xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Common functionality for different debug information format backends.
10 // LLVM currently supports DWARF and CodeView.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/DebugHandlerBase.h"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/MC/MCStreamer.h"
23 #include "llvm/Support/CommandLine.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "dwarfdebug"
28 
29 /// If true, we drop variable location ranges which exist entirely outside the
30 /// variable's lexical scope instruction ranges.
31 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
32 
33 std::optional<DbgVariableLocation>
34 DbgVariableLocation::extractFromMachineInstruction(
35     const MachineInstr &Instruction) {
36   DbgVariableLocation Location;
37   // Variables calculated from multiple locations can't be represented here.
38   if (Instruction.getNumDebugOperands() != 1)
39     return std::nullopt;
40   if (!Instruction.getDebugOperand(0).isReg())
41     return std::nullopt;
42   Location.Register = Instruction.getDebugOperand(0).getReg();
43   Location.FragmentInfo.reset();
44   // We only handle expressions generated by DIExpression::appendOffset,
45   // which doesn't require a full stack machine.
46   int64_t Offset = 0;
47   const DIExpression *DIExpr = Instruction.getDebugExpression();
48   auto Op = DIExpr->expr_op_begin();
49   // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
50   // appears exactly once at the start of the expression.
51   if (Instruction.isDebugValueList()) {
52     if (Instruction.getNumDebugOperands() == 1 &&
53         Op->getOp() == dwarf::DW_OP_LLVM_arg)
54       ++Op;
55     else
56       return std::nullopt;
57   }
58   while (Op != DIExpr->expr_op_end()) {
59     switch (Op->getOp()) {
60     case dwarf::DW_OP_constu: {
61       int Value = Op->getArg(0);
62       ++Op;
63       if (Op != DIExpr->expr_op_end()) {
64         switch (Op->getOp()) {
65         case dwarf::DW_OP_minus:
66           Offset -= Value;
67           break;
68         case dwarf::DW_OP_plus:
69           Offset += Value;
70           break;
71         default:
72           continue;
73         }
74       }
75     } break;
76     case dwarf::DW_OP_plus_uconst:
77       Offset += Op->getArg(0);
78       break;
79     case dwarf::DW_OP_LLVM_fragment:
80       Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
81       break;
82     case dwarf::DW_OP_deref:
83       Location.LoadChain.push_back(Offset);
84       Offset = 0;
85       break;
86     default:
87       return std::nullopt;
88     }
89     ++Op;
90   }
91 
92   // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
93   // instruction.
94   // FIXME: Replace these with DIExpression.
95   if (Instruction.isIndirectDebugValue())
96     Location.LoadChain.push_back(Offset);
97 
98   return Location;
99 }
100 
101 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
102 
103 DebugHandlerBase::~DebugHandlerBase() = default;
104 
105 void DebugHandlerBase::beginModule(Module *M) {
106   if (M->debug_compile_units().empty())
107     Asm = nullptr;
108 }
109 
110 // Each LexicalScope has first instruction and last instruction to mark
111 // beginning and end of a scope respectively. Create an inverse map that list
112 // scopes starts (and ends) with an instruction. One instruction may start (or
113 // end) multiple scopes. Ignore scopes that are not reachable.
114 void DebugHandlerBase::identifyScopeMarkers() {
115   SmallVector<LexicalScope *, 4> WorkList;
116   WorkList.push_back(LScopes.getCurrentFunctionScope());
117   while (!WorkList.empty()) {
118     LexicalScope *S = WorkList.pop_back_val();
119 
120     const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
121     if (!Children.empty())
122       WorkList.append(Children.begin(), Children.end());
123 
124     if (S->isAbstractScope())
125       continue;
126 
127     for (const InsnRange &R : S->getRanges()) {
128       assert(R.first && "InsnRange does not have first instruction!");
129       assert(R.second && "InsnRange does not have second instruction!");
130       requestLabelBeforeInsn(R.first);
131       requestLabelAfterInsn(R.second);
132     }
133   }
134 }
135 
136 // Return Label preceding the instruction.
137 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
138   MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
139   assert(Label && "Didn't insert label before instruction");
140   return Label;
141 }
142 
143 // Return Label immediately following the instruction.
144 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
145   return LabelsAfterInsn.lookup(MI);
146 }
147 
148 /// If this type is derived from a base type then return base type size.
149 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
150   assert(Ty);
151   const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
152   if (!DDTy)
153     return Ty->getSizeInBits();
154 
155   unsigned Tag = DDTy->getTag();
156 
157   if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
158       Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
159       Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
160       Tag != dwarf::DW_TAG_immutable_type &&
161       Tag != dwarf::DW_TAG_template_alias)
162     return DDTy->getSizeInBits();
163 
164   DIType *BaseType = DDTy->getBaseType();
165 
166   if (!BaseType)
167     return 0;
168 
169   // If this is a derived type, go ahead and get the base type, unless it's a
170   // reference then it's just the size of the field. Pointer types have no need
171   // of this since they're a different type of qualification on the type.
172   if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
173       BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
174     return Ty->getSizeInBits();
175 
176   return getBaseTypeSize(BaseType);
177 }
178 
179 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
180   if (isa<DIStringType>(Ty)) {
181     // Some transformations (e.g. instcombine) may decide to turn a Fortran
182     // character object into an integer, and later ones (e.g. SROA) may
183     // further inject a constant integer in a llvm.dbg.value call to track
184     // the object's value. Here we trust the transformations are doing the
185     // right thing, and treat the constant as unsigned to preserve that value
186     // (i.e. avoid sign extension).
187     return true;
188   }
189 
190   if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
191     if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
192       if (!(Ty = CTy->getBaseType()))
193         // FIXME: Enums without a fixed underlying type have unknown signedness
194         // here, leading to incorrectly emitted constants.
195         return false;
196     } else
197       // (Pieces of) aggregate types that get hacked apart by SROA may be
198       // represented by a constant. Encode them as unsigned bytes.
199       return true;
200   }
201 
202   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
203     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
204     // Encode pointer constants as unsigned bytes. This is used at least for
205     // null pointer constant emission.
206     // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
207     // here, but accept them for now due to a bug in SROA producing bogus
208     // dbg.values.
209     if (T == dwarf::DW_TAG_pointer_type ||
210         T == dwarf::DW_TAG_ptr_to_member_type ||
211         T == dwarf::DW_TAG_reference_type ||
212         T == dwarf::DW_TAG_rvalue_reference_type)
213       return true;
214     assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
215            T == dwarf::DW_TAG_volatile_type ||
216            T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
217            T == dwarf::DW_TAG_immutable_type ||
218            T == dwarf::DW_TAG_template_alias);
219     assert(DTy->getBaseType() && "Expected valid base type");
220     return isUnsignedDIType(DTy->getBaseType());
221   }
222 
223   auto *BTy = cast<DIBasicType>(Ty);
224   unsigned Encoding = BTy->getEncoding();
225   assert((Encoding == dwarf::DW_ATE_unsigned ||
226           Encoding == dwarf::DW_ATE_unsigned_char ||
227           Encoding == dwarf::DW_ATE_signed ||
228           Encoding == dwarf::DW_ATE_signed_char ||
229           Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
230           Encoding == dwarf::DW_ATE_boolean ||
231           Encoding == dwarf::DW_ATE_complex_float ||
232           Encoding == dwarf::DW_ATE_signed_fixed ||
233           Encoding == dwarf::DW_ATE_unsigned_fixed ||
234           (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
235            Ty->getName() == "decltype(nullptr)")) &&
236          "Unsupported encoding");
237   return Encoding == dwarf::DW_ATE_unsigned ||
238          Encoding == dwarf::DW_ATE_unsigned_char ||
239          Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
240          Encoding == llvm::dwarf::DW_ATE_unsigned_fixed ||
241          Ty->getTag() == dwarf::DW_TAG_unspecified_type;
242 }
243 
244 static bool hasDebugInfo(const MachineModuleInfo *MMI,
245                          const MachineFunction *MF) {
246   if (!MMI->hasDebugInfo())
247     return false;
248   auto *SP = MF->getFunction().getSubprogram();
249   if (!SP)
250     return false;
251   assert(SP->getUnit());
252   auto EK = SP->getUnit()->getEmissionKind();
253   if (EK == DICompileUnit::NoDebug)
254     return false;
255   return true;
256 }
257 
258 void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
259   PrevInstBB = nullptr;
260 
261   if (!Asm || !hasDebugInfo(MMI, MF)) {
262     skippedNonDebugFunction();
263     return;
264   }
265 
266   // Grab the lexical scopes for the function, if we don't have any of those
267   // then we're not going to be able to do anything.
268   LScopes.initialize(*MF);
269   if (LScopes.empty()) {
270     beginFunctionImpl(MF);
271     return;
272   }
273 
274   // Make sure that each lexical scope will have a begin/end label.
275   identifyScopeMarkers();
276 
277   // Calculate history for local variables.
278   assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
279   assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
280   calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
281                             DbgValues, DbgLabels);
282   InstOrdering.initialize(*MF);
283   if (TrimVarLocs)
284     DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
285   LLVM_DEBUG(DbgValues.dump(MF->getName()));
286 
287   // Request labels for the full history.
288   for (const auto &I : DbgValues) {
289     const auto &Entries = I.second;
290     if (Entries.empty())
291       continue;
292 
293     auto IsDescribedByReg = [](const MachineInstr *MI) {
294       return any_of(MI->debug_operands(),
295                     [](auto &MO) { return MO.isReg() && MO.getReg(); });
296     };
297 
298     // The first mention of a function argument gets the CurrentFnBegin label,
299     // so arguments are visible when breaking at function entry.
300     //
301     // We do not change the label for values that are described by registers,
302     // as that could place them above their defining instructions. We should
303     // ideally not change the labels for constant debug values either, since
304     // doing that violates the ranges that are calculated in the history map.
305     // However, we currently do not emit debug values for constant arguments
306     // directly at the start of the function, so this code is still useful.
307     const DILocalVariable *DIVar =
308         Entries.front().getInstr()->getDebugVariable();
309     if (DIVar->isParameter() &&
310         getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
311       if (!IsDescribedByReg(Entries.front().getInstr()))
312         LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
313       if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
314         // Mark all non-overlapping initial fragments.
315         for (const auto *I = Entries.begin(); I != Entries.end(); ++I) {
316           if (!I->isDbgValue())
317             continue;
318           const DIExpression *Fragment = I->getInstr()->getDebugExpression();
319           if (std::any_of(Entries.begin(), I,
320                           [&](DbgValueHistoryMap::Entry Pred) {
321                             return Pred.isDbgValue() &&
322                                    Fragment->fragmentsOverlap(
323                                        Pred.getInstr()->getDebugExpression());
324                           }))
325             break;
326           // The code that generates location lists for DWARF assumes that the
327           // entries' start labels are monotonically increasing, and since we
328           // don't change the label for fragments that are described by
329           // registers, we must bail out when encountering such a fragment.
330           if (IsDescribedByReg(I->getInstr()))
331             break;
332           LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
333         }
334       }
335     }
336 
337     for (const auto &Entry : Entries) {
338       if (Entry.isDbgValue())
339         requestLabelBeforeInsn(Entry.getInstr());
340       else
341         requestLabelAfterInsn(Entry.getInstr());
342     }
343   }
344 
345   // Ensure there is a symbol before DBG_LABEL.
346   for (const auto &I : DbgLabels) {
347     const MachineInstr *MI = I.second;
348     requestLabelBeforeInsn(MI);
349   }
350 
351   PrevInstLoc = DebugLoc();
352   PrevLabel = Asm->getFunctionBegin();
353   beginFunctionImpl(MF);
354 }
355 
356 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
357   if (!Asm || !MMI->hasDebugInfo())
358     return;
359 
360   assert(CurMI == nullptr);
361   CurMI = MI;
362 
363   // Insert labels where requested.
364   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
365       LabelsBeforeInsn.find(MI);
366 
367   // No label needed.
368   if (I == LabelsBeforeInsn.end())
369     return;
370 
371   // Label already assigned.
372   if (I->second)
373     return;
374 
375   if (!PrevLabel) {
376     PrevLabel = MMI->getContext().createTempSymbol();
377     Asm->OutStreamer->emitLabel(PrevLabel);
378   }
379   I->second = PrevLabel;
380 }
381 
382 void DebugHandlerBase::endInstruction() {
383   if (!Asm || !MMI->hasDebugInfo())
384     return;
385 
386   assert(CurMI != nullptr);
387   // Don't create a new label after DBG_VALUE and other instructions that don't
388   // generate code.
389   if (!CurMI->isMetaInstruction()) {
390     PrevLabel = nullptr;
391     PrevInstBB = CurMI->getParent();
392   }
393 
394   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
395       LabelsAfterInsn.find(CurMI);
396 
397   // No label needed or label already assigned.
398   if (I == LabelsAfterInsn.end() || I->second) {
399     CurMI = nullptr;
400     return;
401   }
402 
403   // We need a label after this instruction.  With basic block sections, just
404   // use the end symbol of the section if this is the last instruction of the
405   // section.  This reduces the need for an additional label and also helps
406   // merging ranges.
407   if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
408     PrevLabel = CurMI->getParent()->getEndSymbol();
409   } else if (!PrevLabel) {
410     PrevLabel = MMI->getContext().createTempSymbol();
411     Asm->OutStreamer->emitLabel(PrevLabel);
412   }
413   I->second = PrevLabel;
414   CurMI = nullptr;
415 }
416 
417 void DebugHandlerBase::endFunction(const MachineFunction *MF) {
418   if (Asm && hasDebugInfo(MMI, MF))
419     endFunctionImpl(MF);
420   DbgValues.clear();
421   DbgLabels.clear();
422   LabelsBeforeInsn.clear();
423   LabelsAfterInsn.clear();
424   InstOrdering.clear();
425 }
426 
427 void DebugHandlerBase::beginBasicBlockSection(const MachineBasicBlock &MBB) {
428   EpilogBeginBlock = nullptr;
429   if (!MBB.isEntryBlock())
430     PrevLabel = MBB.getSymbol();
431 }
432 
433 void DebugHandlerBase::endBasicBlockSection(const MachineBasicBlock &MBB) {
434   PrevLabel = nullptr;
435 }
436