1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 enum LinkageNameOption { 151 DefaultLinkageNames, 152 AllLinkageNames, 153 AbstractLinkageNames 154 }; 155 156 static cl::opt<LinkageNameOption> 157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 158 cl::desc("Which DWARF linkage-name attributes to emit."), 159 cl::values(clEnumValN(DefaultLinkageNames, "Default", 160 "Default for platform"), 161 clEnumValN(AllLinkageNames, "All", "All"), 162 clEnumValN(AbstractLinkageNames, "Abstract", 163 "Abstract subprograms")), 164 cl::init(DefaultLinkageNames)); 165 166 static const char *const DWARFGroupName = "dwarf"; 167 static const char *const DWARFGroupDescription = "DWARF Emission"; 168 static const char *const DbgTimerName = "writer"; 169 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 170 static constexpr unsigned ULEB128PadSize = 4; 171 172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 173 getActiveStreamer().EmitInt8( 174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 175 : dwarf::OperationEncodingString(Op)); 176 } 177 178 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 179 getActiveStreamer().EmitSLEB128(Value, Twine(Value)); 180 } 181 182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 183 getActiveStreamer().EmitULEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 187 getActiveStreamer().EmitInt8(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 192 getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); 193 } 194 195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 196 unsigned MachineReg) { 197 // This information is not available while emitting .debug_loc entries. 198 return false; 199 } 200 201 void DebugLocDwarfExpression::enableTemporaryBuffer() { 202 assert(!IsBuffering && "Already buffering?"); 203 if (!TmpBuf) 204 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 205 IsBuffering = true; 206 } 207 208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 209 210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 211 return TmpBuf ? TmpBuf->Bytes.size() : 0; 212 } 213 214 void DebugLocDwarfExpression::commitTemporaryBuffer() { 215 if (!TmpBuf) 216 return; 217 for (auto Byte : enumerate(TmpBuf->Bytes)) { 218 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 219 ? TmpBuf->Comments[Byte.index()].c_str() 220 : ""; 221 OutBS.EmitInt8(Byte.value(), Comment); 222 } 223 TmpBuf->Bytes.clear(); 224 TmpBuf->Comments.clear(); 225 } 226 227 const DIType *DbgVariable::getType() const { 228 return getVariable()->getType(); 229 } 230 231 /// Get .debug_loc entry for the instruction range starting at MI. 232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 233 const DIExpression *Expr = MI->getDebugExpression(); 234 assert(MI->getNumOperands() == 4); 235 if (MI->getOperand(0).isReg()) { 236 auto RegOp = MI->getOperand(0); 237 auto Op1 = MI->getOperand(1); 238 // If the second operand is an immediate, this is a 239 // register-indirect address. 240 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 241 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 242 return DbgValueLoc(Expr, MLoc); 243 } 244 if (MI->getOperand(0).isTargetIndex()) { 245 auto Op = MI->getOperand(0); 246 return DbgValueLoc(Expr, 247 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 248 } 249 if (MI->getOperand(0).isImm()) 250 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 251 if (MI->getOperand(0).isFPImm()) 252 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 253 if (MI->getOperand(0).isCImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 255 256 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 257 } 258 259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 260 assert(FrameIndexExprs.empty() && "Already initialized?"); 261 assert(!ValueLoc.get() && "Already initialized?"); 262 263 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 264 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 265 "Wrong inlined-at"); 266 267 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 268 if (auto *E = DbgValue->getDebugExpression()) 269 if (E->getNumElements()) 270 FrameIndexExprs.push_back({0, E}); 271 } 272 273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 274 if (FrameIndexExprs.size() == 1) 275 return FrameIndexExprs; 276 277 assert(llvm::all_of(FrameIndexExprs, 278 [](const FrameIndexExpr &A) { 279 return A.Expr->isFragment(); 280 }) && 281 "multiple FI expressions without DW_OP_LLVM_fragment"); 282 llvm::sort(FrameIndexExprs, 283 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 284 return A.Expr->getFragmentInfo()->OffsetInBits < 285 B.Expr->getFragmentInfo()->OffsetInBits; 286 }); 287 288 return FrameIndexExprs; 289 } 290 291 void DbgVariable::addMMIEntry(const DbgVariable &V) { 292 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 293 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 294 assert(V.getVariable() == getVariable() && "conflicting variable"); 295 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 296 297 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 298 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 299 300 // FIXME: This logic should not be necessary anymore, as we now have proper 301 // deduplication. However, without it, we currently run into the assertion 302 // below, which means that we are likely dealing with broken input, i.e. two 303 // non-fragment entries for the same variable at different frame indices. 304 if (FrameIndexExprs.size()) { 305 auto *Expr = FrameIndexExprs.back().Expr; 306 if (!Expr || !Expr->isFragment()) 307 return; 308 } 309 310 for (const auto &FIE : V.FrameIndexExprs) 311 // Ignore duplicate entries. 312 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 313 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 314 })) 315 FrameIndexExprs.push_back(FIE); 316 317 assert((FrameIndexExprs.size() == 1 || 318 llvm::all_of(FrameIndexExprs, 319 [](FrameIndexExpr &FIE) { 320 return FIE.Expr && FIE.Expr->isFragment(); 321 })) && 322 "conflicting locations for variable"); 323 } 324 325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 326 bool GenerateTypeUnits, 327 DebuggerKind Tuning, 328 const Triple &TT) { 329 // Honor an explicit request. 330 if (AccelTables != AccelTableKind::Default) 331 return AccelTables; 332 333 // Accelerator tables with type units are currently not supported. 334 if (GenerateTypeUnits) 335 return AccelTableKind::None; 336 337 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 338 // always implies debug_names. For lower standard versions we use apple 339 // accelerator tables on apple platforms and debug_names elsewhere. 340 if (DwarfVersion >= 5) 341 return AccelTableKind::Dwarf; 342 if (Tuning == DebuggerKind::LLDB) 343 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 344 : AccelTableKind::Dwarf; 345 return AccelTableKind::None; 346 } 347 348 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 349 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 350 InfoHolder(A, "info_string", DIEValueAllocator), 351 SkeletonHolder(A, "skel_string", DIEValueAllocator), 352 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 353 const Triple &TT = Asm->TM.getTargetTriple(); 354 355 // Make sure we know our "debugger tuning". The target option takes 356 // precedence; fall back to triple-based defaults. 357 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 358 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 359 else if (IsDarwin) 360 DebuggerTuning = DebuggerKind::LLDB; 361 else if (TT.isPS4CPU()) 362 DebuggerTuning = DebuggerKind::SCE; 363 else 364 DebuggerTuning = DebuggerKind::GDB; 365 366 if (DwarfInlinedStrings == Default) 367 UseInlineStrings = TT.isNVPTX(); 368 else 369 UseInlineStrings = DwarfInlinedStrings == Enable; 370 371 UseLocSection = !TT.isNVPTX(); 372 373 HasAppleExtensionAttributes = tuneForLLDB(); 374 375 // Handle split DWARF. 376 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 377 378 // SCE defaults to linkage names only for abstract subprograms. 379 if (DwarfLinkageNames == DefaultLinkageNames) 380 UseAllLinkageNames = !tuneForSCE(); 381 else 382 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 383 384 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 385 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 386 : MMI->getModule()->getDwarfVersion(); 387 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 388 DwarfVersion = 389 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 390 391 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 392 393 // Use sections as references. Force for NVPTX. 394 if (DwarfSectionsAsReferences == Default) 395 UseSectionsAsReferences = TT.isNVPTX(); 396 else 397 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 398 399 // Don't generate type units for unsupported object file formats. 400 GenerateTypeUnits = 401 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 402 403 TheAccelTableKind = computeAccelTableKind( 404 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 405 406 // Work around a GDB bug. GDB doesn't support the standard opcode; 407 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 408 // is defined as of DWARF 3. 409 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 410 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 411 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 412 413 // GDB does not fully support the DWARF 4 representation for bitfields. 414 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 415 416 // The DWARF v5 string offsets table has - possibly shared - contributions 417 // from each compile and type unit each preceded by a header. The string 418 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 419 // a monolithic string offsets table without any header. 420 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 421 422 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 423 } 424 425 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 426 DwarfDebug::~DwarfDebug() = default; 427 428 static bool isObjCClass(StringRef Name) { 429 return Name.startswith("+") || Name.startswith("-"); 430 } 431 432 static bool hasObjCCategory(StringRef Name) { 433 if (!isObjCClass(Name)) 434 return false; 435 436 return Name.find(") ") != StringRef::npos; 437 } 438 439 static void getObjCClassCategory(StringRef In, StringRef &Class, 440 StringRef &Category) { 441 if (!hasObjCCategory(In)) { 442 Class = In.slice(In.find('[') + 1, In.find(' ')); 443 Category = ""; 444 return; 445 } 446 447 Class = In.slice(In.find('[') + 1, In.find('(')); 448 Category = In.slice(In.find('[') + 1, In.find(' ')); 449 } 450 451 static StringRef getObjCMethodName(StringRef In) { 452 return In.slice(In.find(' ') + 1, In.find(']')); 453 } 454 455 // Add the various names to the Dwarf accelerator table names. 456 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 457 const DISubprogram *SP, DIE &Die) { 458 if (getAccelTableKind() != AccelTableKind::Apple && 459 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 460 return; 461 462 if (!SP->isDefinition()) 463 return; 464 465 if (SP->getName() != "") 466 addAccelName(CU, SP->getName(), Die); 467 468 // If the linkage name is different than the name, go ahead and output that as 469 // well into the name table. Only do that if we are going to actually emit 470 // that name. 471 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 472 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 473 addAccelName(CU, SP->getLinkageName(), Die); 474 475 // If this is an Objective-C selector name add it to the ObjC accelerator 476 // too. 477 if (isObjCClass(SP->getName())) { 478 StringRef Class, Category; 479 getObjCClassCategory(SP->getName(), Class, Category); 480 addAccelObjC(CU, Class, Die); 481 if (Category != "") 482 addAccelObjC(CU, Category, Die); 483 // Also add the base method name to the name table. 484 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 485 } 486 } 487 488 /// Check whether we should create a DIE for the given Scope, return true 489 /// if we don't create a DIE (the corresponding DIE is null). 490 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 491 if (Scope->isAbstractScope()) 492 return false; 493 494 // We don't create a DIE if there is no Range. 495 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 496 if (Ranges.empty()) 497 return true; 498 499 if (Ranges.size() > 1) 500 return false; 501 502 // We don't create a DIE if we have a single Range and the end label 503 // is null. 504 return !getLabelAfterInsn(Ranges.front().second); 505 } 506 507 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 508 F(CU); 509 if (auto *SkelCU = CU.getSkeleton()) 510 if (CU.getCUNode()->getSplitDebugInlining()) 511 F(*SkelCU); 512 } 513 514 bool DwarfDebug::shareAcrossDWOCUs() const { 515 return SplitDwarfCrossCuReferences; 516 } 517 518 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 519 LexicalScope *Scope) { 520 assert(Scope && Scope->getScopeNode()); 521 assert(Scope->isAbstractScope()); 522 assert(!Scope->getInlinedAt()); 523 524 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 525 526 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 527 // was inlined from another compile unit. 528 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 529 // Avoid building the original CU if it won't be used 530 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 531 else { 532 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 533 if (auto *SkelCU = CU.getSkeleton()) { 534 (shareAcrossDWOCUs() ? CU : SrcCU) 535 .constructAbstractSubprogramScopeDIE(Scope); 536 if (CU.getCUNode()->getSplitDebugInlining()) 537 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 538 } else 539 CU.constructAbstractSubprogramScopeDIE(Scope); 540 } 541 } 542 543 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 544 DICompileUnit *Unit = SP->getUnit(); 545 assert(SP->isDefinition() && "Subprogram not a definition"); 546 assert(Unit && "Subprogram definition without parent unit"); 547 auto &CU = getOrCreateDwarfCompileUnit(Unit); 548 return *CU.getOrCreateSubprogramDIE(SP); 549 } 550 551 /// Try to interpret values loaded into registers that forward parameters 552 /// for \p CallMI. Store parameters with interpreted value into \p Params. 553 static void collectCallSiteParameters(const MachineInstr *CallMI, 554 ParamSet &Params) { 555 auto *MF = CallMI->getMF(); 556 auto CalleesMap = MF->getCallSitesInfo(); 557 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 558 559 // There is no information for the call instruction. 560 if (CallFwdRegsInfo == CalleesMap.end()) 561 return; 562 563 auto *MBB = CallMI->getParent(); 564 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 565 const auto &TII = MF->getSubtarget().getInstrInfo(); 566 const auto &TLI = MF->getSubtarget().getTargetLowering(); 567 568 // Skip the call instruction. 569 auto I = std::next(CallMI->getReverseIterator()); 570 571 DenseSet<unsigned> ForwardedRegWorklist; 572 // Add all the forwarding registers into the ForwardedRegWorklist. 573 for (auto ArgReg : CallFwdRegsInfo->second) { 574 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second; 575 assert(InsertedReg && "Single register used to forward two arguments?"); 576 (void)InsertedReg; 577 } 578 579 // We erase, from the ForwardedRegWorklist, those forwarding registers for 580 // which we successfully describe a loaded value (by using 581 // the describeLoadedValue()). For those remaining arguments in the working 582 // list, for which we do not describe a loaded value by 583 // the describeLoadedValue(), we try to generate an entry value expression 584 // for their call site value desctipion, if the call is within the entry MBB. 585 // The RegsForEntryValues maps a forwarding register into the register holding 586 // the entry value. 587 // TODO: Handle situations when call site parameter value can be described 588 // as the entry value within basic blocks other then the first one. 589 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 590 DenseMap<unsigned, unsigned> RegsForEntryValues; 591 592 // If the MI is an instruction defining one or more parameters' forwarding 593 // registers, add those defines. We can currently only describe forwarded 594 // registers that are explicitly defined, but keep track of implicit defines 595 // also to remove those registers from the work list. 596 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 597 SmallVectorImpl<unsigned> &Explicit, 598 SmallVectorImpl<unsigned> &Implicit) { 599 if (MI.isDebugInstr()) 600 return; 601 602 for (const MachineOperand &MO : MI.operands()) { 603 if (MO.isReg() && MO.isDef() && 604 Register::isPhysicalRegister(MO.getReg())) { 605 for (auto FwdReg : ForwardedRegWorklist) { 606 if (TRI->regsOverlap(FwdReg, MO.getReg())) { 607 if (MO.isImplicit()) 608 Implicit.push_back(FwdReg); 609 else 610 Explicit.push_back(FwdReg); 611 } 612 } 613 } 614 } 615 }; 616 617 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) { 618 unsigned FwdReg = Reg; 619 if (ShouldTryEmitEntryVals) { 620 auto EntryValReg = RegsForEntryValues.find(Reg); 621 if (EntryValReg != RegsForEntryValues.end()) 622 FwdReg = EntryValReg->second; 623 } 624 625 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 626 Params.push_back(CSParm); 627 ++NumCSParams; 628 }; 629 630 // Search for a loading value in forwarding registers. 631 for (; I != MBB->rend(); ++I) { 632 // Skip bundle headers. 633 if (I->isBundle()) 634 continue; 635 636 // If the next instruction is a call we can not interpret parameter's 637 // forwarding registers or we finished the interpretation of all parameters. 638 if (I->isCall()) 639 return; 640 641 if (ForwardedRegWorklist.empty()) 642 return; 643 644 SmallVector<unsigned, 4> ExplicitFwdRegDefs; 645 SmallVector<unsigned, 4> ImplicitFwdRegDefs; 646 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs); 647 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty()) 648 continue; 649 650 // If the MI clobbers more then one forwarding register we must remove 651 // all of them from the working list. 652 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs)) 653 ForwardedRegWorklist.erase(Reg); 654 655 for (auto ParamFwdReg : ExplicitFwdRegDefs) { 656 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 657 if (ParamValue->first.isImm()) { 658 int64_t Val = ParamValue->first.getImm(); 659 DbgValueLoc DbgLocVal(ParamValue->second, Val); 660 finishCallSiteParam(DbgLocVal, ParamFwdReg); 661 } else if (ParamValue->first.isReg()) { 662 Register RegLoc = ParamValue->first.getReg(); 663 // TODO: For now, there is no use of describing the value loaded into the 664 // register that is also the source registers (e.g. $r0 = add $r0, x). 665 if (ParamFwdReg == RegLoc) 666 continue; 667 668 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 669 Register FP = TRI->getFrameRegister(*MF); 670 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 671 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 672 DbgValueLoc DbgLocVal(ParamValue->second, 673 MachineLocation(RegLoc, 674 /*IsIndirect=*/IsSPorFP)); 675 finishCallSiteParam(DbgLocVal, ParamFwdReg); 676 // TODO: Add support for entry value plus an expression. 677 } else if (ShouldTryEmitEntryVals && 678 ParamValue->second->getNumElements() == 0) { 679 ForwardedRegWorklist.insert(RegLoc); 680 RegsForEntryValues[RegLoc] = ParamFwdReg; 681 } 682 } 683 } 684 } 685 } 686 687 // Emit the call site parameter's value as an entry value. 688 if (ShouldTryEmitEntryVals) { 689 // Create an expression where the register's entry value is used. 690 DIExpression *EntryExpr = DIExpression::get( 691 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 692 for (auto RegEntry : ForwardedRegWorklist) { 693 unsigned FwdReg = RegEntry; 694 auto EntryValReg = RegsForEntryValues.find(RegEntry); 695 if (EntryValReg != RegsForEntryValues.end()) 696 FwdReg = EntryValReg->second; 697 698 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry)); 699 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 700 Params.push_back(CSParm); 701 ++NumCSParams; 702 } 703 } 704 } 705 706 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 707 DwarfCompileUnit &CU, DIE &ScopeDIE, 708 const MachineFunction &MF) { 709 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 710 // the subprogram is required to have one. 711 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 712 return; 713 714 // Use DW_AT_call_all_calls to express that call site entries are present 715 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 716 // because one of its requirements is not met: call site entries for 717 // optimized-out calls are elided. 718 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 719 720 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 721 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 722 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB(); 723 724 // Emit call site entries for each call or tail call in the function. 725 for (const MachineBasicBlock &MBB : MF) { 726 for (const MachineInstr &MI : MBB.instrs()) { 727 // Bundles with call in them will pass the isCall() test below but do not 728 // have callee operand information so skip them here. Iterator will 729 // eventually reach the call MI. 730 if (MI.isBundle()) 731 continue; 732 733 // Skip instructions which aren't calls. Both calls and tail-calling jump 734 // instructions (e.g TAILJMPd64) are classified correctly here. 735 if (!MI.isCall()) 736 continue; 737 738 // TODO: Add support for targets with delay slots (see: beginInstruction). 739 if (MI.hasDelaySlot()) 740 return; 741 742 // If this is a direct call, find the callee's subprogram. 743 // In the case of an indirect call find the register that holds 744 // the callee. 745 const MachineOperand &CalleeOp = MI.getOperand(0); 746 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 747 continue; 748 749 unsigned CallReg = 0; 750 const DISubprogram *CalleeSP = nullptr; 751 const Function *CalleeDecl = nullptr; 752 if (CalleeOp.isReg()) { 753 CallReg = CalleeOp.getReg(); 754 if (!CallReg) 755 continue; 756 } else { 757 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 758 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 759 continue; 760 CalleeSP = CalleeDecl->getSubprogram(); 761 762 if (CalleeSP->isDefinition()) { 763 // Ensure that a subprogram DIE for the callee is available in the 764 // appropriate CU. 765 constructSubprogramDefinitionDIE(CalleeSP); 766 } else { 767 // Create the declaration DIE if it is missing. This is required to 768 // support compilation of old bitcode with an incomplete list of 769 // retained metadata. 770 CU.getOrCreateSubprogramDIE(CalleeSP); 771 } 772 } 773 774 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 775 776 bool IsTail = TII->isTailCall(MI); 777 778 // If MI is in a bundle, the label was created after the bundle since 779 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 780 // to search for that label below. 781 const MachineInstr *TopLevelCallMI = 782 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 783 784 // For tail calls, for non-gdb tuning, no return PC information is needed. 785 // For regular calls (and tail calls in GDB tuning), the return PC 786 // is needed to disambiguate paths in the call graph which could lead to 787 // some target function. 788 const MCExpr *PCOffset = 789 (IsTail && !tuneForGDB()) 790 ? nullptr 791 : getFunctionLocalOffsetAfterInsn(TopLevelCallMI); 792 793 // Return address of a call-like instruction for a normal call or a 794 // jump-like instruction for a tail call. This is needed for 795 // GDB + DWARF 4 tuning. 796 const MCSymbol *PCAddr = 797 ApplyGNUExtensions 798 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 799 : nullptr; 800 801 assert((IsTail || PCOffset || PCAddr) && 802 "Call without return PC information"); 803 804 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 805 << (CalleeDecl ? CalleeDecl->getName() 806 : StringRef(MF.getSubtarget() 807 .getRegisterInfo() 808 ->getName(CallReg))) 809 << (IsTail ? " [IsTail]" : "") << "\n"); 810 811 DIE &CallSiteDIE = 812 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr, 813 PCOffset, CallReg); 814 815 // GDB and LLDB support call site parameter debug info. 816 if (Asm->TM.Options.EnableDebugEntryValues && 817 (tuneForGDB() || tuneForLLDB())) { 818 ParamSet Params; 819 // Try to interpret values of call site parameters. 820 collectCallSiteParameters(&MI, Params); 821 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 822 } 823 } 824 } 825 } 826 827 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 828 if (!U.hasDwarfPubSections()) 829 return; 830 831 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 832 } 833 834 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 835 DwarfCompileUnit &NewCU) { 836 DIE &Die = NewCU.getUnitDie(); 837 StringRef FN = DIUnit->getFilename(); 838 839 StringRef Producer = DIUnit->getProducer(); 840 StringRef Flags = DIUnit->getFlags(); 841 if (!Flags.empty() && !useAppleExtensionAttributes()) { 842 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 843 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 844 } else 845 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 846 847 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 848 DIUnit->getSourceLanguage()); 849 NewCU.addString(Die, dwarf::DW_AT_name, FN); 850 851 // Add DW_str_offsets_base to the unit DIE, except for split units. 852 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 853 NewCU.addStringOffsetsStart(); 854 855 if (!useSplitDwarf()) { 856 NewCU.initStmtList(); 857 858 // If we're using split dwarf the compilation dir is going to be in the 859 // skeleton CU and so we don't need to duplicate it here. 860 if (!CompilationDir.empty()) 861 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 862 863 addGnuPubAttributes(NewCU, Die); 864 } 865 866 if (useAppleExtensionAttributes()) { 867 if (DIUnit->isOptimized()) 868 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 869 870 StringRef Flags = DIUnit->getFlags(); 871 if (!Flags.empty()) 872 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 873 874 if (unsigned RVer = DIUnit->getRuntimeVersion()) 875 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 876 dwarf::DW_FORM_data1, RVer); 877 } 878 879 if (DIUnit->getDWOId()) { 880 // This CU is either a clang module DWO or a skeleton CU. 881 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 882 DIUnit->getDWOId()); 883 if (!DIUnit->getSplitDebugFilename().empty()) { 884 // This is a prefabricated skeleton CU. 885 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 886 ? dwarf::DW_AT_dwo_name 887 : dwarf::DW_AT_GNU_dwo_name; 888 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 889 } 890 } 891 } 892 // Create new DwarfCompileUnit for the given metadata node with tag 893 // DW_TAG_compile_unit. 894 DwarfCompileUnit & 895 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 896 if (auto *CU = CUMap.lookup(DIUnit)) 897 return *CU; 898 899 CompilationDir = DIUnit->getDirectory(); 900 901 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 902 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 903 DwarfCompileUnit &NewCU = *OwnedUnit; 904 InfoHolder.addUnit(std::move(OwnedUnit)); 905 906 for (auto *IE : DIUnit->getImportedEntities()) 907 NewCU.addImportedEntity(IE); 908 909 // LTO with assembly output shares a single line table amongst multiple CUs. 910 // To avoid the compilation directory being ambiguous, let the line table 911 // explicitly describe the directory of all files, never relying on the 912 // compilation directory. 913 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 914 Asm->OutStreamer->emitDwarfFile0Directive( 915 CompilationDir, DIUnit->getFilename(), 916 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 917 NewCU.getUniqueID()); 918 919 if (useSplitDwarf()) { 920 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 921 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 922 } else { 923 finishUnitAttributes(DIUnit, NewCU); 924 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 925 } 926 927 CUMap.insert({DIUnit, &NewCU}); 928 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 929 return NewCU; 930 } 931 932 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 933 const DIImportedEntity *N) { 934 if (isa<DILocalScope>(N->getScope())) 935 return; 936 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 937 D->addChild(TheCU.constructImportedEntityDIE(N)); 938 } 939 940 /// Sort and unique GVEs by comparing their fragment offset. 941 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 942 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 943 llvm::sort( 944 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 945 // Sort order: first null exprs, then exprs without fragment 946 // info, then sort by fragment offset in bits. 947 // FIXME: Come up with a more comprehensive comparator so 948 // the sorting isn't non-deterministic, and so the following 949 // std::unique call works correctly. 950 if (!A.Expr || !B.Expr) 951 return !!B.Expr; 952 auto FragmentA = A.Expr->getFragmentInfo(); 953 auto FragmentB = B.Expr->getFragmentInfo(); 954 if (!FragmentA || !FragmentB) 955 return !!FragmentB; 956 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 957 }); 958 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 959 [](DwarfCompileUnit::GlobalExpr A, 960 DwarfCompileUnit::GlobalExpr B) { 961 return A.Expr == B.Expr; 962 }), 963 GVEs.end()); 964 return GVEs; 965 } 966 967 // Emit all Dwarf sections that should come prior to the content. Create 968 // global DIEs and emit initial debug info sections. This is invoked by 969 // the target AsmPrinter. 970 void DwarfDebug::beginModule() { 971 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 972 DWARFGroupDescription, TimePassesIsEnabled); 973 if (DisableDebugInfoPrinting) { 974 MMI->setDebugInfoAvailability(false); 975 return; 976 } 977 978 const Module *M = MMI->getModule(); 979 980 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 981 M->debug_compile_units_end()); 982 // Tell MMI whether we have debug info. 983 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 984 "DebugInfoAvailabilty initialized unexpectedly"); 985 SingleCU = NumDebugCUs == 1; 986 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 987 GVMap; 988 for (const GlobalVariable &Global : M->globals()) { 989 SmallVector<DIGlobalVariableExpression *, 1> GVs; 990 Global.getDebugInfo(GVs); 991 for (auto *GVE : GVs) 992 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 993 } 994 995 // Create the symbol that designates the start of the unit's contribution 996 // to the string offsets table. In a split DWARF scenario, only the skeleton 997 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 998 if (useSegmentedStringOffsetsTable()) 999 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1000 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1001 1002 1003 // Create the symbols that designates the start of the DWARF v5 range list 1004 // and locations list tables. They are located past the table headers. 1005 if (getDwarfVersion() >= 5) { 1006 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1007 Holder.setRnglistsTableBaseSym( 1008 Asm->createTempSymbol("rnglists_table_base")); 1009 1010 if (useSplitDwarf()) 1011 InfoHolder.setRnglistsTableBaseSym( 1012 Asm->createTempSymbol("rnglists_dwo_table_base")); 1013 } 1014 1015 // Create the symbol that points to the first entry following the debug 1016 // address table (.debug_addr) header. 1017 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1018 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1019 1020 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1021 // FIXME: Move local imported entities into a list attached to the 1022 // subprogram, then this search won't be needed and a 1023 // getImportedEntities().empty() test should go below with the rest. 1024 bool HasNonLocalImportedEntities = llvm::any_of( 1025 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1026 return !isa<DILocalScope>(IE->getScope()); 1027 }); 1028 1029 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1030 CUNode->getRetainedTypes().empty() && 1031 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1032 continue; 1033 1034 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1035 1036 // Global Variables. 1037 for (auto *GVE : CUNode->getGlobalVariables()) { 1038 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1039 // already know about the variable and it isn't adding a constant 1040 // expression. 1041 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1042 auto *Expr = GVE->getExpression(); 1043 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1044 GVMapEntry.push_back({nullptr, Expr}); 1045 } 1046 DenseSet<DIGlobalVariable *> Processed; 1047 for (auto *GVE : CUNode->getGlobalVariables()) { 1048 DIGlobalVariable *GV = GVE->getVariable(); 1049 if (Processed.insert(GV).second) 1050 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1051 } 1052 1053 for (auto *Ty : CUNode->getEnumTypes()) { 1054 // The enum types array by design contains pointers to 1055 // MDNodes rather than DIRefs. Unique them here. 1056 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1057 } 1058 for (auto *Ty : CUNode->getRetainedTypes()) { 1059 // The retained types array by design contains pointers to 1060 // MDNodes rather than DIRefs. Unique them here. 1061 if (DIType *RT = dyn_cast<DIType>(Ty)) 1062 // There is no point in force-emitting a forward declaration. 1063 CU.getOrCreateTypeDIE(RT); 1064 } 1065 // Emit imported_modules last so that the relevant context is already 1066 // available. 1067 for (auto *IE : CUNode->getImportedEntities()) 1068 constructAndAddImportedEntityDIE(CU, IE); 1069 } 1070 } 1071 1072 void DwarfDebug::finishEntityDefinitions() { 1073 for (const auto &Entity : ConcreteEntities) { 1074 DIE *Die = Entity->getDIE(); 1075 assert(Die); 1076 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1077 // in the ConcreteEntities list, rather than looking it up again here. 1078 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1079 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1080 assert(Unit); 1081 Unit->finishEntityDefinition(Entity.get()); 1082 } 1083 } 1084 1085 void DwarfDebug::finishSubprogramDefinitions() { 1086 for (const DISubprogram *SP : ProcessedSPNodes) { 1087 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1088 forBothCUs( 1089 getOrCreateDwarfCompileUnit(SP->getUnit()), 1090 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1091 } 1092 } 1093 1094 void DwarfDebug::finalizeModuleInfo() { 1095 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1096 1097 finishSubprogramDefinitions(); 1098 1099 finishEntityDefinitions(); 1100 1101 // Include the DWO file name in the hash if there's more than one CU. 1102 // This handles ThinLTO's situation where imported CUs may very easily be 1103 // duplicate with the same CU partially imported into another ThinLTO unit. 1104 StringRef DWOName; 1105 if (CUMap.size() > 1) 1106 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1107 1108 // Handle anything that needs to be done on a per-unit basis after 1109 // all other generation. 1110 for (const auto &P : CUMap) { 1111 auto &TheCU = *P.second; 1112 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1113 continue; 1114 // Emit DW_AT_containing_type attribute to connect types with their 1115 // vtable holding type. 1116 TheCU.constructContainingTypeDIEs(); 1117 1118 // Add CU specific attributes if we need to add any. 1119 // If we're splitting the dwarf out now that we've got the entire 1120 // CU then add the dwo id to it. 1121 auto *SkCU = TheCU.getSkeleton(); 1122 1123 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1124 1125 if (HasSplitUnit) { 1126 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1127 ? dwarf::DW_AT_dwo_name 1128 : dwarf::DW_AT_GNU_dwo_name; 1129 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1130 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1131 Asm->TM.Options.MCOptions.SplitDwarfFile); 1132 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1133 Asm->TM.Options.MCOptions.SplitDwarfFile); 1134 // Emit a unique identifier for this CU. 1135 uint64_t ID = 1136 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1137 if (getDwarfVersion() >= 5) { 1138 TheCU.setDWOId(ID); 1139 SkCU->setDWOId(ID); 1140 } else { 1141 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1142 dwarf::DW_FORM_data8, ID); 1143 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1144 dwarf::DW_FORM_data8, ID); 1145 } 1146 1147 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1148 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1149 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1150 Sym, Sym); 1151 } 1152 } else if (SkCU) { 1153 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1154 } 1155 1156 // If we have code split among multiple sections or non-contiguous 1157 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1158 // remain in the .o file, otherwise add a DW_AT_low_pc. 1159 // FIXME: We should use ranges allow reordering of code ala 1160 // .subsections_via_symbols in mach-o. This would mean turning on 1161 // ranges for all subprogram DIEs for mach-o. 1162 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1163 1164 if (unsigned NumRanges = TheCU.getRanges().size()) { 1165 if (NumRanges > 1 && useRangesSection()) 1166 // A DW_AT_low_pc attribute may also be specified in combination with 1167 // DW_AT_ranges to specify the default base address for use in 1168 // location lists (see Section 2.6.2) and range lists (see Section 1169 // 2.17.3). 1170 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1171 else 1172 U.setBaseAddress(TheCU.getRanges().front().Begin); 1173 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1174 } 1175 1176 // We don't keep track of which addresses are used in which CU so this 1177 // is a bit pessimistic under LTO. 1178 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1179 (getDwarfVersion() >= 5 || HasSplitUnit)) 1180 U.addAddrTableBase(); 1181 1182 if (getDwarfVersion() >= 5) { 1183 if (U.hasRangeLists()) 1184 U.addRnglistsBase(); 1185 1186 if (!DebugLocs.getLists().empty()) { 1187 if (!useSplitDwarf()) 1188 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1189 DebugLocs.getSym(), 1190 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1191 } 1192 } 1193 1194 auto *CUNode = cast<DICompileUnit>(P.first); 1195 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1196 if (CUNode->getMacros()) { 1197 if (useSplitDwarf()) 1198 TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1199 U.getMacroLabelBegin(), 1200 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1201 else 1202 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1203 U.getMacroLabelBegin(), 1204 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1205 } 1206 } 1207 1208 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1209 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1210 if (CUNode->getDWOId()) 1211 getOrCreateDwarfCompileUnit(CUNode); 1212 1213 // Compute DIE offsets and sizes. 1214 InfoHolder.computeSizeAndOffsets(); 1215 if (useSplitDwarf()) 1216 SkeletonHolder.computeSizeAndOffsets(); 1217 } 1218 1219 // Emit all Dwarf sections that should come after the content. 1220 void DwarfDebug::endModule() { 1221 assert(CurFn == nullptr); 1222 assert(CurMI == nullptr); 1223 1224 for (const auto &P : CUMap) { 1225 auto &CU = *P.second; 1226 CU.createBaseTypeDIEs(); 1227 } 1228 1229 // If we aren't actually generating debug info (check beginModule - 1230 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1231 // llvm.dbg.cu metadata node) 1232 if (!MMI->hasDebugInfo()) 1233 return; 1234 1235 // Finalize the debug info for the module. 1236 finalizeModuleInfo(); 1237 1238 emitDebugStr(); 1239 1240 if (useSplitDwarf()) 1241 // Emit debug_loc.dwo/debug_loclists.dwo section. 1242 emitDebugLocDWO(); 1243 else 1244 // Emit debug_loc/debug_loclists section. 1245 emitDebugLoc(); 1246 1247 // Corresponding abbreviations into a abbrev section. 1248 emitAbbreviations(); 1249 1250 // Emit all the DIEs into a debug info section. 1251 emitDebugInfo(); 1252 1253 // Emit info into a debug aranges section. 1254 if (GenerateARangeSection) 1255 emitDebugARanges(); 1256 1257 // Emit info into a debug ranges section. 1258 emitDebugRanges(); 1259 1260 if (useSplitDwarf()) 1261 // Emit info into a debug macinfo.dwo section. 1262 emitDebugMacinfoDWO(); 1263 else 1264 // Emit info into a debug macinfo section. 1265 emitDebugMacinfo(); 1266 1267 if (useSplitDwarf()) { 1268 emitDebugStrDWO(); 1269 emitDebugInfoDWO(); 1270 emitDebugAbbrevDWO(); 1271 emitDebugLineDWO(); 1272 emitDebugRangesDWO(); 1273 } 1274 1275 emitDebugAddr(); 1276 1277 // Emit info into the dwarf accelerator table sections. 1278 switch (getAccelTableKind()) { 1279 case AccelTableKind::Apple: 1280 emitAccelNames(); 1281 emitAccelObjC(); 1282 emitAccelNamespaces(); 1283 emitAccelTypes(); 1284 break; 1285 case AccelTableKind::Dwarf: 1286 emitAccelDebugNames(); 1287 break; 1288 case AccelTableKind::None: 1289 break; 1290 case AccelTableKind::Default: 1291 llvm_unreachable("Default should have already been resolved."); 1292 } 1293 1294 // Emit the pubnames and pubtypes sections if requested. 1295 emitDebugPubSections(); 1296 1297 // clean up. 1298 // FIXME: AbstractVariables.clear(); 1299 } 1300 1301 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1302 const DINode *Node, 1303 const MDNode *ScopeNode) { 1304 if (CU.getExistingAbstractEntity(Node)) 1305 return; 1306 1307 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1308 cast<DILocalScope>(ScopeNode))); 1309 } 1310 1311 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1312 const DINode *Node, const MDNode *ScopeNode) { 1313 if (CU.getExistingAbstractEntity(Node)) 1314 return; 1315 1316 if (LexicalScope *Scope = 1317 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1318 CU.createAbstractEntity(Node, Scope); 1319 } 1320 1321 // Collect variable information from side table maintained by MF. 1322 void DwarfDebug::collectVariableInfoFromMFTable( 1323 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1324 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1325 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1326 if (!VI.Var) 1327 continue; 1328 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1329 "Expected inlined-at fields to agree"); 1330 1331 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1332 Processed.insert(Var); 1333 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1334 1335 // If variable scope is not found then skip this variable. 1336 if (!Scope) 1337 continue; 1338 1339 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1340 auto RegVar = std::make_unique<DbgVariable>( 1341 cast<DILocalVariable>(Var.first), Var.second); 1342 RegVar->initializeMMI(VI.Expr, VI.Slot); 1343 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1344 DbgVar->addMMIEntry(*RegVar); 1345 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1346 MFVars.insert({Var, RegVar.get()}); 1347 ConcreteEntities.push_back(std::move(RegVar)); 1348 } 1349 } 1350 } 1351 1352 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1353 /// enclosing lexical scope. The check ensures there are no other instructions 1354 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1355 /// either open or otherwise rolls off the end of the scope. 1356 static bool validThroughout(LexicalScopes &LScopes, 1357 const MachineInstr *DbgValue, 1358 const MachineInstr *RangeEnd) { 1359 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1360 auto MBB = DbgValue->getParent(); 1361 auto DL = DbgValue->getDebugLoc(); 1362 auto *LScope = LScopes.findLexicalScope(DL); 1363 // Scope doesn't exist; this is a dead DBG_VALUE. 1364 if (!LScope) 1365 return false; 1366 auto &LSRange = LScope->getRanges(); 1367 if (LSRange.size() == 0) 1368 return false; 1369 1370 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1371 const MachineInstr *LScopeBegin = LSRange.front().first; 1372 // Early exit if the lexical scope begins outside of the current block. 1373 if (LScopeBegin->getParent() != MBB) 1374 return false; 1375 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1376 for (++Pred; Pred != MBB->rend(); ++Pred) { 1377 if (Pred->getFlag(MachineInstr::FrameSetup)) 1378 break; 1379 auto PredDL = Pred->getDebugLoc(); 1380 if (!PredDL || Pred->isMetaInstruction()) 1381 continue; 1382 // Check whether the instruction preceding the DBG_VALUE is in the same 1383 // (sub)scope as the DBG_VALUE. 1384 if (DL->getScope() == PredDL->getScope()) 1385 return false; 1386 auto *PredScope = LScopes.findLexicalScope(PredDL); 1387 if (!PredScope || LScope->dominates(PredScope)) 1388 return false; 1389 } 1390 1391 // If the range of the DBG_VALUE is open-ended, report success. 1392 if (!RangeEnd) 1393 return true; 1394 1395 // Fail if there are instructions belonging to our scope in another block. 1396 const MachineInstr *LScopeEnd = LSRange.back().second; 1397 if (LScopeEnd->getParent() != MBB) 1398 return false; 1399 1400 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1401 // throughout the function. This is a hack, presumably for DWARF v2 and not 1402 // necessarily correct. It would be much better to use a dbg.declare instead 1403 // if we know the constant is live throughout the scope. 1404 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1405 return true; 1406 1407 return false; 1408 } 1409 1410 /// Build the location list for all DBG_VALUEs in the function that 1411 /// describe the same variable. The resulting DebugLocEntries will have 1412 /// strict monotonically increasing begin addresses and will never 1413 /// overlap. If the resulting list has only one entry that is valid 1414 /// throughout variable's scope return true. 1415 // 1416 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1417 // different kinds of history map entries. One thing to be aware of is that if 1418 // a debug value is ended by another entry (rather than being valid until the 1419 // end of the function), that entry's instruction may or may not be included in 1420 // the range, depending on if the entry is a clobbering entry (it has an 1421 // instruction that clobbers one or more preceding locations), or if it is an 1422 // (overlapping) debug value entry. This distinction can be seen in the example 1423 // below. The first debug value is ended by the clobbering entry 2, and the 1424 // second and third debug values are ended by the overlapping debug value entry 1425 // 4. 1426 // 1427 // Input: 1428 // 1429 // History map entries [type, end index, mi] 1430 // 1431 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1432 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1433 // 2 | | [Clobber, $reg0 = [...], -, -] 1434 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1435 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1436 // 1437 // Output [start, end) [Value...]: 1438 // 1439 // [0-1) [(reg0, fragment 0, 32)] 1440 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1441 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1442 // [4-) [(@g, fragment 0, 96)] 1443 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1444 const DbgValueHistoryMap::Entries &Entries) { 1445 using OpenRange = 1446 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1447 SmallVector<OpenRange, 4> OpenRanges; 1448 bool isSafeForSingleLocation = true; 1449 const MachineInstr *StartDebugMI = nullptr; 1450 const MachineInstr *EndMI = nullptr; 1451 1452 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1453 const MachineInstr *Instr = EI->getInstr(); 1454 1455 // Remove all values that are no longer live. 1456 size_t Index = std::distance(EB, EI); 1457 auto Last = 1458 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1459 OpenRanges.erase(Last, OpenRanges.end()); 1460 1461 // If we are dealing with a clobbering entry, this iteration will result in 1462 // a location list entry starting after the clobbering instruction. 1463 const MCSymbol *StartLabel = 1464 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1465 assert(StartLabel && 1466 "Forgot label before/after instruction starting a range!"); 1467 1468 const MCSymbol *EndLabel; 1469 if (std::next(EI) == Entries.end()) { 1470 EndLabel = Asm->getFunctionEnd(); 1471 if (EI->isClobber()) 1472 EndMI = EI->getInstr(); 1473 } 1474 else if (std::next(EI)->isClobber()) 1475 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1476 else 1477 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1478 assert(EndLabel && "Forgot label after instruction ending a range!"); 1479 1480 if (EI->isDbgValue()) 1481 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1482 1483 // If this history map entry has a debug value, add that to the list of 1484 // open ranges and check if its location is valid for a single value 1485 // location. 1486 if (EI->isDbgValue()) { 1487 // Do not add undef debug values, as they are redundant information in 1488 // the location list entries. An undef debug results in an empty location 1489 // description. If there are any non-undef fragments then padding pieces 1490 // with empty location descriptions will automatically be inserted, and if 1491 // all fragments are undef then the whole location list entry is 1492 // redundant. 1493 if (!Instr->isUndefDebugValue()) { 1494 auto Value = getDebugLocValue(Instr); 1495 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1496 1497 // TODO: Add support for single value fragment locations. 1498 if (Instr->getDebugExpression()->isFragment()) 1499 isSafeForSingleLocation = false; 1500 1501 if (!StartDebugMI) 1502 StartDebugMI = Instr; 1503 } else { 1504 isSafeForSingleLocation = false; 1505 } 1506 } 1507 1508 // Location list entries with empty location descriptions are redundant 1509 // information in DWARF, so do not emit those. 1510 if (OpenRanges.empty()) 1511 continue; 1512 1513 // Omit entries with empty ranges as they do not have any effect in DWARF. 1514 if (StartLabel == EndLabel) { 1515 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1516 continue; 1517 } 1518 1519 SmallVector<DbgValueLoc, 4> Values; 1520 for (auto &R : OpenRanges) 1521 Values.push_back(R.second); 1522 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1523 1524 // Attempt to coalesce the ranges of two otherwise identical 1525 // DebugLocEntries. 1526 auto CurEntry = DebugLoc.rbegin(); 1527 LLVM_DEBUG({ 1528 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1529 for (auto &Value : CurEntry->getValues()) 1530 Value.dump(); 1531 dbgs() << "-----\n"; 1532 }); 1533 1534 auto PrevEntry = std::next(CurEntry); 1535 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1536 DebugLoc.pop_back(); 1537 } 1538 1539 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1540 validThroughout(LScopes, StartDebugMI, EndMI); 1541 } 1542 1543 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1544 LexicalScope &Scope, 1545 const DINode *Node, 1546 const DILocation *Location, 1547 const MCSymbol *Sym) { 1548 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1549 if (isa<const DILocalVariable>(Node)) { 1550 ConcreteEntities.push_back( 1551 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1552 Location)); 1553 InfoHolder.addScopeVariable(&Scope, 1554 cast<DbgVariable>(ConcreteEntities.back().get())); 1555 } else if (isa<const DILabel>(Node)) { 1556 ConcreteEntities.push_back( 1557 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1558 Location, Sym)); 1559 InfoHolder.addScopeLabel(&Scope, 1560 cast<DbgLabel>(ConcreteEntities.back().get())); 1561 } 1562 return ConcreteEntities.back().get(); 1563 } 1564 1565 // Find variables for each lexical scope. 1566 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1567 const DISubprogram *SP, 1568 DenseSet<InlinedEntity> &Processed) { 1569 // Grab the variable info that was squirreled away in the MMI side-table. 1570 collectVariableInfoFromMFTable(TheCU, Processed); 1571 1572 for (const auto &I : DbgValues) { 1573 InlinedEntity IV = I.first; 1574 if (Processed.count(IV)) 1575 continue; 1576 1577 // Instruction ranges, specifying where IV is accessible. 1578 const auto &HistoryMapEntries = I.second; 1579 if (HistoryMapEntries.empty()) 1580 continue; 1581 1582 LexicalScope *Scope = nullptr; 1583 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1584 if (const DILocation *IA = IV.second) 1585 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1586 else 1587 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1588 // If variable scope is not found then skip this variable. 1589 if (!Scope) 1590 continue; 1591 1592 Processed.insert(IV); 1593 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1594 *Scope, LocalVar, IV.second)); 1595 1596 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1597 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1598 1599 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1600 // If the history map contains a single debug value, there may be an 1601 // additional entry which clobbers the debug value. 1602 size_t HistSize = HistoryMapEntries.size(); 1603 bool SingleValueWithClobber = 1604 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1605 if (HistSize == 1 || SingleValueWithClobber) { 1606 const auto *End = 1607 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1608 if (validThroughout(LScopes, MInsn, End)) { 1609 RegVar->initializeDbgValue(MInsn); 1610 continue; 1611 } 1612 } 1613 1614 // Do not emit location lists if .debug_loc secton is disabled. 1615 if (!useLocSection()) 1616 continue; 1617 1618 // Handle multiple DBG_VALUE instructions describing one variable. 1619 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1620 1621 // Build the location list for this variable. 1622 SmallVector<DebugLocEntry, 8> Entries; 1623 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1624 1625 // Check whether buildLocationList managed to merge all locations to one 1626 // that is valid throughout the variable's scope. If so, produce single 1627 // value location. 1628 if (isValidSingleLocation) { 1629 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1630 continue; 1631 } 1632 1633 // If the variable has a DIBasicType, extract it. Basic types cannot have 1634 // unique identifiers, so don't bother resolving the type with the 1635 // identifier map. 1636 const DIBasicType *BT = dyn_cast<DIBasicType>( 1637 static_cast<const Metadata *>(LocalVar->getType())); 1638 1639 // Finalize the entry by lowering it into a DWARF bytestream. 1640 for (auto &Entry : Entries) 1641 Entry.finalize(*Asm, List, BT, TheCU); 1642 } 1643 1644 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1645 // DWARF-related DbgLabel. 1646 for (const auto &I : DbgLabels) { 1647 InlinedEntity IL = I.first; 1648 const MachineInstr *MI = I.second; 1649 if (MI == nullptr) 1650 continue; 1651 1652 LexicalScope *Scope = nullptr; 1653 const DILabel *Label = cast<DILabel>(IL.first); 1654 // The scope could have an extra lexical block file. 1655 const DILocalScope *LocalScope = 1656 Label->getScope()->getNonLexicalBlockFileScope(); 1657 // Get inlined DILocation if it is inlined label. 1658 if (const DILocation *IA = IL.second) 1659 Scope = LScopes.findInlinedScope(LocalScope, IA); 1660 else 1661 Scope = LScopes.findLexicalScope(LocalScope); 1662 // If label scope is not found then skip this label. 1663 if (!Scope) 1664 continue; 1665 1666 Processed.insert(IL); 1667 /// At this point, the temporary label is created. 1668 /// Save the temporary label to DbgLabel entity to get the 1669 /// actually address when generating Dwarf DIE. 1670 MCSymbol *Sym = getLabelBeforeInsn(MI); 1671 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1672 } 1673 1674 // Collect info for variables/labels that were optimized out. 1675 for (const DINode *DN : SP->getRetainedNodes()) { 1676 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1677 continue; 1678 LexicalScope *Scope = nullptr; 1679 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1680 Scope = LScopes.findLexicalScope(DV->getScope()); 1681 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1682 Scope = LScopes.findLexicalScope(DL->getScope()); 1683 } 1684 1685 if (Scope) 1686 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1687 } 1688 } 1689 1690 // Process beginning of an instruction. 1691 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1692 DebugHandlerBase::beginInstruction(MI); 1693 assert(CurMI); 1694 1695 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1696 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1697 return; 1698 1699 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1700 // If the instruction is part of the function frame setup code, do not emit 1701 // any line record, as there is no correspondence with any user code. 1702 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1703 return; 1704 const DebugLoc &DL = MI->getDebugLoc(); 1705 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1706 // the last line number actually emitted, to see if it was line 0. 1707 unsigned LastAsmLine = 1708 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1709 1710 // Request a label after the call in order to emit AT_return_pc information 1711 // in call site entries. TODO: Add support for targets with delay slots. 1712 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1713 requestLabelAfterInsn(MI); 1714 1715 if (DL == PrevInstLoc) { 1716 // If we have an ongoing unspecified location, nothing to do here. 1717 if (!DL) 1718 return; 1719 // We have an explicit location, same as the previous location. 1720 // But we might be coming back to it after a line 0 record. 1721 if (LastAsmLine == 0 && DL.getLine() != 0) { 1722 // Reinstate the source location but not marked as a statement. 1723 const MDNode *Scope = DL.getScope(); 1724 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1725 } 1726 return; 1727 } 1728 1729 if (!DL) { 1730 // We have an unspecified location, which might want to be line 0. 1731 // If we have already emitted a line-0 record, don't repeat it. 1732 if (LastAsmLine == 0) 1733 return; 1734 // If user said Don't Do That, don't do that. 1735 if (UnknownLocations == Disable) 1736 return; 1737 // See if we have a reason to emit a line-0 record now. 1738 // Reasons to emit a line-0 record include: 1739 // - User asked for it (UnknownLocations). 1740 // - Instruction has a label, so it's referenced from somewhere else, 1741 // possibly debug information; we want it to have a source location. 1742 // - Instruction is at the top of a block; we don't want to inherit the 1743 // location from the physically previous (maybe unrelated) block. 1744 if (UnknownLocations == Enable || PrevLabel || 1745 (PrevInstBB && PrevInstBB != MI->getParent())) { 1746 // Preserve the file and column numbers, if we can, to save space in 1747 // the encoded line table. 1748 // Do not update PrevInstLoc, it remembers the last non-0 line. 1749 const MDNode *Scope = nullptr; 1750 unsigned Column = 0; 1751 if (PrevInstLoc) { 1752 Scope = PrevInstLoc.getScope(); 1753 Column = PrevInstLoc.getCol(); 1754 } 1755 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1756 } 1757 return; 1758 } 1759 1760 // We have an explicit location, different from the previous location. 1761 // Don't repeat a line-0 record, but otherwise emit the new location. 1762 // (The new location might be an explicit line 0, which we do emit.) 1763 if (DL.getLine() == 0 && LastAsmLine == 0) 1764 return; 1765 unsigned Flags = 0; 1766 if (DL == PrologEndLoc) { 1767 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1768 PrologEndLoc = DebugLoc(); 1769 } 1770 // If the line changed, we call that a new statement; unless we went to 1771 // line 0 and came back, in which case it is not a new statement. 1772 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1773 if (DL.getLine() && DL.getLine() != OldLine) 1774 Flags |= DWARF2_FLAG_IS_STMT; 1775 1776 const MDNode *Scope = DL.getScope(); 1777 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1778 1779 // If we're not at line 0, remember this location. 1780 if (DL.getLine()) 1781 PrevInstLoc = DL; 1782 } 1783 1784 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1785 // First known non-DBG_VALUE and non-frame setup location marks 1786 // the beginning of the function body. 1787 for (const auto &MBB : *MF) 1788 for (const auto &MI : MBB) 1789 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1790 MI.getDebugLoc()) 1791 return MI.getDebugLoc(); 1792 return DebugLoc(); 1793 } 1794 1795 /// Register a source line with debug info. Returns the unique label that was 1796 /// emitted and which provides correspondence to the source line list. 1797 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1798 const MDNode *S, unsigned Flags, unsigned CUID, 1799 uint16_t DwarfVersion, 1800 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1801 StringRef Fn; 1802 unsigned FileNo = 1; 1803 unsigned Discriminator = 0; 1804 if (auto *Scope = cast_or_null<DIScope>(S)) { 1805 Fn = Scope->getFilename(); 1806 if (Line != 0 && DwarfVersion >= 4) 1807 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1808 Discriminator = LBF->getDiscriminator(); 1809 1810 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1811 .getOrCreateSourceID(Scope->getFile()); 1812 } 1813 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1814 Discriminator, Fn); 1815 } 1816 1817 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1818 unsigned CUID) { 1819 // Get beginning of function. 1820 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1821 // Ensure the compile unit is created if the function is called before 1822 // beginFunction(). 1823 (void)getOrCreateDwarfCompileUnit( 1824 MF.getFunction().getSubprogram()->getUnit()); 1825 // We'd like to list the prologue as "not statements" but GDB behaves 1826 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1827 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1828 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1829 CUID, getDwarfVersion(), getUnits()); 1830 return PrologEndLoc; 1831 } 1832 return DebugLoc(); 1833 } 1834 1835 // Gather pre-function debug information. Assumes being called immediately 1836 // after the function entry point has been emitted. 1837 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1838 CurFn = MF; 1839 1840 auto *SP = MF->getFunction().getSubprogram(); 1841 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1842 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1843 return; 1844 1845 SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(), 1846 Asm->getFunctionBegin())); 1847 1848 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1849 1850 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1851 // belongs to so that we add to the correct per-cu line table in the 1852 // non-asm case. 1853 if (Asm->OutStreamer->hasRawTextSupport()) 1854 // Use a single line table if we are generating assembly. 1855 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1856 else 1857 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1858 1859 // Record beginning of function. 1860 PrologEndLoc = emitInitialLocDirective( 1861 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1862 } 1863 1864 void DwarfDebug::skippedNonDebugFunction() { 1865 // If we don't have a subprogram for this function then there will be a hole 1866 // in the range information. Keep note of this by setting the previously used 1867 // section to nullptr. 1868 PrevCU = nullptr; 1869 CurFn = nullptr; 1870 } 1871 1872 // Gather and emit post-function debug information. 1873 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1874 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1875 1876 assert(CurFn == MF && 1877 "endFunction should be called with the same function as beginFunction"); 1878 1879 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1880 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1881 1882 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1883 assert(!FnScope || SP == FnScope->getScopeNode()); 1884 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1885 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1886 PrevLabel = nullptr; 1887 CurFn = nullptr; 1888 return; 1889 } 1890 1891 DenseSet<InlinedEntity> Processed; 1892 collectEntityInfo(TheCU, SP, Processed); 1893 1894 // Add the range of this function to the list of ranges for the CU. 1895 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1896 1897 // Under -gmlt, skip building the subprogram if there are no inlined 1898 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1899 // is still needed as we need its source location. 1900 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1901 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1902 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1903 assert(InfoHolder.getScopeVariables().empty()); 1904 PrevLabel = nullptr; 1905 CurFn = nullptr; 1906 return; 1907 } 1908 1909 #ifndef NDEBUG 1910 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1911 #endif 1912 // Construct abstract scopes. 1913 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1914 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1915 for (const DINode *DN : SP->getRetainedNodes()) { 1916 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1917 continue; 1918 1919 const MDNode *Scope = nullptr; 1920 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 1921 Scope = DV->getScope(); 1922 else if (auto *DL = dyn_cast<DILabel>(DN)) 1923 Scope = DL->getScope(); 1924 else 1925 llvm_unreachable("Unexpected DI type!"); 1926 1927 // Collect info for variables/labels that were optimized out. 1928 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 1929 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1930 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 1931 } 1932 constructAbstractSubprogramScopeDIE(TheCU, AScope); 1933 } 1934 1935 ProcessedSPNodes.insert(SP); 1936 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 1937 if (auto *SkelCU = TheCU.getSkeleton()) 1938 if (!LScopes.getAbstractScopesList().empty() && 1939 TheCU.getCUNode()->getSplitDebugInlining()) 1940 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1941 1942 // Construct call site entries. 1943 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 1944 1945 // Clear debug info 1946 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1947 // DbgVariables except those that are also in AbstractVariables (since they 1948 // can be used cross-function) 1949 InfoHolder.getScopeVariables().clear(); 1950 InfoHolder.getScopeLabels().clear(); 1951 PrevLabel = nullptr; 1952 CurFn = nullptr; 1953 } 1954 1955 // Register a source line with debug info. Returns the unique label that was 1956 // emitted and which provides correspondence to the source line list. 1957 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1958 unsigned Flags) { 1959 ::recordSourceLine(*Asm, Line, Col, S, Flags, 1960 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 1961 getDwarfVersion(), getUnits()); 1962 } 1963 1964 //===----------------------------------------------------------------------===// 1965 // Emit Methods 1966 //===----------------------------------------------------------------------===// 1967 1968 // Emit the debug info section. 1969 void DwarfDebug::emitDebugInfo() { 1970 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1971 Holder.emitUnits(/* UseOffsets */ false); 1972 } 1973 1974 // Emit the abbreviation section. 1975 void DwarfDebug::emitAbbreviations() { 1976 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1977 1978 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1979 } 1980 1981 void DwarfDebug::emitStringOffsetsTableHeader() { 1982 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1983 Holder.getStringPool().emitStringOffsetsTableHeader( 1984 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 1985 Holder.getStringOffsetsStartSym()); 1986 } 1987 1988 template <typename AccelTableT> 1989 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 1990 StringRef TableName) { 1991 Asm->OutStreamer->SwitchSection(Section); 1992 1993 // Emit the full data. 1994 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 1995 } 1996 1997 void DwarfDebug::emitAccelDebugNames() { 1998 // Don't emit anything if we have no compilation units to index. 1999 if (getUnits().empty()) 2000 return; 2001 2002 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2003 } 2004 2005 // Emit visible names into a hashed accelerator table section. 2006 void DwarfDebug::emitAccelNames() { 2007 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2008 "Names"); 2009 } 2010 2011 // Emit objective C classes and categories into a hashed accelerator table 2012 // section. 2013 void DwarfDebug::emitAccelObjC() { 2014 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2015 "ObjC"); 2016 } 2017 2018 // Emit namespace dies into a hashed accelerator table. 2019 void DwarfDebug::emitAccelNamespaces() { 2020 emitAccel(AccelNamespace, 2021 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2022 "namespac"); 2023 } 2024 2025 // Emit type dies into a hashed accelerator table. 2026 void DwarfDebug::emitAccelTypes() { 2027 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2028 "types"); 2029 } 2030 2031 // Public name handling. 2032 // The format for the various pubnames: 2033 // 2034 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2035 // for the DIE that is named. 2036 // 2037 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2038 // into the CU and the index value is computed according to the type of value 2039 // for the DIE that is named. 2040 // 2041 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2042 // it's the offset within the debug_info/debug_types dwo section, however, the 2043 // reference in the pubname header doesn't change. 2044 2045 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2046 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2047 const DIE *Die) { 2048 // Entities that ended up only in a Type Unit reference the CU instead (since 2049 // the pub entry has offsets within the CU there's no real offset that can be 2050 // provided anyway). As it happens all such entities (namespaces and types, 2051 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2052 // not to be true it would be necessary to persist this information from the 2053 // point at which the entry is added to the index data structure - since by 2054 // the time the index is built from that, the original type/namespace DIE in a 2055 // type unit has already been destroyed so it can't be queried for properties 2056 // like tag, etc. 2057 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2058 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2059 dwarf::GIEL_EXTERNAL); 2060 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2061 2062 // We could have a specification DIE that has our most of our knowledge, 2063 // look for that now. 2064 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2065 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2066 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2067 Linkage = dwarf::GIEL_EXTERNAL; 2068 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2069 Linkage = dwarf::GIEL_EXTERNAL; 2070 2071 switch (Die->getTag()) { 2072 case dwarf::DW_TAG_class_type: 2073 case dwarf::DW_TAG_structure_type: 2074 case dwarf::DW_TAG_union_type: 2075 case dwarf::DW_TAG_enumeration_type: 2076 return dwarf::PubIndexEntryDescriptor( 2077 dwarf::GIEK_TYPE, 2078 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2079 ? dwarf::GIEL_EXTERNAL 2080 : dwarf::GIEL_STATIC); 2081 case dwarf::DW_TAG_typedef: 2082 case dwarf::DW_TAG_base_type: 2083 case dwarf::DW_TAG_subrange_type: 2084 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2085 case dwarf::DW_TAG_namespace: 2086 return dwarf::GIEK_TYPE; 2087 case dwarf::DW_TAG_subprogram: 2088 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2089 case dwarf::DW_TAG_variable: 2090 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2091 case dwarf::DW_TAG_enumerator: 2092 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2093 dwarf::GIEL_STATIC); 2094 default: 2095 return dwarf::GIEK_NONE; 2096 } 2097 } 2098 2099 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2100 /// pubtypes sections. 2101 void DwarfDebug::emitDebugPubSections() { 2102 for (const auto &NU : CUMap) { 2103 DwarfCompileUnit *TheU = NU.second; 2104 if (!TheU->hasDwarfPubSections()) 2105 continue; 2106 2107 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2108 DICompileUnit::DebugNameTableKind::GNU; 2109 2110 Asm->OutStreamer->SwitchSection( 2111 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2112 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2113 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2114 2115 Asm->OutStreamer->SwitchSection( 2116 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2117 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2118 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2119 } 2120 } 2121 2122 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2123 if (useSectionsAsReferences()) 2124 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), 2125 CU.getDebugSectionOffset()); 2126 else 2127 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2128 } 2129 2130 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2131 DwarfCompileUnit *TheU, 2132 const StringMap<const DIE *> &Globals) { 2133 if (auto *Skeleton = TheU->getSkeleton()) 2134 TheU = Skeleton; 2135 2136 // Emit the header. 2137 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2138 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2139 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2140 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 2141 2142 Asm->OutStreamer->EmitLabel(BeginLabel); 2143 2144 Asm->OutStreamer->AddComment("DWARF Version"); 2145 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2146 2147 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2148 emitSectionReference(*TheU); 2149 2150 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2151 Asm->emitInt32(TheU->getLength()); 2152 2153 // Emit the pubnames for this compilation unit. 2154 for (const auto &GI : Globals) { 2155 const char *Name = GI.getKeyData(); 2156 const DIE *Entity = GI.second; 2157 2158 Asm->OutStreamer->AddComment("DIE offset"); 2159 Asm->emitInt32(Entity->getOffset()); 2160 2161 if (GnuStyle) { 2162 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2163 Asm->OutStreamer->AddComment( 2164 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2165 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2166 Asm->emitInt8(Desc.toBits()); 2167 } 2168 2169 Asm->OutStreamer->AddComment("External Name"); 2170 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2171 } 2172 2173 Asm->OutStreamer->AddComment("End Mark"); 2174 Asm->emitInt32(0); 2175 Asm->OutStreamer->EmitLabel(EndLabel); 2176 } 2177 2178 /// Emit null-terminated strings into a debug str section. 2179 void DwarfDebug::emitDebugStr() { 2180 MCSection *StringOffsetsSection = nullptr; 2181 if (useSegmentedStringOffsetsTable()) { 2182 emitStringOffsetsTableHeader(); 2183 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2184 } 2185 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2186 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2187 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2188 } 2189 2190 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2191 const DebugLocStream::Entry &Entry, 2192 const DwarfCompileUnit *CU) { 2193 auto &&Comments = DebugLocs.getComments(Entry); 2194 auto Comment = Comments.begin(); 2195 auto End = Comments.end(); 2196 2197 // The expressions are inserted into a byte stream rather early (see 2198 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2199 // need to reference a base_type DIE the offset of that DIE is not yet known. 2200 // To deal with this we instead insert a placeholder early and then extract 2201 // it here and replace it with the real reference. 2202 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2203 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2204 DebugLocs.getBytes(Entry).size()), 2205 Asm->getDataLayout().isLittleEndian(), PtrSize); 2206 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize); 2207 2208 using Encoding = DWARFExpression::Operation::Encoding; 2209 uint64_t Offset = 0; 2210 for (auto &Op : Expr) { 2211 assert(Op.getCode() != dwarf::DW_OP_const_type && 2212 "3 operand ops not yet supported"); 2213 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2214 Offset++; 2215 for (unsigned I = 0; I < 2; ++I) { 2216 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2217 continue; 2218 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2219 if (CU) { 2220 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2221 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2222 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize); 2223 } else { 2224 // Emit a reference to the 'generic type'. 2225 Asm->EmitULEB128(0, nullptr, ULEB128PadSize); 2226 } 2227 // Make sure comments stay aligned. 2228 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2229 if (Comment != End) 2230 Comment++; 2231 } else { 2232 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2233 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2234 } 2235 Offset = Op.getOperandEndOffset(I); 2236 } 2237 assert(Offset == Op.getEndOffset()); 2238 } 2239 } 2240 2241 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2242 const DbgValueLoc &Value, 2243 DwarfExpression &DwarfExpr) { 2244 auto *DIExpr = Value.getExpression(); 2245 DIExpressionCursor ExprCursor(DIExpr); 2246 DwarfExpr.addFragmentOffset(DIExpr); 2247 // Regular entry. 2248 if (Value.isInt()) { 2249 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2250 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2251 DwarfExpr.addSignedConstant(Value.getInt()); 2252 else 2253 DwarfExpr.addUnsignedConstant(Value.getInt()); 2254 } else if (Value.isLocation()) { 2255 MachineLocation Location = Value.getLoc(); 2256 if (Location.isIndirect()) 2257 DwarfExpr.setMemoryLocationKind(); 2258 DIExpressionCursor Cursor(DIExpr); 2259 2260 if (DIExpr->isEntryValue()) { 2261 DwarfExpr.setEntryValueFlag(); 2262 DwarfExpr.beginEntryValueExpression(Cursor); 2263 } 2264 2265 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2266 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2267 return; 2268 return DwarfExpr.addExpression(std::move(Cursor)); 2269 } else if (Value.isTargetIndexLocation()) { 2270 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2271 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2272 // encoding is supported. 2273 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2274 } else if (Value.isConstantFP()) { 2275 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2276 DwarfExpr.addUnsignedConstant(RawBytes); 2277 } 2278 DwarfExpr.addExpression(std::move(ExprCursor)); 2279 } 2280 2281 void DebugLocEntry::finalize(const AsmPrinter &AP, 2282 DebugLocStream::ListBuilder &List, 2283 const DIBasicType *BT, 2284 DwarfCompileUnit &TheCU) { 2285 assert(!Values.empty() && 2286 "location list entries without values are redundant"); 2287 assert(Begin != End && "unexpected location list entry with empty range"); 2288 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2289 BufferByteStreamer Streamer = Entry.getStreamer(); 2290 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2291 const DbgValueLoc &Value = Values[0]; 2292 if (Value.isFragment()) { 2293 // Emit all fragments that belong to the same variable and range. 2294 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2295 return P.isFragment(); 2296 }) && "all values are expected to be fragments"); 2297 assert(std::is_sorted(Values.begin(), Values.end()) && 2298 "fragments are expected to be sorted"); 2299 2300 for (auto Fragment : Values) 2301 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2302 2303 } else { 2304 assert(Values.size() == 1 && "only fragments may have >1 value"); 2305 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2306 } 2307 DwarfExpr.finalize(); 2308 if (DwarfExpr.TagOffset) 2309 List.setTagOffset(*DwarfExpr.TagOffset); 2310 } 2311 2312 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2313 const DwarfCompileUnit *CU) { 2314 // Emit the size. 2315 Asm->OutStreamer->AddComment("Loc expr size"); 2316 if (getDwarfVersion() >= 5) 2317 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); 2318 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2319 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2320 else { 2321 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2322 // can do. 2323 Asm->emitInt16(0); 2324 return; 2325 } 2326 // Emit the entry. 2327 APByteStreamer Streamer(*Asm); 2328 emitDebugLocEntry(Streamer, Entry, CU); 2329 } 2330 2331 // Emit the common part of the DWARF 5 range/locations list tables header. 2332 static void emitListsTableHeaderStart(AsmPrinter *Asm, 2333 MCSymbol *TableStart, 2334 MCSymbol *TableEnd) { 2335 // Build the table header, which starts with the length field. 2336 Asm->OutStreamer->AddComment("Length"); 2337 Asm->EmitLabelDifference(TableEnd, TableStart, 4); 2338 Asm->OutStreamer->EmitLabel(TableStart); 2339 // Version number (DWARF v5 and later). 2340 Asm->OutStreamer->AddComment("Version"); 2341 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); 2342 // Address size. 2343 Asm->OutStreamer->AddComment("Address size"); 2344 Asm->emitInt8(Asm->MAI->getCodePointerSize()); 2345 // Segment selector size. 2346 Asm->OutStreamer->AddComment("Segment selector size"); 2347 Asm->emitInt8(0); 2348 } 2349 2350 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2351 // that designates the end of the table for the caller to emit when the table is 2352 // complete. 2353 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2354 const DwarfFile &Holder) { 2355 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); 2356 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); 2357 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2358 2359 Asm->OutStreamer->AddComment("Offset entry count"); 2360 Asm->emitInt32(Holder.getRangeLists().size()); 2361 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); 2362 2363 for (const RangeSpanList &List : Holder.getRangeLists()) 2364 Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2365 4); 2366 2367 return TableEnd; 2368 } 2369 2370 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2371 // designates the end of the table for the caller to emit when the table is 2372 // complete. 2373 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2374 const DwarfDebug &DD) { 2375 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); 2376 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); 2377 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2378 2379 const auto &DebugLocs = DD.getDebugLocs(); 2380 2381 Asm->OutStreamer->AddComment("Offset entry count"); 2382 Asm->emitInt32(DebugLocs.getLists().size()); 2383 Asm->OutStreamer->EmitLabel(DebugLocs.getSym()); 2384 2385 for (const auto &List : DebugLocs.getLists()) 2386 Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2387 2388 return TableEnd; 2389 } 2390 2391 template <typename Ranges, typename PayloadEmitter> 2392 static void emitRangeList( 2393 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2394 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2395 unsigned StartxLength, unsigned EndOfList, 2396 StringRef (*StringifyEnum)(unsigned), 2397 bool ShouldUseBaseAddress, 2398 PayloadEmitter EmitPayload) { 2399 2400 auto Size = Asm->MAI->getCodePointerSize(); 2401 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2402 2403 // Emit our symbol so we can find the beginning of the range. 2404 Asm->OutStreamer->EmitLabel(Sym); 2405 2406 // Gather all the ranges that apply to the same section so they can share 2407 // a base address entry. 2408 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2409 2410 for (const auto &Range : R) 2411 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2412 2413 const MCSymbol *CUBase = CU.getBaseAddress(); 2414 bool BaseIsSet = false; 2415 for (const auto &P : SectionRanges) { 2416 auto *Base = CUBase; 2417 if (!Base && ShouldUseBaseAddress) { 2418 const MCSymbol *Begin = P.second.front()->Begin; 2419 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2420 if (!UseDwarf5) { 2421 Base = NewBase; 2422 BaseIsSet = true; 2423 Asm->OutStreamer->EmitIntValue(-1, Size); 2424 Asm->OutStreamer->AddComment(" base address"); 2425 Asm->OutStreamer->EmitSymbolValue(Base, Size); 2426 } else if (NewBase != Begin || P.second.size() > 1) { 2427 // Only use a base address if 2428 // * the existing pool address doesn't match (NewBase != Begin) 2429 // * or, there's more than one entry to share the base address 2430 Base = NewBase; 2431 BaseIsSet = true; 2432 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2433 Asm->emitInt8(BaseAddressx); 2434 Asm->OutStreamer->AddComment(" base address index"); 2435 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); 2436 } 2437 } else if (BaseIsSet && !UseDwarf5) { 2438 BaseIsSet = false; 2439 assert(!Base); 2440 Asm->OutStreamer->EmitIntValue(-1, Size); 2441 Asm->OutStreamer->EmitIntValue(0, Size); 2442 } 2443 2444 for (const auto *RS : P.second) { 2445 const MCSymbol *Begin = RS->Begin; 2446 const MCSymbol *End = RS->End; 2447 assert(Begin && "Range without a begin symbol?"); 2448 assert(End && "Range without an end symbol?"); 2449 if (Base) { 2450 if (UseDwarf5) { 2451 // Emit offset_pair when we have a base. 2452 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2453 Asm->emitInt8(OffsetPair); 2454 Asm->OutStreamer->AddComment(" starting offset"); 2455 Asm->EmitLabelDifferenceAsULEB128(Begin, Base); 2456 Asm->OutStreamer->AddComment(" ending offset"); 2457 Asm->EmitLabelDifferenceAsULEB128(End, Base); 2458 } else { 2459 Asm->EmitLabelDifference(Begin, Base, Size); 2460 Asm->EmitLabelDifference(End, Base, Size); 2461 } 2462 } else if (UseDwarf5) { 2463 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2464 Asm->emitInt8(StartxLength); 2465 Asm->OutStreamer->AddComment(" start index"); 2466 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); 2467 Asm->OutStreamer->AddComment(" length"); 2468 Asm->EmitLabelDifferenceAsULEB128(End, Begin); 2469 } else { 2470 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 2471 Asm->OutStreamer->EmitSymbolValue(End, Size); 2472 } 2473 EmitPayload(*RS); 2474 } 2475 } 2476 2477 if (UseDwarf5) { 2478 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2479 Asm->emitInt8(EndOfList); 2480 } else { 2481 // Terminate the list with two 0 values. 2482 Asm->OutStreamer->EmitIntValue(0, Size); 2483 Asm->OutStreamer->EmitIntValue(0, Size); 2484 } 2485 } 2486 2487 // Handles emission of both debug_loclist / debug_loclist.dwo 2488 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2489 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2490 *List.CU, dwarf::DW_LLE_base_addressx, 2491 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2492 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2493 /* ShouldUseBaseAddress */ true, 2494 [&](const DebugLocStream::Entry &E) { 2495 DD.emitDebugLocEntryLocation(E, List.CU); 2496 }); 2497 } 2498 2499 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2500 if (DebugLocs.getLists().empty()) 2501 return; 2502 2503 Asm->OutStreamer->SwitchSection(Sec); 2504 2505 MCSymbol *TableEnd = nullptr; 2506 if (getDwarfVersion() >= 5) 2507 TableEnd = emitLoclistsTableHeader(Asm, *this); 2508 2509 for (const auto &List : DebugLocs.getLists()) 2510 emitLocList(*this, Asm, List); 2511 2512 if (TableEnd) 2513 Asm->OutStreamer->EmitLabel(TableEnd); 2514 } 2515 2516 // Emit locations into the .debug_loc/.debug_loclists section. 2517 void DwarfDebug::emitDebugLoc() { 2518 emitDebugLocImpl( 2519 getDwarfVersion() >= 5 2520 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2521 : Asm->getObjFileLowering().getDwarfLocSection()); 2522 } 2523 2524 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2525 void DwarfDebug::emitDebugLocDWO() { 2526 if (getDwarfVersion() >= 5) { 2527 emitDebugLocImpl( 2528 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2529 2530 return; 2531 } 2532 2533 for (const auto &List : DebugLocs.getLists()) { 2534 Asm->OutStreamer->SwitchSection( 2535 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2536 Asm->OutStreamer->EmitLabel(List.Label); 2537 2538 for (const auto &Entry : DebugLocs.getEntries(List)) { 2539 // GDB only supports startx_length in pre-standard split-DWARF. 2540 // (in v5 standard loclists, it currently* /only/ supports base_address + 2541 // offset_pair, so the implementations can't really share much since they 2542 // need to use different representations) 2543 // * as of October 2018, at least 2544 // Ideally/in v5, this could use SectionLabels to reuse existing addresses 2545 // in the address pool to minimize object size/relocations. 2546 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2547 unsigned idx = AddrPool.getIndex(Entry.Begin); 2548 Asm->EmitULEB128(idx); 2549 // Also the pre-standard encoding is slightly different, emitting this as 2550 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2551 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); 2552 emitDebugLocEntryLocation(Entry, List.CU); 2553 } 2554 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2555 } 2556 } 2557 2558 struct ArangeSpan { 2559 const MCSymbol *Start, *End; 2560 }; 2561 2562 // Emit a debug aranges section, containing a CU lookup for any 2563 // address we can tie back to a CU. 2564 void DwarfDebug::emitDebugARanges() { 2565 // Provides a unique id per text section. 2566 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2567 2568 // Filter labels by section. 2569 for (const SymbolCU &SCU : ArangeLabels) { 2570 if (SCU.Sym->isInSection()) { 2571 // Make a note of this symbol and it's section. 2572 MCSection *Section = &SCU.Sym->getSection(); 2573 if (!Section->getKind().isMetadata()) 2574 SectionMap[Section].push_back(SCU); 2575 } else { 2576 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2577 // appear in the output. This sucks as we rely on sections to build 2578 // arange spans. We can do it without, but it's icky. 2579 SectionMap[nullptr].push_back(SCU); 2580 } 2581 } 2582 2583 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2584 2585 for (auto &I : SectionMap) { 2586 MCSection *Section = I.first; 2587 SmallVector<SymbolCU, 8> &List = I.second; 2588 if (List.size() < 1) 2589 continue; 2590 2591 // If we have no section (e.g. common), just write out 2592 // individual spans for each symbol. 2593 if (!Section) { 2594 for (const SymbolCU &Cur : List) { 2595 ArangeSpan Span; 2596 Span.Start = Cur.Sym; 2597 Span.End = nullptr; 2598 assert(Cur.CU); 2599 Spans[Cur.CU].push_back(Span); 2600 } 2601 continue; 2602 } 2603 2604 // Sort the symbols by offset within the section. 2605 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2606 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2607 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2608 2609 // Symbols with no order assigned should be placed at the end. 2610 // (e.g. section end labels) 2611 if (IA == 0) 2612 return false; 2613 if (IB == 0) 2614 return true; 2615 return IA < IB; 2616 }); 2617 2618 // Insert a final terminator. 2619 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2620 2621 // Build spans between each label. 2622 const MCSymbol *StartSym = List[0].Sym; 2623 for (size_t n = 1, e = List.size(); n < e; n++) { 2624 const SymbolCU &Prev = List[n - 1]; 2625 const SymbolCU &Cur = List[n]; 2626 2627 // Try and build the longest span we can within the same CU. 2628 if (Cur.CU != Prev.CU) { 2629 ArangeSpan Span; 2630 Span.Start = StartSym; 2631 Span.End = Cur.Sym; 2632 assert(Prev.CU); 2633 Spans[Prev.CU].push_back(Span); 2634 StartSym = Cur.Sym; 2635 } 2636 } 2637 } 2638 2639 // Start the dwarf aranges section. 2640 Asm->OutStreamer->SwitchSection( 2641 Asm->getObjFileLowering().getDwarfARangesSection()); 2642 2643 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2644 2645 // Build a list of CUs used. 2646 std::vector<DwarfCompileUnit *> CUs; 2647 for (const auto &it : Spans) { 2648 DwarfCompileUnit *CU = it.first; 2649 CUs.push_back(CU); 2650 } 2651 2652 // Sort the CU list (again, to ensure consistent output order). 2653 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2654 return A->getUniqueID() < B->getUniqueID(); 2655 }); 2656 2657 // Emit an arange table for each CU we used. 2658 for (DwarfCompileUnit *CU : CUs) { 2659 std::vector<ArangeSpan> &List = Spans[CU]; 2660 2661 // Describe the skeleton CU's offset and length, not the dwo file's. 2662 if (auto *Skel = CU->getSkeleton()) 2663 CU = Skel; 2664 2665 // Emit size of content not including length itself. 2666 unsigned ContentSize = 2667 sizeof(int16_t) + // DWARF ARange version number 2668 sizeof(int32_t) + // Offset of CU in the .debug_info section 2669 sizeof(int8_t) + // Pointer Size (in bytes) 2670 sizeof(int8_t); // Segment Size (in bytes) 2671 2672 unsigned TupleSize = PtrSize * 2; 2673 2674 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2675 unsigned Padding = 2676 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2677 2678 ContentSize += Padding; 2679 ContentSize += (List.size() + 1) * TupleSize; 2680 2681 // For each compile unit, write the list of spans it covers. 2682 Asm->OutStreamer->AddComment("Length of ARange Set"); 2683 Asm->emitInt32(ContentSize); 2684 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2685 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2686 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2687 emitSectionReference(*CU); 2688 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2689 Asm->emitInt8(PtrSize); 2690 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2691 Asm->emitInt8(0); 2692 2693 Asm->OutStreamer->emitFill(Padding, 0xff); 2694 2695 for (const ArangeSpan &Span : List) { 2696 Asm->EmitLabelReference(Span.Start, PtrSize); 2697 2698 // Calculate the size as being from the span start to it's end. 2699 if (Span.End) { 2700 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 2701 } else { 2702 // For symbols without an end marker (e.g. common), we 2703 // write a single arange entry containing just that one symbol. 2704 uint64_t Size = SymSize[Span.Start]; 2705 if (Size == 0) 2706 Size = 1; 2707 2708 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 2709 } 2710 } 2711 2712 Asm->OutStreamer->AddComment("ARange terminator"); 2713 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2714 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2715 } 2716 } 2717 2718 /// Emit a single range list. We handle both DWARF v5 and earlier. 2719 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2720 const RangeSpanList &List) { 2721 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2722 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2723 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2724 llvm::dwarf::RangeListEncodingString, 2725 List.CU->getCUNode()->getRangesBaseAddress() || 2726 DD.getDwarfVersion() >= 5, 2727 [](auto) {}); 2728 } 2729 2730 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2731 if (Holder.getRangeLists().empty()) 2732 return; 2733 2734 assert(useRangesSection()); 2735 assert(!CUMap.empty()); 2736 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2737 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2738 })); 2739 2740 Asm->OutStreamer->SwitchSection(Section); 2741 2742 MCSymbol *TableEnd = nullptr; 2743 if (getDwarfVersion() >= 5) 2744 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2745 2746 for (const RangeSpanList &List : Holder.getRangeLists()) 2747 emitRangeList(*this, Asm, List); 2748 2749 if (TableEnd) 2750 Asm->OutStreamer->EmitLabel(TableEnd); 2751 } 2752 2753 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2754 /// .debug_rnglists section. 2755 void DwarfDebug::emitDebugRanges() { 2756 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2757 2758 emitDebugRangesImpl(Holder, 2759 getDwarfVersion() >= 5 2760 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2761 : Asm->getObjFileLowering().getDwarfRangesSection()); 2762 } 2763 2764 void DwarfDebug::emitDebugRangesDWO() { 2765 emitDebugRangesImpl(InfoHolder, 2766 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2767 } 2768 2769 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2770 for (auto *MN : Nodes) { 2771 if (auto *M = dyn_cast<DIMacro>(MN)) 2772 emitMacro(*M); 2773 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2774 emitMacroFile(*F, U); 2775 else 2776 llvm_unreachable("Unexpected DI type!"); 2777 } 2778 } 2779 2780 void DwarfDebug::emitMacro(DIMacro &M) { 2781 Asm->EmitULEB128(M.getMacinfoType()); 2782 Asm->EmitULEB128(M.getLine()); 2783 StringRef Name = M.getName(); 2784 StringRef Value = M.getValue(); 2785 Asm->OutStreamer->EmitBytes(Name); 2786 if (!Value.empty()) { 2787 // There should be one space between macro name and macro value. 2788 Asm->emitInt8(' '); 2789 Asm->OutStreamer->EmitBytes(Value); 2790 } 2791 Asm->emitInt8('\0'); 2792 } 2793 2794 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2795 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2796 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 2797 Asm->EmitULEB128(F.getLine()); 2798 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); 2799 handleMacroNodes(F.getElements(), U); 2800 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 2801 } 2802 2803 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2804 for (const auto &P : CUMap) { 2805 auto &TheCU = *P.second; 2806 auto *SkCU = TheCU.getSkeleton(); 2807 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2808 auto *CUNode = cast<DICompileUnit>(P.first); 2809 DIMacroNodeArray Macros = CUNode->getMacros(); 2810 if (Macros.empty()) 2811 continue; 2812 Asm->OutStreamer->SwitchSection(Section); 2813 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 2814 handleMacroNodes(Macros, U); 2815 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2816 Asm->emitInt8(0); 2817 } 2818 } 2819 2820 /// Emit macros into a debug macinfo section. 2821 void DwarfDebug::emitDebugMacinfo() { 2822 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection()); 2823 } 2824 2825 void DwarfDebug::emitDebugMacinfoDWO() { 2826 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 2827 } 2828 2829 // DWARF5 Experimental Separate Dwarf emitters. 2830 2831 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2832 std::unique_ptr<DwarfCompileUnit> NewU) { 2833 2834 if (!CompilationDir.empty()) 2835 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2836 2837 addGnuPubAttributes(*NewU, Die); 2838 2839 SkeletonHolder.addUnit(std::move(NewU)); 2840 } 2841 2842 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2843 2844 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2845 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 2846 UnitKind::Skeleton); 2847 DwarfCompileUnit &NewCU = *OwnedUnit; 2848 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2849 2850 NewCU.initStmtList(); 2851 2852 if (useSegmentedStringOffsetsTable()) 2853 NewCU.addStringOffsetsStart(); 2854 2855 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2856 2857 return NewCU; 2858 } 2859 2860 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2861 // compile units that would normally be in debug_info. 2862 void DwarfDebug::emitDebugInfoDWO() { 2863 assert(useSplitDwarf() && "No split dwarf debug info?"); 2864 // Don't emit relocations into the dwo file. 2865 InfoHolder.emitUnits(/* UseOffsets */ true); 2866 } 2867 2868 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2869 // abbreviations for the .debug_info.dwo section. 2870 void DwarfDebug::emitDebugAbbrevDWO() { 2871 assert(useSplitDwarf() && "No split dwarf?"); 2872 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2873 } 2874 2875 void DwarfDebug::emitDebugLineDWO() { 2876 assert(useSplitDwarf() && "No split dwarf?"); 2877 SplitTypeUnitFileTable.Emit( 2878 *Asm->OutStreamer, MCDwarfLineTableParams(), 2879 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2880 } 2881 2882 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2883 assert(useSplitDwarf() && "No split dwarf?"); 2884 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2885 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2886 InfoHolder.getStringOffsetsStartSym()); 2887 } 2888 2889 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2890 // string section and is identical in format to traditional .debug_str 2891 // sections. 2892 void DwarfDebug::emitDebugStrDWO() { 2893 if (useSegmentedStringOffsetsTable()) 2894 emitStringOffsetsTableHeaderDWO(); 2895 assert(useSplitDwarf() && "No split dwarf?"); 2896 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2897 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2898 OffSec, /* UseRelativeOffsets = */ false); 2899 } 2900 2901 // Emit address pool. 2902 void DwarfDebug::emitDebugAddr() { 2903 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2904 } 2905 2906 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2907 if (!useSplitDwarf()) 2908 return nullptr; 2909 const DICompileUnit *DIUnit = CU.getCUNode(); 2910 SplitTypeUnitFileTable.maybeSetRootFile( 2911 DIUnit->getDirectory(), DIUnit->getFilename(), 2912 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2913 return &SplitTypeUnitFileTable; 2914 } 2915 2916 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2917 MD5 Hash; 2918 Hash.update(Identifier); 2919 // ... take the least significant 8 bytes and return those. Our MD5 2920 // implementation always returns its results in little endian, so we actually 2921 // need the "high" word. 2922 MD5::MD5Result Result; 2923 Hash.final(Result); 2924 return Result.high(); 2925 } 2926 2927 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2928 StringRef Identifier, DIE &RefDie, 2929 const DICompositeType *CTy) { 2930 // Fast path if we're building some type units and one has already used the 2931 // address pool we know we're going to throw away all this work anyway, so 2932 // don't bother building dependent types. 2933 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2934 return; 2935 2936 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2937 if (!Ins.second) { 2938 CU.addDIETypeSignature(RefDie, Ins.first->second); 2939 return; 2940 } 2941 2942 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2943 AddrPool.resetUsedFlag(); 2944 2945 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 2946 getDwoLineTable(CU)); 2947 DwarfTypeUnit &NewTU = *OwnedUnit; 2948 DIE &UnitDie = NewTU.getUnitDie(); 2949 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 2950 2951 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2952 CU.getLanguage()); 2953 2954 uint64_t Signature = makeTypeSignature(Identifier); 2955 NewTU.setTypeSignature(Signature); 2956 Ins.first->second = Signature; 2957 2958 if (useSplitDwarf()) { 2959 MCSection *Section = 2960 getDwarfVersion() <= 4 2961 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 2962 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 2963 NewTU.setSection(Section); 2964 } else { 2965 MCSection *Section = 2966 getDwarfVersion() <= 4 2967 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 2968 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 2969 NewTU.setSection(Section); 2970 // Non-split type units reuse the compile unit's line table. 2971 CU.applyStmtList(UnitDie); 2972 } 2973 2974 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 2975 // units. 2976 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 2977 NewTU.addStringOffsetsStart(); 2978 2979 NewTU.setType(NewTU.createTypeDIE(CTy)); 2980 2981 if (TopLevelType) { 2982 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 2983 TypeUnitsUnderConstruction.clear(); 2984 2985 // Types referencing entries in the address table cannot be placed in type 2986 // units. 2987 if (AddrPool.hasBeenUsed()) { 2988 2989 // Remove all the types built while building this type. 2990 // This is pessimistic as some of these types might not be dependent on 2991 // the type that used an address. 2992 for (const auto &TU : TypeUnitsToAdd) 2993 TypeSignatures.erase(TU.second); 2994 2995 // Construct this type in the CU directly. 2996 // This is inefficient because all the dependent types will be rebuilt 2997 // from scratch, including building them in type units, discovering that 2998 // they depend on addresses, throwing them out and rebuilding them. 2999 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3000 return; 3001 } 3002 3003 // If the type wasn't dependent on fission addresses, finish adding the type 3004 // and all its dependent types. 3005 for (auto &TU : TypeUnitsToAdd) { 3006 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3007 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3008 } 3009 } 3010 CU.addDIETypeSignature(RefDie, Signature); 3011 } 3012 3013 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3014 : DD(DD), 3015 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3016 DD->TypeUnitsUnderConstruction.clear(); 3017 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3018 } 3019 3020 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3021 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3022 DD->AddrPool.resetUsedFlag(); 3023 } 3024 3025 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3026 return NonTypeUnitContext(this); 3027 } 3028 3029 // Add the Name along with its companion DIE to the appropriate accelerator 3030 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3031 // AccelTableKind::Apple, we use the table we got as an argument). If 3032 // accelerator tables are disabled, this function does nothing. 3033 template <typename DataT> 3034 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3035 AccelTable<DataT> &AppleAccel, StringRef Name, 3036 const DIE &Die) { 3037 if (getAccelTableKind() == AccelTableKind::None) 3038 return; 3039 3040 if (getAccelTableKind() != AccelTableKind::Apple && 3041 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3042 return; 3043 3044 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3045 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3046 3047 switch (getAccelTableKind()) { 3048 case AccelTableKind::Apple: 3049 AppleAccel.addName(Ref, Die); 3050 break; 3051 case AccelTableKind::Dwarf: 3052 AccelDebugNames.addName(Ref, Die); 3053 break; 3054 case AccelTableKind::Default: 3055 llvm_unreachable("Default should have already been resolved."); 3056 case AccelTableKind::None: 3057 llvm_unreachable("None handled above"); 3058 } 3059 } 3060 3061 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3062 const DIE &Die) { 3063 addAccelNameImpl(CU, AccelNames, Name, Die); 3064 } 3065 3066 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3067 const DIE &Die) { 3068 // ObjC names go only into the Apple accelerator tables. 3069 if (getAccelTableKind() == AccelTableKind::Apple) 3070 addAccelNameImpl(CU, AccelObjC, Name, Die); 3071 } 3072 3073 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3074 const DIE &Die) { 3075 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3076 } 3077 3078 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3079 const DIE &Die, char Flags) { 3080 addAccelNameImpl(CU, AccelTypes, Name, Die); 3081 } 3082 3083 uint16_t DwarfDebug::getDwarfVersion() const { 3084 return Asm->OutStreamer->getContext().getDwarfVersion(); 3085 } 3086 3087 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3088 return SectionLabels.find(S)->second; 3089 } 3090