1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/BinaryFormat/COFF.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/AsmPrinter.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/EnumTables.h" 48 #include "llvm/DebugInfo/CodeView/Line.h" 49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 51 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 52 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfoMetadata.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GlobalValue.h" 61 #include "llvm/IR/GlobalVariable.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCContext.h" 66 #include "llvm/MC/MCSectionCOFF.h" 67 #include "llvm/MC/MCStreamer.h" 68 #include "llvm/MC/MCSymbol.h" 69 #include "llvm/Support/BinaryByteStream.h" 70 #include "llvm/Support/BinaryStreamReader.h" 71 #include "llvm/Support/BinaryStreamWriter.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/Endian.h" 76 #include "llvm/Support/Error.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/FormatVariadic.h" 79 #include "llvm/Support/Path.h" 80 #include "llvm/Support/SMLoc.h" 81 #include "llvm/Support/ScopedPrinter.h" 82 #include "llvm/Target/TargetLoweringObjectFile.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cctype> 87 #include <cstddef> 88 #include <cstdint> 89 #include <iterator> 90 #include <limits> 91 #include <string> 92 #include <utility> 93 #include <vector> 94 95 using namespace llvm; 96 using namespace llvm::codeview; 97 98 namespace { 99 class CVMCAdapter : public CodeViewRecordStreamer { 100 public: 101 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 102 : OS(&OS), TypeTable(TypeTable) {} 103 104 void EmitBytes(StringRef Data) { OS->EmitBytes(Data); } 105 106 void EmitIntValue(uint64_t Value, unsigned Size) { 107 OS->EmitIntValueInHex(Value, Size); 108 } 109 110 void EmitBinaryData(StringRef Data) { OS->EmitBinaryData(Data); } 111 112 void AddComment(const Twine &T) { OS->AddComment(T); } 113 114 void AddRawComment(const Twine &T) { OS->emitRawComment(T); } 115 116 bool isVerboseAsm() { return OS->isVerboseAsm(); } 117 118 std::string getTypeName(TypeIndex TI) { 119 std::string TypeName; 120 if (!TI.isNoneType()) { 121 if (TI.isSimple()) 122 TypeName = TypeIndex::simpleTypeName(TI); 123 else 124 TypeName = TypeTable.getTypeName(TI); 125 } 126 return TypeName; 127 } 128 129 private: 130 MCStreamer *OS = nullptr; 131 TypeCollection &TypeTable; 132 }; 133 } // namespace 134 135 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 136 switch (Type) { 137 case Triple::ArchType::x86: 138 return CPUType::Pentium3; 139 case Triple::ArchType::x86_64: 140 return CPUType::X64; 141 case Triple::ArchType::thumb: 142 return CPUType::Thumb; 143 case Triple::ArchType::aarch64: 144 return CPUType::ARM64; 145 default: 146 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 147 } 148 } 149 150 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 151 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 152 // If module doesn't have named metadata anchors or COFF debug section 153 // is not available, skip any debug info related stuff. 154 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 155 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 156 Asm = nullptr; 157 MMI->setDebugInfoAvailability(false); 158 return; 159 } 160 // Tell MMI that we have debug info. 161 MMI->setDebugInfoAvailability(true); 162 163 TheCPU = 164 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 165 166 collectGlobalVariableInfo(); 167 168 // Check if we should emit type record hashes. 169 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 170 MMI->getModule()->getModuleFlag("CodeViewGHash")); 171 EmitDebugGlobalHashes = GH && !GH->isZero(); 172 } 173 174 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 175 std::string &Filepath = FileToFilepathMap[File]; 176 if (!Filepath.empty()) 177 return Filepath; 178 179 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 180 181 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 182 // it textually because one of the path components could be a symlink. 183 if (Dir.startswith("/") || Filename.startswith("/")) { 184 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 185 return Filename; 186 Filepath = Dir; 187 if (Dir.back() != '/') 188 Filepath += '/'; 189 Filepath += Filename; 190 return Filepath; 191 } 192 193 // Clang emits directory and relative filename info into the IR, but CodeView 194 // operates on full paths. We could change Clang to emit full paths too, but 195 // that would increase the IR size and probably not needed for other users. 196 // For now, just concatenate and canonicalize the path here. 197 if (Filename.find(':') == 1) 198 Filepath = Filename; 199 else 200 Filepath = (Dir + "\\" + Filename).str(); 201 202 // Canonicalize the path. We have to do it textually because we may no longer 203 // have access the file in the filesystem. 204 // First, replace all slashes with backslashes. 205 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 206 207 // Remove all "\.\" with "\". 208 size_t Cursor = 0; 209 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 210 Filepath.erase(Cursor, 2); 211 212 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 213 // path should be well-formatted, e.g. start with a drive letter, etc. 214 Cursor = 0; 215 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 216 // Something's wrong if the path starts with "\..\", abort. 217 if (Cursor == 0) 218 break; 219 220 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 221 if (PrevSlash == std::string::npos) 222 // Something's wrong, abort. 223 break; 224 225 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 226 // The next ".." might be following the one we've just erased. 227 Cursor = PrevSlash; 228 } 229 230 // Remove all duplicate backslashes. 231 Cursor = 0; 232 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 233 Filepath.erase(Cursor, 1); 234 235 return Filepath; 236 } 237 238 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 239 StringRef FullPath = getFullFilepath(F); 240 unsigned NextId = FileIdMap.size() + 1; 241 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 242 if (Insertion.second) { 243 // We have to compute the full filepath and emit a .cv_file directive. 244 ArrayRef<uint8_t> ChecksumAsBytes; 245 FileChecksumKind CSKind = FileChecksumKind::None; 246 if (F->getChecksum()) { 247 std::string Checksum = fromHex(F->getChecksum()->Value); 248 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 249 memcpy(CKMem, Checksum.data(), Checksum.size()); 250 ChecksumAsBytes = ArrayRef<uint8_t>( 251 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 252 switch (F->getChecksum()->Kind) { 253 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 254 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 255 } 256 } 257 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 258 static_cast<unsigned>(CSKind)); 259 (void)Success; 260 assert(Success && ".cv_file directive failed"); 261 } 262 return Insertion.first->second; 263 } 264 265 CodeViewDebug::InlineSite & 266 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 267 const DISubprogram *Inlinee) { 268 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 269 InlineSite *Site = &SiteInsertion.first->second; 270 if (SiteInsertion.second) { 271 unsigned ParentFuncId = CurFn->FuncId; 272 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 273 ParentFuncId = 274 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 275 .SiteFuncId; 276 277 Site->SiteFuncId = NextFuncId++; 278 OS.EmitCVInlineSiteIdDirective( 279 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 280 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 281 Site->Inlinee = Inlinee; 282 InlinedSubprograms.insert(Inlinee); 283 getFuncIdForSubprogram(Inlinee); 284 } 285 return *Site; 286 } 287 288 static StringRef getPrettyScopeName(const DIScope *Scope) { 289 StringRef ScopeName = Scope->getName(); 290 if (!ScopeName.empty()) 291 return ScopeName; 292 293 switch (Scope->getTag()) { 294 case dwarf::DW_TAG_enumeration_type: 295 case dwarf::DW_TAG_class_type: 296 case dwarf::DW_TAG_structure_type: 297 case dwarf::DW_TAG_union_type: 298 return "<unnamed-tag>"; 299 case dwarf::DW_TAG_namespace: 300 return "`anonymous namespace'"; 301 } 302 303 return StringRef(); 304 } 305 306 static const DISubprogram *getQualifiedNameComponents( 307 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 308 const DISubprogram *ClosestSubprogram = nullptr; 309 while (Scope != nullptr) { 310 if (ClosestSubprogram == nullptr) 311 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 312 StringRef ScopeName = getPrettyScopeName(Scope); 313 if (!ScopeName.empty()) 314 QualifiedNameComponents.push_back(ScopeName); 315 Scope = Scope->getScope(); 316 } 317 return ClosestSubprogram; 318 } 319 320 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 321 StringRef TypeName) { 322 std::string FullyQualifiedName; 323 for (StringRef QualifiedNameComponent : 324 llvm::reverse(QualifiedNameComponents)) { 325 FullyQualifiedName.append(QualifiedNameComponent); 326 FullyQualifiedName.append("::"); 327 } 328 FullyQualifiedName.append(TypeName); 329 return FullyQualifiedName; 330 } 331 332 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 333 SmallVector<StringRef, 5> QualifiedNameComponents; 334 getQualifiedNameComponents(Scope, QualifiedNameComponents); 335 return getQualifiedName(QualifiedNameComponents, Name); 336 } 337 338 struct CodeViewDebug::TypeLoweringScope { 339 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 340 ~TypeLoweringScope() { 341 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 342 // inner TypeLoweringScopes don't attempt to emit deferred types. 343 if (CVD.TypeEmissionLevel == 1) 344 CVD.emitDeferredCompleteTypes(); 345 --CVD.TypeEmissionLevel; 346 } 347 CodeViewDebug &CVD; 348 }; 349 350 static std::string getFullyQualifiedName(const DIScope *Ty) { 351 const DIScope *Scope = Ty->getScope(); 352 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 353 } 354 355 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 356 // No scope means global scope and that uses the zero index. 357 if (!Scope || isa<DIFile>(Scope)) 358 return TypeIndex(); 359 360 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 361 362 // Check if we've already translated this scope. 363 auto I = TypeIndices.find({Scope, nullptr}); 364 if (I != TypeIndices.end()) 365 return I->second; 366 367 // Build the fully qualified name of the scope. 368 std::string ScopeName = getFullyQualifiedName(Scope); 369 StringIdRecord SID(TypeIndex(), ScopeName); 370 auto TI = TypeTable.writeLeafType(SID); 371 return recordTypeIndexForDINode(Scope, TI); 372 } 373 374 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 375 assert(SP); 376 377 // Check if we've already translated this subprogram. 378 auto I = TypeIndices.find({SP, nullptr}); 379 if (I != TypeIndices.end()) 380 return I->second; 381 382 // The display name includes function template arguments. Drop them to match 383 // MSVC. 384 StringRef DisplayName = SP->getName().split('<').first; 385 386 const DIScope *Scope = SP->getScope(); 387 TypeIndex TI; 388 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 389 // If the scope is a DICompositeType, then this must be a method. Member 390 // function types take some special handling, and require access to the 391 // subprogram. 392 TypeIndex ClassType = getTypeIndex(Class); 393 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 394 DisplayName); 395 TI = TypeTable.writeLeafType(MFuncId); 396 } else { 397 // Otherwise, this must be a free function. 398 TypeIndex ParentScope = getScopeIndex(Scope); 399 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 400 TI = TypeTable.writeLeafType(FuncId); 401 } 402 403 return recordTypeIndexForDINode(SP, TI); 404 } 405 406 static bool isNonTrivial(const DICompositeType *DCTy) { 407 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 408 } 409 410 static FunctionOptions 411 getFunctionOptions(const DISubroutineType *Ty, 412 const DICompositeType *ClassTy = nullptr, 413 StringRef SPName = StringRef("")) { 414 FunctionOptions FO = FunctionOptions::None; 415 const DIType *ReturnTy = nullptr; 416 if (auto TypeArray = Ty->getTypeArray()) { 417 if (TypeArray.size()) 418 ReturnTy = TypeArray[0]; 419 } 420 421 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 422 if (isNonTrivial(ReturnDCTy)) 423 FO |= FunctionOptions::CxxReturnUdt; 424 } 425 426 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 427 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 428 FO |= FunctionOptions::Constructor; 429 430 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 431 432 } 433 return FO; 434 } 435 436 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 437 const DICompositeType *Class) { 438 // Always use the method declaration as the key for the function type. The 439 // method declaration contains the this adjustment. 440 if (SP->getDeclaration()) 441 SP = SP->getDeclaration(); 442 assert(!SP->getDeclaration() && "should use declaration as key"); 443 444 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 445 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 446 auto I = TypeIndices.find({SP, Class}); 447 if (I != TypeIndices.end()) 448 return I->second; 449 450 // Make sure complete type info for the class is emitted *after* the member 451 // function type, as the complete class type is likely to reference this 452 // member function type. 453 TypeLoweringScope S(*this); 454 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 455 456 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 457 TypeIndex TI = lowerTypeMemberFunction( 458 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 459 return recordTypeIndexForDINode(SP, TI, Class); 460 } 461 462 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 463 TypeIndex TI, 464 const DIType *ClassTy) { 465 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 466 (void)InsertResult; 467 assert(InsertResult.second && "DINode was already assigned a type index"); 468 return TI; 469 } 470 471 unsigned CodeViewDebug::getPointerSizeInBytes() { 472 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 473 } 474 475 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 476 const LexicalScope *LS) { 477 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 478 // This variable was inlined. Associate it with the InlineSite. 479 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 480 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 481 Site.InlinedLocals.emplace_back(Var); 482 } else { 483 // This variable goes into the corresponding lexical scope. 484 ScopeVariables[LS].emplace_back(Var); 485 } 486 } 487 488 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 489 const DILocation *Loc) { 490 auto B = Locs.begin(), E = Locs.end(); 491 if (std::find(B, E, Loc) == E) 492 Locs.push_back(Loc); 493 } 494 495 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 496 const MachineFunction *MF) { 497 // Skip this instruction if it has the same location as the previous one. 498 if (!DL || DL == PrevInstLoc) 499 return; 500 501 const DIScope *Scope = DL.get()->getScope(); 502 if (!Scope) 503 return; 504 505 // Skip this line if it is longer than the maximum we can record. 506 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 507 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 508 LI.isNeverStepInto()) 509 return; 510 511 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 512 if (CI.getStartColumn() != DL.getCol()) 513 return; 514 515 if (!CurFn->HaveLineInfo) 516 CurFn->HaveLineInfo = true; 517 unsigned FileId = 0; 518 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 519 FileId = CurFn->LastFileId; 520 else 521 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 522 PrevInstLoc = DL; 523 524 unsigned FuncId = CurFn->FuncId; 525 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 526 const DILocation *Loc = DL.get(); 527 528 // If this location was actually inlined from somewhere else, give it the ID 529 // of the inline call site. 530 FuncId = 531 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 532 533 // Ensure we have links in the tree of inline call sites. 534 bool FirstLoc = true; 535 while ((SiteLoc = Loc->getInlinedAt())) { 536 InlineSite &Site = 537 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 538 if (!FirstLoc) 539 addLocIfNotPresent(Site.ChildSites, Loc); 540 FirstLoc = false; 541 Loc = SiteLoc; 542 } 543 addLocIfNotPresent(CurFn->ChildSites, Loc); 544 } 545 546 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 547 /*PrologueEnd=*/false, /*IsStmt=*/false, 548 DL->getFilename(), SMLoc()); 549 } 550 551 void CodeViewDebug::emitCodeViewMagicVersion() { 552 OS.EmitValueToAlignment(4); 553 OS.AddComment("Debug section magic"); 554 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 555 } 556 557 void CodeViewDebug::endModule() { 558 if (!Asm || !MMI->hasDebugInfo()) 559 return; 560 561 assert(Asm != nullptr); 562 563 // The COFF .debug$S section consists of several subsections, each starting 564 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 565 // of the payload followed by the payload itself. The subsections are 4-byte 566 // aligned. 567 568 // Use the generic .debug$S section, and make a subsection for all the inlined 569 // subprograms. 570 switchToDebugSectionForSymbol(nullptr); 571 572 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 573 emitCompilerInformation(); 574 endCVSubsection(CompilerInfo); 575 576 emitInlineeLinesSubsection(); 577 578 // Emit per-function debug information. 579 for (auto &P : FnDebugInfo) 580 if (!P.first->isDeclarationForLinker()) 581 emitDebugInfoForFunction(P.first, *P.second); 582 583 // Emit global variable debug information. 584 setCurrentSubprogram(nullptr); 585 emitDebugInfoForGlobals(); 586 587 // Emit retained types. 588 emitDebugInfoForRetainedTypes(); 589 590 // Switch back to the generic .debug$S section after potentially processing 591 // comdat symbol sections. 592 switchToDebugSectionForSymbol(nullptr); 593 594 // Emit UDT records for any types used by global variables. 595 if (!GlobalUDTs.empty()) { 596 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 597 emitDebugInfoForUDTs(GlobalUDTs); 598 endCVSubsection(SymbolsEnd); 599 } 600 601 // This subsection holds a file index to offset in string table table. 602 OS.AddComment("File index to string table offset subsection"); 603 OS.EmitCVFileChecksumsDirective(); 604 605 // This subsection holds the string table. 606 OS.AddComment("String table"); 607 OS.EmitCVStringTableDirective(); 608 609 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 610 // subsection in the generic .debug$S section at the end. There is no 611 // particular reason for this ordering other than to match MSVC. 612 emitBuildInfo(); 613 614 // Emit type information and hashes last, so that any types we translate while 615 // emitting function info are included. 616 emitTypeInformation(); 617 618 if (EmitDebugGlobalHashes) 619 emitTypeGlobalHashes(); 620 621 clear(); 622 } 623 624 static void 625 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 626 unsigned MaxFixedRecordLength = 0xF00) { 627 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 628 // after a fixed length portion of the record. The fixed length portion should 629 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 630 // overall record size is less than the maximum allowed. 631 SmallString<32> NullTerminatedString( 632 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 633 NullTerminatedString.push_back('\0'); 634 OS.EmitBytes(NullTerminatedString); 635 } 636 637 void CodeViewDebug::emitTypeInformation() { 638 if (TypeTable.empty()) 639 return; 640 641 // Start the .debug$T or .debug$P section with 0x4. 642 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 643 emitCodeViewMagicVersion(); 644 645 TypeTableCollection Table(TypeTable.records()); 646 TypeVisitorCallbackPipeline Pipeline; 647 648 // To emit type record using Codeview MCStreamer adapter 649 CVMCAdapter CVMCOS(OS, Table); 650 TypeRecordMapping typeMapping(CVMCOS); 651 Pipeline.addCallbackToPipeline(typeMapping); 652 653 Optional<TypeIndex> B = Table.getFirst(); 654 while (B) { 655 // This will fail if the record data is invalid. 656 CVType Record = Table.getType(*B); 657 658 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 659 660 if (E) { 661 logAllUnhandledErrors(std::move(E), errs(), "error: "); 662 llvm_unreachable("produced malformed type record"); 663 } 664 665 B = Table.getNext(*B); 666 } 667 } 668 669 void CodeViewDebug::emitTypeGlobalHashes() { 670 if (TypeTable.empty()) 671 return; 672 673 // Start the .debug$H section with the version and hash algorithm, currently 674 // hardcoded to version 0, SHA1. 675 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 676 677 OS.EmitValueToAlignment(4); 678 OS.AddComment("Magic"); 679 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 680 OS.AddComment("Section Version"); 681 OS.EmitIntValue(0, 2); 682 OS.AddComment("Hash Algorithm"); 683 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 684 685 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 686 for (const auto &GHR : TypeTable.hashes()) { 687 if (OS.isVerboseAsm()) { 688 // Emit an EOL-comment describing which TypeIndex this hash corresponds 689 // to, as well as the stringified SHA1 hash. 690 SmallString<32> Comment; 691 raw_svector_ostream CommentOS(Comment); 692 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 693 OS.AddComment(Comment); 694 ++TI; 695 } 696 assert(GHR.Hash.size() == 8); 697 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 698 GHR.Hash.size()); 699 OS.EmitBinaryData(S); 700 } 701 } 702 703 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 704 switch (DWLang) { 705 case dwarf::DW_LANG_C: 706 case dwarf::DW_LANG_C89: 707 case dwarf::DW_LANG_C99: 708 case dwarf::DW_LANG_C11: 709 case dwarf::DW_LANG_ObjC: 710 return SourceLanguage::C; 711 case dwarf::DW_LANG_C_plus_plus: 712 case dwarf::DW_LANG_C_plus_plus_03: 713 case dwarf::DW_LANG_C_plus_plus_11: 714 case dwarf::DW_LANG_C_plus_plus_14: 715 return SourceLanguage::Cpp; 716 case dwarf::DW_LANG_Fortran77: 717 case dwarf::DW_LANG_Fortran90: 718 case dwarf::DW_LANG_Fortran03: 719 case dwarf::DW_LANG_Fortran08: 720 return SourceLanguage::Fortran; 721 case dwarf::DW_LANG_Pascal83: 722 return SourceLanguage::Pascal; 723 case dwarf::DW_LANG_Cobol74: 724 case dwarf::DW_LANG_Cobol85: 725 return SourceLanguage::Cobol; 726 case dwarf::DW_LANG_Java: 727 return SourceLanguage::Java; 728 case dwarf::DW_LANG_D: 729 return SourceLanguage::D; 730 case dwarf::DW_LANG_Swift: 731 return SourceLanguage::Swift; 732 default: 733 // There's no CodeView representation for this language, and CV doesn't 734 // have an "unknown" option for the language field, so we'll use MASM, 735 // as it's very low level. 736 return SourceLanguage::Masm; 737 } 738 } 739 740 namespace { 741 struct Version { 742 int Part[4]; 743 }; 744 } // end anonymous namespace 745 746 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 747 // the version number. 748 static Version parseVersion(StringRef Name) { 749 Version V = {{0}}; 750 int N = 0; 751 for (const char C : Name) { 752 if (isdigit(C)) { 753 V.Part[N] *= 10; 754 V.Part[N] += C - '0'; 755 } else if (C == '.') { 756 ++N; 757 if (N >= 4) 758 return V; 759 } else if (N > 0) 760 return V; 761 } 762 return V; 763 } 764 765 void CodeViewDebug::emitCompilerInformation() { 766 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 767 uint32_t Flags = 0; 768 769 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 770 const MDNode *Node = *CUs->operands().begin(); 771 const auto *CU = cast<DICompileUnit>(Node); 772 773 // The low byte of the flags indicates the source language. 774 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 775 // TODO: Figure out which other flags need to be set. 776 777 OS.AddComment("Flags and language"); 778 OS.EmitIntValue(Flags, 4); 779 780 OS.AddComment("CPUType"); 781 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 782 783 StringRef CompilerVersion = CU->getProducer(); 784 Version FrontVer = parseVersion(CompilerVersion); 785 OS.AddComment("Frontend version"); 786 for (int N = 0; N < 4; ++N) 787 OS.EmitIntValue(FrontVer.Part[N], 2); 788 789 // Some Microsoft tools, like Binscope, expect a backend version number of at 790 // least 8.something, so we'll coerce the LLVM version into a form that 791 // guarantees it'll be big enough without really lying about the version. 792 int Major = 1000 * LLVM_VERSION_MAJOR + 793 10 * LLVM_VERSION_MINOR + 794 LLVM_VERSION_PATCH; 795 // Clamp it for builds that use unusually large version numbers. 796 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 797 Version BackVer = {{ Major, 0, 0, 0 }}; 798 OS.AddComment("Backend version"); 799 for (int N = 0; N < 4; ++N) 800 OS.EmitIntValue(BackVer.Part[N], 2); 801 802 OS.AddComment("Null-terminated compiler version string"); 803 emitNullTerminatedSymbolName(OS, CompilerVersion); 804 805 endSymbolRecord(CompilerEnd); 806 } 807 808 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 809 StringRef S) { 810 StringIdRecord SIR(TypeIndex(0x0), S); 811 return TypeTable.writeLeafType(SIR); 812 } 813 814 void CodeViewDebug::emitBuildInfo() { 815 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 816 // build info. The known prefix is: 817 // - Absolute path of current directory 818 // - Compiler path 819 // - Main source file path, relative to CWD or absolute 820 // - Type server PDB file 821 // - Canonical compiler command line 822 // If frontend and backend compilation are separated (think llc or LTO), it's 823 // not clear if the compiler path should refer to the executable for the 824 // frontend or the backend. Leave it blank for now. 825 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 826 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 827 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 828 const auto *CU = cast<DICompileUnit>(Node); 829 const DIFile *MainSourceFile = CU->getFile(); 830 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 831 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 832 BuildInfoArgs[BuildInfoRecord::SourceFile] = 833 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 834 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 835 // we implement /Zi type servers. 836 BuildInfoRecord BIR(BuildInfoArgs); 837 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 838 839 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 840 // from the module symbols into the type stream. 841 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 842 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 843 OS.AddComment("LF_BUILDINFO index"); 844 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 845 endSymbolRecord(BIEnd); 846 endCVSubsection(BISubsecEnd); 847 } 848 849 void CodeViewDebug::emitInlineeLinesSubsection() { 850 if (InlinedSubprograms.empty()) 851 return; 852 853 OS.AddComment("Inlinee lines subsection"); 854 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 855 856 // We emit the checksum info for files. This is used by debuggers to 857 // determine if a pdb matches the source before loading it. Visual Studio, 858 // for instance, will display a warning that the breakpoints are not valid if 859 // the pdb does not match the source. 860 OS.AddComment("Inlinee lines signature"); 861 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 862 863 for (const DISubprogram *SP : InlinedSubprograms) { 864 assert(TypeIndices.count({SP, nullptr})); 865 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 866 867 OS.AddBlankLine(); 868 unsigned FileId = maybeRecordFile(SP->getFile()); 869 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 870 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 871 OS.AddBlankLine(); 872 OS.AddComment("Type index of inlined function"); 873 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 874 OS.AddComment("Offset into filechecksum table"); 875 OS.EmitCVFileChecksumOffsetDirective(FileId); 876 OS.AddComment("Starting line number"); 877 OS.EmitIntValue(SP->getLine(), 4); 878 } 879 880 endCVSubsection(InlineEnd); 881 } 882 883 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 884 const DILocation *InlinedAt, 885 const InlineSite &Site) { 886 assert(TypeIndices.count({Site.Inlinee, nullptr})); 887 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 888 889 // SymbolRecord 890 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 891 892 OS.AddComment("PtrParent"); 893 OS.EmitIntValue(0, 4); 894 OS.AddComment("PtrEnd"); 895 OS.EmitIntValue(0, 4); 896 OS.AddComment("Inlinee type index"); 897 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 898 899 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 900 unsigned StartLineNum = Site.Inlinee->getLine(); 901 902 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 903 FI.Begin, FI.End); 904 905 endSymbolRecord(InlineEnd); 906 907 emitLocalVariableList(FI, Site.InlinedLocals); 908 909 // Recurse on child inlined call sites before closing the scope. 910 for (const DILocation *ChildSite : Site.ChildSites) { 911 auto I = FI.InlineSites.find(ChildSite); 912 assert(I != FI.InlineSites.end() && 913 "child site not in function inline site map"); 914 emitInlinedCallSite(FI, ChildSite, I->second); 915 } 916 917 // Close the scope. 918 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 919 } 920 921 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 922 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 923 // comdat key. A section may be comdat because of -ffunction-sections or 924 // because it is comdat in the IR. 925 MCSectionCOFF *GVSec = 926 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 927 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 928 929 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 930 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 931 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 932 933 OS.SwitchSection(DebugSec); 934 935 // Emit the magic version number if this is the first time we've switched to 936 // this section. 937 if (ComdatDebugSections.insert(DebugSec).second) 938 emitCodeViewMagicVersion(); 939 } 940 941 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 942 // The only supported thunk ordinal is currently the standard type. 943 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 944 FunctionInfo &FI, 945 const MCSymbol *Fn) { 946 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 947 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 948 949 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 950 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 951 952 // Emit S_THUNK32 953 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 954 OS.AddComment("PtrParent"); 955 OS.EmitIntValue(0, 4); 956 OS.AddComment("PtrEnd"); 957 OS.EmitIntValue(0, 4); 958 OS.AddComment("PtrNext"); 959 OS.EmitIntValue(0, 4); 960 OS.AddComment("Thunk section relative address"); 961 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 962 OS.AddComment("Thunk section index"); 963 OS.EmitCOFFSectionIndex(Fn); 964 OS.AddComment("Code size"); 965 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 966 OS.AddComment("Ordinal"); 967 OS.EmitIntValue(unsigned(ordinal), 1); 968 OS.AddComment("Function name"); 969 emitNullTerminatedSymbolName(OS, FuncName); 970 // Additional fields specific to the thunk ordinal would go here. 971 endSymbolRecord(ThunkRecordEnd); 972 973 // Local variables/inlined routines are purposely omitted here. The point of 974 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 975 976 // Emit S_PROC_ID_END 977 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 978 979 endCVSubsection(SymbolsEnd); 980 } 981 982 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 983 FunctionInfo &FI) { 984 // For each function there is a separate subsection which holds the PC to 985 // file:line table. 986 const MCSymbol *Fn = Asm->getSymbol(GV); 987 assert(Fn); 988 989 // Switch to the to a comdat section, if appropriate. 990 switchToDebugSectionForSymbol(Fn); 991 992 std::string FuncName; 993 auto *SP = GV->getSubprogram(); 994 assert(SP); 995 setCurrentSubprogram(SP); 996 997 if (SP->isThunk()) { 998 emitDebugInfoForThunk(GV, FI, Fn); 999 return; 1000 } 1001 1002 // If we have a display name, build the fully qualified name by walking the 1003 // chain of scopes. 1004 if (!SP->getName().empty()) 1005 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1006 1007 // If our DISubprogram name is empty, use the mangled name. 1008 if (FuncName.empty()) 1009 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 1010 1011 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1012 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1013 OS.EmitCVFPOData(Fn); 1014 1015 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1016 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1017 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1018 { 1019 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1020 : SymbolKind::S_GPROC32_ID; 1021 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1022 1023 // These fields are filled in by tools like CVPACK which run after the fact. 1024 OS.AddComment("PtrParent"); 1025 OS.EmitIntValue(0, 4); 1026 OS.AddComment("PtrEnd"); 1027 OS.EmitIntValue(0, 4); 1028 OS.AddComment("PtrNext"); 1029 OS.EmitIntValue(0, 4); 1030 // This is the important bit that tells the debugger where the function 1031 // code is located and what's its size: 1032 OS.AddComment("Code size"); 1033 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1034 OS.AddComment("Offset after prologue"); 1035 OS.EmitIntValue(0, 4); 1036 OS.AddComment("Offset before epilogue"); 1037 OS.EmitIntValue(0, 4); 1038 OS.AddComment("Function type index"); 1039 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1040 OS.AddComment("Function section relative address"); 1041 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1042 OS.AddComment("Function section index"); 1043 OS.EmitCOFFSectionIndex(Fn); 1044 OS.AddComment("Flags"); 1045 OS.EmitIntValue(0, 1); 1046 // Emit the function display name as a null-terminated string. 1047 OS.AddComment("Function name"); 1048 // Truncate the name so we won't overflow the record length field. 1049 emitNullTerminatedSymbolName(OS, FuncName); 1050 endSymbolRecord(ProcRecordEnd); 1051 1052 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1053 // Subtract out the CSR size since MSVC excludes that and we include it. 1054 OS.AddComment("FrameSize"); 1055 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1056 OS.AddComment("Padding"); 1057 OS.EmitIntValue(0, 4); 1058 OS.AddComment("Offset of padding"); 1059 OS.EmitIntValue(0, 4); 1060 OS.AddComment("Bytes of callee saved registers"); 1061 OS.EmitIntValue(FI.CSRSize, 4); 1062 OS.AddComment("Exception handler offset"); 1063 OS.EmitIntValue(0, 4); 1064 OS.AddComment("Exception handler section"); 1065 OS.EmitIntValue(0, 2); 1066 OS.AddComment("Flags (defines frame register)"); 1067 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1068 endSymbolRecord(FrameProcEnd); 1069 1070 emitLocalVariableList(FI, FI.Locals); 1071 emitGlobalVariableList(FI.Globals); 1072 emitLexicalBlockList(FI.ChildBlocks, FI); 1073 1074 // Emit inlined call site information. Only emit functions inlined directly 1075 // into the parent function. We'll emit the other sites recursively as part 1076 // of their parent inline site. 1077 for (const DILocation *InlinedAt : FI.ChildSites) { 1078 auto I = FI.InlineSites.find(InlinedAt); 1079 assert(I != FI.InlineSites.end() && 1080 "child site not in function inline site map"); 1081 emitInlinedCallSite(FI, InlinedAt, I->second); 1082 } 1083 1084 for (auto Annot : FI.Annotations) { 1085 MCSymbol *Label = Annot.first; 1086 MDTuple *Strs = cast<MDTuple>(Annot.second); 1087 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1088 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1089 // FIXME: Make sure we don't overflow the max record size. 1090 OS.EmitCOFFSectionIndex(Label); 1091 OS.EmitIntValue(Strs->getNumOperands(), 2); 1092 for (Metadata *MD : Strs->operands()) { 1093 // MDStrings are null terminated, so we can do EmitBytes and get the 1094 // nice .asciz directive. 1095 StringRef Str = cast<MDString>(MD)->getString(); 1096 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1097 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1098 } 1099 endSymbolRecord(AnnotEnd); 1100 } 1101 1102 for (auto HeapAllocSite : FI.HeapAllocSites) { 1103 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1104 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1105 const DIType *DITy = std::get<2>(HeapAllocSite); 1106 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1107 OS.AddComment("Call site offset"); 1108 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1109 OS.AddComment("Call site section index"); 1110 OS.EmitCOFFSectionIndex(BeginLabel); 1111 OS.AddComment("Call instruction length"); 1112 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1113 OS.AddComment("Type index"); 1114 OS.EmitIntValue(getCompleteTypeIndex(DITy).getIndex(), 4); 1115 endSymbolRecord(HeapAllocEnd); 1116 } 1117 1118 if (SP != nullptr) 1119 emitDebugInfoForUDTs(LocalUDTs); 1120 1121 // We're done with this function. 1122 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1123 } 1124 endCVSubsection(SymbolsEnd); 1125 1126 // We have an assembler directive that takes care of the whole line table. 1127 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1128 } 1129 1130 CodeViewDebug::LocalVarDefRange 1131 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1132 LocalVarDefRange DR; 1133 DR.InMemory = -1; 1134 DR.DataOffset = Offset; 1135 assert(DR.DataOffset == Offset && "truncation"); 1136 DR.IsSubfield = 0; 1137 DR.StructOffset = 0; 1138 DR.CVRegister = CVRegister; 1139 return DR; 1140 } 1141 1142 void CodeViewDebug::collectVariableInfoFromMFTable( 1143 DenseSet<InlinedEntity> &Processed) { 1144 const MachineFunction &MF = *Asm->MF; 1145 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1146 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1147 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1148 1149 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1150 if (!VI.Var) 1151 continue; 1152 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1153 "Expected inlined-at fields to agree"); 1154 1155 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1156 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1157 1158 // If variable scope is not found then skip this variable. 1159 if (!Scope) 1160 continue; 1161 1162 // If the variable has an attached offset expression, extract it. 1163 // FIXME: Try to handle DW_OP_deref as well. 1164 int64_t ExprOffset = 0; 1165 bool Deref = false; 1166 if (VI.Expr) { 1167 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1168 if (VI.Expr->getNumElements() == 1 && 1169 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1170 Deref = true; 1171 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1172 continue; 1173 } 1174 1175 // Get the frame register used and the offset. 1176 unsigned FrameReg = 0; 1177 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1178 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1179 1180 // Calculate the label ranges. 1181 LocalVarDefRange DefRange = 1182 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1183 1184 for (const InsnRange &Range : Scope->getRanges()) { 1185 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1186 const MCSymbol *End = getLabelAfterInsn(Range.second); 1187 End = End ? End : Asm->getFunctionEnd(); 1188 DefRange.Ranges.emplace_back(Begin, End); 1189 } 1190 1191 LocalVariable Var; 1192 Var.DIVar = VI.Var; 1193 Var.DefRanges.emplace_back(std::move(DefRange)); 1194 if (Deref) 1195 Var.UseReferenceType = true; 1196 1197 recordLocalVariable(std::move(Var), Scope); 1198 } 1199 } 1200 1201 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1202 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1203 } 1204 1205 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1206 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1207 } 1208 1209 void CodeViewDebug::calculateRanges( 1210 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1211 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1212 1213 // Calculate the definition ranges. 1214 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1215 const auto &Entry = *I; 1216 if (!Entry.isDbgValue()) 1217 continue; 1218 const MachineInstr *DVInst = Entry.getInstr(); 1219 assert(DVInst->isDebugValue() && "Invalid History entry"); 1220 // FIXME: Find a way to represent constant variables, since they are 1221 // relatively common. 1222 Optional<DbgVariableLocation> Location = 1223 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1224 if (!Location) 1225 continue; 1226 1227 // CodeView can only express variables in register and variables in memory 1228 // at a constant offset from a register. However, for variables passed 1229 // indirectly by pointer, it is common for that pointer to be spilled to a 1230 // stack location. For the special case of one offseted load followed by a 1231 // zero offset load (a pointer spilled to the stack), we change the type of 1232 // the local variable from a value type to a reference type. This tricks the 1233 // debugger into doing the load for us. 1234 if (Var.UseReferenceType) { 1235 // We're using a reference type. Drop the last zero offset load. 1236 if (canUseReferenceType(*Location)) 1237 Location->LoadChain.pop_back(); 1238 else 1239 continue; 1240 } else if (needsReferenceType(*Location)) { 1241 // This location can't be expressed without switching to a reference type. 1242 // Start over using that. 1243 Var.UseReferenceType = true; 1244 Var.DefRanges.clear(); 1245 calculateRanges(Var, Entries); 1246 return; 1247 } 1248 1249 // We can only handle a register or an offseted load of a register. 1250 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1251 continue; 1252 { 1253 LocalVarDefRange DR; 1254 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1255 DR.InMemory = !Location->LoadChain.empty(); 1256 DR.DataOffset = 1257 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1258 if (Location->FragmentInfo) { 1259 DR.IsSubfield = true; 1260 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1261 } else { 1262 DR.IsSubfield = false; 1263 DR.StructOffset = 0; 1264 } 1265 1266 if (Var.DefRanges.empty() || 1267 Var.DefRanges.back().isDifferentLocation(DR)) { 1268 Var.DefRanges.emplace_back(std::move(DR)); 1269 } 1270 } 1271 1272 // Compute the label range. 1273 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1274 const MCSymbol *End; 1275 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1276 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1277 End = EndingEntry.isDbgValue() 1278 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1279 : getLabelAfterInsn(EndingEntry.getInstr()); 1280 } else 1281 End = Asm->getFunctionEnd(); 1282 1283 // If the last range end is our begin, just extend the last range. 1284 // Otherwise make a new range. 1285 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1286 Var.DefRanges.back().Ranges; 1287 if (!R.empty() && R.back().second == Begin) 1288 R.back().second = End; 1289 else 1290 R.emplace_back(Begin, End); 1291 1292 // FIXME: Do more range combining. 1293 } 1294 } 1295 1296 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1297 DenseSet<InlinedEntity> Processed; 1298 // Grab the variable info that was squirreled away in the MMI side-table. 1299 collectVariableInfoFromMFTable(Processed); 1300 1301 for (const auto &I : DbgValues) { 1302 InlinedEntity IV = I.first; 1303 if (Processed.count(IV)) 1304 continue; 1305 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1306 const DILocation *InlinedAt = IV.second; 1307 1308 // Instruction ranges, specifying where IV is accessible. 1309 const auto &Entries = I.second; 1310 1311 LexicalScope *Scope = nullptr; 1312 if (InlinedAt) 1313 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1314 else 1315 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1316 // If variable scope is not found then skip this variable. 1317 if (!Scope) 1318 continue; 1319 1320 LocalVariable Var; 1321 Var.DIVar = DIVar; 1322 1323 calculateRanges(Var, Entries); 1324 recordLocalVariable(std::move(Var), Scope); 1325 } 1326 } 1327 1328 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1329 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1330 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1331 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1332 const Function &GV = MF->getFunction(); 1333 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1334 assert(Insertion.second && "function already has info"); 1335 CurFn = Insertion.first->second.get(); 1336 CurFn->FuncId = NextFuncId++; 1337 CurFn->Begin = Asm->getFunctionBegin(); 1338 1339 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1340 // callee-saved registers were used. For targets that don't use a PUSH 1341 // instruction (AArch64), this will be zero. 1342 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1343 CurFn->FrameSize = MFI.getStackSize(); 1344 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1345 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1346 1347 // For this function S_FRAMEPROC record, figure out which codeview register 1348 // will be the frame pointer. 1349 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1350 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1351 if (CurFn->FrameSize > 0) { 1352 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1353 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1354 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1355 } else { 1356 // If there is an FP, parameters are always relative to it. 1357 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1358 if (CurFn->HasStackRealignment) { 1359 // If the stack needs realignment, locals are relative to SP or VFRAME. 1360 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1361 } else { 1362 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1363 // other stack adjustments. 1364 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1365 } 1366 } 1367 } 1368 1369 // Compute other frame procedure options. 1370 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1371 if (MFI.hasVarSizedObjects()) 1372 FPO |= FrameProcedureOptions::HasAlloca; 1373 if (MF->exposesReturnsTwice()) 1374 FPO |= FrameProcedureOptions::HasSetJmp; 1375 // FIXME: Set HasLongJmp if we ever track that info. 1376 if (MF->hasInlineAsm()) 1377 FPO |= FrameProcedureOptions::HasInlineAssembly; 1378 if (GV.hasPersonalityFn()) { 1379 if (isAsynchronousEHPersonality( 1380 classifyEHPersonality(GV.getPersonalityFn()))) 1381 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1382 else 1383 FPO |= FrameProcedureOptions::HasExceptionHandling; 1384 } 1385 if (GV.hasFnAttribute(Attribute::InlineHint)) 1386 FPO |= FrameProcedureOptions::MarkedInline; 1387 if (GV.hasFnAttribute(Attribute::Naked)) 1388 FPO |= FrameProcedureOptions::Naked; 1389 if (MFI.hasStackProtectorIndex()) 1390 FPO |= FrameProcedureOptions::SecurityChecks; 1391 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1392 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1393 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1394 !GV.hasOptSize() && !GV.hasOptNone()) 1395 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1396 // FIXME: Set GuardCfg when it is implemented. 1397 CurFn->FrameProcOpts = FPO; 1398 1399 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1400 1401 // Find the end of the function prolog. First known non-DBG_VALUE and 1402 // non-frame setup location marks the beginning of the function body. 1403 // FIXME: is there a simpler a way to do this? Can we just search 1404 // for the first instruction of the function, not the last of the prolog? 1405 DebugLoc PrologEndLoc; 1406 bool EmptyPrologue = true; 1407 for (const auto &MBB : *MF) { 1408 for (const auto &MI : MBB) { 1409 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1410 MI.getDebugLoc()) { 1411 PrologEndLoc = MI.getDebugLoc(); 1412 break; 1413 } else if (!MI.isMetaInstruction()) { 1414 EmptyPrologue = false; 1415 } 1416 } 1417 } 1418 1419 // Record beginning of function if we have a non-empty prologue. 1420 if (PrologEndLoc && !EmptyPrologue) { 1421 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1422 maybeRecordLocation(FnStartDL, MF); 1423 } 1424 1425 // Find heap alloc sites and emit labels around them. 1426 for (const auto &MBB : *MF) { 1427 for (const auto &MI : MBB) { 1428 if (MI.getHeapAllocMarker()) { 1429 requestLabelBeforeInsn(&MI); 1430 requestLabelAfterInsn(&MI); 1431 } 1432 } 1433 } 1434 } 1435 1436 static bool shouldEmitUdt(const DIType *T) { 1437 if (!T) 1438 return false; 1439 1440 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1441 if (T->getTag() == dwarf::DW_TAG_typedef) { 1442 if (DIScope *Scope = T->getScope()) { 1443 switch (Scope->getTag()) { 1444 case dwarf::DW_TAG_structure_type: 1445 case dwarf::DW_TAG_class_type: 1446 case dwarf::DW_TAG_union_type: 1447 return false; 1448 } 1449 } 1450 } 1451 1452 while (true) { 1453 if (!T || T->isForwardDecl()) 1454 return false; 1455 1456 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1457 if (!DT) 1458 return true; 1459 T = DT->getBaseType(); 1460 } 1461 return true; 1462 } 1463 1464 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1465 // Don't record empty UDTs. 1466 if (Ty->getName().empty()) 1467 return; 1468 if (!shouldEmitUdt(Ty)) 1469 return; 1470 1471 SmallVector<StringRef, 5> QualifiedNameComponents; 1472 const DISubprogram *ClosestSubprogram = 1473 getQualifiedNameComponents(Ty->getScope(), QualifiedNameComponents); 1474 1475 std::string FullyQualifiedName = 1476 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1477 1478 if (ClosestSubprogram == nullptr) { 1479 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1480 } else if (ClosestSubprogram == CurrentSubprogram) { 1481 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1482 } 1483 1484 // TODO: What if the ClosestSubprogram is neither null or the current 1485 // subprogram? Currently, the UDT just gets dropped on the floor. 1486 // 1487 // The current behavior is not desirable. To get maximal fidelity, we would 1488 // need to perform all type translation before beginning emission of .debug$S 1489 // and then make LocalUDTs a member of FunctionInfo 1490 } 1491 1492 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1493 // Generic dispatch for lowering an unknown type. 1494 switch (Ty->getTag()) { 1495 case dwarf::DW_TAG_array_type: 1496 return lowerTypeArray(cast<DICompositeType>(Ty)); 1497 case dwarf::DW_TAG_typedef: 1498 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1499 case dwarf::DW_TAG_base_type: 1500 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1501 case dwarf::DW_TAG_pointer_type: 1502 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1503 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1504 LLVM_FALLTHROUGH; 1505 case dwarf::DW_TAG_reference_type: 1506 case dwarf::DW_TAG_rvalue_reference_type: 1507 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1508 case dwarf::DW_TAG_ptr_to_member_type: 1509 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1510 case dwarf::DW_TAG_restrict_type: 1511 case dwarf::DW_TAG_const_type: 1512 case dwarf::DW_TAG_volatile_type: 1513 // TODO: add support for DW_TAG_atomic_type here 1514 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1515 case dwarf::DW_TAG_subroutine_type: 1516 if (ClassTy) { 1517 // The member function type of a member function pointer has no 1518 // ThisAdjustment. 1519 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1520 /*ThisAdjustment=*/0, 1521 /*IsStaticMethod=*/false); 1522 } 1523 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1524 case dwarf::DW_TAG_enumeration_type: 1525 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1526 case dwarf::DW_TAG_class_type: 1527 case dwarf::DW_TAG_structure_type: 1528 return lowerTypeClass(cast<DICompositeType>(Ty)); 1529 case dwarf::DW_TAG_union_type: 1530 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1531 case dwarf::DW_TAG_unspecified_type: 1532 if (Ty->getName() == "decltype(nullptr)") 1533 return TypeIndex::NullptrT(); 1534 return TypeIndex::None(); 1535 default: 1536 // Use the null type index. 1537 return TypeIndex(); 1538 } 1539 } 1540 1541 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1542 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1543 StringRef TypeName = Ty->getName(); 1544 1545 addToUDTs(Ty); 1546 1547 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1548 TypeName == "HRESULT") 1549 return TypeIndex(SimpleTypeKind::HResult); 1550 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1551 TypeName == "wchar_t") 1552 return TypeIndex(SimpleTypeKind::WideCharacter); 1553 1554 return UnderlyingTypeIndex; 1555 } 1556 1557 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1558 const DIType *ElementType = Ty->getBaseType(); 1559 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1560 // IndexType is size_t, which depends on the bitness of the target. 1561 TypeIndex IndexType = getPointerSizeInBytes() == 8 1562 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1563 : TypeIndex(SimpleTypeKind::UInt32Long); 1564 1565 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1566 1567 // Add subranges to array type. 1568 DINodeArray Elements = Ty->getElements(); 1569 for (int i = Elements.size() - 1; i >= 0; --i) { 1570 const DINode *Element = Elements[i]; 1571 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1572 1573 const DISubrange *Subrange = cast<DISubrange>(Element); 1574 assert(Subrange->getLowerBound() == 0 && 1575 "codeview doesn't support subranges with lower bounds"); 1576 int64_t Count = -1; 1577 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1578 Count = CI->getSExtValue(); 1579 1580 // Forward declarations of arrays without a size and VLAs use a count of -1. 1581 // Emit a count of zero in these cases to match what MSVC does for arrays 1582 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1583 // should do for them even if we could distinguish them. 1584 if (Count == -1) 1585 Count = 0; 1586 1587 // Update the element size and element type index for subsequent subranges. 1588 ElementSize *= Count; 1589 1590 // If this is the outermost array, use the size from the array. It will be 1591 // more accurate if we had a VLA or an incomplete element type size. 1592 uint64_t ArraySize = 1593 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1594 1595 StringRef Name = (i == 0) ? Ty->getName() : ""; 1596 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1597 ElementTypeIndex = TypeTable.writeLeafType(AR); 1598 } 1599 1600 return ElementTypeIndex; 1601 } 1602 1603 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1604 TypeIndex Index; 1605 dwarf::TypeKind Kind; 1606 uint32_t ByteSize; 1607 1608 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1609 ByteSize = Ty->getSizeInBits() / 8; 1610 1611 SimpleTypeKind STK = SimpleTypeKind::None; 1612 switch (Kind) { 1613 case dwarf::DW_ATE_address: 1614 // FIXME: Translate 1615 break; 1616 case dwarf::DW_ATE_boolean: 1617 switch (ByteSize) { 1618 case 1: STK = SimpleTypeKind::Boolean8; break; 1619 case 2: STK = SimpleTypeKind::Boolean16; break; 1620 case 4: STK = SimpleTypeKind::Boolean32; break; 1621 case 8: STK = SimpleTypeKind::Boolean64; break; 1622 case 16: STK = SimpleTypeKind::Boolean128; break; 1623 } 1624 break; 1625 case dwarf::DW_ATE_complex_float: 1626 switch (ByteSize) { 1627 case 2: STK = SimpleTypeKind::Complex16; break; 1628 case 4: STK = SimpleTypeKind::Complex32; break; 1629 case 8: STK = SimpleTypeKind::Complex64; break; 1630 case 10: STK = SimpleTypeKind::Complex80; break; 1631 case 16: STK = SimpleTypeKind::Complex128; break; 1632 } 1633 break; 1634 case dwarf::DW_ATE_float: 1635 switch (ByteSize) { 1636 case 2: STK = SimpleTypeKind::Float16; break; 1637 case 4: STK = SimpleTypeKind::Float32; break; 1638 case 6: STK = SimpleTypeKind::Float48; break; 1639 case 8: STK = SimpleTypeKind::Float64; break; 1640 case 10: STK = SimpleTypeKind::Float80; break; 1641 case 16: STK = SimpleTypeKind::Float128; break; 1642 } 1643 break; 1644 case dwarf::DW_ATE_signed: 1645 switch (ByteSize) { 1646 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1647 case 2: STK = SimpleTypeKind::Int16Short; break; 1648 case 4: STK = SimpleTypeKind::Int32; break; 1649 case 8: STK = SimpleTypeKind::Int64Quad; break; 1650 case 16: STK = SimpleTypeKind::Int128Oct; break; 1651 } 1652 break; 1653 case dwarf::DW_ATE_unsigned: 1654 switch (ByteSize) { 1655 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1656 case 2: STK = SimpleTypeKind::UInt16Short; break; 1657 case 4: STK = SimpleTypeKind::UInt32; break; 1658 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1659 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1660 } 1661 break; 1662 case dwarf::DW_ATE_UTF: 1663 switch (ByteSize) { 1664 case 2: STK = SimpleTypeKind::Character16; break; 1665 case 4: STK = SimpleTypeKind::Character32; break; 1666 } 1667 break; 1668 case dwarf::DW_ATE_signed_char: 1669 if (ByteSize == 1) 1670 STK = SimpleTypeKind::SignedCharacter; 1671 break; 1672 case dwarf::DW_ATE_unsigned_char: 1673 if (ByteSize == 1) 1674 STK = SimpleTypeKind::UnsignedCharacter; 1675 break; 1676 default: 1677 break; 1678 } 1679 1680 // Apply some fixups based on the source-level type name. 1681 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1682 STK = SimpleTypeKind::Int32Long; 1683 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1684 STK = SimpleTypeKind::UInt32Long; 1685 if (STK == SimpleTypeKind::UInt16Short && 1686 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1687 STK = SimpleTypeKind::WideCharacter; 1688 if ((STK == SimpleTypeKind::SignedCharacter || 1689 STK == SimpleTypeKind::UnsignedCharacter) && 1690 Ty->getName() == "char") 1691 STK = SimpleTypeKind::NarrowCharacter; 1692 1693 return TypeIndex(STK); 1694 } 1695 1696 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1697 PointerOptions PO) { 1698 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1699 1700 // Pointers to simple types without any options can use SimpleTypeMode, rather 1701 // than having a dedicated pointer type record. 1702 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1703 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1704 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1705 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1706 ? SimpleTypeMode::NearPointer64 1707 : SimpleTypeMode::NearPointer32; 1708 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1709 } 1710 1711 PointerKind PK = 1712 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1713 PointerMode PM = PointerMode::Pointer; 1714 switch (Ty->getTag()) { 1715 default: llvm_unreachable("not a pointer tag type"); 1716 case dwarf::DW_TAG_pointer_type: 1717 PM = PointerMode::Pointer; 1718 break; 1719 case dwarf::DW_TAG_reference_type: 1720 PM = PointerMode::LValueReference; 1721 break; 1722 case dwarf::DW_TAG_rvalue_reference_type: 1723 PM = PointerMode::RValueReference; 1724 break; 1725 } 1726 1727 if (Ty->isObjectPointer()) 1728 PO |= PointerOptions::Const; 1729 1730 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1731 return TypeTable.writeLeafType(PR); 1732 } 1733 1734 static PointerToMemberRepresentation 1735 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1736 // SizeInBytes being zero generally implies that the member pointer type was 1737 // incomplete, which can happen if it is part of a function prototype. In this 1738 // case, use the unknown model instead of the general model. 1739 if (IsPMF) { 1740 switch (Flags & DINode::FlagPtrToMemberRep) { 1741 case 0: 1742 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1743 : PointerToMemberRepresentation::GeneralFunction; 1744 case DINode::FlagSingleInheritance: 1745 return PointerToMemberRepresentation::SingleInheritanceFunction; 1746 case DINode::FlagMultipleInheritance: 1747 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1748 case DINode::FlagVirtualInheritance: 1749 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1750 } 1751 } else { 1752 switch (Flags & DINode::FlagPtrToMemberRep) { 1753 case 0: 1754 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1755 : PointerToMemberRepresentation::GeneralData; 1756 case DINode::FlagSingleInheritance: 1757 return PointerToMemberRepresentation::SingleInheritanceData; 1758 case DINode::FlagMultipleInheritance: 1759 return PointerToMemberRepresentation::MultipleInheritanceData; 1760 case DINode::FlagVirtualInheritance: 1761 return PointerToMemberRepresentation::VirtualInheritanceData; 1762 } 1763 } 1764 llvm_unreachable("invalid ptr to member representation"); 1765 } 1766 1767 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1768 PointerOptions PO) { 1769 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1770 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1771 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1772 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1773 : PointerKind::Near32; 1774 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1775 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1776 : PointerMode::PointerToDataMember; 1777 1778 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1779 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1780 MemberPointerInfo MPI( 1781 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1782 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1783 return TypeTable.writeLeafType(PR); 1784 } 1785 1786 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1787 /// have a translation, use the NearC convention. 1788 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1789 switch (DwarfCC) { 1790 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1791 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1792 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1793 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1794 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1795 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1796 } 1797 return CallingConvention::NearC; 1798 } 1799 1800 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1801 ModifierOptions Mods = ModifierOptions::None; 1802 PointerOptions PO = PointerOptions::None; 1803 bool IsModifier = true; 1804 const DIType *BaseTy = Ty; 1805 while (IsModifier && BaseTy) { 1806 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1807 switch (BaseTy->getTag()) { 1808 case dwarf::DW_TAG_const_type: 1809 Mods |= ModifierOptions::Const; 1810 PO |= PointerOptions::Const; 1811 break; 1812 case dwarf::DW_TAG_volatile_type: 1813 Mods |= ModifierOptions::Volatile; 1814 PO |= PointerOptions::Volatile; 1815 break; 1816 case dwarf::DW_TAG_restrict_type: 1817 // Only pointer types be marked with __restrict. There is no known flag 1818 // for __restrict in LF_MODIFIER records. 1819 PO |= PointerOptions::Restrict; 1820 break; 1821 default: 1822 IsModifier = false; 1823 break; 1824 } 1825 if (IsModifier) 1826 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1827 } 1828 1829 // Check if the inner type will use an LF_POINTER record. If so, the 1830 // qualifiers will go in the LF_POINTER record. This comes up for types like 1831 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1832 // char *'. 1833 if (BaseTy) { 1834 switch (BaseTy->getTag()) { 1835 case dwarf::DW_TAG_pointer_type: 1836 case dwarf::DW_TAG_reference_type: 1837 case dwarf::DW_TAG_rvalue_reference_type: 1838 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1839 case dwarf::DW_TAG_ptr_to_member_type: 1840 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1841 default: 1842 break; 1843 } 1844 } 1845 1846 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1847 1848 // Return the base type index if there aren't any modifiers. For example, the 1849 // metadata could contain restrict wrappers around non-pointer types. 1850 if (Mods == ModifierOptions::None) 1851 return ModifiedTI; 1852 1853 ModifierRecord MR(ModifiedTI, Mods); 1854 return TypeTable.writeLeafType(MR); 1855 } 1856 1857 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1858 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1859 for (const DIType *ArgType : Ty->getTypeArray()) 1860 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1861 1862 // MSVC uses type none for variadic argument. 1863 if (ReturnAndArgTypeIndices.size() > 1 && 1864 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1865 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1866 } 1867 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1868 ArrayRef<TypeIndex> ArgTypeIndices = None; 1869 if (!ReturnAndArgTypeIndices.empty()) { 1870 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1871 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1872 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1873 } 1874 1875 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1876 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1877 1878 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1879 1880 FunctionOptions FO = getFunctionOptions(Ty); 1881 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1882 ArgListIndex); 1883 return TypeTable.writeLeafType(Procedure); 1884 } 1885 1886 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1887 const DIType *ClassTy, 1888 int ThisAdjustment, 1889 bool IsStaticMethod, 1890 FunctionOptions FO) { 1891 // Lower the containing class type. 1892 TypeIndex ClassType = getTypeIndex(ClassTy); 1893 1894 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1895 1896 unsigned Index = 0; 1897 SmallVector<TypeIndex, 8> ArgTypeIndices; 1898 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1899 if (ReturnAndArgs.size() > Index) { 1900 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1901 } 1902 1903 // If the first argument is a pointer type and this isn't a static method, 1904 // treat it as the special 'this' parameter, which is encoded separately from 1905 // the arguments. 1906 TypeIndex ThisTypeIndex; 1907 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1908 if (const DIDerivedType *PtrTy = 1909 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1910 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1911 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1912 Index++; 1913 } 1914 } 1915 } 1916 1917 while (Index < ReturnAndArgs.size()) 1918 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1919 1920 // MSVC uses type none for variadic argument. 1921 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1922 ArgTypeIndices.back() = TypeIndex::None(); 1923 1924 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1925 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1926 1927 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1928 1929 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1930 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1931 return TypeTable.writeLeafType(MFR); 1932 } 1933 1934 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1935 unsigned VSlotCount = 1936 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1937 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1938 1939 VFTableShapeRecord VFTSR(Slots); 1940 return TypeTable.writeLeafType(VFTSR); 1941 } 1942 1943 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1944 switch (Flags & DINode::FlagAccessibility) { 1945 case DINode::FlagPrivate: return MemberAccess::Private; 1946 case DINode::FlagPublic: return MemberAccess::Public; 1947 case DINode::FlagProtected: return MemberAccess::Protected; 1948 case 0: 1949 // If there was no explicit access control, provide the default for the tag. 1950 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1951 : MemberAccess::Public; 1952 } 1953 llvm_unreachable("access flags are exclusive"); 1954 } 1955 1956 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1957 if (SP->isArtificial()) 1958 return MethodOptions::CompilerGenerated; 1959 1960 // FIXME: Handle other MethodOptions. 1961 1962 return MethodOptions::None; 1963 } 1964 1965 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1966 bool Introduced) { 1967 if (SP->getFlags() & DINode::FlagStaticMember) 1968 return MethodKind::Static; 1969 1970 switch (SP->getVirtuality()) { 1971 case dwarf::DW_VIRTUALITY_none: 1972 break; 1973 case dwarf::DW_VIRTUALITY_virtual: 1974 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1975 case dwarf::DW_VIRTUALITY_pure_virtual: 1976 return Introduced ? MethodKind::PureIntroducingVirtual 1977 : MethodKind::PureVirtual; 1978 default: 1979 llvm_unreachable("unhandled virtuality case"); 1980 } 1981 1982 return MethodKind::Vanilla; 1983 } 1984 1985 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1986 switch (Ty->getTag()) { 1987 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1988 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1989 } 1990 llvm_unreachable("unexpected tag"); 1991 } 1992 1993 /// Return ClassOptions that should be present on both the forward declaration 1994 /// and the defintion of a tag type. 1995 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1996 ClassOptions CO = ClassOptions::None; 1997 1998 // MSVC always sets this flag, even for local types. Clang doesn't always 1999 // appear to give every type a linkage name, which may be problematic for us. 2000 // FIXME: Investigate the consequences of not following them here. 2001 if (!Ty->getIdentifier().empty()) 2002 CO |= ClassOptions::HasUniqueName; 2003 2004 // Put the Nested flag on a type if it appears immediately inside a tag type. 2005 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2006 // here. That flag is only set on definitions, and not forward declarations. 2007 const DIScope *ImmediateScope = Ty->getScope(); 2008 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2009 CO |= ClassOptions::Nested; 2010 2011 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2012 // type only when it has an immediate function scope. Clang never puts enums 2013 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2014 // always in function, class, or file scopes. 2015 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2016 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2017 CO |= ClassOptions::Scoped; 2018 } else { 2019 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2020 Scope = Scope->getScope()) { 2021 if (isa<DISubprogram>(Scope)) { 2022 CO |= ClassOptions::Scoped; 2023 break; 2024 } 2025 } 2026 } 2027 2028 return CO; 2029 } 2030 2031 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2032 switch (Ty->getTag()) { 2033 case dwarf::DW_TAG_class_type: 2034 case dwarf::DW_TAG_structure_type: 2035 case dwarf::DW_TAG_union_type: 2036 case dwarf::DW_TAG_enumeration_type: 2037 break; 2038 default: 2039 return; 2040 } 2041 2042 if (const auto *File = Ty->getFile()) { 2043 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2044 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2045 2046 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2047 TypeTable.writeLeafType(USLR); 2048 } 2049 } 2050 2051 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2052 ClassOptions CO = getCommonClassOptions(Ty); 2053 TypeIndex FTI; 2054 unsigned EnumeratorCount = 0; 2055 2056 if (Ty->isForwardDecl()) { 2057 CO |= ClassOptions::ForwardReference; 2058 } else { 2059 ContinuationRecordBuilder ContinuationBuilder; 2060 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2061 for (const DINode *Element : Ty->getElements()) { 2062 // We assume that the frontend provides all members in source declaration 2063 // order, which is what MSVC does. 2064 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2065 EnumeratorRecord ER(MemberAccess::Public, 2066 APSInt::getUnsigned(Enumerator->getValue()), 2067 Enumerator->getName()); 2068 ContinuationBuilder.writeMemberType(ER); 2069 EnumeratorCount++; 2070 } 2071 } 2072 FTI = TypeTable.insertRecord(ContinuationBuilder); 2073 } 2074 2075 std::string FullName = getFullyQualifiedName(Ty); 2076 2077 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2078 getTypeIndex(Ty->getBaseType())); 2079 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2080 2081 addUDTSrcLine(Ty, EnumTI); 2082 2083 return EnumTI; 2084 } 2085 2086 //===----------------------------------------------------------------------===// 2087 // ClassInfo 2088 //===----------------------------------------------------------------------===// 2089 2090 struct llvm::ClassInfo { 2091 struct MemberInfo { 2092 const DIDerivedType *MemberTypeNode; 2093 uint64_t BaseOffset; 2094 }; 2095 // [MemberInfo] 2096 using MemberList = std::vector<MemberInfo>; 2097 2098 using MethodsList = TinyPtrVector<const DISubprogram *>; 2099 // MethodName -> MethodsList 2100 using MethodsMap = MapVector<MDString *, MethodsList>; 2101 2102 /// Base classes. 2103 std::vector<const DIDerivedType *> Inheritance; 2104 2105 /// Direct members. 2106 MemberList Members; 2107 // Direct overloaded methods gathered by name. 2108 MethodsMap Methods; 2109 2110 TypeIndex VShapeTI; 2111 2112 std::vector<const DIType *> NestedTypes; 2113 }; 2114 2115 void CodeViewDebug::clear() { 2116 assert(CurFn == nullptr); 2117 FileIdMap.clear(); 2118 FnDebugInfo.clear(); 2119 FileToFilepathMap.clear(); 2120 LocalUDTs.clear(); 2121 GlobalUDTs.clear(); 2122 TypeIndices.clear(); 2123 CompleteTypeIndices.clear(); 2124 ScopeGlobals.clear(); 2125 } 2126 2127 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2128 const DIDerivedType *DDTy) { 2129 if (!DDTy->getName().empty()) { 2130 Info.Members.push_back({DDTy, 0}); 2131 return; 2132 } 2133 2134 // An unnamed member may represent a nested struct or union. Attempt to 2135 // interpret the unnamed member as a DICompositeType possibly wrapped in 2136 // qualifier types. Add all the indirect fields to the current record if that 2137 // succeeds, and drop the member if that fails. 2138 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2139 uint64_t Offset = DDTy->getOffsetInBits(); 2140 const DIType *Ty = DDTy->getBaseType(); 2141 bool FullyResolved = false; 2142 while (!FullyResolved) { 2143 switch (Ty->getTag()) { 2144 case dwarf::DW_TAG_const_type: 2145 case dwarf::DW_TAG_volatile_type: 2146 // FIXME: we should apply the qualifier types to the indirect fields 2147 // rather than dropping them. 2148 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2149 break; 2150 default: 2151 FullyResolved = true; 2152 break; 2153 } 2154 } 2155 2156 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2157 if (!DCTy) 2158 return; 2159 2160 ClassInfo NestedInfo = collectClassInfo(DCTy); 2161 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2162 Info.Members.push_back( 2163 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2164 } 2165 2166 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2167 ClassInfo Info; 2168 // Add elements to structure type. 2169 DINodeArray Elements = Ty->getElements(); 2170 for (auto *Element : Elements) { 2171 // We assume that the frontend provides all members in source declaration 2172 // order, which is what MSVC does. 2173 if (!Element) 2174 continue; 2175 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2176 Info.Methods[SP->getRawName()].push_back(SP); 2177 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2178 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2179 collectMemberInfo(Info, DDTy); 2180 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2181 Info.Inheritance.push_back(DDTy); 2182 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2183 DDTy->getName() == "__vtbl_ptr_type") { 2184 Info.VShapeTI = getTypeIndex(DDTy); 2185 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2186 Info.NestedTypes.push_back(DDTy); 2187 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2188 // Ignore friend members. It appears that MSVC emitted info about 2189 // friends in the past, but modern versions do not. 2190 } 2191 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2192 Info.NestedTypes.push_back(Composite); 2193 } 2194 // Skip other unrecognized kinds of elements. 2195 } 2196 return Info; 2197 } 2198 2199 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2200 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2201 // if a complete type should be emitted instead of a forward reference. 2202 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2203 !Ty->isForwardDecl(); 2204 } 2205 2206 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2207 // Emit the complete type for unnamed structs. C++ classes with methods 2208 // which have a circular reference back to the class type are expected to 2209 // be named by the front-end and should not be "unnamed". C unnamed 2210 // structs should not have circular references. 2211 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2212 // If this unnamed complete type is already in the process of being defined 2213 // then the description of the type is malformed and cannot be emitted 2214 // into CodeView correctly so report a fatal error. 2215 auto I = CompleteTypeIndices.find(Ty); 2216 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2217 report_fatal_error("cannot debug circular reference to unnamed type"); 2218 return getCompleteTypeIndex(Ty); 2219 } 2220 2221 // First, construct the forward decl. Don't look into Ty to compute the 2222 // forward decl options, since it might not be available in all TUs. 2223 TypeRecordKind Kind = getRecordKind(Ty); 2224 ClassOptions CO = 2225 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2226 std::string FullName = getFullyQualifiedName(Ty); 2227 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2228 FullName, Ty->getIdentifier()); 2229 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2230 if (!Ty->isForwardDecl()) 2231 DeferredCompleteTypes.push_back(Ty); 2232 return FwdDeclTI; 2233 } 2234 2235 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2236 // Construct the field list and complete type record. 2237 TypeRecordKind Kind = getRecordKind(Ty); 2238 ClassOptions CO = getCommonClassOptions(Ty); 2239 TypeIndex FieldTI; 2240 TypeIndex VShapeTI; 2241 unsigned FieldCount; 2242 bool ContainsNestedClass; 2243 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2244 lowerRecordFieldList(Ty); 2245 2246 if (ContainsNestedClass) 2247 CO |= ClassOptions::ContainsNestedClass; 2248 2249 // MSVC appears to set this flag by searching any destructor or method with 2250 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2251 // the members, however special member functions are not yet emitted into 2252 // debug information. For now checking a class's non-triviality seems enough. 2253 // FIXME: not true for a nested unnamed struct. 2254 if (isNonTrivial(Ty)) 2255 CO |= ClassOptions::HasConstructorOrDestructor; 2256 2257 std::string FullName = getFullyQualifiedName(Ty); 2258 2259 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2260 2261 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2262 SizeInBytes, FullName, Ty->getIdentifier()); 2263 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2264 2265 addUDTSrcLine(Ty, ClassTI); 2266 2267 addToUDTs(Ty); 2268 2269 return ClassTI; 2270 } 2271 2272 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2273 // Emit the complete type for unnamed unions. 2274 if (shouldAlwaysEmitCompleteClassType(Ty)) 2275 return getCompleteTypeIndex(Ty); 2276 2277 ClassOptions CO = 2278 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2279 std::string FullName = getFullyQualifiedName(Ty); 2280 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2281 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2282 if (!Ty->isForwardDecl()) 2283 DeferredCompleteTypes.push_back(Ty); 2284 return FwdDeclTI; 2285 } 2286 2287 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2288 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2289 TypeIndex FieldTI; 2290 unsigned FieldCount; 2291 bool ContainsNestedClass; 2292 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2293 lowerRecordFieldList(Ty); 2294 2295 if (ContainsNestedClass) 2296 CO |= ClassOptions::ContainsNestedClass; 2297 2298 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2299 std::string FullName = getFullyQualifiedName(Ty); 2300 2301 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2302 Ty->getIdentifier()); 2303 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2304 2305 addUDTSrcLine(Ty, UnionTI); 2306 2307 addToUDTs(Ty); 2308 2309 return UnionTI; 2310 } 2311 2312 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2313 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2314 // Manually count members. MSVC appears to count everything that generates a 2315 // field list record. Each individual overload in a method overload group 2316 // contributes to this count, even though the overload group is a single field 2317 // list record. 2318 unsigned MemberCount = 0; 2319 ClassInfo Info = collectClassInfo(Ty); 2320 ContinuationRecordBuilder ContinuationBuilder; 2321 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2322 2323 // Create base classes. 2324 for (const DIDerivedType *I : Info.Inheritance) { 2325 if (I->getFlags() & DINode::FlagVirtual) { 2326 // Virtual base. 2327 unsigned VBPtrOffset = I->getVBPtrOffset(); 2328 // FIXME: Despite the accessor name, the offset is really in bytes. 2329 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2330 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2331 ? TypeRecordKind::IndirectVirtualBaseClass 2332 : TypeRecordKind::VirtualBaseClass; 2333 VirtualBaseClassRecord VBCR( 2334 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2335 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2336 VBTableIndex); 2337 2338 ContinuationBuilder.writeMemberType(VBCR); 2339 MemberCount++; 2340 } else { 2341 assert(I->getOffsetInBits() % 8 == 0 && 2342 "bases must be on byte boundaries"); 2343 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2344 getTypeIndex(I->getBaseType()), 2345 I->getOffsetInBits() / 8); 2346 ContinuationBuilder.writeMemberType(BCR); 2347 MemberCount++; 2348 } 2349 } 2350 2351 // Create members. 2352 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2353 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2354 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2355 StringRef MemberName = Member->getName(); 2356 MemberAccess Access = 2357 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2358 2359 if (Member->isStaticMember()) { 2360 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2361 ContinuationBuilder.writeMemberType(SDMR); 2362 MemberCount++; 2363 continue; 2364 } 2365 2366 // Virtual function pointer member. 2367 if ((Member->getFlags() & DINode::FlagArtificial) && 2368 Member->getName().startswith("_vptr$")) { 2369 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2370 ContinuationBuilder.writeMemberType(VFPR); 2371 MemberCount++; 2372 continue; 2373 } 2374 2375 // Data member. 2376 uint64_t MemberOffsetInBits = 2377 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2378 if (Member->isBitField()) { 2379 uint64_t StartBitOffset = MemberOffsetInBits; 2380 if (const auto *CI = 2381 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2382 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2383 } 2384 StartBitOffset -= MemberOffsetInBits; 2385 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2386 StartBitOffset); 2387 MemberBaseType = TypeTable.writeLeafType(BFR); 2388 } 2389 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2390 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2391 MemberName); 2392 ContinuationBuilder.writeMemberType(DMR); 2393 MemberCount++; 2394 } 2395 2396 // Create methods 2397 for (auto &MethodItr : Info.Methods) { 2398 StringRef Name = MethodItr.first->getString(); 2399 2400 std::vector<OneMethodRecord> Methods; 2401 for (const DISubprogram *SP : MethodItr.second) { 2402 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2403 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2404 2405 unsigned VFTableOffset = -1; 2406 if (Introduced) 2407 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2408 2409 Methods.push_back(OneMethodRecord( 2410 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2411 translateMethodKindFlags(SP, Introduced), 2412 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2413 MemberCount++; 2414 } 2415 assert(!Methods.empty() && "Empty methods map entry"); 2416 if (Methods.size() == 1) 2417 ContinuationBuilder.writeMemberType(Methods[0]); 2418 else { 2419 // FIXME: Make this use its own ContinuationBuilder so that 2420 // MethodOverloadList can be split correctly. 2421 MethodOverloadListRecord MOLR(Methods); 2422 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2423 2424 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2425 ContinuationBuilder.writeMemberType(OMR); 2426 } 2427 } 2428 2429 // Create nested classes. 2430 for (const DIType *Nested : Info.NestedTypes) { 2431 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2432 ContinuationBuilder.writeMemberType(R); 2433 MemberCount++; 2434 } 2435 2436 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2437 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2438 !Info.NestedTypes.empty()); 2439 } 2440 2441 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2442 if (!VBPType.getIndex()) { 2443 // Make a 'const int *' type. 2444 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2445 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2446 2447 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2448 : PointerKind::Near32; 2449 PointerMode PM = PointerMode::Pointer; 2450 PointerOptions PO = PointerOptions::None; 2451 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2452 VBPType = TypeTable.writeLeafType(PR); 2453 } 2454 2455 return VBPType; 2456 } 2457 2458 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2459 // The null DIType is the void type. Don't try to hash it. 2460 if (!Ty) 2461 return TypeIndex::Void(); 2462 2463 // Check if we've already translated this type. Don't try to do a 2464 // get-or-create style insertion that caches the hash lookup across the 2465 // lowerType call. It will update the TypeIndices map. 2466 auto I = TypeIndices.find({Ty, ClassTy}); 2467 if (I != TypeIndices.end()) 2468 return I->second; 2469 2470 TypeLoweringScope S(*this); 2471 TypeIndex TI = lowerType(Ty, ClassTy); 2472 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2473 } 2474 2475 codeview::TypeIndex 2476 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2477 const DISubroutineType *SubroutineTy) { 2478 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2479 "this type must be a pointer type"); 2480 2481 PointerOptions Options = PointerOptions::None; 2482 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2483 Options = PointerOptions::LValueRefThisPointer; 2484 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2485 Options = PointerOptions::RValueRefThisPointer; 2486 2487 // Check if we've already translated this type. If there is no ref qualifier 2488 // on the function then we look up this pointer type with no associated class 2489 // so that the TypeIndex for the this pointer can be shared with the type 2490 // index for other pointers to this class type. If there is a ref qualifier 2491 // then we lookup the pointer using the subroutine as the parent type. 2492 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2493 if (I != TypeIndices.end()) 2494 return I->second; 2495 2496 TypeLoweringScope S(*this); 2497 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2498 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2499 } 2500 2501 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2502 PointerRecord PR(getTypeIndex(Ty), 2503 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2504 : PointerKind::Near32, 2505 PointerMode::LValueReference, PointerOptions::None, 2506 Ty->getSizeInBits() / 8); 2507 return TypeTable.writeLeafType(PR); 2508 } 2509 2510 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2511 // The null DIType is the void type. Don't try to hash it. 2512 if (!Ty) 2513 return TypeIndex::Void(); 2514 2515 // Look through typedefs when getting the complete type index. Call 2516 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2517 // emitted only once. 2518 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2519 (void)getTypeIndex(Ty); 2520 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2521 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2522 2523 // If this is a non-record type, the complete type index is the same as the 2524 // normal type index. Just call getTypeIndex. 2525 switch (Ty->getTag()) { 2526 case dwarf::DW_TAG_class_type: 2527 case dwarf::DW_TAG_structure_type: 2528 case dwarf::DW_TAG_union_type: 2529 break; 2530 default: 2531 return getTypeIndex(Ty); 2532 } 2533 2534 const auto *CTy = cast<DICompositeType>(Ty); 2535 2536 TypeLoweringScope S(*this); 2537 2538 // Make sure the forward declaration is emitted first. It's unclear if this 2539 // is necessary, but MSVC does it, and we should follow suit until we can show 2540 // otherwise. 2541 // We only emit a forward declaration for named types. 2542 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2543 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2544 2545 // Just use the forward decl if we don't have complete type info. This 2546 // might happen if the frontend is using modules and expects the complete 2547 // definition to be emitted elsewhere. 2548 if (CTy->isForwardDecl()) 2549 return FwdDeclTI; 2550 } 2551 2552 // Check if we've already translated the complete record type. 2553 // Insert the type with a null TypeIndex to signify that the type is currently 2554 // being lowered. 2555 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2556 if (!InsertResult.second) 2557 return InsertResult.first->second; 2558 2559 TypeIndex TI; 2560 switch (CTy->getTag()) { 2561 case dwarf::DW_TAG_class_type: 2562 case dwarf::DW_TAG_structure_type: 2563 TI = lowerCompleteTypeClass(CTy); 2564 break; 2565 case dwarf::DW_TAG_union_type: 2566 TI = lowerCompleteTypeUnion(CTy); 2567 break; 2568 default: 2569 llvm_unreachable("not a record"); 2570 } 2571 2572 // Update the type index associated with this CompositeType. This cannot 2573 // use the 'InsertResult' iterator above because it is potentially 2574 // invalidated by map insertions which can occur while lowering the class 2575 // type above. 2576 CompleteTypeIndices[CTy] = TI; 2577 return TI; 2578 } 2579 2580 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2581 /// and do this until fixpoint, as each complete record type typically 2582 /// references 2583 /// many other record types. 2584 void CodeViewDebug::emitDeferredCompleteTypes() { 2585 SmallVector<const DICompositeType *, 4> TypesToEmit; 2586 while (!DeferredCompleteTypes.empty()) { 2587 std::swap(DeferredCompleteTypes, TypesToEmit); 2588 for (const DICompositeType *RecordTy : TypesToEmit) 2589 getCompleteTypeIndex(RecordTy); 2590 TypesToEmit.clear(); 2591 } 2592 } 2593 2594 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2595 ArrayRef<LocalVariable> Locals) { 2596 // Get the sorted list of parameters and emit them first. 2597 SmallVector<const LocalVariable *, 6> Params; 2598 for (const LocalVariable &L : Locals) 2599 if (L.DIVar->isParameter()) 2600 Params.push_back(&L); 2601 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2602 return L->DIVar->getArg() < R->DIVar->getArg(); 2603 }); 2604 for (const LocalVariable *L : Params) 2605 emitLocalVariable(FI, *L); 2606 2607 // Next emit all non-parameters in the order that we found them. 2608 for (const LocalVariable &L : Locals) 2609 if (!L.DIVar->isParameter()) 2610 emitLocalVariable(FI, L); 2611 } 2612 2613 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2614 const LocalVariable &Var) { 2615 // LocalSym record, see SymbolRecord.h for more info. 2616 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2617 2618 LocalSymFlags Flags = LocalSymFlags::None; 2619 if (Var.DIVar->isParameter()) 2620 Flags |= LocalSymFlags::IsParameter; 2621 if (Var.DefRanges.empty()) 2622 Flags |= LocalSymFlags::IsOptimizedOut; 2623 2624 OS.AddComment("TypeIndex"); 2625 TypeIndex TI = Var.UseReferenceType 2626 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2627 : getCompleteTypeIndex(Var.DIVar->getType()); 2628 OS.EmitIntValue(TI.getIndex(), 4); 2629 OS.AddComment("Flags"); 2630 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2631 // Truncate the name so we won't overflow the record length field. 2632 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2633 endSymbolRecord(LocalEnd); 2634 2635 // Calculate the on disk prefix of the appropriate def range record. The 2636 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2637 // should be big enough to hold all forms without memory allocation. 2638 SmallString<20> BytePrefix; 2639 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2640 BytePrefix.clear(); 2641 if (DefRange.InMemory) { 2642 int Offset = DefRange.DataOffset; 2643 unsigned Reg = DefRange.CVRegister; 2644 2645 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2646 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2647 // instead. In frames without stack realignment, $T0 will be the CFA. 2648 if (RegisterId(Reg) == RegisterId::ESP) { 2649 Reg = unsigned(RegisterId::VFRAME); 2650 Offset += FI.OffsetAdjustment; 2651 } 2652 2653 // If we can use the chosen frame pointer for the frame and this isn't a 2654 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2655 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2656 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2657 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2658 (bool(Flags & LocalSymFlags::IsParameter) 2659 ? (EncFP == FI.EncodedParamFramePtrReg) 2660 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2661 DefRangeFramePointerRelHeader DRHdr; 2662 DRHdr.Offset = Offset; 2663 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2664 } else { 2665 uint16_t RegRelFlags = 0; 2666 if (DefRange.IsSubfield) { 2667 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2668 (DefRange.StructOffset 2669 << DefRangeRegisterRelSym::OffsetInParentShift); 2670 } 2671 DefRangeRegisterRelHeader DRHdr; 2672 DRHdr.Register = Reg; 2673 DRHdr.Flags = RegRelFlags; 2674 DRHdr.BasePointerOffset = Offset; 2675 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2676 } 2677 } else { 2678 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2679 if (DefRange.IsSubfield) { 2680 DefRangeSubfieldRegisterHeader DRHdr; 2681 DRHdr.Register = DefRange.CVRegister; 2682 DRHdr.MayHaveNoName = 0; 2683 DRHdr.OffsetInParent = DefRange.StructOffset; 2684 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2685 } else { 2686 DefRangeRegisterHeader DRHdr; 2687 DRHdr.Register = DefRange.CVRegister; 2688 DRHdr.MayHaveNoName = 0; 2689 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2690 } 2691 } 2692 } 2693 } 2694 2695 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2696 const FunctionInfo& FI) { 2697 for (LexicalBlock *Block : Blocks) 2698 emitLexicalBlock(*Block, FI); 2699 } 2700 2701 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2702 /// lexical block scope. 2703 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2704 const FunctionInfo& FI) { 2705 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2706 OS.AddComment("PtrParent"); 2707 OS.EmitIntValue(0, 4); // PtrParent 2708 OS.AddComment("PtrEnd"); 2709 OS.EmitIntValue(0, 4); // PtrEnd 2710 OS.AddComment("Code size"); 2711 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2712 OS.AddComment("Function section relative address"); 2713 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2714 OS.AddComment("Function section index"); 2715 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2716 OS.AddComment("Lexical block name"); 2717 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2718 endSymbolRecord(RecordEnd); 2719 2720 // Emit variables local to this lexical block. 2721 emitLocalVariableList(FI, Block.Locals); 2722 emitGlobalVariableList(Block.Globals); 2723 2724 // Emit lexical blocks contained within this block. 2725 emitLexicalBlockList(Block.Children, FI); 2726 2727 // Close the lexical block scope. 2728 emitEndSymbolRecord(SymbolKind::S_END); 2729 } 2730 2731 /// Convenience routine for collecting lexical block information for a list 2732 /// of lexical scopes. 2733 void CodeViewDebug::collectLexicalBlockInfo( 2734 SmallVectorImpl<LexicalScope *> &Scopes, 2735 SmallVectorImpl<LexicalBlock *> &Blocks, 2736 SmallVectorImpl<LocalVariable> &Locals, 2737 SmallVectorImpl<CVGlobalVariable> &Globals) { 2738 for (LexicalScope *Scope : Scopes) 2739 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2740 } 2741 2742 /// Populate the lexical blocks and local variable lists of the parent with 2743 /// information about the specified lexical scope. 2744 void CodeViewDebug::collectLexicalBlockInfo( 2745 LexicalScope &Scope, 2746 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2747 SmallVectorImpl<LocalVariable> &ParentLocals, 2748 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2749 if (Scope.isAbstractScope()) 2750 return; 2751 2752 // Gather information about the lexical scope including local variables, 2753 // global variables, and address ranges. 2754 bool IgnoreScope = false; 2755 auto LI = ScopeVariables.find(&Scope); 2756 SmallVectorImpl<LocalVariable> *Locals = 2757 LI != ScopeVariables.end() ? &LI->second : nullptr; 2758 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2759 SmallVectorImpl<CVGlobalVariable> *Globals = 2760 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2761 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2762 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2763 2764 // Ignore lexical scopes which do not contain variables. 2765 if (!Locals && !Globals) 2766 IgnoreScope = true; 2767 2768 // Ignore lexical scopes which are not lexical blocks. 2769 if (!DILB) 2770 IgnoreScope = true; 2771 2772 // Ignore scopes which have too many address ranges to represent in the 2773 // current CodeView format or do not have a valid address range. 2774 // 2775 // For lexical scopes with multiple address ranges you may be tempted to 2776 // construct a single range covering every instruction where the block is 2777 // live and everything in between. Unfortunately, Visual Studio only 2778 // displays variables from the first matching lexical block scope. If the 2779 // first lexical block contains exception handling code or cold code which 2780 // is moved to the bottom of the routine creating a single range covering 2781 // nearly the entire routine, then it will hide all other lexical blocks 2782 // and the variables they contain. 2783 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2784 IgnoreScope = true; 2785 2786 if (IgnoreScope) { 2787 // This scope can be safely ignored and eliminating it will reduce the 2788 // size of the debug information. Be sure to collect any variable and scope 2789 // information from the this scope or any of its children and collapse them 2790 // into the parent scope. 2791 if (Locals) 2792 ParentLocals.append(Locals->begin(), Locals->end()); 2793 if (Globals) 2794 ParentGlobals.append(Globals->begin(), Globals->end()); 2795 collectLexicalBlockInfo(Scope.getChildren(), 2796 ParentBlocks, 2797 ParentLocals, 2798 ParentGlobals); 2799 return; 2800 } 2801 2802 // Create a new CodeView lexical block for this lexical scope. If we've 2803 // seen this DILexicalBlock before then the scope tree is malformed and 2804 // we can handle this gracefully by not processing it a second time. 2805 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2806 if (!BlockInsertion.second) 2807 return; 2808 2809 // Create a lexical block containing the variables and collect the the 2810 // lexical block information for the children. 2811 const InsnRange &Range = Ranges.front(); 2812 assert(Range.first && Range.second); 2813 LexicalBlock &Block = BlockInsertion.first->second; 2814 Block.Begin = getLabelBeforeInsn(Range.first); 2815 Block.End = getLabelAfterInsn(Range.second); 2816 assert(Block.Begin && "missing label for scope begin"); 2817 assert(Block.End && "missing label for scope end"); 2818 Block.Name = DILB->getName(); 2819 if (Locals) 2820 Block.Locals = std::move(*Locals); 2821 if (Globals) 2822 Block.Globals = std::move(*Globals); 2823 ParentBlocks.push_back(&Block); 2824 collectLexicalBlockInfo(Scope.getChildren(), 2825 Block.Children, 2826 Block.Locals, 2827 Block.Globals); 2828 } 2829 2830 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2831 const Function &GV = MF->getFunction(); 2832 assert(FnDebugInfo.count(&GV)); 2833 assert(CurFn == FnDebugInfo[&GV].get()); 2834 2835 collectVariableInfo(GV.getSubprogram()); 2836 2837 // Build the lexical block structure to emit for this routine. 2838 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2839 collectLexicalBlockInfo(*CFS, 2840 CurFn->ChildBlocks, 2841 CurFn->Locals, 2842 CurFn->Globals); 2843 2844 // Clear the scope and variable information from the map which will not be 2845 // valid after we have finished processing this routine. This also prepares 2846 // the map for the subsequent routine. 2847 ScopeVariables.clear(); 2848 2849 // Don't emit anything if we don't have any line tables. 2850 // Thunks are compiler-generated and probably won't have source correlation. 2851 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2852 FnDebugInfo.erase(&GV); 2853 CurFn = nullptr; 2854 return; 2855 } 2856 2857 // Find heap alloc sites and add to list. 2858 for (const auto &MBB : *MF) { 2859 for (const auto &MI : MBB) { 2860 if (MDNode *MD = MI.getHeapAllocMarker()) { 2861 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2862 getLabelAfterInsn(&MI), 2863 dyn_cast<DIType>(MD))); 2864 } 2865 } 2866 } 2867 2868 CurFn->Annotations = MF->getCodeViewAnnotations(); 2869 2870 CurFn->End = Asm->getFunctionEnd(); 2871 2872 CurFn = nullptr; 2873 } 2874 2875 // Usable locations are valid with non-zero line numbers. A line number of zero 2876 // corresponds to optimized code that doesn't have a distinct source location. 2877 // In this case, we try to use the previous or next source location depending on 2878 // the context. 2879 static bool isUsableDebugLoc(DebugLoc DL) { 2880 return DL && DL.getLine() != 0; 2881 } 2882 2883 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2884 DebugHandlerBase::beginInstruction(MI); 2885 2886 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2887 if (!Asm || !CurFn || MI->isDebugInstr() || 2888 MI->getFlag(MachineInstr::FrameSetup)) 2889 return; 2890 2891 // If the first instruction of a new MBB has no location, find the first 2892 // instruction with a location and use that. 2893 DebugLoc DL = MI->getDebugLoc(); 2894 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2895 for (const auto &NextMI : *MI->getParent()) { 2896 if (NextMI.isDebugInstr()) 2897 continue; 2898 DL = NextMI.getDebugLoc(); 2899 if (isUsableDebugLoc(DL)) 2900 break; 2901 } 2902 // FIXME: Handle the case where the BB has no valid locations. This would 2903 // probably require doing a real dataflow analysis. 2904 } 2905 PrevInstBB = MI->getParent(); 2906 2907 // If we still don't have a debug location, don't record a location. 2908 if (!isUsableDebugLoc(DL)) 2909 return; 2910 2911 maybeRecordLocation(DL, Asm->MF); 2912 } 2913 2914 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2915 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2916 *EndLabel = MMI->getContext().createTempSymbol(); 2917 OS.EmitIntValue(unsigned(Kind), 4); 2918 OS.AddComment("Subsection size"); 2919 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2920 OS.EmitLabel(BeginLabel); 2921 return EndLabel; 2922 } 2923 2924 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2925 OS.EmitLabel(EndLabel); 2926 // Every subsection must be aligned to a 4-byte boundary. 2927 OS.EmitValueToAlignment(4); 2928 } 2929 2930 static StringRef getSymbolName(SymbolKind SymKind) { 2931 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2932 if (EE.Value == SymKind) 2933 return EE.Name; 2934 return ""; 2935 } 2936 2937 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2938 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2939 *EndLabel = MMI->getContext().createTempSymbol(); 2940 OS.AddComment("Record length"); 2941 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2942 OS.EmitLabel(BeginLabel); 2943 if (OS.isVerboseAsm()) 2944 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2945 OS.EmitIntValue(unsigned(SymKind), 2); 2946 return EndLabel; 2947 } 2948 2949 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2950 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2951 // an extra copy of every symbol record in LLD. This increases object file 2952 // size by less than 1% in the clang build, and is compatible with the Visual 2953 // C++ linker. 2954 OS.EmitValueToAlignment(4); 2955 OS.EmitLabel(SymEnd); 2956 } 2957 2958 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2959 OS.AddComment("Record length"); 2960 OS.EmitIntValue(2, 2); 2961 if (OS.isVerboseAsm()) 2962 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2963 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind 2964 } 2965 2966 void CodeViewDebug::emitDebugInfoForUDTs( 2967 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2968 for (const auto &UDT : UDTs) { 2969 const DIType *T = UDT.second; 2970 assert(shouldEmitUdt(T)); 2971 2972 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2973 OS.AddComment("Type"); 2974 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2975 emitNullTerminatedSymbolName(OS, UDT.first); 2976 endSymbolRecord(UDTRecordEnd); 2977 } 2978 } 2979 2980 void CodeViewDebug::collectGlobalVariableInfo() { 2981 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2982 GlobalMap; 2983 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2984 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2985 GV.getDebugInfo(GVEs); 2986 for (const auto *GVE : GVEs) 2987 GlobalMap[GVE] = &GV; 2988 } 2989 2990 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2991 for (const MDNode *Node : CUs->operands()) { 2992 const auto *CU = cast<DICompileUnit>(Node); 2993 for (const auto *GVE : CU->getGlobalVariables()) { 2994 const DIGlobalVariable *DIGV = GVE->getVariable(); 2995 const DIExpression *DIE = GVE->getExpression(); 2996 2997 // Emit constant global variables in a global symbol section. 2998 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 2999 CVGlobalVariable CVGV = {DIGV, DIE}; 3000 GlobalVariables.emplace_back(std::move(CVGV)); 3001 } 3002 3003 const auto *GV = GlobalMap.lookup(GVE); 3004 if (!GV || GV->isDeclarationForLinker()) 3005 continue; 3006 3007 DIScope *Scope = DIGV->getScope(); 3008 SmallVector<CVGlobalVariable, 1> *VariableList; 3009 if (Scope && isa<DILocalScope>(Scope)) { 3010 // Locate a global variable list for this scope, creating one if 3011 // necessary. 3012 auto Insertion = ScopeGlobals.insert( 3013 {Scope, std::unique_ptr<GlobalVariableList>()}); 3014 if (Insertion.second) 3015 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3016 VariableList = Insertion.first->second.get(); 3017 } else if (GV->hasComdat()) 3018 // Emit this global variable into a COMDAT section. 3019 VariableList = &ComdatVariables; 3020 else 3021 // Emit this global variable in a single global symbol section. 3022 VariableList = &GlobalVariables; 3023 CVGlobalVariable CVGV = {DIGV, GV}; 3024 VariableList->emplace_back(std::move(CVGV)); 3025 } 3026 } 3027 } 3028 3029 void CodeViewDebug::emitDebugInfoForGlobals() { 3030 // First, emit all globals that are not in a comdat in a single symbol 3031 // substream. MSVC doesn't like it if the substream is empty, so only open 3032 // it if we have at least one global to emit. 3033 switchToDebugSectionForSymbol(nullptr); 3034 if (!GlobalVariables.empty()) { 3035 OS.AddComment("Symbol subsection for globals"); 3036 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3037 emitGlobalVariableList(GlobalVariables); 3038 endCVSubsection(EndLabel); 3039 } 3040 3041 // Second, emit each global that is in a comdat into its own .debug$S 3042 // section along with its own symbol substream. 3043 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3044 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3045 MCSymbol *GVSym = Asm->getSymbol(GV); 3046 OS.AddComment("Symbol subsection for " + 3047 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3048 switchToDebugSectionForSymbol(GVSym); 3049 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3050 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3051 emitDebugInfoForGlobal(CVGV); 3052 endCVSubsection(EndLabel); 3053 } 3054 } 3055 3056 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3057 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3058 for (const MDNode *Node : CUs->operands()) { 3059 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3060 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3061 getTypeIndex(RT); 3062 // FIXME: Add to global/local DTU list. 3063 } 3064 } 3065 } 3066 } 3067 3068 // Emit each global variable in the specified array. 3069 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3070 for (const CVGlobalVariable &CVGV : Globals) { 3071 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3072 emitDebugInfoForGlobal(CVGV); 3073 } 3074 } 3075 3076 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3077 const DIGlobalVariable *DIGV = CVGV.DIGV; 3078 if (const GlobalVariable *GV = 3079 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3080 // DataSym record, see SymbolRecord.h for more info. Thread local data 3081 // happens to have the same format as global data. 3082 MCSymbol *GVSym = Asm->getSymbol(GV); 3083 SymbolKind DataSym = GV->isThreadLocal() 3084 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3085 : SymbolKind::S_GTHREAD32) 3086 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3087 : SymbolKind::S_GDATA32); 3088 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3089 OS.AddComment("Type"); 3090 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 3091 OS.AddComment("DataOffset"); 3092 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3093 OS.AddComment("Segment"); 3094 OS.EmitCOFFSectionIndex(GVSym); 3095 OS.AddComment("Name"); 3096 const unsigned LengthOfDataRecord = 12; 3097 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); 3098 endSymbolRecord(DataEnd); 3099 } else { 3100 // FIXME: Currently this only emits the global variables in the IR metadata. 3101 // This should also emit enums and static data members. 3102 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3103 assert(DIE->isConstant() && 3104 "Global constant variables must contain a constant expression."); 3105 uint64_t Val = DIE->getElement(1); 3106 3107 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3108 OS.AddComment("Type"); 3109 OS.EmitIntValue(getTypeIndex(DIGV->getType()).getIndex(), 4); 3110 OS.AddComment("Value"); 3111 3112 // Encoded integers shouldn't need more than 10 bytes. 3113 uint8_t data[10]; 3114 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3115 CodeViewRecordIO IO(Writer); 3116 cantFail(IO.mapEncodedInteger(Val)); 3117 StringRef SRef((char *)data, Writer.getOffset()); 3118 OS.EmitBinaryData(SRef); 3119 3120 OS.AddComment("Name"); 3121 const DIScope *Scope = DIGV->getScope(); 3122 // For static data members, get the scope from the declaration. 3123 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3124 DIGV->getRawStaticDataMemberDeclaration())) 3125 Scope = MemberDecl->getScope(); 3126 emitNullTerminatedSymbolName(OS, 3127 getFullyQualifiedName(Scope, DIGV->getName())); 3128 endSymbolRecord(SConstantEnd); 3129 } 3130 } 3131