1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 // LLVM currently doesn't support Windows CE and so thumb 130 // here is indiscriminately mapped to ARMNT specifically. 131 return CPUType::ARMNT; 132 case Triple::ArchType::aarch64: 133 return CPUType::ARM64; 134 default: 135 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 136 } 137 } 138 139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 140 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 141 142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 143 std::string &Filepath = FileToFilepathMap[File]; 144 if (!Filepath.empty()) 145 return Filepath; 146 147 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 148 149 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 150 // it textually because one of the path components could be a symlink. 151 if (Dir.startswith("/") || Filename.startswith("/")) { 152 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 153 return Filename; 154 Filepath = std::string(Dir); 155 if (Dir.back() != '/') 156 Filepath += '/'; 157 Filepath += Filename; 158 return Filepath; 159 } 160 161 // Clang emits directory and relative filename info into the IR, but CodeView 162 // operates on full paths. We could change Clang to emit full paths too, but 163 // that would increase the IR size and probably not needed for other users. 164 // For now, just concatenate and canonicalize the path here. 165 if (Filename.find(':') == 1) 166 Filepath = std::string(Filename); 167 else 168 Filepath = (Dir + "\\" + Filename).str(); 169 170 // Canonicalize the path. We have to do it textually because we may no longer 171 // have access the file in the filesystem. 172 // First, replace all slashes with backslashes. 173 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 174 175 // Remove all "\.\" with "\". 176 size_t Cursor = 0; 177 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 178 Filepath.erase(Cursor, 2); 179 180 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 181 // path should be well-formatted, e.g. start with a drive letter, etc. 182 Cursor = 0; 183 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 184 // Something's wrong if the path starts with "\..\", abort. 185 if (Cursor == 0) 186 break; 187 188 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 189 if (PrevSlash == std::string::npos) 190 // Something's wrong, abort. 191 break; 192 193 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 194 // The next ".." might be following the one we've just erased. 195 Cursor = PrevSlash; 196 } 197 198 // Remove all duplicate backslashes. 199 Cursor = 0; 200 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 201 Filepath.erase(Cursor, 1); 202 203 return Filepath; 204 } 205 206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 207 StringRef FullPath = getFullFilepath(F); 208 unsigned NextId = FileIdMap.size() + 1; 209 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 210 if (Insertion.second) { 211 // We have to compute the full filepath and emit a .cv_file directive. 212 ArrayRef<uint8_t> ChecksumAsBytes; 213 FileChecksumKind CSKind = FileChecksumKind::None; 214 if (F->getChecksum()) { 215 std::string Checksum = fromHex(F->getChecksum()->Value); 216 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 217 memcpy(CKMem, Checksum.data(), Checksum.size()); 218 ChecksumAsBytes = ArrayRef<uint8_t>( 219 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 220 switch (F->getChecksum()->Kind) { 221 case DIFile::CSK_MD5: 222 CSKind = FileChecksumKind::MD5; 223 break; 224 case DIFile::CSK_SHA1: 225 CSKind = FileChecksumKind::SHA1; 226 break; 227 case DIFile::CSK_SHA256: 228 CSKind = FileChecksumKind::SHA256; 229 break; 230 } 231 } 232 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 233 static_cast<unsigned>(CSKind)); 234 (void)Success; 235 assert(Success && ".cv_file directive failed"); 236 } 237 return Insertion.first->second; 238 } 239 240 CodeViewDebug::InlineSite & 241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 242 const DISubprogram *Inlinee) { 243 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 244 InlineSite *Site = &SiteInsertion.first->second; 245 if (SiteInsertion.second) { 246 unsigned ParentFuncId = CurFn->FuncId; 247 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 248 ParentFuncId = 249 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 250 .SiteFuncId; 251 252 Site->SiteFuncId = NextFuncId++; 253 OS.EmitCVInlineSiteIdDirective( 254 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 255 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 256 Site->Inlinee = Inlinee; 257 InlinedSubprograms.insert(Inlinee); 258 getFuncIdForSubprogram(Inlinee); 259 } 260 return *Site; 261 } 262 263 static StringRef getPrettyScopeName(const DIScope *Scope) { 264 StringRef ScopeName = Scope->getName(); 265 if (!ScopeName.empty()) 266 return ScopeName; 267 268 switch (Scope->getTag()) { 269 case dwarf::DW_TAG_enumeration_type: 270 case dwarf::DW_TAG_class_type: 271 case dwarf::DW_TAG_structure_type: 272 case dwarf::DW_TAG_union_type: 273 return "<unnamed-tag>"; 274 case dwarf::DW_TAG_namespace: 275 return "`anonymous namespace'"; 276 } 277 278 return StringRef(); 279 } 280 281 const DISubprogram *CodeViewDebug::collectParentScopeNames( 282 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 283 const DISubprogram *ClosestSubprogram = nullptr; 284 while (Scope != nullptr) { 285 if (ClosestSubprogram == nullptr) 286 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 287 288 // If a type appears in a scope chain, make sure it gets emitted. The 289 // frontend will be responsible for deciding if this should be a forward 290 // declaration or a complete type. 291 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 292 DeferredCompleteTypes.push_back(Ty); 293 294 StringRef ScopeName = getPrettyScopeName(Scope); 295 if (!ScopeName.empty()) 296 QualifiedNameComponents.push_back(ScopeName); 297 Scope = Scope->getScope(); 298 } 299 return ClosestSubprogram; 300 } 301 302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 303 StringRef TypeName) { 304 std::string FullyQualifiedName; 305 for (StringRef QualifiedNameComponent : 306 llvm::reverse(QualifiedNameComponents)) { 307 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 308 FullyQualifiedName.append("::"); 309 } 310 FullyQualifiedName.append(std::string(TypeName)); 311 return FullyQualifiedName; 312 } 313 314 struct CodeViewDebug::TypeLoweringScope { 315 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 316 ~TypeLoweringScope() { 317 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 318 // inner TypeLoweringScopes don't attempt to emit deferred types. 319 if (CVD.TypeEmissionLevel == 1) 320 CVD.emitDeferredCompleteTypes(); 321 --CVD.TypeEmissionLevel; 322 } 323 CodeViewDebug &CVD; 324 }; 325 326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 327 StringRef Name) { 328 // Ensure types in the scope chain are emitted as soon as possible. 329 // This can create otherwise a situation where S_UDTs are emitted while 330 // looping in emitDebugInfoForUDTs. 331 TypeLoweringScope S(*this); 332 SmallVector<StringRef, 5> QualifiedNameComponents; 333 collectParentScopeNames(Scope, QualifiedNameComponents); 334 return formatNestedName(QualifiedNameComponents, Name); 335 } 336 337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 338 const DIScope *Scope = Ty->getScope(); 339 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 340 } 341 342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 343 // No scope means global scope and that uses the zero index. 344 if (!Scope || isa<DIFile>(Scope)) 345 return TypeIndex(); 346 347 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 348 349 // Check if we've already translated this scope. 350 auto I = TypeIndices.find({Scope, nullptr}); 351 if (I != TypeIndices.end()) 352 return I->second; 353 354 // Build the fully qualified name of the scope. 355 std::string ScopeName = getFullyQualifiedName(Scope); 356 StringIdRecord SID(TypeIndex(), ScopeName); 357 auto TI = TypeTable.writeLeafType(SID); 358 return recordTypeIndexForDINode(Scope, TI); 359 } 360 361 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 362 assert(SP); 363 364 // Check if we've already translated this subprogram. 365 auto I = TypeIndices.find({SP, nullptr}); 366 if (I != TypeIndices.end()) 367 return I->second; 368 369 // The display name includes function template arguments. Drop them to match 370 // MSVC. 371 StringRef DisplayName = SP->getName().split('<').first; 372 373 const DIScope *Scope = SP->getScope(); 374 TypeIndex TI; 375 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 376 // If the scope is a DICompositeType, then this must be a method. Member 377 // function types take some special handling, and require access to the 378 // subprogram. 379 TypeIndex ClassType = getTypeIndex(Class); 380 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 381 DisplayName); 382 TI = TypeTable.writeLeafType(MFuncId); 383 } else { 384 // Otherwise, this must be a free function. 385 TypeIndex ParentScope = getScopeIndex(Scope); 386 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 387 TI = TypeTable.writeLeafType(FuncId); 388 } 389 390 return recordTypeIndexForDINode(SP, TI); 391 } 392 393 static bool isNonTrivial(const DICompositeType *DCTy) { 394 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 395 } 396 397 static FunctionOptions 398 getFunctionOptions(const DISubroutineType *Ty, 399 const DICompositeType *ClassTy = nullptr, 400 StringRef SPName = StringRef("")) { 401 FunctionOptions FO = FunctionOptions::None; 402 const DIType *ReturnTy = nullptr; 403 if (auto TypeArray = Ty->getTypeArray()) { 404 if (TypeArray.size()) 405 ReturnTy = TypeArray[0]; 406 } 407 408 // Add CxxReturnUdt option to functions that return nontrivial record types 409 // or methods that return record types. 410 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 411 if (isNonTrivial(ReturnDCTy) || ClassTy) 412 FO |= FunctionOptions::CxxReturnUdt; 413 414 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 415 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 416 FO |= FunctionOptions::Constructor; 417 418 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 419 420 } 421 return FO; 422 } 423 424 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 425 const DICompositeType *Class) { 426 // Always use the method declaration as the key for the function type. The 427 // method declaration contains the this adjustment. 428 if (SP->getDeclaration()) 429 SP = SP->getDeclaration(); 430 assert(!SP->getDeclaration() && "should use declaration as key"); 431 432 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 433 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 434 auto I = TypeIndices.find({SP, Class}); 435 if (I != TypeIndices.end()) 436 return I->second; 437 438 // Make sure complete type info for the class is emitted *after* the member 439 // function type, as the complete class type is likely to reference this 440 // member function type. 441 TypeLoweringScope S(*this); 442 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 443 444 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 445 TypeIndex TI = lowerTypeMemberFunction( 446 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 447 return recordTypeIndexForDINode(SP, TI, Class); 448 } 449 450 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 451 TypeIndex TI, 452 const DIType *ClassTy) { 453 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 454 (void)InsertResult; 455 assert(InsertResult.second && "DINode was already assigned a type index"); 456 return TI; 457 } 458 459 unsigned CodeViewDebug::getPointerSizeInBytes() { 460 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 461 } 462 463 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 464 const LexicalScope *LS) { 465 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 466 // This variable was inlined. Associate it with the InlineSite. 467 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 468 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 469 Site.InlinedLocals.emplace_back(Var); 470 } else { 471 // This variable goes into the corresponding lexical scope. 472 ScopeVariables[LS].emplace_back(Var); 473 } 474 } 475 476 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 477 const DILocation *Loc) { 478 if (!llvm::is_contained(Locs, Loc)) 479 Locs.push_back(Loc); 480 } 481 482 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 483 const MachineFunction *MF) { 484 // Skip this instruction if it has the same location as the previous one. 485 if (!DL || DL == PrevInstLoc) 486 return; 487 488 const DIScope *Scope = DL.get()->getScope(); 489 if (!Scope) 490 return; 491 492 // Skip this line if it is longer than the maximum we can record. 493 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 494 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 495 LI.isNeverStepInto()) 496 return; 497 498 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 499 if (CI.getStartColumn() != DL.getCol()) 500 return; 501 502 if (!CurFn->HaveLineInfo) 503 CurFn->HaveLineInfo = true; 504 unsigned FileId = 0; 505 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 506 FileId = CurFn->LastFileId; 507 else 508 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 509 PrevInstLoc = DL; 510 511 unsigned FuncId = CurFn->FuncId; 512 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 513 const DILocation *Loc = DL.get(); 514 515 // If this location was actually inlined from somewhere else, give it the ID 516 // of the inline call site. 517 FuncId = 518 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 519 520 // Ensure we have links in the tree of inline call sites. 521 bool FirstLoc = true; 522 while ((SiteLoc = Loc->getInlinedAt())) { 523 InlineSite &Site = 524 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 525 if (!FirstLoc) 526 addLocIfNotPresent(Site.ChildSites, Loc); 527 FirstLoc = false; 528 Loc = SiteLoc; 529 } 530 addLocIfNotPresent(CurFn->ChildSites, Loc); 531 } 532 533 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 534 /*PrologueEnd=*/false, /*IsStmt=*/false, 535 DL->getFilename(), SMLoc()); 536 } 537 538 void CodeViewDebug::emitCodeViewMagicVersion() { 539 OS.emitValueToAlignment(4); 540 OS.AddComment("Debug section magic"); 541 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 542 } 543 544 void CodeViewDebug::beginModule(Module *M) { 545 // If module doesn't have named metadata anchors or COFF debug section 546 // is not available, skip any debug info related stuff. 547 if (!M->getNamedMetadata("llvm.dbg.cu") || 548 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 549 Asm = nullptr; 550 return; 551 } 552 // Tell MMI that we have and need debug info. 553 MMI->setDebugInfoAvailability(true); 554 555 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 556 557 collectGlobalVariableInfo(); 558 559 // Check if we should emit type record hashes. 560 ConstantInt *GH = 561 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 562 EmitDebugGlobalHashes = GH && !GH->isZero(); 563 } 564 565 void CodeViewDebug::endModule() { 566 if (!Asm || !MMI->hasDebugInfo()) 567 return; 568 569 // The COFF .debug$S section consists of several subsections, each starting 570 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 571 // of the payload followed by the payload itself. The subsections are 4-byte 572 // aligned. 573 574 // Use the generic .debug$S section, and make a subsection for all the inlined 575 // subprograms. 576 switchToDebugSectionForSymbol(nullptr); 577 578 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 579 emitCompilerInformation(); 580 endCVSubsection(CompilerInfo); 581 582 emitInlineeLinesSubsection(); 583 584 // Emit per-function debug information. 585 for (auto &P : FnDebugInfo) 586 if (!P.first->isDeclarationForLinker()) 587 emitDebugInfoForFunction(P.first, *P.second); 588 589 // Get types used by globals without emitting anything. 590 // This is meant to collect all static const data members so they can be 591 // emitted as globals. 592 collectDebugInfoForGlobals(); 593 594 // Emit retained types. 595 emitDebugInfoForRetainedTypes(); 596 597 // Emit global variable debug information. 598 setCurrentSubprogram(nullptr); 599 emitDebugInfoForGlobals(); 600 601 // Switch back to the generic .debug$S section after potentially processing 602 // comdat symbol sections. 603 switchToDebugSectionForSymbol(nullptr); 604 605 // Emit UDT records for any types used by global variables. 606 if (!GlobalUDTs.empty()) { 607 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 608 emitDebugInfoForUDTs(GlobalUDTs); 609 endCVSubsection(SymbolsEnd); 610 } 611 612 // This subsection holds a file index to offset in string table table. 613 OS.AddComment("File index to string table offset subsection"); 614 OS.emitCVFileChecksumsDirective(); 615 616 // This subsection holds the string table. 617 OS.AddComment("String table"); 618 OS.emitCVStringTableDirective(); 619 620 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 621 // subsection in the generic .debug$S section at the end. There is no 622 // particular reason for this ordering other than to match MSVC. 623 emitBuildInfo(); 624 625 // Emit type information and hashes last, so that any types we translate while 626 // emitting function info are included. 627 emitTypeInformation(); 628 629 if (EmitDebugGlobalHashes) 630 emitTypeGlobalHashes(); 631 632 clear(); 633 } 634 635 static void 636 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 637 unsigned MaxFixedRecordLength = 0xF00) { 638 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 639 // after a fixed length portion of the record. The fixed length portion should 640 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 641 // overall record size is less than the maximum allowed. 642 SmallString<32> NullTerminatedString( 643 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 644 NullTerminatedString.push_back('\0'); 645 OS.emitBytes(NullTerminatedString); 646 } 647 648 void CodeViewDebug::emitTypeInformation() { 649 if (TypeTable.empty()) 650 return; 651 652 // Start the .debug$T or .debug$P section with 0x4. 653 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 654 emitCodeViewMagicVersion(); 655 656 TypeTableCollection Table(TypeTable.records()); 657 TypeVisitorCallbackPipeline Pipeline; 658 659 // To emit type record using Codeview MCStreamer adapter 660 CVMCAdapter CVMCOS(OS, Table); 661 TypeRecordMapping typeMapping(CVMCOS); 662 Pipeline.addCallbackToPipeline(typeMapping); 663 664 Optional<TypeIndex> B = Table.getFirst(); 665 while (B) { 666 // This will fail if the record data is invalid. 667 CVType Record = Table.getType(*B); 668 669 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 670 671 if (E) { 672 logAllUnhandledErrors(std::move(E), errs(), "error: "); 673 llvm_unreachable("produced malformed type record"); 674 } 675 676 B = Table.getNext(*B); 677 } 678 } 679 680 void CodeViewDebug::emitTypeGlobalHashes() { 681 if (TypeTable.empty()) 682 return; 683 684 // Start the .debug$H section with the version and hash algorithm, currently 685 // hardcoded to version 0, SHA1. 686 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 687 688 OS.emitValueToAlignment(4); 689 OS.AddComment("Magic"); 690 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 691 OS.AddComment("Section Version"); 692 OS.emitInt16(0); 693 OS.AddComment("Hash Algorithm"); 694 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 695 696 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 697 for (const auto &GHR : TypeTable.hashes()) { 698 if (OS.isVerboseAsm()) { 699 // Emit an EOL-comment describing which TypeIndex this hash corresponds 700 // to, as well as the stringified SHA1 hash. 701 SmallString<32> Comment; 702 raw_svector_ostream CommentOS(Comment); 703 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 704 OS.AddComment(Comment); 705 ++TI; 706 } 707 assert(GHR.Hash.size() == 8); 708 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 709 GHR.Hash.size()); 710 OS.emitBinaryData(S); 711 } 712 } 713 714 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 715 switch (DWLang) { 716 case dwarf::DW_LANG_C: 717 case dwarf::DW_LANG_C89: 718 case dwarf::DW_LANG_C99: 719 case dwarf::DW_LANG_C11: 720 case dwarf::DW_LANG_ObjC: 721 return SourceLanguage::C; 722 case dwarf::DW_LANG_C_plus_plus: 723 case dwarf::DW_LANG_C_plus_plus_03: 724 case dwarf::DW_LANG_C_plus_plus_11: 725 case dwarf::DW_LANG_C_plus_plus_14: 726 return SourceLanguage::Cpp; 727 case dwarf::DW_LANG_Fortran77: 728 case dwarf::DW_LANG_Fortran90: 729 case dwarf::DW_LANG_Fortran03: 730 case dwarf::DW_LANG_Fortran08: 731 return SourceLanguage::Fortran; 732 case dwarf::DW_LANG_Pascal83: 733 return SourceLanguage::Pascal; 734 case dwarf::DW_LANG_Cobol74: 735 case dwarf::DW_LANG_Cobol85: 736 return SourceLanguage::Cobol; 737 case dwarf::DW_LANG_Java: 738 return SourceLanguage::Java; 739 case dwarf::DW_LANG_D: 740 return SourceLanguage::D; 741 case dwarf::DW_LANG_Swift: 742 return SourceLanguage::Swift; 743 default: 744 // There's no CodeView representation for this language, and CV doesn't 745 // have an "unknown" option for the language field, so we'll use MASM, 746 // as it's very low level. 747 return SourceLanguage::Masm; 748 } 749 } 750 751 namespace { 752 struct Version { 753 int Part[4]; 754 }; 755 } // end anonymous namespace 756 757 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 758 // the version number. 759 static Version parseVersion(StringRef Name) { 760 Version V = {{0}}; 761 int N = 0; 762 for (const char C : Name) { 763 if (isdigit(C)) { 764 V.Part[N] *= 10; 765 V.Part[N] += C - '0'; 766 } else if (C == '.') { 767 ++N; 768 if (N >= 4) 769 return V; 770 } else if (N > 0) 771 return V; 772 } 773 return V; 774 } 775 776 void CodeViewDebug::emitCompilerInformation() { 777 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 778 uint32_t Flags = 0; 779 780 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 781 const MDNode *Node = *CUs->operands().begin(); 782 const auto *CU = cast<DICompileUnit>(Node); 783 784 // The low byte of the flags indicates the source language. 785 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 786 // TODO: Figure out which other flags need to be set. 787 788 OS.AddComment("Flags and language"); 789 OS.emitInt32(Flags); 790 791 OS.AddComment("CPUType"); 792 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 793 794 StringRef CompilerVersion = CU->getProducer(); 795 Version FrontVer = parseVersion(CompilerVersion); 796 OS.AddComment("Frontend version"); 797 for (int N = 0; N < 4; ++N) 798 OS.emitInt16(FrontVer.Part[N]); 799 800 // Some Microsoft tools, like Binscope, expect a backend version number of at 801 // least 8.something, so we'll coerce the LLVM version into a form that 802 // guarantees it'll be big enough without really lying about the version. 803 int Major = 1000 * LLVM_VERSION_MAJOR + 804 10 * LLVM_VERSION_MINOR + 805 LLVM_VERSION_PATCH; 806 // Clamp it for builds that use unusually large version numbers. 807 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 808 Version BackVer = {{ Major, 0, 0, 0 }}; 809 OS.AddComment("Backend version"); 810 for (int N = 0; N < 4; ++N) 811 OS.emitInt16(BackVer.Part[N]); 812 813 OS.AddComment("Null-terminated compiler version string"); 814 emitNullTerminatedSymbolName(OS, CompilerVersion); 815 816 endSymbolRecord(CompilerEnd); 817 } 818 819 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 820 StringRef S) { 821 StringIdRecord SIR(TypeIndex(0x0), S); 822 return TypeTable.writeLeafType(SIR); 823 } 824 825 void CodeViewDebug::emitBuildInfo() { 826 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 827 // build info. The known prefix is: 828 // - Absolute path of current directory 829 // - Compiler path 830 // - Main source file path, relative to CWD or absolute 831 // - Type server PDB file 832 // - Canonical compiler command line 833 // If frontend and backend compilation are separated (think llc or LTO), it's 834 // not clear if the compiler path should refer to the executable for the 835 // frontend or the backend. Leave it blank for now. 836 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 837 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 838 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 839 const auto *CU = cast<DICompileUnit>(Node); 840 const DIFile *MainSourceFile = CU->getFile(); 841 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 842 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 843 BuildInfoArgs[BuildInfoRecord::SourceFile] = 844 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 845 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 846 // we implement /Zi type servers. 847 BuildInfoRecord BIR(BuildInfoArgs); 848 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 849 850 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 851 // from the module symbols into the type stream. 852 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 853 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 854 OS.AddComment("LF_BUILDINFO index"); 855 OS.emitInt32(BuildInfoIndex.getIndex()); 856 endSymbolRecord(BIEnd); 857 endCVSubsection(BISubsecEnd); 858 } 859 860 void CodeViewDebug::emitInlineeLinesSubsection() { 861 if (InlinedSubprograms.empty()) 862 return; 863 864 OS.AddComment("Inlinee lines subsection"); 865 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 866 867 // We emit the checksum info for files. This is used by debuggers to 868 // determine if a pdb matches the source before loading it. Visual Studio, 869 // for instance, will display a warning that the breakpoints are not valid if 870 // the pdb does not match the source. 871 OS.AddComment("Inlinee lines signature"); 872 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 873 874 for (const DISubprogram *SP : InlinedSubprograms) { 875 assert(TypeIndices.count({SP, nullptr})); 876 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 877 878 OS.AddBlankLine(); 879 unsigned FileId = maybeRecordFile(SP->getFile()); 880 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 881 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 882 OS.AddBlankLine(); 883 OS.AddComment("Type index of inlined function"); 884 OS.emitInt32(InlineeIdx.getIndex()); 885 OS.AddComment("Offset into filechecksum table"); 886 OS.emitCVFileChecksumOffsetDirective(FileId); 887 OS.AddComment("Starting line number"); 888 OS.emitInt32(SP->getLine()); 889 } 890 891 endCVSubsection(InlineEnd); 892 } 893 894 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 895 const DILocation *InlinedAt, 896 const InlineSite &Site) { 897 assert(TypeIndices.count({Site.Inlinee, nullptr})); 898 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 899 900 // SymbolRecord 901 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 902 903 OS.AddComment("PtrParent"); 904 OS.emitInt32(0); 905 OS.AddComment("PtrEnd"); 906 OS.emitInt32(0); 907 OS.AddComment("Inlinee type index"); 908 OS.emitInt32(InlineeIdx.getIndex()); 909 910 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 911 unsigned StartLineNum = Site.Inlinee->getLine(); 912 913 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 914 FI.Begin, FI.End); 915 916 endSymbolRecord(InlineEnd); 917 918 emitLocalVariableList(FI, Site.InlinedLocals); 919 920 // Recurse on child inlined call sites before closing the scope. 921 for (const DILocation *ChildSite : Site.ChildSites) { 922 auto I = FI.InlineSites.find(ChildSite); 923 assert(I != FI.InlineSites.end() && 924 "child site not in function inline site map"); 925 emitInlinedCallSite(FI, ChildSite, I->second); 926 } 927 928 // Close the scope. 929 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 930 } 931 932 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 933 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 934 // comdat key. A section may be comdat because of -ffunction-sections or 935 // because it is comdat in the IR. 936 MCSectionCOFF *GVSec = 937 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 938 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 939 940 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 941 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 942 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 943 944 OS.SwitchSection(DebugSec); 945 946 // Emit the magic version number if this is the first time we've switched to 947 // this section. 948 if (ComdatDebugSections.insert(DebugSec).second) 949 emitCodeViewMagicVersion(); 950 } 951 952 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 953 // The only supported thunk ordinal is currently the standard type. 954 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 955 FunctionInfo &FI, 956 const MCSymbol *Fn) { 957 std::string FuncName = 958 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 959 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 960 961 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 962 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 963 964 // Emit S_THUNK32 965 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 966 OS.AddComment("PtrParent"); 967 OS.emitInt32(0); 968 OS.AddComment("PtrEnd"); 969 OS.emitInt32(0); 970 OS.AddComment("PtrNext"); 971 OS.emitInt32(0); 972 OS.AddComment("Thunk section relative address"); 973 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 974 OS.AddComment("Thunk section index"); 975 OS.EmitCOFFSectionIndex(Fn); 976 OS.AddComment("Code size"); 977 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 978 OS.AddComment("Ordinal"); 979 OS.emitInt8(unsigned(ordinal)); 980 OS.AddComment("Function name"); 981 emitNullTerminatedSymbolName(OS, FuncName); 982 // Additional fields specific to the thunk ordinal would go here. 983 endSymbolRecord(ThunkRecordEnd); 984 985 // Local variables/inlined routines are purposely omitted here. The point of 986 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 987 988 // Emit S_PROC_ID_END 989 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 990 991 endCVSubsection(SymbolsEnd); 992 } 993 994 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 995 FunctionInfo &FI) { 996 // For each function there is a separate subsection which holds the PC to 997 // file:line table. 998 const MCSymbol *Fn = Asm->getSymbol(GV); 999 assert(Fn); 1000 1001 // Switch to the to a comdat section, if appropriate. 1002 switchToDebugSectionForSymbol(Fn); 1003 1004 std::string FuncName; 1005 auto *SP = GV->getSubprogram(); 1006 assert(SP); 1007 setCurrentSubprogram(SP); 1008 1009 if (SP->isThunk()) { 1010 emitDebugInfoForThunk(GV, FI, Fn); 1011 return; 1012 } 1013 1014 // If we have a display name, build the fully qualified name by walking the 1015 // chain of scopes. 1016 if (!SP->getName().empty()) 1017 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1018 1019 // If our DISubprogram name is empty, use the mangled name. 1020 if (FuncName.empty()) 1021 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1022 1023 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1024 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1025 OS.EmitCVFPOData(Fn); 1026 1027 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1028 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1029 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1030 { 1031 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1032 : SymbolKind::S_GPROC32_ID; 1033 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1034 1035 // These fields are filled in by tools like CVPACK which run after the fact. 1036 OS.AddComment("PtrParent"); 1037 OS.emitInt32(0); 1038 OS.AddComment("PtrEnd"); 1039 OS.emitInt32(0); 1040 OS.AddComment("PtrNext"); 1041 OS.emitInt32(0); 1042 // This is the important bit that tells the debugger where the function 1043 // code is located and what's its size: 1044 OS.AddComment("Code size"); 1045 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1046 OS.AddComment("Offset after prologue"); 1047 OS.emitInt32(0); 1048 OS.AddComment("Offset before epilogue"); 1049 OS.emitInt32(0); 1050 OS.AddComment("Function type index"); 1051 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1052 OS.AddComment("Function section relative address"); 1053 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1054 OS.AddComment("Function section index"); 1055 OS.EmitCOFFSectionIndex(Fn); 1056 OS.AddComment("Flags"); 1057 OS.emitInt8(0); 1058 // Emit the function display name as a null-terminated string. 1059 OS.AddComment("Function name"); 1060 // Truncate the name so we won't overflow the record length field. 1061 emitNullTerminatedSymbolName(OS, FuncName); 1062 endSymbolRecord(ProcRecordEnd); 1063 1064 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1065 // Subtract out the CSR size since MSVC excludes that and we include it. 1066 OS.AddComment("FrameSize"); 1067 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1068 OS.AddComment("Padding"); 1069 OS.emitInt32(0); 1070 OS.AddComment("Offset of padding"); 1071 OS.emitInt32(0); 1072 OS.AddComment("Bytes of callee saved registers"); 1073 OS.emitInt32(FI.CSRSize); 1074 OS.AddComment("Exception handler offset"); 1075 OS.emitInt32(0); 1076 OS.AddComment("Exception handler section"); 1077 OS.emitInt16(0); 1078 OS.AddComment("Flags (defines frame register)"); 1079 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1080 endSymbolRecord(FrameProcEnd); 1081 1082 emitLocalVariableList(FI, FI.Locals); 1083 emitGlobalVariableList(FI.Globals); 1084 emitLexicalBlockList(FI.ChildBlocks, FI); 1085 1086 // Emit inlined call site information. Only emit functions inlined directly 1087 // into the parent function. We'll emit the other sites recursively as part 1088 // of their parent inline site. 1089 for (const DILocation *InlinedAt : FI.ChildSites) { 1090 auto I = FI.InlineSites.find(InlinedAt); 1091 assert(I != FI.InlineSites.end() && 1092 "child site not in function inline site map"); 1093 emitInlinedCallSite(FI, InlinedAt, I->second); 1094 } 1095 1096 for (auto Annot : FI.Annotations) { 1097 MCSymbol *Label = Annot.first; 1098 MDTuple *Strs = cast<MDTuple>(Annot.second); 1099 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1100 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1101 // FIXME: Make sure we don't overflow the max record size. 1102 OS.EmitCOFFSectionIndex(Label); 1103 OS.emitInt16(Strs->getNumOperands()); 1104 for (Metadata *MD : Strs->operands()) { 1105 // MDStrings are null terminated, so we can do EmitBytes and get the 1106 // nice .asciz directive. 1107 StringRef Str = cast<MDString>(MD)->getString(); 1108 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1109 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1110 } 1111 endSymbolRecord(AnnotEnd); 1112 } 1113 1114 for (auto HeapAllocSite : FI.HeapAllocSites) { 1115 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1116 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1117 const DIType *DITy = std::get<2>(HeapAllocSite); 1118 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1119 OS.AddComment("Call site offset"); 1120 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1121 OS.AddComment("Call site section index"); 1122 OS.EmitCOFFSectionIndex(BeginLabel); 1123 OS.AddComment("Call instruction length"); 1124 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1125 OS.AddComment("Type index"); 1126 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1127 endSymbolRecord(HeapAllocEnd); 1128 } 1129 1130 if (SP != nullptr) 1131 emitDebugInfoForUDTs(LocalUDTs); 1132 1133 // We're done with this function. 1134 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1135 } 1136 endCVSubsection(SymbolsEnd); 1137 1138 // We have an assembler directive that takes care of the whole line table. 1139 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1140 } 1141 1142 CodeViewDebug::LocalVarDefRange 1143 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1144 LocalVarDefRange DR; 1145 DR.InMemory = -1; 1146 DR.DataOffset = Offset; 1147 assert(DR.DataOffset == Offset && "truncation"); 1148 DR.IsSubfield = 0; 1149 DR.StructOffset = 0; 1150 DR.CVRegister = CVRegister; 1151 return DR; 1152 } 1153 1154 void CodeViewDebug::collectVariableInfoFromMFTable( 1155 DenseSet<InlinedEntity> &Processed) { 1156 const MachineFunction &MF = *Asm->MF; 1157 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1158 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1159 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1160 1161 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1162 if (!VI.Var) 1163 continue; 1164 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1165 "Expected inlined-at fields to agree"); 1166 1167 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1168 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1169 1170 // If variable scope is not found then skip this variable. 1171 if (!Scope) 1172 continue; 1173 1174 // If the variable has an attached offset expression, extract it. 1175 // FIXME: Try to handle DW_OP_deref as well. 1176 int64_t ExprOffset = 0; 1177 bool Deref = false; 1178 if (VI.Expr) { 1179 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1180 if (VI.Expr->getNumElements() == 1 && 1181 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1182 Deref = true; 1183 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1184 continue; 1185 } 1186 1187 // Get the frame register used and the offset. 1188 Register FrameReg; 1189 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1190 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1191 1192 assert(!FrameOffset.getScalable() && 1193 "Frame offsets with a scalable component are not supported"); 1194 1195 // Calculate the label ranges. 1196 LocalVarDefRange DefRange = 1197 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); 1198 1199 for (const InsnRange &Range : Scope->getRanges()) { 1200 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1201 const MCSymbol *End = getLabelAfterInsn(Range.second); 1202 End = End ? End : Asm->getFunctionEnd(); 1203 DefRange.Ranges.emplace_back(Begin, End); 1204 } 1205 1206 LocalVariable Var; 1207 Var.DIVar = VI.Var; 1208 Var.DefRanges.emplace_back(std::move(DefRange)); 1209 if (Deref) 1210 Var.UseReferenceType = true; 1211 1212 recordLocalVariable(std::move(Var), Scope); 1213 } 1214 } 1215 1216 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1217 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1218 } 1219 1220 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1221 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1222 } 1223 1224 void CodeViewDebug::calculateRanges( 1225 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1226 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1227 1228 // Calculate the definition ranges. 1229 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1230 const auto &Entry = *I; 1231 if (!Entry.isDbgValue()) 1232 continue; 1233 const MachineInstr *DVInst = Entry.getInstr(); 1234 assert(DVInst->isDebugValue() && "Invalid History entry"); 1235 // FIXME: Find a way to represent constant variables, since they are 1236 // relatively common. 1237 Optional<DbgVariableLocation> Location = 1238 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1239 if (!Location) 1240 continue; 1241 1242 // CodeView can only express variables in register and variables in memory 1243 // at a constant offset from a register. However, for variables passed 1244 // indirectly by pointer, it is common for that pointer to be spilled to a 1245 // stack location. For the special case of one offseted load followed by a 1246 // zero offset load (a pointer spilled to the stack), we change the type of 1247 // the local variable from a value type to a reference type. This tricks the 1248 // debugger into doing the load for us. 1249 if (Var.UseReferenceType) { 1250 // We're using a reference type. Drop the last zero offset load. 1251 if (canUseReferenceType(*Location)) 1252 Location->LoadChain.pop_back(); 1253 else 1254 continue; 1255 } else if (needsReferenceType(*Location)) { 1256 // This location can't be expressed without switching to a reference type. 1257 // Start over using that. 1258 Var.UseReferenceType = true; 1259 Var.DefRanges.clear(); 1260 calculateRanges(Var, Entries); 1261 return; 1262 } 1263 1264 // We can only handle a register or an offseted load of a register. 1265 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1266 continue; 1267 { 1268 LocalVarDefRange DR; 1269 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1270 DR.InMemory = !Location->LoadChain.empty(); 1271 DR.DataOffset = 1272 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1273 if (Location->FragmentInfo) { 1274 DR.IsSubfield = true; 1275 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1276 } else { 1277 DR.IsSubfield = false; 1278 DR.StructOffset = 0; 1279 } 1280 1281 if (Var.DefRanges.empty() || 1282 Var.DefRanges.back().isDifferentLocation(DR)) { 1283 Var.DefRanges.emplace_back(std::move(DR)); 1284 } 1285 } 1286 1287 // Compute the label range. 1288 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1289 const MCSymbol *End; 1290 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1291 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1292 End = EndingEntry.isDbgValue() 1293 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1294 : getLabelAfterInsn(EndingEntry.getInstr()); 1295 } else 1296 End = Asm->getFunctionEnd(); 1297 1298 // If the last range end is our begin, just extend the last range. 1299 // Otherwise make a new range. 1300 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1301 Var.DefRanges.back().Ranges; 1302 if (!R.empty() && R.back().second == Begin) 1303 R.back().second = End; 1304 else 1305 R.emplace_back(Begin, End); 1306 1307 // FIXME: Do more range combining. 1308 } 1309 } 1310 1311 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1312 DenseSet<InlinedEntity> Processed; 1313 // Grab the variable info that was squirreled away in the MMI side-table. 1314 collectVariableInfoFromMFTable(Processed); 1315 1316 for (const auto &I : DbgValues) { 1317 InlinedEntity IV = I.first; 1318 if (Processed.count(IV)) 1319 continue; 1320 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1321 const DILocation *InlinedAt = IV.second; 1322 1323 // Instruction ranges, specifying where IV is accessible. 1324 const auto &Entries = I.second; 1325 1326 LexicalScope *Scope = nullptr; 1327 if (InlinedAt) 1328 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1329 else 1330 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1331 // If variable scope is not found then skip this variable. 1332 if (!Scope) 1333 continue; 1334 1335 LocalVariable Var; 1336 Var.DIVar = DIVar; 1337 1338 calculateRanges(Var, Entries); 1339 recordLocalVariable(std::move(Var), Scope); 1340 } 1341 } 1342 1343 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1344 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1345 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1346 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1347 const Function &GV = MF->getFunction(); 1348 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1349 assert(Insertion.second && "function already has info"); 1350 CurFn = Insertion.first->second.get(); 1351 CurFn->FuncId = NextFuncId++; 1352 CurFn->Begin = Asm->getFunctionBegin(); 1353 1354 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1355 // callee-saved registers were used. For targets that don't use a PUSH 1356 // instruction (AArch64), this will be zero. 1357 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1358 CurFn->FrameSize = MFI.getStackSize(); 1359 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1360 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1361 1362 // For this function S_FRAMEPROC record, figure out which codeview register 1363 // will be the frame pointer. 1364 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1365 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1366 if (CurFn->FrameSize > 0) { 1367 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1368 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1369 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1370 } else { 1371 // If there is an FP, parameters are always relative to it. 1372 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1373 if (CurFn->HasStackRealignment) { 1374 // If the stack needs realignment, locals are relative to SP or VFRAME. 1375 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1376 } else { 1377 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1378 // other stack adjustments. 1379 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1380 } 1381 } 1382 } 1383 1384 // Compute other frame procedure options. 1385 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1386 if (MFI.hasVarSizedObjects()) 1387 FPO |= FrameProcedureOptions::HasAlloca; 1388 if (MF->exposesReturnsTwice()) 1389 FPO |= FrameProcedureOptions::HasSetJmp; 1390 // FIXME: Set HasLongJmp if we ever track that info. 1391 if (MF->hasInlineAsm()) 1392 FPO |= FrameProcedureOptions::HasInlineAssembly; 1393 if (GV.hasPersonalityFn()) { 1394 if (isAsynchronousEHPersonality( 1395 classifyEHPersonality(GV.getPersonalityFn()))) 1396 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1397 else 1398 FPO |= FrameProcedureOptions::HasExceptionHandling; 1399 } 1400 if (GV.hasFnAttribute(Attribute::InlineHint)) 1401 FPO |= FrameProcedureOptions::MarkedInline; 1402 if (GV.hasFnAttribute(Attribute::Naked)) 1403 FPO |= FrameProcedureOptions::Naked; 1404 if (MFI.hasStackProtectorIndex()) 1405 FPO |= FrameProcedureOptions::SecurityChecks; 1406 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1407 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1408 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1409 !GV.hasOptSize() && !GV.hasOptNone()) 1410 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1411 // FIXME: Set GuardCfg when it is implemented. 1412 CurFn->FrameProcOpts = FPO; 1413 1414 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1415 1416 // Find the end of the function prolog. First known non-DBG_VALUE and 1417 // non-frame setup location marks the beginning of the function body. 1418 // FIXME: is there a simpler a way to do this? Can we just search 1419 // for the first instruction of the function, not the last of the prolog? 1420 DebugLoc PrologEndLoc; 1421 bool EmptyPrologue = true; 1422 for (const auto &MBB : *MF) { 1423 for (const auto &MI : MBB) { 1424 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1425 MI.getDebugLoc()) { 1426 PrologEndLoc = MI.getDebugLoc(); 1427 break; 1428 } else if (!MI.isMetaInstruction()) { 1429 EmptyPrologue = false; 1430 } 1431 } 1432 } 1433 1434 // Record beginning of function if we have a non-empty prologue. 1435 if (PrologEndLoc && !EmptyPrologue) { 1436 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1437 maybeRecordLocation(FnStartDL, MF); 1438 } 1439 1440 // Find heap alloc sites and emit labels around them. 1441 for (const auto &MBB : *MF) { 1442 for (const auto &MI : MBB) { 1443 if (MI.getHeapAllocMarker()) { 1444 requestLabelBeforeInsn(&MI); 1445 requestLabelAfterInsn(&MI); 1446 } 1447 } 1448 } 1449 } 1450 1451 static bool shouldEmitUdt(const DIType *T) { 1452 if (!T) 1453 return false; 1454 1455 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1456 if (T->getTag() == dwarf::DW_TAG_typedef) { 1457 if (DIScope *Scope = T->getScope()) { 1458 switch (Scope->getTag()) { 1459 case dwarf::DW_TAG_structure_type: 1460 case dwarf::DW_TAG_class_type: 1461 case dwarf::DW_TAG_union_type: 1462 return false; 1463 } 1464 } 1465 } 1466 1467 while (true) { 1468 if (!T || T->isForwardDecl()) 1469 return false; 1470 1471 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1472 if (!DT) 1473 return true; 1474 T = DT->getBaseType(); 1475 } 1476 return true; 1477 } 1478 1479 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1480 // Don't record empty UDTs. 1481 if (Ty->getName().empty()) 1482 return; 1483 if (!shouldEmitUdt(Ty)) 1484 return; 1485 1486 SmallVector<StringRef, 5> ParentScopeNames; 1487 const DISubprogram *ClosestSubprogram = 1488 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1489 1490 std::string FullyQualifiedName = 1491 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1492 1493 if (ClosestSubprogram == nullptr) { 1494 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1495 } else if (ClosestSubprogram == CurrentSubprogram) { 1496 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1497 } 1498 1499 // TODO: What if the ClosestSubprogram is neither null or the current 1500 // subprogram? Currently, the UDT just gets dropped on the floor. 1501 // 1502 // The current behavior is not desirable. To get maximal fidelity, we would 1503 // need to perform all type translation before beginning emission of .debug$S 1504 // and then make LocalUDTs a member of FunctionInfo 1505 } 1506 1507 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1508 // Generic dispatch for lowering an unknown type. 1509 switch (Ty->getTag()) { 1510 case dwarf::DW_TAG_array_type: 1511 return lowerTypeArray(cast<DICompositeType>(Ty)); 1512 case dwarf::DW_TAG_typedef: 1513 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1514 case dwarf::DW_TAG_base_type: 1515 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1516 case dwarf::DW_TAG_pointer_type: 1517 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1518 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1519 LLVM_FALLTHROUGH; 1520 case dwarf::DW_TAG_reference_type: 1521 case dwarf::DW_TAG_rvalue_reference_type: 1522 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1523 case dwarf::DW_TAG_ptr_to_member_type: 1524 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1525 case dwarf::DW_TAG_restrict_type: 1526 case dwarf::DW_TAG_const_type: 1527 case dwarf::DW_TAG_volatile_type: 1528 // TODO: add support for DW_TAG_atomic_type here 1529 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1530 case dwarf::DW_TAG_subroutine_type: 1531 if (ClassTy) { 1532 // The member function type of a member function pointer has no 1533 // ThisAdjustment. 1534 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1535 /*ThisAdjustment=*/0, 1536 /*IsStaticMethod=*/false); 1537 } 1538 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1539 case dwarf::DW_TAG_enumeration_type: 1540 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1541 case dwarf::DW_TAG_class_type: 1542 case dwarf::DW_TAG_structure_type: 1543 return lowerTypeClass(cast<DICompositeType>(Ty)); 1544 case dwarf::DW_TAG_union_type: 1545 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1546 case dwarf::DW_TAG_unspecified_type: 1547 if (Ty->getName() == "decltype(nullptr)") 1548 return TypeIndex::NullptrT(); 1549 return TypeIndex::None(); 1550 default: 1551 // Use the null type index. 1552 return TypeIndex(); 1553 } 1554 } 1555 1556 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1557 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1558 StringRef TypeName = Ty->getName(); 1559 1560 addToUDTs(Ty); 1561 1562 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1563 TypeName == "HRESULT") 1564 return TypeIndex(SimpleTypeKind::HResult); 1565 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1566 TypeName == "wchar_t") 1567 return TypeIndex(SimpleTypeKind::WideCharacter); 1568 1569 return UnderlyingTypeIndex; 1570 } 1571 1572 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1573 const DIType *ElementType = Ty->getBaseType(); 1574 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1575 // IndexType is size_t, which depends on the bitness of the target. 1576 TypeIndex IndexType = getPointerSizeInBytes() == 8 1577 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1578 : TypeIndex(SimpleTypeKind::UInt32Long); 1579 1580 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1581 1582 // Add subranges to array type. 1583 DINodeArray Elements = Ty->getElements(); 1584 for (int i = Elements.size() - 1; i >= 0; --i) { 1585 const DINode *Element = Elements[i]; 1586 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1587 1588 const DISubrange *Subrange = cast<DISubrange>(Element); 1589 int64_t Count = -1; 1590 // Calculate the count if either LowerBound is absent or is zero and 1591 // either of Count or UpperBound are constant. 1592 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1593 if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) { 1594 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1595 Count = CI->getSExtValue(); 1596 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>()) 1597 Count = UI->getSExtValue() + 1; // LowerBound is zero 1598 } 1599 1600 // Forward declarations of arrays without a size and VLAs use a count of -1. 1601 // Emit a count of zero in these cases to match what MSVC does for arrays 1602 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1603 // should do for them even if we could distinguish them. 1604 if (Count == -1) 1605 Count = 0; 1606 1607 // Update the element size and element type index for subsequent subranges. 1608 ElementSize *= Count; 1609 1610 // If this is the outermost array, use the size from the array. It will be 1611 // more accurate if we had a VLA or an incomplete element type size. 1612 uint64_t ArraySize = 1613 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1614 1615 StringRef Name = (i == 0) ? Ty->getName() : ""; 1616 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1617 ElementTypeIndex = TypeTable.writeLeafType(AR); 1618 } 1619 1620 return ElementTypeIndex; 1621 } 1622 1623 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1624 TypeIndex Index; 1625 dwarf::TypeKind Kind; 1626 uint32_t ByteSize; 1627 1628 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1629 ByteSize = Ty->getSizeInBits() / 8; 1630 1631 SimpleTypeKind STK = SimpleTypeKind::None; 1632 switch (Kind) { 1633 case dwarf::DW_ATE_address: 1634 // FIXME: Translate 1635 break; 1636 case dwarf::DW_ATE_boolean: 1637 switch (ByteSize) { 1638 case 1: STK = SimpleTypeKind::Boolean8; break; 1639 case 2: STK = SimpleTypeKind::Boolean16; break; 1640 case 4: STK = SimpleTypeKind::Boolean32; break; 1641 case 8: STK = SimpleTypeKind::Boolean64; break; 1642 case 16: STK = SimpleTypeKind::Boolean128; break; 1643 } 1644 break; 1645 case dwarf::DW_ATE_complex_float: 1646 switch (ByteSize) { 1647 case 2: STK = SimpleTypeKind::Complex16; break; 1648 case 4: STK = SimpleTypeKind::Complex32; break; 1649 case 8: STK = SimpleTypeKind::Complex64; break; 1650 case 10: STK = SimpleTypeKind::Complex80; break; 1651 case 16: STK = SimpleTypeKind::Complex128; break; 1652 } 1653 break; 1654 case dwarf::DW_ATE_float: 1655 switch (ByteSize) { 1656 case 2: STK = SimpleTypeKind::Float16; break; 1657 case 4: STK = SimpleTypeKind::Float32; break; 1658 case 6: STK = SimpleTypeKind::Float48; break; 1659 case 8: STK = SimpleTypeKind::Float64; break; 1660 case 10: STK = SimpleTypeKind::Float80; break; 1661 case 16: STK = SimpleTypeKind::Float128; break; 1662 } 1663 break; 1664 case dwarf::DW_ATE_signed: 1665 switch (ByteSize) { 1666 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1667 case 2: STK = SimpleTypeKind::Int16Short; break; 1668 case 4: STK = SimpleTypeKind::Int32; break; 1669 case 8: STK = SimpleTypeKind::Int64Quad; break; 1670 case 16: STK = SimpleTypeKind::Int128Oct; break; 1671 } 1672 break; 1673 case dwarf::DW_ATE_unsigned: 1674 switch (ByteSize) { 1675 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1676 case 2: STK = SimpleTypeKind::UInt16Short; break; 1677 case 4: STK = SimpleTypeKind::UInt32; break; 1678 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1679 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1680 } 1681 break; 1682 case dwarf::DW_ATE_UTF: 1683 switch (ByteSize) { 1684 case 2: STK = SimpleTypeKind::Character16; break; 1685 case 4: STK = SimpleTypeKind::Character32; break; 1686 } 1687 break; 1688 case dwarf::DW_ATE_signed_char: 1689 if (ByteSize == 1) 1690 STK = SimpleTypeKind::SignedCharacter; 1691 break; 1692 case dwarf::DW_ATE_unsigned_char: 1693 if (ByteSize == 1) 1694 STK = SimpleTypeKind::UnsignedCharacter; 1695 break; 1696 default: 1697 break; 1698 } 1699 1700 // Apply some fixups based on the source-level type name. 1701 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1702 STK = SimpleTypeKind::Int32Long; 1703 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1704 STK = SimpleTypeKind::UInt32Long; 1705 if (STK == SimpleTypeKind::UInt16Short && 1706 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1707 STK = SimpleTypeKind::WideCharacter; 1708 if ((STK == SimpleTypeKind::SignedCharacter || 1709 STK == SimpleTypeKind::UnsignedCharacter) && 1710 Ty->getName() == "char") 1711 STK = SimpleTypeKind::NarrowCharacter; 1712 1713 return TypeIndex(STK); 1714 } 1715 1716 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1717 PointerOptions PO) { 1718 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1719 1720 // Pointers to simple types without any options can use SimpleTypeMode, rather 1721 // than having a dedicated pointer type record. 1722 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1723 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1724 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1725 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1726 ? SimpleTypeMode::NearPointer64 1727 : SimpleTypeMode::NearPointer32; 1728 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1729 } 1730 1731 PointerKind PK = 1732 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1733 PointerMode PM = PointerMode::Pointer; 1734 switch (Ty->getTag()) { 1735 default: llvm_unreachable("not a pointer tag type"); 1736 case dwarf::DW_TAG_pointer_type: 1737 PM = PointerMode::Pointer; 1738 break; 1739 case dwarf::DW_TAG_reference_type: 1740 PM = PointerMode::LValueReference; 1741 break; 1742 case dwarf::DW_TAG_rvalue_reference_type: 1743 PM = PointerMode::RValueReference; 1744 break; 1745 } 1746 1747 if (Ty->isObjectPointer()) 1748 PO |= PointerOptions::Const; 1749 1750 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1751 return TypeTable.writeLeafType(PR); 1752 } 1753 1754 static PointerToMemberRepresentation 1755 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1756 // SizeInBytes being zero generally implies that the member pointer type was 1757 // incomplete, which can happen if it is part of a function prototype. In this 1758 // case, use the unknown model instead of the general model. 1759 if (IsPMF) { 1760 switch (Flags & DINode::FlagPtrToMemberRep) { 1761 case 0: 1762 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1763 : PointerToMemberRepresentation::GeneralFunction; 1764 case DINode::FlagSingleInheritance: 1765 return PointerToMemberRepresentation::SingleInheritanceFunction; 1766 case DINode::FlagMultipleInheritance: 1767 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1768 case DINode::FlagVirtualInheritance: 1769 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1770 } 1771 } else { 1772 switch (Flags & DINode::FlagPtrToMemberRep) { 1773 case 0: 1774 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1775 : PointerToMemberRepresentation::GeneralData; 1776 case DINode::FlagSingleInheritance: 1777 return PointerToMemberRepresentation::SingleInheritanceData; 1778 case DINode::FlagMultipleInheritance: 1779 return PointerToMemberRepresentation::MultipleInheritanceData; 1780 case DINode::FlagVirtualInheritance: 1781 return PointerToMemberRepresentation::VirtualInheritanceData; 1782 } 1783 } 1784 llvm_unreachable("invalid ptr to member representation"); 1785 } 1786 1787 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1788 PointerOptions PO) { 1789 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1790 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1791 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1792 TypeIndex PointeeTI = 1793 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1794 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1795 : PointerKind::Near32; 1796 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1797 : PointerMode::PointerToDataMember; 1798 1799 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1800 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1801 MemberPointerInfo MPI( 1802 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1803 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1804 return TypeTable.writeLeafType(PR); 1805 } 1806 1807 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1808 /// have a translation, use the NearC convention. 1809 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1810 switch (DwarfCC) { 1811 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1812 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1813 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1814 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1815 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1816 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1817 } 1818 return CallingConvention::NearC; 1819 } 1820 1821 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1822 ModifierOptions Mods = ModifierOptions::None; 1823 PointerOptions PO = PointerOptions::None; 1824 bool IsModifier = true; 1825 const DIType *BaseTy = Ty; 1826 while (IsModifier && BaseTy) { 1827 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1828 switch (BaseTy->getTag()) { 1829 case dwarf::DW_TAG_const_type: 1830 Mods |= ModifierOptions::Const; 1831 PO |= PointerOptions::Const; 1832 break; 1833 case dwarf::DW_TAG_volatile_type: 1834 Mods |= ModifierOptions::Volatile; 1835 PO |= PointerOptions::Volatile; 1836 break; 1837 case dwarf::DW_TAG_restrict_type: 1838 // Only pointer types be marked with __restrict. There is no known flag 1839 // for __restrict in LF_MODIFIER records. 1840 PO |= PointerOptions::Restrict; 1841 break; 1842 default: 1843 IsModifier = false; 1844 break; 1845 } 1846 if (IsModifier) 1847 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1848 } 1849 1850 // Check if the inner type will use an LF_POINTER record. If so, the 1851 // qualifiers will go in the LF_POINTER record. This comes up for types like 1852 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1853 // char *'. 1854 if (BaseTy) { 1855 switch (BaseTy->getTag()) { 1856 case dwarf::DW_TAG_pointer_type: 1857 case dwarf::DW_TAG_reference_type: 1858 case dwarf::DW_TAG_rvalue_reference_type: 1859 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1860 case dwarf::DW_TAG_ptr_to_member_type: 1861 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1862 default: 1863 break; 1864 } 1865 } 1866 1867 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1868 1869 // Return the base type index if there aren't any modifiers. For example, the 1870 // metadata could contain restrict wrappers around non-pointer types. 1871 if (Mods == ModifierOptions::None) 1872 return ModifiedTI; 1873 1874 ModifierRecord MR(ModifiedTI, Mods); 1875 return TypeTable.writeLeafType(MR); 1876 } 1877 1878 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1879 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1880 for (const DIType *ArgType : Ty->getTypeArray()) 1881 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1882 1883 // MSVC uses type none for variadic argument. 1884 if (ReturnAndArgTypeIndices.size() > 1 && 1885 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1886 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1887 } 1888 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1889 ArrayRef<TypeIndex> ArgTypeIndices = None; 1890 if (!ReturnAndArgTypeIndices.empty()) { 1891 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1892 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1893 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1894 } 1895 1896 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1897 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1898 1899 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1900 1901 FunctionOptions FO = getFunctionOptions(Ty); 1902 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1903 ArgListIndex); 1904 return TypeTable.writeLeafType(Procedure); 1905 } 1906 1907 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1908 const DIType *ClassTy, 1909 int ThisAdjustment, 1910 bool IsStaticMethod, 1911 FunctionOptions FO) { 1912 // Lower the containing class type. 1913 TypeIndex ClassType = getTypeIndex(ClassTy); 1914 1915 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1916 1917 unsigned Index = 0; 1918 SmallVector<TypeIndex, 8> ArgTypeIndices; 1919 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1920 if (ReturnAndArgs.size() > Index) { 1921 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1922 } 1923 1924 // If the first argument is a pointer type and this isn't a static method, 1925 // treat it as the special 'this' parameter, which is encoded separately from 1926 // the arguments. 1927 TypeIndex ThisTypeIndex; 1928 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1929 if (const DIDerivedType *PtrTy = 1930 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1931 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1932 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1933 Index++; 1934 } 1935 } 1936 } 1937 1938 while (Index < ReturnAndArgs.size()) 1939 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1940 1941 // MSVC uses type none for variadic argument. 1942 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1943 ArgTypeIndices.back() = TypeIndex::None(); 1944 1945 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1946 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1947 1948 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1949 1950 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1951 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1952 return TypeTable.writeLeafType(MFR); 1953 } 1954 1955 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1956 unsigned VSlotCount = 1957 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1958 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1959 1960 VFTableShapeRecord VFTSR(Slots); 1961 return TypeTable.writeLeafType(VFTSR); 1962 } 1963 1964 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1965 switch (Flags & DINode::FlagAccessibility) { 1966 case DINode::FlagPrivate: return MemberAccess::Private; 1967 case DINode::FlagPublic: return MemberAccess::Public; 1968 case DINode::FlagProtected: return MemberAccess::Protected; 1969 case 0: 1970 // If there was no explicit access control, provide the default for the tag. 1971 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1972 : MemberAccess::Public; 1973 } 1974 llvm_unreachable("access flags are exclusive"); 1975 } 1976 1977 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1978 if (SP->isArtificial()) 1979 return MethodOptions::CompilerGenerated; 1980 1981 // FIXME: Handle other MethodOptions. 1982 1983 return MethodOptions::None; 1984 } 1985 1986 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1987 bool Introduced) { 1988 if (SP->getFlags() & DINode::FlagStaticMember) 1989 return MethodKind::Static; 1990 1991 switch (SP->getVirtuality()) { 1992 case dwarf::DW_VIRTUALITY_none: 1993 break; 1994 case dwarf::DW_VIRTUALITY_virtual: 1995 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1996 case dwarf::DW_VIRTUALITY_pure_virtual: 1997 return Introduced ? MethodKind::PureIntroducingVirtual 1998 : MethodKind::PureVirtual; 1999 default: 2000 llvm_unreachable("unhandled virtuality case"); 2001 } 2002 2003 return MethodKind::Vanilla; 2004 } 2005 2006 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2007 switch (Ty->getTag()) { 2008 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 2009 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 2010 } 2011 llvm_unreachable("unexpected tag"); 2012 } 2013 2014 /// Return ClassOptions that should be present on both the forward declaration 2015 /// and the defintion of a tag type. 2016 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2017 ClassOptions CO = ClassOptions::None; 2018 2019 // MSVC always sets this flag, even for local types. Clang doesn't always 2020 // appear to give every type a linkage name, which may be problematic for us. 2021 // FIXME: Investigate the consequences of not following them here. 2022 if (!Ty->getIdentifier().empty()) 2023 CO |= ClassOptions::HasUniqueName; 2024 2025 // Put the Nested flag on a type if it appears immediately inside a tag type. 2026 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2027 // here. That flag is only set on definitions, and not forward declarations. 2028 const DIScope *ImmediateScope = Ty->getScope(); 2029 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2030 CO |= ClassOptions::Nested; 2031 2032 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2033 // type only when it has an immediate function scope. Clang never puts enums 2034 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2035 // always in function, class, or file scopes. 2036 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2037 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2038 CO |= ClassOptions::Scoped; 2039 } else { 2040 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2041 Scope = Scope->getScope()) { 2042 if (isa<DISubprogram>(Scope)) { 2043 CO |= ClassOptions::Scoped; 2044 break; 2045 } 2046 } 2047 } 2048 2049 return CO; 2050 } 2051 2052 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2053 switch (Ty->getTag()) { 2054 case dwarf::DW_TAG_class_type: 2055 case dwarf::DW_TAG_structure_type: 2056 case dwarf::DW_TAG_union_type: 2057 case dwarf::DW_TAG_enumeration_type: 2058 break; 2059 default: 2060 return; 2061 } 2062 2063 if (const auto *File = Ty->getFile()) { 2064 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2065 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2066 2067 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2068 TypeTable.writeLeafType(USLR); 2069 } 2070 } 2071 2072 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2073 ClassOptions CO = getCommonClassOptions(Ty); 2074 TypeIndex FTI; 2075 unsigned EnumeratorCount = 0; 2076 2077 if (Ty->isForwardDecl()) { 2078 CO |= ClassOptions::ForwardReference; 2079 } else { 2080 ContinuationRecordBuilder ContinuationBuilder; 2081 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2082 for (const DINode *Element : Ty->getElements()) { 2083 // We assume that the frontend provides all members in source declaration 2084 // order, which is what MSVC does. 2085 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2086 EnumeratorRecord ER(MemberAccess::Public, 2087 APSInt(Enumerator->getValue(), true), 2088 Enumerator->getName()); 2089 ContinuationBuilder.writeMemberType(ER); 2090 EnumeratorCount++; 2091 } 2092 } 2093 FTI = TypeTable.insertRecord(ContinuationBuilder); 2094 } 2095 2096 std::string FullName = getFullyQualifiedName(Ty); 2097 2098 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2099 getTypeIndex(Ty->getBaseType())); 2100 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2101 2102 addUDTSrcLine(Ty, EnumTI); 2103 2104 return EnumTI; 2105 } 2106 2107 //===----------------------------------------------------------------------===// 2108 // ClassInfo 2109 //===----------------------------------------------------------------------===// 2110 2111 struct llvm::ClassInfo { 2112 struct MemberInfo { 2113 const DIDerivedType *MemberTypeNode; 2114 uint64_t BaseOffset; 2115 }; 2116 // [MemberInfo] 2117 using MemberList = std::vector<MemberInfo>; 2118 2119 using MethodsList = TinyPtrVector<const DISubprogram *>; 2120 // MethodName -> MethodsList 2121 using MethodsMap = MapVector<MDString *, MethodsList>; 2122 2123 /// Base classes. 2124 std::vector<const DIDerivedType *> Inheritance; 2125 2126 /// Direct members. 2127 MemberList Members; 2128 // Direct overloaded methods gathered by name. 2129 MethodsMap Methods; 2130 2131 TypeIndex VShapeTI; 2132 2133 std::vector<const DIType *> NestedTypes; 2134 }; 2135 2136 void CodeViewDebug::clear() { 2137 assert(CurFn == nullptr); 2138 FileIdMap.clear(); 2139 FnDebugInfo.clear(); 2140 FileToFilepathMap.clear(); 2141 LocalUDTs.clear(); 2142 GlobalUDTs.clear(); 2143 TypeIndices.clear(); 2144 CompleteTypeIndices.clear(); 2145 ScopeGlobals.clear(); 2146 } 2147 2148 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2149 const DIDerivedType *DDTy) { 2150 if (!DDTy->getName().empty()) { 2151 Info.Members.push_back({DDTy, 0}); 2152 2153 // Collect static const data members with values. 2154 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2155 DINode::FlagStaticMember) { 2156 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || 2157 isa<ConstantFP>(DDTy->getConstant()))) 2158 StaticConstMembers.push_back(DDTy); 2159 } 2160 2161 return; 2162 } 2163 2164 // An unnamed member may represent a nested struct or union. Attempt to 2165 // interpret the unnamed member as a DICompositeType possibly wrapped in 2166 // qualifier types. Add all the indirect fields to the current record if that 2167 // succeeds, and drop the member if that fails. 2168 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2169 uint64_t Offset = DDTy->getOffsetInBits(); 2170 const DIType *Ty = DDTy->getBaseType(); 2171 bool FullyResolved = false; 2172 while (!FullyResolved) { 2173 switch (Ty->getTag()) { 2174 case dwarf::DW_TAG_const_type: 2175 case dwarf::DW_TAG_volatile_type: 2176 // FIXME: we should apply the qualifier types to the indirect fields 2177 // rather than dropping them. 2178 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2179 break; 2180 default: 2181 FullyResolved = true; 2182 break; 2183 } 2184 } 2185 2186 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2187 if (!DCTy) 2188 return; 2189 2190 ClassInfo NestedInfo = collectClassInfo(DCTy); 2191 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2192 Info.Members.push_back( 2193 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2194 } 2195 2196 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2197 ClassInfo Info; 2198 // Add elements to structure type. 2199 DINodeArray Elements = Ty->getElements(); 2200 for (auto *Element : Elements) { 2201 // We assume that the frontend provides all members in source declaration 2202 // order, which is what MSVC does. 2203 if (!Element) 2204 continue; 2205 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2206 Info.Methods[SP->getRawName()].push_back(SP); 2207 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2208 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2209 collectMemberInfo(Info, DDTy); 2210 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2211 Info.Inheritance.push_back(DDTy); 2212 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2213 DDTy->getName() == "__vtbl_ptr_type") { 2214 Info.VShapeTI = getTypeIndex(DDTy); 2215 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2216 Info.NestedTypes.push_back(DDTy); 2217 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2218 // Ignore friend members. It appears that MSVC emitted info about 2219 // friends in the past, but modern versions do not. 2220 } 2221 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2222 Info.NestedTypes.push_back(Composite); 2223 } 2224 // Skip other unrecognized kinds of elements. 2225 } 2226 return Info; 2227 } 2228 2229 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2230 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2231 // if a complete type should be emitted instead of a forward reference. 2232 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2233 !Ty->isForwardDecl(); 2234 } 2235 2236 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2237 // Emit the complete type for unnamed structs. C++ classes with methods 2238 // which have a circular reference back to the class type are expected to 2239 // be named by the front-end and should not be "unnamed". C unnamed 2240 // structs should not have circular references. 2241 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2242 // If this unnamed complete type is already in the process of being defined 2243 // then the description of the type is malformed and cannot be emitted 2244 // into CodeView correctly so report a fatal error. 2245 auto I = CompleteTypeIndices.find(Ty); 2246 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2247 report_fatal_error("cannot debug circular reference to unnamed type"); 2248 return getCompleteTypeIndex(Ty); 2249 } 2250 2251 // First, construct the forward decl. Don't look into Ty to compute the 2252 // forward decl options, since it might not be available in all TUs. 2253 TypeRecordKind Kind = getRecordKind(Ty); 2254 ClassOptions CO = 2255 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2256 std::string FullName = getFullyQualifiedName(Ty); 2257 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2258 FullName, Ty->getIdentifier()); 2259 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2260 if (!Ty->isForwardDecl()) 2261 DeferredCompleteTypes.push_back(Ty); 2262 return FwdDeclTI; 2263 } 2264 2265 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2266 // Construct the field list and complete type record. 2267 TypeRecordKind Kind = getRecordKind(Ty); 2268 ClassOptions CO = getCommonClassOptions(Ty); 2269 TypeIndex FieldTI; 2270 TypeIndex VShapeTI; 2271 unsigned FieldCount; 2272 bool ContainsNestedClass; 2273 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2274 lowerRecordFieldList(Ty); 2275 2276 if (ContainsNestedClass) 2277 CO |= ClassOptions::ContainsNestedClass; 2278 2279 // MSVC appears to set this flag by searching any destructor or method with 2280 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2281 // the members, however special member functions are not yet emitted into 2282 // debug information. For now checking a class's non-triviality seems enough. 2283 // FIXME: not true for a nested unnamed struct. 2284 if (isNonTrivial(Ty)) 2285 CO |= ClassOptions::HasConstructorOrDestructor; 2286 2287 std::string FullName = getFullyQualifiedName(Ty); 2288 2289 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2290 2291 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2292 SizeInBytes, FullName, Ty->getIdentifier()); 2293 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2294 2295 addUDTSrcLine(Ty, ClassTI); 2296 2297 addToUDTs(Ty); 2298 2299 return ClassTI; 2300 } 2301 2302 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2303 // Emit the complete type for unnamed unions. 2304 if (shouldAlwaysEmitCompleteClassType(Ty)) 2305 return getCompleteTypeIndex(Ty); 2306 2307 ClassOptions CO = 2308 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2309 std::string FullName = getFullyQualifiedName(Ty); 2310 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2311 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2312 if (!Ty->isForwardDecl()) 2313 DeferredCompleteTypes.push_back(Ty); 2314 return FwdDeclTI; 2315 } 2316 2317 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2318 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2319 TypeIndex FieldTI; 2320 unsigned FieldCount; 2321 bool ContainsNestedClass; 2322 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2323 lowerRecordFieldList(Ty); 2324 2325 if (ContainsNestedClass) 2326 CO |= ClassOptions::ContainsNestedClass; 2327 2328 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2329 std::string FullName = getFullyQualifiedName(Ty); 2330 2331 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2332 Ty->getIdentifier()); 2333 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2334 2335 addUDTSrcLine(Ty, UnionTI); 2336 2337 addToUDTs(Ty); 2338 2339 return UnionTI; 2340 } 2341 2342 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2343 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2344 // Manually count members. MSVC appears to count everything that generates a 2345 // field list record. Each individual overload in a method overload group 2346 // contributes to this count, even though the overload group is a single field 2347 // list record. 2348 unsigned MemberCount = 0; 2349 ClassInfo Info = collectClassInfo(Ty); 2350 ContinuationRecordBuilder ContinuationBuilder; 2351 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2352 2353 // Create base classes. 2354 for (const DIDerivedType *I : Info.Inheritance) { 2355 if (I->getFlags() & DINode::FlagVirtual) { 2356 // Virtual base. 2357 unsigned VBPtrOffset = I->getVBPtrOffset(); 2358 // FIXME: Despite the accessor name, the offset is really in bytes. 2359 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2360 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2361 ? TypeRecordKind::IndirectVirtualBaseClass 2362 : TypeRecordKind::VirtualBaseClass; 2363 VirtualBaseClassRecord VBCR( 2364 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2365 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2366 VBTableIndex); 2367 2368 ContinuationBuilder.writeMemberType(VBCR); 2369 MemberCount++; 2370 } else { 2371 assert(I->getOffsetInBits() % 8 == 0 && 2372 "bases must be on byte boundaries"); 2373 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2374 getTypeIndex(I->getBaseType()), 2375 I->getOffsetInBits() / 8); 2376 ContinuationBuilder.writeMemberType(BCR); 2377 MemberCount++; 2378 } 2379 } 2380 2381 // Create members. 2382 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2383 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2384 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2385 StringRef MemberName = Member->getName(); 2386 MemberAccess Access = 2387 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2388 2389 if (Member->isStaticMember()) { 2390 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2391 ContinuationBuilder.writeMemberType(SDMR); 2392 MemberCount++; 2393 continue; 2394 } 2395 2396 // Virtual function pointer member. 2397 if ((Member->getFlags() & DINode::FlagArtificial) && 2398 Member->getName().startswith("_vptr$")) { 2399 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2400 ContinuationBuilder.writeMemberType(VFPR); 2401 MemberCount++; 2402 continue; 2403 } 2404 2405 // Data member. 2406 uint64_t MemberOffsetInBits = 2407 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2408 if (Member->isBitField()) { 2409 uint64_t StartBitOffset = MemberOffsetInBits; 2410 if (const auto *CI = 2411 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2412 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2413 } 2414 StartBitOffset -= MemberOffsetInBits; 2415 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2416 StartBitOffset); 2417 MemberBaseType = TypeTable.writeLeafType(BFR); 2418 } 2419 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2420 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2421 MemberName); 2422 ContinuationBuilder.writeMemberType(DMR); 2423 MemberCount++; 2424 } 2425 2426 // Create methods 2427 for (auto &MethodItr : Info.Methods) { 2428 StringRef Name = MethodItr.first->getString(); 2429 2430 std::vector<OneMethodRecord> Methods; 2431 for (const DISubprogram *SP : MethodItr.second) { 2432 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2433 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2434 2435 unsigned VFTableOffset = -1; 2436 if (Introduced) 2437 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2438 2439 Methods.push_back(OneMethodRecord( 2440 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2441 translateMethodKindFlags(SP, Introduced), 2442 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2443 MemberCount++; 2444 } 2445 assert(!Methods.empty() && "Empty methods map entry"); 2446 if (Methods.size() == 1) 2447 ContinuationBuilder.writeMemberType(Methods[0]); 2448 else { 2449 // FIXME: Make this use its own ContinuationBuilder so that 2450 // MethodOverloadList can be split correctly. 2451 MethodOverloadListRecord MOLR(Methods); 2452 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2453 2454 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2455 ContinuationBuilder.writeMemberType(OMR); 2456 } 2457 } 2458 2459 // Create nested classes. 2460 for (const DIType *Nested : Info.NestedTypes) { 2461 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2462 ContinuationBuilder.writeMemberType(R); 2463 MemberCount++; 2464 } 2465 2466 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2467 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2468 !Info.NestedTypes.empty()); 2469 } 2470 2471 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2472 if (!VBPType.getIndex()) { 2473 // Make a 'const int *' type. 2474 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2475 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2476 2477 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2478 : PointerKind::Near32; 2479 PointerMode PM = PointerMode::Pointer; 2480 PointerOptions PO = PointerOptions::None; 2481 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2482 VBPType = TypeTable.writeLeafType(PR); 2483 } 2484 2485 return VBPType; 2486 } 2487 2488 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2489 // The null DIType is the void type. Don't try to hash it. 2490 if (!Ty) 2491 return TypeIndex::Void(); 2492 2493 // Check if we've already translated this type. Don't try to do a 2494 // get-or-create style insertion that caches the hash lookup across the 2495 // lowerType call. It will update the TypeIndices map. 2496 auto I = TypeIndices.find({Ty, ClassTy}); 2497 if (I != TypeIndices.end()) 2498 return I->second; 2499 2500 TypeLoweringScope S(*this); 2501 TypeIndex TI = lowerType(Ty, ClassTy); 2502 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2503 } 2504 2505 codeview::TypeIndex 2506 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2507 const DISubroutineType *SubroutineTy) { 2508 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2509 "this type must be a pointer type"); 2510 2511 PointerOptions Options = PointerOptions::None; 2512 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2513 Options = PointerOptions::LValueRefThisPointer; 2514 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2515 Options = PointerOptions::RValueRefThisPointer; 2516 2517 // Check if we've already translated this type. If there is no ref qualifier 2518 // on the function then we look up this pointer type with no associated class 2519 // so that the TypeIndex for the this pointer can be shared with the type 2520 // index for other pointers to this class type. If there is a ref qualifier 2521 // then we lookup the pointer using the subroutine as the parent type. 2522 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2523 if (I != TypeIndices.end()) 2524 return I->second; 2525 2526 TypeLoweringScope S(*this); 2527 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2528 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2529 } 2530 2531 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2532 PointerRecord PR(getTypeIndex(Ty), 2533 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2534 : PointerKind::Near32, 2535 PointerMode::LValueReference, PointerOptions::None, 2536 Ty->getSizeInBits() / 8); 2537 return TypeTable.writeLeafType(PR); 2538 } 2539 2540 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2541 // The null DIType is the void type. Don't try to hash it. 2542 if (!Ty) 2543 return TypeIndex::Void(); 2544 2545 // Look through typedefs when getting the complete type index. Call 2546 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2547 // emitted only once. 2548 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2549 (void)getTypeIndex(Ty); 2550 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2551 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2552 2553 // If this is a non-record type, the complete type index is the same as the 2554 // normal type index. Just call getTypeIndex. 2555 switch (Ty->getTag()) { 2556 case dwarf::DW_TAG_class_type: 2557 case dwarf::DW_TAG_structure_type: 2558 case dwarf::DW_TAG_union_type: 2559 break; 2560 default: 2561 return getTypeIndex(Ty); 2562 } 2563 2564 const auto *CTy = cast<DICompositeType>(Ty); 2565 2566 TypeLoweringScope S(*this); 2567 2568 // Make sure the forward declaration is emitted first. It's unclear if this 2569 // is necessary, but MSVC does it, and we should follow suit until we can show 2570 // otherwise. 2571 // We only emit a forward declaration for named types. 2572 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2573 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2574 2575 // Just use the forward decl if we don't have complete type info. This 2576 // might happen if the frontend is using modules and expects the complete 2577 // definition to be emitted elsewhere. 2578 if (CTy->isForwardDecl()) 2579 return FwdDeclTI; 2580 } 2581 2582 // Check if we've already translated the complete record type. 2583 // Insert the type with a null TypeIndex to signify that the type is currently 2584 // being lowered. 2585 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2586 if (!InsertResult.second) 2587 return InsertResult.first->second; 2588 2589 TypeIndex TI; 2590 switch (CTy->getTag()) { 2591 case dwarf::DW_TAG_class_type: 2592 case dwarf::DW_TAG_structure_type: 2593 TI = lowerCompleteTypeClass(CTy); 2594 break; 2595 case dwarf::DW_TAG_union_type: 2596 TI = lowerCompleteTypeUnion(CTy); 2597 break; 2598 default: 2599 llvm_unreachable("not a record"); 2600 } 2601 2602 // Update the type index associated with this CompositeType. This cannot 2603 // use the 'InsertResult' iterator above because it is potentially 2604 // invalidated by map insertions which can occur while lowering the class 2605 // type above. 2606 CompleteTypeIndices[CTy] = TI; 2607 return TI; 2608 } 2609 2610 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2611 /// and do this until fixpoint, as each complete record type typically 2612 /// references 2613 /// many other record types. 2614 void CodeViewDebug::emitDeferredCompleteTypes() { 2615 SmallVector<const DICompositeType *, 4> TypesToEmit; 2616 while (!DeferredCompleteTypes.empty()) { 2617 std::swap(DeferredCompleteTypes, TypesToEmit); 2618 for (const DICompositeType *RecordTy : TypesToEmit) 2619 getCompleteTypeIndex(RecordTy); 2620 TypesToEmit.clear(); 2621 } 2622 } 2623 2624 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2625 ArrayRef<LocalVariable> Locals) { 2626 // Get the sorted list of parameters and emit them first. 2627 SmallVector<const LocalVariable *, 6> Params; 2628 for (const LocalVariable &L : Locals) 2629 if (L.DIVar->isParameter()) 2630 Params.push_back(&L); 2631 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2632 return L->DIVar->getArg() < R->DIVar->getArg(); 2633 }); 2634 for (const LocalVariable *L : Params) 2635 emitLocalVariable(FI, *L); 2636 2637 // Next emit all non-parameters in the order that we found them. 2638 for (const LocalVariable &L : Locals) 2639 if (!L.DIVar->isParameter()) 2640 emitLocalVariable(FI, L); 2641 } 2642 2643 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2644 const LocalVariable &Var) { 2645 // LocalSym record, see SymbolRecord.h for more info. 2646 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2647 2648 LocalSymFlags Flags = LocalSymFlags::None; 2649 if (Var.DIVar->isParameter()) 2650 Flags |= LocalSymFlags::IsParameter; 2651 if (Var.DefRanges.empty()) 2652 Flags |= LocalSymFlags::IsOptimizedOut; 2653 2654 OS.AddComment("TypeIndex"); 2655 TypeIndex TI = Var.UseReferenceType 2656 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2657 : getCompleteTypeIndex(Var.DIVar->getType()); 2658 OS.emitInt32(TI.getIndex()); 2659 OS.AddComment("Flags"); 2660 OS.emitInt16(static_cast<uint16_t>(Flags)); 2661 // Truncate the name so we won't overflow the record length field. 2662 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2663 endSymbolRecord(LocalEnd); 2664 2665 // Calculate the on disk prefix of the appropriate def range record. The 2666 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2667 // should be big enough to hold all forms without memory allocation. 2668 SmallString<20> BytePrefix; 2669 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2670 BytePrefix.clear(); 2671 if (DefRange.InMemory) { 2672 int Offset = DefRange.DataOffset; 2673 unsigned Reg = DefRange.CVRegister; 2674 2675 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2676 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2677 // instead. In frames without stack realignment, $T0 will be the CFA. 2678 if (RegisterId(Reg) == RegisterId::ESP) { 2679 Reg = unsigned(RegisterId::VFRAME); 2680 Offset += FI.OffsetAdjustment; 2681 } 2682 2683 // If we can use the chosen frame pointer for the frame and this isn't a 2684 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2685 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2686 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2687 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2688 (bool(Flags & LocalSymFlags::IsParameter) 2689 ? (EncFP == FI.EncodedParamFramePtrReg) 2690 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2691 DefRangeFramePointerRelHeader DRHdr; 2692 DRHdr.Offset = Offset; 2693 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2694 } else { 2695 uint16_t RegRelFlags = 0; 2696 if (DefRange.IsSubfield) { 2697 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2698 (DefRange.StructOffset 2699 << DefRangeRegisterRelSym::OffsetInParentShift); 2700 } 2701 DefRangeRegisterRelHeader DRHdr; 2702 DRHdr.Register = Reg; 2703 DRHdr.Flags = RegRelFlags; 2704 DRHdr.BasePointerOffset = Offset; 2705 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2706 } 2707 } else { 2708 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2709 if (DefRange.IsSubfield) { 2710 DefRangeSubfieldRegisterHeader DRHdr; 2711 DRHdr.Register = DefRange.CVRegister; 2712 DRHdr.MayHaveNoName = 0; 2713 DRHdr.OffsetInParent = DefRange.StructOffset; 2714 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2715 } else { 2716 DefRangeRegisterHeader DRHdr; 2717 DRHdr.Register = DefRange.CVRegister; 2718 DRHdr.MayHaveNoName = 0; 2719 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2720 } 2721 } 2722 } 2723 } 2724 2725 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2726 const FunctionInfo& FI) { 2727 for (LexicalBlock *Block : Blocks) 2728 emitLexicalBlock(*Block, FI); 2729 } 2730 2731 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2732 /// lexical block scope. 2733 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2734 const FunctionInfo& FI) { 2735 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2736 OS.AddComment("PtrParent"); 2737 OS.emitInt32(0); // PtrParent 2738 OS.AddComment("PtrEnd"); 2739 OS.emitInt32(0); // PtrEnd 2740 OS.AddComment("Code size"); 2741 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2742 OS.AddComment("Function section relative address"); 2743 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2744 OS.AddComment("Function section index"); 2745 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2746 OS.AddComment("Lexical block name"); 2747 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2748 endSymbolRecord(RecordEnd); 2749 2750 // Emit variables local to this lexical block. 2751 emitLocalVariableList(FI, Block.Locals); 2752 emitGlobalVariableList(Block.Globals); 2753 2754 // Emit lexical blocks contained within this block. 2755 emitLexicalBlockList(Block.Children, FI); 2756 2757 // Close the lexical block scope. 2758 emitEndSymbolRecord(SymbolKind::S_END); 2759 } 2760 2761 /// Convenience routine for collecting lexical block information for a list 2762 /// of lexical scopes. 2763 void CodeViewDebug::collectLexicalBlockInfo( 2764 SmallVectorImpl<LexicalScope *> &Scopes, 2765 SmallVectorImpl<LexicalBlock *> &Blocks, 2766 SmallVectorImpl<LocalVariable> &Locals, 2767 SmallVectorImpl<CVGlobalVariable> &Globals) { 2768 for (LexicalScope *Scope : Scopes) 2769 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2770 } 2771 2772 /// Populate the lexical blocks and local variable lists of the parent with 2773 /// information about the specified lexical scope. 2774 void CodeViewDebug::collectLexicalBlockInfo( 2775 LexicalScope &Scope, 2776 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2777 SmallVectorImpl<LocalVariable> &ParentLocals, 2778 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2779 if (Scope.isAbstractScope()) 2780 return; 2781 2782 // Gather information about the lexical scope including local variables, 2783 // global variables, and address ranges. 2784 bool IgnoreScope = false; 2785 auto LI = ScopeVariables.find(&Scope); 2786 SmallVectorImpl<LocalVariable> *Locals = 2787 LI != ScopeVariables.end() ? &LI->second : nullptr; 2788 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2789 SmallVectorImpl<CVGlobalVariable> *Globals = 2790 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2791 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2792 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2793 2794 // Ignore lexical scopes which do not contain variables. 2795 if (!Locals && !Globals) 2796 IgnoreScope = true; 2797 2798 // Ignore lexical scopes which are not lexical blocks. 2799 if (!DILB) 2800 IgnoreScope = true; 2801 2802 // Ignore scopes which have too many address ranges to represent in the 2803 // current CodeView format or do not have a valid address range. 2804 // 2805 // For lexical scopes with multiple address ranges you may be tempted to 2806 // construct a single range covering every instruction where the block is 2807 // live and everything in between. Unfortunately, Visual Studio only 2808 // displays variables from the first matching lexical block scope. If the 2809 // first lexical block contains exception handling code or cold code which 2810 // is moved to the bottom of the routine creating a single range covering 2811 // nearly the entire routine, then it will hide all other lexical blocks 2812 // and the variables they contain. 2813 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2814 IgnoreScope = true; 2815 2816 if (IgnoreScope) { 2817 // This scope can be safely ignored and eliminating it will reduce the 2818 // size of the debug information. Be sure to collect any variable and scope 2819 // information from the this scope or any of its children and collapse them 2820 // into the parent scope. 2821 if (Locals) 2822 ParentLocals.append(Locals->begin(), Locals->end()); 2823 if (Globals) 2824 ParentGlobals.append(Globals->begin(), Globals->end()); 2825 collectLexicalBlockInfo(Scope.getChildren(), 2826 ParentBlocks, 2827 ParentLocals, 2828 ParentGlobals); 2829 return; 2830 } 2831 2832 // Create a new CodeView lexical block for this lexical scope. If we've 2833 // seen this DILexicalBlock before then the scope tree is malformed and 2834 // we can handle this gracefully by not processing it a second time. 2835 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2836 if (!BlockInsertion.second) 2837 return; 2838 2839 // Create a lexical block containing the variables and collect the the 2840 // lexical block information for the children. 2841 const InsnRange &Range = Ranges.front(); 2842 assert(Range.first && Range.second); 2843 LexicalBlock &Block = BlockInsertion.first->second; 2844 Block.Begin = getLabelBeforeInsn(Range.first); 2845 Block.End = getLabelAfterInsn(Range.second); 2846 assert(Block.Begin && "missing label for scope begin"); 2847 assert(Block.End && "missing label for scope end"); 2848 Block.Name = DILB->getName(); 2849 if (Locals) 2850 Block.Locals = std::move(*Locals); 2851 if (Globals) 2852 Block.Globals = std::move(*Globals); 2853 ParentBlocks.push_back(&Block); 2854 collectLexicalBlockInfo(Scope.getChildren(), 2855 Block.Children, 2856 Block.Locals, 2857 Block.Globals); 2858 } 2859 2860 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2861 const Function &GV = MF->getFunction(); 2862 assert(FnDebugInfo.count(&GV)); 2863 assert(CurFn == FnDebugInfo[&GV].get()); 2864 2865 collectVariableInfo(GV.getSubprogram()); 2866 2867 // Build the lexical block structure to emit for this routine. 2868 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2869 collectLexicalBlockInfo(*CFS, 2870 CurFn->ChildBlocks, 2871 CurFn->Locals, 2872 CurFn->Globals); 2873 2874 // Clear the scope and variable information from the map which will not be 2875 // valid after we have finished processing this routine. This also prepares 2876 // the map for the subsequent routine. 2877 ScopeVariables.clear(); 2878 2879 // Don't emit anything if we don't have any line tables. 2880 // Thunks are compiler-generated and probably won't have source correlation. 2881 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2882 FnDebugInfo.erase(&GV); 2883 CurFn = nullptr; 2884 return; 2885 } 2886 2887 // Find heap alloc sites and add to list. 2888 for (const auto &MBB : *MF) { 2889 for (const auto &MI : MBB) { 2890 if (MDNode *MD = MI.getHeapAllocMarker()) { 2891 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2892 getLabelAfterInsn(&MI), 2893 dyn_cast<DIType>(MD))); 2894 } 2895 } 2896 } 2897 2898 CurFn->Annotations = MF->getCodeViewAnnotations(); 2899 2900 CurFn->End = Asm->getFunctionEnd(); 2901 2902 CurFn = nullptr; 2903 } 2904 2905 // Usable locations are valid with non-zero line numbers. A line number of zero 2906 // corresponds to optimized code that doesn't have a distinct source location. 2907 // In this case, we try to use the previous or next source location depending on 2908 // the context. 2909 static bool isUsableDebugLoc(DebugLoc DL) { 2910 return DL && DL.getLine() != 0; 2911 } 2912 2913 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2914 DebugHandlerBase::beginInstruction(MI); 2915 2916 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2917 if (!Asm || !CurFn || MI->isDebugInstr() || 2918 MI->getFlag(MachineInstr::FrameSetup)) 2919 return; 2920 2921 // If the first instruction of a new MBB has no location, find the first 2922 // instruction with a location and use that. 2923 DebugLoc DL = MI->getDebugLoc(); 2924 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2925 for (const auto &NextMI : *MI->getParent()) { 2926 if (NextMI.isDebugInstr()) 2927 continue; 2928 DL = NextMI.getDebugLoc(); 2929 if (isUsableDebugLoc(DL)) 2930 break; 2931 } 2932 // FIXME: Handle the case where the BB has no valid locations. This would 2933 // probably require doing a real dataflow analysis. 2934 } 2935 PrevInstBB = MI->getParent(); 2936 2937 // If we still don't have a debug location, don't record a location. 2938 if (!isUsableDebugLoc(DL)) 2939 return; 2940 2941 maybeRecordLocation(DL, Asm->MF); 2942 } 2943 2944 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2945 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2946 *EndLabel = MMI->getContext().createTempSymbol(); 2947 OS.emitInt32(unsigned(Kind)); 2948 OS.AddComment("Subsection size"); 2949 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2950 OS.emitLabel(BeginLabel); 2951 return EndLabel; 2952 } 2953 2954 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2955 OS.emitLabel(EndLabel); 2956 // Every subsection must be aligned to a 4-byte boundary. 2957 OS.emitValueToAlignment(4); 2958 } 2959 2960 static StringRef getSymbolName(SymbolKind SymKind) { 2961 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2962 if (EE.Value == SymKind) 2963 return EE.Name; 2964 return ""; 2965 } 2966 2967 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2968 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2969 *EndLabel = MMI->getContext().createTempSymbol(); 2970 OS.AddComment("Record length"); 2971 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2972 OS.emitLabel(BeginLabel); 2973 if (OS.isVerboseAsm()) 2974 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2975 OS.emitInt16(unsigned(SymKind)); 2976 return EndLabel; 2977 } 2978 2979 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2980 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2981 // an extra copy of every symbol record in LLD. This increases object file 2982 // size by less than 1% in the clang build, and is compatible with the Visual 2983 // C++ linker. 2984 OS.emitValueToAlignment(4); 2985 OS.emitLabel(SymEnd); 2986 } 2987 2988 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2989 OS.AddComment("Record length"); 2990 OS.emitInt16(2); 2991 if (OS.isVerboseAsm()) 2992 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2993 OS.emitInt16(uint16_t(EndKind)); // Record Kind 2994 } 2995 2996 void CodeViewDebug::emitDebugInfoForUDTs( 2997 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 2998 #ifndef NDEBUG 2999 size_t OriginalSize = UDTs.size(); 3000 #endif 3001 for (const auto &UDT : UDTs) { 3002 const DIType *T = UDT.second; 3003 assert(shouldEmitUdt(T)); 3004 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3005 OS.AddComment("Type"); 3006 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3007 assert(OriginalSize == UDTs.size() && 3008 "getCompleteTypeIndex found new UDTs!"); 3009 emitNullTerminatedSymbolName(OS, UDT.first); 3010 endSymbolRecord(UDTRecordEnd); 3011 } 3012 } 3013 3014 void CodeViewDebug::collectGlobalVariableInfo() { 3015 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3016 GlobalMap; 3017 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3018 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3019 GV.getDebugInfo(GVEs); 3020 for (const auto *GVE : GVEs) 3021 GlobalMap[GVE] = &GV; 3022 } 3023 3024 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3025 for (const MDNode *Node : CUs->operands()) { 3026 const auto *CU = cast<DICompileUnit>(Node); 3027 for (const auto *GVE : CU->getGlobalVariables()) { 3028 const DIGlobalVariable *DIGV = GVE->getVariable(); 3029 const DIExpression *DIE = GVE->getExpression(); 3030 3031 // Emit constant global variables in a global symbol section. 3032 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3033 CVGlobalVariable CVGV = {DIGV, DIE}; 3034 GlobalVariables.emplace_back(std::move(CVGV)); 3035 } 3036 3037 const auto *GV = GlobalMap.lookup(GVE); 3038 if (!GV || GV->isDeclarationForLinker()) 3039 continue; 3040 3041 DIScope *Scope = DIGV->getScope(); 3042 SmallVector<CVGlobalVariable, 1> *VariableList; 3043 if (Scope && isa<DILocalScope>(Scope)) { 3044 // Locate a global variable list for this scope, creating one if 3045 // necessary. 3046 auto Insertion = ScopeGlobals.insert( 3047 {Scope, std::unique_ptr<GlobalVariableList>()}); 3048 if (Insertion.second) 3049 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3050 VariableList = Insertion.first->second.get(); 3051 } else if (GV->hasComdat()) 3052 // Emit this global variable into a COMDAT section. 3053 VariableList = &ComdatVariables; 3054 else 3055 // Emit this global variable in a single global symbol section. 3056 VariableList = &GlobalVariables; 3057 CVGlobalVariable CVGV = {DIGV, GV}; 3058 VariableList->emplace_back(std::move(CVGV)); 3059 } 3060 } 3061 } 3062 3063 void CodeViewDebug::collectDebugInfoForGlobals() { 3064 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3065 const DIGlobalVariable *DIGV = CVGV.DIGV; 3066 const DIScope *Scope = DIGV->getScope(); 3067 getCompleteTypeIndex(DIGV->getType()); 3068 getFullyQualifiedName(Scope, DIGV->getName()); 3069 } 3070 3071 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3072 const DIGlobalVariable *DIGV = CVGV.DIGV; 3073 const DIScope *Scope = DIGV->getScope(); 3074 getCompleteTypeIndex(DIGV->getType()); 3075 getFullyQualifiedName(Scope, DIGV->getName()); 3076 } 3077 } 3078 3079 void CodeViewDebug::emitDebugInfoForGlobals() { 3080 // First, emit all globals that are not in a comdat in a single symbol 3081 // substream. MSVC doesn't like it if the substream is empty, so only open 3082 // it if we have at least one global to emit. 3083 switchToDebugSectionForSymbol(nullptr); 3084 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3085 OS.AddComment("Symbol subsection for globals"); 3086 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3087 emitGlobalVariableList(GlobalVariables); 3088 emitStaticConstMemberList(); 3089 endCVSubsection(EndLabel); 3090 } 3091 3092 // Second, emit each global that is in a comdat into its own .debug$S 3093 // section along with its own symbol substream. 3094 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3095 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3096 MCSymbol *GVSym = Asm->getSymbol(GV); 3097 OS.AddComment("Symbol subsection for " + 3098 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3099 switchToDebugSectionForSymbol(GVSym); 3100 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3101 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3102 emitDebugInfoForGlobal(CVGV); 3103 endCVSubsection(EndLabel); 3104 } 3105 } 3106 3107 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3108 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3109 for (const MDNode *Node : CUs->operands()) { 3110 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3111 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3112 getTypeIndex(RT); 3113 // FIXME: Add to global/local DTU list. 3114 } 3115 } 3116 } 3117 } 3118 3119 // Emit each global variable in the specified array. 3120 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3121 for (const CVGlobalVariable &CVGV : Globals) { 3122 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3123 emitDebugInfoForGlobal(CVGV); 3124 } 3125 } 3126 3127 void CodeViewDebug::emitStaticConstMemberList() { 3128 for (const DIDerivedType *DTy : StaticConstMembers) { 3129 const DIScope *Scope = DTy->getScope(); 3130 3131 APSInt Value; 3132 if (const ConstantInt *CI = 3133 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3134 Value = APSInt(CI->getValue(), 3135 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3136 else if (const ConstantFP *CFP = 3137 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3138 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3139 else 3140 llvm_unreachable("cannot emit a constant without a value"); 3141 3142 std::string QualifiedName = getFullyQualifiedName(Scope, DTy->getName()); 3143 3144 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3145 OS.AddComment("Type"); 3146 OS.emitInt32(getTypeIndex(DTy->getBaseType()).getIndex()); 3147 OS.AddComment("Value"); 3148 3149 // Encoded integers shouldn't need more than 10 bytes. 3150 uint8_t Data[10]; 3151 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3152 CodeViewRecordIO IO(Writer); 3153 cantFail(IO.mapEncodedInteger(Value)); 3154 StringRef SRef((char *)Data, Writer.getOffset()); 3155 OS.emitBinaryData(SRef); 3156 3157 OS.AddComment("Name"); 3158 emitNullTerminatedSymbolName(OS, QualifiedName); 3159 endSymbolRecord(SConstantEnd); 3160 } 3161 } 3162 3163 static bool isFloatDIType(const DIType *Ty) { 3164 if (isa<DICompositeType>(Ty)) 3165 return false; 3166 3167 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3168 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3169 if (T == dwarf::DW_TAG_pointer_type || 3170 T == dwarf::DW_TAG_ptr_to_member_type || 3171 T == dwarf::DW_TAG_reference_type || 3172 T == dwarf::DW_TAG_rvalue_reference_type) 3173 return false; 3174 assert(DTy->getBaseType() && "Expected valid base type"); 3175 return isFloatDIType(DTy->getBaseType()); 3176 } 3177 3178 auto *BTy = cast<DIBasicType>(Ty); 3179 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3180 } 3181 3182 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3183 const DIGlobalVariable *DIGV = CVGV.DIGV; 3184 3185 const DIScope *Scope = DIGV->getScope(); 3186 // For static data members, get the scope from the declaration. 3187 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3188 DIGV->getRawStaticDataMemberDeclaration())) 3189 Scope = MemberDecl->getScope(); 3190 std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName()); 3191 3192 if (const GlobalVariable *GV = 3193 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3194 // DataSym record, see SymbolRecord.h for more info. Thread local data 3195 // happens to have the same format as global data. 3196 MCSymbol *GVSym = Asm->getSymbol(GV); 3197 SymbolKind DataSym = GV->isThreadLocal() 3198 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3199 : SymbolKind::S_GTHREAD32) 3200 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3201 : SymbolKind::S_GDATA32); 3202 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3203 OS.AddComment("Type"); 3204 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3205 OS.AddComment("DataOffset"); 3206 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3207 OS.AddComment("Segment"); 3208 OS.EmitCOFFSectionIndex(GVSym); 3209 OS.AddComment("Name"); 3210 const unsigned LengthOfDataRecord = 12; 3211 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3212 endSymbolRecord(DataEnd); 3213 } else { 3214 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3215 assert(DIE->isConstant() && 3216 "Global constant variables must contain a constant expression."); 3217 3218 // Use unsigned for floats. 3219 bool isUnsigned = isFloatDIType(DIGV->getType()) 3220 ? true 3221 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3222 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3223 3224 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3225 OS.AddComment("Type"); 3226 OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex()); 3227 OS.AddComment("Value"); 3228 3229 // Encoded integers shouldn't need more than 10 bytes. 3230 uint8_t data[10]; 3231 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3232 CodeViewRecordIO IO(Writer); 3233 cantFail(IO.mapEncodedInteger(Value)); 3234 StringRef SRef((char *)data, Writer.getOffset()); 3235 OS.emitBinaryData(SRef); 3236 3237 OS.AddComment("Name"); 3238 emitNullTerminatedSymbolName(OS, QualifiedName); 3239 endSymbolRecord(SConstantEnd); 3240 } 3241 } 3242