1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/Config/config.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GCStrategy.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/MC/TargetRegistry.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Remarks/Remark.h" 107 #include "llvm/Remarks/RemarkFormat.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/FileSystem.h" 115 #include "llvm/Support/Format.h" 116 #include "llvm/Support/MathExtras.h" 117 #include "llvm/Support/Path.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 139 static cl::opt<bool> 140 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 141 cl::desc("Disable debug info printing")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 163 164 static gcp_map_type &getGCMap(void *&P) { 165 if (!P) 166 P = new gcp_map_type(); 167 return *(gcp_map_type*)P; 168 } 169 170 /// getGVAlignment - Return the alignment to use for the specified global 171 /// value. This rounds up to the preferred alignment if possible and legal. 172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 173 Align InAlign) { 174 Align Alignment; 175 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 176 Alignment = DL.getPreferredAlign(GVar); 177 178 // If InAlign is specified, round it to it. 179 if (InAlign > Alignment) 180 Alignment = InAlign; 181 182 // If the GV has a specified alignment, take it into account. 183 const MaybeAlign GVAlign(GV->getAlign()); 184 if (!GVAlign) 185 return Alignment; 186 187 assert(GVAlign && "GVAlign must be set"); 188 189 // If the GVAlign is larger than NumBits, or if we are required to obey 190 // NumBits because the GV has an assigned section, obey it. 191 if (*GVAlign > Alignment || GV->hasSection()) 192 Alignment = *GVAlign; 193 return Alignment; 194 } 195 196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 197 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 198 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 199 VerboseAsm = OutStreamer->isVerboseAsm(); 200 } 201 202 AsmPrinter::~AsmPrinter() { 203 assert(!DD && Handlers.size() == NumUserHandlers && 204 "Debug/EH info didn't get finalized"); 205 206 if (GCMetadataPrinters) { 207 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 208 209 delete &GCMap; 210 GCMetadataPrinters = nullptr; 211 } 212 } 213 214 bool AsmPrinter::isPositionIndependent() const { 215 return TM.isPositionIndependent(); 216 } 217 218 /// getFunctionNumber - Return a unique ID for the current function. 219 unsigned AsmPrinter::getFunctionNumber() const { 220 return MF->getFunctionNumber(); 221 } 222 223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 224 return *TM.getObjFileLowering(); 225 } 226 227 const DataLayout &AsmPrinter::getDataLayout() const { 228 return MMI->getModule()->getDataLayout(); 229 } 230 231 // Do not use the cached DataLayout because some client use it without a Module 232 // (dsymutil, llvm-dwarfdump). 233 unsigned AsmPrinter::getPointerSize() const { 234 return TM.getPointerSize(0); // FIXME: Default address space 235 } 236 237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 238 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 239 return MF->getSubtarget<MCSubtargetInfo>(); 240 } 241 242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 243 S.emitInstruction(Inst, getSubtargetInfo()); 244 } 245 246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 247 if (DD) { 248 assert(OutStreamer->hasRawTextSupport() && 249 "Expected assembly output mode."); 250 // This is NVPTX specific and it's unclear why. 251 // PR51079: If we have code without debug information we need to give up. 252 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 253 if (!MFSP) 254 return; 255 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 256 } 257 } 258 259 /// getCurrentSection() - Return the current section we are emitting to. 260 const MCSection *AsmPrinter::getCurrentSection() const { 261 return OutStreamer->getCurrentSectionOnly(); 262 } 263 264 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 265 AU.setPreservesAll(); 266 MachineFunctionPass::getAnalysisUsage(AU); 267 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 268 AU.addRequired<GCModuleInfo>(); 269 } 270 271 bool AsmPrinter::doInitialization(Module &M) { 272 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 273 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 274 275 // Initialize TargetLoweringObjectFile. 276 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 277 .Initialize(OutContext, TM); 278 279 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 280 .getModuleMetadata(M); 281 282 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 283 284 if (DisableDebugInfoPrinting) 285 MMI->setDebugInfoAvailability(false); 286 287 // Emit the version-min deployment target directive if needed. 288 // 289 // FIXME: If we end up with a collection of these sorts of Darwin-specific 290 // or ELF-specific things, it may make sense to have a platform helper class 291 // that will work with the target helper class. For now keep it here, as the 292 // alternative is duplicated code in each of the target asm printers that 293 // use the directive, where it would need the same conditionalization 294 // anyway. 295 const Triple &Target = TM.getTargetTriple(); 296 Triple TVT(M.getDarwinTargetVariantTriple()); 297 OutStreamer->emitVersionForTarget( 298 Target, M.getSDKVersion(), 299 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 300 M.getDarwinTargetVariantSDKVersion()); 301 302 // Allow the target to emit any magic that it wants at the start of the file. 303 emitStartOfAsmFile(M); 304 305 // Very minimal debug info. It is ignored if we emit actual debug info. If we 306 // don't, this at least helps the user find where a global came from. 307 if (MAI->hasSingleParameterDotFile()) { 308 // .file "foo.c" 309 310 SmallString<128> FileName; 311 if (MAI->hasBasenameOnlyForFileDirective()) 312 FileName = llvm::sys::path::filename(M.getSourceFileName()); 313 else 314 FileName = M.getSourceFileName(); 315 if (MAI->hasFourStringsDotFile()) { 316 #ifdef PACKAGE_VENDOR 317 const char VerStr[] = 318 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 319 #else 320 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 321 #endif 322 // TODO: Add timestamp and description. 323 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 324 } else { 325 OutStreamer->emitFileDirective(FileName); 326 } 327 } 328 329 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 330 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 331 for (auto &I : *MI) 332 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 333 MP->beginAssembly(M, *MI, *this); 334 335 // Emit module-level inline asm if it exists. 336 if (!M.getModuleInlineAsm().empty()) { 337 OutStreamer->AddComment("Start of file scope inline assembly"); 338 OutStreamer->AddBlankLine(); 339 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 340 TM.Options.MCOptions); 341 OutStreamer->AddComment("End of file scope inline assembly"); 342 OutStreamer->AddBlankLine(); 343 } 344 345 if (MAI->doesSupportDebugInformation()) { 346 bool EmitCodeView = M.getCodeViewFlag(); 347 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 348 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 349 DbgTimerName, DbgTimerDescription, 350 CodeViewLineTablesGroupName, 351 CodeViewLineTablesGroupDescription); 352 } 353 if (!EmitCodeView || M.getDwarfVersion()) { 354 if (!DisableDebugInfoPrinting) { 355 DD = new DwarfDebug(this); 356 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 357 DbgTimerDescription, DWARFGroupName, 358 DWARFGroupDescription); 359 } 360 } 361 } 362 363 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 364 PP = new PseudoProbeHandler(this); 365 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 366 PPTimerDescription, PPGroupName, PPGroupDescription); 367 } 368 369 switch (MAI->getExceptionHandlingType()) { 370 case ExceptionHandling::None: 371 // We may want to emit CFI for debug. 372 LLVM_FALLTHROUGH; 373 case ExceptionHandling::SjLj: 374 case ExceptionHandling::DwarfCFI: 375 case ExceptionHandling::ARM: 376 for (auto &F : M.getFunctionList()) { 377 if (getFunctionCFISectionType(F) != CFISection::None) 378 ModuleCFISection = getFunctionCFISectionType(F); 379 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 380 // the module needs .eh_frame. If we have found that case, we are done. 381 if (ModuleCFISection == CFISection::EH) 382 break; 383 } 384 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 385 ModuleCFISection != CFISection::EH); 386 break; 387 default: 388 break; 389 } 390 391 EHStreamer *ES = nullptr; 392 switch (MAI->getExceptionHandlingType()) { 393 case ExceptionHandling::None: 394 if (!needsCFIForDebug()) 395 break; 396 LLVM_FALLTHROUGH; 397 case ExceptionHandling::SjLj: 398 case ExceptionHandling::DwarfCFI: 399 ES = new DwarfCFIException(this); 400 break; 401 case ExceptionHandling::ARM: 402 ES = new ARMException(this); 403 break; 404 case ExceptionHandling::WinEH: 405 switch (MAI->getWinEHEncodingType()) { 406 default: llvm_unreachable("unsupported unwinding information encoding"); 407 case WinEH::EncodingType::Invalid: 408 break; 409 case WinEH::EncodingType::X86: 410 case WinEH::EncodingType::Itanium: 411 ES = new WinException(this); 412 break; 413 } 414 break; 415 case ExceptionHandling::Wasm: 416 ES = new WasmException(this); 417 break; 418 case ExceptionHandling::AIX: 419 ES = new AIXException(this); 420 break; 421 } 422 if (ES) 423 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 424 EHTimerDescription, DWARFGroupName, 425 DWARFGroupDescription); 426 427 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 428 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 429 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 430 CFGuardDescription, DWARFGroupName, 431 DWARFGroupDescription); 432 433 for (const HandlerInfo &HI : Handlers) { 434 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 435 HI.TimerGroupDescription, TimePassesIsEnabled); 436 HI.Handler->beginModule(&M); 437 } 438 439 return false; 440 } 441 442 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 443 if (!MAI.hasWeakDefCanBeHiddenDirective()) 444 return false; 445 446 return GV->canBeOmittedFromSymbolTable(); 447 } 448 449 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 450 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 451 switch (Linkage) { 452 case GlobalValue::CommonLinkage: 453 case GlobalValue::LinkOnceAnyLinkage: 454 case GlobalValue::LinkOnceODRLinkage: 455 case GlobalValue::WeakAnyLinkage: 456 case GlobalValue::WeakODRLinkage: 457 if (MAI->hasWeakDefDirective()) { 458 // .globl _foo 459 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 460 461 if (!canBeHidden(GV, *MAI)) 462 // .weak_definition _foo 463 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 464 else 465 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 466 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 467 // .globl _foo 468 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 469 //NOTE: linkonce is handled by the section the symbol was assigned to. 470 } else { 471 // .weak _foo 472 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 473 } 474 return; 475 case GlobalValue::ExternalLinkage: 476 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 477 return; 478 case GlobalValue::PrivateLinkage: 479 case GlobalValue::InternalLinkage: 480 return; 481 case GlobalValue::ExternalWeakLinkage: 482 case GlobalValue::AvailableExternallyLinkage: 483 case GlobalValue::AppendingLinkage: 484 llvm_unreachable("Should never emit this"); 485 } 486 llvm_unreachable("Unknown linkage type!"); 487 } 488 489 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 490 const GlobalValue *GV) const { 491 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 492 } 493 494 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 495 return TM.getSymbol(GV); 496 } 497 498 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 499 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 500 // exact definion (intersection of GlobalValue::hasExactDefinition() and 501 // !isInterposable()). These linkages include: external, appending, internal, 502 // private. It may be profitable to use a local alias for external. The 503 // assembler would otherwise be conservative and assume a global default 504 // visibility symbol can be interposable, even if the code generator already 505 // assumed it. 506 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 507 const Module &M = *GV.getParent(); 508 if (TM.getRelocationModel() != Reloc::Static && 509 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 510 return getSymbolWithGlobalValueBase(&GV, "$local"); 511 } 512 return TM.getSymbol(&GV); 513 } 514 515 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 516 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 517 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 518 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 519 "No emulated TLS variables in the common section"); 520 521 // Never emit TLS variable xyz in emulated TLS model. 522 // The initialization value is in __emutls_t.xyz instead of xyz. 523 if (IsEmuTLSVar) 524 return; 525 526 if (GV->hasInitializer()) { 527 // Check to see if this is a special global used by LLVM, if so, emit it. 528 if (emitSpecialLLVMGlobal(GV)) 529 return; 530 531 // Skip the emission of global equivalents. The symbol can be emitted later 532 // on by emitGlobalGOTEquivs in case it turns out to be needed. 533 if (GlobalGOTEquivs.count(getSymbol(GV))) 534 return; 535 536 if (isVerbose()) { 537 // When printing the control variable __emutls_v.*, 538 // we don't need to print the original TLS variable name. 539 GV->printAsOperand(OutStreamer->GetCommentOS(), 540 /*PrintType=*/false, GV->getParent()); 541 OutStreamer->GetCommentOS() << '\n'; 542 } 543 } 544 545 MCSymbol *GVSym = getSymbol(GV); 546 MCSymbol *EmittedSym = GVSym; 547 548 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 549 // attributes. 550 // GV's or GVSym's attributes will be used for the EmittedSym. 551 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 552 553 if (!GV->hasInitializer()) // External globals require no extra code. 554 return; 555 556 GVSym->redefineIfPossible(); 557 if (GVSym->isDefined() || GVSym->isVariable()) 558 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 559 "' is already defined"); 560 561 if (MAI->hasDotTypeDotSizeDirective()) 562 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 563 564 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 565 566 const DataLayout &DL = GV->getParent()->getDataLayout(); 567 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 568 569 // If the alignment is specified, we *must* obey it. Overaligning a global 570 // with a specified alignment is a prompt way to break globals emitted to 571 // sections and expected to be contiguous (e.g. ObjC metadata). 572 const Align Alignment = getGVAlignment(GV, DL); 573 574 for (const HandlerInfo &HI : Handlers) { 575 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 576 HI.TimerGroupName, HI.TimerGroupDescription, 577 TimePassesIsEnabled); 578 HI.Handler->setSymbolSize(GVSym, Size); 579 } 580 581 // Handle common symbols 582 if (GVKind.isCommon()) { 583 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 584 // .comm _foo, 42, 4 585 const bool SupportsAlignment = 586 getObjFileLowering().getCommDirectiveSupportsAlignment(); 587 OutStreamer->emitCommonSymbol(GVSym, Size, 588 SupportsAlignment ? Alignment.value() : 0); 589 return; 590 } 591 592 // Determine to which section this global should be emitted. 593 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 594 595 // If we have a bss global going to a section that supports the 596 // zerofill directive, do so here. 597 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 598 TheSection->isVirtualSection()) { 599 if (Size == 0) 600 Size = 1; // zerofill of 0 bytes is undefined. 601 emitLinkage(GV, GVSym); 602 // .zerofill __DATA, __bss, _foo, 400, 5 603 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 604 return; 605 } 606 607 // If this is a BSS local symbol and we are emitting in the BSS 608 // section use .lcomm/.comm directive. 609 if (GVKind.isBSSLocal() && 610 getObjFileLowering().getBSSSection() == TheSection) { 611 if (Size == 0) 612 Size = 1; // .comm Foo, 0 is undefined, avoid it. 613 614 // Use .lcomm only if it supports user-specified alignment. 615 // Otherwise, while it would still be correct to use .lcomm in some 616 // cases (e.g. when Align == 1), the external assembler might enfore 617 // some -unknown- default alignment behavior, which could cause 618 // spurious differences between external and integrated assembler. 619 // Prefer to simply fall back to .local / .comm in this case. 620 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 621 // .lcomm _foo, 42 622 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 623 return; 624 } 625 626 // .local _foo 627 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 628 // .comm _foo, 42, 4 629 const bool SupportsAlignment = 630 getObjFileLowering().getCommDirectiveSupportsAlignment(); 631 OutStreamer->emitCommonSymbol(GVSym, Size, 632 SupportsAlignment ? Alignment.value() : 0); 633 return; 634 } 635 636 // Handle thread local data for mach-o which requires us to output an 637 // additional structure of data and mangle the original symbol so that we 638 // can reference it later. 639 // 640 // TODO: This should become an "emit thread local global" method on TLOF. 641 // All of this macho specific stuff should be sunk down into TLOFMachO and 642 // stuff like "TLSExtraDataSection" should no longer be part of the parent 643 // TLOF class. This will also make it more obvious that stuff like 644 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 645 // specific code. 646 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 647 // Emit the .tbss symbol 648 MCSymbol *MangSym = 649 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 650 651 if (GVKind.isThreadBSS()) { 652 TheSection = getObjFileLowering().getTLSBSSSection(); 653 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 654 } else if (GVKind.isThreadData()) { 655 OutStreamer->SwitchSection(TheSection); 656 657 emitAlignment(Alignment, GV); 658 OutStreamer->emitLabel(MangSym); 659 660 emitGlobalConstant(GV->getParent()->getDataLayout(), 661 GV->getInitializer()); 662 } 663 664 OutStreamer->AddBlankLine(); 665 666 // Emit the variable struct for the runtime. 667 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 668 669 OutStreamer->SwitchSection(TLVSect); 670 // Emit the linkage here. 671 emitLinkage(GV, GVSym); 672 OutStreamer->emitLabel(GVSym); 673 674 // Three pointers in size: 675 // - __tlv_bootstrap - used to make sure support exists 676 // - spare pointer, used when mapped by the runtime 677 // - pointer to mangled symbol above with initializer 678 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 679 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 680 PtrSize); 681 OutStreamer->emitIntValue(0, PtrSize); 682 OutStreamer->emitSymbolValue(MangSym, PtrSize); 683 684 OutStreamer->AddBlankLine(); 685 return; 686 } 687 688 MCSymbol *EmittedInitSym = GVSym; 689 690 OutStreamer->SwitchSection(TheSection); 691 692 emitLinkage(GV, EmittedInitSym); 693 emitAlignment(Alignment, GV); 694 695 OutStreamer->emitLabel(EmittedInitSym); 696 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 697 if (LocalAlias != EmittedInitSym) 698 OutStreamer->emitLabel(LocalAlias); 699 700 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 701 702 if (MAI->hasDotTypeDotSizeDirective()) 703 // .size foo, 42 704 OutStreamer->emitELFSize(EmittedInitSym, 705 MCConstantExpr::create(Size, OutContext)); 706 707 OutStreamer->AddBlankLine(); 708 } 709 710 /// Emit the directive and value for debug thread local expression 711 /// 712 /// \p Value - The value to emit. 713 /// \p Size - The size of the integer (in bytes) to emit. 714 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 715 OutStreamer->emitValue(Value, Size); 716 } 717 718 void AsmPrinter::emitFunctionHeaderComment() {} 719 720 /// EmitFunctionHeader - This method emits the header for the current 721 /// function. 722 void AsmPrinter::emitFunctionHeader() { 723 const Function &F = MF->getFunction(); 724 725 if (isVerbose()) 726 OutStreamer->GetCommentOS() 727 << "-- Begin function " 728 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 729 730 // Print out constants referenced by the function 731 emitConstantPool(); 732 733 // Print the 'header' of function. 734 // If basic block sections are desired, explicitly request a unique section 735 // for this function's entry block. 736 if (MF->front().isBeginSection()) 737 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 738 else 739 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 740 OutStreamer->SwitchSection(MF->getSection()); 741 742 if (!MAI->hasVisibilityOnlyWithLinkage()) 743 emitVisibility(CurrentFnSym, F.getVisibility()); 744 745 if (MAI->needsFunctionDescriptors()) 746 emitLinkage(&F, CurrentFnDescSym); 747 748 emitLinkage(&F, CurrentFnSym); 749 if (MAI->hasFunctionAlignment()) 750 emitAlignment(MF->getAlignment(), &F); 751 752 if (MAI->hasDotTypeDotSizeDirective()) 753 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 754 755 if (F.hasFnAttribute(Attribute::Cold)) 756 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 757 758 if (isVerbose()) { 759 F.printAsOperand(OutStreamer->GetCommentOS(), 760 /*PrintType=*/false, F.getParent()); 761 emitFunctionHeaderComment(); 762 OutStreamer->GetCommentOS() << '\n'; 763 } 764 765 // Emit the prefix data. 766 if (F.hasPrefixData()) { 767 if (MAI->hasSubsectionsViaSymbols()) { 768 // Preserving prefix data on platforms which use subsections-via-symbols 769 // is a bit tricky. Here we introduce a symbol for the prefix data 770 // and use the .alt_entry attribute to mark the function's real entry point 771 // as an alternative entry point to the prefix-data symbol. 772 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 773 OutStreamer->emitLabel(PrefixSym); 774 775 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 776 777 // Emit an .alt_entry directive for the actual function symbol. 778 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 779 } else { 780 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 781 } 782 } 783 784 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 785 // place prefix data before NOPs. 786 unsigned PatchableFunctionPrefix = 0; 787 unsigned PatchableFunctionEntry = 0; 788 (void)F.getFnAttribute("patchable-function-prefix") 789 .getValueAsString() 790 .getAsInteger(10, PatchableFunctionPrefix); 791 (void)F.getFnAttribute("patchable-function-entry") 792 .getValueAsString() 793 .getAsInteger(10, PatchableFunctionEntry); 794 if (PatchableFunctionPrefix) { 795 CurrentPatchableFunctionEntrySym = 796 OutContext.createLinkerPrivateTempSymbol(); 797 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 798 emitNops(PatchableFunctionPrefix); 799 } else if (PatchableFunctionEntry) { 800 // May be reassigned when emitting the body, to reference the label after 801 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 802 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 803 } 804 805 // Emit the function descriptor. This is a virtual function to allow targets 806 // to emit their specific function descriptor. Right now it is only used by 807 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 808 // descriptors and should be converted to use this hook as well. 809 if (MAI->needsFunctionDescriptors()) 810 emitFunctionDescriptor(); 811 812 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 813 // their wild and crazy things as required. 814 emitFunctionEntryLabel(); 815 816 // If the function had address-taken blocks that got deleted, then we have 817 // references to the dangling symbols. Emit them at the start of the function 818 // so that we don't get references to undefined symbols. 819 std::vector<MCSymbol*> DeadBlockSyms; 820 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 821 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 822 OutStreamer->AddComment("Address taken block that was later removed"); 823 OutStreamer->emitLabel(DeadBlockSym); 824 } 825 826 if (CurrentFnBegin) { 827 if (MAI->useAssignmentForEHBegin()) { 828 MCSymbol *CurPos = OutContext.createTempSymbol(); 829 OutStreamer->emitLabel(CurPos); 830 OutStreamer->emitAssignment(CurrentFnBegin, 831 MCSymbolRefExpr::create(CurPos, OutContext)); 832 } else { 833 OutStreamer->emitLabel(CurrentFnBegin); 834 } 835 } 836 837 // Emit pre-function debug and/or EH information. 838 for (const HandlerInfo &HI : Handlers) { 839 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 840 HI.TimerGroupDescription, TimePassesIsEnabled); 841 HI.Handler->beginFunction(MF); 842 } 843 844 // Emit the prologue data. 845 if (F.hasPrologueData()) 846 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 847 } 848 849 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 850 /// function. This can be overridden by targets as required to do custom stuff. 851 void AsmPrinter::emitFunctionEntryLabel() { 852 CurrentFnSym->redefineIfPossible(); 853 854 // The function label could have already been emitted if two symbols end up 855 // conflicting due to asm renaming. Detect this and emit an error. 856 if (CurrentFnSym->isVariable()) 857 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 858 "' is a protected alias"); 859 860 OutStreamer->emitLabel(CurrentFnSym); 861 862 if (TM.getTargetTriple().isOSBinFormatELF()) { 863 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 864 if (Sym != CurrentFnSym) 865 OutStreamer->emitLabel(Sym); 866 } 867 } 868 869 /// emitComments - Pretty-print comments for instructions. 870 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 871 const MachineFunction *MF = MI.getMF(); 872 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 873 874 // Check for spills and reloads 875 876 // We assume a single instruction only has a spill or reload, not 877 // both. 878 Optional<unsigned> Size; 879 if ((Size = MI.getRestoreSize(TII))) { 880 CommentOS << *Size << "-byte Reload\n"; 881 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 882 if (*Size) { 883 if (*Size == unsigned(MemoryLocation::UnknownSize)) 884 CommentOS << "Unknown-size Folded Reload\n"; 885 else 886 CommentOS << *Size << "-byte Folded Reload\n"; 887 } 888 } else if ((Size = MI.getSpillSize(TII))) { 889 CommentOS << *Size << "-byte Spill\n"; 890 } else if ((Size = MI.getFoldedSpillSize(TII))) { 891 if (*Size) { 892 if (*Size == unsigned(MemoryLocation::UnknownSize)) 893 CommentOS << "Unknown-size Folded Spill\n"; 894 else 895 CommentOS << *Size << "-byte Folded Spill\n"; 896 } 897 } 898 899 // Check for spill-induced copies 900 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 901 CommentOS << " Reload Reuse\n"; 902 } 903 904 /// emitImplicitDef - This method emits the specified machine instruction 905 /// that is an implicit def. 906 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 907 Register RegNo = MI->getOperand(0).getReg(); 908 909 SmallString<128> Str; 910 raw_svector_ostream OS(Str); 911 OS << "implicit-def: " 912 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 913 914 OutStreamer->AddComment(OS.str()); 915 OutStreamer->AddBlankLine(); 916 } 917 918 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 919 std::string Str; 920 raw_string_ostream OS(Str); 921 OS << "kill:"; 922 for (const MachineOperand &Op : MI->operands()) { 923 assert(Op.isReg() && "KILL instruction must have only register operands"); 924 OS << ' ' << (Op.isDef() ? "def " : "killed ") 925 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 926 } 927 AP.OutStreamer->AddComment(OS.str()); 928 AP.OutStreamer->AddBlankLine(); 929 } 930 931 /// emitDebugValueComment - This method handles the target-independent form 932 /// of DBG_VALUE, returning true if it was able to do so. A false return 933 /// means the target will need to handle MI in EmitInstruction. 934 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 935 // This code handles only the 4-operand target-independent form. 936 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 937 return false; 938 939 SmallString<128> Str; 940 raw_svector_ostream OS(Str); 941 OS << "DEBUG_VALUE: "; 942 943 const DILocalVariable *V = MI->getDebugVariable(); 944 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 945 StringRef Name = SP->getName(); 946 if (!Name.empty()) 947 OS << Name << ":"; 948 } 949 OS << V->getName(); 950 OS << " <- "; 951 952 const DIExpression *Expr = MI->getDebugExpression(); 953 if (Expr->getNumElements()) { 954 OS << '['; 955 ListSeparator LS; 956 for (auto Op : Expr->expr_ops()) { 957 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 958 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 959 OS << ' ' << Op.getArg(I); 960 } 961 OS << "] "; 962 } 963 964 // Register or immediate value. Register 0 means undef. 965 for (const MachineOperand &Op : MI->debug_operands()) { 966 if (&Op != MI->debug_operands().begin()) 967 OS << ", "; 968 switch (Op.getType()) { 969 case MachineOperand::MO_FPImmediate: { 970 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 971 Type *ImmTy = Op.getFPImm()->getType(); 972 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 973 ImmTy->isDoubleTy()) { 974 OS << APF.convertToDouble(); 975 } else { 976 // There is no good way to print long double. Convert a copy to 977 // double. Ah well, it's only a comment. 978 bool ignored; 979 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 980 &ignored); 981 OS << "(long double) " << APF.convertToDouble(); 982 } 983 break; 984 } 985 case MachineOperand::MO_Immediate: { 986 OS << Op.getImm(); 987 break; 988 } 989 case MachineOperand::MO_CImmediate: { 990 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 991 break; 992 } 993 case MachineOperand::MO_TargetIndex: { 994 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 995 // NOTE: Want this comment at start of line, don't emit with AddComment. 996 AP.OutStreamer->emitRawComment(OS.str()); 997 break; 998 } 999 case MachineOperand::MO_Register: 1000 case MachineOperand::MO_FrameIndex: { 1001 Register Reg; 1002 Optional<StackOffset> Offset; 1003 if (Op.isReg()) { 1004 Reg = Op.getReg(); 1005 } else { 1006 const TargetFrameLowering *TFI = 1007 AP.MF->getSubtarget().getFrameLowering(); 1008 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1009 } 1010 if (!Reg) { 1011 // Suppress offset, it is not meaningful here. 1012 OS << "undef"; 1013 break; 1014 } 1015 // The second operand is only an offset if it's an immediate. 1016 if (MI->isIndirectDebugValue()) 1017 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1018 if (Offset) 1019 OS << '['; 1020 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1021 if (Offset) 1022 OS << '+' << Offset->getFixed() << ']'; 1023 break; 1024 } 1025 default: 1026 llvm_unreachable("Unknown operand type"); 1027 } 1028 } 1029 1030 // NOTE: Want this comment at start of line, don't emit with AddComment. 1031 AP.OutStreamer->emitRawComment(OS.str()); 1032 return true; 1033 } 1034 1035 /// This method handles the target-independent form of DBG_LABEL, returning 1036 /// true if it was able to do so. A false return means the target will need 1037 /// to handle MI in EmitInstruction. 1038 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1039 if (MI->getNumOperands() != 1) 1040 return false; 1041 1042 SmallString<128> Str; 1043 raw_svector_ostream OS(Str); 1044 OS << "DEBUG_LABEL: "; 1045 1046 const DILabel *V = MI->getDebugLabel(); 1047 if (auto *SP = dyn_cast<DISubprogram>( 1048 V->getScope()->getNonLexicalBlockFileScope())) { 1049 StringRef Name = SP->getName(); 1050 if (!Name.empty()) 1051 OS << Name << ":"; 1052 } 1053 OS << V->getName(); 1054 1055 // NOTE: Want this comment at start of line, don't emit with AddComment. 1056 AP.OutStreamer->emitRawComment(OS.str()); 1057 return true; 1058 } 1059 1060 AsmPrinter::CFISection 1061 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1062 // Ignore functions that won't get emitted. 1063 if (F.isDeclarationForLinker()) 1064 return CFISection::None; 1065 1066 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1067 F.needsUnwindTableEntry()) 1068 return CFISection::EH; 1069 1070 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1071 return CFISection::Debug; 1072 1073 return CFISection::None; 1074 } 1075 1076 AsmPrinter::CFISection 1077 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1078 return getFunctionCFISectionType(MF.getFunction()); 1079 } 1080 1081 bool AsmPrinter::needsSEHMoves() { 1082 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1083 } 1084 1085 bool AsmPrinter::needsCFIForDebug() const { 1086 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1087 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1088 } 1089 1090 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1091 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1092 if (!needsCFIForDebug() && 1093 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1094 ExceptionHandlingType != ExceptionHandling::ARM) 1095 return; 1096 1097 if (getFunctionCFISectionType(*MF) == CFISection::None) 1098 return; 1099 1100 // If there is no "real" instruction following this CFI instruction, skip 1101 // emitting it; it would be beyond the end of the function's FDE range. 1102 auto *MBB = MI.getParent(); 1103 auto I = std::next(MI.getIterator()); 1104 while (I != MBB->end() && I->isTransient()) 1105 ++I; 1106 if (I == MBB->instr_end() && 1107 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1108 return; 1109 1110 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1111 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1112 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1113 emitCFIInstruction(CFI); 1114 } 1115 1116 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1117 // The operands are the MCSymbol and the frame offset of the allocation. 1118 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1119 int FrameOffset = MI.getOperand(1).getImm(); 1120 1121 // Emit a symbol assignment. 1122 OutStreamer->emitAssignment(FrameAllocSym, 1123 MCConstantExpr::create(FrameOffset, OutContext)); 1124 } 1125 1126 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1127 /// given basic block. This can be used to capture more precise profile 1128 /// information. We use the last 4 bits (LSBs) to encode the following 1129 /// information: 1130 /// * (1): set if return block (ret or tail call). 1131 /// * (2): set if ends with a tail call. 1132 /// * (3): set if exception handling (EH) landing pad. 1133 /// * (4): set if the block can fall through to its next. 1134 /// The remaining bits are zero. 1135 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1136 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1137 return ((unsigned)MBB.isReturnBlock()) | 1138 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1139 (MBB.isEHPad() << 2) | 1140 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1141 } 1142 1143 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1144 MCSection *BBAddrMapSection = 1145 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1146 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1147 1148 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1149 1150 OutStreamer->PushSection(); 1151 OutStreamer->SwitchSection(BBAddrMapSection); 1152 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1153 // Emit the total number of basic blocks in this function. 1154 OutStreamer->emitULEB128IntValue(MF.size()); 1155 // Emit BB Information for each basic block in the funciton. 1156 for (const MachineBasicBlock &MBB : MF) { 1157 const MCSymbol *MBBSymbol = 1158 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1159 // Emit the basic block offset. 1160 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1161 // Emit the basic block size. When BBs have alignments, their size cannot 1162 // always be computed from their offsets. 1163 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1164 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1165 } 1166 OutStreamer->PopSection(); 1167 } 1168 1169 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1170 auto GUID = MI.getOperand(0).getImm(); 1171 auto Index = MI.getOperand(1).getImm(); 1172 auto Type = MI.getOperand(2).getImm(); 1173 auto Attr = MI.getOperand(3).getImm(); 1174 DILocation *DebugLoc = MI.getDebugLoc(); 1175 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1176 } 1177 1178 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1179 if (!MF.getTarget().Options.EmitStackSizeSection) 1180 return; 1181 1182 MCSection *StackSizeSection = 1183 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1184 if (!StackSizeSection) 1185 return; 1186 1187 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1188 // Don't emit functions with dynamic stack allocations. 1189 if (FrameInfo.hasVarSizedObjects()) 1190 return; 1191 1192 OutStreamer->PushSection(); 1193 OutStreamer->SwitchSection(StackSizeSection); 1194 1195 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1196 uint64_t StackSize = FrameInfo.getStackSize(); 1197 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1198 OutStreamer->emitULEB128IntValue(StackSize); 1199 1200 OutStreamer->PopSection(); 1201 } 1202 1203 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1204 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1205 1206 // OutputFilename empty implies -fstack-usage is not passed. 1207 if (OutputFilename.empty()) 1208 return; 1209 1210 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1211 uint64_t StackSize = FrameInfo.getStackSize(); 1212 1213 if (StackUsageStream == nullptr) { 1214 std::error_code EC; 1215 StackUsageStream = 1216 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1217 if (EC) { 1218 errs() << "Could not open file: " << EC.message(); 1219 return; 1220 } 1221 } 1222 1223 *StackUsageStream << MF.getFunction().getParent()->getName(); 1224 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1225 *StackUsageStream << ':' << DSP->getLine(); 1226 1227 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1228 if (FrameInfo.hasVarSizedObjects()) 1229 *StackUsageStream << "dynamic\n"; 1230 else 1231 *StackUsageStream << "static\n"; 1232 } 1233 1234 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1235 MachineModuleInfo &MMI = MF.getMMI(); 1236 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1237 return true; 1238 1239 // We might emit an EH table that uses function begin and end labels even if 1240 // we don't have any landingpads. 1241 if (!MF.getFunction().hasPersonalityFn()) 1242 return false; 1243 return !isNoOpWithoutInvoke( 1244 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1245 } 1246 1247 /// EmitFunctionBody - This method emits the body and trailer for a 1248 /// function. 1249 void AsmPrinter::emitFunctionBody() { 1250 emitFunctionHeader(); 1251 1252 // Emit target-specific gunk before the function body. 1253 emitFunctionBodyStart(); 1254 1255 if (isVerbose()) { 1256 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1257 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1258 if (!MDT) { 1259 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1260 OwnedMDT->getBase().recalculate(*MF); 1261 MDT = OwnedMDT.get(); 1262 } 1263 1264 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1265 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1266 if (!MLI) { 1267 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1268 OwnedMLI->getBase().analyze(MDT->getBase()); 1269 MLI = OwnedMLI.get(); 1270 } 1271 } 1272 1273 // Print out code for the function. 1274 bool HasAnyRealCode = false; 1275 int NumInstsInFunction = 0; 1276 1277 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1278 for (auto &MBB : *MF) { 1279 // Print a label for the basic block. 1280 emitBasicBlockStart(MBB); 1281 DenseMap<StringRef, unsigned> MnemonicCounts; 1282 for (auto &MI : MBB) { 1283 // Print the assembly for the instruction. 1284 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1285 !MI.isDebugInstr()) { 1286 HasAnyRealCode = true; 1287 ++NumInstsInFunction; 1288 } 1289 1290 // If there is a pre-instruction symbol, emit a label for it here. 1291 if (MCSymbol *S = MI.getPreInstrSymbol()) 1292 OutStreamer->emitLabel(S); 1293 1294 for (const HandlerInfo &HI : Handlers) { 1295 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1296 HI.TimerGroupDescription, TimePassesIsEnabled); 1297 HI.Handler->beginInstruction(&MI); 1298 } 1299 1300 if (isVerbose()) 1301 emitComments(MI, OutStreamer->GetCommentOS()); 1302 1303 switch (MI.getOpcode()) { 1304 case TargetOpcode::CFI_INSTRUCTION: 1305 emitCFIInstruction(MI); 1306 break; 1307 case TargetOpcode::LOCAL_ESCAPE: 1308 emitFrameAlloc(MI); 1309 break; 1310 case TargetOpcode::ANNOTATION_LABEL: 1311 case TargetOpcode::EH_LABEL: 1312 case TargetOpcode::GC_LABEL: 1313 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1314 break; 1315 case TargetOpcode::INLINEASM: 1316 case TargetOpcode::INLINEASM_BR: 1317 emitInlineAsm(&MI); 1318 break; 1319 case TargetOpcode::DBG_VALUE: 1320 case TargetOpcode::DBG_VALUE_LIST: 1321 if (isVerbose()) { 1322 if (!emitDebugValueComment(&MI, *this)) 1323 emitInstruction(&MI); 1324 } 1325 break; 1326 case TargetOpcode::DBG_INSTR_REF: 1327 // This instruction reference will have been resolved to a machine 1328 // location, and a nearby DBG_VALUE created. We can safely ignore 1329 // the instruction reference. 1330 break; 1331 case TargetOpcode::DBG_PHI: 1332 // This instruction is only used to label a program point, it's purely 1333 // meta information. 1334 break; 1335 case TargetOpcode::DBG_LABEL: 1336 if (isVerbose()) { 1337 if (!emitDebugLabelComment(&MI, *this)) 1338 emitInstruction(&MI); 1339 } 1340 break; 1341 case TargetOpcode::IMPLICIT_DEF: 1342 if (isVerbose()) emitImplicitDef(&MI); 1343 break; 1344 case TargetOpcode::KILL: 1345 if (isVerbose()) emitKill(&MI, *this); 1346 break; 1347 case TargetOpcode::PSEUDO_PROBE: 1348 emitPseudoProbe(MI); 1349 break; 1350 case TargetOpcode::ARITH_FENCE: 1351 if (isVerbose()) 1352 OutStreamer->emitRawComment("ARITH_FENCE"); 1353 break; 1354 default: 1355 emitInstruction(&MI); 1356 if (CanDoExtraAnalysis) { 1357 MCInst MCI; 1358 MCI.setOpcode(MI.getOpcode()); 1359 auto Name = OutStreamer->getMnemonic(MCI); 1360 auto I = MnemonicCounts.insert({Name, 0u}); 1361 I.first->second++; 1362 } 1363 break; 1364 } 1365 1366 // If there is a post-instruction symbol, emit a label for it here. 1367 if (MCSymbol *S = MI.getPostInstrSymbol()) 1368 OutStreamer->emitLabel(S); 1369 1370 for (const HandlerInfo &HI : Handlers) { 1371 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1372 HI.TimerGroupDescription, TimePassesIsEnabled); 1373 HI.Handler->endInstruction(); 1374 } 1375 } 1376 1377 // We must emit temporary symbol for the end of this basic block, if either 1378 // we have BBLabels enabled or if this basic blocks marks the end of a 1379 // section. 1380 if (MF->hasBBLabels() || 1381 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1382 OutStreamer->emitLabel(MBB.getEndSymbol()); 1383 1384 if (MBB.isEndSection()) { 1385 // The size directive for the section containing the entry block is 1386 // handled separately by the function section. 1387 if (!MBB.sameSection(&MF->front())) { 1388 if (MAI->hasDotTypeDotSizeDirective()) { 1389 // Emit the size directive for the basic block section. 1390 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1391 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1392 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1393 OutContext); 1394 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1395 } 1396 MBBSectionRanges[MBB.getSectionIDNum()] = 1397 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1398 } 1399 } 1400 emitBasicBlockEnd(MBB); 1401 1402 if (CanDoExtraAnalysis) { 1403 // Skip empty blocks. 1404 if (MBB.empty()) 1405 continue; 1406 1407 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1408 MBB.begin()->getDebugLoc(), &MBB); 1409 1410 // Generate instruction mix remark. First, sort counts in descending order 1411 // by count and name. 1412 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1413 for (auto &KV : MnemonicCounts) 1414 MnemonicVec.emplace_back(KV.first, KV.second); 1415 1416 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1417 const std::pair<StringRef, unsigned> &B) { 1418 if (A.second > B.second) 1419 return true; 1420 if (A.second == B.second) 1421 return StringRef(A.first) < StringRef(B.first); 1422 return false; 1423 }); 1424 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1425 for (auto &KV : MnemonicVec) { 1426 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1427 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1428 } 1429 ORE->emit(R); 1430 } 1431 } 1432 1433 EmittedInsts += NumInstsInFunction; 1434 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1435 MF->getFunction().getSubprogram(), 1436 &MF->front()); 1437 R << ore::NV("NumInstructions", NumInstsInFunction) 1438 << " instructions in function"; 1439 ORE->emit(R); 1440 1441 // If the function is empty and the object file uses .subsections_via_symbols, 1442 // then we need to emit *something* to the function body to prevent the 1443 // labels from collapsing together. Just emit a noop. 1444 // Similarly, don't emit empty functions on Windows either. It can lead to 1445 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1446 // after linking, causing the kernel not to load the binary: 1447 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1448 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1449 const Triple &TT = TM.getTargetTriple(); 1450 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1451 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1452 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1453 1454 // Targets can opt-out of emitting the noop here by leaving the opcode 1455 // unspecified. 1456 if (Noop.getOpcode()) { 1457 OutStreamer->AddComment("avoids zero-length function"); 1458 emitNops(1); 1459 } 1460 } 1461 1462 // Switch to the original section in case basic block sections was used. 1463 OutStreamer->SwitchSection(MF->getSection()); 1464 1465 const Function &F = MF->getFunction(); 1466 for (const auto &BB : F) { 1467 if (!BB.hasAddressTaken()) 1468 continue; 1469 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1470 if (Sym->isDefined()) 1471 continue; 1472 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1473 OutStreamer->emitLabel(Sym); 1474 } 1475 1476 // Emit target-specific gunk after the function body. 1477 emitFunctionBodyEnd(); 1478 1479 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1480 MAI->hasDotTypeDotSizeDirective()) { 1481 // Create a symbol for the end of function. 1482 CurrentFnEnd = createTempSymbol("func_end"); 1483 OutStreamer->emitLabel(CurrentFnEnd); 1484 } 1485 1486 // If the target wants a .size directive for the size of the function, emit 1487 // it. 1488 if (MAI->hasDotTypeDotSizeDirective()) { 1489 // We can get the size as difference between the function label and the 1490 // temp label. 1491 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1492 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1493 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1494 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1495 } 1496 1497 for (const HandlerInfo &HI : Handlers) { 1498 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1499 HI.TimerGroupDescription, TimePassesIsEnabled); 1500 HI.Handler->markFunctionEnd(); 1501 } 1502 1503 MBBSectionRanges[MF->front().getSectionIDNum()] = 1504 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1505 1506 // Print out jump tables referenced by the function. 1507 emitJumpTableInfo(); 1508 1509 // Emit post-function debug and/or EH information. 1510 for (const HandlerInfo &HI : Handlers) { 1511 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1512 HI.TimerGroupDescription, TimePassesIsEnabled); 1513 HI.Handler->endFunction(MF); 1514 } 1515 1516 // Emit section containing BB address offsets and their metadata, when 1517 // BB labels are requested for this function. Skip empty functions. 1518 if (MF->hasBBLabels() && HasAnyRealCode) 1519 emitBBAddrMapSection(*MF); 1520 1521 // Emit section containing stack size metadata. 1522 emitStackSizeSection(*MF); 1523 1524 // Emit .su file containing function stack size information. 1525 emitStackUsage(*MF); 1526 1527 emitPatchableFunctionEntries(); 1528 1529 if (isVerbose()) 1530 OutStreamer->GetCommentOS() << "-- End function\n"; 1531 1532 OutStreamer->AddBlankLine(); 1533 } 1534 1535 /// Compute the number of Global Variables that uses a Constant. 1536 static unsigned getNumGlobalVariableUses(const Constant *C) { 1537 if (!C) 1538 return 0; 1539 1540 if (isa<GlobalVariable>(C)) 1541 return 1; 1542 1543 unsigned NumUses = 0; 1544 for (auto *CU : C->users()) 1545 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1546 1547 return NumUses; 1548 } 1549 1550 /// Only consider global GOT equivalents if at least one user is a 1551 /// cstexpr inside an initializer of another global variables. Also, don't 1552 /// handle cstexpr inside instructions. During global variable emission, 1553 /// candidates are skipped and are emitted later in case at least one cstexpr 1554 /// isn't replaced by a PC relative GOT entry access. 1555 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1556 unsigned &NumGOTEquivUsers) { 1557 // Global GOT equivalents are unnamed private globals with a constant 1558 // pointer initializer to another global symbol. They must point to a 1559 // GlobalVariable or Function, i.e., as GlobalValue. 1560 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1561 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1562 !isa<GlobalValue>(GV->getOperand(0))) 1563 return false; 1564 1565 // To be a got equivalent, at least one of its users need to be a constant 1566 // expression used by another global variable. 1567 for (auto *U : GV->users()) 1568 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1569 1570 return NumGOTEquivUsers > 0; 1571 } 1572 1573 /// Unnamed constant global variables solely contaning a pointer to 1574 /// another globals variable is equivalent to a GOT table entry; it contains the 1575 /// the address of another symbol. Optimize it and replace accesses to these 1576 /// "GOT equivalents" by using the GOT entry for the final global instead. 1577 /// Compute GOT equivalent candidates among all global variables to avoid 1578 /// emitting them if possible later on, after it use is replaced by a GOT entry 1579 /// access. 1580 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1581 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1582 return; 1583 1584 for (const auto &G : M.globals()) { 1585 unsigned NumGOTEquivUsers = 0; 1586 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1587 continue; 1588 1589 const MCSymbol *GOTEquivSym = getSymbol(&G); 1590 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1591 } 1592 } 1593 1594 /// Constant expressions using GOT equivalent globals may not be eligible 1595 /// for PC relative GOT entry conversion, in such cases we need to emit such 1596 /// globals we previously omitted in EmitGlobalVariable. 1597 void AsmPrinter::emitGlobalGOTEquivs() { 1598 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1599 return; 1600 1601 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1602 for (auto &I : GlobalGOTEquivs) { 1603 const GlobalVariable *GV = I.second.first; 1604 unsigned Cnt = I.second.second; 1605 if (Cnt) 1606 FailedCandidates.push_back(GV); 1607 } 1608 GlobalGOTEquivs.clear(); 1609 1610 for (auto *GV : FailedCandidates) 1611 emitGlobalVariable(GV); 1612 } 1613 1614 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 1615 MCSymbol *Name = getSymbol(&GA); 1616 bool IsFunction = GA.getValueType()->isFunctionTy(); 1617 // Treat bitcasts of functions as functions also. This is important at least 1618 // on WebAssembly where object and function addresses can't alias each other. 1619 if (!IsFunction) 1620 if (auto *CE = dyn_cast<ConstantExpr>(GA.getAliasee())) 1621 if (CE->getOpcode() == Instruction::BitCast) 1622 IsFunction = 1623 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1624 1625 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1626 // so AIX has to use the extra-label-at-definition strategy. At this 1627 // point, all the extra label is emitted, we just have to emit linkage for 1628 // those labels. 1629 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1630 assert(MAI->hasVisibilityOnlyWithLinkage() && 1631 "Visibility should be handled with emitLinkage() on AIX."); 1632 emitLinkage(&GA, Name); 1633 // If it's a function, also emit linkage for aliases of function entry 1634 // point. 1635 if (IsFunction) 1636 emitLinkage(&GA, 1637 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 1638 return; 1639 } 1640 1641 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1642 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1643 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 1644 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1645 else 1646 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 1647 1648 // Set the symbol type to function if the alias has a function type. 1649 // This affects codegen when the aliasee is not a function. 1650 if (IsFunction) { 1651 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1652 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1653 OutStreamer->BeginCOFFSymbolDef(Name); 1654 OutStreamer->EmitCOFFSymbolStorageClass( 1655 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 1656 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 1657 OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 1658 << COFF::SCT_COMPLEX_TYPE_SHIFT); 1659 OutStreamer->EndCOFFSymbolDef(); 1660 } 1661 } 1662 1663 emitVisibility(Name, GA.getVisibility()); 1664 1665 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 1666 1667 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1668 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1669 1670 // Emit the directives as assignments aka .set: 1671 OutStreamer->emitAssignment(Name, Expr); 1672 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 1673 if (LocalAlias != Name) 1674 OutStreamer->emitAssignment(LocalAlias, Expr); 1675 1676 // If the aliasee does not correspond to a symbol in the output, i.e. the 1677 // alias is not of an object or the aliased object is private, then set the 1678 // size of the alias symbol from the type of the alias. We don't do this in 1679 // other situations as the alias and aliasee having differing types but same 1680 // size may be intentional. 1681 const GlobalObject *BaseObject = GA.getAliaseeObject(); 1682 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 1683 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1684 const DataLayout &DL = M.getDataLayout(); 1685 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 1686 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1687 } 1688 } 1689 1690 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 1691 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 1692 "IFunc is not supported on AIX."); 1693 1694 MCSymbol *Name = getSymbol(&GI); 1695 1696 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1697 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1698 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 1699 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1700 else 1701 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 1702 1703 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1704 emitVisibility(Name, GI.getVisibility()); 1705 1706 // Emit the directives as assignments aka .set: 1707 const MCExpr *Expr = lowerConstant(GI.getResolver()); 1708 OutStreamer->emitAssignment(Name, Expr); 1709 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 1710 if (LocalAlias != Name) 1711 OutStreamer->emitAssignment(LocalAlias, Expr); 1712 } 1713 1714 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1715 if (!RS.needsSection()) 1716 return; 1717 1718 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1719 1720 Optional<SmallString<128>> Filename; 1721 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1722 Filename = *FilenameRef; 1723 sys::fs::make_absolute(*Filename); 1724 assert(!Filename->empty() && "The filename can't be empty."); 1725 } 1726 1727 std::string Buf; 1728 raw_string_ostream OS(Buf); 1729 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1730 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 1731 : RemarkSerializer.metaSerializer(OS); 1732 MetaSerializer->emit(); 1733 1734 // Switch to the remarks section. 1735 MCSection *RemarksSection = 1736 OutContext.getObjectFileInfo()->getRemarksSection(); 1737 OutStreamer->SwitchSection(RemarksSection); 1738 1739 OutStreamer->emitBinaryData(OS.str()); 1740 } 1741 1742 bool AsmPrinter::doFinalization(Module &M) { 1743 // Set the MachineFunction to nullptr so that we can catch attempted 1744 // accesses to MF specific features at the module level and so that 1745 // we can conditionalize accesses based on whether or not it is nullptr. 1746 MF = nullptr; 1747 1748 // Gather all GOT equivalent globals in the module. We really need two 1749 // passes over the globals: one to compute and another to avoid its emission 1750 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1751 // where the got equivalent shows up before its use. 1752 computeGlobalGOTEquivs(M); 1753 1754 // Emit global variables. 1755 for (const auto &G : M.globals()) 1756 emitGlobalVariable(&G); 1757 1758 // Emit remaining GOT equivalent globals. 1759 emitGlobalGOTEquivs(); 1760 1761 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1762 1763 // Emit linkage(XCOFF) and visibility info for declarations 1764 for (const Function &F : M) { 1765 if (!F.isDeclarationForLinker()) 1766 continue; 1767 1768 MCSymbol *Name = getSymbol(&F); 1769 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1770 1771 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1772 GlobalValue::VisibilityTypes V = F.getVisibility(); 1773 if (V == GlobalValue::DefaultVisibility) 1774 continue; 1775 1776 emitVisibility(Name, V, false); 1777 continue; 1778 } 1779 1780 if (F.isIntrinsic()) 1781 continue; 1782 1783 // Handle the XCOFF case. 1784 // Variable `Name` is the function descriptor symbol (see above). Get the 1785 // function entry point symbol. 1786 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1787 // Emit linkage for the function entry point. 1788 emitLinkage(&F, FnEntryPointSym); 1789 1790 // Emit linkage for the function descriptor. 1791 emitLinkage(&F, Name); 1792 } 1793 1794 // Emit the remarks section contents. 1795 // FIXME: Figure out when is the safest time to emit this section. It should 1796 // not come after debug info. 1797 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1798 emitRemarksSection(*RS); 1799 1800 TLOF.emitModuleMetadata(*OutStreamer, M); 1801 1802 if (TM.getTargetTriple().isOSBinFormatELF()) { 1803 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1804 1805 // Output stubs for external and common global variables. 1806 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1807 if (!Stubs.empty()) { 1808 OutStreamer->SwitchSection(TLOF.getDataSection()); 1809 const DataLayout &DL = M.getDataLayout(); 1810 1811 emitAlignment(Align(DL.getPointerSize())); 1812 for (const auto &Stub : Stubs) { 1813 OutStreamer->emitLabel(Stub.first); 1814 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1815 DL.getPointerSize()); 1816 } 1817 } 1818 } 1819 1820 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1821 MachineModuleInfoCOFF &MMICOFF = 1822 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1823 1824 // Output stubs for external and common global variables. 1825 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1826 if (!Stubs.empty()) { 1827 const DataLayout &DL = M.getDataLayout(); 1828 1829 for (const auto &Stub : Stubs) { 1830 SmallString<256> SectionName = StringRef(".rdata$"); 1831 SectionName += Stub.first->getName(); 1832 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1833 SectionName, 1834 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1835 COFF::IMAGE_SCN_LNK_COMDAT, 1836 SectionKind::getReadOnly(), Stub.first->getName(), 1837 COFF::IMAGE_COMDAT_SELECT_ANY)); 1838 emitAlignment(Align(DL.getPointerSize())); 1839 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1840 OutStreamer->emitLabel(Stub.first); 1841 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1842 DL.getPointerSize()); 1843 } 1844 } 1845 } 1846 1847 // This needs to happen before emitting debug information since that can end 1848 // arbitrary sections. 1849 if (auto *TS = OutStreamer->getTargetStreamer()) 1850 TS->emitConstantPools(); 1851 1852 // Finalize debug and EH information. 1853 for (const HandlerInfo &HI : Handlers) { 1854 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1855 HI.TimerGroupDescription, TimePassesIsEnabled); 1856 HI.Handler->endModule(); 1857 } 1858 1859 // This deletes all the ephemeral handlers that AsmPrinter added, while 1860 // keeping all the user-added handlers alive until the AsmPrinter is 1861 // destroyed. 1862 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1863 DD = nullptr; 1864 1865 // If the target wants to know about weak references, print them all. 1866 if (MAI->getWeakRefDirective()) { 1867 // FIXME: This is not lazy, it would be nice to only print weak references 1868 // to stuff that is actually used. Note that doing so would require targets 1869 // to notice uses in operands (due to constant exprs etc). This should 1870 // happen with the MC stuff eventually. 1871 1872 // Print out module-level global objects here. 1873 for (const auto &GO : M.global_objects()) { 1874 if (!GO.hasExternalWeakLinkage()) 1875 continue; 1876 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1877 } 1878 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 1879 auto SymbolName = "swift_async_extendedFramePointerFlags"; 1880 auto Global = M.getGlobalVariable(SymbolName); 1881 if (!Global) { 1882 auto Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 1883 Global = new GlobalVariable(M, Int8PtrTy, false, 1884 GlobalValue::ExternalWeakLinkage, nullptr, 1885 SymbolName); 1886 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 1887 } 1888 } 1889 } 1890 1891 // Print aliases in topological order, that is, for each alias a = b, 1892 // b must be printed before a. 1893 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1894 // such an order to generate correct TOC information. 1895 SmallVector<const GlobalAlias *, 16> AliasStack; 1896 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1897 for (const auto &Alias : M.aliases()) { 1898 for (const GlobalAlias *Cur = &Alias; Cur; 1899 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1900 if (!AliasVisited.insert(Cur).second) 1901 break; 1902 AliasStack.push_back(Cur); 1903 } 1904 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1905 emitGlobalAlias(M, *AncestorAlias); 1906 AliasStack.clear(); 1907 } 1908 for (const auto &IFunc : M.ifuncs()) 1909 emitGlobalIFunc(M, IFunc); 1910 1911 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1912 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1913 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1914 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1915 MP->finishAssembly(M, *MI, *this); 1916 1917 // Emit llvm.ident metadata in an '.ident' directive. 1918 emitModuleIdents(M); 1919 1920 // Emit bytes for llvm.commandline metadata. 1921 emitModuleCommandLines(M); 1922 1923 // Emit __morestack address if needed for indirect calls. 1924 if (MMI->usesMorestackAddr()) { 1925 Align Alignment(1); 1926 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1927 getDataLayout(), SectionKind::getReadOnly(), 1928 /*C=*/nullptr, Alignment); 1929 OutStreamer->SwitchSection(ReadOnlySection); 1930 1931 MCSymbol *AddrSymbol = 1932 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1933 OutStreamer->emitLabel(AddrSymbol); 1934 1935 unsigned PtrSize = MAI->getCodePointerSize(); 1936 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1937 PtrSize); 1938 } 1939 1940 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1941 // split-stack is used. 1942 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1943 OutStreamer->SwitchSection( 1944 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1945 if (MMI->hasNosplitStack()) 1946 OutStreamer->SwitchSection( 1947 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1948 } 1949 1950 // If we don't have any trampolines, then we don't require stack memory 1951 // to be executable. Some targets have a directive to declare this. 1952 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1953 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1954 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1955 OutStreamer->SwitchSection(S); 1956 1957 if (TM.Options.EmitAddrsig) { 1958 // Emit address-significance attributes for all globals. 1959 OutStreamer->emitAddrsig(); 1960 for (const GlobalValue &GV : M.global_values()) { 1961 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 1962 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 1963 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 1964 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1965 } 1966 } 1967 1968 // Emit symbol partition specifications (ELF only). 1969 if (TM.getTargetTriple().isOSBinFormatELF()) { 1970 unsigned UniqueID = 0; 1971 for (const GlobalValue &GV : M.global_values()) { 1972 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1973 GV.getVisibility() != GlobalValue::DefaultVisibility) 1974 continue; 1975 1976 OutStreamer->SwitchSection( 1977 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1978 "", false, ++UniqueID, nullptr)); 1979 OutStreamer->emitBytes(GV.getPartition()); 1980 OutStreamer->emitZeros(1); 1981 OutStreamer->emitValue( 1982 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1983 MAI->getCodePointerSize()); 1984 } 1985 } 1986 1987 // Allow the target to emit any magic that it wants at the end of the file, 1988 // after everything else has gone out. 1989 emitEndOfAsmFile(M); 1990 1991 MMI = nullptr; 1992 1993 OutStreamer->Finish(); 1994 OutStreamer->reset(); 1995 OwnedMLI.reset(); 1996 OwnedMDT.reset(); 1997 1998 return false; 1999 } 2000 2001 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2002 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 2003 if (Res.second) 2004 Res.first->second = createTempSymbol("exception"); 2005 return Res.first->second; 2006 } 2007 2008 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2009 this->MF = &MF; 2010 const Function &F = MF.getFunction(); 2011 2012 // Get the function symbol. 2013 if (!MAI->needsFunctionDescriptors()) { 2014 CurrentFnSym = getSymbol(&MF.getFunction()); 2015 } else { 2016 assert(TM.getTargetTriple().isOSAIX() && 2017 "Only AIX uses the function descriptor hooks."); 2018 // AIX is unique here in that the name of the symbol emitted for the 2019 // function body does not have the same name as the source function's 2020 // C-linkage name. 2021 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2022 " initalized first."); 2023 2024 // Get the function entry point symbol. 2025 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2026 } 2027 2028 CurrentFnSymForSize = CurrentFnSym; 2029 CurrentFnBegin = nullptr; 2030 CurrentSectionBeginSym = nullptr; 2031 MBBSectionRanges.clear(); 2032 MBBSectionExceptionSyms.clear(); 2033 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2034 if (F.hasFnAttribute("patchable-function-entry") || 2035 F.hasFnAttribute("function-instrument") || 2036 F.hasFnAttribute("xray-instruction-threshold") || 2037 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 2038 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2039 CurrentFnBegin = createTempSymbol("func_begin"); 2040 if (NeedsLocalForSize) 2041 CurrentFnSymForSize = CurrentFnBegin; 2042 } 2043 2044 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2045 } 2046 2047 namespace { 2048 2049 // Keep track the alignment, constpool entries per Section. 2050 struct SectionCPs { 2051 MCSection *S; 2052 Align Alignment; 2053 SmallVector<unsigned, 4> CPEs; 2054 2055 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2056 }; 2057 2058 } // end anonymous namespace 2059 2060 /// EmitConstantPool - Print to the current output stream assembly 2061 /// representations of the constants in the constant pool MCP. This is 2062 /// used to print out constants which have been "spilled to memory" by 2063 /// the code generator. 2064 void AsmPrinter::emitConstantPool() { 2065 const MachineConstantPool *MCP = MF->getConstantPool(); 2066 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2067 if (CP.empty()) return; 2068 2069 // Calculate sections for constant pool entries. We collect entries to go into 2070 // the same section together to reduce amount of section switch statements. 2071 SmallVector<SectionCPs, 4> CPSections; 2072 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2073 const MachineConstantPoolEntry &CPE = CP[i]; 2074 Align Alignment = CPE.getAlign(); 2075 2076 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2077 2078 const Constant *C = nullptr; 2079 if (!CPE.isMachineConstantPoolEntry()) 2080 C = CPE.Val.ConstVal; 2081 2082 MCSection *S = getObjFileLowering().getSectionForConstant( 2083 getDataLayout(), Kind, C, Alignment); 2084 2085 // The number of sections are small, just do a linear search from the 2086 // last section to the first. 2087 bool Found = false; 2088 unsigned SecIdx = CPSections.size(); 2089 while (SecIdx != 0) { 2090 if (CPSections[--SecIdx].S == S) { 2091 Found = true; 2092 break; 2093 } 2094 } 2095 if (!Found) { 2096 SecIdx = CPSections.size(); 2097 CPSections.push_back(SectionCPs(S, Alignment)); 2098 } 2099 2100 if (Alignment > CPSections[SecIdx].Alignment) 2101 CPSections[SecIdx].Alignment = Alignment; 2102 CPSections[SecIdx].CPEs.push_back(i); 2103 } 2104 2105 // Now print stuff into the calculated sections. 2106 const MCSection *CurSection = nullptr; 2107 unsigned Offset = 0; 2108 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2109 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2110 unsigned CPI = CPSections[i].CPEs[j]; 2111 MCSymbol *Sym = GetCPISymbol(CPI); 2112 if (!Sym->isUndefined()) 2113 continue; 2114 2115 if (CurSection != CPSections[i].S) { 2116 OutStreamer->SwitchSection(CPSections[i].S); 2117 emitAlignment(Align(CPSections[i].Alignment)); 2118 CurSection = CPSections[i].S; 2119 Offset = 0; 2120 } 2121 2122 MachineConstantPoolEntry CPE = CP[CPI]; 2123 2124 // Emit inter-object padding for alignment. 2125 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2126 OutStreamer->emitZeros(NewOffset - Offset); 2127 2128 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2129 2130 OutStreamer->emitLabel(Sym); 2131 if (CPE.isMachineConstantPoolEntry()) 2132 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2133 else 2134 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2135 } 2136 } 2137 } 2138 2139 // Print assembly representations of the jump tables used by the current 2140 // function. 2141 void AsmPrinter::emitJumpTableInfo() { 2142 const DataLayout &DL = MF->getDataLayout(); 2143 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2144 if (!MJTI) return; 2145 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2146 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2147 if (JT.empty()) return; 2148 2149 // Pick the directive to use to print the jump table entries, and switch to 2150 // the appropriate section. 2151 const Function &F = MF->getFunction(); 2152 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2153 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2154 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2155 F); 2156 if (JTInDiffSection) { 2157 // Drop it in the readonly section. 2158 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2159 OutStreamer->SwitchSection(ReadOnlySection); 2160 } 2161 2162 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2163 2164 // Jump tables in code sections are marked with a data_region directive 2165 // where that's supported. 2166 if (!JTInDiffSection) 2167 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2168 2169 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2170 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2171 2172 // If this jump table was deleted, ignore it. 2173 if (JTBBs.empty()) continue; 2174 2175 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2176 /// emit a .set directive for each unique entry. 2177 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2178 MAI->doesSetDirectiveSuppressReloc()) { 2179 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2180 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2181 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2182 for (const MachineBasicBlock *MBB : JTBBs) { 2183 if (!EmittedSets.insert(MBB).second) 2184 continue; 2185 2186 // .set LJTSet, LBB32-base 2187 const MCExpr *LHS = 2188 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2189 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2190 MCBinaryExpr::createSub(LHS, Base, 2191 OutContext)); 2192 } 2193 } 2194 2195 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2196 // before each jump table. The first label is never referenced, but tells 2197 // the assembler and linker the extents of the jump table object. The 2198 // second label is actually referenced by the code. 2199 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2200 // FIXME: This doesn't have to have any specific name, just any randomly 2201 // named and numbered local label started with 'l' would work. Simplify 2202 // GetJTISymbol. 2203 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2204 2205 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2206 OutStreamer->emitLabel(JTISymbol); 2207 2208 for (const MachineBasicBlock *MBB : JTBBs) 2209 emitJumpTableEntry(MJTI, MBB, JTI); 2210 } 2211 if (!JTInDiffSection) 2212 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2213 } 2214 2215 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2216 /// current stream. 2217 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2218 const MachineBasicBlock *MBB, 2219 unsigned UID) const { 2220 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2221 const MCExpr *Value = nullptr; 2222 switch (MJTI->getEntryKind()) { 2223 case MachineJumpTableInfo::EK_Inline: 2224 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2225 case MachineJumpTableInfo::EK_Custom32: 2226 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2227 MJTI, MBB, UID, OutContext); 2228 break; 2229 case MachineJumpTableInfo::EK_BlockAddress: 2230 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2231 // .word LBB123 2232 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2233 break; 2234 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2235 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2236 // with a relocation as gp-relative, e.g.: 2237 // .gprel32 LBB123 2238 MCSymbol *MBBSym = MBB->getSymbol(); 2239 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2240 return; 2241 } 2242 2243 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2244 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2245 // with a relocation as gp-relative, e.g.: 2246 // .gpdword LBB123 2247 MCSymbol *MBBSym = MBB->getSymbol(); 2248 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2249 return; 2250 } 2251 2252 case MachineJumpTableInfo::EK_LabelDifference32: { 2253 // Each entry is the address of the block minus the address of the jump 2254 // table. This is used for PIC jump tables where gprel32 is not supported. 2255 // e.g.: 2256 // .word LBB123 - LJTI1_2 2257 // If the .set directive avoids relocations, this is emitted as: 2258 // .set L4_5_set_123, LBB123 - LJTI1_2 2259 // .word L4_5_set_123 2260 if (MAI->doesSetDirectiveSuppressReloc()) { 2261 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2262 OutContext); 2263 break; 2264 } 2265 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2266 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2267 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2268 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2269 break; 2270 } 2271 } 2272 2273 assert(Value && "Unknown entry kind!"); 2274 2275 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2276 OutStreamer->emitValue(Value, EntrySize); 2277 } 2278 2279 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2280 /// special global used by LLVM. If so, emit it and return true, otherwise 2281 /// do nothing and return false. 2282 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2283 if (GV->getName() == "llvm.used") { 2284 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2285 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2286 return true; 2287 } 2288 2289 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2290 if (GV->getSection() == "llvm.metadata" || 2291 GV->hasAvailableExternallyLinkage()) 2292 return true; 2293 2294 if (!GV->hasAppendingLinkage()) return false; 2295 2296 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2297 2298 if (GV->getName() == "llvm.global_ctors") { 2299 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2300 /* isCtor */ true); 2301 2302 return true; 2303 } 2304 2305 if (GV->getName() == "llvm.global_dtors") { 2306 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2307 /* isCtor */ false); 2308 2309 return true; 2310 } 2311 2312 report_fatal_error("unknown special variable"); 2313 } 2314 2315 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2316 /// global in the specified llvm.used list. 2317 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2318 // Should be an array of 'i8*'. 2319 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2320 const GlobalValue *GV = 2321 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2322 if (GV) 2323 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2324 } 2325 } 2326 2327 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2328 const Constant *List, 2329 SmallVector<Structor, 8> &Structors) { 2330 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2331 // the init priority. 2332 if (!isa<ConstantArray>(List)) 2333 return; 2334 2335 // Gather the structors in a form that's convenient for sorting by priority. 2336 for (Value *O : cast<ConstantArray>(List)->operands()) { 2337 auto *CS = cast<ConstantStruct>(O); 2338 if (CS->getOperand(1)->isNullValue()) 2339 break; // Found a null terminator, skip the rest. 2340 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2341 if (!Priority) 2342 continue; // Malformed. 2343 Structors.push_back(Structor()); 2344 Structor &S = Structors.back(); 2345 S.Priority = Priority->getLimitedValue(65535); 2346 S.Func = CS->getOperand(1); 2347 if (!CS->getOperand(2)->isNullValue()) { 2348 if (TM.getTargetTriple().isOSAIX()) 2349 llvm::report_fatal_error( 2350 "associated data of XXStructor list is not yet supported on AIX"); 2351 S.ComdatKey = 2352 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2353 } 2354 } 2355 2356 // Emit the function pointers in the target-specific order 2357 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2358 return L.Priority < R.Priority; 2359 }); 2360 } 2361 2362 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2363 /// priority. 2364 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2365 bool IsCtor) { 2366 SmallVector<Structor, 8> Structors; 2367 preprocessXXStructorList(DL, List, Structors); 2368 if (Structors.empty()) 2369 return; 2370 2371 // Emit the structors in reverse order if we are using the .ctor/.dtor 2372 // initialization scheme. 2373 if (!TM.Options.UseInitArray) 2374 std::reverse(Structors.begin(), Structors.end()); 2375 2376 const Align Align = DL.getPointerPrefAlignment(); 2377 for (Structor &S : Structors) { 2378 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2379 const MCSymbol *KeySym = nullptr; 2380 if (GlobalValue *GV = S.ComdatKey) { 2381 if (GV->isDeclarationForLinker()) 2382 // If the associated variable is not defined in this module 2383 // (it might be available_externally, or have been an 2384 // available_externally definition that was dropped by the 2385 // EliminateAvailableExternally pass), some other TU 2386 // will provide its dynamic initializer. 2387 continue; 2388 2389 KeySym = getSymbol(GV); 2390 } 2391 2392 MCSection *OutputSection = 2393 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2394 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2395 OutStreamer->SwitchSection(OutputSection); 2396 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2397 emitAlignment(Align); 2398 emitXXStructor(DL, S.Func); 2399 } 2400 } 2401 2402 void AsmPrinter::emitModuleIdents(Module &M) { 2403 if (!MAI->hasIdentDirective()) 2404 return; 2405 2406 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2407 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2408 const MDNode *N = NMD->getOperand(i); 2409 assert(N->getNumOperands() == 1 && 2410 "llvm.ident metadata entry can have only one operand"); 2411 const MDString *S = cast<MDString>(N->getOperand(0)); 2412 OutStreamer->emitIdent(S->getString()); 2413 } 2414 } 2415 } 2416 2417 void AsmPrinter::emitModuleCommandLines(Module &M) { 2418 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2419 if (!CommandLine) 2420 return; 2421 2422 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2423 if (!NMD || !NMD->getNumOperands()) 2424 return; 2425 2426 OutStreamer->PushSection(); 2427 OutStreamer->SwitchSection(CommandLine); 2428 OutStreamer->emitZeros(1); 2429 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2430 const MDNode *N = NMD->getOperand(i); 2431 assert(N->getNumOperands() == 1 && 2432 "llvm.commandline metadata entry can have only one operand"); 2433 const MDString *S = cast<MDString>(N->getOperand(0)); 2434 OutStreamer->emitBytes(S->getString()); 2435 OutStreamer->emitZeros(1); 2436 } 2437 OutStreamer->PopSection(); 2438 } 2439 2440 //===--------------------------------------------------------------------===// 2441 // Emission and print routines 2442 // 2443 2444 /// Emit a byte directive and value. 2445 /// 2446 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2447 2448 /// Emit a short directive and value. 2449 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2450 2451 /// Emit a long directive and value. 2452 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2453 2454 /// Emit a long long directive and value. 2455 void AsmPrinter::emitInt64(uint64_t Value) const { 2456 OutStreamer->emitInt64(Value); 2457 } 2458 2459 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2460 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2461 /// .set if it avoids relocations. 2462 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2463 unsigned Size) const { 2464 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2465 } 2466 2467 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2468 /// where the size in bytes of the directive is specified by Size and Label 2469 /// specifies the label. This implicitly uses .set if it is available. 2470 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2471 unsigned Size, 2472 bool IsSectionRelative) const { 2473 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2474 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2475 if (Size > 4) 2476 OutStreamer->emitZeros(Size - 4); 2477 return; 2478 } 2479 2480 // Emit Label+Offset (or just Label if Offset is zero) 2481 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2482 if (Offset) 2483 Expr = MCBinaryExpr::createAdd( 2484 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2485 2486 OutStreamer->emitValue(Expr, Size); 2487 } 2488 2489 //===----------------------------------------------------------------------===// 2490 2491 // EmitAlignment - Emit an alignment directive to the specified power of 2492 // two boundary. If a global value is specified, and if that global has 2493 // an explicit alignment requested, it will override the alignment request 2494 // if required for correctness. 2495 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 2496 unsigned MaxBytesToEmit) const { 2497 if (GV) 2498 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2499 2500 if (Alignment == Align(1)) 2501 return; // 1-byte aligned: no need to emit alignment. 2502 2503 if (getCurrentSection()->getKind().isText()) { 2504 const MCSubtargetInfo *STI = nullptr; 2505 if (this->MF) 2506 STI = &getSubtargetInfo(); 2507 else 2508 STI = TM.getMCSubtargetInfo(); 2509 OutStreamer->emitCodeAlignment(Alignment.value(), STI, MaxBytesToEmit); 2510 } else 2511 OutStreamer->emitValueToAlignment(Alignment.value(), 0, 1, MaxBytesToEmit); 2512 } 2513 2514 //===----------------------------------------------------------------------===// 2515 // Constant emission. 2516 //===----------------------------------------------------------------------===// 2517 2518 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2519 MCContext &Ctx = OutContext; 2520 2521 if (CV->isNullValue() || isa<UndefValue>(CV)) 2522 return MCConstantExpr::create(0, Ctx); 2523 2524 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2525 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2526 2527 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2528 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2529 2530 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2531 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2532 2533 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2534 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2535 2536 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 2537 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 2538 2539 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2540 if (!CE) { 2541 llvm_unreachable("Unknown constant value to lower!"); 2542 } 2543 2544 switch (CE->getOpcode()) { 2545 case Instruction::AddrSpaceCast: { 2546 const Constant *Op = CE->getOperand(0); 2547 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2548 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2549 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2550 return lowerConstant(Op); 2551 2552 // Fallthrough to error. 2553 LLVM_FALLTHROUGH; 2554 } 2555 default: { 2556 // If the code isn't optimized, there may be outstanding folding 2557 // opportunities. Attempt to fold the expression using DataLayout as a 2558 // last resort before giving up. 2559 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2560 if (C != CE) 2561 return lowerConstant(C); 2562 2563 // Otherwise report the problem to the user. 2564 std::string S; 2565 raw_string_ostream OS(S); 2566 OS << "Unsupported expression in static initializer: "; 2567 CE->printAsOperand(OS, /*PrintType=*/false, 2568 !MF ? nullptr : MF->getFunction().getParent()); 2569 report_fatal_error(Twine(OS.str())); 2570 } 2571 case Instruction::GetElementPtr: { 2572 // Generate a symbolic expression for the byte address 2573 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2574 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2575 2576 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2577 if (!OffsetAI) 2578 return Base; 2579 2580 int64_t Offset = OffsetAI.getSExtValue(); 2581 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2582 Ctx); 2583 } 2584 2585 case Instruction::Trunc: 2586 // We emit the value and depend on the assembler to truncate the generated 2587 // expression properly. This is important for differences between 2588 // blockaddress labels. Since the two labels are in the same function, it 2589 // is reasonable to treat their delta as a 32-bit value. 2590 LLVM_FALLTHROUGH; 2591 case Instruction::BitCast: 2592 return lowerConstant(CE->getOperand(0)); 2593 2594 case Instruction::IntToPtr: { 2595 const DataLayout &DL = getDataLayout(); 2596 2597 // Handle casts to pointers by changing them into casts to the appropriate 2598 // integer type. This promotes constant folding and simplifies this code. 2599 Constant *Op = CE->getOperand(0); 2600 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2601 false/*ZExt*/); 2602 return lowerConstant(Op); 2603 } 2604 2605 case Instruction::PtrToInt: { 2606 const DataLayout &DL = getDataLayout(); 2607 2608 // Support only foldable casts to/from pointers that can be eliminated by 2609 // changing the pointer to the appropriately sized integer type. 2610 Constant *Op = CE->getOperand(0); 2611 Type *Ty = CE->getType(); 2612 2613 const MCExpr *OpExpr = lowerConstant(Op); 2614 2615 // We can emit the pointer value into this slot if the slot is an 2616 // integer slot equal to the size of the pointer. 2617 // 2618 // If the pointer is larger than the resultant integer, then 2619 // as with Trunc just depend on the assembler to truncate it. 2620 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2621 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2622 return OpExpr; 2623 2624 // Otherwise the pointer is smaller than the resultant integer, mask off 2625 // the high bits so we are sure to get a proper truncation if the input is 2626 // a constant expr. 2627 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2628 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2629 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2630 } 2631 2632 case Instruction::Sub: { 2633 GlobalValue *LHSGV; 2634 APInt LHSOffset; 2635 DSOLocalEquivalent *DSOEquiv; 2636 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2637 getDataLayout(), &DSOEquiv)) { 2638 GlobalValue *RHSGV; 2639 APInt RHSOffset; 2640 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2641 getDataLayout())) { 2642 const MCExpr *RelocExpr = 2643 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2644 if (!RelocExpr) { 2645 const MCExpr *LHSExpr = 2646 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2647 if (DSOEquiv && 2648 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2649 LHSExpr = 2650 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2651 RelocExpr = MCBinaryExpr::createSub( 2652 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2653 } 2654 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2655 if (Addend != 0) 2656 RelocExpr = MCBinaryExpr::createAdd( 2657 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2658 return RelocExpr; 2659 } 2660 } 2661 } 2662 // else fallthrough 2663 LLVM_FALLTHROUGH; 2664 2665 // The MC library also has a right-shift operator, but it isn't consistently 2666 // signed or unsigned between different targets. 2667 case Instruction::Add: 2668 case Instruction::Mul: 2669 case Instruction::SDiv: 2670 case Instruction::SRem: 2671 case Instruction::Shl: 2672 case Instruction::And: 2673 case Instruction::Or: 2674 case Instruction::Xor: { 2675 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2676 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2677 switch (CE->getOpcode()) { 2678 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2679 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2680 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2681 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2682 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2683 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2684 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2685 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2686 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2687 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2688 } 2689 } 2690 } 2691 } 2692 2693 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2694 AsmPrinter &AP, 2695 const Constant *BaseCV = nullptr, 2696 uint64_t Offset = 0); 2697 2698 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2699 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2700 2701 /// isRepeatedByteSequence - Determine whether the given value is 2702 /// composed of a repeated sequence of identical bytes and return the 2703 /// byte value. If it is not a repeated sequence, return -1. 2704 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2705 StringRef Data = V->getRawDataValues(); 2706 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2707 char C = Data[0]; 2708 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2709 if (Data[i] != C) return -1; 2710 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2711 } 2712 2713 /// isRepeatedByteSequence - Determine whether the given value is 2714 /// composed of a repeated sequence of identical bytes and return the 2715 /// byte value. If it is not a repeated sequence, return -1. 2716 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2717 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2718 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2719 assert(Size % 8 == 0); 2720 2721 // Extend the element to take zero padding into account. 2722 APInt Value = CI->getValue().zextOrSelf(Size); 2723 if (!Value.isSplat(8)) 2724 return -1; 2725 2726 return Value.zextOrTrunc(8).getZExtValue(); 2727 } 2728 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2729 // Make sure all array elements are sequences of the same repeated 2730 // byte. 2731 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2732 Constant *Op0 = CA->getOperand(0); 2733 int Byte = isRepeatedByteSequence(Op0, DL); 2734 if (Byte == -1) 2735 return -1; 2736 2737 // All array elements must be equal. 2738 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2739 if (CA->getOperand(i) != Op0) 2740 return -1; 2741 return Byte; 2742 } 2743 2744 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2745 return isRepeatedByteSequence(CDS); 2746 2747 return -1; 2748 } 2749 2750 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2751 const ConstantDataSequential *CDS, 2752 AsmPrinter &AP) { 2753 // See if we can aggregate this into a .fill, if so, emit it as such. 2754 int Value = isRepeatedByteSequence(CDS, DL); 2755 if (Value != -1) { 2756 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2757 // Don't emit a 1-byte object as a .fill. 2758 if (Bytes > 1) 2759 return AP.OutStreamer->emitFill(Bytes, Value); 2760 } 2761 2762 // If this can be emitted with .ascii/.asciz, emit it as such. 2763 if (CDS->isString()) 2764 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2765 2766 // Otherwise, emit the values in successive locations. 2767 unsigned ElementByteSize = CDS->getElementByteSize(); 2768 if (isa<IntegerType>(CDS->getElementType())) { 2769 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2770 if (AP.isVerbose()) 2771 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2772 CDS->getElementAsInteger(i)); 2773 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2774 ElementByteSize); 2775 } 2776 } else { 2777 Type *ET = CDS->getElementType(); 2778 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2779 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2780 } 2781 2782 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2783 unsigned EmittedSize = 2784 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2785 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2786 if (unsigned Padding = Size - EmittedSize) 2787 AP.OutStreamer->emitZeros(Padding); 2788 } 2789 2790 static void emitGlobalConstantArray(const DataLayout &DL, 2791 const ConstantArray *CA, AsmPrinter &AP, 2792 const Constant *BaseCV, uint64_t Offset) { 2793 // See if we can aggregate some values. Make sure it can be 2794 // represented as a series of bytes of the constant value. 2795 int Value = isRepeatedByteSequence(CA, DL); 2796 2797 if (Value != -1) { 2798 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2799 AP.OutStreamer->emitFill(Bytes, Value); 2800 } 2801 else { 2802 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2803 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2804 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2805 } 2806 } 2807 } 2808 2809 static void emitGlobalConstantVector(const DataLayout &DL, 2810 const ConstantVector *CV, AsmPrinter &AP) { 2811 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2812 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2813 2814 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2815 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2816 CV->getType()->getNumElements(); 2817 if (unsigned Padding = Size - EmittedSize) 2818 AP.OutStreamer->emitZeros(Padding); 2819 } 2820 2821 static void emitGlobalConstantStruct(const DataLayout &DL, 2822 const ConstantStruct *CS, AsmPrinter &AP, 2823 const Constant *BaseCV, uint64_t Offset) { 2824 // Print the fields in successive locations. Pad to align if needed! 2825 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2826 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2827 uint64_t SizeSoFar = 0; 2828 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2829 const Constant *Field = CS->getOperand(i); 2830 2831 // Print the actual field value. 2832 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2833 2834 // Check if padding is needed and insert one or more 0s. 2835 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2836 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2837 - Layout->getElementOffset(i)) - FieldSize; 2838 SizeSoFar += FieldSize + PadSize; 2839 2840 // Insert padding - this may include padding to increase the size of the 2841 // current field up to the ABI size (if the struct is not packed) as well 2842 // as padding to ensure that the next field starts at the right offset. 2843 AP.OutStreamer->emitZeros(PadSize); 2844 } 2845 assert(SizeSoFar == Layout->getSizeInBytes() && 2846 "Layout of constant struct may be incorrect!"); 2847 } 2848 2849 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2850 assert(ET && "Unknown float type"); 2851 APInt API = APF.bitcastToAPInt(); 2852 2853 // First print a comment with what we think the original floating-point value 2854 // should have been. 2855 if (AP.isVerbose()) { 2856 SmallString<8> StrVal; 2857 APF.toString(StrVal); 2858 ET->print(AP.OutStreamer->GetCommentOS()); 2859 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2860 } 2861 2862 // Now iterate through the APInt chunks, emitting them in endian-correct 2863 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2864 // floats). 2865 unsigned NumBytes = API.getBitWidth() / 8; 2866 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2867 const uint64_t *p = API.getRawData(); 2868 2869 // PPC's long double has odd notions of endianness compared to how LLVM 2870 // handles it: p[0] goes first for *big* endian on PPC. 2871 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2872 int Chunk = API.getNumWords() - 1; 2873 2874 if (TrailingBytes) 2875 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2876 2877 for (; Chunk >= 0; --Chunk) 2878 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2879 } else { 2880 unsigned Chunk; 2881 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2882 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2883 2884 if (TrailingBytes) 2885 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2886 } 2887 2888 // Emit the tail padding for the long double. 2889 const DataLayout &DL = AP.getDataLayout(); 2890 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2891 } 2892 2893 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2894 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2895 } 2896 2897 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2898 const DataLayout &DL = AP.getDataLayout(); 2899 unsigned BitWidth = CI->getBitWidth(); 2900 2901 // Copy the value as we may massage the layout for constants whose bit width 2902 // is not a multiple of 64-bits. 2903 APInt Realigned(CI->getValue()); 2904 uint64_t ExtraBits = 0; 2905 unsigned ExtraBitsSize = BitWidth & 63; 2906 2907 if (ExtraBitsSize) { 2908 // The bit width of the data is not a multiple of 64-bits. 2909 // The extra bits are expected to be at the end of the chunk of the memory. 2910 // Little endian: 2911 // * Nothing to be done, just record the extra bits to emit. 2912 // Big endian: 2913 // * Record the extra bits to emit. 2914 // * Realign the raw data to emit the chunks of 64-bits. 2915 if (DL.isBigEndian()) { 2916 // Basically the structure of the raw data is a chunk of 64-bits cells: 2917 // 0 1 BitWidth / 64 2918 // [chunk1][chunk2] ... [chunkN]. 2919 // The most significant chunk is chunkN and it should be emitted first. 2920 // However, due to the alignment issue chunkN contains useless bits. 2921 // Realign the chunks so that they contain only useful information: 2922 // ExtraBits 0 1 (BitWidth / 64) - 1 2923 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2924 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2925 ExtraBits = Realigned.getRawData()[0] & 2926 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2927 Realigned.lshrInPlace(ExtraBitsSize); 2928 } else 2929 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2930 } 2931 2932 // We don't expect assemblers to support integer data directives 2933 // for more than 64 bits, so we emit the data in at most 64-bit 2934 // quantities at a time. 2935 const uint64_t *RawData = Realigned.getRawData(); 2936 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2937 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2938 AP.OutStreamer->emitIntValue(Val, 8); 2939 } 2940 2941 if (ExtraBitsSize) { 2942 // Emit the extra bits after the 64-bits chunks. 2943 2944 // Emit a directive that fills the expected size. 2945 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2946 Size -= (BitWidth / 64) * 8; 2947 assert(Size && Size * 8 >= ExtraBitsSize && 2948 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2949 == ExtraBits && "Directive too small for extra bits."); 2950 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2951 } 2952 } 2953 2954 /// Transform a not absolute MCExpr containing a reference to a GOT 2955 /// equivalent global, by a target specific GOT pc relative access to the 2956 /// final symbol. 2957 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2958 const Constant *BaseCst, 2959 uint64_t Offset) { 2960 // The global @foo below illustrates a global that uses a got equivalent. 2961 // 2962 // @bar = global i32 42 2963 // @gotequiv = private unnamed_addr constant i32* @bar 2964 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2965 // i64 ptrtoint (i32* @foo to i64)) 2966 // to i32) 2967 // 2968 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2969 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2970 // form: 2971 // 2972 // foo = cstexpr, where 2973 // cstexpr := <gotequiv> - "." + <cst> 2974 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2975 // 2976 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2977 // 2978 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2979 // gotpcrelcst := <offset from @foo base> + <cst> 2980 MCValue MV; 2981 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2982 return; 2983 const MCSymbolRefExpr *SymA = MV.getSymA(); 2984 if (!SymA) 2985 return; 2986 2987 // Check that GOT equivalent symbol is cached. 2988 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2989 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2990 return; 2991 2992 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2993 if (!BaseGV) 2994 return; 2995 2996 // Check for a valid base symbol 2997 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2998 const MCSymbolRefExpr *SymB = MV.getSymB(); 2999 3000 if (!SymB || BaseSym != &SymB->getSymbol()) 3001 return; 3002 3003 // Make sure to match: 3004 // 3005 // gotpcrelcst := <offset from @foo base> + <cst> 3006 // 3007 // If gotpcrelcst is positive it means that we can safely fold the pc rel 3008 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 3009 // if the target knows how to encode it. 3010 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3011 if (GOTPCRelCst < 0) 3012 return; 3013 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3014 return; 3015 3016 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3017 // 3018 // bar: 3019 // .long 42 3020 // gotequiv: 3021 // .quad bar 3022 // foo: 3023 // .long gotequiv - "." + <cst> 3024 // 3025 // is replaced by the target specific equivalent to: 3026 // 3027 // bar: 3028 // .long 42 3029 // foo: 3030 // .long bar@GOTPCREL+<gotpcrelcst> 3031 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3032 const GlobalVariable *GV = Result.first; 3033 int NumUses = (int)Result.second; 3034 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3035 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3036 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3037 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3038 3039 // Update GOT equivalent usage information 3040 --NumUses; 3041 if (NumUses >= 0) 3042 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3043 } 3044 3045 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3046 AsmPrinter &AP, const Constant *BaseCV, 3047 uint64_t Offset) { 3048 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3049 3050 // Globals with sub-elements such as combinations of arrays and structs 3051 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3052 // constant symbol base and the current position with BaseCV and Offset. 3053 if (!BaseCV && CV->hasOneUse()) 3054 BaseCV = dyn_cast<Constant>(CV->user_back()); 3055 3056 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3057 return AP.OutStreamer->emitZeros(Size); 3058 3059 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3060 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3061 3062 if (StoreSize <= 8) { 3063 if (AP.isVerbose()) 3064 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 3065 CI->getZExtValue()); 3066 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3067 } else { 3068 emitGlobalConstantLargeInt(CI, AP); 3069 } 3070 3071 // Emit tail padding if needed 3072 if (Size != StoreSize) 3073 AP.OutStreamer->emitZeros(Size - StoreSize); 3074 3075 return; 3076 } 3077 3078 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3079 return emitGlobalConstantFP(CFP, AP); 3080 3081 if (isa<ConstantPointerNull>(CV)) { 3082 AP.OutStreamer->emitIntValue(0, Size); 3083 return; 3084 } 3085 3086 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3087 return emitGlobalConstantDataSequential(DL, CDS, AP); 3088 3089 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3090 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3091 3092 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3093 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3094 3095 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3096 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3097 // vectors). 3098 if (CE->getOpcode() == Instruction::BitCast) 3099 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3100 3101 if (Size > 8) { 3102 // If the constant expression's size is greater than 64-bits, then we have 3103 // to emit the value in chunks. Try to constant fold the value and emit it 3104 // that way. 3105 Constant *New = ConstantFoldConstant(CE, DL); 3106 if (New != CE) 3107 return emitGlobalConstantImpl(DL, New, AP); 3108 } 3109 } 3110 3111 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3112 return emitGlobalConstantVector(DL, V, AP); 3113 3114 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3115 // thread the streamer with EmitValue. 3116 const MCExpr *ME = AP.lowerConstant(CV); 3117 3118 // Since lowerConstant already folded and got rid of all IR pointer and 3119 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3120 // directly. 3121 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3122 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3123 3124 AP.OutStreamer->emitValue(ME, Size); 3125 } 3126 3127 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3128 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3129 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3130 if (Size) 3131 emitGlobalConstantImpl(DL, CV, *this); 3132 else if (MAI->hasSubsectionsViaSymbols()) { 3133 // If the global has zero size, emit a single byte so that two labels don't 3134 // look like they are at the same location. 3135 OutStreamer->emitIntValue(0, 1); 3136 } 3137 } 3138 3139 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3140 // Target doesn't support this yet! 3141 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3142 } 3143 3144 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3145 if (Offset > 0) 3146 OS << '+' << Offset; 3147 else if (Offset < 0) 3148 OS << Offset; 3149 } 3150 3151 void AsmPrinter::emitNops(unsigned N) { 3152 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3153 for (; N; --N) 3154 EmitToStreamer(*OutStreamer, Nop); 3155 } 3156 3157 //===----------------------------------------------------------------------===// 3158 // Symbol Lowering Routines. 3159 //===----------------------------------------------------------------------===// 3160 3161 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3162 return OutContext.createTempSymbol(Name, true); 3163 } 3164 3165 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3166 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3167 } 3168 3169 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3170 return MMI->getAddrLabelSymbol(BB); 3171 } 3172 3173 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3174 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3175 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3176 const MachineConstantPoolEntry &CPE = 3177 MF->getConstantPool()->getConstants()[CPID]; 3178 if (!CPE.isMachineConstantPoolEntry()) { 3179 const DataLayout &DL = MF->getDataLayout(); 3180 SectionKind Kind = CPE.getSectionKind(&DL); 3181 const Constant *C = CPE.Val.ConstVal; 3182 Align Alignment = CPE.Alignment; 3183 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3184 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3185 Alignment))) { 3186 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3187 if (Sym->isUndefined()) 3188 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3189 return Sym; 3190 } 3191 } 3192 } 3193 } 3194 3195 const DataLayout &DL = getDataLayout(); 3196 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3197 "CPI" + Twine(getFunctionNumber()) + "_" + 3198 Twine(CPID)); 3199 } 3200 3201 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3202 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3203 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3204 } 3205 3206 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3207 /// FIXME: privatize to AsmPrinter. 3208 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3209 const DataLayout &DL = getDataLayout(); 3210 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3211 Twine(getFunctionNumber()) + "_" + 3212 Twine(UID) + "_set_" + Twine(MBBID)); 3213 } 3214 3215 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3216 StringRef Suffix) const { 3217 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3218 } 3219 3220 /// Return the MCSymbol for the specified ExternalSymbol. 3221 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3222 SmallString<60> NameStr; 3223 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3224 return OutContext.getOrCreateSymbol(NameStr); 3225 } 3226 3227 /// PrintParentLoopComment - Print comments about parent loops of this one. 3228 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3229 unsigned FunctionNumber) { 3230 if (!Loop) return; 3231 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3232 OS.indent(Loop->getLoopDepth()*2) 3233 << "Parent Loop BB" << FunctionNumber << "_" 3234 << Loop->getHeader()->getNumber() 3235 << " Depth=" << Loop->getLoopDepth() << '\n'; 3236 } 3237 3238 /// PrintChildLoopComment - Print comments about child loops within 3239 /// the loop for this basic block, with nesting. 3240 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3241 unsigned FunctionNumber) { 3242 // Add child loop information 3243 for (const MachineLoop *CL : *Loop) { 3244 OS.indent(CL->getLoopDepth()*2) 3245 << "Child Loop BB" << FunctionNumber << "_" 3246 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3247 << '\n'; 3248 PrintChildLoopComment(OS, CL, FunctionNumber); 3249 } 3250 } 3251 3252 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3253 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3254 const MachineLoopInfo *LI, 3255 const AsmPrinter &AP) { 3256 // Add loop depth information 3257 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3258 if (!Loop) return; 3259 3260 MachineBasicBlock *Header = Loop->getHeader(); 3261 assert(Header && "No header for loop"); 3262 3263 // If this block is not a loop header, just print out what is the loop header 3264 // and return. 3265 if (Header != &MBB) { 3266 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3267 Twine(AP.getFunctionNumber())+"_" + 3268 Twine(Loop->getHeader()->getNumber())+ 3269 " Depth="+Twine(Loop->getLoopDepth())); 3270 return; 3271 } 3272 3273 // Otherwise, it is a loop header. Print out information about child and 3274 // parent loops. 3275 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3276 3277 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3278 3279 OS << "=>"; 3280 OS.indent(Loop->getLoopDepth()*2-2); 3281 3282 OS << "This "; 3283 if (Loop->isInnermost()) 3284 OS << "Inner "; 3285 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3286 3287 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3288 } 3289 3290 /// emitBasicBlockStart - This method prints the label for the specified 3291 /// MachineBasicBlock, an alignment (if present) and a comment describing 3292 /// it if appropriate. 3293 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3294 // End the previous funclet and start a new one. 3295 if (MBB.isEHFuncletEntry()) { 3296 for (const HandlerInfo &HI : Handlers) { 3297 HI.Handler->endFunclet(); 3298 HI.Handler->beginFunclet(MBB); 3299 } 3300 } 3301 3302 // Emit an alignment directive for this block, if needed. 3303 const Align Alignment = MBB.getAlignment(); 3304 if (Alignment != Align(1)) 3305 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 3306 3307 // Switch to a new section if this basic block must begin a section. The 3308 // entry block is always placed in the function section and is handled 3309 // separately. 3310 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3311 OutStreamer->SwitchSection( 3312 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3313 MBB, TM)); 3314 CurrentSectionBeginSym = MBB.getSymbol(); 3315 } 3316 3317 // If the block has its address taken, emit any labels that were used to 3318 // reference the block. It is possible that there is more than one label 3319 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3320 // the references were generated. 3321 const BasicBlock *BB = MBB.getBasicBlock(); 3322 if (MBB.hasAddressTaken()) { 3323 if (isVerbose()) 3324 OutStreamer->AddComment("Block address taken"); 3325 3326 // MBBs can have their address taken as part of CodeGen without having 3327 // their corresponding BB's address taken in IR 3328 if (BB && BB->hasAddressTaken()) 3329 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3330 OutStreamer->emitLabel(Sym); 3331 } 3332 3333 // Print some verbose block comments. 3334 if (isVerbose()) { 3335 if (BB) { 3336 if (BB->hasName()) { 3337 BB->printAsOperand(OutStreamer->GetCommentOS(), 3338 /*PrintType=*/false, BB->getModule()); 3339 OutStreamer->GetCommentOS() << '\n'; 3340 } 3341 } 3342 3343 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3344 emitBasicBlockLoopComments(MBB, MLI, *this); 3345 } 3346 3347 // Print the main label for the block. 3348 if (shouldEmitLabelForBasicBlock(MBB)) { 3349 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3350 OutStreamer->AddComment("Label of block must be emitted"); 3351 OutStreamer->emitLabel(MBB.getSymbol()); 3352 } else { 3353 if (isVerbose()) { 3354 // NOTE: Want this comment at start of line, don't emit with AddComment. 3355 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3356 false); 3357 } 3358 } 3359 3360 if (MBB.isEHCatchretTarget() && 3361 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3362 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3363 } 3364 3365 // With BB sections, each basic block must handle CFI information on its own 3366 // if it begins a section (Entry block is handled separately by 3367 // AsmPrinterHandler::beginFunction). 3368 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3369 for (const HandlerInfo &HI : Handlers) 3370 HI.Handler->beginBasicBlock(MBB); 3371 } 3372 3373 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3374 // Check if CFI information needs to be updated for this MBB with basic block 3375 // sections. 3376 if (MBB.isEndSection()) 3377 for (const HandlerInfo &HI : Handlers) 3378 HI.Handler->endBasicBlock(MBB); 3379 } 3380 3381 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3382 bool IsDefinition) const { 3383 MCSymbolAttr Attr = MCSA_Invalid; 3384 3385 switch (Visibility) { 3386 default: break; 3387 case GlobalValue::HiddenVisibility: 3388 if (IsDefinition) 3389 Attr = MAI->getHiddenVisibilityAttr(); 3390 else 3391 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3392 break; 3393 case GlobalValue::ProtectedVisibility: 3394 Attr = MAI->getProtectedVisibilityAttr(); 3395 break; 3396 } 3397 3398 if (Attr != MCSA_Invalid) 3399 OutStreamer->emitSymbolAttribute(Sym, Attr); 3400 } 3401 3402 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3403 const MachineBasicBlock &MBB) const { 3404 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3405 // in the labels mode (option `=labels`) and every section beginning in the 3406 // sections mode (`=all` and `=list=`). 3407 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3408 return true; 3409 // A label is needed for any block with at least one predecessor (when that 3410 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3411 // entry, or if a label is forced). 3412 return !MBB.pred_empty() && 3413 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3414 MBB.hasLabelMustBeEmitted()); 3415 } 3416 3417 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3418 /// exactly one predecessor and the control transfer mechanism between 3419 /// the predecessor and this block is a fall-through. 3420 bool AsmPrinter:: 3421 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3422 // If this is a landing pad, it isn't a fall through. If it has no preds, 3423 // then nothing falls through to it. 3424 if (MBB->isEHPad() || MBB->pred_empty()) 3425 return false; 3426 3427 // If there isn't exactly one predecessor, it can't be a fall through. 3428 if (MBB->pred_size() > 1) 3429 return false; 3430 3431 // The predecessor has to be immediately before this block. 3432 MachineBasicBlock *Pred = *MBB->pred_begin(); 3433 if (!Pred->isLayoutSuccessor(MBB)) 3434 return false; 3435 3436 // If the block is completely empty, then it definitely does fall through. 3437 if (Pred->empty()) 3438 return true; 3439 3440 // Check the terminators in the previous blocks 3441 for (const auto &MI : Pred->terminators()) { 3442 // If it is not a simple branch, we are in a table somewhere. 3443 if (!MI.isBranch() || MI.isIndirectBranch()) 3444 return false; 3445 3446 // If we are the operands of one of the branches, this is not a fall 3447 // through. Note that targets with delay slots will usually bundle 3448 // terminators with the delay slot instruction. 3449 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3450 if (OP->isJTI()) 3451 return false; 3452 if (OP->isMBB() && OP->getMBB() == MBB) 3453 return false; 3454 } 3455 } 3456 3457 return true; 3458 } 3459 3460 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3461 if (!S.usesMetadata()) 3462 return nullptr; 3463 3464 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3465 gcp_map_type::iterator GCPI = GCMap.find(&S); 3466 if (GCPI != GCMap.end()) 3467 return GCPI->second.get(); 3468 3469 auto Name = S.getName(); 3470 3471 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3472 GCMetadataPrinterRegistry::entries()) 3473 if (Name == GCMetaPrinter.getName()) { 3474 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3475 GMP->S = &S; 3476 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3477 return IterBool.first->second.get(); 3478 } 3479 3480 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3481 } 3482 3483 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3484 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3485 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3486 bool NeedsDefault = false; 3487 if (MI->begin() == MI->end()) 3488 // No GC strategy, use the default format. 3489 NeedsDefault = true; 3490 else 3491 for (auto &I : *MI) { 3492 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3493 if (MP->emitStackMaps(SM, *this)) 3494 continue; 3495 // The strategy doesn't have printer or doesn't emit custom stack maps. 3496 // Use the default format. 3497 NeedsDefault = true; 3498 } 3499 3500 if (NeedsDefault) 3501 SM.serializeToStackMapSection(); 3502 } 3503 3504 /// Pin vtable to this file. 3505 AsmPrinterHandler::~AsmPrinterHandler() = default; 3506 3507 void AsmPrinterHandler::markFunctionEnd() {} 3508 3509 // In the binary's "xray_instr_map" section, an array of these function entries 3510 // describes each instrumentation point. When XRay patches your code, the index 3511 // into this table will be given to your handler as a patch point identifier. 3512 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3513 auto Kind8 = static_cast<uint8_t>(Kind); 3514 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3515 Out->emitBinaryData( 3516 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3517 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3518 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3519 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3520 Out->emitZeros(Padding); 3521 } 3522 3523 void AsmPrinter::emitXRayTable() { 3524 if (Sleds.empty()) 3525 return; 3526 3527 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3528 const Function &F = MF->getFunction(); 3529 MCSection *InstMap = nullptr; 3530 MCSection *FnSledIndex = nullptr; 3531 const Triple &TT = TM.getTargetTriple(); 3532 // Use PC-relative addresses on all targets. 3533 if (TT.isOSBinFormatELF()) { 3534 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3535 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3536 StringRef GroupName; 3537 if (F.hasComdat()) { 3538 Flags |= ELF::SHF_GROUP; 3539 GroupName = F.getComdat()->getName(); 3540 } 3541 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3542 Flags, 0, GroupName, F.hasComdat(), 3543 MCSection::NonUniqueID, LinkedToSym); 3544 3545 if (!TM.Options.XRayOmitFunctionIndex) 3546 FnSledIndex = OutContext.getELFSection( 3547 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3548 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3549 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3550 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3551 SectionKind::getReadOnlyWithRel()); 3552 if (!TM.Options.XRayOmitFunctionIndex) 3553 FnSledIndex = OutContext.getMachOSection( 3554 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3555 } else { 3556 llvm_unreachable("Unsupported target"); 3557 } 3558 3559 auto WordSizeBytes = MAI->getCodePointerSize(); 3560 3561 // Now we switch to the instrumentation map section. Because this is done 3562 // per-function, we are able to create an index entry that will represent the 3563 // range of sleds associated with a function. 3564 auto &Ctx = OutContext; 3565 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3566 OutStreamer->SwitchSection(InstMap); 3567 OutStreamer->emitLabel(SledsStart); 3568 for (const auto &Sled : Sleds) { 3569 MCSymbol *Dot = Ctx.createTempSymbol(); 3570 OutStreamer->emitLabel(Dot); 3571 OutStreamer->emitValueImpl( 3572 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3573 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3574 WordSizeBytes); 3575 OutStreamer->emitValueImpl( 3576 MCBinaryExpr::createSub( 3577 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3578 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3579 MCConstantExpr::create(WordSizeBytes, Ctx), 3580 Ctx), 3581 Ctx), 3582 WordSizeBytes); 3583 Sled.emit(WordSizeBytes, OutStreamer.get()); 3584 } 3585 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3586 OutStreamer->emitLabel(SledsEnd); 3587 3588 // We then emit a single entry in the index per function. We use the symbols 3589 // that bound the instrumentation map as the range for a specific function. 3590 // Each entry here will be 2 * word size aligned, as we're writing down two 3591 // pointers. This should work for both 32-bit and 64-bit platforms. 3592 if (FnSledIndex) { 3593 OutStreamer->SwitchSection(FnSledIndex); 3594 OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo()); 3595 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3596 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3597 OutStreamer->SwitchSection(PrevSection); 3598 } 3599 Sleds.clear(); 3600 } 3601 3602 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3603 SledKind Kind, uint8_t Version) { 3604 const Function &F = MI.getMF()->getFunction(); 3605 auto Attr = F.getFnAttribute("function-instrument"); 3606 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3607 bool AlwaysInstrument = 3608 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3609 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3610 Kind = SledKind::LOG_ARGS_ENTER; 3611 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3612 AlwaysInstrument, &F, Version}); 3613 } 3614 3615 void AsmPrinter::emitPatchableFunctionEntries() { 3616 const Function &F = MF->getFunction(); 3617 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3618 (void)F.getFnAttribute("patchable-function-prefix") 3619 .getValueAsString() 3620 .getAsInteger(10, PatchableFunctionPrefix); 3621 (void)F.getFnAttribute("patchable-function-entry") 3622 .getValueAsString() 3623 .getAsInteger(10, PatchableFunctionEntry); 3624 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3625 return; 3626 const unsigned PointerSize = getPointerSize(); 3627 if (TM.getTargetTriple().isOSBinFormatELF()) { 3628 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3629 const MCSymbolELF *LinkedToSym = nullptr; 3630 StringRef GroupName; 3631 3632 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3633 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3634 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3635 Flags |= ELF::SHF_LINK_ORDER; 3636 if (F.hasComdat()) { 3637 Flags |= ELF::SHF_GROUP; 3638 GroupName = F.getComdat()->getName(); 3639 } 3640 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3641 } 3642 OutStreamer->SwitchSection(OutContext.getELFSection( 3643 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3644 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3645 emitAlignment(Align(PointerSize)); 3646 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3647 } 3648 } 3649 3650 uint16_t AsmPrinter::getDwarfVersion() const { 3651 return OutStreamer->getContext().getDwarfVersion(); 3652 } 3653 3654 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3655 OutStreamer->getContext().setDwarfVersion(Version); 3656 } 3657 3658 bool AsmPrinter::isDwarf64() const { 3659 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3660 } 3661 3662 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3663 return dwarf::getDwarfOffsetByteSize( 3664 OutStreamer->getContext().getDwarfFormat()); 3665 } 3666 3667 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 3668 return {getDwarfVersion(), uint8_t(getPointerSize()), 3669 OutStreamer->getContext().getDwarfFormat(), 3670 MAI->doesDwarfUseRelocationsAcrossSections()}; 3671 } 3672 3673 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3674 return dwarf::getUnitLengthFieldByteSize( 3675 OutStreamer->getContext().getDwarfFormat()); 3676 } 3677