1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 35 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MD5.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLoweringObjectFile.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/TargetParser/Triple.h" 57 #include <algorithm> 58 #include <cstddef> 59 #include <iterator> 60 #include <optional> 61 #include <string> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "dwarfdebug" 66 67 STATISTIC(NumCSParams, "Number of dbg call site params created"); 68 69 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 70 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 71 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 72 73 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 74 cl::Hidden, 75 cl::desc("Generate dwarf aranges"), 76 cl::init(false)); 77 78 static cl::opt<bool> 79 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 80 cl::desc("Generate DWARF4 type units."), 81 cl::init(false)); 82 83 static cl::opt<bool> SplitDwarfCrossCuReferences( 84 "split-dwarf-cross-cu-references", cl::Hidden, 85 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 86 87 enum DefaultOnOff { Default, Enable, Disable }; 88 89 static cl::opt<DefaultOnOff> UnknownLocations( 90 "use-unknown-locations", cl::Hidden, 91 cl::desc("Make an absence of debug location information explicit."), 92 cl::values(clEnumVal(Default, "At top of block or after label"), 93 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 94 cl::init(Default)); 95 96 static cl::opt<AccelTableKind> AccelTables( 97 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 98 cl::values(clEnumValN(AccelTableKind::Default, "Default", 99 "Default for platform"), 100 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 101 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 102 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 103 cl::init(AccelTableKind::Default)); 104 105 static cl::opt<DefaultOnOff> 106 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 107 cl::desc("Use inlined strings rather than string section."), 108 cl::values(clEnumVal(Default, "Default for platform"), 109 clEnumVal(Enable, "Enabled"), 110 clEnumVal(Disable, "Disabled")), 111 cl::init(Default)); 112 113 static cl::opt<bool> 114 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 115 cl::desc("Disable emission .debug_ranges section."), 116 cl::init(false)); 117 118 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 119 "dwarf-sections-as-references", cl::Hidden, 120 cl::desc("Use sections+offset as references rather than labels."), 121 cl::values(clEnumVal(Default, "Default for platform"), 122 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 123 cl::init(Default)); 124 125 static cl::opt<bool> 126 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 127 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 128 cl::init(false)); 129 130 static cl::opt<DefaultOnOff> DwarfOpConvert( 131 "dwarf-op-convert", cl::Hidden, 132 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 135 cl::init(Default)); 136 137 enum LinkageNameOption { 138 DefaultLinkageNames, 139 AllLinkageNames, 140 AbstractLinkageNames 141 }; 142 143 static cl::opt<LinkageNameOption> 144 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 145 cl::desc("Which DWARF linkage-name attributes to emit."), 146 cl::values(clEnumValN(DefaultLinkageNames, "Default", 147 "Default for platform"), 148 clEnumValN(AllLinkageNames, "All", "All"), 149 clEnumValN(AbstractLinkageNames, "Abstract", 150 "Abstract subprograms")), 151 cl::init(DefaultLinkageNames)); 152 153 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 154 "minimize-addr-in-v5", cl::Hidden, 155 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 156 "address pool entry sharing to reduce relocations/object size"), 157 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 158 "Default address minimization strategy"), 159 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 160 "Use rnglists for contiguous ranges if that allows " 161 "using a pre-existing base address"), 162 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 163 "Expressions", 164 "Use exprloc addrx+offset expressions for any " 165 "address with a prior base address"), 166 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 167 "Use addrx+offset extension form for any address " 168 "with a prior base address"), 169 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 170 "Stuff")), 171 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 172 173 static constexpr unsigned ULEB128PadSize = 4; 174 175 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 176 getActiveStreamer().emitInt8( 177 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 178 : dwarf::OperationEncodingString(Op)); 179 } 180 181 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 182 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 183 } 184 185 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 186 getActiveStreamer().emitULEB128(Value, Twine(Value)); 187 } 188 189 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 190 getActiveStreamer().emitInt8(Value, Twine(Value)); 191 } 192 193 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 194 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 195 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 196 } 197 198 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 199 llvm::Register MachineReg) { 200 // This information is not available while emitting .debug_loc entries. 201 return false; 202 } 203 204 void DebugLocDwarfExpression::enableTemporaryBuffer() { 205 assert(!IsBuffering && "Already buffering?"); 206 if (!TmpBuf) 207 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 208 IsBuffering = true; 209 } 210 211 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 212 213 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 214 return TmpBuf ? TmpBuf->Bytes.size() : 0; 215 } 216 217 void DebugLocDwarfExpression::commitTemporaryBuffer() { 218 if (!TmpBuf) 219 return; 220 for (auto Byte : enumerate(TmpBuf->Bytes)) { 221 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 222 ? TmpBuf->Comments[Byte.index()].c_str() 223 : ""; 224 OutBS.emitInt8(Byte.value(), Comment); 225 } 226 TmpBuf->Bytes.clear(); 227 TmpBuf->Comments.clear(); 228 } 229 230 const DIType *DbgVariable::getType() const { 231 return getVariable()->getType(); 232 } 233 234 /// Get .debug_loc entry for the instruction range starting at MI. 235 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 236 const DIExpression *Expr = MI->getDebugExpression(); 237 auto SingleLocExprOpt = DIExpression::convertToNonVariadicExpression(Expr); 238 const bool IsVariadic = !SingleLocExprOpt; 239 // If we have a variadic debug value instruction that is equivalent to a 240 // non-variadic instruction, then convert it to non-variadic form here. 241 if (!IsVariadic && !MI->isNonListDebugValue()) { 242 assert(MI->getNumDebugOperands() == 1 && 243 "Mismatched DIExpression and debug operands for debug instruction."); 244 Expr = *SingleLocExprOpt; 245 } 246 assert(MI->getNumOperands() >= 3); 247 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 248 for (const MachineOperand &Op : MI->debug_operands()) { 249 if (Op.isReg()) { 250 MachineLocation MLoc(Op.getReg(), 251 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 252 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 253 } else if (Op.isTargetIndex()) { 254 DbgValueLocEntries.push_back( 255 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 256 } else if (Op.isImm()) 257 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 258 else if (Op.isFPImm()) 259 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 260 else if (Op.isCImm()) 261 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 262 else 263 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 264 } 265 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 266 } 267 268 static uint64_t getFragmentOffsetInBits(const DIExpression &Expr) { 269 std::optional<DIExpression::FragmentInfo> Fragment = Expr.getFragmentInfo(); 270 return Fragment ? Fragment->OffsetInBits : 0; 271 } 272 273 bool llvm::operator<(const FrameIndexExpr &LHS, const FrameIndexExpr &RHS) { 274 return getFragmentOffsetInBits(*LHS.Expr) < 275 getFragmentOffsetInBits(*RHS.Expr); 276 } 277 278 bool llvm::operator<(const EntryValueInfo &LHS, const EntryValueInfo &RHS) { 279 return getFragmentOffsetInBits(LHS.Expr) < getFragmentOffsetInBits(RHS.Expr); 280 } 281 282 Loc::Single::Single(DbgValueLoc ValueLoc) 283 : ValueLoc(std::make_unique<DbgValueLoc>(ValueLoc)), 284 Expr(ValueLoc.getExpression()) { 285 if (!Expr->getNumElements()) 286 Expr = nullptr; 287 } 288 289 Loc::Single::Single(const MachineInstr *DbgValue) 290 : Single(getDebugLocValue(DbgValue)) {} 291 292 const std::set<FrameIndexExpr> &Loc::MMI::getFrameIndexExprs() const { 293 return FrameIndexExprs; 294 } 295 296 void Loc::MMI::addFrameIndexExpr(const DIExpression *Expr, int FI) { 297 FrameIndexExprs.insert({FI, Expr}); 298 assert((FrameIndexExprs.size() == 1 || 299 llvm::all_of(FrameIndexExprs, 300 [](const FrameIndexExpr &FIE) { 301 return FIE.Expr && FIE.Expr->isFragment(); 302 })) && 303 "conflicting locations for variable"); 304 } 305 306 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 307 bool GenerateTypeUnits, 308 DebuggerKind Tuning, 309 const Triple &TT) { 310 // Honor an explicit request. 311 if (AccelTables != AccelTableKind::Default) 312 return AccelTables; 313 314 // Generating DWARF5 acceleration table. 315 // Currently Split dwarf and non ELF format is not supported. 316 if (GenerateTypeUnits && (DwarfVersion < 5 || !TT.isOSBinFormatELF())) 317 return AccelTableKind::None; 318 319 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 320 // always implies debug_names. For lower standard versions we use apple 321 // accelerator tables on apple platforms and debug_names elsewhere. 322 if (DwarfVersion >= 5) 323 return AccelTableKind::Dwarf; 324 if (Tuning == DebuggerKind::LLDB) 325 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 326 : AccelTableKind::Dwarf; 327 return AccelTableKind::None; 328 } 329 330 DwarfDebug::DwarfDebug(AsmPrinter *A) 331 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 332 InfoHolder(A, "info_string", DIEValueAllocator), 333 SkeletonHolder(A, "skel_string", DIEValueAllocator), 334 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 335 const Triple &TT = Asm->TM.getTargetTriple(); 336 337 // Make sure we know our "debugger tuning". The target option takes 338 // precedence; fall back to triple-based defaults. 339 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 340 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 341 else if (IsDarwin) 342 DebuggerTuning = DebuggerKind::LLDB; 343 else if (TT.isPS()) 344 DebuggerTuning = DebuggerKind::SCE; 345 else if (TT.isOSAIX()) 346 DebuggerTuning = DebuggerKind::DBX; 347 else 348 DebuggerTuning = DebuggerKind::GDB; 349 350 if (DwarfInlinedStrings == Default) 351 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 352 else 353 UseInlineStrings = DwarfInlinedStrings == Enable; 354 355 UseLocSection = !TT.isNVPTX(); 356 357 HasAppleExtensionAttributes = tuneForLLDB(); 358 359 // Handle split DWARF. 360 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 361 362 // SCE defaults to linkage names only for abstract subprograms. 363 if (DwarfLinkageNames == DefaultLinkageNames) 364 UseAllLinkageNames = !tuneForSCE(); 365 else 366 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 367 368 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 369 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 370 : MMI->getModule()->getDwarfVersion(); 371 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 372 DwarfVersion = 373 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 374 375 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 376 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 377 378 // Support DWARF64 379 // 1: For ELF when requested. 380 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 381 // according to the DWARF64 format for 64-bit assembly, so we must use 382 // DWARF64 in the compiler too for 64-bit mode. 383 Dwarf64 &= 384 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 385 TT.isOSBinFormatELF()) || 386 TT.isOSBinFormatXCOFF(); 387 388 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 389 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 390 391 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 392 393 // Use sections as references. Force for NVPTX. 394 if (DwarfSectionsAsReferences == Default) 395 UseSectionsAsReferences = TT.isNVPTX(); 396 else 397 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 398 399 // Don't generate type units for unsupported object file formats. 400 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 401 A->TM.getTargetTriple().isOSBinFormatWasm()) && 402 GenerateDwarfTypeUnits; 403 404 TheAccelTableKind = computeAccelTableKind( 405 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 406 407 // Work around a GDB bug. GDB doesn't support the standard opcode; 408 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 409 // is defined as of DWARF 3. 410 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 411 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 412 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 413 414 UseDWARF2Bitfields = DwarfVersion < 4; 415 416 // The DWARF v5 string offsets table has - possibly shared - contributions 417 // from each compile and type unit each preceded by a header. The string 418 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 419 // a monolithic string offsets table without any header. 420 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 421 422 // Emit call-site-param debug info for GDB and LLDB, if the target supports 423 // the debug entry values feature. It can also be enabled explicitly. 424 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 425 426 // It is unclear if the GCC .debug_macro extension is well-specified 427 // for split DWARF. For now, do not allow LLVM to emit it. 428 UseDebugMacroSection = 429 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 430 if (DwarfOpConvert == Default) 431 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 432 else 433 EnableOpConvert = (DwarfOpConvert == Enable); 434 435 // Split DWARF would benefit object size significantly by trading reductions 436 // in address pool usage for slightly increased range list encodings. 437 if (DwarfVersion >= 5) 438 MinimizeAddr = MinimizeAddrInV5Option; 439 440 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 441 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 442 : dwarf::DWARF32); 443 } 444 445 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 446 DwarfDebug::~DwarfDebug() = default; 447 448 static bool isObjCClass(StringRef Name) { 449 return Name.starts_with("+") || Name.starts_with("-"); 450 } 451 452 static bool hasObjCCategory(StringRef Name) { 453 if (!isObjCClass(Name)) 454 return false; 455 456 return Name.contains(") "); 457 } 458 459 static void getObjCClassCategory(StringRef In, StringRef &Class, 460 StringRef &Category) { 461 if (!hasObjCCategory(In)) { 462 Class = In.slice(In.find('[') + 1, In.find(' ')); 463 Category = ""; 464 return; 465 } 466 467 Class = In.slice(In.find('[') + 1, In.find('(')); 468 Category = In.slice(In.find('[') + 1, In.find(' ')); 469 } 470 471 static StringRef getObjCMethodName(StringRef In) { 472 return In.slice(In.find(' ') + 1, In.find(']')); 473 } 474 475 // Add the various names to the Dwarf accelerator table names. 476 void DwarfDebug::addSubprogramNames( 477 const DwarfUnit &Unit, 478 const DICompileUnit::DebugNameTableKind NameTableKind, 479 const DISubprogram *SP, DIE &Die) { 480 if (getAccelTableKind() != AccelTableKind::Apple && 481 NameTableKind != DICompileUnit::DebugNameTableKind::Apple && 482 NameTableKind == DICompileUnit::DebugNameTableKind::None) 483 return; 484 485 if (!SP->isDefinition()) 486 return; 487 488 if (SP->getName() != "") 489 addAccelName(Unit, NameTableKind, SP->getName(), Die); 490 491 // If the linkage name is different than the name, go ahead and output that as 492 // well into the name table. Only do that if we are going to actually emit 493 // that name. 494 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 495 (useAllLinkageNames() || InfoHolder.getAbstractScopeDIEs().lookup(SP))) 496 addAccelName(Unit, NameTableKind, SP->getLinkageName(), Die); 497 498 // If this is an Objective-C selector name add it to the ObjC accelerator 499 // too. 500 if (isObjCClass(SP->getName())) { 501 StringRef Class, Category; 502 getObjCClassCategory(SP->getName(), Class, Category); 503 addAccelObjC(Unit, NameTableKind, Class, Die); 504 if (Category != "") 505 addAccelObjC(Unit, NameTableKind, Category, Die); 506 // Also add the base method name to the name table. 507 addAccelName(Unit, NameTableKind, getObjCMethodName(SP->getName()), Die); 508 } 509 } 510 511 /// Check whether we should create a DIE for the given Scope, return true 512 /// if we don't create a DIE (the corresponding DIE is null). 513 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 514 if (Scope->isAbstractScope()) 515 return false; 516 517 // We don't create a DIE if there is no Range. 518 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 519 if (Ranges.empty()) 520 return true; 521 522 if (Ranges.size() > 1) 523 return false; 524 525 // We don't create a DIE if we have a single Range and the end label 526 // is null. 527 return !getLabelAfterInsn(Ranges.front().second); 528 } 529 530 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 531 F(CU); 532 if (auto *SkelCU = CU.getSkeleton()) 533 if (CU.getCUNode()->getSplitDebugInlining()) 534 F(*SkelCU); 535 } 536 537 bool DwarfDebug::shareAcrossDWOCUs() const { 538 return SplitDwarfCrossCuReferences; 539 } 540 541 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 542 LexicalScope *Scope) { 543 assert(Scope && Scope->getScopeNode()); 544 assert(Scope->isAbstractScope()); 545 assert(!Scope->getInlinedAt()); 546 547 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 548 549 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 550 // was inlined from another compile unit. 551 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 552 // Avoid building the original CU if it won't be used 553 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 554 else { 555 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 556 if (auto *SkelCU = CU.getSkeleton()) { 557 (shareAcrossDWOCUs() ? CU : SrcCU) 558 .constructAbstractSubprogramScopeDIE(Scope); 559 if (CU.getCUNode()->getSplitDebugInlining()) 560 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 561 } else 562 CU.constructAbstractSubprogramScopeDIE(Scope); 563 } 564 } 565 566 /// Represents a parameter whose call site value can be described by applying a 567 /// debug expression to a register in the forwarded register worklist. 568 struct FwdRegParamInfo { 569 /// The described parameter register. 570 unsigned ParamReg; 571 572 /// Debug expression that has been built up when walking through the 573 /// instruction chain that produces the parameter's value. 574 const DIExpression *Expr; 575 }; 576 577 /// Register worklist for finding call site values. 578 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 579 /// Container for the set of registers known to be clobbered on the path to a 580 /// call site. 581 using ClobberedRegSet = SmallSet<Register, 16>; 582 583 /// Append the expression \p Addition to \p Original and return the result. 584 static const DIExpression *combineDIExpressions(const DIExpression *Original, 585 const DIExpression *Addition) { 586 std::vector<uint64_t> Elts = Addition->getElements().vec(); 587 // Avoid multiple DW_OP_stack_values. 588 if (Original->isImplicit() && Addition->isImplicit()) 589 llvm::erase(Elts, dwarf::DW_OP_stack_value); 590 const DIExpression *CombinedExpr = 591 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 592 return CombinedExpr; 593 } 594 595 /// Emit call site parameter entries that are described by the given value and 596 /// debug expression. 597 template <typename ValT> 598 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 599 ArrayRef<FwdRegParamInfo> DescribedParams, 600 ParamSet &Params) { 601 for (auto Param : DescribedParams) { 602 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 603 604 // TODO: Entry value operations can currently not be combined with any 605 // other expressions, so we can't emit call site entries in those cases. 606 if (ShouldCombineExpressions && Expr->isEntryValue()) 607 continue; 608 609 // If a parameter's call site value is produced by a chain of 610 // instructions we may have already created an expression for the 611 // parameter when walking through the instructions. Append that to the 612 // base expression. 613 const DIExpression *CombinedExpr = 614 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 615 : Expr; 616 assert((!CombinedExpr || CombinedExpr->isValid()) && 617 "Combined debug expression is invalid"); 618 619 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 620 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 621 Params.push_back(CSParm); 622 ++NumCSParams; 623 } 624 } 625 626 /// Add \p Reg to the worklist, if it's not already present, and mark that the 627 /// given parameter registers' values can (potentially) be described using 628 /// that register and an debug expression. 629 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 630 const DIExpression *Expr, 631 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 632 auto I = Worklist.insert({Reg, {}}); 633 auto &ParamsForFwdReg = I.first->second; 634 for (auto Param : ParamsToAdd) { 635 assert(none_of(ParamsForFwdReg, 636 [Param](const FwdRegParamInfo &D) { 637 return D.ParamReg == Param.ParamReg; 638 }) && 639 "Same parameter described twice by forwarding reg"); 640 641 // If a parameter's call site value is produced by a chain of 642 // instructions we may have already created an expression for the 643 // parameter when walking through the instructions. Append that to the 644 // new expression. 645 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 646 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 647 } 648 } 649 650 /// Interpret values loaded into registers by \p CurMI. 651 static void interpretValues(const MachineInstr *CurMI, 652 FwdRegWorklist &ForwardedRegWorklist, 653 ParamSet &Params, 654 ClobberedRegSet &ClobberedRegUnits) { 655 656 const MachineFunction *MF = CurMI->getMF(); 657 const DIExpression *EmptyExpr = 658 DIExpression::get(MF->getFunction().getContext(), {}); 659 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 660 const auto &TII = *MF->getSubtarget().getInstrInfo(); 661 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 662 663 // If an instruction defines more than one item in the worklist, we may run 664 // into situations where a worklist register's value is (potentially) 665 // described by the previous value of another register that is also defined 666 // by that instruction. 667 // 668 // This can for example occur in cases like this: 669 // 670 // $r1 = mov 123 671 // $r0, $r1 = mvrr $r1, 456 672 // call @foo, $r0, $r1 673 // 674 // When describing $r1's value for the mvrr instruction, we need to make sure 675 // that we don't finalize an entry value for $r0, as that is dependent on the 676 // previous value of $r1 (123 rather than 456). 677 // 678 // In order to not have to distinguish between those cases when finalizing 679 // entry values, we simply postpone adding new parameter registers to the 680 // worklist, by first keeping them in this temporary container until the 681 // instruction has been handled. 682 FwdRegWorklist TmpWorklistItems; 683 684 // If the MI is an instruction defining one or more parameters' forwarding 685 // registers, add those defines. 686 ClobberedRegSet NewClobberedRegUnits; 687 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 688 SmallSetVector<unsigned, 4> &Defs) { 689 if (MI.isDebugInstr()) 690 return; 691 692 for (const MachineOperand &MO : MI.all_defs()) { 693 if (MO.getReg().isPhysical()) { 694 for (auto &FwdReg : ForwardedRegWorklist) 695 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 696 Defs.insert(FwdReg.first); 697 for (MCRegUnit Unit : TRI.regunits(MO.getReg())) 698 NewClobberedRegUnits.insert(Unit); 699 } 700 } 701 }; 702 703 // Set of worklist registers that are defined by this instruction. 704 SmallSetVector<unsigned, 4> FwdRegDefs; 705 706 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 707 if (FwdRegDefs.empty()) { 708 // Any definitions by this instruction will clobber earlier reg movements. 709 ClobberedRegUnits.insert(NewClobberedRegUnits.begin(), 710 NewClobberedRegUnits.end()); 711 return; 712 } 713 714 // It's possible that we find a copy from a non-volatile register to the param 715 // register, which is clobbered in the meantime. Test for clobbered reg unit 716 // overlaps before completing. 717 auto IsRegClobberedInMeantime = [&](Register Reg) -> bool { 718 for (auto &RegUnit : ClobberedRegUnits) 719 if (TRI.hasRegUnit(Reg, RegUnit)) 720 return true; 721 return false; 722 }; 723 724 for (auto ParamFwdReg : FwdRegDefs) { 725 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 726 if (ParamValue->first.isImm()) { 727 int64_t Val = ParamValue->first.getImm(); 728 finishCallSiteParams(Val, ParamValue->second, 729 ForwardedRegWorklist[ParamFwdReg], Params); 730 } else if (ParamValue->first.isReg()) { 731 Register RegLoc = ParamValue->first.getReg(); 732 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 733 Register FP = TRI.getFrameRegister(*MF); 734 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 735 if (!IsRegClobberedInMeantime(RegLoc) && 736 (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) { 737 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 738 finishCallSiteParams(MLoc, ParamValue->second, 739 ForwardedRegWorklist[ParamFwdReg], Params); 740 } else { 741 // ParamFwdReg was described by the non-callee saved register 742 // RegLoc. Mark that the call site values for the parameters are 743 // dependent on that register instead of ParamFwdReg. Since RegLoc 744 // may be a register that will be handled in this iteration, we 745 // postpone adding the items to the worklist, and instead keep them 746 // in a temporary container. 747 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 748 ForwardedRegWorklist[ParamFwdReg]); 749 } 750 } 751 } 752 } 753 754 // Remove all registers that this instruction defines from the worklist. 755 for (auto ParamFwdReg : FwdRegDefs) 756 ForwardedRegWorklist.erase(ParamFwdReg); 757 758 // Any definitions by this instruction will clobber earlier reg movements. 759 ClobberedRegUnits.insert(NewClobberedRegUnits.begin(), 760 NewClobberedRegUnits.end()); 761 762 // Now that we are done handling this instruction, add items from the 763 // temporary worklist to the real one. 764 for (auto &New : TmpWorklistItems) 765 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 766 TmpWorklistItems.clear(); 767 } 768 769 static bool interpretNextInstr(const MachineInstr *CurMI, 770 FwdRegWorklist &ForwardedRegWorklist, 771 ParamSet &Params, 772 ClobberedRegSet &ClobberedRegUnits) { 773 // Skip bundle headers. 774 if (CurMI->isBundle()) 775 return true; 776 777 // If the next instruction is a call we can not interpret parameter's 778 // forwarding registers or we finished the interpretation of all 779 // parameters. 780 if (CurMI->isCall()) 781 return false; 782 783 if (ForwardedRegWorklist.empty()) 784 return false; 785 786 // Avoid NOP description. 787 if (CurMI->getNumOperands() == 0) 788 return true; 789 790 interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits); 791 792 return true; 793 } 794 795 /// Try to interpret values loaded into registers that forward parameters 796 /// for \p CallMI. Store parameters with interpreted value into \p Params. 797 static void collectCallSiteParameters(const MachineInstr *CallMI, 798 ParamSet &Params) { 799 const MachineFunction *MF = CallMI->getMF(); 800 const auto &CalleesMap = MF->getCallSitesInfo(); 801 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 802 803 // There is no information for the call instruction. 804 if (CallFwdRegsInfo == CalleesMap.end()) 805 return; 806 807 const MachineBasicBlock *MBB = CallMI->getParent(); 808 809 // Skip the call instruction. 810 auto I = std::next(CallMI->getReverseIterator()); 811 812 FwdRegWorklist ForwardedRegWorklist; 813 814 const DIExpression *EmptyExpr = 815 DIExpression::get(MF->getFunction().getContext(), {}); 816 817 // Add all the forwarding registers into the ForwardedRegWorklist. 818 for (const auto &ArgReg : CallFwdRegsInfo->second) { 819 bool InsertedReg = 820 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 821 .second; 822 assert(InsertedReg && "Single register used to forward two arguments?"); 823 (void)InsertedReg; 824 } 825 826 // Do not emit CSInfo for undef forwarding registers. 827 for (const auto &MO : CallMI->uses()) 828 if (MO.isReg() && MO.isUndef()) 829 ForwardedRegWorklist.erase(MO.getReg()); 830 831 // We erase, from the ForwardedRegWorklist, those forwarding registers for 832 // which we successfully describe a loaded value (by using 833 // the describeLoadedValue()). For those remaining arguments in the working 834 // list, for which we do not describe a loaded value by 835 // the describeLoadedValue(), we try to generate an entry value expression 836 // for their call site value description, if the call is within the entry MBB. 837 // TODO: Handle situations when call site parameter value can be described 838 // as the entry value within basic blocks other than the first one. 839 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 840 841 // Search for a loading value in forwarding registers inside call delay slot. 842 ClobberedRegSet ClobberedRegUnits; 843 if (CallMI->hasDelaySlot()) { 844 auto Suc = std::next(CallMI->getIterator()); 845 // Only one-instruction delay slot is supported. 846 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 847 (void)BundleEnd; 848 assert(std::next(Suc) == BundleEnd && 849 "More than one instruction in call delay slot"); 850 // Try to interpret value loaded by instruction. 851 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits)) 852 return; 853 } 854 855 // Search for a loading value in forwarding registers. 856 for (; I != MBB->rend(); ++I) { 857 // Try to interpret values loaded by instruction. 858 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits)) 859 return; 860 } 861 862 // Emit the call site parameter's value as an entry value. 863 if (ShouldTryEmitEntryVals) { 864 // Create an expression where the register's entry value is used. 865 DIExpression *EntryExpr = DIExpression::get( 866 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 867 for (auto &RegEntry : ForwardedRegWorklist) { 868 MachineLocation MLoc(RegEntry.first); 869 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 870 } 871 } 872 } 873 874 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 875 DwarfCompileUnit &CU, DIE &ScopeDIE, 876 const MachineFunction &MF) { 877 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 878 // the subprogram is required to have one. 879 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 880 return; 881 882 // Use DW_AT_call_all_calls to express that call site entries are present 883 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 884 // because one of its requirements is not met: call site entries for 885 // optimized-out calls are elided. 886 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 887 888 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 889 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 890 891 // Delay slot support check. 892 auto delaySlotSupported = [&](const MachineInstr &MI) { 893 if (!MI.isBundledWithSucc()) 894 return false; 895 auto Suc = std::next(MI.getIterator()); 896 auto CallInstrBundle = getBundleStart(MI.getIterator()); 897 (void)CallInstrBundle; 898 auto DelaySlotBundle = getBundleStart(Suc); 899 (void)DelaySlotBundle; 900 // Ensure that label after call is following delay slot instruction. 901 // Ex. CALL_INSTRUCTION { 902 // DELAY_SLOT_INSTRUCTION } 903 // LABEL_AFTER_CALL 904 assert(getLabelAfterInsn(&*CallInstrBundle) == 905 getLabelAfterInsn(&*DelaySlotBundle) && 906 "Call and its successor instruction don't have same label after."); 907 return true; 908 }; 909 910 // Emit call site entries for each call or tail call in the function. 911 for (const MachineBasicBlock &MBB : MF) { 912 for (const MachineInstr &MI : MBB.instrs()) { 913 // Bundles with call in them will pass the isCall() test below but do not 914 // have callee operand information so skip them here. Iterator will 915 // eventually reach the call MI. 916 if (MI.isBundle()) 917 continue; 918 919 // Skip instructions which aren't calls. Both calls and tail-calling jump 920 // instructions (e.g TAILJMPd64) are classified correctly here. 921 if (!MI.isCandidateForCallSiteEntry()) 922 continue; 923 924 // Skip instructions marked as frame setup, as they are not interesting to 925 // the user. 926 if (MI.getFlag(MachineInstr::FrameSetup)) 927 continue; 928 929 // Check if delay slot support is enabled. 930 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 931 return; 932 933 // If this is a direct call, find the callee's subprogram. 934 // In the case of an indirect call find the register that holds 935 // the callee. 936 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 937 if (!CalleeOp.isGlobal() && 938 (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical())) 939 continue; 940 941 unsigned CallReg = 0; 942 const DISubprogram *CalleeSP = nullptr; 943 const Function *CalleeDecl = nullptr; 944 if (CalleeOp.isReg()) { 945 CallReg = CalleeOp.getReg(); 946 if (!CallReg) 947 continue; 948 } else { 949 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 950 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 951 continue; 952 CalleeSP = CalleeDecl->getSubprogram(); 953 } 954 955 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 956 957 bool IsTail = TII->isTailCall(MI); 958 959 // If MI is in a bundle, the label was created after the bundle since 960 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 961 // to search for that label below. 962 const MachineInstr *TopLevelCallMI = 963 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 964 965 // For non-tail calls, the return PC is needed to disambiguate paths in 966 // the call graph which could lead to some target function. For tail 967 // calls, no return PC information is needed, unless tuning for GDB in 968 // DWARF4 mode in which case we fake a return PC for compatibility. 969 const MCSymbol *PCAddr = 970 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 971 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 972 : nullptr; 973 974 // For tail calls, it's necessary to record the address of the branch 975 // instruction so that the debugger can show where the tail call occurred. 976 const MCSymbol *CallAddr = 977 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 978 979 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 980 981 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 982 << (CalleeDecl ? CalleeDecl->getName() 983 : StringRef(MF.getSubtarget() 984 .getRegisterInfo() 985 ->getName(CallReg))) 986 << (IsTail ? " [IsTail]" : "") << "\n"); 987 988 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 989 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); 990 991 // Optionally emit call-site-param debug info. 992 if (emitDebugEntryValues()) { 993 ParamSet Params; 994 // Try to interpret values of call site parameters. 995 collectCallSiteParameters(&MI, Params); 996 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 997 } 998 } 999 } 1000 } 1001 1002 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1003 if (!U.hasDwarfPubSections()) 1004 return; 1005 1006 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1007 } 1008 1009 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1010 DwarfCompileUnit &NewCU) { 1011 DIE &Die = NewCU.getUnitDie(); 1012 StringRef FN = DIUnit->getFilename(); 1013 1014 StringRef Producer = DIUnit->getProducer(); 1015 StringRef Flags = DIUnit->getFlags(); 1016 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1017 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1018 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1019 } else 1020 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1021 1022 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1023 DIUnit->getSourceLanguage()); 1024 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1025 StringRef SysRoot = DIUnit->getSysRoot(); 1026 if (!SysRoot.empty()) 1027 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1028 StringRef SDK = DIUnit->getSDK(); 1029 if (!SDK.empty()) 1030 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1031 1032 if (!useSplitDwarf()) { 1033 // Add DW_str_offsets_base to the unit DIE, except for split units. 1034 if (useSegmentedStringOffsetsTable()) 1035 NewCU.addStringOffsetsStart(); 1036 1037 NewCU.initStmtList(); 1038 1039 // If we're using split dwarf the compilation dir is going to be in the 1040 // skeleton CU and so we don't need to duplicate it here. 1041 if (!CompilationDir.empty()) 1042 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1043 addGnuPubAttributes(NewCU, Die); 1044 } 1045 1046 if (useAppleExtensionAttributes()) { 1047 if (DIUnit->isOptimized()) 1048 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1049 1050 StringRef Flags = DIUnit->getFlags(); 1051 if (!Flags.empty()) 1052 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1053 1054 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1055 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1056 dwarf::DW_FORM_data1, RVer); 1057 } 1058 1059 if (DIUnit->getDWOId()) { 1060 // This CU is either a clang module DWO or a skeleton CU. 1061 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1062 DIUnit->getDWOId()); 1063 if (!DIUnit->getSplitDebugFilename().empty()) { 1064 // This is a prefabricated skeleton CU. 1065 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1066 ? dwarf::DW_AT_dwo_name 1067 : dwarf::DW_AT_GNU_dwo_name; 1068 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1069 } 1070 } 1071 } 1072 // Create new DwarfCompileUnit for the given metadata node with tag 1073 // DW_TAG_compile_unit. 1074 DwarfCompileUnit & 1075 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1076 if (auto *CU = CUMap.lookup(DIUnit)) 1077 return *CU; 1078 1079 if (useSplitDwarf() && 1080 !shareAcrossDWOCUs() && 1081 (!DIUnit->getSplitDebugInlining() || 1082 DIUnit->getEmissionKind() == DICompileUnit::FullDebug) && 1083 !CUMap.empty()) { 1084 return *CUMap.begin()->second; 1085 } 1086 CompilationDir = DIUnit->getDirectory(); 1087 1088 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1089 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1090 DwarfCompileUnit &NewCU = *OwnedUnit; 1091 InfoHolder.addUnit(std::move(OwnedUnit)); 1092 1093 // LTO with assembly output shares a single line table amongst multiple CUs. 1094 // To avoid the compilation directory being ambiguous, let the line table 1095 // explicitly describe the directory of all files, never relying on the 1096 // compilation directory. 1097 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1098 Asm->OutStreamer->emitDwarfFile0Directive( 1099 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1100 DIUnit->getSource(), NewCU.getUniqueID()); 1101 1102 if (useSplitDwarf()) { 1103 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1104 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1105 } else { 1106 finishUnitAttributes(DIUnit, NewCU); 1107 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1108 } 1109 1110 CUMap.insert({DIUnit, &NewCU}); 1111 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1112 return NewCU; 1113 } 1114 1115 /// Sort and unique GVEs by comparing their fragment offset. 1116 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1117 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1118 llvm::sort( 1119 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1120 // Sort order: first null exprs, then exprs without fragment 1121 // info, then sort by fragment offset in bits. 1122 // FIXME: Come up with a more comprehensive comparator so 1123 // the sorting isn't non-deterministic, and so the following 1124 // std::unique call works correctly. 1125 if (!A.Expr || !B.Expr) 1126 return !!B.Expr; 1127 auto FragmentA = A.Expr->getFragmentInfo(); 1128 auto FragmentB = B.Expr->getFragmentInfo(); 1129 if (!FragmentA || !FragmentB) 1130 return !!FragmentB; 1131 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1132 }); 1133 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1134 [](DwarfCompileUnit::GlobalExpr A, 1135 DwarfCompileUnit::GlobalExpr B) { 1136 return A.Expr == B.Expr; 1137 }), 1138 GVEs.end()); 1139 return GVEs; 1140 } 1141 1142 // Emit all Dwarf sections that should come prior to the content. Create 1143 // global DIEs and emit initial debug info sections. This is invoked by 1144 // the target AsmPrinter. 1145 void DwarfDebug::beginModule(Module *M) { 1146 DebugHandlerBase::beginModule(M); 1147 1148 if (!Asm || !MMI->hasDebugInfo()) 1149 return; 1150 1151 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1152 M->debug_compile_units_end()); 1153 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1154 assert(MMI->hasDebugInfo() && 1155 "DebugInfoAvailabilty unexpectedly not initialized"); 1156 SingleCU = NumDebugCUs == 1; 1157 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1158 GVMap; 1159 for (const GlobalVariable &Global : M->globals()) { 1160 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1161 Global.getDebugInfo(GVs); 1162 for (auto *GVE : GVs) 1163 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1164 } 1165 1166 // Create the symbol that designates the start of the unit's contribution 1167 // to the string offsets table. In a split DWARF scenario, only the skeleton 1168 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1169 if (useSegmentedStringOffsetsTable()) 1170 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1171 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1172 1173 1174 // Create the symbols that designates the start of the DWARF v5 range list 1175 // and locations list tables. They are located past the table headers. 1176 if (getDwarfVersion() >= 5) { 1177 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1178 Holder.setRnglistsTableBaseSym( 1179 Asm->createTempSymbol("rnglists_table_base")); 1180 1181 if (useSplitDwarf()) 1182 InfoHolder.setRnglistsTableBaseSym( 1183 Asm->createTempSymbol("rnglists_dwo_table_base")); 1184 } 1185 1186 // Create the symbol that points to the first entry following the debug 1187 // address table (.debug_addr) header. 1188 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1189 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1190 1191 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1192 if (CUNode->getImportedEntities().empty() && 1193 CUNode->getEnumTypes().empty() && CUNode->getRetainedTypes().empty() && 1194 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1195 continue; 1196 1197 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1198 1199 // Global Variables. 1200 for (auto *GVE : CUNode->getGlobalVariables()) { 1201 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1202 // already know about the variable and it isn't adding a constant 1203 // expression. 1204 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1205 auto *Expr = GVE->getExpression(); 1206 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1207 GVMapEntry.push_back({nullptr, Expr}); 1208 } 1209 1210 DenseSet<DIGlobalVariable *> Processed; 1211 for (auto *GVE : CUNode->getGlobalVariables()) { 1212 DIGlobalVariable *GV = GVE->getVariable(); 1213 if (Processed.insert(GV).second) 1214 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1215 } 1216 1217 for (auto *Ty : CUNode->getEnumTypes()) 1218 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1219 1220 for (auto *Ty : CUNode->getRetainedTypes()) { 1221 // The retained types array by design contains pointers to 1222 // MDNodes rather than DIRefs. Unique them here. 1223 if (DIType *RT = dyn_cast<DIType>(Ty)) 1224 // There is no point in force-emitting a forward declaration. 1225 CU.getOrCreateTypeDIE(RT); 1226 } 1227 } 1228 } 1229 1230 void DwarfDebug::finishEntityDefinitions() { 1231 for (const auto &Entity : ConcreteEntities) { 1232 DIE *Die = Entity->getDIE(); 1233 assert(Die); 1234 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1235 // in the ConcreteEntities list, rather than looking it up again here. 1236 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1237 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1238 assert(Unit); 1239 Unit->finishEntityDefinition(Entity.get()); 1240 } 1241 } 1242 1243 void DwarfDebug::finishSubprogramDefinitions() { 1244 for (const DISubprogram *SP : ProcessedSPNodes) { 1245 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1246 forBothCUs( 1247 getOrCreateDwarfCompileUnit(SP->getUnit()), 1248 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1249 } 1250 } 1251 1252 void DwarfDebug::finalizeModuleInfo() { 1253 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1254 1255 finishSubprogramDefinitions(); 1256 1257 finishEntityDefinitions(); 1258 1259 // Include the DWO file name in the hash if there's more than one CU. 1260 // This handles ThinLTO's situation where imported CUs may very easily be 1261 // duplicate with the same CU partially imported into another ThinLTO unit. 1262 StringRef DWOName; 1263 if (CUMap.size() > 1) 1264 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1265 1266 bool HasEmittedSplitCU = false; 1267 1268 // Handle anything that needs to be done on a per-unit basis after 1269 // all other generation. 1270 for (const auto &P : CUMap) { 1271 auto &TheCU = *P.second; 1272 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1273 continue; 1274 // Emit DW_AT_containing_type attribute to connect types with their 1275 // vtable holding type. 1276 TheCU.constructContainingTypeDIEs(); 1277 1278 // Add CU specific attributes if we need to add any. 1279 // If we're splitting the dwarf out now that we've got the entire 1280 // CU then add the dwo id to it. 1281 auto *SkCU = TheCU.getSkeleton(); 1282 1283 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1284 1285 if (HasSplitUnit) { 1286 (void)HasEmittedSplitCU; 1287 assert((shareAcrossDWOCUs() || !HasEmittedSplitCU) && 1288 "Multiple CUs emitted into a single dwo file"); 1289 HasEmittedSplitCU = true; 1290 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1291 ? dwarf::DW_AT_dwo_name 1292 : dwarf::DW_AT_GNU_dwo_name; 1293 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1294 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1295 Asm->TM.Options.MCOptions.SplitDwarfFile); 1296 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1297 Asm->TM.Options.MCOptions.SplitDwarfFile); 1298 // Emit a unique identifier for this CU. 1299 uint64_t ID = 1300 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1301 if (getDwarfVersion() >= 5) { 1302 TheCU.setDWOId(ID); 1303 SkCU->setDWOId(ID); 1304 } else { 1305 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1306 dwarf::DW_FORM_data8, ID); 1307 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1308 dwarf::DW_FORM_data8, ID); 1309 } 1310 1311 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1312 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1313 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1314 Sym, Sym); 1315 } 1316 } else if (SkCU) { 1317 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1318 } 1319 1320 // If we have code split among multiple sections or non-contiguous 1321 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1322 // remain in the .o file, otherwise add a DW_AT_low_pc. 1323 // FIXME: We should use ranges allow reordering of code ala 1324 // .subsections_via_symbols in mach-o. This would mean turning on 1325 // ranges for all subprogram DIEs for mach-o. 1326 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1327 1328 if (unsigned NumRanges = TheCU.getRanges().size()) { 1329 if (NumRanges > 1 && useRangesSection()) 1330 // A DW_AT_low_pc attribute may also be specified in combination with 1331 // DW_AT_ranges to specify the default base address for use in 1332 // location lists (see Section 2.6.2) and range lists (see Section 1333 // 2.17.3). 1334 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1335 else 1336 U.setBaseAddress(TheCU.getRanges().front().Begin); 1337 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1338 } 1339 1340 // We don't keep track of which addresses are used in which CU so this 1341 // is a bit pessimistic under LTO. 1342 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1343 U.addAddrTableBase(); 1344 1345 if (getDwarfVersion() >= 5) { 1346 if (U.hasRangeLists()) 1347 U.addRnglistsBase(); 1348 1349 if (!DebugLocs.getLists().empty() && !useSplitDwarf()) { 1350 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1351 DebugLocs.getSym(), 1352 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1353 } 1354 } 1355 1356 auto *CUNode = cast<DICompileUnit>(P.first); 1357 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1358 // attribute. 1359 if (CUNode->getMacros()) { 1360 if (UseDebugMacroSection) { 1361 if (useSplitDwarf()) 1362 TheCU.addSectionDelta( 1363 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1364 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1365 else { 1366 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1367 ? dwarf::DW_AT_macros 1368 : dwarf::DW_AT_GNU_macros; 1369 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1370 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1371 } 1372 } else { 1373 if (useSplitDwarf()) 1374 TheCU.addSectionDelta( 1375 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1376 U.getMacroLabelBegin(), 1377 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1378 else 1379 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1380 U.getMacroLabelBegin(), 1381 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1382 } 1383 } 1384 } 1385 1386 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1387 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1388 if (CUNode->getDWOId()) 1389 getOrCreateDwarfCompileUnit(CUNode); 1390 1391 // Compute DIE offsets and sizes. 1392 InfoHolder.computeSizeAndOffsets(); 1393 if (useSplitDwarf()) 1394 SkeletonHolder.computeSizeAndOffsets(); 1395 1396 // Now that offsets are computed, can replace DIEs in debug_names Entry with 1397 // an actual offset. 1398 AccelDebugNames.convertDieToOffset(); 1399 } 1400 1401 // Emit all Dwarf sections that should come after the content. 1402 void DwarfDebug::endModule() { 1403 // Terminate the pending line table. 1404 if (PrevCU) 1405 terminateLineTable(PrevCU); 1406 PrevCU = nullptr; 1407 assert(CurFn == nullptr); 1408 assert(CurMI == nullptr); 1409 1410 for (const auto &P : CUMap) { 1411 const auto *CUNode = cast<DICompileUnit>(P.first); 1412 DwarfCompileUnit *CU = &*P.second; 1413 1414 // Emit imported entities. 1415 for (auto *IE : CUNode->getImportedEntities()) { 1416 assert(!isa_and_nonnull<DILocalScope>(IE->getScope()) && 1417 "Unexpected function-local entity in 'imports' CU field."); 1418 CU->getOrCreateImportedEntityDIE(IE); 1419 } 1420 for (const auto *D : CU->getDeferredLocalDecls()) { 1421 if (auto *IE = dyn_cast<DIImportedEntity>(D)) 1422 CU->getOrCreateImportedEntityDIE(IE); 1423 else 1424 llvm_unreachable("Unexpected local retained node!"); 1425 } 1426 1427 // Emit base types. 1428 CU->createBaseTypeDIEs(); 1429 } 1430 1431 // If we aren't actually generating debug info (check beginModule - 1432 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1433 if (!Asm || !MMI->hasDebugInfo()) 1434 return; 1435 1436 // Finalize the debug info for the module. 1437 finalizeModuleInfo(); 1438 1439 if (useSplitDwarf()) 1440 // Emit debug_loc.dwo/debug_loclists.dwo section. 1441 emitDebugLocDWO(); 1442 else 1443 // Emit debug_loc/debug_loclists section. 1444 emitDebugLoc(); 1445 1446 // Corresponding abbreviations into a abbrev section. 1447 emitAbbreviations(); 1448 1449 // Emit all the DIEs into a debug info section. 1450 emitDebugInfo(); 1451 1452 // Emit info into a debug aranges section. 1453 if (GenerateARangeSection) 1454 emitDebugARanges(); 1455 1456 // Emit info into a debug ranges section. 1457 emitDebugRanges(); 1458 1459 if (useSplitDwarf()) 1460 // Emit info into a debug macinfo.dwo section. 1461 emitDebugMacinfoDWO(); 1462 else 1463 // Emit info into a debug macinfo/macro section. 1464 emitDebugMacinfo(); 1465 1466 emitDebugStr(); 1467 1468 if (useSplitDwarf()) { 1469 emitDebugStrDWO(); 1470 emitDebugInfoDWO(); 1471 emitDebugAbbrevDWO(); 1472 emitDebugLineDWO(); 1473 emitDebugRangesDWO(); 1474 } 1475 1476 emitDebugAddr(); 1477 1478 // Emit info into the dwarf accelerator table sections. 1479 switch (getAccelTableKind()) { 1480 case AccelTableKind::Apple: 1481 emitAccelNames(); 1482 emitAccelObjC(); 1483 emitAccelNamespaces(); 1484 emitAccelTypes(); 1485 break; 1486 case AccelTableKind::Dwarf: 1487 emitAccelDebugNames(); 1488 break; 1489 case AccelTableKind::None: 1490 break; 1491 case AccelTableKind::Default: 1492 llvm_unreachable("Default should have already been resolved."); 1493 } 1494 1495 // Emit the pubnames and pubtypes sections if requested. 1496 emitDebugPubSections(); 1497 1498 // clean up. 1499 // FIXME: AbstractVariables.clear(); 1500 } 1501 1502 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1503 const DINode *Node, const MDNode *ScopeNode) { 1504 if (CU.getExistingAbstractEntity(Node)) 1505 return; 1506 1507 if (LexicalScope *Scope = 1508 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1509 CU.createAbstractEntity(Node, Scope); 1510 } 1511 1512 static const DILocalScope *getRetainedNodeScope(const MDNode *N) { 1513 const DIScope *S; 1514 if (const auto *LV = dyn_cast<DILocalVariable>(N)) 1515 S = LV->getScope(); 1516 else if (const auto *L = dyn_cast<DILabel>(N)) 1517 S = L->getScope(); 1518 else if (const auto *IE = dyn_cast<DIImportedEntity>(N)) 1519 S = IE->getScope(); 1520 else 1521 llvm_unreachable("Unexpected retained node!"); 1522 1523 // Ensure the scope is not a DILexicalBlockFile. 1524 return cast<DILocalScope>(S)->getNonLexicalBlockFileScope(); 1525 } 1526 1527 // Collect variable information from side table maintained by MF. 1528 void DwarfDebug::collectVariableInfoFromMFTable( 1529 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1530 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1531 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1532 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1533 if (!VI.Var) 1534 continue; 1535 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1536 "Expected inlined-at fields to agree"); 1537 1538 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1539 Processed.insert(Var); 1540 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1541 1542 // If variable scope is not found then skip this variable. 1543 if (!Scope) { 1544 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1545 << ", no variable scope found\n"); 1546 continue; 1547 } 1548 1549 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1550 1551 // If we have already seen information for this variable, add to what we 1552 // already know. 1553 if (DbgVariable *PreviousLoc = MFVars.lookup(Var)) { 1554 auto *PreviousMMI = std::get_if<Loc::MMI>(PreviousLoc); 1555 auto *PreviousEntryValue = std::get_if<Loc::EntryValue>(PreviousLoc); 1556 // Previous and new locations are both stack slots (MMI). 1557 if (PreviousMMI && VI.inStackSlot()) 1558 PreviousMMI->addFrameIndexExpr(VI.Expr, VI.getStackSlot()); 1559 // Previous and new locations are both entry values. 1560 else if (PreviousEntryValue && VI.inEntryValueRegister()) 1561 PreviousEntryValue->addExpr(VI.getEntryValueRegister(), *VI.Expr); 1562 else { 1563 // Locations differ, this should (rarely) happen in optimized async 1564 // coroutines. 1565 // Prefer whichever location has an EntryValue. 1566 if (PreviousLoc->holds<Loc::MMI>()) 1567 PreviousLoc->emplace<Loc::EntryValue>(VI.getEntryValueRegister(), 1568 *VI.Expr); 1569 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1570 << ", conflicting fragment location types\n"); 1571 } 1572 continue; 1573 } 1574 1575 auto RegVar = std::make_unique<DbgVariable>( 1576 cast<DILocalVariable>(Var.first), Var.second); 1577 if (VI.inStackSlot()) 1578 RegVar->emplace<Loc::MMI>(VI.Expr, VI.getStackSlot()); 1579 else 1580 RegVar->emplace<Loc::EntryValue>(VI.getEntryValueRegister(), *VI.Expr); 1581 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1582 << "\n"); 1583 InfoHolder.addScopeVariable(Scope, RegVar.get()); 1584 MFVars.insert({Var, RegVar.get()}); 1585 ConcreteEntities.push_back(std::move(RegVar)); 1586 } 1587 } 1588 1589 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1590 /// enclosing lexical scope. The check ensures there are no other instructions 1591 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1592 /// either open or otherwise rolls off the end of the scope. 1593 static bool validThroughout(LexicalScopes &LScopes, 1594 const MachineInstr *DbgValue, 1595 const MachineInstr *RangeEnd, 1596 const InstructionOrdering &Ordering) { 1597 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1598 auto MBB = DbgValue->getParent(); 1599 auto DL = DbgValue->getDebugLoc(); 1600 auto *LScope = LScopes.findLexicalScope(DL); 1601 // Scope doesn't exist; this is a dead DBG_VALUE. 1602 if (!LScope) 1603 return false; 1604 auto &LSRange = LScope->getRanges(); 1605 if (LSRange.size() == 0) 1606 return false; 1607 1608 const MachineInstr *LScopeBegin = LSRange.front().first; 1609 // If the scope starts before the DBG_VALUE then we may have a negative 1610 // result. Otherwise the location is live coming into the scope and we 1611 // can skip the following checks. 1612 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1613 // Exit if the lexical scope begins outside of the current block. 1614 if (LScopeBegin->getParent() != MBB) 1615 return false; 1616 1617 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1618 for (++Pred; Pred != MBB->rend(); ++Pred) { 1619 if (Pred->getFlag(MachineInstr::FrameSetup)) 1620 break; 1621 auto PredDL = Pred->getDebugLoc(); 1622 if (!PredDL || Pred->isMetaInstruction()) 1623 continue; 1624 // Check whether the instruction preceding the DBG_VALUE is in the same 1625 // (sub)scope as the DBG_VALUE. 1626 if (DL->getScope() == PredDL->getScope()) 1627 return false; 1628 auto *PredScope = LScopes.findLexicalScope(PredDL); 1629 if (!PredScope || LScope->dominates(PredScope)) 1630 return false; 1631 } 1632 } 1633 1634 // If the range of the DBG_VALUE is open-ended, report success. 1635 if (!RangeEnd) 1636 return true; 1637 1638 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1639 // throughout the function. This is a hack, presumably for DWARF v2 and not 1640 // necessarily correct. It would be much better to use a dbg.declare instead 1641 // if we know the constant is live throughout the scope. 1642 if (MBB->pred_empty() && 1643 all_of(DbgValue->debug_operands(), 1644 [](const MachineOperand &Op) { return Op.isImm(); })) 1645 return true; 1646 1647 // Test if the location terminates before the end of the scope. 1648 const MachineInstr *LScopeEnd = LSRange.back().second; 1649 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1650 return false; 1651 1652 // There's a single location which starts at the scope start, and ends at or 1653 // after the scope end. 1654 return true; 1655 } 1656 1657 /// Build the location list for all DBG_VALUEs in the function that 1658 /// describe the same variable. The resulting DebugLocEntries will have 1659 /// strict monotonically increasing begin addresses and will never 1660 /// overlap. If the resulting list has only one entry that is valid 1661 /// throughout variable's scope return true. 1662 // 1663 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1664 // different kinds of history map entries. One thing to be aware of is that if 1665 // a debug value is ended by another entry (rather than being valid until the 1666 // end of the function), that entry's instruction may or may not be included in 1667 // the range, depending on if the entry is a clobbering entry (it has an 1668 // instruction that clobbers one or more preceding locations), or if it is an 1669 // (overlapping) debug value entry. This distinction can be seen in the example 1670 // below. The first debug value is ended by the clobbering entry 2, and the 1671 // second and third debug values are ended by the overlapping debug value entry 1672 // 4. 1673 // 1674 // Input: 1675 // 1676 // History map entries [type, end index, mi] 1677 // 1678 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1679 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1680 // 2 | | [Clobber, $reg0 = [...], -, -] 1681 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1682 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1683 // 1684 // Output [start, end) [Value...]: 1685 // 1686 // [0-1) [(reg0, fragment 0, 32)] 1687 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1688 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1689 // [4-) [(@g, fragment 0, 96)] 1690 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1691 const DbgValueHistoryMap::Entries &Entries) { 1692 using OpenRange = 1693 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1694 SmallVector<OpenRange, 4> OpenRanges; 1695 bool isSafeForSingleLocation = true; 1696 const MachineInstr *StartDebugMI = nullptr; 1697 const MachineInstr *EndMI = nullptr; 1698 1699 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1700 const MachineInstr *Instr = EI->getInstr(); 1701 1702 // Remove all values that are no longer live. 1703 size_t Index = std::distance(EB, EI); 1704 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1705 1706 // If we are dealing with a clobbering entry, this iteration will result in 1707 // a location list entry starting after the clobbering instruction. 1708 const MCSymbol *StartLabel = 1709 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1710 assert(StartLabel && 1711 "Forgot label before/after instruction starting a range!"); 1712 1713 const MCSymbol *EndLabel; 1714 if (std::next(EI) == Entries.end()) { 1715 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1716 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1717 if (EI->isClobber()) 1718 EndMI = EI->getInstr(); 1719 } 1720 else if (std::next(EI)->isClobber()) 1721 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1722 else 1723 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1724 assert(EndLabel && "Forgot label after instruction ending a range!"); 1725 1726 if (EI->isDbgValue()) 1727 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1728 1729 // If this history map entry has a debug value, add that to the list of 1730 // open ranges and check if its location is valid for a single value 1731 // location. 1732 if (EI->isDbgValue()) { 1733 // Do not add undef debug values, as they are redundant information in 1734 // the location list entries. An undef debug results in an empty location 1735 // description. If there are any non-undef fragments then padding pieces 1736 // with empty location descriptions will automatically be inserted, and if 1737 // all fragments are undef then the whole location list entry is 1738 // redundant. 1739 if (!Instr->isUndefDebugValue()) { 1740 auto Value = getDebugLocValue(Instr); 1741 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1742 1743 // TODO: Add support for single value fragment locations. 1744 if (Instr->getDebugExpression()->isFragment()) 1745 isSafeForSingleLocation = false; 1746 1747 if (!StartDebugMI) 1748 StartDebugMI = Instr; 1749 } else { 1750 isSafeForSingleLocation = false; 1751 } 1752 } 1753 1754 // Location list entries with empty location descriptions are redundant 1755 // information in DWARF, so do not emit those. 1756 if (OpenRanges.empty()) 1757 continue; 1758 1759 // Omit entries with empty ranges as they do not have any effect in DWARF. 1760 if (StartLabel == EndLabel) { 1761 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1762 continue; 1763 } 1764 1765 SmallVector<DbgValueLoc, 4> Values; 1766 for (auto &R : OpenRanges) 1767 Values.push_back(R.second); 1768 1769 // With Basic block sections, it is posssible that the StartLabel and the 1770 // Instr are not in the same section. This happens when the StartLabel is 1771 // the function begin label and the dbg value appears in a basic block 1772 // that is not the entry. In this case, the range needs to be split to 1773 // span each individual section in the range from StartLabel to EndLabel. 1774 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1775 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1776 const MCSymbol *BeginSectionLabel = StartLabel; 1777 1778 for (const MachineBasicBlock &MBB : *Asm->MF) { 1779 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1780 BeginSectionLabel = MBB.getSymbol(); 1781 1782 if (MBB.sameSection(Instr->getParent())) { 1783 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1784 break; 1785 } 1786 if (MBB.isEndSection()) 1787 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1788 } 1789 } else { 1790 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1791 } 1792 1793 // Attempt to coalesce the ranges of two otherwise identical 1794 // DebugLocEntries. 1795 auto CurEntry = DebugLoc.rbegin(); 1796 LLVM_DEBUG({ 1797 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1798 for (auto &Value : CurEntry->getValues()) 1799 Value.dump(); 1800 dbgs() << "-----\n"; 1801 }); 1802 1803 auto PrevEntry = std::next(CurEntry); 1804 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1805 DebugLoc.pop_back(); 1806 } 1807 1808 if (!isSafeForSingleLocation || 1809 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1810 return false; 1811 1812 if (DebugLoc.size() == 1) 1813 return true; 1814 1815 if (!Asm->MF->hasBBSections()) 1816 return false; 1817 1818 // Check here to see if loclist can be merged into a single range. If not, 1819 // we must keep the split loclists per section. This does exactly what 1820 // MergeRanges does without sections. We don't actually merge the ranges 1821 // as the split ranges must be kept intact if this cannot be collapsed 1822 // into a single range. 1823 const MachineBasicBlock *RangeMBB = nullptr; 1824 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1825 RangeMBB = &Asm->MF->front(); 1826 else 1827 RangeMBB = Entries.begin()->getInstr()->getParent(); 1828 auto *CurEntry = DebugLoc.begin(); 1829 auto *NextEntry = std::next(CurEntry); 1830 while (NextEntry != DebugLoc.end()) { 1831 // Get the last machine basic block of this section. 1832 while (!RangeMBB->isEndSection()) 1833 RangeMBB = RangeMBB->getNextNode(); 1834 if (!RangeMBB->getNextNode()) 1835 return false; 1836 // CurEntry should end the current section and NextEntry should start 1837 // the next section and the Values must match for these two ranges to be 1838 // merged. 1839 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1840 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1841 CurEntry->getValues() != NextEntry->getValues()) 1842 return false; 1843 RangeMBB = RangeMBB->getNextNode(); 1844 CurEntry = NextEntry; 1845 NextEntry = std::next(CurEntry); 1846 } 1847 return true; 1848 } 1849 1850 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1851 LexicalScope &Scope, 1852 const DINode *Node, 1853 const DILocation *Location, 1854 const MCSymbol *Sym) { 1855 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1856 if (isa<const DILocalVariable>(Node)) { 1857 ConcreteEntities.push_back( 1858 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1859 Location)); 1860 InfoHolder.addScopeVariable(&Scope, 1861 cast<DbgVariable>(ConcreteEntities.back().get())); 1862 } else if (isa<const DILabel>(Node)) { 1863 ConcreteEntities.push_back( 1864 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1865 Location, Sym)); 1866 InfoHolder.addScopeLabel(&Scope, 1867 cast<DbgLabel>(ConcreteEntities.back().get())); 1868 } 1869 return ConcreteEntities.back().get(); 1870 } 1871 1872 // Find variables for each lexical scope. 1873 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1874 const DISubprogram *SP, 1875 DenseSet<InlinedEntity> &Processed) { 1876 // Grab the variable info that was squirreled away in the MMI side-table. 1877 collectVariableInfoFromMFTable(TheCU, Processed); 1878 1879 for (const auto &I : DbgValues) { 1880 InlinedEntity IV = I.first; 1881 if (Processed.count(IV)) 1882 continue; 1883 1884 // Instruction ranges, specifying where IV is accessible. 1885 const auto &HistoryMapEntries = I.second; 1886 1887 // Try to find any non-empty variable location. Do not create a concrete 1888 // entity if there are no locations. 1889 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1890 continue; 1891 1892 LexicalScope *Scope = nullptr; 1893 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1894 if (const DILocation *IA = IV.second) 1895 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1896 else 1897 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1898 // If variable scope is not found then skip this variable. 1899 if (!Scope) 1900 continue; 1901 1902 Processed.insert(IV); 1903 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1904 *Scope, LocalVar, IV.second)); 1905 1906 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1907 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1908 1909 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1910 // If the history map contains a single debug value, there may be an 1911 // additional entry which clobbers the debug value. 1912 size_t HistSize = HistoryMapEntries.size(); 1913 bool SingleValueWithClobber = 1914 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1915 if (HistSize == 1 || SingleValueWithClobber) { 1916 const auto *End = 1917 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1918 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1919 RegVar->emplace<Loc::Single>(MInsn); 1920 continue; 1921 } 1922 } 1923 1924 // Do not emit location lists if .debug_loc secton is disabled. 1925 if (!useLocSection()) 1926 continue; 1927 1928 // Handle multiple DBG_VALUE instructions describing one variable. 1929 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar); 1930 1931 // Build the location list for this variable. 1932 SmallVector<DebugLocEntry, 8> Entries; 1933 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1934 1935 // Check whether buildLocationList managed to merge all locations to one 1936 // that is valid throughout the variable's scope. If so, produce single 1937 // value location. 1938 if (isValidSingleLocation) { 1939 RegVar->emplace<Loc::Single>(Entries[0].getValues()[0]); 1940 continue; 1941 } 1942 1943 // If the variable has a DIBasicType, extract it. Basic types cannot have 1944 // unique identifiers, so don't bother resolving the type with the 1945 // identifier map. 1946 const DIBasicType *BT = dyn_cast<DIBasicType>( 1947 static_cast<const Metadata *>(LocalVar->getType())); 1948 1949 // Finalize the entry by lowering it into a DWARF bytestream. 1950 for (auto &Entry : Entries) 1951 Entry.finalize(*Asm, List, BT, TheCU); 1952 } 1953 1954 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1955 // DWARF-related DbgLabel. 1956 for (const auto &I : DbgLabels) { 1957 InlinedEntity IL = I.first; 1958 const MachineInstr *MI = I.second; 1959 if (MI == nullptr) 1960 continue; 1961 1962 LexicalScope *Scope = nullptr; 1963 const DILabel *Label = cast<DILabel>(IL.first); 1964 // The scope could have an extra lexical block file. 1965 const DILocalScope *LocalScope = 1966 Label->getScope()->getNonLexicalBlockFileScope(); 1967 // Get inlined DILocation if it is inlined label. 1968 if (const DILocation *IA = IL.second) 1969 Scope = LScopes.findInlinedScope(LocalScope, IA); 1970 else 1971 Scope = LScopes.findLexicalScope(LocalScope); 1972 // If label scope is not found then skip this label. 1973 if (!Scope) 1974 continue; 1975 1976 Processed.insert(IL); 1977 /// At this point, the temporary label is created. 1978 /// Save the temporary label to DbgLabel entity to get the 1979 /// actually address when generating Dwarf DIE. 1980 MCSymbol *Sym = getLabelBeforeInsn(MI); 1981 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1982 } 1983 1984 // Collect info for retained nodes. 1985 for (const DINode *DN : SP->getRetainedNodes()) { 1986 const auto *LS = getRetainedNodeScope(DN); 1987 if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) { 1988 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1989 continue; 1990 LexicalScope *LexS = LScopes.findLexicalScope(LS); 1991 if (LexS) 1992 createConcreteEntity(TheCU, *LexS, DN, nullptr); 1993 } else { 1994 LocalDeclsPerLS[LS].insert(DN); 1995 } 1996 } 1997 } 1998 1999 // Process beginning of an instruction. 2000 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 2001 const MachineFunction &MF = *MI->getMF(); 2002 const auto *SP = MF.getFunction().getSubprogram(); 2003 bool NoDebug = 2004 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 2005 2006 // Delay slot support check. 2007 auto delaySlotSupported = [](const MachineInstr &MI) { 2008 if (!MI.isBundledWithSucc()) 2009 return false; 2010 auto Suc = std::next(MI.getIterator()); 2011 (void)Suc; 2012 // Ensure that delay slot instruction is successor of the call instruction. 2013 // Ex. CALL_INSTRUCTION { 2014 // DELAY_SLOT_INSTRUCTION } 2015 assert(Suc->isBundledWithPred() && 2016 "Call bundle instructions are out of order"); 2017 return true; 2018 }; 2019 2020 // When describing calls, we need a label for the call instruction. 2021 if (!NoDebug && SP->areAllCallsDescribed() && 2022 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 2023 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 2024 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2025 bool IsTail = TII->isTailCall(*MI); 2026 // For tail calls, we need the address of the branch instruction for 2027 // DW_AT_call_pc. 2028 if (IsTail) 2029 requestLabelBeforeInsn(MI); 2030 // For non-tail calls, we need the return address for the call for 2031 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 2032 // tail calls as well. 2033 requestLabelAfterInsn(MI); 2034 } 2035 2036 DebugHandlerBase::beginInstruction(MI); 2037 if (!CurMI) 2038 return; 2039 2040 if (NoDebug) 2041 return; 2042 2043 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2044 // If the instruction is part of the function frame setup code, do not emit 2045 // any line record, as there is no correspondence with any user code. 2046 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2047 return; 2048 const DebugLoc &DL = MI->getDebugLoc(); 2049 unsigned Flags = 0; 2050 2051 if (MI->getFlag(MachineInstr::FrameDestroy) && DL) { 2052 const MachineBasicBlock *MBB = MI->getParent(); 2053 if (MBB && (MBB != EpilogBeginBlock)) { 2054 // First time FrameDestroy has been seen in this basic block 2055 EpilogBeginBlock = MBB; 2056 Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; 2057 } 2058 } 2059 2060 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2061 // the last line number actually emitted, to see if it was line 0. 2062 unsigned LastAsmLine = 2063 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2064 2065 bool PrevInstInSameSection = 2066 (!PrevInstBB || 2067 PrevInstBB->getSectionIDNum() == MI->getParent()->getSectionIDNum()); 2068 if (DL == PrevInstLoc && PrevInstInSameSection) { 2069 // If we have an ongoing unspecified location, nothing to do here. 2070 if (!DL) 2071 return; 2072 // We have an explicit location, same as the previous location. 2073 // But we might be coming back to it after a line 0 record. 2074 if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) { 2075 // Reinstate the source location but not marked as a statement. 2076 const MDNode *Scope = DL.getScope(); 2077 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2078 } 2079 return; 2080 } 2081 2082 if (!DL) { 2083 // We have an unspecified location, which might want to be line 0. 2084 // If we have already emitted a line-0 record, don't repeat it. 2085 if (LastAsmLine == 0) 2086 return; 2087 // If user said Don't Do That, don't do that. 2088 if (UnknownLocations == Disable) 2089 return; 2090 // See if we have a reason to emit a line-0 record now. 2091 // Reasons to emit a line-0 record include: 2092 // - User asked for it (UnknownLocations). 2093 // - Instruction has a label, so it's referenced from somewhere else, 2094 // possibly debug information; we want it to have a source location. 2095 // - Instruction is at the top of a block; we don't want to inherit the 2096 // location from the physically previous (maybe unrelated) block. 2097 if (UnknownLocations == Enable || PrevLabel || 2098 (PrevInstBB && PrevInstBB != MI->getParent())) { 2099 // Preserve the file and column numbers, if we can, to save space in 2100 // the encoded line table. 2101 // Do not update PrevInstLoc, it remembers the last non-0 line. 2102 const MDNode *Scope = nullptr; 2103 unsigned Column = 0; 2104 if (PrevInstLoc) { 2105 Scope = PrevInstLoc.getScope(); 2106 Column = PrevInstLoc.getCol(); 2107 } 2108 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2109 } 2110 return; 2111 } 2112 2113 // We have an explicit location, different from the previous location. 2114 // Don't repeat a line-0 record, but otherwise emit the new location. 2115 // (The new location might be an explicit line 0, which we do emit.) 2116 if (DL.getLine() == 0 && LastAsmLine == 0) 2117 return; 2118 if (DL == PrologEndLoc) { 2119 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2120 PrologEndLoc = DebugLoc(); 2121 } 2122 // If the line changed, we call that a new statement; unless we went to 2123 // line 0 and came back, in which case it is not a new statement. 2124 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2125 if (DL.getLine() && DL.getLine() != OldLine) 2126 Flags |= DWARF2_FLAG_IS_STMT; 2127 2128 const MDNode *Scope = DL.getScope(); 2129 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2130 2131 // If we're not at line 0, remember this location. 2132 if (DL.getLine()) 2133 PrevInstLoc = DL; 2134 } 2135 2136 static std::pair<DebugLoc, bool> findPrologueEndLoc(const MachineFunction *MF) { 2137 // First known non-DBG_VALUE and non-frame setup location marks 2138 // the beginning of the function body. 2139 DebugLoc LineZeroLoc; 2140 const Function &F = MF->getFunction(); 2141 2142 // Some instructions may be inserted into prologue after this function. Must 2143 // keep prologue for these cases. 2144 bool IsEmptyPrologue = 2145 !(F.hasPrologueData() || F.getMetadata(LLVMContext::MD_func_sanitize)); 2146 for (const auto &MBB : *MF) { 2147 for (const auto &MI : MBB) { 2148 if (!MI.isMetaInstruction()) { 2149 if (!MI.getFlag(MachineInstr::FrameSetup) && MI.getDebugLoc()) { 2150 // Scan forward to try to find a non-zero line number. The 2151 // prologue_end marks the first breakpoint in the function after the 2152 // frame setup, and a compiler-generated line 0 location is not a 2153 // meaningful breakpoint. If none is found, return the first 2154 // location after the frame setup. 2155 if (MI.getDebugLoc().getLine()) 2156 return std::make_pair(MI.getDebugLoc(), IsEmptyPrologue); 2157 2158 LineZeroLoc = MI.getDebugLoc(); 2159 } 2160 IsEmptyPrologue = false; 2161 } 2162 } 2163 } 2164 return std::make_pair(LineZeroLoc, IsEmptyPrologue); 2165 } 2166 2167 /// Register a source line with debug info. Returns the unique label that was 2168 /// emitted and which provides correspondence to the source line list. 2169 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2170 const MDNode *S, unsigned Flags, unsigned CUID, 2171 uint16_t DwarfVersion, 2172 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2173 StringRef Fn; 2174 unsigned FileNo = 1; 2175 unsigned Discriminator = 0; 2176 if (auto *Scope = cast_or_null<DIScope>(S)) { 2177 Fn = Scope->getFilename(); 2178 if (Line != 0 && DwarfVersion >= 4) 2179 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2180 Discriminator = LBF->getDiscriminator(); 2181 2182 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2183 .getOrCreateSourceID(Scope->getFile()); 2184 } 2185 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2186 Discriminator, Fn); 2187 } 2188 2189 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2190 unsigned CUID) { 2191 std::pair<DebugLoc, bool> PrologEnd = findPrologueEndLoc(&MF); 2192 DebugLoc PrologEndLoc = PrologEnd.first; 2193 bool IsEmptyPrologue = PrologEnd.second; 2194 2195 // Get beginning of function. 2196 if (PrologEndLoc) { 2197 // If the prolog is empty, no need to generate scope line for the proc. 2198 if (IsEmptyPrologue) 2199 return PrologEndLoc; 2200 2201 // Ensure the compile unit is created if the function is called before 2202 // beginFunction(). 2203 (void)getOrCreateDwarfCompileUnit( 2204 MF.getFunction().getSubprogram()->getUnit()); 2205 // We'd like to list the prologue as "not statements" but GDB behaves 2206 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2207 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2208 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2209 CUID, getDwarfVersion(), getUnits()); 2210 return PrologEndLoc; 2211 } 2212 return DebugLoc(); 2213 } 2214 2215 // Gather pre-function debug information. Assumes being called immediately 2216 // after the function entry point has been emitted. 2217 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2218 CurFn = MF; 2219 2220 auto *SP = MF->getFunction().getSubprogram(); 2221 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2222 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2223 return; 2224 2225 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2226 2227 Asm->OutStreamer->getContext().setDwarfCompileUnitID( 2228 getDwarfCompileUnitIDForLineTable(CU)); 2229 2230 // Record beginning of function. 2231 PrologEndLoc = emitInitialLocDirective( 2232 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2233 } 2234 2235 unsigned 2236 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { 2237 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2238 // belongs to so that we add to the correct per-cu line table in the 2239 // non-asm case. 2240 if (Asm->OutStreamer->hasRawTextSupport()) 2241 // Use a single line table if we are generating assembly. 2242 return 0; 2243 else 2244 return CU.getUniqueID(); 2245 } 2246 2247 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { 2248 const auto &CURanges = CU->getRanges(); 2249 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( 2250 getDwarfCompileUnitIDForLineTable(*CU)); 2251 // Add the last range label for the given CU. 2252 LineTable.getMCLineSections().addEndEntry( 2253 const_cast<MCSymbol *>(CURanges.back().End)); 2254 } 2255 2256 void DwarfDebug::skippedNonDebugFunction() { 2257 // If we don't have a subprogram for this function then there will be a hole 2258 // in the range information. Keep note of this by setting the previously used 2259 // section to nullptr. 2260 // Terminate the pending line table. 2261 if (PrevCU) 2262 terminateLineTable(PrevCU); 2263 PrevCU = nullptr; 2264 CurFn = nullptr; 2265 } 2266 2267 // Gather and emit post-function debug information. 2268 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2269 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2270 2271 assert(CurFn == MF && 2272 "endFunction should be called with the same function as beginFunction"); 2273 2274 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2275 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2276 2277 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2278 assert(!FnScope || SP == FnScope->getScopeNode()); 2279 DwarfCompileUnit &TheCU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2280 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2281 PrevLabel = nullptr; 2282 CurFn = nullptr; 2283 return; 2284 } 2285 2286 DenseSet<InlinedEntity> Processed; 2287 collectEntityInfo(TheCU, SP, Processed); 2288 2289 // Add the range of this function to the list of ranges for the CU. 2290 // With basic block sections, add ranges for all basic block sections. 2291 for (const auto &R : Asm->MBBSectionRanges) 2292 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2293 2294 // Under -gmlt, skip building the subprogram if there are no inlined 2295 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2296 // is still needed as we need its source location. 2297 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2298 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2299 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2300 for (const auto &R : Asm->MBBSectionRanges) 2301 addArangeLabel(SymbolCU(&TheCU, R.second.BeginLabel)); 2302 2303 assert(InfoHolder.getScopeVariables().empty()); 2304 PrevLabel = nullptr; 2305 CurFn = nullptr; 2306 return; 2307 } 2308 2309 #ifndef NDEBUG 2310 size_t NumAbstractSubprograms = LScopes.getAbstractScopesList().size(); 2311 #endif 2312 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2313 const auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2314 for (const DINode *DN : SP->getRetainedNodes()) { 2315 const auto *LS = getRetainedNodeScope(DN); 2316 // Ensure LexicalScope is created for the scope of this node. 2317 auto *LexS = LScopes.getOrCreateAbstractScope(LS); 2318 assert(LexS && "Expected the LexicalScope to be created."); 2319 if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) { 2320 // Collect info for variables/labels that were optimized out. 2321 if (!Processed.insert(InlinedEntity(DN, nullptr)).second || 2322 TheCU.getExistingAbstractEntity(DN)) 2323 continue; 2324 TheCU.createAbstractEntity(DN, LexS); 2325 } else { 2326 // Remember the node if this is a local declarations. 2327 LocalDeclsPerLS[LS].insert(DN); 2328 } 2329 assert( 2330 LScopes.getAbstractScopesList().size() == NumAbstractSubprograms && 2331 "getOrCreateAbstractScope() inserted an abstract subprogram scope"); 2332 } 2333 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2334 } 2335 2336 ProcessedSPNodes.insert(SP); 2337 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2338 if (auto *SkelCU = TheCU.getSkeleton()) 2339 if (!LScopes.getAbstractScopesList().empty() && 2340 TheCU.getCUNode()->getSplitDebugInlining()) 2341 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2342 2343 // Construct call site entries. 2344 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2345 2346 // Clear debug info 2347 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2348 // DbgVariables except those that are also in AbstractVariables (since they 2349 // can be used cross-function) 2350 InfoHolder.getScopeVariables().clear(); 2351 InfoHolder.getScopeLabels().clear(); 2352 LocalDeclsPerLS.clear(); 2353 PrevLabel = nullptr; 2354 CurFn = nullptr; 2355 } 2356 2357 // Register a source line with debug info. Returns the unique label that was 2358 // emitted and which provides correspondence to the source line list. 2359 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2360 unsigned Flags) { 2361 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2362 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2363 getDwarfVersion(), getUnits()); 2364 } 2365 2366 //===----------------------------------------------------------------------===// 2367 // Emit Methods 2368 //===----------------------------------------------------------------------===// 2369 2370 // Emit the debug info section. 2371 void DwarfDebug::emitDebugInfo() { 2372 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2373 Holder.emitUnits(/* UseOffsets */ false); 2374 } 2375 2376 // Emit the abbreviation section. 2377 void DwarfDebug::emitAbbreviations() { 2378 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2379 2380 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2381 } 2382 2383 void DwarfDebug::emitStringOffsetsTableHeader() { 2384 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2385 Holder.getStringPool().emitStringOffsetsTableHeader( 2386 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2387 Holder.getStringOffsetsStartSym()); 2388 } 2389 2390 template <typename AccelTableT> 2391 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2392 StringRef TableName) { 2393 Asm->OutStreamer->switchSection(Section); 2394 2395 // Emit the full data. 2396 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2397 } 2398 2399 void DwarfDebug::emitAccelDebugNames() { 2400 // Don't emit anything if we have no compilation units to index. 2401 if (getUnits().empty()) 2402 return; 2403 2404 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2405 } 2406 2407 // Emit visible names into a hashed accelerator table section. 2408 void DwarfDebug::emitAccelNames() { 2409 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2410 "Names"); 2411 } 2412 2413 // Emit objective C classes and categories into a hashed accelerator table 2414 // section. 2415 void DwarfDebug::emitAccelObjC() { 2416 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2417 "ObjC"); 2418 } 2419 2420 // Emit namespace dies into a hashed accelerator table. 2421 void DwarfDebug::emitAccelNamespaces() { 2422 emitAccel(AccelNamespace, 2423 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2424 "namespac"); 2425 } 2426 2427 // Emit type dies into a hashed accelerator table. 2428 void DwarfDebug::emitAccelTypes() { 2429 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2430 "types"); 2431 } 2432 2433 // Public name handling. 2434 // The format for the various pubnames: 2435 // 2436 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2437 // for the DIE that is named. 2438 // 2439 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2440 // into the CU and the index value is computed according to the type of value 2441 // for the DIE that is named. 2442 // 2443 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2444 // it's the offset within the debug_info/debug_types dwo section, however, the 2445 // reference in the pubname header doesn't change. 2446 2447 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2448 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2449 const DIE *Die) { 2450 // Entities that ended up only in a Type Unit reference the CU instead (since 2451 // the pub entry has offsets within the CU there's no real offset that can be 2452 // provided anyway). As it happens all such entities (namespaces and types, 2453 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2454 // not to be true it would be necessary to persist this information from the 2455 // point at which the entry is added to the index data structure - since by 2456 // the time the index is built from that, the original type/namespace DIE in a 2457 // type unit has already been destroyed so it can't be queried for properties 2458 // like tag, etc. 2459 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2460 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2461 dwarf::GIEL_EXTERNAL); 2462 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2463 2464 // We could have a specification DIE that has our most of our knowledge, 2465 // look for that now. 2466 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2467 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2468 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2469 Linkage = dwarf::GIEL_EXTERNAL; 2470 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2471 Linkage = dwarf::GIEL_EXTERNAL; 2472 2473 switch (Die->getTag()) { 2474 case dwarf::DW_TAG_class_type: 2475 case dwarf::DW_TAG_structure_type: 2476 case dwarf::DW_TAG_union_type: 2477 case dwarf::DW_TAG_enumeration_type: 2478 return dwarf::PubIndexEntryDescriptor( 2479 dwarf::GIEK_TYPE, 2480 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2481 ? dwarf::GIEL_EXTERNAL 2482 : dwarf::GIEL_STATIC); 2483 case dwarf::DW_TAG_typedef: 2484 case dwarf::DW_TAG_base_type: 2485 case dwarf::DW_TAG_subrange_type: 2486 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2487 case dwarf::DW_TAG_namespace: 2488 return dwarf::GIEK_TYPE; 2489 case dwarf::DW_TAG_subprogram: 2490 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2491 case dwarf::DW_TAG_variable: 2492 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2493 case dwarf::DW_TAG_enumerator: 2494 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2495 dwarf::GIEL_STATIC); 2496 default: 2497 return dwarf::GIEK_NONE; 2498 } 2499 } 2500 2501 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2502 /// pubtypes sections. 2503 void DwarfDebug::emitDebugPubSections() { 2504 for (const auto &NU : CUMap) { 2505 DwarfCompileUnit *TheU = NU.second; 2506 if (!TheU->hasDwarfPubSections()) 2507 continue; 2508 2509 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2510 DICompileUnit::DebugNameTableKind::GNU; 2511 2512 Asm->OutStreamer->switchSection( 2513 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2514 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2515 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2516 2517 Asm->OutStreamer->switchSection( 2518 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2519 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2520 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2521 } 2522 } 2523 2524 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2525 if (useSectionsAsReferences()) 2526 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2527 CU.getDebugSectionOffset()); 2528 else 2529 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2530 } 2531 2532 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2533 DwarfCompileUnit *TheU, 2534 const StringMap<const DIE *> &Globals) { 2535 if (auto *Skeleton = TheU->getSkeleton()) 2536 TheU = Skeleton; 2537 2538 // Emit the header. 2539 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2540 "pub" + Name, "Length of Public " + Name + " Info"); 2541 2542 Asm->OutStreamer->AddComment("DWARF Version"); 2543 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2544 2545 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2546 emitSectionReference(*TheU); 2547 2548 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2549 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2550 2551 // Emit the pubnames for this compilation unit. 2552 SmallVector<std::pair<StringRef, const DIE *>, 0> Vec; 2553 for (const auto &GI : Globals) 2554 Vec.emplace_back(GI.first(), GI.second); 2555 llvm::sort(Vec, [](auto &A, auto &B) { 2556 return A.second->getOffset() < B.second->getOffset(); 2557 }); 2558 for (const auto &[Name, Entity] : Vec) { 2559 Asm->OutStreamer->AddComment("DIE offset"); 2560 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2561 2562 if (GnuStyle) { 2563 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2564 Asm->OutStreamer->AddComment( 2565 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2566 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2567 Asm->emitInt8(Desc.toBits()); 2568 } 2569 2570 Asm->OutStreamer->AddComment("External Name"); 2571 Asm->OutStreamer->emitBytes(StringRef(Name.data(), Name.size() + 1)); 2572 } 2573 2574 Asm->OutStreamer->AddComment("End Mark"); 2575 Asm->emitDwarfLengthOrOffset(0); 2576 Asm->OutStreamer->emitLabel(EndLabel); 2577 } 2578 2579 /// Emit null-terminated strings into a debug str section. 2580 void DwarfDebug::emitDebugStr() { 2581 MCSection *StringOffsetsSection = nullptr; 2582 if (useSegmentedStringOffsetsTable()) { 2583 emitStringOffsetsTableHeader(); 2584 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2585 } 2586 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2587 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2588 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2589 } 2590 2591 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2592 const DebugLocStream::Entry &Entry, 2593 const DwarfCompileUnit *CU) { 2594 auto &&Comments = DebugLocs.getComments(Entry); 2595 auto Comment = Comments.begin(); 2596 auto End = Comments.end(); 2597 2598 // The expressions are inserted into a byte stream rather early (see 2599 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2600 // need to reference a base_type DIE the offset of that DIE is not yet known. 2601 // To deal with this we instead insert a placeholder early and then extract 2602 // it here and replace it with the real reference. 2603 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2604 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2605 DebugLocs.getBytes(Entry).size()), 2606 Asm->getDataLayout().isLittleEndian(), PtrSize); 2607 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2608 2609 using Encoding = DWARFExpression::Operation::Encoding; 2610 uint64_t Offset = 0; 2611 for (const auto &Op : Expr) { 2612 assert(Op.getCode() != dwarf::DW_OP_const_type && 2613 "3 operand ops not yet supported"); 2614 assert(!Op.getSubCode() && "SubOps not yet supported"); 2615 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2616 Offset++; 2617 for (unsigned I = 0; I < Op.getDescription().Op.size(); ++I) { 2618 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2619 unsigned Length = 2620 Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die); 2621 // Make sure comments stay aligned. 2622 for (unsigned J = 0; J < Length; ++J) 2623 if (Comment != End) 2624 Comment++; 2625 } else { 2626 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2627 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2628 } 2629 Offset = Op.getOperandEndOffset(I); 2630 } 2631 assert(Offset == Op.getEndOffset()); 2632 } 2633 } 2634 2635 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2636 const DbgValueLoc &Value, 2637 DwarfExpression &DwarfExpr) { 2638 auto *DIExpr = Value.getExpression(); 2639 DIExpressionCursor ExprCursor(DIExpr); 2640 DwarfExpr.addFragmentOffset(DIExpr); 2641 2642 // If the DIExpr is an Entry Value, we want to follow the same code path 2643 // regardless of whether the DBG_VALUE is variadic or not. 2644 if (DIExpr && DIExpr->isEntryValue()) { 2645 // Entry values can only be a single register with no additional DIExpr, 2646 // so just add it directly. 2647 assert(Value.getLocEntries().size() == 1); 2648 assert(Value.getLocEntries()[0].isLocation()); 2649 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2650 DwarfExpr.setLocation(Location, DIExpr); 2651 2652 DwarfExpr.beginEntryValueExpression(ExprCursor); 2653 2654 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2655 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2656 return; 2657 return DwarfExpr.addExpression(std::move(ExprCursor)); 2658 } 2659 2660 // Regular entry. 2661 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2662 &AP](const DbgValueLocEntry &Entry, 2663 DIExpressionCursor &Cursor) -> bool { 2664 if (Entry.isInt()) { 2665 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2666 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2667 DwarfExpr.addSignedConstant(Entry.getInt()); 2668 else 2669 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2670 } else if (Entry.isLocation()) { 2671 MachineLocation Location = Entry.getLoc(); 2672 if (Location.isIndirect()) 2673 DwarfExpr.setMemoryLocationKind(); 2674 2675 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2676 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2677 return false; 2678 } else if (Entry.isTargetIndexLocation()) { 2679 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2680 // TODO TargetIndexLocation is a target-independent. Currently only the 2681 // WebAssembly-specific encoding is supported. 2682 assert(AP.TM.getTargetTriple().isWasm()); 2683 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2684 } else if (Entry.isConstantFP()) { 2685 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2686 !Cursor) { 2687 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2688 } else if (Entry.getConstantFP() 2689 ->getValueAPF() 2690 .bitcastToAPInt() 2691 .getBitWidth() <= 64 /*bits*/) { 2692 DwarfExpr.addUnsignedConstant( 2693 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2694 } else { 2695 LLVM_DEBUG( 2696 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2697 << Entry.getConstantFP() 2698 ->getValueAPF() 2699 .bitcastToAPInt() 2700 .getBitWidth() 2701 << " bits\n"); 2702 return false; 2703 } 2704 } 2705 return true; 2706 }; 2707 2708 if (!Value.isVariadic()) { 2709 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2710 return; 2711 DwarfExpr.addExpression(std::move(ExprCursor)); 2712 return; 2713 } 2714 2715 // If any of the location entries are registers with the value 0, then the 2716 // location is undefined. 2717 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2718 return Entry.isLocation() && !Entry.getLoc().getReg(); 2719 })) 2720 return; 2721 2722 DwarfExpr.addExpression( 2723 std::move(ExprCursor), 2724 [EmitValueLocEntry, &Value](unsigned Idx, 2725 DIExpressionCursor &Cursor) -> bool { 2726 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2727 }); 2728 } 2729 2730 void DebugLocEntry::finalize(const AsmPrinter &AP, 2731 DebugLocStream::ListBuilder &List, 2732 const DIBasicType *BT, 2733 DwarfCompileUnit &TheCU) { 2734 assert(!Values.empty() && 2735 "location list entries without values are redundant"); 2736 assert(Begin != End && "unexpected location list entry with empty range"); 2737 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2738 BufferByteStreamer Streamer = Entry.getStreamer(); 2739 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2740 const DbgValueLoc &Value = Values[0]; 2741 if (Value.isFragment()) { 2742 // Emit all fragments that belong to the same variable and range. 2743 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2744 return P.isFragment(); 2745 }) && "all values are expected to be fragments"); 2746 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2747 2748 for (const auto &Fragment : Values) 2749 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2750 2751 } else { 2752 assert(Values.size() == 1 && "only fragments may have >1 value"); 2753 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2754 } 2755 DwarfExpr.finalize(); 2756 if (DwarfExpr.TagOffset) 2757 List.setTagOffset(*DwarfExpr.TagOffset); 2758 } 2759 2760 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2761 const DwarfCompileUnit *CU) { 2762 // Emit the size. 2763 Asm->OutStreamer->AddComment("Loc expr size"); 2764 if (getDwarfVersion() >= 5) 2765 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2766 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2767 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2768 else { 2769 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2770 // can do. 2771 Asm->emitInt16(0); 2772 return; 2773 } 2774 // Emit the entry. 2775 APByteStreamer Streamer(*Asm); 2776 emitDebugLocEntry(Streamer, Entry, CU); 2777 } 2778 2779 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2780 // that designates the end of the table for the caller to emit when the table is 2781 // complete. 2782 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2783 const DwarfFile &Holder) { 2784 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2785 2786 Asm->OutStreamer->AddComment("Offset entry count"); 2787 Asm->emitInt32(Holder.getRangeLists().size()); 2788 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2789 2790 for (const RangeSpanList &List : Holder.getRangeLists()) 2791 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2792 Asm->getDwarfOffsetByteSize()); 2793 2794 return TableEnd; 2795 } 2796 2797 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2798 // designates the end of the table for the caller to emit when the table is 2799 // complete. 2800 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2801 const DwarfDebug &DD) { 2802 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2803 2804 const auto &DebugLocs = DD.getDebugLocs(); 2805 2806 Asm->OutStreamer->AddComment("Offset entry count"); 2807 Asm->emitInt32(DebugLocs.getLists().size()); 2808 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2809 2810 for (const auto &List : DebugLocs.getLists()) 2811 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2812 Asm->getDwarfOffsetByteSize()); 2813 2814 return TableEnd; 2815 } 2816 2817 template <typename Ranges, typename PayloadEmitter> 2818 static void emitRangeList( 2819 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2820 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2821 unsigned StartxLength, unsigned EndOfList, 2822 StringRef (*StringifyEnum)(unsigned), 2823 bool ShouldUseBaseAddress, 2824 PayloadEmitter EmitPayload) { 2825 2826 auto Size = Asm->MAI->getCodePointerSize(); 2827 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2828 2829 // Emit our symbol so we can find the beginning of the range. 2830 Asm->OutStreamer->emitLabel(Sym); 2831 2832 // Gather all the ranges that apply to the same section so they can share 2833 // a base address entry. 2834 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2835 2836 for (const auto &Range : R) 2837 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2838 2839 const MCSymbol *CUBase = CU.getBaseAddress(); 2840 bool BaseIsSet = false; 2841 for (const auto &P : SectionRanges) { 2842 auto *Base = CUBase; 2843 if (!Base && ShouldUseBaseAddress) { 2844 const MCSymbol *Begin = P.second.front()->Begin; 2845 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2846 if (!UseDwarf5) { 2847 Base = NewBase; 2848 BaseIsSet = true; 2849 Asm->OutStreamer->emitIntValue(-1, Size); 2850 Asm->OutStreamer->AddComment(" base address"); 2851 Asm->OutStreamer->emitSymbolValue(Base, Size); 2852 } else if (NewBase != Begin || P.second.size() > 1) { 2853 // Only use a base address if 2854 // * the existing pool address doesn't match (NewBase != Begin) 2855 // * or, there's more than one entry to share the base address 2856 Base = NewBase; 2857 BaseIsSet = true; 2858 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2859 Asm->emitInt8(BaseAddressx); 2860 Asm->OutStreamer->AddComment(" base address index"); 2861 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2862 } 2863 } else if (BaseIsSet && !UseDwarf5) { 2864 BaseIsSet = false; 2865 assert(!Base); 2866 Asm->OutStreamer->emitIntValue(-1, Size); 2867 Asm->OutStreamer->emitIntValue(0, Size); 2868 } 2869 2870 for (const auto *RS : P.second) { 2871 const MCSymbol *Begin = RS->Begin; 2872 const MCSymbol *End = RS->End; 2873 assert(Begin && "Range without a begin symbol?"); 2874 assert(End && "Range without an end symbol?"); 2875 if (Base) { 2876 if (UseDwarf5) { 2877 // Emit offset_pair when we have a base. 2878 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2879 Asm->emitInt8(OffsetPair); 2880 Asm->OutStreamer->AddComment(" starting offset"); 2881 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2882 Asm->OutStreamer->AddComment(" ending offset"); 2883 Asm->emitLabelDifferenceAsULEB128(End, Base); 2884 } else { 2885 Asm->emitLabelDifference(Begin, Base, Size); 2886 Asm->emitLabelDifference(End, Base, Size); 2887 } 2888 } else if (UseDwarf5) { 2889 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2890 Asm->emitInt8(StartxLength); 2891 Asm->OutStreamer->AddComment(" start index"); 2892 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2893 Asm->OutStreamer->AddComment(" length"); 2894 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2895 } else { 2896 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2897 Asm->OutStreamer->emitSymbolValue(End, Size); 2898 } 2899 EmitPayload(*RS); 2900 } 2901 } 2902 2903 if (UseDwarf5) { 2904 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2905 Asm->emitInt8(EndOfList); 2906 } else { 2907 // Terminate the list with two 0 values. 2908 Asm->OutStreamer->emitIntValue(0, Size); 2909 Asm->OutStreamer->emitIntValue(0, Size); 2910 } 2911 } 2912 2913 // Handles emission of both debug_loclist / debug_loclist.dwo 2914 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2915 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2916 *List.CU, dwarf::DW_LLE_base_addressx, 2917 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2918 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2919 /* ShouldUseBaseAddress */ true, 2920 [&](const DebugLocStream::Entry &E) { 2921 DD.emitDebugLocEntryLocation(E, List.CU); 2922 }); 2923 } 2924 2925 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2926 if (DebugLocs.getLists().empty()) 2927 return; 2928 2929 Asm->OutStreamer->switchSection(Sec); 2930 2931 MCSymbol *TableEnd = nullptr; 2932 if (getDwarfVersion() >= 5) 2933 TableEnd = emitLoclistsTableHeader(Asm, *this); 2934 2935 for (const auto &List : DebugLocs.getLists()) 2936 emitLocList(*this, Asm, List); 2937 2938 if (TableEnd) 2939 Asm->OutStreamer->emitLabel(TableEnd); 2940 } 2941 2942 // Emit locations into the .debug_loc/.debug_loclists section. 2943 void DwarfDebug::emitDebugLoc() { 2944 emitDebugLocImpl( 2945 getDwarfVersion() >= 5 2946 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2947 : Asm->getObjFileLowering().getDwarfLocSection()); 2948 } 2949 2950 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2951 void DwarfDebug::emitDebugLocDWO() { 2952 if (getDwarfVersion() >= 5) { 2953 emitDebugLocImpl( 2954 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2955 2956 return; 2957 } 2958 2959 for (const auto &List : DebugLocs.getLists()) { 2960 Asm->OutStreamer->switchSection( 2961 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2962 Asm->OutStreamer->emitLabel(List.Label); 2963 2964 for (const auto &Entry : DebugLocs.getEntries(List)) { 2965 // GDB only supports startx_length in pre-standard split-DWARF. 2966 // (in v5 standard loclists, it currently* /only/ supports base_address + 2967 // offset_pair, so the implementations can't really share much since they 2968 // need to use different representations) 2969 // * as of October 2018, at least 2970 // 2971 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2972 // addresses in the address pool to minimize object size/relocations. 2973 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2974 unsigned idx = AddrPool.getIndex(Entry.Begin); 2975 Asm->emitULEB128(idx); 2976 // Also the pre-standard encoding is slightly different, emitting this as 2977 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2978 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2979 emitDebugLocEntryLocation(Entry, List.CU); 2980 } 2981 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2982 } 2983 } 2984 2985 struct ArangeSpan { 2986 const MCSymbol *Start, *End; 2987 }; 2988 2989 // Emit a debug aranges section, containing a CU lookup for any 2990 // address we can tie back to a CU. 2991 void DwarfDebug::emitDebugARanges() { 2992 // Provides a unique id per text section. 2993 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2994 2995 // Filter labels by section. 2996 for (const SymbolCU &SCU : ArangeLabels) { 2997 if (SCU.Sym->isInSection()) { 2998 // Make a note of this symbol and it's section. 2999 MCSection *Section = &SCU.Sym->getSection(); 3000 if (!Section->getKind().isMetadata()) 3001 SectionMap[Section].push_back(SCU); 3002 } else { 3003 // Some symbols (e.g. common/bss on mach-o) can have no section but still 3004 // appear in the output. This sucks as we rely on sections to build 3005 // arange spans. We can do it without, but it's icky. 3006 SectionMap[nullptr].push_back(SCU); 3007 } 3008 } 3009 3010 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 3011 3012 for (auto &I : SectionMap) { 3013 MCSection *Section = I.first; 3014 SmallVector<SymbolCU, 8> &List = I.second; 3015 if (List.size() < 1) 3016 continue; 3017 3018 // If we have no section (e.g. common), just write out 3019 // individual spans for each symbol. 3020 if (!Section) { 3021 for (const SymbolCU &Cur : List) { 3022 ArangeSpan Span; 3023 Span.Start = Cur.Sym; 3024 Span.End = nullptr; 3025 assert(Cur.CU); 3026 Spans[Cur.CU].push_back(Span); 3027 } 3028 continue; 3029 } 3030 3031 // Sort the symbols by offset within the section. 3032 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 3033 unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0; 3034 unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0; 3035 3036 // Symbols with no order assigned should be placed at the end. 3037 // (e.g. section end labels) 3038 if (IA == 0) 3039 return false; 3040 if (IB == 0) 3041 return true; 3042 return IA < IB; 3043 }); 3044 3045 // Insert a final terminator. 3046 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 3047 3048 // Build spans between each label. 3049 const MCSymbol *StartSym = List[0].Sym; 3050 for (size_t n = 1, e = List.size(); n < e; n++) { 3051 const SymbolCU &Prev = List[n - 1]; 3052 const SymbolCU &Cur = List[n]; 3053 3054 // Try and build the longest span we can within the same CU. 3055 if (Cur.CU != Prev.CU) { 3056 ArangeSpan Span; 3057 Span.Start = StartSym; 3058 Span.End = Cur.Sym; 3059 assert(Prev.CU); 3060 Spans[Prev.CU].push_back(Span); 3061 StartSym = Cur.Sym; 3062 } 3063 } 3064 } 3065 3066 // Start the dwarf aranges section. 3067 Asm->OutStreamer->switchSection( 3068 Asm->getObjFileLowering().getDwarfARangesSection()); 3069 3070 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 3071 3072 // Build a list of CUs used. 3073 std::vector<DwarfCompileUnit *> CUs; 3074 for (const auto &it : Spans) { 3075 DwarfCompileUnit *CU = it.first; 3076 CUs.push_back(CU); 3077 } 3078 3079 // Sort the CU list (again, to ensure consistent output order). 3080 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 3081 return A->getUniqueID() < B->getUniqueID(); 3082 }); 3083 3084 // Emit an arange table for each CU we used. 3085 for (DwarfCompileUnit *CU : CUs) { 3086 std::vector<ArangeSpan> &List = Spans[CU]; 3087 3088 // Describe the skeleton CU's offset and length, not the dwo file's. 3089 if (auto *Skel = CU->getSkeleton()) 3090 CU = Skel; 3091 3092 // Emit size of content not including length itself. 3093 unsigned ContentSize = 3094 sizeof(int16_t) + // DWARF ARange version number 3095 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3096 // section 3097 sizeof(int8_t) + // Pointer Size (in bytes) 3098 sizeof(int8_t); // Segment Size (in bytes) 3099 3100 unsigned TupleSize = PtrSize * 2; 3101 3102 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3103 unsigned Padding = offsetToAlignment( 3104 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3105 3106 ContentSize += Padding; 3107 ContentSize += (List.size() + 1) * TupleSize; 3108 3109 // For each compile unit, write the list of spans it covers. 3110 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3111 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3112 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3113 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3114 emitSectionReference(*CU); 3115 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3116 Asm->emitInt8(PtrSize); 3117 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3118 Asm->emitInt8(0); 3119 3120 Asm->OutStreamer->emitFill(Padding, 0xff); 3121 3122 for (const ArangeSpan &Span : List) { 3123 Asm->emitLabelReference(Span.Start, PtrSize); 3124 3125 // Calculate the size as being from the span start to its end. 3126 // 3127 // If the size is zero, then round it up to one byte. The DWARF 3128 // specification requires that entries in this table have nonzero 3129 // lengths. 3130 auto SizeRef = SymSize.find(Span.Start); 3131 if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) { 3132 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3133 } else { 3134 // For symbols without an end marker (e.g. common), we 3135 // write a single arange entry containing just that one symbol. 3136 uint64_t Size; 3137 if (SizeRef == SymSize.end() || SizeRef->second == 0) 3138 Size = 1; 3139 else 3140 Size = SizeRef->second; 3141 3142 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3143 } 3144 } 3145 3146 Asm->OutStreamer->AddComment("ARange terminator"); 3147 Asm->OutStreamer->emitIntValue(0, PtrSize); 3148 Asm->OutStreamer->emitIntValue(0, PtrSize); 3149 } 3150 } 3151 3152 /// Emit a single range list. We handle both DWARF v5 and earlier. 3153 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3154 const RangeSpanList &List) { 3155 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3156 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3157 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3158 llvm::dwarf::RangeListEncodingString, 3159 List.CU->getCUNode()->getRangesBaseAddress() || 3160 DD.getDwarfVersion() >= 5, 3161 [](auto) {}); 3162 } 3163 3164 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3165 if (Holder.getRangeLists().empty()) 3166 return; 3167 3168 assert(useRangesSection()); 3169 assert(!CUMap.empty()); 3170 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3171 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3172 })); 3173 3174 Asm->OutStreamer->switchSection(Section); 3175 3176 MCSymbol *TableEnd = nullptr; 3177 if (getDwarfVersion() >= 5) 3178 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3179 3180 for (const RangeSpanList &List : Holder.getRangeLists()) 3181 emitRangeList(*this, Asm, List); 3182 3183 if (TableEnd) 3184 Asm->OutStreamer->emitLabel(TableEnd); 3185 } 3186 3187 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3188 /// .debug_rnglists section. 3189 void DwarfDebug::emitDebugRanges() { 3190 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3191 3192 emitDebugRangesImpl(Holder, 3193 getDwarfVersion() >= 5 3194 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3195 : Asm->getObjFileLowering().getDwarfRangesSection()); 3196 } 3197 3198 void DwarfDebug::emitDebugRangesDWO() { 3199 emitDebugRangesImpl(InfoHolder, 3200 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3201 } 3202 3203 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3204 /// DWARF 4. 3205 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3206 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3207 enum HeaderFlagMask { 3208 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3209 #include "llvm/BinaryFormat/Dwarf.def" 3210 }; 3211 Asm->OutStreamer->AddComment("Macro information version"); 3212 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3213 // We emit the line offset flag unconditionally here, since line offset should 3214 // be mostly present. 3215 if (Asm->isDwarf64()) { 3216 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3217 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3218 } else { 3219 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3220 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3221 } 3222 Asm->OutStreamer->AddComment("debug_line_offset"); 3223 if (DD.useSplitDwarf()) 3224 Asm->emitDwarfLengthOrOffset(0); 3225 else 3226 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3227 } 3228 3229 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3230 for (auto *MN : Nodes) { 3231 if (auto *M = dyn_cast<DIMacro>(MN)) 3232 emitMacro(*M); 3233 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3234 emitMacroFile(*F, U); 3235 else 3236 llvm_unreachable("Unexpected DI type!"); 3237 } 3238 } 3239 3240 void DwarfDebug::emitMacro(DIMacro &M) { 3241 StringRef Name = M.getName(); 3242 StringRef Value = M.getValue(); 3243 3244 // There should be one space between the macro name and the macro value in 3245 // define entries. In undef entries, only the macro name is emitted. 3246 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3247 3248 if (UseDebugMacroSection) { 3249 if (getDwarfVersion() >= 5) { 3250 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3251 ? dwarf::DW_MACRO_define_strx 3252 : dwarf::DW_MACRO_undef_strx; 3253 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3254 Asm->emitULEB128(Type); 3255 Asm->OutStreamer->AddComment("Line Number"); 3256 Asm->emitULEB128(M.getLine()); 3257 Asm->OutStreamer->AddComment("Macro String"); 3258 Asm->emitULEB128( 3259 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3260 } else { 3261 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3262 ? dwarf::DW_MACRO_GNU_define_indirect 3263 : dwarf::DW_MACRO_GNU_undef_indirect; 3264 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3265 Asm->emitULEB128(Type); 3266 Asm->OutStreamer->AddComment("Line Number"); 3267 Asm->emitULEB128(M.getLine()); 3268 Asm->OutStreamer->AddComment("Macro String"); 3269 Asm->emitDwarfSymbolReference( 3270 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3271 } 3272 } else { 3273 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3274 Asm->emitULEB128(M.getMacinfoType()); 3275 Asm->OutStreamer->AddComment("Line Number"); 3276 Asm->emitULEB128(M.getLine()); 3277 Asm->OutStreamer->AddComment("Macro String"); 3278 Asm->OutStreamer->emitBytes(Str); 3279 Asm->emitInt8('\0'); 3280 } 3281 } 3282 3283 void DwarfDebug::emitMacroFileImpl( 3284 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3285 StringRef (*MacroFormToString)(unsigned Form)) { 3286 3287 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3288 Asm->emitULEB128(StartFile); 3289 Asm->OutStreamer->AddComment("Line Number"); 3290 Asm->emitULEB128(MF.getLine()); 3291 Asm->OutStreamer->AddComment("File Number"); 3292 DIFile &F = *MF.getFile(); 3293 if (useSplitDwarf()) 3294 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3295 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3296 Asm->OutContext.getDwarfVersion(), F.getSource())); 3297 else 3298 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3299 handleMacroNodes(MF.getElements(), U); 3300 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3301 Asm->emitULEB128(EndFile); 3302 } 3303 3304 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3305 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3306 // so for readibility/uniformity, We are explicitly emitting those. 3307 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3308 if (UseDebugMacroSection) 3309 emitMacroFileImpl( 3310 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3311 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3312 else 3313 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3314 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3315 } 3316 3317 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3318 for (const auto &P : CUMap) { 3319 auto &TheCU = *P.second; 3320 auto *SkCU = TheCU.getSkeleton(); 3321 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3322 auto *CUNode = cast<DICompileUnit>(P.first); 3323 DIMacroNodeArray Macros = CUNode->getMacros(); 3324 if (Macros.empty()) 3325 continue; 3326 Asm->OutStreamer->switchSection(Section); 3327 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3328 if (UseDebugMacroSection) 3329 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3330 handleMacroNodes(Macros, U); 3331 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3332 Asm->emitInt8(0); 3333 } 3334 } 3335 3336 /// Emit macros into a debug macinfo/macro section. 3337 void DwarfDebug::emitDebugMacinfo() { 3338 auto &ObjLower = Asm->getObjFileLowering(); 3339 emitDebugMacinfoImpl(UseDebugMacroSection 3340 ? ObjLower.getDwarfMacroSection() 3341 : ObjLower.getDwarfMacinfoSection()); 3342 } 3343 3344 void DwarfDebug::emitDebugMacinfoDWO() { 3345 auto &ObjLower = Asm->getObjFileLowering(); 3346 emitDebugMacinfoImpl(UseDebugMacroSection 3347 ? ObjLower.getDwarfMacroDWOSection() 3348 : ObjLower.getDwarfMacinfoDWOSection()); 3349 } 3350 3351 // DWARF5 Experimental Separate Dwarf emitters. 3352 3353 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3354 std::unique_ptr<DwarfCompileUnit> NewU) { 3355 3356 if (!CompilationDir.empty()) 3357 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3358 addGnuPubAttributes(*NewU, Die); 3359 3360 SkeletonHolder.addUnit(std::move(NewU)); 3361 } 3362 3363 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3364 3365 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3366 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3367 UnitKind::Skeleton); 3368 DwarfCompileUnit &NewCU = *OwnedUnit; 3369 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3370 3371 NewCU.initStmtList(); 3372 3373 if (useSegmentedStringOffsetsTable()) 3374 NewCU.addStringOffsetsStart(); 3375 3376 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3377 3378 return NewCU; 3379 } 3380 3381 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3382 // compile units that would normally be in debug_info. 3383 void DwarfDebug::emitDebugInfoDWO() { 3384 assert(useSplitDwarf() && "No split dwarf debug info?"); 3385 // Don't emit relocations into the dwo file. 3386 InfoHolder.emitUnits(/* UseOffsets */ true); 3387 } 3388 3389 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3390 // abbreviations for the .debug_info.dwo section. 3391 void DwarfDebug::emitDebugAbbrevDWO() { 3392 assert(useSplitDwarf() && "No split dwarf?"); 3393 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3394 } 3395 3396 void DwarfDebug::emitDebugLineDWO() { 3397 assert(useSplitDwarf() && "No split dwarf?"); 3398 SplitTypeUnitFileTable.Emit( 3399 *Asm->OutStreamer, MCDwarfLineTableParams(), 3400 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3401 } 3402 3403 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3404 assert(useSplitDwarf() && "No split dwarf?"); 3405 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3406 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3407 InfoHolder.getStringOffsetsStartSym()); 3408 } 3409 3410 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3411 // string section and is identical in format to traditional .debug_str 3412 // sections. 3413 void DwarfDebug::emitDebugStrDWO() { 3414 if (useSegmentedStringOffsetsTable()) 3415 emitStringOffsetsTableHeaderDWO(); 3416 assert(useSplitDwarf() && "No split dwarf?"); 3417 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3418 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3419 OffSec, /* UseRelativeOffsets = */ false); 3420 } 3421 3422 // Emit address pool. 3423 void DwarfDebug::emitDebugAddr() { 3424 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3425 } 3426 3427 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3428 if (!useSplitDwarf()) 3429 return nullptr; 3430 const DICompileUnit *DIUnit = CU.getCUNode(); 3431 SplitTypeUnitFileTable.maybeSetRootFile( 3432 DIUnit->getDirectory(), DIUnit->getFilename(), 3433 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3434 return &SplitTypeUnitFileTable; 3435 } 3436 3437 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3438 MD5 Hash; 3439 Hash.update(Identifier); 3440 // ... take the least significant 8 bytes and return those. Our MD5 3441 // implementation always returns its results in little endian, so we actually 3442 // need the "high" word. 3443 MD5::MD5Result Result; 3444 Hash.final(Result); 3445 return Result.high(); 3446 } 3447 3448 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3449 StringRef Identifier, DIE &RefDie, 3450 const DICompositeType *CTy) { 3451 // Fast path if we're building some type units and one has already used the 3452 // address pool we know we're going to throw away all this work anyway, so 3453 // don't bother building dependent types. 3454 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3455 return; 3456 3457 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3458 if (!Ins.second) { 3459 CU.addDIETypeSignature(RefDie, Ins.first->second); 3460 return; 3461 } 3462 3463 setCurrentDWARF5AccelTable(DWARF5AccelTableKind::TU); 3464 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3465 AddrPool.resetUsedFlag(); 3466 3467 auto OwnedUnit = std::make_unique<DwarfTypeUnit>( 3468 CU, Asm, this, &InfoHolder, NumTypeUnitsCreated++, getDwoLineTable(CU)); 3469 DwarfTypeUnit &NewTU = *OwnedUnit; 3470 DIE &UnitDie = NewTU.getUnitDie(); 3471 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3472 3473 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3474 CU.getLanguage()); 3475 3476 uint64_t Signature = makeTypeSignature(Identifier); 3477 NewTU.setTypeSignature(Signature); 3478 Ins.first->second = Signature; 3479 3480 if (useSplitDwarf()) { 3481 // Although multiple type units can have the same signature, they are not 3482 // guranteed to be bit identical. When LLDB uses .debug_names it needs to 3483 // know from which CU a type unit came from. These two attrbutes help it to 3484 // figure that out. 3485 if (getDwarfVersion() >= 5) { 3486 if (!CompilationDir.empty()) 3487 NewTU.addString(UnitDie, dwarf::DW_AT_comp_dir, CompilationDir); 3488 NewTU.addString(UnitDie, dwarf::DW_AT_dwo_name, 3489 Asm->TM.Options.MCOptions.SplitDwarfFile); 3490 } 3491 MCSection *Section = 3492 getDwarfVersion() <= 4 3493 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3494 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3495 NewTU.setSection(Section); 3496 } else { 3497 MCSection *Section = 3498 getDwarfVersion() <= 4 3499 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3500 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3501 NewTU.setSection(Section); 3502 // Non-split type units reuse the compile unit's line table. 3503 CU.applyStmtList(UnitDie); 3504 } 3505 3506 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3507 // units. 3508 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3509 NewTU.addStringOffsetsStart(); 3510 3511 NewTU.setType(NewTU.createTypeDIE(CTy)); 3512 3513 if (TopLevelType) { 3514 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3515 TypeUnitsUnderConstruction.clear(); 3516 3517 // Types referencing entries in the address table cannot be placed in type 3518 // units. 3519 if (AddrPool.hasBeenUsed()) { 3520 AccelTypeUnitsDebugNames.clear(); 3521 // Remove all the types built while building this type. 3522 // This is pessimistic as some of these types might not be dependent on 3523 // the type that used an address. 3524 for (const auto &TU : TypeUnitsToAdd) 3525 TypeSignatures.erase(TU.second); 3526 3527 // Construct this type in the CU directly. 3528 // This is inefficient because all the dependent types will be rebuilt 3529 // from scratch, including building them in type units, discovering that 3530 // they depend on addresses, throwing them out and rebuilding them. 3531 setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU); 3532 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3533 return; 3534 } 3535 3536 // If the type wasn't dependent on fission addresses, finish adding the type 3537 // and all its dependent types. 3538 for (auto &TU : TypeUnitsToAdd) { 3539 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3540 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3541 if (getDwarfVersion() >= 5 && 3542 getAccelTableKind() == AccelTableKind::Dwarf) { 3543 if (useSplitDwarf()) 3544 AccelDebugNames.addTypeUnitSignature(*TU.first); 3545 else 3546 AccelDebugNames.addTypeUnitSymbol(*TU.first); 3547 } 3548 } 3549 AccelTypeUnitsDebugNames.convertDieToOffset(); 3550 AccelDebugNames.addTypeEntries(AccelTypeUnitsDebugNames); 3551 AccelTypeUnitsDebugNames.clear(); 3552 setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU); 3553 } 3554 CU.addDIETypeSignature(RefDie, Signature); 3555 } 3556 3557 // Add the Name along with its companion DIE to the appropriate accelerator 3558 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3559 // AccelTableKind::Apple, we use the table we got as an argument). If 3560 // accelerator tables are disabled, this function does nothing. 3561 template <typename DataT> 3562 void DwarfDebug::addAccelNameImpl( 3563 const DwarfUnit &Unit, 3564 const DICompileUnit::DebugNameTableKind NameTableKind, 3565 AccelTable<DataT> &AppleAccel, StringRef Name, const DIE &Die) { 3566 if (getAccelTableKind() == AccelTableKind::None || Name.empty()) 3567 return; 3568 3569 if (getAccelTableKind() != AccelTableKind::Apple && 3570 NameTableKind != DICompileUnit::DebugNameTableKind::Apple && 3571 NameTableKind != DICompileUnit::DebugNameTableKind::Default) 3572 return; 3573 3574 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3575 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3576 3577 switch (getAccelTableKind()) { 3578 case AccelTableKind::Apple: 3579 AppleAccel.addName(Ref, Die); 3580 break; 3581 case AccelTableKind::Dwarf: { 3582 DWARF5AccelTable &Current = getCurrentDWARF5AccelTable(); 3583 assert(((&Current == &AccelTypeUnitsDebugNames) || 3584 ((&Current == &AccelDebugNames) && 3585 (Unit.getUnitDie().getTag() != dwarf::DW_TAG_type_unit))) && 3586 "Kind is CU but TU is being processed."); 3587 assert(((&Current == &AccelDebugNames) || 3588 ((&Current == &AccelTypeUnitsDebugNames) && 3589 (Unit.getUnitDie().getTag() == dwarf::DW_TAG_type_unit))) && 3590 "Kind is TU but CU is being processed."); 3591 // The type unit can be discarded, so need to add references to final 3592 // acceleration table once we know it's complete and we emit it. 3593 Current.addName(Ref, Die, Unit.getUniqueID()); 3594 break; 3595 } 3596 case AccelTableKind::Default: 3597 llvm_unreachable("Default should have already been resolved."); 3598 case AccelTableKind::None: 3599 llvm_unreachable("None handled above"); 3600 } 3601 } 3602 3603 void DwarfDebug::addAccelName( 3604 const DwarfUnit &Unit, 3605 const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, 3606 const DIE &Die) { 3607 addAccelNameImpl(Unit, NameTableKind, AccelNames, Name, Die); 3608 } 3609 3610 void DwarfDebug::addAccelObjC( 3611 const DwarfUnit &Unit, 3612 const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, 3613 const DIE &Die) { 3614 // ObjC names go only into the Apple accelerator tables. 3615 if (getAccelTableKind() == AccelTableKind::Apple) 3616 addAccelNameImpl(Unit, NameTableKind, AccelObjC, Name, Die); 3617 } 3618 3619 void DwarfDebug::addAccelNamespace( 3620 const DwarfUnit &Unit, 3621 const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, 3622 const DIE &Die) { 3623 addAccelNameImpl(Unit, NameTableKind, AccelNamespace, Name, Die); 3624 } 3625 3626 void DwarfDebug::addAccelType( 3627 const DwarfUnit &Unit, 3628 const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, 3629 const DIE &Die, char Flags) { 3630 addAccelNameImpl(Unit, NameTableKind, AccelTypes, Name, Die); 3631 } 3632 3633 uint16_t DwarfDebug::getDwarfVersion() const { 3634 return Asm->OutStreamer->getContext().getDwarfVersion(); 3635 } 3636 3637 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3638 if (Asm->getDwarfVersion() >= 4) 3639 return dwarf::Form::DW_FORM_sec_offset; 3640 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3641 "DWARF64 is not defined prior DWARFv3"); 3642 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3643 : dwarf::Form::DW_FORM_data4; 3644 } 3645 3646 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3647 return SectionLabels.lookup(S); 3648 } 3649 3650 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3651 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3652 if (useSplitDwarf() || getDwarfVersion() >= 5) 3653 AddrPool.getIndex(S); 3654 } 3655 3656 std::optional<MD5::MD5Result> 3657 DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3658 assert(File); 3659 if (getDwarfVersion() < 5) 3660 return std::nullopt; 3661 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3662 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3663 return std::nullopt; 3664 3665 // Convert the string checksum to an MD5Result for the streamer. 3666 // The verifier validates the checksum so we assume it's okay. 3667 // An MD5 checksum is 16 bytes. 3668 std::string ChecksumString = fromHex(Checksum->Value); 3669 MD5::MD5Result CKMem; 3670 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data()); 3671 return CKMem; 3672 } 3673 3674 bool DwarfDebug::alwaysUseRanges(const DwarfCompileUnit &CU) const { 3675 if (MinimizeAddr == MinimizeAddrInV5::Ranges) 3676 return true; 3677 if (MinimizeAddr != MinimizeAddrInV5::Default) 3678 return false; 3679 if (useSplitDwarf()) 3680 return true; 3681 return false; 3682 } 3683