1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Common functionality for different debug information format backends. 10 // LLVM currently supports DWARF and CodeView. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/DebugHandlerBase.h" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineModuleInfo.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/Support/CommandLine.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "dwarfdebug" 27 28 /// If true, we drop variable location ranges which exist entirely outside the 29 /// variable's lexical scope instruction ranges. 30 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); 31 32 std::optional<DbgVariableLocation> 33 DbgVariableLocation::extractFromMachineInstruction( 34 const MachineInstr &Instruction) { 35 DbgVariableLocation Location; 36 // Variables calculated from multiple locations can't be represented here. 37 if (Instruction.getNumDebugOperands() != 1) 38 return std::nullopt; 39 if (!Instruction.getDebugOperand(0).isReg()) 40 return std::nullopt; 41 Location.Register = Instruction.getDebugOperand(0).getReg(); 42 Location.FragmentInfo.reset(); 43 // We only handle expressions generated by DIExpression::appendOffset, 44 // which doesn't require a full stack machine. 45 int64_t Offset = 0; 46 const DIExpression *DIExpr = Instruction.getDebugExpression(); 47 auto Op = DIExpr->expr_op_begin(); 48 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that 49 // appears exactly once at the start of the expression. 50 if (Instruction.isDebugValueList()) { 51 if (Instruction.getNumDebugOperands() == 1 && 52 Op->getOp() == dwarf::DW_OP_LLVM_arg) 53 ++Op; 54 else 55 return std::nullopt; 56 } 57 while (Op != DIExpr->expr_op_end()) { 58 switch (Op->getOp()) { 59 case dwarf::DW_OP_constu: { 60 int Value = Op->getArg(0); 61 ++Op; 62 if (Op != DIExpr->expr_op_end()) { 63 switch (Op->getOp()) { 64 case dwarf::DW_OP_minus: 65 Offset -= Value; 66 break; 67 case dwarf::DW_OP_plus: 68 Offset += Value; 69 break; 70 default: 71 continue; 72 } 73 } 74 } break; 75 case dwarf::DW_OP_plus_uconst: 76 Offset += Op->getArg(0); 77 break; 78 case dwarf::DW_OP_LLVM_fragment: 79 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 80 break; 81 case dwarf::DW_OP_deref: 82 Location.LoadChain.push_back(Offset); 83 Offset = 0; 84 break; 85 default: 86 return std::nullopt; 87 } 88 ++Op; 89 } 90 91 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 92 // instruction. 93 // FIXME: Replace these with DIExpression. 94 if (Instruction.isIndirectDebugValue()) 95 Location.LoadChain.push_back(Offset); 96 97 return Location; 98 } 99 100 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 101 102 void DebugHandlerBase::beginModule(Module *M) { 103 if (M->debug_compile_units().empty()) 104 Asm = nullptr; 105 } 106 107 // Each LexicalScope has first instruction and last instruction to mark 108 // beginning and end of a scope respectively. Create an inverse map that list 109 // scopes starts (and ends) with an instruction. One instruction may start (or 110 // end) multiple scopes. Ignore scopes that are not reachable. 111 void DebugHandlerBase::identifyScopeMarkers() { 112 SmallVector<LexicalScope *, 4> WorkList; 113 WorkList.push_back(LScopes.getCurrentFunctionScope()); 114 while (!WorkList.empty()) { 115 LexicalScope *S = WorkList.pop_back_val(); 116 117 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 118 if (!Children.empty()) 119 WorkList.append(Children.begin(), Children.end()); 120 121 if (S->isAbstractScope()) 122 continue; 123 124 for (const InsnRange &R : S->getRanges()) { 125 assert(R.first && "InsnRange does not have first instruction!"); 126 assert(R.second && "InsnRange does not have second instruction!"); 127 requestLabelBeforeInsn(R.first); 128 requestLabelAfterInsn(R.second); 129 } 130 } 131 } 132 133 // Return Label preceding the instruction. 134 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 135 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 136 assert(Label && "Didn't insert label before instruction"); 137 return Label; 138 } 139 140 // Return Label immediately following the instruction. 141 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 142 return LabelsAfterInsn.lookup(MI); 143 } 144 145 /// If this type is derived from a base type then return base type size. 146 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { 147 assert(Ty); 148 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 149 if (!DDTy) 150 return Ty->getSizeInBits(); 151 152 unsigned Tag = DDTy->getTag(); 153 154 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 155 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 156 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type && 157 Tag != dwarf::DW_TAG_immutable_type) 158 return DDTy->getSizeInBits(); 159 160 DIType *BaseType = DDTy->getBaseType(); 161 162 if (!BaseType) 163 return 0; 164 165 // If this is a derived type, go ahead and get the base type, unless it's a 166 // reference then it's just the size of the field. Pointer types have no need 167 // of this since they're a different type of qualification on the type. 168 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 169 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 170 return Ty->getSizeInBits(); 171 172 return getBaseTypeSize(BaseType); 173 } 174 175 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) { 176 if (isa<DIStringType>(Ty)) { 177 // Some transformations (e.g. instcombine) may decide to turn a Fortran 178 // character object into an integer, and later ones (e.g. SROA) may 179 // further inject a constant integer in a llvm.dbg.value call to track 180 // the object's value. Here we trust the transformations are doing the 181 // right thing, and treat the constant as unsigned to preserve that value 182 // (i.e. avoid sign extension). 183 return true; 184 } 185 186 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) { 187 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) { 188 if (!(Ty = CTy->getBaseType())) 189 // FIXME: Enums without a fixed underlying type have unknown signedness 190 // here, leading to incorrectly emitted constants. 191 return false; 192 } else 193 // (Pieces of) aggregate types that get hacked apart by SROA may be 194 // represented by a constant. Encode them as unsigned bytes. 195 return true; 196 } 197 198 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 199 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 200 // Encode pointer constants as unsigned bytes. This is used at least for 201 // null pointer constant emission. 202 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed 203 // here, but accept them for now due to a bug in SROA producing bogus 204 // dbg.values. 205 if (T == dwarf::DW_TAG_pointer_type || 206 T == dwarf::DW_TAG_ptr_to_member_type || 207 T == dwarf::DW_TAG_reference_type || 208 T == dwarf::DW_TAG_rvalue_reference_type) 209 return true; 210 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type || 211 T == dwarf::DW_TAG_volatile_type || 212 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type || 213 T == dwarf::DW_TAG_immutable_type); 214 assert(DTy->getBaseType() && "Expected valid base type"); 215 return isUnsignedDIType(DTy->getBaseType()); 216 } 217 218 auto *BTy = cast<DIBasicType>(Ty); 219 unsigned Encoding = BTy->getEncoding(); 220 assert((Encoding == dwarf::DW_ATE_unsigned || 221 Encoding == dwarf::DW_ATE_unsigned_char || 222 Encoding == dwarf::DW_ATE_signed || 223 Encoding == dwarf::DW_ATE_signed_char || 224 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF || 225 Encoding == dwarf::DW_ATE_boolean || 226 (Ty->getTag() == dwarf::DW_TAG_unspecified_type && 227 Ty->getName() == "decltype(nullptr)")) && 228 "Unsupported encoding"); 229 return Encoding == dwarf::DW_ATE_unsigned || 230 Encoding == dwarf::DW_ATE_unsigned_char || 231 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean || 232 Ty->getTag() == dwarf::DW_TAG_unspecified_type; 233 } 234 235 static bool hasDebugInfo(const MachineModuleInfo *MMI, 236 const MachineFunction *MF) { 237 if (!MMI->hasDebugInfo()) 238 return false; 239 auto *SP = MF->getFunction().getSubprogram(); 240 if (!SP) 241 return false; 242 assert(SP->getUnit()); 243 auto EK = SP->getUnit()->getEmissionKind(); 244 if (EK == DICompileUnit::NoDebug) 245 return false; 246 return true; 247 } 248 249 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 250 PrevInstBB = nullptr; 251 252 if (!Asm || !hasDebugInfo(MMI, MF)) { 253 skippedNonDebugFunction(); 254 return; 255 } 256 257 // Grab the lexical scopes for the function, if we don't have any of those 258 // then we're not going to be able to do anything. 259 LScopes.initialize(*MF); 260 if (LScopes.empty()) { 261 beginFunctionImpl(MF); 262 return; 263 } 264 265 // Make sure that each lexical scope will have a begin/end label. 266 identifyScopeMarkers(); 267 268 // Calculate history for local variables. 269 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 270 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); 271 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 272 DbgValues, DbgLabels); 273 InstOrdering.initialize(*MF); 274 if (TrimVarLocs) 275 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); 276 LLVM_DEBUG(DbgValues.dump()); 277 278 // Request labels for the full history. 279 for (const auto &I : DbgValues) { 280 const auto &Entries = I.second; 281 if (Entries.empty()) 282 continue; 283 284 auto IsDescribedByReg = [](const MachineInstr *MI) { 285 return any_of(MI->debug_operands(), 286 [](auto &MO) { return MO.isReg() && MO.getReg(); }); 287 }; 288 289 // The first mention of a function argument gets the CurrentFnBegin label, 290 // so arguments are visible when breaking at function entry. 291 // 292 // We do not change the label for values that are described by registers, 293 // as that could place them above their defining instructions. We should 294 // ideally not change the labels for constant debug values either, since 295 // doing that violates the ranges that are calculated in the history map. 296 // However, we currently do not emit debug values for constant arguments 297 // directly at the start of the function, so this code is still useful. 298 const DILocalVariable *DIVar = 299 Entries.front().getInstr()->getDebugVariable(); 300 if (DIVar->isParameter() && 301 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) { 302 if (!IsDescribedByReg(Entries.front().getInstr())) 303 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); 304 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { 305 // Mark all non-overlapping initial fragments. 306 for (const auto *I = Entries.begin(); I != Entries.end(); ++I) { 307 if (!I->isDbgValue()) 308 continue; 309 const DIExpression *Fragment = I->getInstr()->getDebugExpression(); 310 if (std::any_of(Entries.begin(), I, 311 [&](DbgValueHistoryMap::Entry Pred) { 312 return Pred.isDbgValue() && 313 Fragment->fragmentsOverlap( 314 Pred.getInstr()->getDebugExpression()); 315 })) 316 break; 317 // The code that generates location lists for DWARF assumes that the 318 // entries' start labels are monotonically increasing, and since we 319 // don't change the label for fragments that are described by 320 // registers, we must bail out when encountering such a fragment. 321 if (IsDescribedByReg(I->getInstr())) 322 break; 323 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); 324 } 325 } 326 } 327 328 for (const auto &Entry : Entries) { 329 if (Entry.isDbgValue()) 330 requestLabelBeforeInsn(Entry.getInstr()); 331 else 332 requestLabelAfterInsn(Entry.getInstr()); 333 } 334 } 335 336 // Ensure there is a symbol before DBG_LABEL. 337 for (const auto &I : DbgLabels) { 338 const MachineInstr *MI = I.second; 339 requestLabelBeforeInsn(MI); 340 } 341 342 PrevInstLoc = DebugLoc(); 343 PrevLabel = Asm->getFunctionBegin(); 344 beginFunctionImpl(MF); 345 } 346 347 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 348 if (!Asm || !MMI->hasDebugInfo()) 349 return; 350 351 assert(CurMI == nullptr); 352 CurMI = MI; 353 354 // Insert labels where requested. 355 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 356 LabelsBeforeInsn.find(MI); 357 358 // No label needed. 359 if (I == LabelsBeforeInsn.end()) 360 return; 361 362 // Label already assigned. 363 if (I->second) 364 return; 365 366 if (!PrevLabel) { 367 PrevLabel = MMI->getContext().createTempSymbol(); 368 Asm->OutStreamer->emitLabel(PrevLabel); 369 } 370 I->second = PrevLabel; 371 } 372 373 void DebugHandlerBase::endInstruction() { 374 if (!Asm || !MMI->hasDebugInfo()) 375 return; 376 377 assert(CurMI != nullptr); 378 // Don't create a new label after DBG_VALUE and other instructions that don't 379 // generate code. 380 if (!CurMI->isMetaInstruction()) { 381 PrevLabel = nullptr; 382 PrevInstBB = CurMI->getParent(); 383 } 384 385 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 386 LabelsAfterInsn.find(CurMI); 387 388 // No label needed or label already assigned. 389 if (I == LabelsAfterInsn.end() || I->second) { 390 CurMI = nullptr; 391 return; 392 } 393 394 // We need a label after this instruction. With basic block sections, just 395 // use the end symbol of the section if this is the last instruction of the 396 // section. This reduces the need for an additional label and also helps 397 // merging ranges. 398 if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) { 399 PrevLabel = CurMI->getParent()->getEndSymbol(); 400 } else if (!PrevLabel) { 401 PrevLabel = MMI->getContext().createTempSymbol(); 402 Asm->OutStreamer->emitLabel(PrevLabel); 403 } 404 I->second = PrevLabel; 405 CurMI = nullptr; 406 } 407 408 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 409 if (Asm && hasDebugInfo(MMI, MF)) 410 endFunctionImpl(MF); 411 DbgValues.clear(); 412 DbgLabels.clear(); 413 LabelsBeforeInsn.clear(); 414 LabelsAfterInsn.clear(); 415 InstOrdering.clear(); 416 } 417 418 void DebugHandlerBase::beginBasicBlockSection(const MachineBasicBlock &MBB) { 419 EpilogBeginBlock = nullptr; 420 if (!MBB.isEntryBlock()) 421 PrevLabel = MBB.getSymbol(); 422 } 423 424 void DebugHandlerBase::endBasicBlockSection(const MachineBasicBlock &MBB) { 425 PrevLabel = nullptr; 426 } 427