 246 } else if (Op.isTargetIndex()) { 247 DbgValueLocEntries.push_back( 248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 249 } else if (Op.isImm()) 250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 251 else if (Op.isFPImm()) 252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 253 else if (Op.isCImm()) 254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 255 else 256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 257 } 258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 259 } 260 261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 262 assert(FrameIndexExprs.empty() && "Already initialized?"); 263 assert(!ValueLoc.get() && "Already initialized?"); 264 265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 267 "Wrong inlined-at"); 268 269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 270 if (auto *E = DbgValue->getDebugExpression()) 271 if (E->getNumElements()) 272 FrameIndexExprs.push_back({0, E}); 273 } 274 275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 276 if (FrameIndexExprs.size() == 1) 277 return FrameIndexExprs; 278 279 assert(llvm::all_of(FrameIndexExprs, 280 [](const FrameIndexExpr &A) { 281 return A.Expr->isFragment(); 282 }) && 283 "multiple FI expressions without DW_OP_LLVM_fragment"); 284 llvm::sort(FrameIndexExprs, 285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 286 return A.Expr->getFragmentInfo()->OffsetInBits < 287 B.Expr->getFragmentInfo()->OffsetInBits; 288 }); 289 290 return FrameIndexExprs; 291 } 292 293 void DbgVariable::addMMIEntry(const DbgVariable &V) { 294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 296 assert(V.getVariable() == getVariable() && "conflicting variable"); 297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 298 299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 301 302 // FIXME: This logic should not be necessary anymore, as we now have proper 303 // deduplication. However, without it, we currently run into the assertion 304 // below, which means that we are likely dealing with broken input, i.e. two 305 // non-fragment entries for the same variable at different frame indices. 306 if (FrameIndexExprs.size()) { 307 auto *Expr = FrameIndexExprs.back().Expr; 308 if (!Expr || !Expr->isFragment()) 309 return; 310 } 311 312 for (const auto &FIE : V.FrameIndexExprs) 313 // Ignore duplicate entries. 314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 316 })) 317 FrameIndexExprs.push_back(FIE); 318 319 assert((FrameIndexExprs.size() == 1 || 320 llvm::all_of(FrameIndexExprs, 321 [](FrameIndexExpr &FIE) { 322 return FIE.Expr && FIE.Expr->isFragment(); 323 })) && 324 "conflicting locations for variable"); 325 } 326 327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 328 bool GenerateTypeUnits, 329 DebuggerKind Tuning, 330 const Triple &TT) { 331 // Honor an explicit request. 332 if (AccelTables != AccelTableKind::Default) 333 return AccelTables; 334 335 // Accelerator tables with type units are currently not supported. 336 if (GenerateTypeUnits) 337 return AccelTableKind::None; 338 339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 340 // always implies debug_names. For lower standard versions we use apple 341 // accelerator tables on apple platforms and debug_names elsewhere. 342 if (DwarfVersion >= 5) 343 return AccelTableKind::Dwarf; 344 if (Tuning == DebuggerKind::LLDB) 345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 346 : AccelTableKind::Dwarf; 347 return AccelTableKind::None; 348 } 349 350 DwarfDebug::DwarfDebug(AsmPrinter *A) 351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 352 InfoHolder(A, "info_string", DIEValueAllocator), 353 SkeletonHolder(A, "skel_string", DIEValueAllocator), 354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 355 const Triple &TT = Asm->TM.getTargetTriple(); 356 357 // Make sure we know our "debugger tuning". The target option takes 358 // precedence; fall back to triple-based defaults. 359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 360 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 361 else if (IsDarwin) 362 DebuggerTuning = DebuggerKind::LLDB; 363 else if (TT.isPS4CPU()) 364 DebuggerTuning = DebuggerKind::SCE; 365 else if (TT.isOSAIX()) 366 DebuggerTuning = DebuggerKind::DBX; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 397 398 // Support DWARF64 399 // 1: For ELF when requested. 400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 401 // according to the DWARF64 format for 64-bit assembly, so we must use 402 // DWARF64 in the compiler too for 64-bit mode. 403 Dwarf64 &= 404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 405 TT.isOSBinFormatELF()) || 406 TT.isOSBinFormatXCOFF(); 407 408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 410 411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 412 413 // Use sections as references. Force for NVPTX. 414 if (DwarfSectionsAsReferences == Default) 415 UseSectionsAsReferences = TT.isNVPTX(); 416 else 417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 418 419 // Don't generate type units for unsupported object file formats. 420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 421 A->TM.getTargetTriple().isOSBinFormatWasm()) && 422 GenerateDwarfTypeUnits; 423 424 TheAccelTableKind = computeAccelTableKind( 425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 426 427 // Work around a GDB bug. GDB doesn't support the standard opcode; 428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 429 // is defined as of DWARF 3. 430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 433 434 // GDB does not fully support the DWARF 4 representation for bitfields. 435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 436 437 // The DWARF v5 string offsets table has - possibly shared - contributions 438 // from each compile and type unit each preceded by a header. The string 439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 440 // a monolithic string offsets table without any header. 441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 442 443 // Emit call-site-param debug info for GDB and LLDB, if the target supports 444 // the debug entry values feature. It can also be enabled explicitly. 445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 446 447 // It is unclear if the GCC .debug_macro extension is well-specified 448 // for split DWARF. For now, do not allow LLVM to emit it. 449 UseDebugMacroSection = 450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 451 if (DwarfOpConvert == Default) 452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 453 else 454 EnableOpConvert = (DwarfOpConvert == Enable); 455 456 // Split DWARF would benefit object size significantly by trading reductions 457 // in address pool usage for slightly increased range list encodings. 458 if (DwarfVersion >= 5) { 459 MinimizeAddr = MinimizeAddrInV5Option; 460 // FIXME: In the future, enable this by default for Split DWARF where the 461 // tradeoff is more pronounced due to being able to offload the range 462 // lists to the dwo file and shrink object files/reduce relocations there. 463 if (MinimizeAddr == MinimizeAddrInV5::Default) 464 MinimizeAddr = MinimizeAddrInV5::Disabled; 465 } 466 467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 469 : dwarf::DWARF32); 470 } 471 472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 473 DwarfDebug::~DwarfDebug() = default; 474 475 static bool isObjCClass(StringRef Name) { 476 return Name.startswith("+") || Name.startswith("-"); 477 } 478 479 static bool hasObjCCategory(StringRef Name) { 480 if (!isObjCClass(Name)) 481 return false; 482 483 return Name.contains(") "); 484 } 485 486 static void getObjCClassCategory(StringRef In, StringRef &Class, 487 StringRef &Category) { 488 if (!hasObjCCategory(In)) { 489 Class = In.slice(In.find('[') + 1, In.find(' ')); 490 Category = ""; 491 return; 492 } 493 494 Class = In.slice(In.find('[') + 1, In.find('(')); 495 Category = In.slice(In.find('[') + 1, In.find(' ')); 496 } 497 498 static StringRef getObjCMethodName(StringRef In) { 499 return In.slice(In.find(' ') + 1, In.find(']')); 500 } 501 502 // Add the various names to the Dwarf accelerator table names. 503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 504 const DISubprogram *SP, DIE &Die) { 505 if (getAccelTableKind() != AccelTableKind::Apple && 506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 507 return; 508 509 if (!SP->isDefinition()) 510 return; 511 512 if (SP->getName() != "") 513 addAccelName(CU, SP->getName(), Die); 514 515 // If the linkage name is different than the name, go ahead and output that as 516 // well into the name table. Only do that if we are going to actually emit 517 // that name. 518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 519 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 520 addAccelName(CU, SP->getLinkageName(), Die); 521 522 // If this is an Objective-C selector name add it to the ObjC accelerator 523 // too. 524 if (isObjCClass(SP->getName())) { 525 StringRef Class, Category; 526 getObjCClassCategory(SP->getName(), Class, Category); 527 addAccelObjC(CU, Class, Die); 528 if (Category != "") 529 addAccelObjC(CU, Category, Die); 530 // Also add the base method name to the name table. 531 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 532 } 533 } 534 535 /// Check whether we should create a DIE for the given Scope, return true 536 /// if we don't create a DIE (the corresponding DIE is null). 537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 538 if (Scope->isAbstractScope()) 539 return false; 540 541 // We don't create a DIE if there is no Range. 542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 543 if (Ranges.empty()) 544 return true; 545 546 if (Ranges.size() > 1) 547 return false; 548 549 // We don't create a DIE if we have a single Range and the end label 550 // is null. 551 return !getLabelAfterInsn(Ranges.front().second); 552 } 553 554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 555 F(CU); 556 if (auto *SkelCU = CU.getSkeleton()) 557 if (CU.getCUNode()->getSplitDebugInlining()) 558 F(*SkelCU); 559 } 560 561 bool DwarfDebug::shareAcrossDWOCUs() const { 562 return SplitDwarfCrossCuReferences; 563 } 564 565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 566 LexicalScope *Scope) { 567 assert(Scope && Scope->getScopeNode()); 568 assert(Scope->isAbstractScope()); 569 assert(!Scope->getInlinedAt()); 570 571 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 572 573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 574 // was inlined from another compile unit. 575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 576 // Avoid building the original CU if it won't be used 577 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 578 else { 579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 580 if (auto *SkelCU = CU.getSkeleton()) { 581 (shareAcrossDWOCUs() ? CU : SrcCU) 582 .constructAbstractSubprogramScopeDIE(Scope); 583 if (CU.getCUNode()->getSplitDebugInlining()) 584 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 585 } else 586 CU.constructAbstractSubprogramScopeDIE(Scope); 587 } 588 } 589 590 /// Represents a parameter whose call site value can be described by applying a 591 /// debug expression to a register in the forwarded register worklist. 592 struct FwdRegParamInfo { 593 /// The described parameter register. 594 unsigned ParamReg; 595 596 /// Debug expression that has been built up when walking through the 597 /// instruction chain that produces the parameter's value. 598 const DIExpression *Expr; 599 }; 600 601 /// Register worklist for finding call site values. 602 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 603 604 /// Append the expression \p Addition to \p Original and return the result. 605 static const DIExpression *combineDIExpressions(const DIExpression *Original, 606 const DIExpression *Addition) { 607 std::vector<uint64_t> Elts = Addition->getElements().vec(); 608 // Avoid multiple DW_OP_stack_values. 609 if (Original->isImplicit() && Addition->isImplicit()) 610 erase_value(Elts, dwarf::DW_OP_stack_value); 611 const DIExpression *CombinedExpr = 612 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 613 return CombinedExpr; 614 } 615 616 /// Emit call site parameter entries that are described by the given value and 617 /// debug expression. 618 template <typename ValT> 619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 620 ArrayRef<FwdRegParamInfo> DescribedParams, 621 ParamSet &Params) { 622 for (auto Param : DescribedParams) { 623 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 624 625 // TODO: Entry value operations can currently not be combined with any 626 // other expressions, so we can't emit call site entries in those cases. 627 if (ShouldCombineExpressions && Expr->isEntryValue()) 628 continue; 629 630 // If a parameter's call site value is produced by a chain of 631 // instructions we may have already created an expression for the 632 // parameter when walking through the instructions. Append that to the 633 // base expression. 634 const DIExpression *CombinedExpr = 635 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 636 : Expr; 637 assert((!CombinedExpr || CombinedExpr->isValid()) && 638 "Combined debug expression is invalid"); 639 640 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 641 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 642 Params.push_back(CSParm); 643 ++NumCSParams; 644 } 645 } 646 647 /// Add \p Reg to the worklist, if it's not already present, and mark that the 648 /// given parameter registers' values can (potentially) be described using 649 /// that register and an debug expression. 650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 651 const DIExpression *Expr, 652 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 653 auto I = Worklist.insert({Reg, {}}); 654 auto &ParamsForFwdReg = I.first->second; 655 for (auto Param : ParamsToAdd) { 656 assert(none_of(ParamsForFwdReg, 657 [Param](const FwdRegParamInfo &D) { 658 return D.ParamReg == Param.ParamReg; 659 }) && 660 "Same parameter described twice by forwarding reg"); 661 662 // If a parameter's call site value is produced by a chain of 663 // instructions we may have already created an expression for the 664 // parameter when walking through the instructions. Append that to the 665 // new expression. 666 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 667 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 668 } 669 } 670 671 /// Interpret values loaded into registers by \p CurMI. 672 static void interpretValues(const MachineInstr *CurMI, 673 FwdRegWorklist &ForwardedRegWorklist, 674 ParamSet &Params) { 675 676 const MachineFunction *MF = CurMI->getMF(); 677 const DIExpression *EmptyExpr = 678 DIExpression::get(MF->getFunction().getContext(), {}); 679 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 680 const auto &TII = *MF->getSubtarget().getInstrInfo(); 681 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 682 683 // If an instruction defines more than one item in the worklist, we may run 684 // into situations where a worklist register's value is (potentially) 685 // described by the previous value of another register that is also defined 686 // by that instruction. 687 // 688 // This can for example occur in cases like this: 689 // 690 // $r1 = mov 123 691 // $r0, $r1 = mvrr $r1, 456 692 // call @foo, $r0, $r1 693 // 694 // When describing $r1's value for the mvrr instruction, we need to make sure 695 // that we don't finalize an entry value for $r0, as that is dependent on the 696 // previous value of $r1 (123 rather than 456). 697 // 698 // In order to not have to distinguish between those cases when finalizing 699 // entry values, we simply postpone adding new parameter registers to the 700 // worklist, by first keeping them in this temporary container until the 701 // instruction has been handled. 702 FwdRegWorklist TmpWorklistItems; 703 704 // If the MI is an instruction defining one or more parameters' forwarding 705 // registers, add those defines. 706 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 707 SmallSetVector<unsigned, 4> &Defs) { 708 if (MI.isDebugInstr()) 709 return; 710 711 for (const MachineOperand &MO : MI.operands()) { 712 if (MO.isReg() && MO.isDef() && 713 Register::isPhysicalRegister(MO.getReg())) { 714 for (auto &FwdReg : ForwardedRegWorklist) 715 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 716 Defs.insert(FwdReg.first); 717 } 718 } 719 }; 720 721 // Set of worklist registers that are defined by this instruction. 722 SmallSetVector<unsigned, 4> FwdRegDefs; 723 724 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 725 if (FwdRegDefs.empty()) 726 return; 727 728 for (auto ParamFwdReg : FwdRegDefs) { 729 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 730 if (ParamValue->first.isImm()) { 731 int64_t Val = ParamValue->first.getImm(); 732 finishCallSiteParams(Val, ParamValue->second, 733 ForwardedRegWorklist[ParamFwdReg], Params); 734 } else if (ParamValue->first.isReg()) { 735 Register RegLoc = ParamValue->first.getReg(); 736 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 737 Register FP = TRI.getFrameRegister(*MF); 738 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 739 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 740 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 741 finishCallSiteParams(MLoc, ParamValue->second, 742 ForwardedRegWorklist[ParamFwdReg], Params); 743 } else { 744 // ParamFwdReg was described by the non-callee saved register 745 // RegLoc. Mark that the call site values for the parameters are 746 // dependent on that register instead of ParamFwdReg. Since RegLoc 747 // may be a register that will be handled in this iteration, we 748 // postpone adding the items to the worklist, and instead keep them 749 // in a temporary container. 750 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 751 ForwardedRegWorklist[ParamFwdReg]); 752 } 753 } 754 } 755 } 756 757 // Remove all registers that this instruction defines from the worklist. 758 for (auto ParamFwdReg : FwdRegDefs) 759 ForwardedRegWorklist.erase(ParamFwdReg); 760 761 // Now that we are done handling this instruction, add items from the 762 // temporary worklist to the real one. 763 for (auto &New : TmpWorklistItems) 764 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 765 TmpWorklistItems.clear(); 766 } 767 768 static bool interpretNextInstr(const MachineInstr *CurMI, 769 FwdRegWorklist &ForwardedRegWorklist, 770 ParamSet &Params) { 771 // Skip bundle headers. 772 if (CurMI->isBundle()) 773 return true; 774 775 // If the next instruction is a call we can not interpret parameter's 776 // forwarding registers or we finished the interpretation of all 777 // parameters. 778 if (CurMI->isCall()) 779 return false; 780 781 if (ForwardedRegWorklist.empty()) 782 return false; 783 784 // Avoid NOP description. 785 if (CurMI->getNumOperands() == 0) 786 return true; 787 788 interpretValues(CurMI, ForwardedRegWorklist, Params); 789 790 return true; 791 } 792 793 /// Try to interpret values loaded into registers that forward parameters 794 /// for \p CallMI. Store parameters with interpreted value into \p Params. 795 static void collectCallSiteParameters(const MachineInstr *CallMI, 796 ParamSet &Params) { 797 const MachineFunction *MF = CallMI->getMF(); 798 const auto &CalleesMap = MF->getCallSitesInfo(); 799 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 800 801 // There is no information for the call instruction. 802 if (CallFwdRegsInfo == CalleesMap.end()) 803 return; 804 805 const MachineBasicBlock *MBB = CallMI->getParent(); 806 807 // Skip the call instruction. 808 auto I = std::next(CallMI->getReverseIterator()); 809 810 FwdRegWorklist ForwardedRegWorklist; 811 812 const DIExpression *EmptyExpr = 813 DIExpression::get(MF->getFunction().getContext(), {}); 814 815 // Add all the forwarding registers into the ForwardedRegWorklist. 816 for (const auto &ArgReg : CallFwdRegsInfo->second) { 817 bool InsertedReg = 818 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 819 .second; 820 assert(InsertedReg && "Single register used to forward two arguments?"); 821 (void)InsertedReg; 822 } 823 824 // Do not emit CSInfo for undef forwarding registers. 825 for (auto &MO : CallMI->uses()) 826 if (MO.isReg() && MO.isUndef()) 827 ForwardedRegWorklist.erase(MO.getReg()); 828 829 // We erase, from the ForwardedRegWorklist, those forwarding registers for 830 // which we successfully describe a loaded value (by using 831 // the describeLoadedValue()). For those remaining arguments in the working 832 // list, for which we do not describe a loaded value by 833 // the describeLoadedValue(), we try to generate an entry value expression 834 // for their call site value description, if the call is within the entry MBB. 835 // TODO: Handle situations when call site parameter value can be described 836 // as the entry value within basic blocks other than the first one. 837 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 838 839 // Search for a loading value in forwarding registers inside call delay slot. 840 if (CallMI->hasDelaySlot()) { 841 auto Suc = std::next(CallMI->getIterator()); 842 // Only one-instruction delay slot is supported. 843 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 844 (void)BundleEnd; 845 assert(std::next(Suc) == BundleEnd && 846 "More than one instruction in call delay slot"); 847 // Try to interpret value loaded by instruction. 848 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 849 return; 850 } 851 852 // Search for a loading value in forwarding registers. 853 for (; I != MBB->rend(); ++I) { 854 // Try to interpret values loaded by instruction. 855 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 856 return; 857 } 858 859 // Emit the call site parameter's value as an entry value. 860 if (ShouldTryEmitEntryVals) { 861 // Create an expression where the register's entry value is used. 862 DIExpression *EntryExpr = DIExpression::get( 863 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 864 for (auto &RegEntry : ForwardedRegWorklist) { 865 MachineLocation MLoc(RegEntry.first); 866 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 867 } 868 } 869 } 870 871 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 872 DwarfCompileUnit &CU, DIE &ScopeDIE, 873 const MachineFunction &MF) { 874 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 875 // the subprogram is required to have one. 876 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 877 return; 878 879 // Use DW_AT_call_all_calls to express that call site entries are present 880 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 881 // because one of its requirements is not met: call site entries for 882 // optimized-out calls are elided. 883 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 884 885 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 886 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 887 888 // Delay slot support check. 889 auto delaySlotSupported = [&](const MachineInstr &MI) { 890 if (!MI.isBundledWithSucc()) 891 return false; 892 auto Suc = std::next(MI.getIterator()); 893 auto CallInstrBundle = getBundleStart(MI.getIterator()); 894 (void)CallInstrBundle; 895 auto DelaySlotBundle = getBundleStart(Suc); 896 (void)DelaySlotBundle; 897 // Ensure that label after call is following delay slot instruction. 898 // Ex. CALL_INSTRUCTION { 899 // DELAY_SLOT_INSTRUCTION } 900 // LABEL_AFTER_CALL 901 assert(getLabelAfterInsn(&*CallInstrBundle) == 902 getLabelAfterInsn(&*DelaySlotBundle) && 903 "Call and its successor instruction don't have same label after."); 904 return true; 905 }; 906 907 // Emit call site entries for each call or tail call in the function. 908 for (const MachineBasicBlock &MBB : MF) { 909 for (const MachineInstr &MI : MBB.instrs()) { 910 // Bundles with call in them will pass the isCall() test below but do not 911 // have callee operand information so skip them here. Iterator will 912 // eventually reach the call MI. 913 if (MI.isBundle()) 914 continue; 915 916 // Skip instructions which aren't calls. Both calls and tail-calling jump 917 // instructions (e.g TAILJMPd64) are classified correctly here. 918 if (!MI.isCandidateForCallSiteEntry()) 919 continue; 920 921 // Skip instructions marked as frame setup, as they are not interesting to 922 // the user. 923 if (MI.getFlag(MachineInstr::FrameSetup)) 924 continue; 925 926 // Check if delay slot support is enabled. 927 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 928 return; 929 930 // If this is a direct call, find the callee's subprogram. 931 // In the case of an indirect call find the register that holds 932 // the callee. 933 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 934 if (!CalleeOp.isGlobal() && 935 (!CalleeOp.isReg() || 936 !Register::isPhysicalRegister(CalleeOp.getReg()))) 937 continue; 938 939 unsigned CallReg = 0; 940 const DISubprogram *CalleeSP = nullptr; 941 const Function *CalleeDecl = nullptr; 942 if (CalleeOp.isReg()) { 943 CallReg = CalleeOp.getReg(); 944 if (!CallReg) 945 continue; 946 } else { 947 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 948 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 949 continue; 950 CalleeSP = CalleeDecl->getSubprogram(); 951 } 952 953 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 954 955 bool IsTail = TII->isTailCall(MI); 956 957 // If MI is in a bundle, the label was created after the bundle since 958 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 959 // to search for that label below. 960 const MachineInstr *TopLevelCallMI = 961 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 962 963 // For non-tail calls, the return PC is needed to disambiguate paths in 964 // the call graph which could lead to some target function. For tail 965 // calls, no return PC information is needed, unless tuning for GDB in 966 // DWARF4 mode in which case we fake a return PC for compatibility. 967 const MCSymbol *PCAddr = 968 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 969 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 970 : nullptr; 971 972 // For tail calls, it's necessary to record the address of the branch 973 // instruction so that the debugger can show where the tail call occurred. 974 const MCSymbol *CallAddr = 975 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 976 977 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 978 979 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 980 << (CalleeDecl ? CalleeDecl->getName() 981 : StringRef(MF.getSubtarget() 982 .getRegisterInfo() 983 ->getName(CallReg))) 984 << (IsTail ? " [IsTail]" : "") << "\n"); 985 986 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 987 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); 988 989 // Optionally emit call-site-param debug info. 990 if (emitDebugEntryValues()) { 991 ParamSet Params; 992 // Try to interpret values of call site parameters. 993 collectCallSiteParameters(&MI, Params); 994 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 995 } 996 } 997 } 998 } 999 1000 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1001 if (!U.hasDwarfPubSections()) 1002 return; 1003 1004 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1005 } 1006 1007 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1008 DwarfCompileUnit &NewCU) { 1009 DIE &Die = NewCU.getUnitDie(); 1010 StringRef FN = DIUnit->getFilename(); 1011 1012 StringRef Producer = DIUnit->getProducer(); 1013 StringRef Flags = DIUnit->getFlags(); 1014 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1015 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1016 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1017 } else 1018 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1019 1020 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1021 DIUnit->getSourceLanguage()); 1022 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1023 StringRef SysRoot = DIUnit->getSysRoot(); 1024 if (!SysRoot.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1026 StringRef SDK = DIUnit->getSDK(); 1027 if (!SDK.empty()) 1028 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1029 1030 // Add DW_str_offsets_base to the unit DIE, except for split units. 1031 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1032 NewCU.addStringOffsetsStart(); 1033 1034 if (!useSplitDwarf()) { 1035 NewCU.initStmtList(); 1036 1037 // If we're using split dwarf the compilation dir is going to be in the 1038 // skeleton CU and so we don't need to duplicate it here. 1039 if (!CompilationDir.empty()) 1040 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1041 addGnuPubAttributes(NewCU, Die); 1042 } 1043 1044 if (useAppleExtensionAttributes()) { 1045 if (DIUnit->isOptimized()) 1046 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1047 1048 StringRef Flags = DIUnit->getFlags(); 1049 if (!Flags.empty()) 1050 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1051 1052 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1053 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1054 dwarf::DW_FORM_data1, RVer); 1055 } 1056 1057 if (DIUnit->getDWOId()) { 1058 // This CU is either a clang module DWO or a skeleton CU. 1059 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1060 DIUnit->getDWOId()); 1061 if (!DIUnit->getSplitDebugFilename().empty()) { 1062 // This is a prefabricated skeleton CU. 1063 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1064 ? dwarf::DW_AT_dwo_name 1065 : dwarf::DW_AT_GNU_dwo_name; 1066 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1067 } 1068 } 1069 } 1070 // Create new DwarfCompileUnit for the given metadata node with tag 1071 // DW_TAG_compile_unit. 1072 DwarfCompileUnit & 1073 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1074 if (auto *CU = CUMap.lookup(DIUnit)) 1075 return *CU; 1076 1077 CompilationDir = DIUnit->getDirectory(); 1078 1079 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1080 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1081 DwarfCompileUnit &NewCU = *OwnedUnit; 1082 InfoHolder.addUnit(std::move(OwnedUnit)); 1083 1084 for (auto *IE : DIUnit->getImportedEntities()) 1085 NewCU.addImportedEntity(IE); 1086 1087 // LTO with assembly output shares a single line table amongst multiple CUs. 1088 // To avoid the compilation directory being ambiguous, let the line table 1089 // explicitly describe the directory of all files, never relying on the 1090 // compilation directory. 1091 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1092 Asm->OutStreamer->emitDwarfFile0Directive( 1093 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1094 DIUnit->getSource(), NewCU.getUniqueID()); 1095 1096 if (useSplitDwarf()) { 1097 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1098 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1099 } else { 1100 finishUnitAttributes(DIUnit, NewCU); 1101 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1102 } 1103 1104 CUMap.insert({DIUnit, &NewCU}); 1105 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1106 return NewCU; 1107 } 1108 1109 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1110 const DIImportedEntity *N) { 1111 if (isa<DILocalScope>(N->getScope())) 1112 return; 1113 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1114 D->addChild(TheCU.constructImportedEntityDIE(N)); 1115 } 1116 1117 /// Sort and unique GVEs by comparing their fragment offset. 1118 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1119 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1120 llvm::sort( 1121 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1122 // Sort order: first null exprs, then exprs without fragment 1123 // info, then sort by fragment offset in bits. 1124 // FIXME: Come up with a more comprehensive comparator so 1125 // the sorting isn't non-deterministic, and so the following 1126 // std::unique call works correctly. 1127 if (!A.Expr || !B.Expr) 1128 return !!B.Expr; 1129 auto FragmentA = A.Expr->getFragmentInfo(); 1130 auto FragmentB = B.Expr->getFragmentInfo(); 1131 if (!FragmentA || !FragmentB) 1132 return !!FragmentB; 1133 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1134 }); 1135 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1136 [](DwarfCompileUnit::GlobalExpr A, 1137 DwarfCompileUnit::GlobalExpr B) { 1138 return A.Expr == B.Expr; 1139 }), 1140 GVEs.end()); 1141 return GVEs; 1142 } 1143 1144 // Emit all Dwarf sections that should come prior to the content. Create 1145 // global DIEs and emit initial debug info sections. This is invoked by 1146 // the target AsmPrinter. 1147 void DwarfDebug::beginModule(Module *M) { 1148 DebugHandlerBase::beginModule(M); 1149 1150 if (!Asm || !MMI->hasDebugInfo()) 1151 return; 1152 1153 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1154 M->debug_compile_units_end()); 1155 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1156 assert(MMI->hasDebugInfo() && 1157 "DebugInfoAvailabilty unexpectedly not initialized"); 1158 SingleCU = NumDebugCUs == 1; 1159 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1160 GVMap; 1161 for (const GlobalVariable &Global : M->globals()) { 1162 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1163 Global.getDebugInfo(GVs); 1164 for (auto *GVE : GVs) 1165 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1166 } 1167 1168 // Create the symbol that designates the start of the unit's contribution 1169 // to the string offsets table. In a split DWARF scenario, only the skeleton 1170 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1171 if (useSegmentedStringOffsetsTable()) 1172 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1173 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1174 1175 1176 // Create the symbols that designates the start of the DWARF v5 range list 1177 // and locations list tables. They are located past the table headers. 1178 if (getDwarfVersion() >= 5) { 1179 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1180 Holder.setRnglistsTableBaseSym( 1181 Asm->createTempSymbol("rnglists_table_base")); 1182 1183 if (useSplitDwarf()) 1184 InfoHolder.setRnglistsTableBaseSym( 1185 Asm->createTempSymbol("rnglists_dwo_table_base")); 1186 } 1187 1188 // Create the symbol that points to the first entry following the debug 1189 // address table (.debug_addr) header. 1190 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1191 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1192 1193 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1194 // FIXME: Move local imported entities into a list attached to the 1195 // subprogram, then this search won't be needed and a 1196 // getImportedEntities().empty() test should go below with the rest. 1197 bool HasNonLocalImportedEntities = llvm::any_of( 1198 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1199 return !isa<DILocalScope>(IE->getScope()); 1200 }); 1201 1202 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1203 CUNode->getRetainedTypes().empty() && 1204 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1205 continue; 1206 1207 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1208 1209 // Global Variables. 1210 for (auto *GVE : CUNode->getGlobalVariables()) { 1211 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1212 // already know about the variable and it isn't adding a constant 1213 // expression. 1214 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1215 auto *Expr = GVE->getExpression(); 1216 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1217 GVMapEntry.push_back({nullptr, Expr}); 1218 } 1219 1220 DenseSet<DIGlobalVariable *> Processed; 1221 for (auto *GVE : CUNode->getGlobalVariables()) { 1222 DIGlobalVariable *GV = GVE->getVariable(); 1223 if (Processed.insert(GV).second) 1224 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1225 } 1226 1227 for (auto *Ty : CUNode->getEnumTypes()) { 1228 // The enum types array by design contains pointers to 1229 // MDNodes rather than DIRefs. Unique them here. 1230 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1231 } 1232 for (auto *Ty : CUNode->getRetainedTypes()) { 1233 // The retained types array by design contains pointers to 1234 // MDNodes rather than DIRefs. Unique them here. 1235 if (DIType *RT = dyn_cast<DIType>(Ty)) 1236 // There is no point in force-emitting a forward declaration. 1237 CU.getOrCreateTypeDIE(RT); 1238 } 1239 // Emit imported_modules last so that the relevant context is already 1240 // available. 1241 for (auto *IE : CUNode->getImportedEntities()) 1242 constructAndAddImportedEntityDIE(CU, IE); 1243 } 1244 } 1245 1246 void DwarfDebug::finishEntityDefinitions() { 1247 for (const auto &Entity : ConcreteEntities) { 1248 DIE *Die = Entity->getDIE(); 1249 assert(Die); 1250 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1251 // in the ConcreteEntities list, rather than looking it up again here. 1252 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1253 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1254 assert(Unit); 1255 Unit->finishEntityDefinition(Entity.get()); 1256 } 1257 } 1258 1259 void DwarfDebug::finishSubprogramDefinitions() { 1260 for (const DISubprogram *SP : ProcessedSPNodes) { 1261 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1262 forBothCUs( 1263 getOrCreateDwarfCompileUnit(SP->getUnit()), 1264 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1265 } 1266 } 1267 1268 void DwarfDebug::finalizeModuleInfo() { 1269 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1270 1271 finishSubprogramDefinitions(); 1272 1273 finishEntityDefinitions(); 1274 1275 // Include the DWO file name in the hash if there's more than one CU. 1276 // This handles ThinLTO's situation where imported CUs may very easily be 1277 // duplicate with the same CU partially imported into another ThinLTO unit. 1278 StringRef DWOName; 1279 if (CUMap.size() > 1) 1280 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1281 1282 // Handle anything that needs to be done on a per-unit basis after 1283 // all other generation. 1284 for (const auto &P : CUMap) { 1285 auto &TheCU = *P.second; 1286 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1287 continue; 1288 // Emit DW_AT_containing_type attribute to connect types with their 1289 // vtable holding type. 1290 TheCU.constructContainingTypeDIEs(); 1291 1292 // Add CU specific attributes if we need to add any. 1293 // If we're splitting the dwarf out now that we've got the entire 1294 // CU then add the dwo id to it. 1295 auto *SkCU = TheCU.getSkeleton(); 1296 1297 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1298 1299 if (HasSplitUnit) { 1300 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1301 ? dwarf::DW_AT_dwo_name 1302 : dwarf::DW_AT_GNU_dwo_name; 1303 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1304 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1305 Asm->TM.Options.MCOptions.SplitDwarfFile); 1306 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1307 Asm->TM.Options.MCOptions.SplitDwarfFile); 1308 // Emit a unique identifier for this CU. 1309 uint64_t ID = 1310 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1311 if (getDwarfVersion() >= 5) { 1312 TheCU.setDWOId(ID); 1313 SkCU->setDWOId(ID); 1314 } else { 1315 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1316 dwarf::DW_FORM_data8, ID); 1317 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1318 dwarf::DW_FORM_data8, ID); 1319 } 1320 1321 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1322 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1323 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1324 Sym, Sym); 1325 } 1326 } else if (SkCU) { 1327 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1328 } 1329 1330 // If we have code split among multiple sections or non-contiguous 1331 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1332 // remain in the .o file, otherwise add a DW_AT_low_pc. 1333 // FIXME: We should use ranges allow reordering of code ala 1334 // .subsections_via_symbols in mach-o. This would mean turning on 1335 // ranges for all subprogram DIEs for mach-o. 1336 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1337 1338 if (unsigned NumRanges = TheCU.getRanges().size()) { 1339 if (NumRanges > 1 && useRangesSection()) 1340 // A DW_AT_low_pc attribute may also be specified in combination with 1341 // DW_AT_ranges to specify the default base address for use in 1342 // location lists (see Section 2.6.2) and range lists (see Section 1343 // 2.17.3). 1344 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1345 else 1346 U.setBaseAddress(TheCU.getRanges().front().Begin); 1347 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1348 } 1349 1350 // We don't keep track of which addresses are used in which CU so this 1351 // is a bit pessimistic under LTO. 1352 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1353 U.addAddrTableBase(); 1354 1355 if (getDwarfVersion() >= 5) { 1356 if (U.hasRangeLists()) 1357 U.addRnglistsBase(); 1358 1359 if (!DebugLocs.getLists().empty()) { 1360 if (!useSplitDwarf()) 1361 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1362 DebugLocs.getSym(), 1363 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1364 } 1365 } 1366 1367 auto *CUNode = cast<DICompileUnit>(P.first); 1368 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1369 // attribute. 1370 if (CUNode->getMacros()) { 1371 if (UseDebugMacroSection) { 1372 if (useSplitDwarf()) 1373 TheCU.addSectionDelta( 1374 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1375 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1376 else { 1377 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1378 ? dwarf::DW_AT_macros 1379 : dwarf::DW_AT_GNU_macros; 1380 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1381 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1382 } 1383 } else { 1384 if (useSplitDwarf()) 1385 TheCU.addSectionDelta( 1386 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1387 U.getMacroLabelBegin(), 1388 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1389 else 1390 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1391 U.getMacroLabelBegin(), 1392 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1393 } 1394 } 1395 } 1396 1397 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1398 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1399 if (CUNode->getDWOId()) 1400 getOrCreateDwarfCompileUnit(CUNode); 1401 1402 // Compute DIE offsets and sizes. 1403 InfoHolder.computeSizeAndOffsets(); 1404 if (useSplitDwarf()) 1405 SkeletonHolder.computeSizeAndOffsets(); 1406 } 1407 1408 // Emit all Dwarf sections that should come after the content. 1409 void DwarfDebug::endModule() { 1410 // Terminate the pending line table. 1411 if (PrevCU) 1412 terminateLineTable(PrevCU); 1413 PrevCU = nullptr; 1414 assert(CurFn == nullptr); 1415 assert(CurMI == nullptr); 1416 1417 for (const auto &P : CUMap) { 1418 auto &CU = *P.second; 1419 CU.createBaseTypeDIEs(); 1420 } 1421 1422 // If we aren't actually generating debug info (check beginModule - 1423 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1424 if (!Asm || !MMI->hasDebugInfo()) 1425 return; 1426 1427 // Finalize the debug info for the module. 1428 finalizeModuleInfo(); 1429 1430 if (useSplitDwarf()) 1431 // Emit debug_loc.dwo/debug_loclists.dwo section. 1432 emitDebugLocDWO(); 1433 else 1434 // Emit debug_loc/debug_loclists section. 1435 emitDebugLoc(); 1436 1437 // Corresponding abbreviations into a abbrev section. 1438 emitAbbreviations(); 1439 1440 // Emit all the DIEs into a debug info section. 1441 emitDebugInfo(); 1442 1443 // Emit info into a debug aranges section. 1444 if (GenerateARangeSection) 1445 emitDebugARanges(); 1446 1447 // Emit info into a debug ranges section. 1448 emitDebugRanges(); 1449 1450 if (useSplitDwarf()) 1451 // Emit info into a debug macinfo.dwo section. 1452 emitDebugMacinfoDWO(); 1453 else 1454 // Emit info into a debug macinfo/macro section. 1455 emitDebugMacinfo(); 1456 1457 emitDebugStr(); 1458 1459 if (useSplitDwarf()) { 1460 emitDebugStrDWO(); 1461 emitDebugInfoDWO(); 1462 emitDebugAbbrevDWO(); 1463 emitDebugLineDWO(); 1464 emitDebugRangesDWO(); 1465 } 1466 1467 emitDebugAddr(); 1468 1469 // Emit info into the dwarf accelerator table sections. 1470 switch (getAccelTableKind()) { 1471 case AccelTableKind::Apple: 1472 emitAccelNames(); 1473 emitAccelObjC(); 1474 emitAccelNamespaces(); 1475 emitAccelTypes(); 1476 break; 1477 case AccelTableKind::Dwarf: 1478 emitAccelDebugNames(); 1479 break; 1480 case AccelTableKind::None: 1481 break; 1482 case AccelTableKind::Default: 1483 llvm_unreachable("Default should have already been resolved."); 1484 } 1485 1486 // Emit the pubnames and pubtypes sections if requested. 1487 emitDebugPubSections(); 1488 1489 // clean up. 1490 // FIXME: AbstractVariables.clear(); 1491 } 1492 1493 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1494 const DINode *Node, 1495 const MDNode *ScopeNode) { 1496 if (CU.getExistingAbstractEntity(Node)) 1497 return; 1498 1499 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1500 cast<DILocalScope>(ScopeNode))); 1501 } 1502 1503 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1504 const DINode *Node, const MDNode *ScopeNode) { 1505 if (CU.getExistingAbstractEntity(Node)) 1506 return; 1507 1508 if (LexicalScope *Scope = 1509 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1510 CU.createAbstractEntity(Node, Scope); 1511 } 1512 1513 // Collect variable information from side table maintained by MF. 1514 void DwarfDebug::collectVariableInfoFromMFTable( 1515 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1516 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1517 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1518 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1519 if (!VI.Var) 1520 continue; 1521 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1522 "Expected inlined-at fields to agree"); 1523 1524 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1525 Processed.insert(Var); 1526 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1527 1528 // If variable scope is not found then skip this variable. 1529 if (!Scope) { 1530 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1531 << ", no variable scope found\n"); 1532 continue; 1533 } 1534 1535 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1536 auto RegVar = std::make_unique<DbgVariable>( 1537 cast<DILocalVariable>(Var.first), Var.second); 1538 RegVar->initializeMMI(VI.Expr, VI.Slot); 1539 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1540 << "\n"); 1541 1542 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1543 DbgVar->addMMIEntry(*RegVar); 1544 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1545 MFVars.insert({Var, RegVar.get()}); 1546 ConcreteEntities.push_back(std::move(RegVar)); 1547 } 1548 } 1549 } 1550 1551 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1552 /// enclosing lexical scope. The check ensures there are no other instructions 1553 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1554 /// either open or otherwise rolls off the end of the scope. 1555 static bool validThroughout(LexicalScopes &LScopes, 1556 const MachineInstr *DbgValue, 1557 const MachineInstr *RangeEnd, 1558 const InstructionOrdering &Ordering) { 1559 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1560 auto MBB = DbgValue->getParent(); 1561 auto DL = DbgValue->getDebugLoc(); 1562 auto *LScope = LScopes.findLexicalScope(DL); 1563 // Scope doesn't exist; this is a dead DBG_VALUE. 1564 if (!LScope) 1565 return false; 1566 auto &LSRange = LScope->getRanges(); 1567 if (LSRange.size() == 0) 1568 return false; 1569 1570 const MachineInstr *LScopeBegin = LSRange.front().first; 1571 // If the scope starts before the DBG_VALUE then we may have a negative 1572 // result. Otherwise the location is live coming into the scope and we 1573 // can skip the following checks. 1574 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1575 // Exit if the lexical scope begins outside of the current block. 1576 if (LScopeBegin->getParent() != MBB) 1577 return false; 1578 1579 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1580 for (++Pred; Pred != MBB->rend(); ++Pred) { 1581 if (Pred->getFlag(MachineInstr::FrameSetup)) 1582 break; 1583 auto PredDL = Pred->getDebugLoc(); 1584 if (!PredDL || Pred->isMetaInstruction()) 1585 continue; 1586 // Check whether the instruction preceding the DBG_VALUE is in the same 1587 // (sub)scope as the DBG_VALUE. 1588 if (DL->getScope() == PredDL->getScope()) 1589 return false; 1590 auto *PredScope = LScopes.findLexicalScope(PredDL); 1591 if (!PredScope || LScope->dominates(PredScope)) 1592 return false; 1593 } 1594 } 1595 1596 // If the range of the DBG_VALUE is open-ended, report success. 1597 if (!RangeEnd) 1598 return true; 1599 1600 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1601 // throughout the function. This is a hack, presumably for DWARF v2 and not 1602 // necessarily correct. It would be much better to use a dbg.declare instead 1603 // if we know the constant is live throughout the scope. 1604 if (MBB->pred_empty() && 1605 all_of(DbgValue->debug_operands(), 1606 [](const MachineOperand &Op) { return Op.isImm(); })) 1607 return true; 1608 1609 // Test if the location terminates before the end of the scope. 1610 const MachineInstr *LScopeEnd = LSRange.back().second; 1611 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1612 return false; 1613 1614 // There's a single location which starts at the scope start, and ends at or 1615 // after the scope end. 1616 return true; 1617 } 1618 1619 /// Build the location list for all DBG_VALUEs in the function that 1620 /// describe the same variable. The resulting DebugLocEntries will have 1621 /// strict monotonically increasing begin addresses and will never 1622 /// overlap. If the resulting list has only one entry that is valid 1623 /// throughout variable's scope return true. 1624 // 1625 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1626 // different kinds of history map entries. One thing to be aware of is that if 1627 // a debug value is ended by another entry (rather than being valid until the 1628 // end of the function), that entry's instruction may or may not be included in 1629 // the range, depending on if the entry is a clobbering entry (it has an 1630 // instruction that clobbers one or more preceding locations), or if it is an 1631 // (overlapping) debug value entry. This distinction can be seen in the example 1632 // below. The first debug value is ended by the clobbering entry 2, and the 1633 // second and third debug values are ended by the overlapping debug value entry 1634 // 4. 1635 // 1636 // Input: 1637 // 1638 // History map entries [type, end index, mi] 1639 // 1640 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1641 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1642 // 2 | | [Clobber, $reg0 = [...], -, -] 1643 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1644 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1645 // 1646 // Output [start, end) [Value...]: 1647 // 1648 // [0-1) [(reg0, fragment 0, 32)] 1649 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1650 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1651 // [4-) [(@g, fragment 0, 96)] 1652 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1653 const DbgValueHistoryMap::Entries &Entries) { 1654 using OpenRange = 1655 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1656 SmallVector<OpenRange, 4> OpenRanges; 1657 bool isSafeForSingleLocation = true; 1658 const MachineInstr *StartDebugMI = nullptr; 1659 const MachineInstr *EndMI = nullptr; 1660 1661 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1662 const MachineInstr *Instr = EI->getInstr(); 1663 1664 // Remove all values that are no longer live. 1665 size_t Index = std::distance(EB, EI); 1666 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1667 1668 // If we are dealing with a clobbering entry, this iteration will result in 1669 // a location list entry starting after the clobbering instruction. 1670 const MCSymbol *StartLabel = 1671 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1672 assert(StartLabel && 1673 "Forgot label before/after instruction starting a range!"); 1674 1675 const MCSymbol *EndLabel; 1676 if (std::next(EI) == Entries.end()) { 1677 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1678 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1679 if (EI->isClobber()) 1680 EndMI = EI->getInstr(); 1681 } 1682 else if (std::next(EI)->isClobber()) 1683 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1684 else 1685 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1686 assert(EndLabel && "Forgot label after instruction ending a range!"); 1687 1688 if (EI->isDbgValue()) 1689 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1690 1691 // If this history map entry has a debug value, add that to the list of 1692 // open ranges and check if its location is valid for a single value 1693 // location. 1694 if (EI->isDbgValue()) { 1695 // Do not add undef debug values, as they are redundant information in 1696 // the location list entries. An undef debug results in an empty location 1697 // description. If there are any non-undef fragments then padding pieces 1698 // with empty location descriptions will automatically be inserted, and if 1699 // all fragments are undef then the whole location list entry is 1700 // redundant. 1701 if (!Instr->isUndefDebugValue()) { 1702 auto Value = getDebugLocValue(Instr); 1703 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1704 1705 // TODO: Add support for single value fragment locations. 1706 if (Instr->getDebugExpression()->isFragment()) 1707 isSafeForSingleLocation = false; 1708 1709 if (!StartDebugMI) 1710 StartDebugMI = Instr; 1711 } else { 1712 isSafeForSingleLocation = false; 1713 } 1714 } 1715 1716 // Location list entries with empty location descriptions are redundant 1717 // information in DWARF, so do not emit those. 1718 if (OpenRanges.empty()) 1719 continue; 1720 1721 // Omit entries with empty ranges as they do not have any effect in DWARF. 1722 if (StartLabel == EndLabel) { 1723 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1724 continue; 1725 } 1726 1727 SmallVector<DbgValueLoc, 4> Values; 1728 for (auto &R : OpenRanges) 1729 Values.push_back(R.second); 1730 1731 // With Basic block sections, it is posssible that the StartLabel and the 1732 // Instr are not in the same section. This happens when the StartLabel is 1733 // the function begin label and the dbg value appears in a basic block 1734 // that is not the entry. In this case, the range needs to be split to 1735 // span each individual section in the range from StartLabel to EndLabel. 1736 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1737 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1738 const MCSymbol *BeginSectionLabel = StartLabel; 1739 1740 for (const MachineBasicBlock &MBB : *Asm->MF) { 1741 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1742 BeginSectionLabel = MBB.getSymbol(); 1743 1744 if (MBB.sameSection(Instr->getParent())) { 1745 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1746 break; 1747 } 1748 if (MBB.isEndSection()) 1749 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1750 } 1751 } else { 1752 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1753 } 1754 1755 // Attempt to coalesce the ranges of two otherwise identical 1756 // DebugLocEntries. 1757 auto CurEntry = DebugLoc.rbegin(); 1758 LLVM_DEBUG({ 1759 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1760 for (auto &Value : CurEntry->getValues()) 1761 Value.dump(); 1762 dbgs() << "-----\n"; 1763 }); 1764 1765 auto PrevEntry = std::next(CurEntry); 1766 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1767 DebugLoc.pop_back(); 1768 } 1769 1770 if (!isSafeForSingleLocation || 1771 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1772 return false; 1773 1774 if (DebugLoc.size() == 1) 1775 return true; 1776 1777 if (!Asm->MF->hasBBSections()) 1778 return false; 1779 1780 // Check here to see if loclist can be merged into a single range. If not, 1781 // we must keep the split loclists per section. This does exactly what 1782 // MergeRanges does without sections. We don't actually merge the ranges 1783 // as the split ranges must be kept intact if this cannot be collapsed 1784 // into a single range. 1785 const MachineBasicBlock *RangeMBB = nullptr; 1786 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1787 RangeMBB = &Asm->MF->front(); 1788 else 1789 RangeMBB = Entries.begin()->getInstr()->getParent(); 1790 auto *CurEntry = DebugLoc.begin(); 1791 auto *NextEntry = std::next(CurEntry); 1792 while (NextEntry != DebugLoc.end()) { 1793 // Get the last machine basic block of this section. 1794 while (!RangeMBB->isEndSection()) 1795 RangeMBB = RangeMBB->getNextNode(); 1796 if (!RangeMBB->getNextNode()) 1797 return false; 1798 // CurEntry should end the current section and NextEntry should start 1799 // the next section and the Values must match for these two ranges to be 1800 // merged. 1801 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1802 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1803 CurEntry->getValues() != NextEntry->getValues()) 1804 return false; 1805 RangeMBB = RangeMBB->getNextNode(); 1806 CurEntry = NextEntry; 1807 NextEntry = std::next(CurEntry); 1808 } 1809 return true; 1810 } 1811 1812 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1813 LexicalScope &Scope, 1814 const DINode *Node, 1815 const DILocation *Location, 1816 const MCSymbol *Sym) { 1817 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1818 if (isa<const DILocalVariable>(Node)) { 1819 ConcreteEntities.push_back( 1820 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1821 Location)); 1822 InfoHolder.addScopeVariable(&Scope, 1823 cast<DbgVariable>(ConcreteEntities.back().get())); 1824 } else if (isa<const DILabel>(Node)) { 1825 ConcreteEntities.push_back( 1826 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1827 Location, Sym)); 1828 InfoHolder.addScopeLabel(&Scope, 1829 cast<DbgLabel>(ConcreteEntities.back().get())); 1830 } 1831 return ConcreteEntities.back().get(); 1832 } 1833 1834 // Find variables for each lexical scope. 1835 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1836 const DISubprogram *SP, 1837 DenseSet<InlinedEntity> &Processed) { 1838 // Grab the variable info that was squirreled away in the MMI side-table. 1839 collectVariableInfoFromMFTable(TheCU, Processed); 1840 1841 for (const auto &I : DbgValues) { 1842 InlinedEntity IV = I.first; 1843 if (Processed.count(IV)) 1844 continue; 1845 1846 // Instruction ranges, specifying where IV is accessible. 1847 const auto &HistoryMapEntries = I.second; 1848 1849 // Try to find any non-empty variable location. Do not create a concrete 1850 // entity if there are no locations. 1851 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1852 continue; 1853 1854 LexicalScope *Scope = nullptr; 1855 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1856 if (const DILocation *IA = IV.second) 1857 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1858 else 1859 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1860 // If variable scope is not found then skip this variable. 1861 if (!Scope) 1862 continue; 1863 1864 Processed.insert(IV); 1865 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1866 *Scope, LocalVar, IV.second)); 1867 1868 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1869 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1870 1871 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1872 // If the history map contains a single debug value, there may be an 1873 // additional entry which clobbers the debug value. 1874 size_t HistSize = HistoryMapEntries.size(); 1875 bool SingleValueWithClobber = 1876 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1877 if (HistSize == 1 || SingleValueWithClobber) { 1878 const auto *End = 1879 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1880 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1881 RegVar->initializeDbgValue(MInsn); 1882 continue; 1883 } 1884 } 1885 1886 // Do not emit location lists if .debug_loc secton is disabled. 1887 if (!useLocSection()) 1888 continue; 1889 1890 // Handle multiple DBG_VALUE instructions describing one variable. 1891 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1892 1893 // Build the location list for this variable. 1894 SmallVector<DebugLocEntry, 8> Entries; 1895 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1896 1897 // Check whether buildLocationList managed to merge all locations to one 1898 // that is valid throughout the variable's scope. If so, produce single 1899 // value location. 1900 if (isValidSingleLocation) { 1901 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1902 continue; 1903 } 1904 1905 // If the variable has a DIBasicType, extract it. Basic types cannot have 1906 // unique identifiers, so don't bother resolving the type with the 1907 // identifier map. 1908 const DIBasicType *BT = dyn_cast<DIBasicType>( 1909 static_cast<const Metadata *>(LocalVar->getType())); 1910 1911 // Finalize the entry by lowering it into a DWARF bytestream. 1912 for (auto &Entry : Entries) 1913 Entry.finalize(*Asm, List, BT, TheCU); 1914 } 1915 1916 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1917 // DWARF-related DbgLabel. 1918 for (const auto &I : DbgLabels) { 1919 InlinedEntity IL = I.first; 1920 const MachineInstr *MI = I.second; 1921 if (MI == nullptr) 1922 continue; 1923 1924 LexicalScope *Scope = nullptr; 1925 const DILabel *Label = cast<DILabel>(IL.first); 1926 // The scope could have an extra lexical block file. 1927 const DILocalScope *LocalScope = 1928 Label->getScope()->getNonLexicalBlockFileScope(); 1929 // Get inlined DILocation if it is inlined label. 1930 if (const DILocation *IA = IL.second) 1931 Scope = LScopes.findInlinedScope(LocalScope, IA); 1932 else 1933 Scope = LScopes.findLexicalScope(LocalScope); 1934 // If label scope is not found then skip this label. 1935 if (!Scope) 1936 continue; 1937 1938 Processed.insert(IL); 1939 /// At this point, the temporary label is created. 1940 /// Save the temporary label to DbgLabel entity to get the 1941 /// actually address when generating Dwarf DIE. 1942 MCSymbol *Sym = getLabelBeforeInsn(MI); 1943 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1944 } 1945 1946 // Collect info for variables/labels that were optimized out. 1947 for (const DINode *DN : SP->getRetainedNodes()) { 1948 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1949 continue; 1950 LexicalScope *Scope = nullptr; 1951 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1952 Scope = LScopes.findLexicalScope(DV->getScope()); 1953 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1954 Scope = LScopes.findLexicalScope(DL->getScope()); 1955 } 1956 1957 if (Scope) 1958 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1959 } 1960 } 1961 1962 // Process beginning of an instruction. 1963 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1964 const MachineFunction &MF = *MI->getMF(); 1965 const auto *SP = MF.getFunction().getSubprogram(); 1966 bool NoDebug = 1967 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1968 1969 // Delay slot support check. 1970 auto delaySlotSupported = [](const MachineInstr &MI) { 1971 if (!MI.isBundledWithSucc()) 1972 return false; 1973 auto Suc = std::next(MI.getIterator()); 1974 (void)Suc; 1975 // Ensure that delay slot instruction is successor of the call instruction. 1976 // Ex. CALL_INSTRUCTION { 1977 // DELAY_SLOT_INSTRUCTION } 1978 assert(Suc->isBundledWithPred() && 1979 "Call bundle instructions are out of order"); 1980 return true; 1981 }; 1982 1983 // When describing calls, we need a label for the call instruction. 1984 if (!NoDebug && SP->areAllCallsDescribed() && 1985 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1986 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1987 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1988 bool IsTail = TII->isTailCall(*MI); 1989 // For tail calls, we need the address of the branch instruction for 1990 // DW_AT_call_pc. 1991 if (IsTail) 1992 requestLabelBeforeInsn(MI); 1993 // For non-tail calls, we need the return address for the call for 1994 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1995 // tail calls as well. 1996 requestLabelAfterInsn(MI); 1997 } 1998 1999 DebugHandlerBase::beginInstruction(MI); 2000 if (!CurMI) 2001 return; 2002 2003 if (NoDebug) 2004 return; 2005 2006 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2007 // If the instruction is part of the function frame setup code, do not emit 2008 // any line record, as there is no correspondence with any user code. 2009 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2010 return; 2011 const DebugLoc &DL = MI->getDebugLoc(); 2012 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2013 // the last line number actually emitted, to see if it was line 0. 2014 unsigned LastAsmLine = 2015 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2016 2017 if (DL == PrevInstLoc) { 2018 // If we have an ongoing unspecified location, nothing to do here. 2019 if (!DL) 2020 return; 2021 // We have an explicit location, same as the previous location. 2022 // But we might be coming back to it after a line 0 record. 2023 if (LastAsmLine == 0 && DL.getLine() != 0) { 2024 // Reinstate the source location but not marked as a statement. 2025 const MDNode *Scope = DL.getScope(); 2026 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 2027 } 2028 return; 2029 } 2030 2031 if (!DL) { 2032 // We have an unspecified location, which might want to be line 0. 2033 // If we have already emitted a line-0 record, don't repeat it. 2034 if (LastAsmLine == 0) 2035 return; 2036 // If user said Don't Do That, don't do that. 2037 if (UnknownLocations == Disable) 2038 return; 2039 // See if we have a reason to emit a line-0 record now. 2040 // Reasons to emit a line-0 record include: 2041 // - User asked for it (UnknownLocations). 2042 // - Instruction has a label, so it's referenced from somewhere else, 2043 // possibly debug information; we want it to have a source location. 2044 // - Instruction is at the top of a block; we don't want to inherit the 2045 // location from the physically previous (maybe unrelated) block. 2046 if (UnknownLocations == Enable || PrevLabel || 2047 (PrevInstBB && PrevInstBB != MI->getParent())) { 2048 // Preserve the file and column numbers, if we can, to save space in 2049 // the encoded line table. 2050 // Do not update PrevInstLoc, it remembers the last non-0 line. 2051 const MDNode *Scope = nullptr; 2052 unsigned Column = 0; 2053 if (PrevInstLoc) { 2054 Scope = PrevInstLoc.getScope(); 2055 Column = PrevInstLoc.getCol(); 2056 } 2057 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2058 } 2059 return; 2060 } 2061 2062 // We have an explicit location, different from the previous location. 2063 // Don't repeat a line-0 record, but otherwise emit the new location. 2064 // (The new location might be an explicit line 0, which we do emit.) 2065 if (DL.getLine() == 0 && LastAsmLine == 0) 2066 return; 2067 unsigned Flags = 0; 2068 if (DL == PrologEndLoc) { 2069 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2070 PrologEndLoc = DebugLoc(); 2071 } 2072 // If the line changed, we call that a new statement; unless we went to 2073 // line 0 and came back, in which case it is not a new statement. 2074 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2075 if (DL.getLine() && DL.getLine() != OldLine) 2076 Flags |= DWARF2_FLAG_IS_STMT; 2077 2078 const MDNode *Scope = DL.getScope(); 2079 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2080 2081 // If we're not at line 0, remember this location. 2082 if (DL.getLine()) 2083 PrevInstLoc = DL; 2084 } 2085 2086 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2087 // First known non-DBG_VALUE and non-frame setup location marks 2088 // the beginning of the function body. 2089 DebugLoc LineZeroLoc; 2090 for (const auto &MBB : *MF) { 2091 for (const auto &MI : MBB) { 2092 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2093 MI.getDebugLoc()) { 2094 // Scan forward to try to find a non-zero line number. The prologue_end 2095 // marks the first breakpoint in the function after the frame setup, and 2096 // a compiler-generated line 0 location is not a meaningful breakpoint. 2097 // If none is found, return the first location after the frame setup. 2098 if (MI.getDebugLoc().getLine()) 2099 return MI.getDebugLoc(); 2100 LineZeroLoc = MI.getDebugLoc(); 2101 } 2102 } 2103 } 2104 return LineZeroLoc; 2105 } 2106 2107 /// Register a source line with debug info. Returns the unique label that was 2108 /// emitted and which provides correspondence to the source line list. 2109 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2110 const MDNode *S, unsigned Flags, unsigned CUID, 2111 uint16_t DwarfVersion, 2112 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2113 StringRef Fn; 2114 unsigned FileNo = 1; 2115 unsigned Discriminator = 0; 2116 if (auto *Scope = cast_or_null<DIScope>(S)) { 2117 Fn = Scope->getFilename(); 2118 if (Line != 0 && DwarfVersion >= 4) 2119 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2120 Discriminator = LBF->getDiscriminator(); 2121 2122 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2123 .getOrCreateSourceID(Scope->getFile()); 2124 } 2125 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2126 Discriminator, Fn); 2127 } 2128 2129 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2130 unsigned CUID) { 2131 // Get beginning of function. 2132 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2133 // Ensure the compile unit is created if the function is called before 2134 // beginFunction(). 2135 (void)getOrCreateDwarfCompileUnit( 2136 MF.getFunction().getSubprogram()->getUnit()); 2137 // We'd like to list the prologue as "not statements" but GDB behaves 2138 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2139 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2140 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2141 CUID, getDwarfVersion(), getUnits()); 2142 return PrologEndLoc; 2143 } 2144 return DebugLoc(); 2145 } 2146 2147 // Gather pre-function debug information. Assumes being called immediately 2148 // after the function entry point has been emitted. 2149 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2150 CurFn = MF; 2151 2152 auto *SP = MF->getFunction().getSubprogram(); 2153 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2154 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2155 return; 2156 2157 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2158 2159 Asm->OutStreamer->getContext().setDwarfCompileUnitID( 2160 getDwarfCompileUnitIDForLineTable(CU)); 2161 2162 // Record beginning of function. 2163 PrologEndLoc = emitInitialLocDirective( 2164 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2165 } 2166 2167 unsigned 2168 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { 2169 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2170 // belongs to so that we add to the correct per-cu line table in the 2171 // non-asm case. 2172 if (Asm->OutStreamer->hasRawTextSupport()) 2173 // Use a single line table if we are generating assembly. 2174 return 0; 2175 else 2176 return CU.getUniqueID(); 2177 } 2178 2179 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { 2180 const auto &CURanges = CU->getRanges(); 2181 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( 2182 getDwarfCompileUnitIDForLineTable(*CU)); 2183 // Add the last range label for the given CU. 2184 LineTable.getMCLineSections().addEndEntry( 2185 const_cast<MCSymbol *>(CURanges.back().End)); 2186 } 2187 2188 void DwarfDebug::skippedNonDebugFunction() { 2189 // If we don't have a subprogram for this function then there will be a hole 2190 // in the range information. Keep note of this by setting the previously used 2191 // section to nullptr. 2192 // Terminate the pending line table. 2193 if (PrevCU) 2194 terminateLineTable(PrevCU); 2195 PrevCU = nullptr; 2196 CurFn = nullptr; 2197 } 2198 2199 // Gather and emit post-function debug information. 2200 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2201 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2202 2203 assert(CurFn == MF && 2204 "endFunction should be called with the same function as beginFunction"); 2205 2206 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2207 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2208 2209 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2210 assert(!FnScope || SP == FnScope->getScopeNode()); 2211 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2212 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2213 PrevLabel = nullptr; 2214 CurFn = nullptr; 2215 return; 2216 } 2217 2218 DenseSet<InlinedEntity> Processed; 2219 collectEntityInfo(TheCU, SP, Processed); 2220 2221 // Add the range of this function to the list of ranges for the CU. 2222 // With basic block sections, add ranges for all basic block sections. 2223 for (const auto &R : Asm->MBBSectionRanges) 2224 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2225 2226 // Under -gmlt, skip building the subprogram if there are no inlined 2227 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2228 // is still needed as we need its source location. 2229 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2230 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2231 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2232 assert(InfoHolder.getScopeVariables().empty()); 2233 PrevLabel = nullptr; 2234 CurFn = nullptr; 2235 return; 2236 } 2237 2238 #ifndef NDEBUG 2239 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2240 #endif 2241 // Construct abstract scopes. 2242 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2243 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2244 for (const DINode *DN : SP->getRetainedNodes()) { 2245 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2246 continue; 2247 2248 const MDNode *Scope = nullptr; 2249 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2250 Scope = DV->getScope(); 2251 else if (auto *DL = dyn_cast<DILabel>(DN)) 2252 Scope = DL->getScope(); 2253 else 2254 llvm_unreachable("Unexpected DI type!"); 2255 2256 // Collect info for variables/labels that were optimized out. 2257 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2258 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2259 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2260 } 2261 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2262 } 2263 2264 ProcessedSPNodes.insert(SP); 2265 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2266 if (auto *SkelCU = TheCU.getSkeleton()) 2267 if (!LScopes.getAbstractScopesList().empty() && 2268 TheCU.getCUNode()->getSplitDebugInlining()) 2269 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2270 2271 // Construct call site entries. 2272 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2273 2274 // Clear debug info 2275 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2276 // DbgVariables except those that are also in AbstractVariables (since they 2277 // can be used cross-function) 2278 InfoHolder.getScopeVariables().clear(); 2279 InfoHolder.getScopeLabels().clear(); 2280 PrevLabel = nullptr; 2281 CurFn = nullptr; 2282 } 2283 2284 // Register a source line with debug info. Returns the unique label that was 2285 // emitted and which provides correspondence to the source line list. 2286 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2287 unsigned Flags) { 2288 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2289 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2290 getDwarfVersion(), getUnits()); 2291 } 2292 2293 //===----------------------------------------------------------------------===// 2294 // Emit Methods 2295 //===----------------------------------------------------------------------===// 2296 2297 // Emit the debug info section. 2298 void DwarfDebug::emitDebugInfo() { 2299 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2300 Holder.emitUnits(/* UseOffsets */ false); 2301 } 2302 2303 // Emit the abbreviation section. 2304 void DwarfDebug::emitAbbreviations() { 2305 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2306 2307 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2308 } 2309 2310 void DwarfDebug::emitStringOffsetsTableHeader() { 2311 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2312 Holder.getStringPool().emitStringOffsetsTableHeader( 2313 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2314 Holder.getStringOffsetsStartSym()); 2315 } 2316 2317 template <typename AccelTableT> 2318 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2319 StringRef TableName) { 2320 Asm->OutStreamer->SwitchSection(Section); 2321 2322 // Emit the full data. 2323 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2324 } 2325 2326 void DwarfDebug::emitAccelDebugNames() { 2327 // Don't emit anything if we have no compilation units to index. 2328 if (getUnits().empty()) 2329 return; 2330 2331 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2332 } 2333 2334 // Emit visible names into a hashed accelerator table section. 2335 void DwarfDebug::emitAccelNames() { 2336 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2337 "Names"); 2338 } 2339 2340 // Emit objective C classes and categories into a hashed accelerator table 2341 // section. 2342 void DwarfDebug::emitAccelObjC() { 2343 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2344 "ObjC"); 2345 } 2346 2347 // Emit namespace dies into a hashed accelerator table. 2348 void DwarfDebug::emitAccelNamespaces() { 2349 emitAccel(AccelNamespace, 2350 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2351 "namespac"); 2352 } 2353 2354 // Emit type dies into a hashed accelerator table. 2355 void DwarfDebug::emitAccelTypes() { 2356 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2357 "types"); 2358 } 2359 2360 // Public name handling. 2361 // The format for the various pubnames: 2362 // 2363 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2364 // for the DIE that is named. 2365 // 2366 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2367 // into the CU and the index value is computed according to the type of value 2368 // for the DIE that is named. 2369 // 2370 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2371 // it's the offset within the debug_info/debug_types dwo section, however, the 2372 // reference in the pubname header doesn't change. 2373 2374 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2375 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2376 const DIE *Die) { 2377 // Entities that ended up only in a Type Unit reference the CU instead (since 2378 // the pub entry has offsets within the CU there's no real offset that can be 2379 // provided anyway). As it happens all such entities (namespaces and types, 2380 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2381 // not to be true it would be necessary to persist this information from the 2382 // point at which the entry is added to the index data structure - since by 2383 // the time the index is built from that, the original type/namespace DIE in a 2384 // type unit has already been destroyed so it can't be queried for properties 2385 // like tag, etc. 2386 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2387 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2388 dwarf::GIEL_EXTERNAL); 2389 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2390 2391 // We could have a specification DIE that has our most of our knowledge, 2392 // look for that now. 2393 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2394 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2395 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2396 Linkage = dwarf::GIEL_EXTERNAL; 2397 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2398 Linkage = dwarf::GIEL_EXTERNAL; 2399 2400 switch (Die->getTag()) { 2401 case dwarf::DW_TAG_class_type: 2402 case dwarf::DW_TAG_structure_type: 2403 case dwarf::DW_TAG_union_type: 2404 case dwarf::DW_TAG_enumeration_type: 2405 return dwarf::PubIndexEntryDescriptor( 2406 dwarf::GIEK_TYPE, 2407 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2408 ? dwarf::GIEL_EXTERNAL 2409 : dwarf::GIEL_STATIC); 2410 case dwarf::DW_TAG_typedef: 2411 case dwarf::DW_TAG_base_type: 2412 case dwarf::DW_TAG_subrange_type: 2413 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2414 case dwarf::DW_TAG_namespace: 2415 return dwarf::GIEK_TYPE; 2416 case dwarf::DW_TAG_subprogram: 2417 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2418 case dwarf::DW_TAG_variable: 2419 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2420 case dwarf::DW_TAG_enumerator: 2421 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2422 dwarf::GIEL_STATIC); 2423 default: 2424 return dwarf::GIEK_NONE; 2425 } 2426 } 2427 2428 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2429 /// pubtypes sections. 2430 void DwarfDebug::emitDebugPubSections() { 2431 for (const auto &NU : CUMap) { 2432 DwarfCompileUnit *TheU = NU.second; 2433 if (!TheU->hasDwarfPubSections()) 2434 continue; 2435 2436 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2437 DICompileUnit::DebugNameTableKind::GNU; 2438 2439 Asm->OutStreamer->SwitchSection( 2440 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2441 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2442 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2443 2444 Asm->OutStreamer->SwitchSection( 2445 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2446 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2447 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2448 } 2449 } 2450 2451 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2452 if (useSectionsAsReferences()) 2453 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2454 CU.getDebugSectionOffset()); 2455 else 2456 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2457 } 2458 2459 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2460 DwarfCompileUnit *TheU, 2461 const StringMap<const DIE *> &Globals) { 2462 if (auto *Skeleton = TheU->getSkeleton()) 2463 TheU = Skeleton; 2464 2465 // Emit the header. 2466 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2467 "pub" + Name, "Length of Public " + Name + " Info"); 2468 2469 Asm->OutStreamer->AddComment("DWARF Version"); 2470 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2471 2472 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2473 emitSectionReference(*TheU); 2474 2475 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2476 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2477 2478 // Emit the pubnames for this compilation unit. 2479 for (const auto &GI : Globals) { 2480 const char *Name = GI.getKeyData(); 2481 const DIE *Entity = GI.second; 2482 2483 Asm->OutStreamer->AddComment("DIE offset"); 2484 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2485 2486 if (GnuStyle) { 2487 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2488 Asm->OutStreamer->AddComment( 2489 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2490 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2491 Asm->emitInt8(Desc.toBits()); 2492 } 2493 2494 Asm->OutStreamer->AddComment("External Name"); 2495 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2496 } 2497 2498 Asm->OutStreamer->AddComment("End Mark"); 2499 Asm->emitDwarfLengthOrOffset(0); 2500 Asm->OutStreamer->emitLabel(EndLabel); 2501 } 2502 2503 /// Emit null-terminated strings into a debug str section. 2504 void DwarfDebug::emitDebugStr() { 2505 MCSection *StringOffsetsSection = nullptr; 2506 if (useSegmentedStringOffsetsTable()) { 2507 emitStringOffsetsTableHeader(); 2508 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2509 } 2510 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2511 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2512 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2513 } 2514 2515 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2516 const DebugLocStream::Entry &Entry, 2517 const DwarfCompileUnit *CU) { 2518 auto &&Comments = DebugLocs.getComments(Entry); 2519 auto Comment = Comments.begin(); 2520 auto End = Comments.end(); 2521 2522 // The expressions are inserted into a byte stream rather early (see 2523 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2524 // need to reference a base_type DIE the offset of that DIE is not yet known. 2525 // To deal with this we instead insert a placeholder early and then extract 2526 // it here and replace it with the real reference. 2527 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2528 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2529 DebugLocs.getBytes(Entry).size()), 2530 Asm->getDataLayout().isLittleEndian(), PtrSize); 2531 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2532 2533 using Encoding = DWARFExpression::Operation::Encoding; 2534 uint64_t Offset = 0; 2535 for (auto &Op : Expr) { 2536 assert(Op.getCode() != dwarf::DW_OP_const_type && 2537 "3 operand ops not yet supported"); 2538 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2539 Offset++; 2540 for (unsigned I = 0; I < 2; ++I) { 2541 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2542 continue; 2543 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2544 uint64_t Offset = 2545 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2546 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2547 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2548 // Make sure comments stay aligned. 2549 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2550 if (Comment != End) 2551 Comment++; 2552 } else { 2553 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2554 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2555 } 2556 Offset = Op.getOperandEndOffset(I); 2557 } 2558 assert(Offset == Op.getEndOffset()); 2559 } 2560 } 2561 2562 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2563 const DbgValueLoc &Value, 2564 DwarfExpression &DwarfExpr) { 2565 auto *DIExpr = Value.getExpression(); 2566 DIExpressionCursor ExprCursor(DIExpr); 2567 DwarfExpr.addFragmentOffset(DIExpr); 2568 2569 // If the DIExpr is is an Entry Value, we want to follow the same code path 2570 // regardless of whether the DBG_VALUE is variadic or not. 2571 if (DIExpr && DIExpr->isEntryValue()) { 2572 // Entry values can only be a single register with no additional DIExpr, 2573 // so just add it directly. 2574 assert(Value.getLocEntries().size() == 1); 2575 assert(Value.getLocEntries()[0].isLocation()); 2576 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2577 DwarfExpr.setLocation(Location, DIExpr); 2578 2579 DwarfExpr.beginEntryValueExpression(ExprCursor); 2580 2581 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2582 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2583 return; 2584 return DwarfExpr.addExpression(std::move(ExprCursor)); 2585 } 2586 2587 // Regular entry. 2588 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2589 &AP](const DbgValueLocEntry &Entry, 2590 DIExpressionCursor &Cursor) -> bool { 2591 if (Entry.isInt()) { 2592 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2593 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2594 DwarfExpr.addSignedConstant(Entry.getInt()); 2595 else 2596 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2597 } else if (Entry.isLocation()) { 2598 MachineLocation Location = Entry.getLoc(); 2599 if (Location.isIndirect()) 2600 DwarfExpr.setMemoryLocationKind(); 2601 2602 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2603 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2604 return false; 2605 } else if (Entry.isTargetIndexLocation()) { 2606 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2607 // TODO TargetIndexLocation is a target-independent. Currently only the 2608 // WebAssembly-specific encoding is supported. 2609 assert(AP.TM.getTargetTriple().isWasm()); 2610 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2611 } else if (Entry.isConstantFP()) { 2612 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2613 !Cursor) { 2614 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2615 } else if (Entry.getConstantFP() 2616 ->getValueAPF() 2617 .bitcastToAPInt() 2618 .getBitWidth() <= 64 /*bits*/) { 2619 DwarfExpr.addUnsignedConstant( 2620 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2621 } else { 2622 LLVM_DEBUG( 2623 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2624 << Entry.getConstantFP() 2625 ->getValueAPF() 2626 .bitcastToAPInt() 2627 .getBitWidth() 2628 << " bits\n"); 2629 return false; 2630 } 2631 } 2632 return true; 2633 }; 2634 2635 if (!Value.isVariadic()) { 2636 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2637 return; 2638 DwarfExpr.addExpression(std::move(ExprCursor)); 2639 return; 2640 } 2641 2642 // If any of the location entries are registers with the value 0, then the 2643 // location is undefined. 2644 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2645 return Entry.isLocation() && !Entry.getLoc().getReg(); 2646 })) 2647 return; 2648 2649 DwarfExpr.addExpression( 2650 std::move(ExprCursor), 2651 [EmitValueLocEntry, &Value](unsigned Idx, 2652 DIExpressionCursor &Cursor) -> bool { 2653 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2654 }); 2655 } 2656 2657 void DebugLocEntry::finalize(const AsmPrinter &AP, 2658 DebugLocStream::ListBuilder &List, 2659 const DIBasicType *BT, 2660 DwarfCompileUnit &TheCU) { 2661 assert(!Values.empty() && 2662 "location list entries without values are redundant"); 2663 assert(Begin != End && "unexpected location list entry with empty range"); 2664 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2665 BufferByteStreamer Streamer = Entry.getStreamer(); 2666 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2667 const DbgValueLoc &Value = Values[0]; 2668 if (Value.isFragment()) { 2669 // Emit all fragments that belong to the same variable and range. 2670 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2671 return P.isFragment(); 2672 }) && "all values are expected to be fragments"); 2673 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2674 2675 for (const auto &Fragment : Values) 2676 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2677 2678 } else { 2679 assert(Values.size() == 1 && "only fragments may have >1 value"); 2680 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2681 } 2682 DwarfExpr.finalize(); 2683 if (DwarfExpr.TagOffset) 2684 List.setTagOffset(*DwarfExpr.TagOffset); 2685 } 2686 2687 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2688 const DwarfCompileUnit *CU) { 2689 // Emit the size. 2690 Asm->OutStreamer->AddComment("Loc expr size"); 2691 if (getDwarfVersion() >= 5) 2692 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2693 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2694 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2695 else { 2696 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2697 // can do. 2698 Asm->emitInt16(0); 2699 return; 2700 } 2701 // Emit the entry. 2702 APByteStreamer Streamer(*Asm); 2703 emitDebugLocEntry(Streamer, Entry, CU); 2704 } 2705 2706 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2707 // that designates the end of the table for the caller to emit when the table is 2708 // complete. 2709 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2710 const DwarfFile &Holder) { 2711 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2712 2713 Asm->OutStreamer->AddComment("Offset entry count"); 2714 Asm->emitInt32(Holder.getRangeLists().size()); 2715 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2716 2717 for (const RangeSpanList &List : Holder.getRangeLists()) 2718 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2719 Asm->getDwarfOffsetByteSize()); 2720 2721 return TableEnd; 2722 } 2723 2724 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2725 // designates the end of the table for the caller to emit when the table is 2726 // complete. 2727 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2728 const DwarfDebug &DD) { 2729 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2730 2731 const auto &DebugLocs = DD.getDebugLocs(); 2732 2733 Asm->OutStreamer->AddComment("Offset entry count"); 2734 Asm->emitInt32(DebugLocs.getLists().size()); 2735 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2736 2737 for (const auto &List : DebugLocs.getLists()) 2738 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2739 Asm->getDwarfOffsetByteSize()); 2740 2741 return TableEnd; 2742 } 2743 2744 template <typename Ranges, typename PayloadEmitter> 2745 static void emitRangeList( 2746 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2747 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2748 unsigned StartxLength, unsigned EndOfList, 2749 StringRef (*StringifyEnum)(unsigned), 2750 bool ShouldUseBaseAddress, 2751 PayloadEmitter EmitPayload) { 2752 2753 auto Size = Asm->MAI->getCodePointerSize(); 2754 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2755 2756 // Emit our symbol so we can find the beginning of the range. 2757 Asm->OutStreamer->emitLabel(Sym); 2758 2759 // Gather all the ranges that apply to the same section so they can share 2760 // a base address entry. 2761 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2762 2763 for (const auto &Range : R) 2764 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2765 2766 const MCSymbol *CUBase = CU.getBaseAddress(); 2767 bool BaseIsSet = false; 2768 for (const auto &P : SectionRanges) { 2769 auto *Base = CUBase; 2770 if (!Base && ShouldUseBaseAddress) { 2771 const MCSymbol *Begin = P.second.front()->Begin; 2772 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2773 if (!UseDwarf5) { 2774 Base = NewBase; 2775 BaseIsSet = true; 2776 Asm->OutStreamer->emitIntValue(-1, Size); 2777 Asm->OutStreamer->AddComment(" base address"); 2778 Asm->OutStreamer->emitSymbolValue(Base, Size); 2779 } else if (NewBase != Begin || P.second.size() > 1) { 2780 // Only use a base address if 2781 // * the existing pool address doesn't match (NewBase != Begin) 2782 // * or, there's more than one entry to share the base address 2783 Base = NewBase; 2784 BaseIsSet = true; 2785 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2786 Asm->emitInt8(BaseAddressx); 2787 Asm->OutStreamer->AddComment(" base address index"); 2788 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2789 } 2790 } else if (BaseIsSet && !UseDwarf5) { 2791 BaseIsSet = false; 2792 assert(!Base); 2793 Asm->OutStreamer->emitIntValue(-1, Size); 2794 Asm->OutStreamer->emitIntValue(0, Size); 2795 } 2796 2797 for (const auto *RS : P.second) { 2798 const MCSymbol *Begin = RS->Begin; 2799 const MCSymbol *End = RS->End; 2800 assert(Begin && "Range without a begin symbol?"); 2801 assert(End && "Range without an end symbol?"); 2802 if (Base) { 2803 if (UseDwarf5) { 2804 // Emit offset_pair when we have a base. 2805 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2806 Asm->emitInt8(OffsetPair); 2807 Asm->OutStreamer->AddComment(" starting offset"); 2808 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2809 Asm->OutStreamer->AddComment(" ending offset"); 2810 Asm->emitLabelDifferenceAsULEB128(End, Base); 2811 } else { 2812 Asm->emitLabelDifference(Begin, Base, Size); 2813 Asm->emitLabelDifference(End, Base, Size); 2814 } 2815 } else if (UseDwarf5) { 2816 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2817 Asm->emitInt8(StartxLength); 2818 Asm->OutStreamer->AddComment(" start index"); 2819 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2820 Asm->OutStreamer->AddComment(" length"); 2821 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2822 } else { 2823 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2824 Asm->OutStreamer->emitSymbolValue(End, Size); 2825 } 2826 EmitPayload(*RS); 2827 } 2828 } 2829 2830 if (UseDwarf5) { 2831 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2832 Asm->emitInt8(EndOfList); 2833 } else { 2834 // Terminate the list with two 0 values. 2835 Asm->OutStreamer->emitIntValue(0, Size); 2836 Asm->OutStreamer->emitIntValue(0, Size); 2837 } 2838 } 2839 2840 // Handles emission of both debug_loclist / debug_loclist.dwo 2841 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2842 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2843 *List.CU, dwarf::DW_LLE_base_addressx, 2844 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2845 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2846 /* ShouldUseBaseAddress */ true, 2847 [&](const DebugLocStream::Entry &E) { 2848 DD.emitDebugLocEntryLocation(E, List.CU); 2849 }); 2850 } 2851 2852 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2853 if (DebugLocs.getLists().empty()) 2854 return; 2855 2856 Asm->OutStreamer->SwitchSection(Sec); 2857 2858 MCSymbol *TableEnd = nullptr; 2859 if (getDwarfVersion() >= 5) 2860 TableEnd = emitLoclistsTableHeader(Asm, *this); 2861 2862 for (const auto &List : DebugLocs.getLists()) 2863 emitLocList(*this, Asm, List); 2864 2865 if (TableEnd) 2866 Asm->OutStreamer->emitLabel(TableEnd); 2867 } 2868 2869 // Emit locations into the .debug_loc/.debug_loclists section. 2870 void DwarfDebug::emitDebugLoc() { 2871 emitDebugLocImpl( 2872 getDwarfVersion() >= 5 2873 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2874 : Asm->getObjFileLowering().getDwarfLocSection()); 2875 } 2876 2877 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2878 void DwarfDebug::emitDebugLocDWO() { 2879 if (getDwarfVersion() >= 5) { 2880 emitDebugLocImpl( 2881 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2882 2883 return; 2884 } 2885 2886 for (const auto &List : DebugLocs.getLists()) { 2887 Asm->OutStreamer->SwitchSection( 2888 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2889 Asm->OutStreamer->emitLabel(List.Label); 2890 2891 for (const auto &Entry : DebugLocs.getEntries(List)) { 2892 // GDB only supports startx_length in pre-standard split-DWARF. 2893 // (in v5 standard loclists, it currently* /only/ supports base_address + 2894 // offset_pair, so the implementations can't really share much since they 2895 // need to use different representations) 2896 // * as of October 2018, at least 2897 // 2898 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2899 // addresses in the address pool to minimize object size/relocations. 2900 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2901 unsigned idx = AddrPool.getIndex(Entry.Begin); 2902 Asm->emitULEB128(idx); 2903 // Also the pre-standard encoding is slightly different, emitting this as 2904 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2905 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2906 emitDebugLocEntryLocation(Entry, List.CU); 2907 } 2908 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2909 } 2910 } 2911 2912 struct ArangeSpan { 2913 const MCSymbol *Start, *End; 2914 }; 2915 2916 // Emit a debug aranges section, containing a CU lookup for any 2917 // address we can tie back to a CU. 2918 void DwarfDebug::emitDebugARanges() { 2919 // Provides a unique id per text section. 2920 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2921 2922 // Filter labels by section. 2923 for (const SymbolCU &SCU : ArangeLabels) { 2924 if (SCU.Sym->isInSection()) { 2925 // Make a note of this symbol and it's section. 2926 MCSection *Section = &SCU.Sym->getSection(); 2927 if (!Section->getKind().isMetadata()) 2928 SectionMap[Section].push_back(SCU); 2929 } else { 2930 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2931 // appear in the output. This sucks as we rely on sections to build 2932 // arange spans. We can do it without, but it's icky. 2933 SectionMap[nullptr].push_back(SCU); 2934 } 2935 } 2936 2937 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2938 2939 for (auto &I : SectionMap) { 2940 MCSection *Section = I.first; 2941 SmallVector<SymbolCU, 8> &List = I.second; 2942 if (List.size() < 1) 2943 continue; 2944 2945 // If we have no section (e.g. common), just write out 2946 // individual spans for each symbol. 2947 if (!Section) { 2948 for (const SymbolCU &Cur : List) { 2949 ArangeSpan Span; 2950 Span.Start = Cur.Sym; 2951 Span.End = nullptr; 2952 assert(Cur.CU); 2953 Spans[Cur.CU].push_back(Span); 2954 } 2955 continue; 2956 } 2957 2958 // Sort the symbols by offset within the section. 2959 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2960 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2961 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2962 2963 // Symbols with no order assigned should be placed at the end. 2964 // (e.g. section end labels) 2965 if (IA == 0) 2966 return false; 2967 if (IB == 0) 2968 return true; 2969 return IA < IB; 2970 }); 2971 2972 // Insert a final terminator. 2973 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2974 2975 // Build spans between each label. 2976 const MCSymbol *StartSym = List[0].Sym; 2977 for (size_t n = 1, e = List.size(); n < e; n++) { 2978 const SymbolCU &Prev = List[n - 1]; 2979 const SymbolCU &Cur = List[n]; 2980 2981 // Try and build the longest span we can within the same CU. 2982 if (Cur.CU != Prev.CU) { 2983 ArangeSpan Span; 2984 Span.Start = StartSym; 2985 Span.End = Cur.Sym; 2986 assert(Prev.CU); 2987 Spans[Prev.CU].push_back(Span); 2988 StartSym = Cur.Sym; 2989 } 2990 } 2991 } 2992 2993 // Start the dwarf aranges section. 2994 Asm->OutStreamer->SwitchSection( 2995 Asm->getObjFileLowering().getDwarfARangesSection()); 2996 2997 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2998 2999 // Build a list of CUs used. 3000 std::vector<DwarfCompileUnit *> CUs; 3001 for (const auto &it : Spans) { 3002 DwarfCompileUnit *CU = it.first; 3003 CUs.push_back(CU); 3004 } 3005 3006 // Sort the CU list (again, to ensure consistent output order). 3007 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 3008 return A->getUniqueID() < B->getUniqueID(); 3009 }); 3010 3011 // Emit an arange table for each CU we used. 3012 for (DwarfCompileUnit *CU : CUs) { 3013 std::vector<ArangeSpan> &List = Spans[CU]; 3014 3015 // Describe the skeleton CU's offset and length, not the dwo file's. 3016 if (auto *Skel = CU->getSkeleton()) 3017 CU = Skel; 3018 3019 // Emit size of content not including length itself. 3020 unsigned ContentSize = 3021 sizeof(int16_t) + // DWARF ARange version number 3022 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3023 // section 3024 sizeof(int8_t) + // Pointer Size (in bytes) 3025 sizeof(int8_t); // Segment Size (in bytes) 3026 3027 unsigned TupleSize = PtrSize * 2; 3028 3029 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3030 unsigned Padding = offsetToAlignment( 3031 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3032 3033 ContentSize += Padding; 3034 ContentSize += (List.size() + 1) * TupleSize; 3035 3036 // For each compile unit, write the list of spans it covers. 3037 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3038 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3039 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3040 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3041 emitSectionReference(*CU); 3042 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3043 Asm->emitInt8(PtrSize); 3044 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3045 Asm->emitInt8(0); 3046 3047 Asm->OutStreamer->emitFill(Padding, 0xff); 3048 3049 for (const ArangeSpan &Span : List) { 3050 Asm->emitLabelReference(Span.Start, PtrSize); 3051 3052 // Calculate the size as being from the span start to it's end. 3053 if (Span.End) { 3054 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3055 } else { 3056 // For symbols without an end marker (e.g. common), we 3057 // write a single arange entry containing just that one symbol. 3058 uint64_t Size = SymSize[Span.Start]; 3059 if (Size == 0) 3060 Size = 1; 3061 3062 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3063 } 3064 } 3065 3066 Asm->OutStreamer->AddComment("ARange terminator"); 3067 Asm->OutStreamer->emitIntValue(0, PtrSize); 3068 Asm->OutStreamer->emitIntValue(0, PtrSize); 3069 } 3070 } 3071 3072 /// Emit a single range list. We handle both DWARF v5 and earlier. 3073 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3074 const RangeSpanList &List) { 3075 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3076 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3077 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3078 llvm::dwarf::RangeListEncodingString, 3079 List.CU->getCUNode()->getRangesBaseAddress() || 3080 DD.getDwarfVersion() >= 5, 3081 [](auto) {}); 3082 } 3083 3084 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3085 if (Holder.getRangeLists().empty()) 3086 return; 3087 3088 assert(useRangesSection()); 3089 assert(!CUMap.empty()); 3090 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3091 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3092 })); 3093 3094 Asm->OutStreamer->SwitchSection(Section); 3095 3096 MCSymbol *TableEnd = nullptr; 3097 if (getDwarfVersion() >= 5) 3098 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3099 3100 for (const RangeSpanList &List : Holder.getRangeLists()) 3101 emitRangeList(*this, Asm, List); 3102 3103 if (TableEnd) 3104 Asm->OutStreamer->emitLabel(TableEnd); 3105 } 3106 3107 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3108 /// .debug_rnglists section. 3109 void DwarfDebug::emitDebugRanges() { 3110 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3111 3112 emitDebugRangesImpl(Holder, 3113 getDwarfVersion() >= 5 3114 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3115 : Asm->getObjFileLowering().getDwarfRangesSection()); 3116 } 3117 3118 void DwarfDebug::emitDebugRangesDWO() { 3119 emitDebugRangesImpl(InfoHolder, 3120 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3121 } 3122 3123 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3124 /// DWARF 4. 3125 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3126 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3127 enum HeaderFlagMask { 3128 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3129 #include "llvm/BinaryFormat/Dwarf.def" 3130 }; 3131 Asm->OutStreamer->AddComment("Macro information version"); 3132 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3133 // We emit the line offset flag unconditionally here, since line offset should 3134 // be mostly present. 3135 if (Asm->isDwarf64()) { 3136 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3137 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3138 } else { 3139 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3140 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3141 } 3142 Asm->OutStreamer->AddComment("debug_line_offset"); 3143 if (DD.useSplitDwarf()) 3144 Asm->emitDwarfLengthOrOffset(0); 3145 else 3146 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3147 } 3148 3149 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3150 for (auto *MN : Nodes) { 3151 if (auto *M = dyn_cast<DIMacro>(MN)) 3152 emitMacro(*M); 3153 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3154 emitMacroFile(*F, U); 3155 else 3156 llvm_unreachable("Unexpected DI type!"); 3157 } 3158 } 3159 3160 void DwarfDebug::emitMacro(DIMacro &M) { 3161 StringRef Name = M.getName(); 3162 StringRef Value = M.getValue(); 3163 3164 // There should be one space between the macro name and the macro value in 3165 // define entries. In undef entries, only the macro name is emitted. 3166 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3167 3168 if (UseDebugMacroSection) { 3169 if (getDwarfVersion() >= 5) { 3170 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3171 ? dwarf::DW_MACRO_define_strx 3172 : dwarf::DW_MACRO_undef_strx; 3173 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3174 Asm->emitULEB128(Type); 3175 Asm->OutStreamer->AddComment("Line Number"); 3176 Asm->emitULEB128(M.getLine()); 3177 Asm->OutStreamer->AddComment("Macro String"); 3178 Asm->emitULEB128( 3179 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3180 } else { 3181 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3182 ? dwarf::DW_MACRO_GNU_define_indirect 3183 : dwarf::DW_MACRO_GNU_undef_indirect; 3184 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3185 Asm->emitULEB128(Type); 3186 Asm->OutStreamer->AddComment("Line Number"); 3187 Asm->emitULEB128(M.getLine()); 3188 Asm->OutStreamer->AddComment("Macro String"); 3189 Asm->emitDwarfSymbolReference( 3190 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3191 } 3192 } else { 3193 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3194 Asm->emitULEB128(M.getMacinfoType()); 3195 Asm->OutStreamer->AddComment("Line Number"); 3196 Asm->emitULEB128(M.getLine()); 3197 Asm->OutStreamer->AddComment("Macro String"); 3198 Asm->OutStreamer->emitBytes(Str); 3199 Asm->emitInt8('\0'); 3200 } 3201 } 3202 3203 void DwarfDebug::emitMacroFileImpl( 3204 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3205 StringRef (*MacroFormToString)(unsigned Form)) { 3206 3207 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3208 Asm->emitULEB128(StartFile); 3209 Asm->OutStreamer->AddComment("Line Number"); 3210 Asm->emitULEB128(MF.getLine()); 3211 Asm->OutStreamer->AddComment("File Number"); 3212 DIFile &F = *MF.getFile(); 3213 if (useSplitDwarf()) 3214 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3215 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3216 Asm->OutContext.getDwarfVersion(), F.getSource())); 3217 else 3218 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3219 handleMacroNodes(MF.getElements(), U); 3220 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3221 Asm->emitULEB128(EndFile); 3222 } 3223 3224 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3225 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3226 // so for readibility/uniformity, We are explicitly emitting those. 3227 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3228 if (UseDebugMacroSection) 3229 emitMacroFileImpl( 3230 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3231 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3232 else 3233 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3234 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3235 } 3236 3237 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3238 for (const auto &P : CUMap) { 3239 auto &TheCU = *P.second; 3240 auto *SkCU = TheCU.getSkeleton(); 3241 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3242 auto *CUNode = cast<DICompileUnit>(P.first); 3243 DIMacroNodeArray Macros = CUNode->getMacros(); 3244 if (Macros.empty()) 3245 continue; 3246 Asm->OutStreamer->SwitchSection(Section); 3247 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3248 if (UseDebugMacroSection) 3249 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3250 handleMacroNodes(Macros, U); 3251 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3252 Asm->emitInt8(0); 3253 } 3254 } 3255 3256 /// Emit macros into a debug macinfo/macro section. 3257 void DwarfDebug::emitDebugMacinfo() { 3258 auto &ObjLower = Asm->getObjFileLowering(); 3259 emitDebugMacinfoImpl(UseDebugMacroSection 3260 ? ObjLower.getDwarfMacroSection() 3261 : ObjLower.getDwarfMacinfoSection()); 3262 } 3263 3264 void DwarfDebug::emitDebugMacinfoDWO() { 3265 auto &ObjLower = Asm->getObjFileLowering(); 3266 emitDebugMacinfoImpl(UseDebugMacroSection 3267 ? ObjLower.getDwarfMacroDWOSection() 3268 : ObjLower.getDwarfMacinfoDWOSection()); 3269 } 3270 3271 // DWARF5 Experimental Separate Dwarf emitters. 3272 3273 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3274 std::unique_ptr<DwarfCompileUnit> NewU) { 3275 3276 if (!CompilationDir.empty()) 3277 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3278 addGnuPubAttributes(*NewU, Die); 3279 3280 SkeletonHolder.addUnit(std::move(NewU)); 3281 } 3282 3283 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3284 3285 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3286 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3287 UnitKind::Skeleton); 3288 DwarfCompileUnit &NewCU = *OwnedUnit; 3289 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3290 3291 NewCU.initStmtList(); 3292 3293 if (useSegmentedStringOffsetsTable()) 3294 NewCU.addStringOffsetsStart(); 3295 3296 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3297 3298 return NewCU; 3299 } 3300 3301 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3302 // compile units that would normally be in debug_info. 3303 void DwarfDebug::emitDebugInfoDWO() { 3304 assert(useSplitDwarf() && "No split dwarf debug info?"); 3305 // Don't emit relocations into the dwo file. 3306 InfoHolder.emitUnits(/* UseOffsets */ true); 3307 } 3308 3309 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3310 // abbreviations for the .debug_info.dwo section. 3311 void DwarfDebug::emitDebugAbbrevDWO() { 3312 assert(useSplitDwarf() && "No split dwarf?"); 3313 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3314 } 3315 3316 void DwarfDebug::emitDebugLineDWO() { 3317 assert(useSplitDwarf() && "No split dwarf?"); 3318 SplitTypeUnitFileTable.Emit( 3319 *Asm->OutStreamer, MCDwarfLineTableParams(), 3320 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3321 } 3322 3323 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3324 assert(useSplitDwarf() && "No split dwarf?"); 3325 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3326 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3327 InfoHolder.getStringOffsetsStartSym()); 3328 } 3329 3330 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3331 // string section and is identical in format to traditional .debug_str 3332 // sections. 3333 void DwarfDebug::emitDebugStrDWO() { 3334 if (useSegmentedStringOffsetsTable()) 3335 emitStringOffsetsTableHeaderDWO(); 3336 assert(useSplitDwarf() && "No split dwarf?"); 3337 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3338 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3339 OffSec, /* UseRelativeOffsets = */ false); 3340 } 3341 3342 // Emit address pool. 3343 void DwarfDebug::emitDebugAddr() { 3344 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3345 } 3346 3347 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3348 if (!useSplitDwarf()) 3349 return nullptr; 3350 const DICompileUnit *DIUnit = CU.getCUNode(); 3351 SplitTypeUnitFileTable.maybeSetRootFile( 3352 DIUnit->getDirectory(), DIUnit->getFilename(), 3353 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3354 return &SplitTypeUnitFileTable; 3355 } 3356 3357 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3358 MD5 Hash; 3359 Hash.update(Identifier); 3360 // ... take the least significant 8 bytes and return those. Our MD5 3361 // implementation always returns its results in little endian, so we actually 3362 // need the "high" word. 3363 MD5::MD5Result Result; 3364 Hash.final(Result); 3365 return Result.high(); 3366 } 3367 3368 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3369 StringRef Identifier, DIE &RefDie, 3370 const DICompositeType *CTy) { 3371 // Fast path if we're building some type units and one has already used the 3372 // address pool we know we're going to throw away all this work anyway, so 3373 // don't bother building dependent types. 3374 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3375 return; 3376 3377 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3378 if (!Ins.second) { 3379 CU.addDIETypeSignature(RefDie, Ins.first->second); 3380 return; 3381 } 3382 3383 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3384 AddrPool.resetUsedFlag(); 3385 3386 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3387 getDwoLineTable(CU)); 3388 DwarfTypeUnit &NewTU = *OwnedUnit; 3389 DIE &UnitDie = NewTU.getUnitDie(); 3390 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3391 3392 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3393 CU.getLanguage()); 3394 3395 uint64_t Signature = makeTypeSignature(Identifier); 3396 NewTU.setTypeSignature(Signature); 3397 Ins.first->second = Signature; 3398 3399 if (useSplitDwarf()) { 3400 MCSection *Section = 3401 getDwarfVersion() <= 4 3402 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3403 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3404 NewTU.setSection(Section); 3405 } else { 3406 MCSection *Section = 3407 getDwarfVersion() <= 4 3408 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3409 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3410 NewTU.setSection(Section); 3411 // Non-split type units reuse the compile unit's line table. 3412 CU.applyStmtList(UnitDie); 3413 } 3414 3415 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3416 // units. 3417 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3418 NewTU.addStringOffsetsStart(); 3419 3420 NewTU.setType(NewTU.createTypeDIE(CTy)); 3421 3422 if (TopLevelType) { 3423 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3424 TypeUnitsUnderConstruction.clear(); 3425 3426 // Types referencing entries in the address table cannot be placed in type 3427 // units. 3428 if (AddrPool.hasBeenUsed()) { 3429 3430 // Remove all the types built while building this type. 3431 // This is pessimistic as some of these types might not be dependent on 3432 // the type that used an address. 3433 for (const auto &TU : TypeUnitsToAdd) 3434 TypeSignatures.erase(TU.second); 3435 3436 // Construct this type in the CU directly. 3437 // This is inefficient because all the dependent types will be rebuilt 3438 // from scratch, including building them in type units, discovering that 3439 // they depend on addresses, throwing them out and rebuilding them. 3440 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3441 return; 3442 } 3443 3444 // If the type wasn't dependent on fission addresses, finish adding the type 3445 // and all its dependent types. 3446 for (auto &TU : TypeUnitsToAdd) { 3447 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3448 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3449 } 3450 } 3451 CU.addDIETypeSignature(RefDie, Signature); 3452 } 3453 3454 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3455 : DD(DD), 3456 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3457 DD->TypeUnitsUnderConstruction.clear(); 3458 DD->AddrPool.resetUsedFlag(); 3459 } 3460 3461 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3462 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3463 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3464 } 3465 3466 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3467 return NonTypeUnitContext(this); 3468 } 3469 3470 // Add the Name along with its companion DIE to the appropriate accelerator 3471 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3472 // AccelTableKind::Apple, we use the table we got as an argument). If 3473 // accelerator tables are disabled, this function does nothing. 3474 template <typename DataT> 3475 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3476 AccelTable<DataT> &AppleAccel, StringRef Name, 3477 const DIE &Die) { 3478 if (getAccelTableKind() == AccelTableKind::None) 3479 return; 3480 3481 if (getAccelTableKind() != AccelTableKind::Apple && 3482 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3483 return; 3484 3485 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3486 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3487 3488 switch (getAccelTableKind()) { 3489 case AccelTableKind::Apple: 3490 AppleAccel.addName(Ref, Die); 3491 break; 3492 case AccelTableKind::Dwarf: 3493 AccelDebugNames.addName(Ref, Die); 3494 break; 3495 case AccelTableKind::Default: 3496 llvm_unreachable("Default should have already been resolved."); 3497 case AccelTableKind::None: 3498 llvm_unreachable("None handled above"); 3499 } 3500 } 3501 3502 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3503 const DIE &Die) { 3504 addAccelNameImpl(CU, AccelNames, Name, Die); 3505 } 3506 3507 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3508 const DIE &Die) { 3509 // ObjC names go only into the Apple accelerator tables. 3510 if (getAccelTableKind() == AccelTableKind::Apple) 3511 addAccelNameImpl(CU, AccelObjC, Name, Die); 3512 } 3513 3514 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3515 const DIE &Die) { 3516 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3517 } 3518 3519 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3520 const DIE &Die, char Flags) { 3521 addAccelNameImpl(CU, AccelTypes, Name, Die); 3522 } 3523 3524 uint16_t DwarfDebug::getDwarfVersion() const { 3525 return Asm->OutStreamer->getContext().getDwarfVersion(); 3526 } 3527 3528 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3529 if (Asm->getDwarfVersion() >= 4) 3530 return dwarf::Form::DW_FORM_sec_offset; 3531 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3532 "DWARF64 is not defined prior DWARFv3"); 3533 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3534 : dwarf::Form::DW_FORM_data4; 3535 } 3536 3537 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3538 auto I = SectionLabels.find(S); 3539 if (I == SectionLabels.end()) 3540 return nullptr; 3541 return I->second; 3542 } 3543 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3544 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3545 if (useSplitDwarf() || getDwarfVersion() >= 5) 3546 AddrPool.getIndex(S); 3547 } 3548 3549 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3550 assert(File); 3551 if (getDwarfVersion() < 5) 3552 return None; 3553 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3554 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3555 return None; 3556 3557 // Convert the string checksum to an MD5Result for the streamer. 3558 // The verifier validates the checksum so we assume it's okay. 3559 // An MD5 checksum is 16 bytes. 3560 std::string ChecksumString = fromHex(Checksum->Value); 3561 MD5::MD5Result CKMem; 3562 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3563 return CKMem; 3564 } 3565