xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp (revision 478de7f8e25849ce0b3a37b4baaf9c69e0b34072)
1  //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Common functionality for different debug information format backends.
10  // LLVM currently supports DWARF and CodeView.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/CodeGen/DebugHandlerBase.h"
15  #include "llvm/ADT/Optional.h"
16  #include "llvm/CodeGen/AsmPrinter.h"
17  #include "llvm/CodeGen/MachineFunction.h"
18  #include "llvm/CodeGen/MachineInstr.h"
19  #include "llvm/CodeGen/MachineModuleInfo.h"
20  #include "llvm/CodeGen/TargetSubtargetInfo.h"
21  #include "llvm/IR/DebugInfo.h"
22  #include "llvm/MC/MCStreamer.h"
23  #include "llvm/Support/CommandLine.h"
24  
25  using namespace llvm;
26  
27  #define DEBUG_TYPE "dwarfdebug"
28  
29  /// If true, we drop variable location ranges which exist entirely outside the
30  /// variable's lexical scope instruction ranges.
31  static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
32  
33  Optional<DbgVariableLocation>
34  DbgVariableLocation::extractFromMachineInstruction(
35      const MachineInstr &Instruction) {
36    DbgVariableLocation Location;
37    // Variables calculated from multiple locations can't be represented here.
38    if (Instruction.getNumDebugOperands() != 1)
39      return None;
40    if (!Instruction.getDebugOperand(0).isReg())
41      return None;
42    Location.Register = Instruction.getDebugOperand(0).getReg();
43    Location.FragmentInfo.reset();
44    // We only handle expressions generated by DIExpression::appendOffset,
45    // which doesn't require a full stack machine.
46    int64_t Offset = 0;
47    const DIExpression *DIExpr = Instruction.getDebugExpression();
48    auto Op = DIExpr->expr_op_begin();
49    // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
50    // appears exactly once at the start of the expression.
51    if (Instruction.isDebugValueList()) {
52      if (Instruction.getNumDebugOperands() == 1 &&
53          Op->getOp() == dwarf::DW_OP_LLVM_arg)
54        ++Op;
55      else
56        return None;
57    }
58    while (Op != DIExpr->expr_op_end()) {
59      switch (Op->getOp()) {
60      case dwarf::DW_OP_constu: {
61        int Value = Op->getArg(0);
62        ++Op;
63        if (Op != DIExpr->expr_op_end()) {
64          switch (Op->getOp()) {
65          case dwarf::DW_OP_minus:
66            Offset -= Value;
67            break;
68          case dwarf::DW_OP_plus:
69            Offset += Value;
70            break;
71          default:
72            continue;
73          }
74        }
75      } break;
76      case dwarf::DW_OP_plus_uconst:
77        Offset += Op->getArg(0);
78        break;
79      case dwarf::DW_OP_LLVM_fragment:
80        Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
81        break;
82      case dwarf::DW_OP_deref:
83        Location.LoadChain.push_back(Offset);
84        Offset = 0;
85        break;
86      default:
87        return None;
88      }
89      ++Op;
90    }
91  
92    // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
93    // instruction.
94    // FIXME: Replace these with DIExpression.
95    if (Instruction.isIndirectDebugValue())
96      Location.LoadChain.push_back(Offset);
97  
98    return Location;
99  }
100  
101  DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
102  
103  void DebugHandlerBase::beginModule(Module *M) {
104    if (M->debug_compile_units().empty())
105      Asm = nullptr;
106  }
107  
108  // Each LexicalScope has first instruction and last instruction to mark
109  // beginning and end of a scope respectively. Create an inverse map that list
110  // scopes starts (and ends) with an instruction. One instruction may start (or
111  // end) multiple scopes. Ignore scopes that are not reachable.
112  void DebugHandlerBase::identifyScopeMarkers() {
113    SmallVector<LexicalScope *, 4> WorkList;
114    WorkList.push_back(LScopes.getCurrentFunctionScope());
115    while (!WorkList.empty()) {
116      LexicalScope *S = WorkList.pop_back_val();
117  
118      const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
119      if (!Children.empty())
120        WorkList.append(Children.begin(), Children.end());
121  
122      if (S->isAbstractScope())
123        continue;
124  
125      for (const InsnRange &R : S->getRanges()) {
126        assert(R.first && "InsnRange does not have first instruction!");
127        assert(R.second && "InsnRange does not have second instruction!");
128        requestLabelBeforeInsn(R.first);
129        requestLabelAfterInsn(R.second);
130      }
131    }
132  }
133  
134  // Return Label preceding the instruction.
135  MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
136    MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
137    assert(Label && "Didn't insert label before instruction");
138    return Label;
139  }
140  
141  // Return Label immediately following the instruction.
142  MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
143    return LabelsAfterInsn.lookup(MI);
144  }
145  
146  /// If this type is derived from a base type then return base type size.
147  uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
148    assert(Ty);
149    const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
150    if (!DDTy)
151      return Ty->getSizeInBits();
152  
153    unsigned Tag = DDTy->getTag();
154  
155    if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
156        Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
157        Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
158        Tag != dwarf::DW_TAG_immutable_type)
159      return DDTy->getSizeInBits();
160  
161    DIType *BaseType = DDTy->getBaseType();
162  
163    if (!BaseType)
164      return 0;
165  
166    // If this is a derived type, go ahead and get the base type, unless it's a
167    // reference then it's just the size of the field. Pointer types have no need
168    // of this since they're a different type of qualification on the type.
169    if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
170        BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
171      return Ty->getSizeInBits();
172  
173    return getBaseTypeSize(BaseType);
174  }
175  
176  bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
177    if (isa<DIStringType>(Ty)) {
178      // Some transformations (e.g. instcombine) may decide to turn a Fortran
179      // character object into an integer, and later ones (e.g. SROA) may
180      // further inject a constant integer in a llvm.dbg.value call to track
181      // the object's value. Here we trust the transformations are doing the
182      // right thing, and treat the constant as unsigned to preserve that value
183      // (i.e. avoid sign extension).
184      return true;
185    }
186  
187    if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
188      if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
189        if (!(Ty = CTy->getBaseType()))
190          // FIXME: Enums without a fixed underlying type have unknown signedness
191          // here, leading to incorrectly emitted constants.
192          return false;
193      } else
194        // (Pieces of) aggregate types that get hacked apart by SROA may be
195        // represented by a constant. Encode them as unsigned bytes.
196        return true;
197    }
198  
199    if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
200      dwarf::Tag T = (dwarf::Tag)Ty->getTag();
201      // Encode pointer constants as unsigned bytes. This is used at least for
202      // null pointer constant emission.
203      // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
204      // here, but accept them for now due to a bug in SROA producing bogus
205      // dbg.values.
206      if (T == dwarf::DW_TAG_pointer_type ||
207          T == dwarf::DW_TAG_ptr_to_member_type ||
208          T == dwarf::DW_TAG_reference_type ||
209          T == dwarf::DW_TAG_rvalue_reference_type)
210        return true;
211      assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
212             T == dwarf::DW_TAG_volatile_type ||
213             T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
214             T == dwarf::DW_TAG_immutable_type);
215      assert(DTy->getBaseType() && "Expected valid base type");
216      return isUnsignedDIType(DTy->getBaseType());
217    }
218  
219    auto *BTy = cast<DIBasicType>(Ty);
220    unsigned Encoding = BTy->getEncoding();
221    assert((Encoding == dwarf::DW_ATE_unsigned ||
222            Encoding == dwarf::DW_ATE_unsigned_char ||
223            Encoding == dwarf::DW_ATE_signed ||
224            Encoding == dwarf::DW_ATE_signed_char ||
225            Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
226            Encoding == dwarf::DW_ATE_boolean ||
227            (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
228             Ty->getName() == "decltype(nullptr)")) &&
229           "Unsupported encoding");
230    return Encoding == dwarf::DW_ATE_unsigned ||
231           Encoding == dwarf::DW_ATE_unsigned_char ||
232           Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
233           Ty->getTag() == dwarf::DW_TAG_unspecified_type;
234  }
235  
236  static bool hasDebugInfo(const MachineModuleInfo *MMI,
237                           const MachineFunction *MF) {
238    if (!MMI->hasDebugInfo())
239      return false;
240    auto *SP = MF->getFunction().getSubprogram();
241    if (!SP)
242      return false;
243    assert(SP->getUnit());
244    auto EK = SP->getUnit()->getEmissionKind();
245    if (EK == DICompileUnit::NoDebug)
246      return false;
247    return true;
248  }
249  
250  void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
251    PrevInstBB = nullptr;
252  
253    if (!Asm || !hasDebugInfo(MMI, MF)) {
254      skippedNonDebugFunction();
255      return;
256    }
257  
258    // Grab the lexical scopes for the function, if we don't have any of those
259    // then we're not going to be able to do anything.
260    LScopes.initialize(*MF);
261    if (LScopes.empty()) {
262      beginFunctionImpl(MF);
263      return;
264    }
265  
266    // Make sure that each lexical scope will have a begin/end label.
267    identifyScopeMarkers();
268  
269    // Calculate history for local variables.
270    assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
271    assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
272    calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
273                              DbgValues, DbgLabels);
274    InstOrdering.initialize(*MF);
275    if (TrimVarLocs)
276      DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
277    LLVM_DEBUG(DbgValues.dump());
278  
279    // Request labels for the full history.
280    for (const auto &I : DbgValues) {
281      const auto &Entries = I.second;
282      if (Entries.empty())
283        continue;
284  
285      auto IsDescribedByReg = [](const MachineInstr *MI) {
286        return any_of(MI->debug_operands(),
287                      [](auto &MO) { return MO.isReg() && MO.getReg(); });
288      };
289  
290      // The first mention of a function argument gets the CurrentFnBegin label,
291      // so arguments are visible when breaking at function entry.
292      //
293      // We do not change the label for values that are described by registers,
294      // as that could place them above their defining instructions. We should
295      // ideally not change the labels for constant debug values either, since
296      // doing that violates the ranges that are calculated in the history map.
297      // However, we currently do not emit debug values for constant arguments
298      // directly at the start of the function, so this code is still useful.
299      const DILocalVariable *DIVar =
300          Entries.front().getInstr()->getDebugVariable();
301      if (DIVar->isParameter() &&
302          getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
303        if (!IsDescribedByReg(Entries.front().getInstr()))
304          LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
305        if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
306          // Mark all non-overlapping initial fragments.
307          for (const auto *I = Entries.begin(); I != Entries.end(); ++I) {
308            if (!I->isDbgValue())
309              continue;
310            const DIExpression *Fragment = I->getInstr()->getDebugExpression();
311            if (std::any_of(Entries.begin(), I,
312                            [&](DbgValueHistoryMap::Entry Pred) {
313                              return Pred.isDbgValue() &&
314                                     Fragment->fragmentsOverlap(
315                                         Pred.getInstr()->getDebugExpression());
316                            }))
317              break;
318            // The code that generates location lists for DWARF assumes that the
319            // entries' start labels are monotonically increasing, and since we
320            // don't change the label for fragments that are described by
321            // registers, we must bail out when encountering such a fragment.
322            if (IsDescribedByReg(I->getInstr()))
323              break;
324            LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
325          }
326        }
327      }
328  
329      for (const auto &Entry : Entries) {
330        if (Entry.isDbgValue())
331          requestLabelBeforeInsn(Entry.getInstr());
332        else
333          requestLabelAfterInsn(Entry.getInstr());
334      }
335    }
336  
337    // Ensure there is a symbol before DBG_LABEL.
338    for (const auto &I : DbgLabels) {
339      const MachineInstr *MI = I.second;
340      requestLabelBeforeInsn(MI);
341    }
342  
343    PrevInstLoc = DebugLoc();
344    PrevLabel = Asm->getFunctionBegin();
345    beginFunctionImpl(MF);
346  }
347  
348  void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
349    if (!Asm || !MMI->hasDebugInfo())
350      return;
351  
352    assert(CurMI == nullptr);
353    CurMI = MI;
354  
355    // Insert labels where requested.
356    DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
357        LabelsBeforeInsn.find(MI);
358  
359    // No label needed.
360    if (I == LabelsBeforeInsn.end())
361      return;
362  
363    // Label already assigned.
364    if (I->second)
365      return;
366  
367    if (!PrevLabel) {
368      PrevLabel = MMI->getContext().createTempSymbol();
369      Asm->OutStreamer->emitLabel(PrevLabel);
370    }
371    I->second = PrevLabel;
372  }
373  
374  void DebugHandlerBase::endInstruction() {
375    if (!Asm || !MMI->hasDebugInfo())
376      return;
377  
378    assert(CurMI != nullptr);
379    // Don't create a new label after DBG_VALUE and other instructions that don't
380    // generate code.
381    if (!CurMI->isMetaInstruction()) {
382      PrevLabel = nullptr;
383      PrevInstBB = CurMI->getParent();
384    }
385  
386    DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
387        LabelsAfterInsn.find(CurMI);
388  
389    // No label needed or label already assigned.
390    if (I == LabelsAfterInsn.end() || I->second) {
391      CurMI = nullptr;
392      return;
393    }
394  
395    // We need a label after this instruction.  With basic block sections, just
396    // use the end symbol of the section if this is the last instruction of the
397    // section.  This reduces the need for an additional label and also helps
398    // merging ranges.
399    if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
400      PrevLabel = CurMI->getParent()->getEndSymbol();
401    } else if (!PrevLabel) {
402      PrevLabel = MMI->getContext().createTempSymbol();
403      Asm->OutStreamer->emitLabel(PrevLabel);
404    }
405    I->second = PrevLabel;
406    CurMI = nullptr;
407  }
408  
409  void DebugHandlerBase::endFunction(const MachineFunction *MF) {
410    if (Asm && hasDebugInfo(MMI, MF))
411      endFunctionImpl(MF);
412    DbgValues.clear();
413    DbgLabels.clear();
414    LabelsBeforeInsn.clear();
415    LabelsAfterInsn.clear();
416    InstOrdering.clear();
417  }
418  
419  void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) {
420    if (!MBB.isBeginSection())
421      return;
422  
423    PrevLabel = MBB.getSymbol();
424  }
425  
426  void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) {
427    if (!MBB.isEndSection())
428      return;
429  
430    PrevLabel = nullptr;
431  }
432