1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 35 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MD5.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLoweringObjectFile.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cstddef> 58 #include <iterator> 59 #include <string> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "dwarfdebug" 64 65 STATISTIC(NumCSParams, "Number of dbg call site params created"); 66 67 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 68 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 69 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 70 71 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 72 cl::Hidden, 73 cl::desc("Generate dwarf aranges"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 78 cl::desc("Generate DWARF4 type units."), 79 cl::init(false)); 80 81 static cl::opt<bool> SplitDwarfCrossCuReferences( 82 "split-dwarf-cross-cu-references", cl::Hidden, 83 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 84 85 enum DefaultOnOff { Default, Enable, Disable }; 86 87 static cl::opt<DefaultOnOff> UnknownLocations( 88 "use-unknown-locations", cl::Hidden, 89 cl::desc("Make an absence of debug location information explicit."), 90 cl::values(clEnumVal(Default, "At top of block or after label"), 91 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 92 cl::init(Default)); 93 94 static cl::opt<AccelTableKind> AccelTables( 95 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 96 cl::values(clEnumValN(AccelTableKind::Default, "Default", 97 "Default for platform"), 98 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 99 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 100 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 101 cl::init(AccelTableKind::Default)); 102 103 static cl::opt<DefaultOnOff> 104 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 105 cl::desc("Use inlined strings rather than string section."), 106 cl::values(clEnumVal(Default, "Default for platform"), 107 clEnumVal(Enable, "Enabled"), 108 clEnumVal(Disable, "Disabled")), 109 cl::init(Default)); 110 111 static cl::opt<bool> 112 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 113 cl::desc("Disable emission .debug_ranges section."), 114 cl::init(false)); 115 116 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 117 "dwarf-sections-as-references", cl::Hidden, 118 cl::desc("Use sections+offset as references rather than labels."), 119 cl::values(clEnumVal(Default, "Default for platform"), 120 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 121 cl::init(Default)); 122 123 static cl::opt<bool> 124 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 125 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 126 cl::init(false)); 127 128 static cl::opt<DefaultOnOff> DwarfOpConvert( 129 "dwarf-op-convert", cl::Hidden, 130 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 131 cl::values(clEnumVal(Default, "Default for platform"), 132 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 133 cl::init(Default)); 134 135 enum LinkageNameOption { 136 DefaultLinkageNames, 137 AllLinkageNames, 138 AbstractLinkageNames 139 }; 140 141 static cl::opt<LinkageNameOption> 142 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 143 cl::desc("Which DWARF linkage-name attributes to emit."), 144 cl::values(clEnumValN(DefaultLinkageNames, "Default", 145 "Default for platform"), 146 clEnumValN(AllLinkageNames, "All", "All"), 147 clEnumValN(AbstractLinkageNames, "Abstract", 148 "Abstract subprograms")), 149 cl::init(DefaultLinkageNames)); 150 151 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 152 "minimize-addr-in-v5", cl::Hidden, 153 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 154 "address pool entry sharing to reduce relocations/object size"), 155 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 156 "Default address minimization strategy"), 157 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 158 "Use rnglists for contiguous ranges if that allows " 159 "using a pre-existing base address"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 161 "Expressions", 162 "Use exprloc addrx+offset expressions for any " 163 "address with a prior base address"), 164 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 165 "Use addrx+offset extension form for any address " 166 "with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 168 "Stuff")), 169 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 170 171 static constexpr unsigned ULEB128PadSize = 4; 172 173 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 174 getActiveStreamer().emitInt8( 175 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 176 : dwarf::OperationEncodingString(Op)); 177 } 178 179 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 180 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 181 } 182 183 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 184 getActiveStreamer().emitULEB128(Value, Twine(Value)); 185 } 186 187 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 188 getActiveStreamer().emitInt8(Value, Twine(Value)); 189 } 190 191 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 192 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 193 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 194 } 195 196 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 197 llvm::Register MachineReg) { 198 // This information is not available while emitting .debug_loc entries. 199 return false; 200 } 201 202 void DebugLocDwarfExpression::enableTemporaryBuffer() { 203 assert(!IsBuffering && "Already buffering?"); 204 if (!TmpBuf) 205 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 206 IsBuffering = true; 207 } 208 209 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 210 211 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 212 return TmpBuf ? TmpBuf->Bytes.size() : 0; 213 } 214 215 void DebugLocDwarfExpression::commitTemporaryBuffer() { 216 if (!TmpBuf) 217 return; 218 for (auto Byte : enumerate(TmpBuf->Bytes)) { 219 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 220 ? TmpBuf->Comments[Byte.index()].c_str() 221 : ""; 222 OutBS.emitInt8(Byte.value(), Comment); 223 } 224 TmpBuf->Bytes.clear(); 225 TmpBuf->Comments.clear(); 226 } 227 228 const DIType *DbgVariable::getType() const { 229 return getVariable()->getType(); 230 } 231 232 /// Get .debug_loc entry for the instruction range starting at MI. 233 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 234 const DIExpression *Expr = MI->getDebugExpression(); 235 const bool IsVariadic = MI->isDebugValueList(); 236 assert(MI->getNumOperands() >= 3); 237 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 238 for (const MachineOperand &Op : MI->debug_operands()) { 239 if (Op.isReg()) { 240 MachineLocation MLoc(Op.getReg(), 241 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 242 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 243 } else if (Op.isTargetIndex()) { 244 DbgValueLocEntries.push_back( 245 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 246 } else if (Op.isImm()) 247 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 248 else if (Op.isFPImm()) 249 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 250 else if (Op.isCImm()) 251 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 252 else 253 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 254 } 255 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 256 } 257 258 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 259 assert(FrameIndexExprs.empty() && "Already initialized?"); 260 assert(!ValueLoc.get() && "Already initialized?"); 261 262 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 263 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 264 "Wrong inlined-at"); 265 266 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 267 if (auto *E = DbgValue->getDebugExpression()) 268 if (E->getNumElements()) 269 FrameIndexExprs.push_back({0, E}); 270 } 271 272 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 273 if (FrameIndexExprs.size() == 1) 274 return FrameIndexExprs; 275 276 assert(llvm::all_of(FrameIndexExprs, 277 [](const FrameIndexExpr &A) { 278 return A.Expr->isFragment(); 279 }) && 280 "multiple FI expressions without DW_OP_LLVM_fragment"); 281 llvm::sort(FrameIndexExprs, 282 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 283 return A.Expr->getFragmentInfo()->OffsetInBits < 284 B.Expr->getFragmentInfo()->OffsetInBits; 285 }); 286 287 return FrameIndexExprs; 288 } 289 290 void DbgVariable::addMMIEntry(const DbgVariable &V) { 291 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 292 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 293 assert(V.getVariable() == getVariable() && "conflicting variable"); 294 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 295 296 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 297 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 298 299 // FIXME: This logic should not be necessary anymore, as we now have proper 300 // deduplication. However, without it, we currently run into the assertion 301 // below, which means that we are likely dealing with broken input, i.e. two 302 // non-fragment entries for the same variable at different frame indices. 303 if (FrameIndexExprs.size()) { 304 auto *Expr = FrameIndexExprs.back().Expr; 305 if (!Expr || !Expr->isFragment()) 306 return; 307 } 308 309 for (const auto &FIE : V.FrameIndexExprs) 310 // Ignore duplicate entries. 311 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 312 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 313 })) 314 FrameIndexExprs.push_back(FIE); 315 316 assert((FrameIndexExprs.size() == 1 || 317 llvm::all_of(FrameIndexExprs, 318 [](FrameIndexExpr &FIE) { 319 return FIE.Expr && FIE.Expr->isFragment(); 320 })) && 321 "conflicting locations for variable"); 322 } 323 324 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 325 bool GenerateTypeUnits, 326 DebuggerKind Tuning, 327 const Triple &TT) { 328 // Honor an explicit request. 329 if (AccelTables != AccelTableKind::Default) 330 return AccelTables; 331 332 // Accelerator tables with type units are currently not supported. 333 if (GenerateTypeUnits) 334 return AccelTableKind::None; 335 336 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 337 // always implies debug_names. For lower standard versions we use apple 338 // accelerator tables on apple platforms and debug_names elsewhere. 339 if (DwarfVersion >= 5) 340 return AccelTableKind::Dwarf; 341 if (Tuning == DebuggerKind::LLDB) 342 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 343 : AccelTableKind::Dwarf; 344 return AccelTableKind::None; 345 } 346 347 DwarfDebug::DwarfDebug(AsmPrinter *A) 348 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 349 InfoHolder(A, "info_string", DIEValueAllocator), 350 SkeletonHolder(A, "skel_string", DIEValueAllocator), 351 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 352 const Triple &TT = Asm->TM.getTargetTriple(); 353 354 // Make sure we know our "debugger tuning". The target option takes 355 // precedence; fall back to triple-based defaults. 356 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 357 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 358 else if (IsDarwin) 359 DebuggerTuning = DebuggerKind::LLDB; 360 else if (TT.isPS()) 361 DebuggerTuning = DebuggerKind::SCE; 362 else if (TT.isOSAIX()) 363 DebuggerTuning = DebuggerKind::DBX; 364 else 365 DebuggerTuning = DebuggerKind::GDB; 366 367 if (DwarfInlinedStrings == Default) 368 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 369 else 370 UseInlineStrings = DwarfInlinedStrings == Enable; 371 372 UseLocSection = !TT.isNVPTX(); 373 374 HasAppleExtensionAttributes = tuneForLLDB(); 375 376 // Handle split DWARF. 377 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 378 379 // SCE defaults to linkage names only for abstract subprograms. 380 if (DwarfLinkageNames == DefaultLinkageNames) 381 UseAllLinkageNames = !tuneForSCE(); 382 else 383 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 384 385 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 386 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 387 : MMI->getModule()->getDwarfVersion(); 388 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 389 DwarfVersion = 390 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 391 392 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 393 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 394 395 // Support DWARF64 396 // 1: For ELF when requested. 397 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 398 // according to the DWARF64 format for 64-bit assembly, so we must use 399 // DWARF64 in the compiler too for 64-bit mode. 400 Dwarf64 &= 401 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 402 TT.isOSBinFormatELF()) || 403 TT.isOSBinFormatXCOFF(); 404 405 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 406 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 407 408 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 409 410 // Use sections as references. Force for NVPTX. 411 if (DwarfSectionsAsReferences == Default) 412 UseSectionsAsReferences = TT.isNVPTX(); 413 else 414 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 415 416 // Don't generate type units for unsupported object file formats. 417 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 418 A->TM.getTargetTriple().isOSBinFormatWasm()) && 419 GenerateDwarfTypeUnits; 420 421 TheAccelTableKind = computeAccelTableKind( 422 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 423 424 // Work around a GDB bug. GDB doesn't support the standard opcode; 425 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 426 // is defined as of DWARF 3. 427 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 428 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 429 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 430 431 // GDB does not fully support the DWARF 4 representation for bitfields. 432 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 433 434 // The DWARF v5 string offsets table has - possibly shared - contributions 435 // from each compile and type unit each preceded by a header. The string 436 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 437 // a monolithic string offsets table without any header. 438 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 439 440 // Emit call-site-param debug info for GDB and LLDB, if the target supports 441 // the debug entry values feature. It can also be enabled explicitly. 442 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 443 444 // It is unclear if the GCC .debug_macro extension is well-specified 445 // for split DWARF. For now, do not allow LLVM to emit it. 446 UseDebugMacroSection = 447 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 448 if (DwarfOpConvert == Default) 449 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 450 else 451 EnableOpConvert = (DwarfOpConvert == Enable); 452 453 // Split DWARF would benefit object size significantly by trading reductions 454 // in address pool usage for slightly increased range list encodings. 455 if (DwarfVersion >= 5) { 456 MinimizeAddr = MinimizeAddrInV5Option; 457 // FIXME: In the future, enable this by default for Split DWARF where the 458 // tradeoff is more pronounced due to being able to offload the range 459 // lists to the dwo file and shrink object files/reduce relocations there. 460 if (MinimizeAddr == MinimizeAddrInV5::Default) 461 MinimizeAddr = MinimizeAddrInV5::Disabled; 462 } 463 464 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 465 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 466 : dwarf::DWARF32); 467 } 468 469 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 470 DwarfDebug::~DwarfDebug() = default; 471 472 static bool isObjCClass(StringRef Name) { 473 return Name.startswith("+") || Name.startswith("-"); 474 } 475 476 static bool hasObjCCategory(StringRef Name) { 477 if (!isObjCClass(Name)) 478 return false; 479 480 return Name.contains(") "); 481 } 482 483 static void getObjCClassCategory(StringRef In, StringRef &Class, 484 StringRef &Category) { 485 if (!hasObjCCategory(In)) { 486 Class = In.slice(In.find('[') + 1, In.find(' ')); 487 Category = ""; 488 return; 489 } 490 491 Class = In.slice(In.find('[') + 1, In.find('(')); 492 Category = In.slice(In.find('[') + 1, In.find(' ')); 493 } 494 495 static StringRef getObjCMethodName(StringRef In) { 496 return In.slice(In.find(' ') + 1, In.find(']')); 497 } 498 499 // Add the various names to the Dwarf accelerator table names. 500 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 501 const DISubprogram *SP, DIE &Die) { 502 if (getAccelTableKind() != AccelTableKind::Apple && 503 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 504 return; 505 506 if (!SP->isDefinition()) 507 return; 508 509 if (SP->getName() != "") 510 addAccelName(CU, SP->getName(), Die); 511 512 // If the linkage name is different than the name, go ahead and output that as 513 // well into the name table. Only do that if we are going to actually emit 514 // that name. 515 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 516 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 517 addAccelName(CU, SP->getLinkageName(), Die); 518 519 // If this is an Objective-C selector name add it to the ObjC accelerator 520 // too. 521 if (isObjCClass(SP->getName())) { 522 StringRef Class, Category; 523 getObjCClassCategory(SP->getName(), Class, Category); 524 addAccelObjC(CU, Class, Die); 525 if (Category != "") 526 addAccelObjC(CU, Category, Die); 527 // Also add the base method name to the name table. 528 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 529 } 530 } 531 532 /// Check whether we should create a DIE for the given Scope, return true 533 /// if we don't create a DIE (the corresponding DIE is null). 534 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 535 if (Scope->isAbstractScope()) 536 return false; 537 538 // We don't create a DIE if there is no Range. 539 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 540 if (Ranges.empty()) 541 return true; 542 543 if (Ranges.size() > 1) 544 return false; 545 546 // We don't create a DIE if we have a single Range and the end label 547 // is null. 548 return !getLabelAfterInsn(Ranges.front().second); 549 } 550 551 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 552 F(CU); 553 if (auto *SkelCU = CU.getSkeleton()) 554 if (CU.getCUNode()->getSplitDebugInlining()) 555 F(*SkelCU); 556 } 557 558 bool DwarfDebug::shareAcrossDWOCUs() const { 559 return SplitDwarfCrossCuReferences; 560 } 561 562 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 563 LexicalScope *Scope) { 564 assert(Scope && Scope->getScopeNode()); 565 assert(Scope->isAbstractScope()); 566 assert(!Scope->getInlinedAt()); 567 568 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 569 570 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 571 // was inlined from another compile unit. 572 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 573 // Avoid building the original CU if it won't be used 574 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 575 else { 576 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 577 if (auto *SkelCU = CU.getSkeleton()) { 578 (shareAcrossDWOCUs() ? CU : SrcCU) 579 .constructAbstractSubprogramScopeDIE(Scope); 580 if (CU.getCUNode()->getSplitDebugInlining()) 581 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 582 } else 583 CU.constructAbstractSubprogramScopeDIE(Scope); 584 } 585 } 586 587 /// Represents a parameter whose call site value can be described by applying a 588 /// debug expression to a register in the forwarded register worklist. 589 struct FwdRegParamInfo { 590 /// The described parameter register. 591 unsigned ParamReg; 592 593 /// Debug expression that has been built up when walking through the 594 /// instruction chain that produces the parameter's value. 595 const DIExpression *Expr; 596 }; 597 598 /// Register worklist for finding call site values. 599 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 600 601 /// Append the expression \p Addition to \p Original and return the result. 602 static const DIExpression *combineDIExpressions(const DIExpression *Original, 603 const DIExpression *Addition) { 604 std::vector<uint64_t> Elts = Addition->getElements().vec(); 605 // Avoid multiple DW_OP_stack_values. 606 if (Original->isImplicit() && Addition->isImplicit()) 607 erase_value(Elts, dwarf::DW_OP_stack_value); 608 const DIExpression *CombinedExpr = 609 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 610 return CombinedExpr; 611 } 612 613 /// Emit call site parameter entries that are described by the given value and 614 /// debug expression. 615 template <typename ValT> 616 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 617 ArrayRef<FwdRegParamInfo> DescribedParams, 618 ParamSet &Params) { 619 for (auto Param : DescribedParams) { 620 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 621 622 // TODO: Entry value operations can currently not be combined with any 623 // other expressions, so we can't emit call site entries in those cases. 624 if (ShouldCombineExpressions && Expr->isEntryValue()) 625 continue; 626 627 // If a parameter's call site value is produced by a chain of 628 // instructions we may have already created an expression for the 629 // parameter when walking through the instructions. Append that to the 630 // base expression. 631 const DIExpression *CombinedExpr = 632 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 633 : Expr; 634 assert((!CombinedExpr || CombinedExpr->isValid()) && 635 "Combined debug expression is invalid"); 636 637 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 638 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 639 Params.push_back(CSParm); 640 ++NumCSParams; 641 } 642 } 643 644 /// Add \p Reg to the worklist, if it's not already present, and mark that the 645 /// given parameter registers' values can (potentially) be described using 646 /// that register and an debug expression. 647 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 648 const DIExpression *Expr, 649 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 650 auto I = Worklist.insert({Reg, {}}); 651 auto &ParamsForFwdReg = I.first->second; 652 for (auto Param : ParamsToAdd) { 653 assert(none_of(ParamsForFwdReg, 654 [Param](const FwdRegParamInfo &D) { 655 return D.ParamReg == Param.ParamReg; 656 }) && 657 "Same parameter described twice by forwarding reg"); 658 659 // If a parameter's call site value is produced by a chain of 660 // instructions we may have already created an expression for the 661 // parameter when walking through the instructions. Append that to the 662 // new expression. 663 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 664 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 665 } 666 } 667 668 /// Interpret values loaded into registers by \p CurMI. 669 static void interpretValues(const MachineInstr *CurMI, 670 FwdRegWorklist &ForwardedRegWorklist, 671 ParamSet &Params) { 672 673 const MachineFunction *MF = CurMI->getMF(); 674 const DIExpression *EmptyExpr = 675 DIExpression::get(MF->getFunction().getContext(), {}); 676 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 677 const auto &TII = *MF->getSubtarget().getInstrInfo(); 678 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 679 680 // If an instruction defines more than one item in the worklist, we may run 681 // into situations where a worklist register's value is (potentially) 682 // described by the previous value of another register that is also defined 683 // by that instruction. 684 // 685 // This can for example occur in cases like this: 686 // 687 // $r1 = mov 123 688 // $r0, $r1 = mvrr $r1, 456 689 // call @foo, $r0, $r1 690 // 691 // When describing $r1's value for the mvrr instruction, we need to make sure 692 // that we don't finalize an entry value for $r0, as that is dependent on the 693 // previous value of $r1 (123 rather than 456). 694 // 695 // In order to not have to distinguish between those cases when finalizing 696 // entry values, we simply postpone adding new parameter registers to the 697 // worklist, by first keeping them in this temporary container until the 698 // instruction has been handled. 699 FwdRegWorklist TmpWorklistItems; 700 701 // If the MI is an instruction defining one or more parameters' forwarding 702 // registers, add those defines. 703 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 704 SmallSetVector<unsigned, 4> &Defs) { 705 if (MI.isDebugInstr()) 706 return; 707 708 for (const MachineOperand &MO : MI.operands()) { 709 if (MO.isReg() && MO.isDef() && 710 Register::isPhysicalRegister(MO.getReg())) { 711 for (auto &FwdReg : ForwardedRegWorklist) 712 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 713 Defs.insert(FwdReg.first); 714 } 715 } 716 }; 717 718 // Set of worklist registers that are defined by this instruction. 719 SmallSetVector<unsigned, 4> FwdRegDefs; 720 721 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 722 if (FwdRegDefs.empty()) 723 return; 724 725 for (auto ParamFwdReg : FwdRegDefs) { 726 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 727 if (ParamValue->first.isImm()) { 728 int64_t Val = ParamValue->first.getImm(); 729 finishCallSiteParams(Val, ParamValue->second, 730 ForwardedRegWorklist[ParamFwdReg], Params); 731 } else if (ParamValue->first.isReg()) { 732 Register RegLoc = ParamValue->first.getReg(); 733 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 734 Register FP = TRI.getFrameRegister(*MF); 735 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 736 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 737 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 738 finishCallSiteParams(MLoc, ParamValue->second, 739 ForwardedRegWorklist[ParamFwdReg], Params); 740 } else { 741 // ParamFwdReg was described by the non-callee saved register 742 // RegLoc. Mark that the call site values for the parameters are 743 // dependent on that register instead of ParamFwdReg. Since RegLoc 744 // may be a register that will be handled in this iteration, we 745 // postpone adding the items to the worklist, and instead keep them 746 // in a temporary container. 747 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 748 ForwardedRegWorklist[ParamFwdReg]); 749 } 750 } 751 } 752 } 753 754 // Remove all registers that this instruction defines from the worklist. 755 for (auto ParamFwdReg : FwdRegDefs) 756 ForwardedRegWorklist.erase(ParamFwdReg); 757 758 // Now that we are done handling this instruction, add items from the 759 // temporary worklist to the real one. 760 for (auto &New : TmpWorklistItems) 761 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 762 TmpWorklistItems.clear(); 763 } 764 765 static bool interpretNextInstr(const MachineInstr *CurMI, 766 FwdRegWorklist &ForwardedRegWorklist, 767 ParamSet &Params) { 768 // Skip bundle headers. 769 if (CurMI->isBundle()) 770 return true; 771 772 // If the next instruction is a call we can not interpret parameter's 773 // forwarding registers or we finished the interpretation of all 774 // parameters. 775 if (CurMI->isCall()) 776 return false; 777 778 if (ForwardedRegWorklist.empty()) 779 return false; 780 781 // Avoid NOP description. 782 if (CurMI->getNumOperands() == 0) 783 return true; 784 785 interpretValues(CurMI, ForwardedRegWorklist, Params); 786 787 return true; 788 } 789 790 /// Try to interpret values loaded into registers that forward parameters 791 /// for \p CallMI. Store parameters with interpreted value into \p Params. 792 static void collectCallSiteParameters(const MachineInstr *CallMI, 793 ParamSet &Params) { 794 const MachineFunction *MF = CallMI->getMF(); 795 const auto &CalleesMap = MF->getCallSitesInfo(); 796 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 797 798 // There is no information for the call instruction. 799 if (CallFwdRegsInfo == CalleesMap.end()) 800 return; 801 802 const MachineBasicBlock *MBB = CallMI->getParent(); 803 804 // Skip the call instruction. 805 auto I = std::next(CallMI->getReverseIterator()); 806 807 FwdRegWorklist ForwardedRegWorklist; 808 809 const DIExpression *EmptyExpr = 810 DIExpression::get(MF->getFunction().getContext(), {}); 811 812 // Add all the forwarding registers into the ForwardedRegWorklist. 813 for (const auto &ArgReg : CallFwdRegsInfo->second) { 814 bool InsertedReg = 815 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 816 .second; 817 assert(InsertedReg && "Single register used to forward two arguments?"); 818 (void)InsertedReg; 819 } 820 821 // Do not emit CSInfo for undef forwarding registers. 822 for (const auto &MO : CallMI->uses()) 823 if (MO.isReg() && MO.isUndef()) 824 ForwardedRegWorklist.erase(MO.getReg()); 825 826 // We erase, from the ForwardedRegWorklist, those forwarding registers for 827 // which we successfully describe a loaded value (by using 828 // the describeLoadedValue()). For those remaining arguments in the working 829 // list, for which we do not describe a loaded value by 830 // the describeLoadedValue(), we try to generate an entry value expression 831 // for their call site value description, if the call is within the entry MBB. 832 // TODO: Handle situations when call site parameter value can be described 833 // as the entry value within basic blocks other than the first one. 834 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 835 836 // Search for a loading value in forwarding registers inside call delay slot. 837 if (CallMI->hasDelaySlot()) { 838 auto Suc = std::next(CallMI->getIterator()); 839 // Only one-instruction delay slot is supported. 840 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 841 (void)BundleEnd; 842 assert(std::next(Suc) == BundleEnd && 843 "More than one instruction in call delay slot"); 844 // Try to interpret value loaded by instruction. 845 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 846 return; 847 } 848 849 // Search for a loading value in forwarding registers. 850 for (; I != MBB->rend(); ++I) { 851 // Try to interpret values loaded by instruction. 852 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 853 return; 854 } 855 856 // Emit the call site parameter's value as an entry value. 857 if (ShouldTryEmitEntryVals) { 858 // Create an expression where the register's entry value is used. 859 DIExpression *EntryExpr = DIExpression::get( 860 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 861 for (auto &RegEntry : ForwardedRegWorklist) { 862 MachineLocation MLoc(RegEntry.first); 863 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 864 } 865 } 866 } 867 868 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 869 DwarfCompileUnit &CU, DIE &ScopeDIE, 870 const MachineFunction &MF) { 871 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 872 // the subprogram is required to have one. 873 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 874 return; 875 876 // Use DW_AT_call_all_calls to express that call site entries are present 877 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 878 // because one of its requirements is not met: call site entries for 879 // optimized-out calls are elided. 880 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 881 882 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 883 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 884 885 // Delay slot support check. 886 auto delaySlotSupported = [&](const MachineInstr &MI) { 887 if (!MI.isBundledWithSucc()) 888 return false; 889 auto Suc = std::next(MI.getIterator()); 890 auto CallInstrBundle = getBundleStart(MI.getIterator()); 891 (void)CallInstrBundle; 892 auto DelaySlotBundle = getBundleStart(Suc); 893 (void)DelaySlotBundle; 894 // Ensure that label after call is following delay slot instruction. 895 // Ex. CALL_INSTRUCTION { 896 // DELAY_SLOT_INSTRUCTION } 897 // LABEL_AFTER_CALL 898 assert(getLabelAfterInsn(&*CallInstrBundle) == 899 getLabelAfterInsn(&*DelaySlotBundle) && 900 "Call and its successor instruction don't have same label after."); 901 return true; 902 }; 903 904 // Emit call site entries for each call or tail call in the function. 905 for (const MachineBasicBlock &MBB : MF) { 906 for (const MachineInstr &MI : MBB.instrs()) { 907 // Bundles with call in them will pass the isCall() test below but do not 908 // have callee operand information so skip them here. Iterator will 909 // eventually reach the call MI. 910 if (MI.isBundle()) 911 continue; 912 913 // Skip instructions which aren't calls. Both calls and tail-calling jump 914 // instructions (e.g TAILJMPd64) are classified correctly here. 915 if (!MI.isCandidateForCallSiteEntry()) 916 continue; 917 918 // Skip instructions marked as frame setup, as they are not interesting to 919 // the user. 920 if (MI.getFlag(MachineInstr::FrameSetup)) 921 continue; 922 923 // Check if delay slot support is enabled. 924 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 925 return; 926 927 // If this is a direct call, find the callee's subprogram. 928 // In the case of an indirect call find the register that holds 929 // the callee. 930 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 931 if (!CalleeOp.isGlobal() && 932 (!CalleeOp.isReg() || 933 !Register::isPhysicalRegister(CalleeOp.getReg()))) 934 continue; 935 936 unsigned CallReg = 0; 937 const DISubprogram *CalleeSP = nullptr; 938 const Function *CalleeDecl = nullptr; 939 if (CalleeOp.isReg()) { 940 CallReg = CalleeOp.getReg(); 941 if (!CallReg) 942 continue; 943 } else { 944 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 945 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 946 continue; 947 CalleeSP = CalleeDecl->getSubprogram(); 948 } 949 950 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 951 952 bool IsTail = TII->isTailCall(MI); 953 954 // If MI is in a bundle, the label was created after the bundle since 955 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 956 // to search for that label below. 957 const MachineInstr *TopLevelCallMI = 958 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 959 960 // For non-tail calls, the return PC is needed to disambiguate paths in 961 // the call graph which could lead to some target function. For tail 962 // calls, no return PC information is needed, unless tuning for GDB in 963 // DWARF4 mode in which case we fake a return PC for compatibility. 964 const MCSymbol *PCAddr = 965 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 966 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 967 : nullptr; 968 969 // For tail calls, it's necessary to record the address of the branch 970 // instruction so that the debugger can show where the tail call occurred. 971 const MCSymbol *CallAddr = 972 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 973 974 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 975 976 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 977 << (CalleeDecl ? CalleeDecl->getName() 978 : StringRef(MF.getSubtarget() 979 .getRegisterInfo() 980 ->getName(CallReg))) 981 << (IsTail ? " [IsTail]" : "") << "\n"); 982 983 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 984 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); 985 986 // Optionally emit call-site-param debug info. 987 if (emitDebugEntryValues()) { 988 ParamSet Params; 989 // Try to interpret values of call site parameters. 990 collectCallSiteParameters(&MI, Params); 991 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 992 } 993 } 994 } 995 } 996 997 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 998 if (!U.hasDwarfPubSections()) 999 return; 1000 1001 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1002 } 1003 1004 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1005 DwarfCompileUnit &NewCU) { 1006 DIE &Die = NewCU.getUnitDie(); 1007 StringRef FN = DIUnit->getFilename(); 1008 1009 StringRef Producer = DIUnit->getProducer(); 1010 StringRef Flags = DIUnit->getFlags(); 1011 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1012 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1013 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1014 } else 1015 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1016 1017 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1018 DIUnit->getSourceLanguage()); 1019 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1020 StringRef SysRoot = DIUnit->getSysRoot(); 1021 if (!SysRoot.empty()) 1022 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1023 StringRef SDK = DIUnit->getSDK(); 1024 if (!SDK.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1026 1027 // Add DW_str_offsets_base to the unit DIE, except for split units. 1028 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1029 NewCU.addStringOffsetsStart(); 1030 1031 if (!useSplitDwarf()) { 1032 NewCU.initStmtList(); 1033 1034 // If we're using split dwarf the compilation dir is going to be in the 1035 // skeleton CU and so we don't need to duplicate it here. 1036 if (!CompilationDir.empty()) 1037 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1038 addGnuPubAttributes(NewCU, Die); 1039 } 1040 1041 if (useAppleExtensionAttributes()) { 1042 if (DIUnit->isOptimized()) 1043 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1044 1045 StringRef Flags = DIUnit->getFlags(); 1046 if (!Flags.empty()) 1047 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1048 1049 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1050 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1051 dwarf::DW_FORM_data1, RVer); 1052 } 1053 1054 if (DIUnit->getDWOId()) { 1055 // This CU is either a clang module DWO or a skeleton CU. 1056 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1057 DIUnit->getDWOId()); 1058 if (!DIUnit->getSplitDebugFilename().empty()) { 1059 // This is a prefabricated skeleton CU. 1060 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1061 ? dwarf::DW_AT_dwo_name 1062 : dwarf::DW_AT_GNU_dwo_name; 1063 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1064 } 1065 } 1066 } 1067 // Create new DwarfCompileUnit for the given metadata node with tag 1068 // DW_TAG_compile_unit. 1069 DwarfCompileUnit & 1070 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1071 if (auto *CU = CUMap.lookup(DIUnit)) 1072 return *CU; 1073 1074 CompilationDir = DIUnit->getDirectory(); 1075 1076 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1077 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1078 DwarfCompileUnit &NewCU = *OwnedUnit; 1079 InfoHolder.addUnit(std::move(OwnedUnit)); 1080 1081 for (auto *IE : DIUnit->getImportedEntities()) 1082 NewCU.addImportedEntity(IE); 1083 1084 // LTO with assembly output shares a single line table amongst multiple CUs. 1085 // To avoid the compilation directory being ambiguous, let the line table 1086 // explicitly describe the directory of all files, never relying on the 1087 // compilation directory. 1088 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1089 Asm->OutStreamer->emitDwarfFile0Directive( 1090 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1091 DIUnit->getSource(), NewCU.getUniqueID()); 1092 1093 if (useSplitDwarf()) { 1094 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1095 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1096 } else { 1097 finishUnitAttributes(DIUnit, NewCU); 1098 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1099 } 1100 1101 CUMap.insert({DIUnit, &NewCU}); 1102 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1103 return NewCU; 1104 } 1105 1106 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1107 const DIImportedEntity *N) { 1108 if (isa<DILocalScope>(N->getScope())) 1109 return; 1110 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1111 D->addChild(TheCU.constructImportedEntityDIE(N)); 1112 } 1113 1114 /// Sort and unique GVEs by comparing their fragment offset. 1115 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1116 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1117 llvm::sort( 1118 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1119 // Sort order: first null exprs, then exprs without fragment 1120 // info, then sort by fragment offset in bits. 1121 // FIXME: Come up with a more comprehensive comparator so 1122 // the sorting isn't non-deterministic, and so the following 1123 // std::unique call works correctly. 1124 if (!A.Expr || !B.Expr) 1125 return !!B.Expr; 1126 auto FragmentA = A.Expr->getFragmentInfo(); 1127 auto FragmentB = B.Expr->getFragmentInfo(); 1128 if (!FragmentA || !FragmentB) 1129 return !!FragmentB; 1130 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1131 }); 1132 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1133 [](DwarfCompileUnit::GlobalExpr A, 1134 DwarfCompileUnit::GlobalExpr B) { 1135 return A.Expr == B.Expr; 1136 }), 1137 GVEs.end()); 1138 return GVEs; 1139 } 1140 1141 // Emit all Dwarf sections that should come prior to the content. Create 1142 // global DIEs and emit initial debug info sections. This is invoked by 1143 // the target AsmPrinter. 1144 void DwarfDebug::beginModule(Module *M) { 1145 DebugHandlerBase::beginModule(M); 1146 1147 if (!Asm || !MMI->hasDebugInfo()) 1148 return; 1149 1150 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1151 M->debug_compile_units_end()); 1152 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1153 assert(MMI->hasDebugInfo() && 1154 "DebugInfoAvailabilty unexpectedly not initialized"); 1155 SingleCU = NumDebugCUs == 1; 1156 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1157 GVMap; 1158 for (const GlobalVariable &Global : M->globals()) { 1159 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1160 Global.getDebugInfo(GVs); 1161 for (auto *GVE : GVs) 1162 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1163 } 1164 1165 // Create the symbol that designates the start of the unit's contribution 1166 // to the string offsets table. In a split DWARF scenario, only the skeleton 1167 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1168 if (useSegmentedStringOffsetsTable()) 1169 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1170 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1171 1172 1173 // Create the symbols that designates the start of the DWARF v5 range list 1174 // and locations list tables. They are located past the table headers. 1175 if (getDwarfVersion() >= 5) { 1176 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1177 Holder.setRnglistsTableBaseSym( 1178 Asm->createTempSymbol("rnglists_table_base")); 1179 1180 if (useSplitDwarf()) 1181 InfoHolder.setRnglistsTableBaseSym( 1182 Asm->createTempSymbol("rnglists_dwo_table_base")); 1183 } 1184 1185 // Create the symbol that points to the first entry following the debug 1186 // address table (.debug_addr) header. 1187 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1188 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1189 1190 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1191 // FIXME: Move local imported entities into a list attached to the 1192 // subprogram, then this search won't be needed and a 1193 // getImportedEntities().empty() test should go below with the rest. 1194 bool HasNonLocalImportedEntities = llvm::any_of( 1195 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1196 return !isa<DILocalScope>(IE->getScope()); 1197 }); 1198 1199 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1200 CUNode->getRetainedTypes().empty() && 1201 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1202 continue; 1203 1204 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1205 1206 // Global Variables. 1207 for (auto *GVE : CUNode->getGlobalVariables()) { 1208 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1209 // already know about the variable and it isn't adding a constant 1210 // expression. 1211 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1212 auto *Expr = GVE->getExpression(); 1213 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1214 GVMapEntry.push_back({nullptr, Expr}); 1215 } 1216 1217 DenseSet<DIGlobalVariable *> Processed; 1218 for (auto *GVE : CUNode->getGlobalVariables()) { 1219 DIGlobalVariable *GV = GVE->getVariable(); 1220 if (Processed.insert(GV).second) 1221 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1222 } 1223 1224 for (auto *Ty : CUNode->getEnumTypes()) 1225 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1226 1227 for (auto *Ty : CUNode->getRetainedTypes()) { 1228 // The retained types array by design contains pointers to 1229 // MDNodes rather than DIRefs. Unique them here. 1230 if (DIType *RT = dyn_cast<DIType>(Ty)) 1231 // There is no point in force-emitting a forward declaration. 1232 CU.getOrCreateTypeDIE(RT); 1233 } 1234 // Emit imported_modules last so that the relevant context is already 1235 // available. 1236 for (auto *IE : CUNode->getImportedEntities()) 1237 constructAndAddImportedEntityDIE(CU, IE); 1238 } 1239 } 1240 1241 void DwarfDebug::finishEntityDefinitions() { 1242 for (const auto &Entity : ConcreteEntities) { 1243 DIE *Die = Entity->getDIE(); 1244 assert(Die); 1245 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1246 // in the ConcreteEntities list, rather than looking it up again here. 1247 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1248 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1249 assert(Unit); 1250 Unit->finishEntityDefinition(Entity.get()); 1251 } 1252 } 1253 1254 void DwarfDebug::finishSubprogramDefinitions() { 1255 for (const DISubprogram *SP : ProcessedSPNodes) { 1256 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1257 forBothCUs( 1258 getOrCreateDwarfCompileUnit(SP->getUnit()), 1259 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1260 } 1261 } 1262 1263 void DwarfDebug::finalizeModuleInfo() { 1264 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1265 1266 finishSubprogramDefinitions(); 1267 1268 finishEntityDefinitions(); 1269 1270 // Include the DWO file name in the hash if there's more than one CU. 1271 // This handles ThinLTO's situation where imported CUs may very easily be 1272 // duplicate with the same CU partially imported into another ThinLTO unit. 1273 StringRef DWOName; 1274 if (CUMap.size() > 1) 1275 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1276 1277 // Handle anything that needs to be done on a per-unit basis after 1278 // all other generation. 1279 for (const auto &P : CUMap) { 1280 auto &TheCU = *P.second; 1281 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1282 continue; 1283 // Emit DW_AT_containing_type attribute to connect types with their 1284 // vtable holding type. 1285 TheCU.constructContainingTypeDIEs(); 1286 1287 // Add CU specific attributes if we need to add any. 1288 // If we're splitting the dwarf out now that we've got the entire 1289 // CU then add the dwo id to it. 1290 auto *SkCU = TheCU.getSkeleton(); 1291 1292 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1293 1294 if (HasSplitUnit) { 1295 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1296 ? dwarf::DW_AT_dwo_name 1297 : dwarf::DW_AT_GNU_dwo_name; 1298 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1299 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1300 Asm->TM.Options.MCOptions.SplitDwarfFile); 1301 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1302 Asm->TM.Options.MCOptions.SplitDwarfFile); 1303 // Emit a unique identifier for this CU. 1304 uint64_t ID = 1305 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1306 if (getDwarfVersion() >= 5) { 1307 TheCU.setDWOId(ID); 1308 SkCU->setDWOId(ID); 1309 } else { 1310 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1311 dwarf::DW_FORM_data8, ID); 1312 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1313 dwarf::DW_FORM_data8, ID); 1314 } 1315 1316 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1317 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1318 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1319 Sym, Sym); 1320 } 1321 } else if (SkCU) { 1322 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1323 } 1324 1325 // If we have code split among multiple sections or non-contiguous 1326 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1327 // remain in the .o file, otherwise add a DW_AT_low_pc. 1328 // FIXME: We should use ranges allow reordering of code ala 1329 // .subsections_via_symbols in mach-o. This would mean turning on 1330 // ranges for all subprogram DIEs for mach-o. 1331 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1332 1333 if (unsigned NumRanges = TheCU.getRanges().size()) { 1334 if (NumRanges > 1 && useRangesSection()) 1335 // A DW_AT_low_pc attribute may also be specified in combination with 1336 // DW_AT_ranges to specify the default base address for use in 1337 // location lists (see Section 2.6.2) and range lists (see Section 1338 // 2.17.3). 1339 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1340 else 1341 U.setBaseAddress(TheCU.getRanges().front().Begin); 1342 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1343 } 1344 1345 // We don't keep track of which addresses are used in which CU so this 1346 // is a bit pessimistic under LTO. 1347 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1348 U.addAddrTableBase(); 1349 1350 if (getDwarfVersion() >= 5) { 1351 if (U.hasRangeLists()) 1352 U.addRnglistsBase(); 1353 1354 if (!DebugLocs.getLists().empty()) { 1355 if (!useSplitDwarf()) 1356 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1357 DebugLocs.getSym(), 1358 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1359 } 1360 } 1361 1362 auto *CUNode = cast<DICompileUnit>(P.first); 1363 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1364 // attribute. 1365 if (CUNode->getMacros()) { 1366 if (UseDebugMacroSection) { 1367 if (useSplitDwarf()) 1368 TheCU.addSectionDelta( 1369 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1370 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1371 else { 1372 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1373 ? dwarf::DW_AT_macros 1374 : dwarf::DW_AT_GNU_macros; 1375 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1376 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1377 } 1378 } else { 1379 if (useSplitDwarf()) 1380 TheCU.addSectionDelta( 1381 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1382 U.getMacroLabelBegin(), 1383 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1384 else 1385 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1386 U.getMacroLabelBegin(), 1387 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1388 } 1389 } 1390 } 1391 1392 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1393 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1394 if (CUNode->getDWOId()) 1395 getOrCreateDwarfCompileUnit(CUNode); 1396 1397 // Compute DIE offsets and sizes. 1398 InfoHolder.computeSizeAndOffsets(); 1399 if (useSplitDwarf()) 1400 SkeletonHolder.computeSizeAndOffsets(); 1401 } 1402 1403 // Emit all Dwarf sections that should come after the content. 1404 void DwarfDebug::endModule() { 1405 // Terminate the pending line table. 1406 if (PrevCU) 1407 terminateLineTable(PrevCU); 1408 PrevCU = nullptr; 1409 assert(CurFn == nullptr); 1410 assert(CurMI == nullptr); 1411 1412 for (const auto &P : CUMap) { 1413 auto &CU = *P.second; 1414 CU.createBaseTypeDIEs(); 1415 } 1416 1417 // If we aren't actually generating debug info (check beginModule - 1418 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1419 if (!Asm || !MMI->hasDebugInfo()) 1420 return; 1421 1422 // Finalize the debug info for the module. 1423 finalizeModuleInfo(); 1424 1425 if (useSplitDwarf()) 1426 // Emit debug_loc.dwo/debug_loclists.dwo section. 1427 emitDebugLocDWO(); 1428 else 1429 // Emit debug_loc/debug_loclists section. 1430 emitDebugLoc(); 1431 1432 // Corresponding abbreviations into a abbrev section. 1433 emitAbbreviations(); 1434 1435 // Emit all the DIEs into a debug info section. 1436 emitDebugInfo(); 1437 1438 // Emit info into a debug aranges section. 1439 if (GenerateARangeSection) 1440 emitDebugARanges(); 1441 1442 // Emit info into a debug ranges section. 1443 emitDebugRanges(); 1444 1445 if (useSplitDwarf()) 1446 // Emit info into a debug macinfo.dwo section. 1447 emitDebugMacinfoDWO(); 1448 else 1449 // Emit info into a debug macinfo/macro section. 1450 emitDebugMacinfo(); 1451 1452 emitDebugStr(); 1453 1454 if (useSplitDwarf()) { 1455 emitDebugStrDWO(); 1456 emitDebugInfoDWO(); 1457 emitDebugAbbrevDWO(); 1458 emitDebugLineDWO(); 1459 emitDebugRangesDWO(); 1460 } 1461 1462 emitDebugAddr(); 1463 1464 // Emit info into the dwarf accelerator table sections. 1465 switch (getAccelTableKind()) { 1466 case AccelTableKind::Apple: 1467 emitAccelNames(); 1468 emitAccelObjC(); 1469 emitAccelNamespaces(); 1470 emitAccelTypes(); 1471 break; 1472 case AccelTableKind::Dwarf: 1473 emitAccelDebugNames(); 1474 break; 1475 case AccelTableKind::None: 1476 break; 1477 case AccelTableKind::Default: 1478 llvm_unreachable("Default should have already been resolved."); 1479 } 1480 1481 // Emit the pubnames and pubtypes sections if requested. 1482 emitDebugPubSections(); 1483 1484 // clean up. 1485 // FIXME: AbstractVariables.clear(); 1486 } 1487 1488 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1489 const DINode *Node, 1490 const MDNode *ScopeNode) { 1491 if (CU.getExistingAbstractEntity(Node)) 1492 return; 1493 1494 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1495 cast<DILocalScope>(ScopeNode))); 1496 } 1497 1498 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1499 const DINode *Node, const MDNode *ScopeNode) { 1500 if (CU.getExistingAbstractEntity(Node)) 1501 return; 1502 1503 if (LexicalScope *Scope = 1504 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1505 CU.createAbstractEntity(Node, Scope); 1506 } 1507 1508 // Collect variable information from side table maintained by MF. 1509 void DwarfDebug::collectVariableInfoFromMFTable( 1510 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1511 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1512 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1513 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1514 if (!VI.Var) 1515 continue; 1516 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1517 "Expected inlined-at fields to agree"); 1518 1519 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1520 Processed.insert(Var); 1521 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1522 1523 // If variable scope is not found then skip this variable. 1524 if (!Scope) { 1525 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1526 << ", no variable scope found\n"); 1527 continue; 1528 } 1529 1530 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1531 auto RegVar = std::make_unique<DbgVariable>( 1532 cast<DILocalVariable>(Var.first), Var.second); 1533 RegVar->initializeMMI(VI.Expr, VI.Slot); 1534 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1535 << "\n"); 1536 1537 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1538 DbgVar->addMMIEntry(*RegVar); 1539 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1540 MFVars.insert({Var, RegVar.get()}); 1541 ConcreteEntities.push_back(std::move(RegVar)); 1542 } 1543 } 1544 } 1545 1546 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1547 /// enclosing lexical scope. The check ensures there are no other instructions 1548 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1549 /// either open or otherwise rolls off the end of the scope. 1550 static bool validThroughout(LexicalScopes &LScopes, 1551 const MachineInstr *DbgValue, 1552 const MachineInstr *RangeEnd, 1553 const InstructionOrdering &Ordering) { 1554 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1555 auto MBB = DbgValue->getParent(); 1556 auto DL = DbgValue->getDebugLoc(); 1557 auto *LScope = LScopes.findLexicalScope(DL); 1558 // Scope doesn't exist; this is a dead DBG_VALUE. 1559 if (!LScope) 1560 return false; 1561 auto &LSRange = LScope->getRanges(); 1562 if (LSRange.size() == 0) 1563 return false; 1564 1565 const MachineInstr *LScopeBegin = LSRange.front().first; 1566 // If the scope starts before the DBG_VALUE then we may have a negative 1567 // result. Otherwise the location is live coming into the scope and we 1568 // can skip the following checks. 1569 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1570 // Exit if the lexical scope begins outside of the current block. 1571 if (LScopeBegin->getParent() != MBB) 1572 return false; 1573 1574 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1575 for (++Pred; Pred != MBB->rend(); ++Pred) { 1576 if (Pred->getFlag(MachineInstr::FrameSetup)) 1577 break; 1578 auto PredDL = Pred->getDebugLoc(); 1579 if (!PredDL || Pred->isMetaInstruction()) 1580 continue; 1581 // Check whether the instruction preceding the DBG_VALUE is in the same 1582 // (sub)scope as the DBG_VALUE. 1583 if (DL->getScope() == PredDL->getScope()) 1584 return false; 1585 auto *PredScope = LScopes.findLexicalScope(PredDL); 1586 if (!PredScope || LScope->dominates(PredScope)) 1587 return false; 1588 } 1589 } 1590 1591 // If the range of the DBG_VALUE is open-ended, report success. 1592 if (!RangeEnd) 1593 return true; 1594 1595 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1596 // throughout the function. This is a hack, presumably for DWARF v2 and not 1597 // necessarily correct. It would be much better to use a dbg.declare instead 1598 // if we know the constant is live throughout the scope. 1599 if (MBB->pred_empty() && 1600 all_of(DbgValue->debug_operands(), 1601 [](const MachineOperand &Op) { return Op.isImm(); })) 1602 return true; 1603 1604 // Test if the location terminates before the end of the scope. 1605 const MachineInstr *LScopeEnd = LSRange.back().second; 1606 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1607 return false; 1608 1609 // There's a single location which starts at the scope start, and ends at or 1610 // after the scope end. 1611 return true; 1612 } 1613 1614 /// Build the location list for all DBG_VALUEs in the function that 1615 /// describe the same variable. The resulting DebugLocEntries will have 1616 /// strict monotonically increasing begin addresses and will never 1617 /// overlap. If the resulting list has only one entry that is valid 1618 /// throughout variable's scope return true. 1619 // 1620 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1621 // different kinds of history map entries. One thing to be aware of is that if 1622 // a debug value is ended by another entry (rather than being valid until the 1623 // end of the function), that entry's instruction may or may not be included in 1624 // the range, depending on if the entry is a clobbering entry (it has an 1625 // instruction that clobbers one or more preceding locations), or if it is an 1626 // (overlapping) debug value entry. This distinction can be seen in the example 1627 // below. The first debug value is ended by the clobbering entry 2, and the 1628 // second and third debug values are ended by the overlapping debug value entry 1629 // 4. 1630 // 1631 // Input: 1632 // 1633 // History map entries [type, end index, mi] 1634 // 1635 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1636 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1637 // 2 | | [Clobber, $reg0 = [...], -, -] 1638 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1639 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1640 // 1641 // Output [start, end) [Value...]: 1642 // 1643 // [0-1) [(reg0, fragment 0, 32)] 1644 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1645 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1646 // [4-) [(@g, fragment 0, 96)] 1647 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1648 const DbgValueHistoryMap::Entries &Entries) { 1649 using OpenRange = 1650 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1651 SmallVector<OpenRange, 4> OpenRanges; 1652 bool isSafeForSingleLocation = true; 1653 const MachineInstr *StartDebugMI = nullptr; 1654 const MachineInstr *EndMI = nullptr; 1655 1656 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1657 const MachineInstr *Instr = EI->getInstr(); 1658 1659 // Remove all values that are no longer live. 1660 size_t Index = std::distance(EB, EI); 1661 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1662 1663 // If we are dealing with a clobbering entry, this iteration will result in 1664 // a location list entry starting after the clobbering instruction. 1665 const MCSymbol *StartLabel = 1666 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1667 assert(StartLabel && 1668 "Forgot label before/after instruction starting a range!"); 1669 1670 const MCSymbol *EndLabel; 1671 if (std::next(EI) == Entries.end()) { 1672 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1673 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1674 if (EI->isClobber()) 1675 EndMI = EI->getInstr(); 1676 } 1677 else if (std::next(EI)->isClobber()) 1678 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1679 else 1680 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1681 assert(EndLabel && "Forgot label after instruction ending a range!"); 1682 1683 if (EI->isDbgValue()) 1684 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1685 1686 // If this history map entry has a debug value, add that to the list of 1687 // open ranges and check if its location is valid for a single value 1688 // location. 1689 if (EI->isDbgValue()) { 1690 // Do not add undef debug values, as they are redundant information in 1691 // the location list entries. An undef debug results in an empty location 1692 // description. If there are any non-undef fragments then padding pieces 1693 // with empty location descriptions will automatically be inserted, and if 1694 // all fragments are undef then the whole location list entry is 1695 // redundant. 1696 if (!Instr->isUndefDebugValue()) { 1697 auto Value = getDebugLocValue(Instr); 1698 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1699 1700 // TODO: Add support for single value fragment locations. 1701 if (Instr->getDebugExpression()->isFragment()) 1702 isSafeForSingleLocation = false; 1703 1704 if (!StartDebugMI) 1705 StartDebugMI = Instr; 1706 } else { 1707 isSafeForSingleLocation = false; 1708 } 1709 } 1710 1711 // Location list entries with empty location descriptions are redundant 1712 // information in DWARF, so do not emit those. 1713 if (OpenRanges.empty()) 1714 continue; 1715 1716 // Omit entries with empty ranges as they do not have any effect in DWARF. 1717 if (StartLabel == EndLabel) { 1718 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1719 continue; 1720 } 1721 1722 SmallVector<DbgValueLoc, 4> Values; 1723 for (auto &R : OpenRanges) 1724 Values.push_back(R.second); 1725 1726 // With Basic block sections, it is posssible that the StartLabel and the 1727 // Instr are not in the same section. This happens when the StartLabel is 1728 // the function begin label and the dbg value appears in a basic block 1729 // that is not the entry. In this case, the range needs to be split to 1730 // span each individual section in the range from StartLabel to EndLabel. 1731 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1732 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1733 const MCSymbol *BeginSectionLabel = StartLabel; 1734 1735 for (const MachineBasicBlock &MBB : *Asm->MF) { 1736 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1737 BeginSectionLabel = MBB.getSymbol(); 1738 1739 if (MBB.sameSection(Instr->getParent())) { 1740 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1741 break; 1742 } 1743 if (MBB.isEndSection()) 1744 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1745 } 1746 } else { 1747 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1748 } 1749 1750 // Attempt to coalesce the ranges of two otherwise identical 1751 // DebugLocEntries. 1752 auto CurEntry = DebugLoc.rbegin(); 1753 LLVM_DEBUG({ 1754 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1755 for (auto &Value : CurEntry->getValues()) 1756 Value.dump(); 1757 dbgs() << "-----\n"; 1758 }); 1759 1760 auto PrevEntry = std::next(CurEntry); 1761 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1762 DebugLoc.pop_back(); 1763 } 1764 1765 if (!isSafeForSingleLocation || 1766 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1767 return false; 1768 1769 if (DebugLoc.size() == 1) 1770 return true; 1771 1772 if (!Asm->MF->hasBBSections()) 1773 return false; 1774 1775 // Check here to see if loclist can be merged into a single range. If not, 1776 // we must keep the split loclists per section. This does exactly what 1777 // MergeRanges does without sections. We don't actually merge the ranges 1778 // as the split ranges must be kept intact if this cannot be collapsed 1779 // into a single range. 1780 const MachineBasicBlock *RangeMBB = nullptr; 1781 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1782 RangeMBB = &Asm->MF->front(); 1783 else 1784 RangeMBB = Entries.begin()->getInstr()->getParent(); 1785 auto *CurEntry = DebugLoc.begin(); 1786 auto *NextEntry = std::next(CurEntry); 1787 while (NextEntry != DebugLoc.end()) { 1788 // Get the last machine basic block of this section. 1789 while (!RangeMBB->isEndSection()) 1790 RangeMBB = RangeMBB->getNextNode(); 1791 if (!RangeMBB->getNextNode()) 1792 return false; 1793 // CurEntry should end the current section and NextEntry should start 1794 // the next section and the Values must match for these two ranges to be 1795 // merged. 1796 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1797 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1798 CurEntry->getValues() != NextEntry->getValues()) 1799 return false; 1800 RangeMBB = RangeMBB->getNextNode(); 1801 CurEntry = NextEntry; 1802 NextEntry = std::next(CurEntry); 1803 } 1804 return true; 1805 } 1806 1807 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1808 LexicalScope &Scope, 1809 const DINode *Node, 1810 const DILocation *Location, 1811 const MCSymbol *Sym) { 1812 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1813 if (isa<const DILocalVariable>(Node)) { 1814 ConcreteEntities.push_back( 1815 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1816 Location)); 1817 InfoHolder.addScopeVariable(&Scope, 1818 cast<DbgVariable>(ConcreteEntities.back().get())); 1819 } else if (isa<const DILabel>(Node)) { 1820 ConcreteEntities.push_back( 1821 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1822 Location, Sym)); 1823 InfoHolder.addScopeLabel(&Scope, 1824 cast<DbgLabel>(ConcreteEntities.back().get())); 1825 } 1826 return ConcreteEntities.back().get(); 1827 } 1828 1829 // Find variables for each lexical scope. 1830 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1831 const DISubprogram *SP, 1832 DenseSet<InlinedEntity> &Processed) { 1833 // Grab the variable info that was squirreled away in the MMI side-table. 1834 collectVariableInfoFromMFTable(TheCU, Processed); 1835 1836 for (const auto &I : DbgValues) { 1837 InlinedEntity IV = I.first; 1838 if (Processed.count(IV)) 1839 continue; 1840 1841 // Instruction ranges, specifying where IV is accessible. 1842 const auto &HistoryMapEntries = I.second; 1843 1844 // Try to find any non-empty variable location. Do not create a concrete 1845 // entity if there are no locations. 1846 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1847 continue; 1848 1849 LexicalScope *Scope = nullptr; 1850 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1851 if (const DILocation *IA = IV.second) 1852 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1853 else 1854 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1855 // If variable scope is not found then skip this variable. 1856 if (!Scope) 1857 continue; 1858 1859 Processed.insert(IV); 1860 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1861 *Scope, LocalVar, IV.second)); 1862 1863 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1864 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1865 1866 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1867 // If the history map contains a single debug value, there may be an 1868 // additional entry which clobbers the debug value. 1869 size_t HistSize = HistoryMapEntries.size(); 1870 bool SingleValueWithClobber = 1871 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1872 if (HistSize == 1 || SingleValueWithClobber) { 1873 const auto *End = 1874 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1875 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1876 RegVar->initializeDbgValue(MInsn); 1877 continue; 1878 } 1879 } 1880 1881 // Do not emit location lists if .debug_loc secton is disabled. 1882 if (!useLocSection()) 1883 continue; 1884 1885 // Handle multiple DBG_VALUE instructions describing one variable. 1886 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1887 1888 // Build the location list for this variable. 1889 SmallVector<DebugLocEntry, 8> Entries; 1890 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1891 1892 // Check whether buildLocationList managed to merge all locations to one 1893 // that is valid throughout the variable's scope. If so, produce single 1894 // value location. 1895 if (isValidSingleLocation) { 1896 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1897 continue; 1898 } 1899 1900 // If the variable has a DIBasicType, extract it. Basic types cannot have 1901 // unique identifiers, so don't bother resolving the type with the 1902 // identifier map. 1903 const DIBasicType *BT = dyn_cast<DIBasicType>( 1904 static_cast<const Metadata *>(LocalVar->getType())); 1905 1906 // Finalize the entry by lowering it into a DWARF bytestream. 1907 for (auto &Entry : Entries) 1908 Entry.finalize(*Asm, List, BT, TheCU); 1909 } 1910 1911 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1912 // DWARF-related DbgLabel. 1913 for (const auto &I : DbgLabels) { 1914 InlinedEntity IL = I.first; 1915 const MachineInstr *MI = I.second; 1916 if (MI == nullptr) 1917 continue; 1918 1919 LexicalScope *Scope = nullptr; 1920 const DILabel *Label = cast<DILabel>(IL.first); 1921 // The scope could have an extra lexical block file. 1922 const DILocalScope *LocalScope = 1923 Label->getScope()->getNonLexicalBlockFileScope(); 1924 // Get inlined DILocation if it is inlined label. 1925 if (const DILocation *IA = IL.second) 1926 Scope = LScopes.findInlinedScope(LocalScope, IA); 1927 else 1928 Scope = LScopes.findLexicalScope(LocalScope); 1929 // If label scope is not found then skip this label. 1930 if (!Scope) 1931 continue; 1932 1933 Processed.insert(IL); 1934 /// At this point, the temporary label is created. 1935 /// Save the temporary label to DbgLabel entity to get the 1936 /// actually address when generating Dwarf DIE. 1937 MCSymbol *Sym = getLabelBeforeInsn(MI); 1938 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1939 } 1940 1941 // Collect info for variables/labels that were optimized out. 1942 for (const DINode *DN : SP->getRetainedNodes()) { 1943 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1944 continue; 1945 LexicalScope *Scope = nullptr; 1946 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1947 Scope = LScopes.findLexicalScope(DV->getScope()); 1948 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1949 Scope = LScopes.findLexicalScope(DL->getScope()); 1950 } 1951 1952 if (Scope) 1953 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1954 } 1955 } 1956 1957 // Process beginning of an instruction. 1958 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1959 const MachineFunction &MF = *MI->getMF(); 1960 const auto *SP = MF.getFunction().getSubprogram(); 1961 bool NoDebug = 1962 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1963 1964 // Delay slot support check. 1965 auto delaySlotSupported = [](const MachineInstr &MI) { 1966 if (!MI.isBundledWithSucc()) 1967 return false; 1968 auto Suc = std::next(MI.getIterator()); 1969 (void)Suc; 1970 // Ensure that delay slot instruction is successor of the call instruction. 1971 // Ex. CALL_INSTRUCTION { 1972 // DELAY_SLOT_INSTRUCTION } 1973 assert(Suc->isBundledWithPred() && 1974 "Call bundle instructions are out of order"); 1975 return true; 1976 }; 1977 1978 // When describing calls, we need a label for the call instruction. 1979 if (!NoDebug && SP->areAllCallsDescribed() && 1980 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1981 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1982 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1983 bool IsTail = TII->isTailCall(*MI); 1984 // For tail calls, we need the address of the branch instruction for 1985 // DW_AT_call_pc. 1986 if (IsTail) 1987 requestLabelBeforeInsn(MI); 1988 // For non-tail calls, we need the return address for the call for 1989 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1990 // tail calls as well. 1991 requestLabelAfterInsn(MI); 1992 } 1993 1994 DebugHandlerBase::beginInstruction(MI); 1995 if (!CurMI) 1996 return; 1997 1998 if (NoDebug) 1999 return; 2000 2001 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2002 // If the instruction is part of the function frame setup code, do not emit 2003 // any line record, as there is no correspondence with any user code. 2004 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2005 return; 2006 const DebugLoc &DL = MI->getDebugLoc(); 2007 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2008 // the last line number actually emitted, to see if it was line 0. 2009 unsigned LastAsmLine = 2010 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2011 2012 if (DL == PrevInstLoc) { 2013 // If we have an ongoing unspecified location, nothing to do here. 2014 if (!DL) 2015 return; 2016 // We have an explicit location, same as the previous location. 2017 // But we might be coming back to it after a line 0 record. 2018 if (LastAsmLine == 0 && DL.getLine() != 0) { 2019 // Reinstate the source location but not marked as a statement. 2020 const MDNode *Scope = DL.getScope(); 2021 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 2022 } 2023 return; 2024 } 2025 2026 if (!DL) { 2027 // We have an unspecified location, which might want to be line 0. 2028 // If we have already emitted a line-0 record, don't repeat it. 2029 if (LastAsmLine == 0) 2030 return; 2031 // If user said Don't Do That, don't do that. 2032 if (UnknownLocations == Disable) 2033 return; 2034 // See if we have a reason to emit a line-0 record now. 2035 // Reasons to emit a line-0 record include: 2036 // - User asked for it (UnknownLocations). 2037 // - Instruction has a label, so it's referenced from somewhere else, 2038 // possibly debug information; we want it to have a source location. 2039 // - Instruction is at the top of a block; we don't want to inherit the 2040 // location from the physically previous (maybe unrelated) block. 2041 if (UnknownLocations == Enable || PrevLabel || 2042 (PrevInstBB && PrevInstBB != MI->getParent())) { 2043 // Preserve the file and column numbers, if we can, to save space in 2044 // the encoded line table. 2045 // Do not update PrevInstLoc, it remembers the last non-0 line. 2046 const MDNode *Scope = nullptr; 2047 unsigned Column = 0; 2048 if (PrevInstLoc) { 2049 Scope = PrevInstLoc.getScope(); 2050 Column = PrevInstLoc.getCol(); 2051 } 2052 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2053 } 2054 return; 2055 } 2056 2057 // We have an explicit location, different from the previous location. 2058 // Don't repeat a line-0 record, but otherwise emit the new location. 2059 // (The new location might be an explicit line 0, which we do emit.) 2060 if (DL.getLine() == 0 && LastAsmLine == 0) 2061 return; 2062 unsigned Flags = 0; 2063 if (DL == PrologEndLoc) { 2064 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2065 PrologEndLoc = DebugLoc(); 2066 } 2067 // If the line changed, we call that a new statement; unless we went to 2068 // line 0 and came back, in which case it is not a new statement. 2069 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2070 if (DL.getLine() && DL.getLine() != OldLine) 2071 Flags |= DWARF2_FLAG_IS_STMT; 2072 2073 const MDNode *Scope = DL.getScope(); 2074 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2075 2076 // If we're not at line 0, remember this location. 2077 if (DL.getLine()) 2078 PrevInstLoc = DL; 2079 } 2080 2081 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2082 // First known non-DBG_VALUE and non-frame setup location marks 2083 // the beginning of the function body. 2084 DebugLoc LineZeroLoc; 2085 for (const auto &MBB : *MF) { 2086 for (const auto &MI : MBB) { 2087 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2088 MI.getDebugLoc()) { 2089 // Scan forward to try to find a non-zero line number. The prologue_end 2090 // marks the first breakpoint in the function after the frame setup, and 2091 // a compiler-generated line 0 location is not a meaningful breakpoint. 2092 // If none is found, return the first location after the frame setup. 2093 if (MI.getDebugLoc().getLine()) 2094 return MI.getDebugLoc(); 2095 LineZeroLoc = MI.getDebugLoc(); 2096 } 2097 } 2098 } 2099 return LineZeroLoc; 2100 } 2101 2102 /// Register a source line with debug info. Returns the unique label that was 2103 /// emitted and which provides correspondence to the source line list. 2104 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2105 const MDNode *S, unsigned Flags, unsigned CUID, 2106 uint16_t DwarfVersion, 2107 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2108 StringRef Fn; 2109 unsigned FileNo = 1; 2110 unsigned Discriminator = 0; 2111 if (auto *Scope = cast_or_null<DIScope>(S)) { 2112 Fn = Scope->getFilename(); 2113 if (Line != 0 && DwarfVersion >= 4) 2114 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2115 Discriminator = LBF->getDiscriminator(); 2116 2117 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2118 .getOrCreateSourceID(Scope->getFile()); 2119 } 2120 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2121 Discriminator, Fn); 2122 } 2123 2124 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2125 unsigned CUID) { 2126 // Get beginning of function. 2127 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2128 // Ensure the compile unit is created if the function is called before 2129 // beginFunction(). 2130 (void)getOrCreateDwarfCompileUnit( 2131 MF.getFunction().getSubprogram()->getUnit()); 2132 // We'd like to list the prologue as "not statements" but GDB behaves 2133 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2134 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2135 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2136 CUID, getDwarfVersion(), getUnits()); 2137 return PrologEndLoc; 2138 } 2139 return DebugLoc(); 2140 } 2141 2142 // Gather pre-function debug information. Assumes being called immediately 2143 // after the function entry point has been emitted. 2144 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2145 CurFn = MF; 2146 2147 auto *SP = MF->getFunction().getSubprogram(); 2148 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2149 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2150 return; 2151 2152 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2153 2154 Asm->OutStreamer->getContext().setDwarfCompileUnitID( 2155 getDwarfCompileUnitIDForLineTable(CU)); 2156 2157 // Record beginning of function. 2158 PrologEndLoc = emitInitialLocDirective( 2159 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2160 } 2161 2162 unsigned 2163 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { 2164 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2165 // belongs to so that we add to the correct per-cu line table in the 2166 // non-asm case. 2167 if (Asm->OutStreamer->hasRawTextSupport()) 2168 // Use a single line table if we are generating assembly. 2169 return 0; 2170 else 2171 return CU.getUniqueID(); 2172 } 2173 2174 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { 2175 const auto &CURanges = CU->getRanges(); 2176 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( 2177 getDwarfCompileUnitIDForLineTable(*CU)); 2178 // Add the last range label for the given CU. 2179 LineTable.getMCLineSections().addEndEntry( 2180 const_cast<MCSymbol *>(CURanges.back().End)); 2181 } 2182 2183 void DwarfDebug::skippedNonDebugFunction() { 2184 // If we don't have a subprogram for this function then there will be a hole 2185 // in the range information. Keep note of this by setting the previously used 2186 // section to nullptr. 2187 // Terminate the pending line table. 2188 if (PrevCU) 2189 terminateLineTable(PrevCU); 2190 PrevCU = nullptr; 2191 CurFn = nullptr; 2192 } 2193 2194 // Gather and emit post-function debug information. 2195 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2196 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2197 2198 assert(CurFn == MF && 2199 "endFunction should be called with the same function as beginFunction"); 2200 2201 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2202 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2203 2204 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2205 assert(!FnScope || SP == FnScope->getScopeNode()); 2206 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2207 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2208 PrevLabel = nullptr; 2209 CurFn = nullptr; 2210 return; 2211 } 2212 2213 DenseSet<InlinedEntity> Processed; 2214 collectEntityInfo(TheCU, SP, Processed); 2215 2216 // Add the range of this function to the list of ranges for the CU. 2217 // With basic block sections, add ranges for all basic block sections. 2218 for (const auto &R : Asm->MBBSectionRanges) 2219 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2220 2221 // Under -gmlt, skip building the subprogram if there are no inlined 2222 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2223 // is still needed as we need its source location. 2224 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2225 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2226 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2227 assert(InfoHolder.getScopeVariables().empty()); 2228 PrevLabel = nullptr; 2229 CurFn = nullptr; 2230 return; 2231 } 2232 2233 #ifndef NDEBUG 2234 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2235 #endif 2236 // Construct abstract scopes. 2237 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2238 const auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2239 for (const DINode *DN : SP->getRetainedNodes()) { 2240 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2241 continue; 2242 2243 const MDNode *Scope = nullptr; 2244 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2245 Scope = DV->getScope(); 2246 else if (auto *DL = dyn_cast<DILabel>(DN)) 2247 Scope = DL->getScope(); 2248 else 2249 llvm_unreachable("Unexpected DI type!"); 2250 2251 // Collect info for variables/labels that were optimized out. 2252 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2253 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2254 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2255 } 2256 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2257 } 2258 2259 ProcessedSPNodes.insert(SP); 2260 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2261 if (auto *SkelCU = TheCU.getSkeleton()) 2262 if (!LScopes.getAbstractScopesList().empty() && 2263 TheCU.getCUNode()->getSplitDebugInlining()) 2264 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2265 2266 // Construct call site entries. 2267 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2268 2269 // Clear debug info 2270 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2271 // DbgVariables except those that are also in AbstractVariables (since they 2272 // can be used cross-function) 2273 InfoHolder.getScopeVariables().clear(); 2274 InfoHolder.getScopeLabels().clear(); 2275 PrevLabel = nullptr; 2276 CurFn = nullptr; 2277 } 2278 2279 // Register a source line with debug info. Returns the unique label that was 2280 // emitted and which provides correspondence to the source line list. 2281 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2282 unsigned Flags) { 2283 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2284 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2285 getDwarfVersion(), getUnits()); 2286 } 2287 2288 //===----------------------------------------------------------------------===// 2289 // Emit Methods 2290 //===----------------------------------------------------------------------===// 2291 2292 // Emit the debug info section. 2293 void DwarfDebug::emitDebugInfo() { 2294 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2295 Holder.emitUnits(/* UseOffsets */ false); 2296 } 2297 2298 // Emit the abbreviation section. 2299 void DwarfDebug::emitAbbreviations() { 2300 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2301 2302 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2303 } 2304 2305 void DwarfDebug::emitStringOffsetsTableHeader() { 2306 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2307 Holder.getStringPool().emitStringOffsetsTableHeader( 2308 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2309 Holder.getStringOffsetsStartSym()); 2310 } 2311 2312 template <typename AccelTableT> 2313 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2314 StringRef TableName) { 2315 Asm->OutStreamer->switchSection(Section); 2316 2317 // Emit the full data. 2318 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2319 } 2320 2321 void DwarfDebug::emitAccelDebugNames() { 2322 // Don't emit anything if we have no compilation units to index. 2323 if (getUnits().empty()) 2324 return; 2325 2326 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2327 } 2328 2329 // Emit visible names into a hashed accelerator table section. 2330 void DwarfDebug::emitAccelNames() { 2331 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2332 "Names"); 2333 } 2334 2335 // Emit objective C classes and categories into a hashed accelerator table 2336 // section. 2337 void DwarfDebug::emitAccelObjC() { 2338 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2339 "ObjC"); 2340 } 2341 2342 // Emit namespace dies into a hashed accelerator table. 2343 void DwarfDebug::emitAccelNamespaces() { 2344 emitAccel(AccelNamespace, 2345 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2346 "namespac"); 2347 } 2348 2349 // Emit type dies into a hashed accelerator table. 2350 void DwarfDebug::emitAccelTypes() { 2351 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2352 "types"); 2353 } 2354 2355 // Public name handling. 2356 // The format for the various pubnames: 2357 // 2358 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2359 // for the DIE that is named. 2360 // 2361 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2362 // into the CU and the index value is computed according to the type of value 2363 // for the DIE that is named. 2364 // 2365 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2366 // it's the offset within the debug_info/debug_types dwo section, however, the 2367 // reference in the pubname header doesn't change. 2368 2369 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2370 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2371 const DIE *Die) { 2372 // Entities that ended up only in a Type Unit reference the CU instead (since 2373 // the pub entry has offsets within the CU there's no real offset that can be 2374 // provided anyway). As it happens all such entities (namespaces and types, 2375 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2376 // not to be true it would be necessary to persist this information from the 2377 // point at which the entry is added to the index data structure - since by 2378 // the time the index is built from that, the original type/namespace DIE in a 2379 // type unit has already been destroyed so it can't be queried for properties 2380 // like tag, etc. 2381 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2382 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2383 dwarf::GIEL_EXTERNAL); 2384 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2385 2386 // We could have a specification DIE that has our most of our knowledge, 2387 // look for that now. 2388 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2389 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2390 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2391 Linkage = dwarf::GIEL_EXTERNAL; 2392 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2393 Linkage = dwarf::GIEL_EXTERNAL; 2394 2395 switch (Die->getTag()) { 2396 case dwarf::DW_TAG_class_type: 2397 case dwarf::DW_TAG_structure_type: 2398 case dwarf::DW_TAG_union_type: 2399 case dwarf::DW_TAG_enumeration_type: 2400 return dwarf::PubIndexEntryDescriptor( 2401 dwarf::GIEK_TYPE, 2402 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2403 ? dwarf::GIEL_EXTERNAL 2404 : dwarf::GIEL_STATIC); 2405 case dwarf::DW_TAG_typedef: 2406 case dwarf::DW_TAG_base_type: 2407 case dwarf::DW_TAG_subrange_type: 2408 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2409 case dwarf::DW_TAG_namespace: 2410 return dwarf::GIEK_TYPE; 2411 case dwarf::DW_TAG_subprogram: 2412 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2413 case dwarf::DW_TAG_variable: 2414 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2415 case dwarf::DW_TAG_enumerator: 2416 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2417 dwarf::GIEL_STATIC); 2418 default: 2419 return dwarf::GIEK_NONE; 2420 } 2421 } 2422 2423 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2424 /// pubtypes sections. 2425 void DwarfDebug::emitDebugPubSections() { 2426 for (const auto &NU : CUMap) { 2427 DwarfCompileUnit *TheU = NU.second; 2428 if (!TheU->hasDwarfPubSections()) 2429 continue; 2430 2431 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2432 DICompileUnit::DebugNameTableKind::GNU; 2433 2434 Asm->OutStreamer->switchSection( 2435 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2436 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2437 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2438 2439 Asm->OutStreamer->switchSection( 2440 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2441 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2442 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2443 } 2444 } 2445 2446 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2447 if (useSectionsAsReferences()) 2448 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2449 CU.getDebugSectionOffset()); 2450 else 2451 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2452 } 2453 2454 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2455 DwarfCompileUnit *TheU, 2456 const StringMap<const DIE *> &Globals) { 2457 if (auto *Skeleton = TheU->getSkeleton()) 2458 TheU = Skeleton; 2459 2460 // Emit the header. 2461 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2462 "pub" + Name, "Length of Public " + Name + " Info"); 2463 2464 Asm->OutStreamer->AddComment("DWARF Version"); 2465 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2466 2467 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2468 emitSectionReference(*TheU); 2469 2470 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2471 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2472 2473 // Emit the pubnames for this compilation unit. 2474 for (const auto &GI : Globals) { 2475 const char *Name = GI.getKeyData(); 2476 const DIE *Entity = GI.second; 2477 2478 Asm->OutStreamer->AddComment("DIE offset"); 2479 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2480 2481 if (GnuStyle) { 2482 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2483 Asm->OutStreamer->AddComment( 2484 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2485 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2486 Asm->emitInt8(Desc.toBits()); 2487 } 2488 2489 Asm->OutStreamer->AddComment("External Name"); 2490 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2491 } 2492 2493 Asm->OutStreamer->AddComment("End Mark"); 2494 Asm->emitDwarfLengthOrOffset(0); 2495 Asm->OutStreamer->emitLabel(EndLabel); 2496 } 2497 2498 /// Emit null-terminated strings into a debug str section. 2499 void DwarfDebug::emitDebugStr() { 2500 MCSection *StringOffsetsSection = nullptr; 2501 if (useSegmentedStringOffsetsTable()) { 2502 emitStringOffsetsTableHeader(); 2503 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2504 } 2505 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2506 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2507 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2508 } 2509 2510 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2511 const DebugLocStream::Entry &Entry, 2512 const DwarfCompileUnit *CU) { 2513 auto &&Comments = DebugLocs.getComments(Entry); 2514 auto Comment = Comments.begin(); 2515 auto End = Comments.end(); 2516 2517 // The expressions are inserted into a byte stream rather early (see 2518 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2519 // need to reference a base_type DIE the offset of that DIE is not yet known. 2520 // To deal with this we instead insert a placeholder early and then extract 2521 // it here and replace it with the real reference. 2522 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2523 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2524 DebugLocs.getBytes(Entry).size()), 2525 Asm->getDataLayout().isLittleEndian(), PtrSize); 2526 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2527 2528 using Encoding = DWARFExpression::Operation::Encoding; 2529 uint64_t Offset = 0; 2530 for (const auto &Op : Expr) { 2531 assert(Op.getCode() != dwarf::DW_OP_const_type && 2532 "3 operand ops not yet supported"); 2533 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2534 Offset++; 2535 for (unsigned I = 0; I < 2; ++I) { 2536 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2537 continue; 2538 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2539 unsigned Length = 2540 Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die); 2541 // Make sure comments stay aligned. 2542 for (unsigned J = 0; J < Length; ++J) 2543 if (Comment != End) 2544 Comment++; 2545 } else { 2546 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2547 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2548 } 2549 Offset = Op.getOperandEndOffset(I); 2550 } 2551 assert(Offset == Op.getEndOffset()); 2552 } 2553 } 2554 2555 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2556 const DbgValueLoc &Value, 2557 DwarfExpression &DwarfExpr) { 2558 auto *DIExpr = Value.getExpression(); 2559 DIExpressionCursor ExprCursor(DIExpr); 2560 DwarfExpr.addFragmentOffset(DIExpr); 2561 2562 // If the DIExpr is is an Entry Value, we want to follow the same code path 2563 // regardless of whether the DBG_VALUE is variadic or not. 2564 if (DIExpr && DIExpr->isEntryValue()) { 2565 // Entry values can only be a single register with no additional DIExpr, 2566 // so just add it directly. 2567 assert(Value.getLocEntries().size() == 1); 2568 assert(Value.getLocEntries()[0].isLocation()); 2569 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2570 DwarfExpr.setLocation(Location, DIExpr); 2571 2572 DwarfExpr.beginEntryValueExpression(ExprCursor); 2573 2574 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2575 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2576 return; 2577 return DwarfExpr.addExpression(std::move(ExprCursor)); 2578 } 2579 2580 // Regular entry. 2581 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2582 &AP](const DbgValueLocEntry &Entry, 2583 DIExpressionCursor &Cursor) -> bool { 2584 if (Entry.isInt()) { 2585 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2586 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2587 DwarfExpr.addSignedConstant(Entry.getInt()); 2588 else 2589 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2590 } else if (Entry.isLocation()) { 2591 MachineLocation Location = Entry.getLoc(); 2592 if (Location.isIndirect()) 2593 DwarfExpr.setMemoryLocationKind(); 2594 2595 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2596 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2597 return false; 2598 } else if (Entry.isTargetIndexLocation()) { 2599 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2600 // TODO TargetIndexLocation is a target-independent. Currently only the 2601 // WebAssembly-specific encoding is supported. 2602 assert(AP.TM.getTargetTriple().isWasm()); 2603 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2604 } else if (Entry.isConstantFP()) { 2605 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2606 !Cursor) { 2607 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2608 } else if (Entry.getConstantFP() 2609 ->getValueAPF() 2610 .bitcastToAPInt() 2611 .getBitWidth() <= 64 /*bits*/) { 2612 DwarfExpr.addUnsignedConstant( 2613 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2614 } else { 2615 LLVM_DEBUG( 2616 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2617 << Entry.getConstantFP() 2618 ->getValueAPF() 2619 .bitcastToAPInt() 2620 .getBitWidth() 2621 << " bits\n"); 2622 return false; 2623 } 2624 } 2625 return true; 2626 }; 2627 2628 if (!Value.isVariadic()) { 2629 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2630 return; 2631 DwarfExpr.addExpression(std::move(ExprCursor)); 2632 return; 2633 } 2634 2635 // If any of the location entries are registers with the value 0, then the 2636 // location is undefined. 2637 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2638 return Entry.isLocation() && !Entry.getLoc().getReg(); 2639 })) 2640 return; 2641 2642 DwarfExpr.addExpression( 2643 std::move(ExprCursor), 2644 [EmitValueLocEntry, &Value](unsigned Idx, 2645 DIExpressionCursor &Cursor) -> bool { 2646 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2647 }); 2648 } 2649 2650 void DebugLocEntry::finalize(const AsmPrinter &AP, 2651 DebugLocStream::ListBuilder &List, 2652 const DIBasicType *BT, 2653 DwarfCompileUnit &TheCU) { 2654 assert(!Values.empty() && 2655 "location list entries without values are redundant"); 2656 assert(Begin != End && "unexpected location list entry with empty range"); 2657 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2658 BufferByteStreamer Streamer = Entry.getStreamer(); 2659 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2660 const DbgValueLoc &Value = Values[0]; 2661 if (Value.isFragment()) { 2662 // Emit all fragments that belong to the same variable and range. 2663 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2664 return P.isFragment(); 2665 }) && "all values are expected to be fragments"); 2666 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2667 2668 for (const auto &Fragment : Values) 2669 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2670 2671 } else { 2672 assert(Values.size() == 1 && "only fragments may have >1 value"); 2673 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2674 } 2675 DwarfExpr.finalize(); 2676 if (DwarfExpr.TagOffset) 2677 List.setTagOffset(*DwarfExpr.TagOffset); 2678 } 2679 2680 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2681 const DwarfCompileUnit *CU) { 2682 // Emit the size. 2683 Asm->OutStreamer->AddComment("Loc expr size"); 2684 if (getDwarfVersion() >= 5) 2685 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2686 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2687 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2688 else { 2689 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2690 // can do. 2691 Asm->emitInt16(0); 2692 return; 2693 } 2694 // Emit the entry. 2695 APByteStreamer Streamer(*Asm); 2696 emitDebugLocEntry(Streamer, Entry, CU); 2697 } 2698 2699 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2700 // that designates the end of the table for the caller to emit when the table is 2701 // complete. 2702 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2703 const DwarfFile &Holder) { 2704 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2705 2706 Asm->OutStreamer->AddComment("Offset entry count"); 2707 Asm->emitInt32(Holder.getRangeLists().size()); 2708 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2709 2710 for (const RangeSpanList &List : Holder.getRangeLists()) 2711 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2712 Asm->getDwarfOffsetByteSize()); 2713 2714 return TableEnd; 2715 } 2716 2717 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2718 // designates the end of the table for the caller to emit when the table is 2719 // complete. 2720 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2721 const DwarfDebug &DD) { 2722 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2723 2724 const auto &DebugLocs = DD.getDebugLocs(); 2725 2726 Asm->OutStreamer->AddComment("Offset entry count"); 2727 Asm->emitInt32(DebugLocs.getLists().size()); 2728 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2729 2730 for (const auto &List : DebugLocs.getLists()) 2731 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2732 Asm->getDwarfOffsetByteSize()); 2733 2734 return TableEnd; 2735 } 2736 2737 template <typename Ranges, typename PayloadEmitter> 2738 static void emitRangeList( 2739 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2740 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2741 unsigned StartxLength, unsigned EndOfList, 2742 StringRef (*StringifyEnum)(unsigned), 2743 bool ShouldUseBaseAddress, 2744 PayloadEmitter EmitPayload) { 2745 2746 auto Size = Asm->MAI->getCodePointerSize(); 2747 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2748 2749 // Emit our symbol so we can find the beginning of the range. 2750 Asm->OutStreamer->emitLabel(Sym); 2751 2752 // Gather all the ranges that apply to the same section so they can share 2753 // a base address entry. 2754 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2755 2756 for (const auto &Range : R) 2757 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2758 2759 const MCSymbol *CUBase = CU.getBaseAddress(); 2760 bool BaseIsSet = false; 2761 for (const auto &P : SectionRanges) { 2762 auto *Base = CUBase; 2763 if (!Base && ShouldUseBaseAddress) { 2764 const MCSymbol *Begin = P.second.front()->Begin; 2765 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2766 if (!UseDwarf5) { 2767 Base = NewBase; 2768 BaseIsSet = true; 2769 Asm->OutStreamer->emitIntValue(-1, Size); 2770 Asm->OutStreamer->AddComment(" base address"); 2771 Asm->OutStreamer->emitSymbolValue(Base, Size); 2772 } else if (NewBase != Begin || P.second.size() > 1) { 2773 // Only use a base address if 2774 // * the existing pool address doesn't match (NewBase != Begin) 2775 // * or, there's more than one entry to share the base address 2776 Base = NewBase; 2777 BaseIsSet = true; 2778 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2779 Asm->emitInt8(BaseAddressx); 2780 Asm->OutStreamer->AddComment(" base address index"); 2781 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2782 } 2783 } else if (BaseIsSet && !UseDwarf5) { 2784 BaseIsSet = false; 2785 assert(!Base); 2786 Asm->OutStreamer->emitIntValue(-1, Size); 2787 Asm->OutStreamer->emitIntValue(0, Size); 2788 } 2789 2790 for (const auto *RS : P.second) { 2791 const MCSymbol *Begin = RS->Begin; 2792 const MCSymbol *End = RS->End; 2793 assert(Begin && "Range without a begin symbol?"); 2794 assert(End && "Range without an end symbol?"); 2795 if (Base) { 2796 if (UseDwarf5) { 2797 // Emit offset_pair when we have a base. 2798 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2799 Asm->emitInt8(OffsetPair); 2800 Asm->OutStreamer->AddComment(" starting offset"); 2801 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2802 Asm->OutStreamer->AddComment(" ending offset"); 2803 Asm->emitLabelDifferenceAsULEB128(End, Base); 2804 } else { 2805 Asm->emitLabelDifference(Begin, Base, Size); 2806 Asm->emitLabelDifference(End, Base, Size); 2807 } 2808 } else if (UseDwarf5) { 2809 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2810 Asm->emitInt8(StartxLength); 2811 Asm->OutStreamer->AddComment(" start index"); 2812 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2813 Asm->OutStreamer->AddComment(" length"); 2814 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2815 } else { 2816 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2817 Asm->OutStreamer->emitSymbolValue(End, Size); 2818 } 2819 EmitPayload(*RS); 2820 } 2821 } 2822 2823 if (UseDwarf5) { 2824 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2825 Asm->emitInt8(EndOfList); 2826 } else { 2827 // Terminate the list with two 0 values. 2828 Asm->OutStreamer->emitIntValue(0, Size); 2829 Asm->OutStreamer->emitIntValue(0, Size); 2830 } 2831 } 2832 2833 // Handles emission of both debug_loclist / debug_loclist.dwo 2834 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2835 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2836 *List.CU, dwarf::DW_LLE_base_addressx, 2837 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2838 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2839 /* ShouldUseBaseAddress */ true, 2840 [&](const DebugLocStream::Entry &E) { 2841 DD.emitDebugLocEntryLocation(E, List.CU); 2842 }); 2843 } 2844 2845 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2846 if (DebugLocs.getLists().empty()) 2847 return; 2848 2849 Asm->OutStreamer->switchSection(Sec); 2850 2851 MCSymbol *TableEnd = nullptr; 2852 if (getDwarfVersion() >= 5) 2853 TableEnd = emitLoclistsTableHeader(Asm, *this); 2854 2855 for (const auto &List : DebugLocs.getLists()) 2856 emitLocList(*this, Asm, List); 2857 2858 if (TableEnd) 2859 Asm->OutStreamer->emitLabel(TableEnd); 2860 } 2861 2862 // Emit locations into the .debug_loc/.debug_loclists section. 2863 void DwarfDebug::emitDebugLoc() { 2864 emitDebugLocImpl( 2865 getDwarfVersion() >= 5 2866 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2867 : Asm->getObjFileLowering().getDwarfLocSection()); 2868 } 2869 2870 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2871 void DwarfDebug::emitDebugLocDWO() { 2872 if (getDwarfVersion() >= 5) { 2873 emitDebugLocImpl( 2874 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2875 2876 return; 2877 } 2878 2879 for (const auto &List : DebugLocs.getLists()) { 2880 Asm->OutStreamer->switchSection( 2881 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2882 Asm->OutStreamer->emitLabel(List.Label); 2883 2884 for (const auto &Entry : DebugLocs.getEntries(List)) { 2885 // GDB only supports startx_length in pre-standard split-DWARF. 2886 // (in v5 standard loclists, it currently* /only/ supports base_address + 2887 // offset_pair, so the implementations can't really share much since they 2888 // need to use different representations) 2889 // * as of October 2018, at least 2890 // 2891 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2892 // addresses in the address pool to minimize object size/relocations. 2893 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2894 unsigned idx = AddrPool.getIndex(Entry.Begin); 2895 Asm->emitULEB128(idx); 2896 // Also the pre-standard encoding is slightly different, emitting this as 2897 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2898 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2899 emitDebugLocEntryLocation(Entry, List.CU); 2900 } 2901 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2902 } 2903 } 2904 2905 struct ArangeSpan { 2906 const MCSymbol *Start, *End; 2907 }; 2908 2909 // Emit a debug aranges section, containing a CU lookup for any 2910 // address we can tie back to a CU. 2911 void DwarfDebug::emitDebugARanges() { 2912 // Provides a unique id per text section. 2913 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2914 2915 // Filter labels by section. 2916 for (const SymbolCU &SCU : ArangeLabels) { 2917 if (SCU.Sym->isInSection()) { 2918 // Make a note of this symbol and it's section. 2919 MCSection *Section = &SCU.Sym->getSection(); 2920 if (!Section->getKind().isMetadata()) 2921 SectionMap[Section].push_back(SCU); 2922 } else { 2923 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2924 // appear in the output. This sucks as we rely on sections to build 2925 // arange spans. We can do it without, but it's icky. 2926 SectionMap[nullptr].push_back(SCU); 2927 } 2928 } 2929 2930 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2931 2932 for (auto &I : SectionMap) { 2933 MCSection *Section = I.first; 2934 SmallVector<SymbolCU, 8> &List = I.second; 2935 if (List.size() < 1) 2936 continue; 2937 2938 // If we have no section (e.g. common), just write out 2939 // individual spans for each symbol. 2940 if (!Section) { 2941 for (const SymbolCU &Cur : List) { 2942 ArangeSpan Span; 2943 Span.Start = Cur.Sym; 2944 Span.End = nullptr; 2945 assert(Cur.CU); 2946 Spans[Cur.CU].push_back(Span); 2947 } 2948 continue; 2949 } 2950 2951 // Sort the symbols by offset within the section. 2952 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2953 unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0; 2954 unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0; 2955 2956 // Symbols with no order assigned should be placed at the end. 2957 // (e.g. section end labels) 2958 if (IA == 0) 2959 return false; 2960 if (IB == 0) 2961 return true; 2962 return IA < IB; 2963 }); 2964 2965 // Insert a final terminator. 2966 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2967 2968 // Build spans between each label. 2969 const MCSymbol *StartSym = List[0].Sym; 2970 for (size_t n = 1, e = List.size(); n < e; n++) { 2971 const SymbolCU &Prev = List[n - 1]; 2972 const SymbolCU &Cur = List[n]; 2973 2974 // Try and build the longest span we can within the same CU. 2975 if (Cur.CU != Prev.CU) { 2976 ArangeSpan Span; 2977 Span.Start = StartSym; 2978 Span.End = Cur.Sym; 2979 assert(Prev.CU); 2980 Spans[Prev.CU].push_back(Span); 2981 StartSym = Cur.Sym; 2982 } 2983 } 2984 } 2985 2986 // Start the dwarf aranges section. 2987 Asm->OutStreamer->switchSection( 2988 Asm->getObjFileLowering().getDwarfARangesSection()); 2989 2990 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2991 2992 // Build a list of CUs used. 2993 std::vector<DwarfCompileUnit *> CUs; 2994 for (const auto &it : Spans) { 2995 DwarfCompileUnit *CU = it.first; 2996 CUs.push_back(CU); 2997 } 2998 2999 // Sort the CU list (again, to ensure consistent output order). 3000 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 3001 return A->getUniqueID() < B->getUniqueID(); 3002 }); 3003 3004 // Emit an arange table for each CU we used. 3005 for (DwarfCompileUnit *CU : CUs) { 3006 std::vector<ArangeSpan> &List = Spans[CU]; 3007 3008 // Describe the skeleton CU's offset and length, not the dwo file's. 3009 if (auto *Skel = CU->getSkeleton()) 3010 CU = Skel; 3011 3012 // Emit size of content not including length itself. 3013 unsigned ContentSize = 3014 sizeof(int16_t) + // DWARF ARange version number 3015 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3016 // section 3017 sizeof(int8_t) + // Pointer Size (in bytes) 3018 sizeof(int8_t); // Segment Size (in bytes) 3019 3020 unsigned TupleSize = PtrSize * 2; 3021 3022 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3023 unsigned Padding = offsetToAlignment( 3024 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3025 3026 ContentSize += Padding; 3027 ContentSize += (List.size() + 1) * TupleSize; 3028 3029 // For each compile unit, write the list of spans it covers. 3030 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3031 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3032 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3033 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3034 emitSectionReference(*CU); 3035 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3036 Asm->emitInt8(PtrSize); 3037 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3038 Asm->emitInt8(0); 3039 3040 Asm->OutStreamer->emitFill(Padding, 0xff); 3041 3042 for (const ArangeSpan &Span : List) { 3043 Asm->emitLabelReference(Span.Start, PtrSize); 3044 3045 // Calculate the size as being from the span start to its end. 3046 // 3047 // If the size is zero, then round it up to one byte. The DWARF 3048 // specification requires that entries in this table have nonzero 3049 // lengths. 3050 auto SizeRef = SymSize.find(Span.Start); 3051 if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) { 3052 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3053 } else { 3054 // For symbols without an end marker (e.g. common), we 3055 // write a single arange entry containing just that one symbol. 3056 uint64_t Size; 3057 if (SizeRef == SymSize.end() || SizeRef->second == 0) 3058 Size = 1; 3059 else 3060 Size = SizeRef->second; 3061 3062 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3063 } 3064 } 3065 3066 Asm->OutStreamer->AddComment("ARange terminator"); 3067 Asm->OutStreamer->emitIntValue(0, PtrSize); 3068 Asm->OutStreamer->emitIntValue(0, PtrSize); 3069 } 3070 } 3071 3072 /// Emit a single range list. We handle both DWARF v5 and earlier. 3073 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3074 const RangeSpanList &List) { 3075 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3076 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3077 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3078 llvm::dwarf::RangeListEncodingString, 3079 List.CU->getCUNode()->getRangesBaseAddress() || 3080 DD.getDwarfVersion() >= 5, 3081 [](auto) {}); 3082 } 3083 3084 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3085 if (Holder.getRangeLists().empty()) 3086 return; 3087 3088 assert(useRangesSection()); 3089 assert(!CUMap.empty()); 3090 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3091 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3092 })); 3093 3094 Asm->OutStreamer->switchSection(Section); 3095 3096 MCSymbol *TableEnd = nullptr; 3097 if (getDwarfVersion() >= 5) 3098 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3099 3100 for (const RangeSpanList &List : Holder.getRangeLists()) 3101 emitRangeList(*this, Asm, List); 3102 3103 if (TableEnd) 3104 Asm->OutStreamer->emitLabel(TableEnd); 3105 } 3106 3107 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3108 /// .debug_rnglists section. 3109 void DwarfDebug::emitDebugRanges() { 3110 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3111 3112 emitDebugRangesImpl(Holder, 3113 getDwarfVersion() >= 5 3114 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3115 : Asm->getObjFileLowering().getDwarfRangesSection()); 3116 } 3117 3118 void DwarfDebug::emitDebugRangesDWO() { 3119 emitDebugRangesImpl(InfoHolder, 3120 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3121 } 3122 3123 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3124 /// DWARF 4. 3125 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3126 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3127 enum HeaderFlagMask { 3128 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3129 #include "llvm/BinaryFormat/Dwarf.def" 3130 }; 3131 Asm->OutStreamer->AddComment("Macro information version"); 3132 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3133 // We emit the line offset flag unconditionally here, since line offset should 3134 // be mostly present. 3135 if (Asm->isDwarf64()) { 3136 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3137 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3138 } else { 3139 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3140 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3141 } 3142 Asm->OutStreamer->AddComment("debug_line_offset"); 3143 if (DD.useSplitDwarf()) 3144 Asm->emitDwarfLengthOrOffset(0); 3145 else 3146 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3147 } 3148 3149 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3150 for (auto *MN : Nodes) { 3151 if (auto *M = dyn_cast<DIMacro>(MN)) 3152 emitMacro(*M); 3153 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3154 emitMacroFile(*F, U); 3155 else 3156 llvm_unreachable("Unexpected DI type!"); 3157 } 3158 } 3159 3160 void DwarfDebug::emitMacro(DIMacro &M) { 3161 StringRef Name = M.getName(); 3162 StringRef Value = M.getValue(); 3163 3164 // There should be one space between the macro name and the macro value in 3165 // define entries. In undef entries, only the macro name is emitted. 3166 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3167 3168 if (UseDebugMacroSection) { 3169 if (getDwarfVersion() >= 5) { 3170 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3171 ? dwarf::DW_MACRO_define_strx 3172 : dwarf::DW_MACRO_undef_strx; 3173 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3174 Asm->emitULEB128(Type); 3175 Asm->OutStreamer->AddComment("Line Number"); 3176 Asm->emitULEB128(M.getLine()); 3177 Asm->OutStreamer->AddComment("Macro String"); 3178 Asm->emitULEB128( 3179 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3180 } else { 3181 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3182 ? dwarf::DW_MACRO_GNU_define_indirect 3183 : dwarf::DW_MACRO_GNU_undef_indirect; 3184 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3185 Asm->emitULEB128(Type); 3186 Asm->OutStreamer->AddComment("Line Number"); 3187 Asm->emitULEB128(M.getLine()); 3188 Asm->OutStreamer->AddComment("Macro String"); 3189 Asm->emitDwarfSymbolReference( 3190 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3191 } 3192 } else { 3193 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3194 Asm->emitULEB128(M.getMacinfoType()); 3195 Asm->OutStreamer->AddComment("Line Number"); 3196 Asm->emitULEB128(M.getLine()); 3197 Asm->OutStreamer->AddComment("Macro String"); 3198 Asm->OutStreamer->emitBytes(Str); 3199 Asm->emitInt8('\0'); 3200 } 3201 } 3202 3203 void DwarfDebug::emitMacroFileImpl( 3204 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3205 StringRef (*MacroFormToString)(unsigned Form)) { 3206 3207 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3208 Asm->emitULEB128(StartFile); 3209 Asm->OutStreamer->AddComment("Line Number"); 3210 Asm->emitULEB128(MF.getLine()); 3211 Asm->OutStreamer->AddComment("File Number"); 3212 DIFile &F = *MF.getFile(); 3213 if (useSplitDwarf()) 3214 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3215 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3216 Asm->OutContext.getDwarfVersion(), F.getSource())); 3217 else 3218 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3219 handleMacroNodes(MF.getElements(), U); 3220 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3221 Asm->emitULEB128(EndFile); 3222 } 3223 3224 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3225 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3226 // so for readibility/uniformity, We are explicitly emitting those. 3227 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3228 if (UseDebugMacroSection) 3229 emitMacroFileImpl( 3230 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3231 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3232 else 3233 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3234 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3235 } 3236 3237 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3238 for (const auto &P : CUMap) { 3239 auto &TheCU = *P.second; 3240 auto *SkCU = TheCU.getSkeleton(); 3241 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3242 auto *CUNode = cast<DICompileUnit>(P.first); 3243 DIMacroNodeArray Macros = CUNode->getMacros(); 3244 if (Macros.empty()) 3245 continue; 3246 Asm->OutStreamer->switchSection(Section); 3247 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3248 if (UseDebugMacroSection) 3249 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3250 handleMacroNodes(Macros, U); 3251 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3252 Asm->emitInt8(0); 3253 } 3254 } 3255 3256 /// Emit macros into a debug macinfo/macro section. 3257 void DwarfDebug::emitDebugMacinfo() { 3258 auto &ObjLower = Asm->getObjFileLowering(); 3259 emitDebugMacinfoImpl(UseDebugMacroSection 3260 ? ObjLower.getDwarfMacroSection() 3261 : ObjLower.getDwarfMacinfoSection()); 3262 } 3263 3264 void DwarfDebug::emitDebugMacinfoDWO() { 3265 auto &ObjLower = Asm->getObjFileLowering(); 3266 emitDebugMacinfoImpl(UseDebugMacroSection 3267 ? ObjLower.getDwarfMacroDWOSection() 3268 : ObjLower.getDwarfMacinfoDWOSection()); 3269 } 3270 3271 // DWARF5 Experimental Separate Dwarf emitters. 3272 3273 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3274 std::unique_ptr<DwarfCompileUnit> NewU) { 3275 3276 if (!CompilationDir.empty()) 3277 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3278 addGnuPubAttributes(*NewU, Die); 3279 3280 SkeletonHolder.addUnit(std::move(NewU)); 3281 } 3282 3283 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3284 3285 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3286 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3287 UnitKind::Skeleton); 3288 DwarfCompileUnit &NewCU = *OwnedUnit; 3289 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3290 3291 NewCU.initStmtList(); 3292 3293 if (useSegmentedStringOffsetsTable()) 3294 NewCU.addStringOffsetsStart(); 3295 3296 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3297 3298 return NewCU; 3299 } 3300 3301 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3302 // compile units that would normally be in debug_info. 3303 void DwarfDebug::emitDebugInfoDWO() { 3304 assert(useSplitDwarf() && "No split dwarf debug info?"); 3305 // Don't emit relocations into the dwo file. 3306 InfoHolder.emitUnits(/* UseOffsets */ true); 3307 } 3308 3309 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3310 // abbreviations for the .debug_info.dwo section. 3311 void DwarfDebug::emitDebugAbbrevDWO() { 3312 assert(useSplitDwarf() && "No split dwarf?"); 3313 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3314 } 3315 3316 void DwarfDebug::emitDebugLineDWO() { 3317 assert(useSplitDwarf() && "No split dwarf?"); 3318 SplitTypeUnitFileTable.Emit( 3319 *Asm->OutStreamer, MCDwarfLineTableParams(), 3320 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3321 } 3322 3323 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3324 assert(useSplitDwarf() && "No split dwarf?"); 3325 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3326 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3327 InfoHolder.getStringOffsetsStartSym()); 3328 } 3329 3330 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3331 // string section and is identical in format to traditional .debug_str 3332 // sections. 3333 void DwarfDebug::emitDebugStrDWO() { 3334 if (useSegmentedStringOffsetsTable()) 3335 emitStringOffsetsTableHeaderDWO(); 3336 assert(useSplitDwarf() && "No split dwarf?"); 3337 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3338 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3339 OffSec, /* UseRelativeOffsets = */ false); 3340 } 3341 3342 // Emit address pool. 3343 void DwarfDebug::emitDebugAddr() { 3344 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3345 } 3346 3347 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3348 if (!useSplitDwarf()) 3349 return nullptr; 3350 const DICompileUnit *DIUnit = CU.getCUNode(); 3351 SplitTypeUnitFileTable.maybeSetRootFile( 3352 DIUnit->getDirectory(), DIUnit->getFilename(), 3353 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3354 return &SplitTypeUnitFileTable; 3355 } 3356 3357 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3358 MD5 Hash; 3359 Hash.update(Identifier); 3360 // ... take the least significant 8 bytes and return those. Our MD5 3361 // implementation always returns its results in little endian, so we actually 3362 // need the "high" word. 3363 MD5::MD5Result Result; 3364 Hash.final(Result); 3365 return Result.high(); 3366 } 3367 3368 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3369 StringRef Identifier, DIE &RefDie, 3370 const DICompositeType *CTy) { 3371 // Fast path if we're building some type units and one has already used the 3372 // address pool we know we're going to throw away all this work anyway, so 3373 // don't bother building dependent types. 3374 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3375 return; 3376 3377 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3378 if (!Ins.second) { 3379 CU.addDIETypeSignature(RefDie, Ins.first->second); 3380 return; 3381 } 3382 3383 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3384 AddrPool.resetUsedFlag(); 3385 3386 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3387 getDwoLineTable(CU)); 3388 DwarfTypeUnit &NewTU = *OwnedUnit; 3389 DIE &UnitDie = NewTU.getUnitDie(); 3390 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3391 3392 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3393 CU.getLanguage()); 3394 3395 uint64_t Signature = makeTypeSignature(Identifier); 3396 NewTU.setTypeSignature(Signature); 3397 Ins.first->second = Signature; 3398 3399 if (useSplitDwarf()) { 3400 MCSection *Section = 3401 getDwarfVersion() <= 4 3402 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3403 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3404 NewTU.setSection(Section); 3405 } else { 3406 MCSection *Section = 3407 getDwarfVersion() <= 4 3408 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3409 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3410 NewTU.setSection(Section); 3411 // Non-split type units reuse the compile unit's line table. 3412 CU.applyStmtList(UnitDie); 3413 } 3414 3415 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3416 // units. 3417 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3418 NewTU.addStringOffsetsStart(); 3419 3420 NewTU.setType(NewTU.createTypeDIE(CTy)); 3421 3422 if (TopLevelType) { 3423 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3424 TypeUnitsUnderConstruction.clear(); 3425 3426 // Types referencing entries in the address table cannot be placed in type 3427 // units. 3428 if (AddrPool.hasBeenUsed()) { 3429 3430 // Remove all the types built while building this type. 3431 // This is pessimistic as some of these types might not be dependent on 3432 // the type that used an address. 3433 for (const auto &TU : TypeUnitsToAdd) 3434 TypeSignatures.erase(TU.second); 3435 3436 // Construct this type in the CU directly. 3437 // This is inefficient because all the dependent types will be rebuilt 3438 // from scratch, including building them in type units, discovering that 3439 // they depend on addresses, throwing them out and rebuilding them. 3440 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3441 return; 3442 } 3443 3444 // If the type wasn't dependent on fission addresses, finish adding the type 3445 // and all its dependent types. 3446 for (auto &TU : TypeUnitsToAdd) { 3447 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3448 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3449 } 3450 } 3451 CU.addDIETypeSignature(RefDie, Signature); 3452 } 3453 3454 // Add the Name along with its companion DIE to the appropriate accelerator 3455 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3456 // AccelTableKind::Apple, we use the table we got as an argument). If 3457 // accelerator tables are disabled, this function does nothing. 3458 template <typename DataT> 3459 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3460 AccelTable<DataT> &AppleAccel, StringRef Name, 3461 const DIE &Die) { 3462 if (getAccelTableKind() == AccelTableKind::None) 3463 return; 3464 3465 if (getAccelTableKind() != AccelTableKind::Apple && 3466 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3467 return; 3468 3469 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3470 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3471 3472 switch (getAccelTableKind()) { 3473 case AccelTableKind::Apple: 3474 AppleAccel.addName(Ref, Die); 3475 break; 3476 case AccelTableKind::Dwarf: 3477 AccelDebugNames.addName(Ref, Die); 3478 break; 3479 case AccelTableKind::Default: 3480 llvm_unreachable("Default should have already been resolved."); 3481 case AccelTableKind::None: 3482 llvm_unreachable("None handled above"); 3483 } 3484 } 3485 3486 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3487 const DIE &Die) { 3488 addAccelNameImpl(CU, AccelNames, Name, Die); 3489 } 3490 3491 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3492 const DIE &Die) { 3493 // ObjC names go only into the Apple accelerator tables. 3494 if (getAccelTableKind() == AccelTableKind::Apple) 3495 addAccelNameImpl(CU, AccelObjC, Name, Die); 3496 } 3497 3498 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3499 const DIE &Die) { 3500 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3501 } 3502 3503 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3504 const DIE &Die, char Flags) { 3505 addAccelNameImpl(CU, AccelTypes, Name, Die); 3506 } 3507 3508 uint16_t DwarfDebug::getDwarfVersion() const { 3509 return Asm->OutStreamer->getContext().getDwarfVersion(); 3510 } 3511 3512 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3513 if (Asm->getDwarfVersion() >= 4) 3514 return dwarf::Form::DW_FORM_sec_offset; 3515 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3516 "DWARF64 is not defined prior DWARFv3"); 3517 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3518 : dwarf::Form::DW_FORM_data4; 3519 } 3520 3521 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3522 auto I = SectionLabels.find(S); 3523 if (I == SectionLabels.end()) 3524 return nullptr; 3525 return I->second; 3526 } 3527 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3528 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3529 if (useSplitDwarf() || getDwarfVersion() >= 5) 3530 AddrPool.getIndex(S); 3531 } 3532 3533 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3534 assert(File); 3535 if (getDwarfVersion() < 5) 3536 return None; 3537 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3538 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3539 return None; 3540 3541 // Convert the string checksum to an MD5Result for the streamer. 3542 // The verifier validates the checksum so we assume it's okay. 3543 // An MD5 checksum is 16 bytes. 3544 std::string ChecksumString = fromHex(Checksum->Value); 3545 MD5::MD5Result CKMem; 3546 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data()); 3547 return CKMem; 3548 } 3549