1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/TinyPtrVector.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/ConstantFolding.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/Config/config.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/EHPersonalities.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GCStrategy.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalIFunc.h" 77 #include "llvm/IR/GlobalObject.h" 78 #include "llvm/IR/GlobalValue.h" 79 #include "llvm/IR/GlobalVariable.h" 80 #include "llvm/IR/Instruction.h" 81 #include "llvm/IR/Mangler.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PseudoProbe.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/MC/MCAsmInfo.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCDirectives.h" 92 #include "llvm/MC/MCExpr.h" 93 #include "llvm/MC/MCInst.h" 94 #include "llvm/MC/MCSection.h" 95 #include "llvm/MC/MCSectionCOFF.h" 96 #include "llvm/MC/MCSectionELF.h" 97 #include "llvm/MC/MCSectionMachO.h" 98 #include "llvm/MC/MCSectionXCOFF.h" 99 #include "llvm/MC/MCStreamer.h" 100 #include "llvm/MC/MCSubtargetInfo.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/MC/MCSymbolELF.h" 103 #include "llvm/MC/MCTargetOptions.h" 104 #include "llvm/MC/MCValue.h" 105 #include "llvm/MC/SectionKind.h" 106 #include "llvm/Object/ELFTypes.h" 107 #include "llvm/Pass.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/Compiler.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/FileSystem.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/VCSRevision.h" 117 #include "llvm/Support/raw_ostream.h" 118 #include "llvm/Target/TargetLoweringObjectFile.h" 119 #include "llvm/Target/TargetMachine.h" 120 #include "llvm/Target/TargetOptions.h" 121 #include "llvm/TargetParser/Triple.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <memory> 128 #include <optional> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // This is a replication of fields of object::PGOAnalysisMap::Features. It 138 // should match the order of the fields so that 139 // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())` 140 // succeeds. 141 enum class PGOMapFeaturesEnum { 142 FuncEntryCount, 143 BBFreq, 144 BrProb, 145 }; 146 static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures( 147 "pgo-analysis-map", cl::Hidden, cl::CommaSeparated, 148 cl::values(clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, 149 "func-entry-count", "Function Entry Count"), 150 clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", 151 "Basic Block Frequency"), 152 clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", 153 "Branch Probability")), 154 cl::desc( 155 "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " 156 "extracted from PGO related analysis.")); 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 namespace { 163 class AddrLabelMapCallbackPtr final : CallbackVH { 164 AddrLabelMap *Map = nullptr; 165 166 public: 167 AddrLabelMapCallbackPtr() = default; 168 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} 169 170 void setPtr(BasicBlock *BB) { 171 ValueHandleBase::operator=(BB); 172 } 173 174 void setMap(AddrLabelMap *map) { Map = map; } 175 176 void deleted() override; 177 void allUsesReplacedWith(Value *V2) override; 178 }; 179 } // namespace 180 181 class llvm::AddrLabelMap { 182 MCContext &Context; 183 struct AddrLabelSymEntry { 184 /// The symbols for the label. 185 TinyPtrVector<MCSymbol *> Symbols; 186 187 Function *Fn; // The containing function of the BasicBlock. 188 unsigned Index; // The index in BBCallbacks for the BasicBlock. 189 }; 190 191 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; 192 193 /// Callbacks for the BasicBlock's that we have entries for. We use this so 194 /// we get notified if a block is deleted or RAUWd. 195 std::vector<AddrLabelMapCallbackPtr> BBCallbacks; 196 197 /// This is a per-function list of symbols whose corresponding BasicBlock got 198 /// deleted. These symbols need to be emitted at some point in the file, so 199 /// AsmPrinter emits them after the function body. 200 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> 201 DeletedAddrLabelsNeedingEmission; 202 203 public: 204 AddrLabelMap(MCContext &context) : Context(context) {} 205 206 ~AddrLabelMap() { 207 assert(DeletedAddrLabelsNeedingEmission.empty() && 208 "Some labels for deleted blocks never got emitted"); 209 } 210 211 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); 212 213 void takeDeletedSymbolsForFunction(Function *F, 214 std::vector<MCSymbol *> &Result); 215 216 void UpdateForDeletedBlock(BasicBlock *BB); 217 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); 218 }; 219 220 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { 221 assert(BB->hasAddressTaken() && 222 "Shouldn't get label for block without address taken"); 223 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; 224 225 // If we already had an entry for this block, just return it. 226 if (!Entry.Symbols.empty()) { 227 assert(BB->getParent() == Entry.Fn && "Parent changed"); 228 return Entry.Symbols; 229 } 230 231 // Otherwise, this is a new entry, create a new symbol for it and add an 232 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. 233 BBCallbacks.emplace_back(BB); 234 BBCallbacks.back().setMap(this); 235 Entry.Index = BBCallbacks.size() - 1; 236 Entry.Fn = BB->getParent(); 237 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() 238 : Context.createTempSymbol(); 239 Entry.Symbols.push_back(Sym); 240 return Entry.Symbols; 241 } 242 243 /// If we have any deleted symbols for F, return them. 244 void AddrLabelMap::takeDeletedSymbolsForFunction( 245 Function *F, std::vector<MCSymbol *> &Result) { 246 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = 247 DeletedAddrLabelsNeedingEmission.find(F); 248 249 // If there are no entries for the function, just return. 250 if (I == DeletedAddrLabelsNeedingEmission.end()) 251 return; 252 253 // Otherwise, take the list. 254 std::swap(Result, I->second); 255 DeletedAddrLabelsNeedingEmission.erase(I); 256 } 257 258 //===- Address of Block Management ----------------------------------------===// 259 260 ArrayRef<MCSymbol *> 261 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { 262 // Lazily create AddrLabelSymbols. 263 if (!AddrLabelSymbols) 264 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); 265 return AddrLabelSymbols->getAddrLabelSymbolToEmit( 266 const_cast<BasicBlock *>(BB)); 267 } 268 269 void AsmPrinter::takeDeletedSymbolsForFunction( 270 const Function *F, std::vector<MCSymbol *> &Result) { 271 // If no blocks have had their addresses taken, we're done. 272 if (!AddrLabelSymbols) 273 return; 274 return AddrLabelSymbols->takeDeletedSymbolsForFunction( 275 const_cast<Function *>(F), Result); 276 } 277 278 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { 279 // If the block got deleted, there is no need for the symbol. If the symbol 280 // was already emitted, we can just forget about it, otherwise we need to 281 // queue it up for later emission when the function is output. 282 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); 283 AddrLabelSymbols.erase(BB); 284 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 285 BBCallbacks[Entry.Index] = nullptr; // Clear the callback. 286 287 #if !LLVM_MEMORY_SANITIZER_BUILD 288 // BasicBlock is destroyed already, so this access is UB detectable by msan. 289 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && 290 "Block/parent mismatch"); 291 #endif 292 293 for (MCSymbol *Sym : Entry.Symbols) { 294 if (Sym->isDefined()) 295 return; 296 297 // If the block is not yet defined, we need to emit it at the end of the 298 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list 299 // for the containing Function. Since the block is being deleted, its 300 // parent may already be removed, we have to get the function from 'Entry'. 301 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); 302 } 303 } 304 305 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { 306 // Get the entry for the RAUW'd block and remove it from our map. 307 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); 308 AddrLabelSymbols.erase(Old); 309 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 310 311 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; 312 313 // If New is not address taken, just move our symbol over to it. 314 if (NewEntry.Symbols.empty()) { 315 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. 316 NewEntry = std::move(OldEntry); // Set New's entry. 317 return; 318 } 319 320 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. 321 322 // Otherwise, we need to add the old symbols to the new block's set. 323 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); 324 } 325 326 void AddrLabelMapCallbackPtr::deleted() { 327 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); 328 } 329 330 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { 331 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); 332 } 333 334 /// getGVAlignment - Return the alignment to use for the specified global 335 /// value. This rounds up to the preferred alignment if possible and legal. 336 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 337 Align InAlign) { 338 Align Alignment; 339 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 340 Alignment = DL.getPreferredAlign(GVar); 341 342 // If InAlign is specified, round it to it. 343 if (InAlign > Alignment) 344 Alignment = InAlign; 345 346 // If the GV has a specified alignment, take it into account. 347 const MaybeAlign GVAlign(GV->getAlign()); 348 if (!GVAlign) 349 return Alignment; 350 351 assert(GVAlign && "GVAlign must be set"); 352 353 // If the GVAlign is larger than NumBits, or if we are required to obey 354 // NumBits because the GV has an assigned section, obey it. 355 if (*GVAlign > Alignment || GV->hasSection()) 356 Alignment = *GVAlign; 357 return Alignment; 358 } 359 360 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 361 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 362 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 363 SM(*this) { 364 VerboseAsm = OutStreamer->isVerboseAsm(); 365 DwarfUsesRelocationsAcrossSections = 366 MAI->doesDwarfUseRelocationsAcrossSections(); 367 } 368 369 AsmPrinter::~AsmPrinter() { 370 assert(!DD && Handlers.size() == NumUserHandlers && 371 "Debug/EH info didn't get finalized"); 372 } 373 374 bool AsmPrinter::isPositionIndependent() const { 375 return TM.isPositionIndependent(); 376 } 377 378 /// getFunctionNumber - Return a unique ID for the current function. 379 unsigned AsmPrinter::getFunctionNumber() const { 380 return MF->getFunctionNumber(); 381 } 382 383 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 384 return *TM.getObjFileLowering(); 385 } 386 387 const DataLayout &AsmPrinter::getDataLayout() const { 388 assert(MMI && "MMI could not be nullptr!"); 389 return MMI->getModule()->getDataLayout(); 390 } 391 392 // Do not use the cached DataLayout because some client use it without a Module 393 // (dsymutil, llvm-dwarfdump). 394 unsigned AsmPrinter::getPointerSize() const { 395 return TM.getPointerSize(0); // FIXME: Default address space 396 } 397 398 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 399 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 400 return MF->getSubtarget<MCSubtargetInfo>(); 401 } 402 403 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 404 S.emitInstruction(Inst, getSubtargetInfo()); 405 } 406 407 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 408 if (DD) { 409 assert(OutStreamer->hasRawTextSupport() && 410 "Expected assembly output mode."); 411 // This is NVPTX specific and it's unclear why. 412 // PR51079: If we have code without debug information we need to give up. 413 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 414 if (!MFSP) 415 return; 416 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 417 } 418 } 419 420 /// getCurrentSection() - Return the current section we are emitting to. 421 const MCSection *AsmPrinter::getCurrentSection() const { 422 return OutStreamer->getCurrentSectionOnly(); 423 } 424 425 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 426 AU.setPreservesAll(); 427 MachineFunctionPass::getAnalysisUsage(AU); 428 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 429 AU.addRequired<GCModuleInfo>(); 430 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 431 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 432 } 433 434 bool AsmPrinter::doInitialization(Module &M) { 435 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 436 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 437 HasSplitStack = false; 438 HasNoSplitStack = false; 439 440 AddrLabelSymbols = nullptr; 441 442 // Initialize TargetLoweringObjectFile. 443 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 444 .Initialize(OutContext, TM); 445 446 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 447 .getModuleMetadata(M); 448 449 // On AIX, we delay emitting any section information until 450 // after emitting the .file pseudo-op. This allows additional 451 // information (such as the embedded command line) to be associated 452 // with all sections in the object file rather than a single section. 453 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 454 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 455 456 // Emit the version-min deployment target directive if needed. 457 // 458 // FIXME: If we end up with a collection of these sorts of Darwin-specific 459 // or ELF-specific things, it may make sense to have a platform helper class 460 // that will work with the target helper class. For now keep it here, as the 461 // alternative is duplicated code in each of the target asm printers that 462 // use the directive, where it would need the same conditionalization 463 // anyway. 464 const Triple &Target = TM.getTargetTriple(); 465 if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) { 466 Triple TVT(M.getDarwinTargetVariantTriple()); 467 OutStreamer->emitVersionForTarget( 468 Target, M.getSDKVersion(), 469 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 470 M.getDarwinTargetVariantSDKVersion()); 471 } 472 473 // Allow the target to emit any magic that it wants at the start of the file. 474 emitStartOfAsmFile(M); 475 476 // Very minimal debug info. It is ignored if we emit actual debug info. If we 477 // don't, this at least helps the user find where a global came from. 478 if (MAI->hasSingleParameterDotFile()) { 479 // .file "foo.c" 480 481 SmallString<128> FileName; 482 if (MAI->hasBasenameOnlyForFileDirective()) 483 FileName = llvm::sys::path::filename(M.getSourceFileName()); 484 else 485 FileName = M.getSourceFileName(); 486 if (MAI->hasFourStringsDotFile()) { 487 const char VerStr[] = 488 #ifdef PACKAGE_VENDOR 489 PACKAGE_VENDOR " " 490 #endif 491 PACKAGE_NAME " version " PACKAGE_VERSION 492 #ifdef LLVM_REVISION 493 " (" LLVM_REVISION ")" 494 #endif 495 ; 496 // TODO: Add timestamp and description. 497 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 498 } else { 499 OutStreamer->emitFileDirective(FileName); 500 } 501 } 502 503 // On AIX, emit bytes for llvm.commandline metadata after .file so that the 504 // C_INFO symbol is preserved if any csect is kept by the linker. 505 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 506 emitModuleCommandLines(M); 507 // Now we can generate section information. 508 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 509 510 // To work around an AIX assembler and/or linker bug, generate 511 // a rename for the default text-section symbol name. This call has 512 // no effect when generating object code directly. 513 MCSection *TextSection = 514 OutStreamer->getContext().getObjectFileInfo()->getTextSection(); 515 MCSymbolXCOFF *XSym = 516 static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); 517 if (XSym->hasRename()) 518 OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName()); 519 } 520 521 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 522 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 523 for (const auto &I : *MI) 524 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 525 MP->beginAssembly(M, *MI, *this); 526 527 // Emit module-level inline asm if it exists. 528 if (!M.getModuleInlineAsm().empty()) { 529 OutStreamer->AddComment("Start of file scope inline assembly"); 530 OutStreamer->addBlankLine(); 531 emitInlineAsm( 532 M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 533 TM.Options.MCOptions, nullptr, 534 InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect())); 535 OutStreamer->AddComment("End of file scope inline assembly"); 536 OutStreamer->addBlankLine(); 537 } 538 539 if (MAI->doesSupportDebugInformation()) { 540 bool EmitCodeView = M.getCodeViewFlag(); 541 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) 542 DebugHandlers.push_back(std::make_unique<CodeViewDebug>(this)); 543 if (!EmitCodeView || M.getDwarfVersion()) { 544 assert(MMI && "MMI could not be nullptr here!"); 545 if (MMI->hasDebugInfo()) { 546 DD = new DwarfDebug(this); 547 DebugHandlers.push_back(std::unique_ptr<DwarfDebug>(DD)); 548 } 549 } 550 } 551 552 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) 553 PP = std::make_unique<PseudoProbeHandler>(this); 554 555 switch (MAI->getExceptionHandlingType()) { 556 case ExceptionHandling::None: 557 // We may want to emit CFI for debug. 558 [[fallthrough]]; 559 case ExceptionHandling::SjLj: 560 case ExceptionHandling::DwarfCFI: 561 case ExceptionHandling::ARM: 562 for (auto &F : M.getFunctionList()) { 563 if (getFunctionCFISectionType(F) != CFISection::None) 564 ModuleCFISection = getFunctionCFISectionType(F); 565 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 566 // the module needs .eh_frame. If we have found that case, we are done. 567 if (ModuleCFISection == CFISection::EH) 568 break; 569 } 570 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 571 usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); 572 break; 573 default: 574 break; 575 } 576 577 EHStreamer *ES = nullptr; 578 switch (MAI->getExceptionHandlingType()) { 579 case ExceptionHandling::None: 580 if (!usesCFIWithoutEH()) 581 break; 582 [[fallthrough]]; 583 case ExceptionHandling::SjLj: 584 case ExceptionHandling::DwarfCFI: 585 case ExceptionHandling::ZOS: 586 ES = new DwarfCFIException(this); 587 break; 588 case ExceptionHandling::ARM: 589 ES = new ARMException(this); 590 break; 591 case ExceptionHandling::WinEH: 592 switch (MAI->getWinEHEncodingType()) { 593 default: llvm_unreachable("unsupported unwinding information encoding"); 594 case WinEH::EncodingType::Invalid: 595 break; 596 case WinEH::EncodingType::X86: 597 case WinEH::EncodingType::Itanium: 598 ES = new WinException(this); 599 break; 600 } 601 break; 602 case ExceptionHandling::Wasm: 603 ES = new WasmException(this); 604 break; 605 case ExceptionHandling::AIX: 606 ES = new AIXException(this); 607 break; 608 } 609 if (ES) 610 Handlers.push_back(std::unique_ptr<EHStreamer>(ES)); 611 612 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 613 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 614 Handlers.push_back(std::make_unique<WinCFGuard>(this)); 615 616 for (auto &Handler : DebugHandlers) 617 Handler->beginModule(&M); 618 for (auto &Handler : Handlers) 619 Handler->beginModule(&M); 620 621 return false; 622 } 623 624 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 625 if (!MAI.hasWeakDefCanBeHiddenDirective()) 626 return false; 627 628 return GV->canBeOmittedFromSymbolTable(); 629 } 630 631 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 632 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 633 switch (Linkage) { 634 case GlobalValue::CommonLinkage: 635 case GlobalValue::LinkOnceAnyLinkage: 636 case GlobalValue::LinkOnceODRLinkage: 637 case GlobalValue::WeakAnyLinkage: 638 case GlobalValue::WeakODRLinkage: 639 if (MAI->hasWeakDefDirective()) { 640 // .globl _foo 641 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 642 643 if (!canBeHidden(GV, *MAI)) 644 // .weak_definition _foo 645 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 646 else 647 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 648 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 649 // .globl _foo 650 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 651 //NOTE: linkonce is handled by the section the symbol was assigned to. 652 } else { 653 // .weak _foo 654 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 655 } 656 return; 657 case GlobalValue::ExternalLinkage: 658 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 659 return; 660 case GlobalValue::PrivateLinkage: 661 case GlobalValue::InternalLinkage: 662 return; 663 case GlobalValue::ExternalWeakLinkage: 664 case GlobalValue::AvailableExternallyLinkage: 665 case GlobalValue::AppendingLinkage: 666 llvm_unreachable("Should never emit this"); 667 } 668 llvm_unreachable("Unknown linkage type!"); 669 } 670 671 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 672 const GlobalValue *GV) const { 673 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 674 } 675 676 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 677 return TM.getSymbol(GV); 678 } 679 680 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 681 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 682 // exact definion (intersection of GlobalValue::hasExactDefinition() and 683 // !isInterposable()). These linkages include: external, appending, internal, 684 // private. It may be profitable to use a local alias for external. The 685 // assembler would otherwise be conservative and assume a global default 686 // visibility symbol can be interposable, even if the code generator already 687 // assumed it. 688 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 689 const Module &M = *GV.getParent(); 690 if (TM.getRelocationModel() != Reloc::Static && 691 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 692 return getSymbolWithGlobalValueBase(&GV, "$local"); 693 } 694 return TM.getSymbol(&GV); 695 } 696 697 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 698 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 699 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 700 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 701 "No emulated TLS variables in the common section"); 702 703 // Never emit TLS variable xyz in emulated TLS model. 704 // The initialization value is in __emutls_t.xyz instead of xyz. 705 if (IsEmuTLSVar) 706 return; 707 708 if (GV->hasInitializer()) { 709 // Check to see if this is a special global used by LLVM, if so, emit it. 710 if (emitSpecialLLVMGlobal(GV)) 711 return; 712 713 // Skip the emission of global equivalents. The symbol can be emitted later 714 // on by emitGlobalGOTEquivs in case it turns out to be needed. 715 if (GlobalGOTEquivs.count(getSymbol(GV))) 716 return; 717 718 if (isVerbose()) { 719 // When printing the control variable __emutls_v.*, 720 // we don't need to print the original TLS variable name. 721 GV->printAsOperand(OutStreamer->getCommentOS(), 722 /*PrintType=*/false, GV->getParent()); 723 OutStreamer->getCommentOS() << '\n'; 724 } 725 } 726 727 MCSymbol *GVSym = getSymbol(GV); 728 MCSymbol *EmittedSym = GVSym; 729 730 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 731 // attributes. 732 // GV's or GVSym's attributes will be used for the EmittedSym. 733 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 734 735 if (GV->isTagged()) { 736 Triple T = TM.getTargetTriple(); 737 738 if (T.getArch() != Triple::aarch64 || !T.isAndroid()) 739 OutContext.reportError(SMLoc(), 740 "tagged symbols (-fsanitize=memtag-globals) are " 741 "only supported on AArch64 Android"); 742 OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); 743 } 744 745 if (!GV->hasInitializer()) // External globals require no extra code. 746 return; 747 748 GVSym->redefineIfPossible(); 749 if (GVSym->isDefined() || GVSym->isVariable()) 750 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 751 "' is already defined"); 752 753 if (MAI->hasDotTypeDotSizeDirective()) 754 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 755 756 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 757 758 const DataLayout &DL = GV->getDataLayout(); 759 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 760 761 // If the alignment is specified, we *must* obey it. Overaligning a global 762 // with a specified alignment is a prompt way to break globals emitted to 763 // sections and expected to be contiguous (e.g. ObjC metadata). 764 const Align Alignment = getGVAlignment(GV, DL); 765 766 for (auto &Handler : DebugHandlers) 767 Handler->setSymbolSize(GVSym, Size); 768 769 // Handle common symbols 770 if (GVKind.isCommon()) { 771 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 772 // .comm _foo, 42, 4 773 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 774 return; 775 } 776 777 // Determine to which section this global should be emitted. 778 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 779 780 // If we have a bss global going to a section that supports the 781 // zerofill directive, do so here. 782 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 783 TheSection->isVirtualSection()) { 784 if (Size == 0) 785 Size = 1; // zerofill of 0 bytes is undefined. 786 emitLinkage(GV, GVSym); 787 // .zerofill __DATA, __bss, _foo, 400, 5 788 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); 789 return; 790 } 791 792 // If this is a BSS local symbol and we are emitting in the BSS 793 // section use .lcomm/.comm directive. 794 if (GVKind.isBSSLocal() && 795 getObjFileLowering().getBSSSection() == TheSection) { 796 if (Size == 0) 797 Size = 1; // .comm Foo, 0 is undefined, avoid it. 798 799 // Use .lcomm only if it supports user-specified alignment. 800 // Otherwise, while it would still be correct to use .lcomm in some 801 // cases (e.g. when Align == 1), the external assembler might enfore 802 // some -unknown- default alignment behavior, which could cause 803 // spurious differences between external and integrated assembler. 804 // Prefer to simply fall back to .local / .comm in this case. 805 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 806 // .lcomm _foo, 42 807 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); 808 return; 809 } 810 811 // .local _foo 812 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 813 // .comm _foo, 42, 4 814 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 815 return; 816 } 817 818 // Handle thread local data for mach-o which requires us to output an 819 // additional structure of data and mangle the original symbol so that we 820 // can reference it later. 821 // 822 // TODO: This should become an "emit thread local global" method on TLOF. 823 // All of this macho specific stuff should be sunk down into TLOFMachO and 824 // stuff like "TLSExtraDataSection" should no longer be part of the parent 825 // TLOF class. This will also make it more obvious that stuff like 826 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 827 // specific code. 828 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 829 // Emit the .tbss symbol 830 MCSymbol *MangSym = 831 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 832 833 if (GVKind.isThreadBSS()) { 834 TheSection = getObjFileLowering().getTLSBSSSection(); 835 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); 836 } else if (GVKind.isThreadData()) { 837 OutStreamer->switchSection(TheSection); 838 839 emitAlignment(Alignment, GV); 840 OutStreamer->emitLabel(MangSym); 841 842 emitGlobalConstant(GV->getDataLayout(), 843 GV->getInitializer()); 844 } 845 846 OutStreamer->addBlankLine(); 847 848 // Emit the variable struct for the runtime. 849 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 850 851 OutStreamer->switchSection(TLVSect); 852 // Emit the linkage here. 853 emitLinkage(GV, GVSym); 854 OutStreamer->emitLabel(GVSym); 855 856 // Three pointers in size: 857 // - __tlv_bootstrap - used to make sure support exists 858 // - spare pointer, used when mapped by the runtime 859 // - pointer to mangled symbol above with initializer 860 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 861 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 862 PtrSize); 863 OutStreamer->emitIntValue(0, PtrSize); 864 OutStreamer->emitSymbolValue(MangSym, PtrSize); 865 866 OutStreamer->addBlankLine(); 867 return; 868 } 869 870 MCSymbol *EmittedInitSym = GVSym; 871 872 OutStreamer->switchSection(TheSection); 873 874 emitLinkage(GV, EmittedInitSym); 875 emitAlignment(Alignment, GV); 876 877 OutStreamer->emitLabel(EmittedInitSym); 878 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 879 if (LocalAlias != EmittedInitSym) 880 OutStreamer->emitLabel(LocalAlias); 881 882 emitGlobalConstant(GV->getDataLayout(), GV->getInitializer()); 883 884 if (MAI->hasDotTypeDotSizeDirective()) 885 // .size foo, 42 886 OutStreamer->emitELFSize(EmittedInitSym, 887 MCConstantExpr::create(Size, OutContext)); 888 889 OutStreamer->addBlankLine(); 890 } 891 892 /// Emit the directive and value for debug thread local expression 893 /// 894 /// \p Value - The value to emit. 895 /// \p Size - The size of the integer (in bytes) to emit. 896 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 897 OutStreamer->emitValue(Value, Size); 898 } 899 900 void AsmPrinter::emitFunctionHeaderComment() {} 901 902 void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) { 903 const Function &F = MF->getFunction(); 904 if (!MAI->hasSubsectionsViaSymbols()) { 905 for (auto &C : Prefix) 906 emitGlobalConstant(F.getDataLayout(), C); 907 return; 908 } 909 // Preserving prefix-like data on platforms which use subsections-via-symbols 910 // is a bit tricky. Here we introduce a symbol for the prefix-like data 911 // and use the .alt_entry attribute to mark the function's real entry point 912 // as an alternative entry point to the symbol that precedes the function.. 913 OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol()); 914 915 for (auto &C : Prefix) { 916 emitGlobalConstant(F.getDataLayout(), C); 917 } 918 919 // Emit an .alt_entry directive for the actual function symbol. 920 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 921 } 922 923 /// EmitFunctionHeader - This method emits the header for the current 924 /// function. 925 void AsmPrinter::emitFunctionHeader() { 926 const Function &F = MF->getFunction(); 927 928 if (isVerbose()) 929 OutStreamer->getCommentOS() 930 << "-- Begin function " 931 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 932 933 // Print out constants referenced by the function 934 emitConstantPool(); 935 936 // Print the 'header' of function. 937 // If basic block sections are desired, explicitly request a unique section 938 // for this function's entry block. 939 if (MF->front().isBeginSection()) 940 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 941 else 942 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 943 OutStreamer->switchSection(MF->getSection()); 944 945 if (!MAI->hasVisibilityOnlyWithLinkage()) 946 emitVisibility(CurrentFnSym, F.getVisibility()); 947 948 if (MAI->needsFunctionDescriptors()) 949 emitLinkage(&F, CurrentFnDescSym); 950 951 emitLinkage(&F, CurrentFnSym); 952 if (MAI->hasFunctionAlignment()) 953 emitAlignment(MF->getAlignment(), &F); 954 955 if (MAI->hasDotTypeDotSizeDirective()) 956 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 957 958 if (F.hasFnAttribute(Attribute::Cold)) 959 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 960 961 // Emit the prefix data. 962 if (F.hasPrefixData()) 963 emitFunctionPrefix({F.getPrefixData()}); 964 965 // Emit KCFI type information before patchable-function-prefix nops. 966 emitKCFITypeId(*MF); 967 968 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 969 // place prefix data before NOPs. 970 unsigned PatchableFunctionPrefix = 0; 971 unsigned PatchableFunctionEntry = 0; 972 (void)F.getFnAttribute("patchable-function-prefix") 973 .getValueAsString() 974 .getAsInteger(10, PatchableFunctionPrefix); 975 (void)F.getFnAttribute("patchable-function-entry") 976 .getValueAsString() 977 .getAsInteger(10, PatchableFunctionEntry); 978 if (PatchableFunctionPrefix) { 979 CurrentPatchableFunctionEntrySym = 980 OutContext.createLinkerPrivateTempSymbol(); 981 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 982 emitNops(PatchableFunctionPrefix); 983 } else if (PatchableFunctionEntry) { 984 // May be reassigned when emitting the body, to reference the label after 985 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 986 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 987 } 988 989 // Emit the function prologue data for the indirect call sanitizer. 990 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { 991 assert(MD->getNumOperands() == 2); 992 993 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); 994 auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1)); 995 emitFunctionPrefix({PrologueSig, TypeHash}); 996 } 997 998 if (isVerbose()) { 999 F.printAsOperand(OutStreamer->getCommentOS(), 1000 /*PrintType=*/false, F.getParent()); 1001 emitFunctionHeaderComment(); 1002 OutStreamer->getCommentOS() << '\n'; 1003 } 1004 1005 // Emit the function descriptor. This is a virtual function to allow targets 1006 // to emit their specific function descriptor. Right now it is only used by 1007 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 1008 // descriptors and should be converted to use this hook as well. 1009 if (MAI->needsFunctionDescriptors()) 1010 emitFunctionDescriptor(); 1011 1012 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 1013 // their wild and crazy things as required. 1014 emitFunctionEntryLabel(); 1015 1016 // If the function had address-taken blocks that got deleted, then we have 1017 // references to the dangling symbols. Emit them at the start of the function 1018 // so that we don't get references to undefined symbols. 1019 std::vector<MCSymbol*> DeadBlockSyms; 1020 takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 1021 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 1022 OutStreamer->AddComment("Address taken block that was later removed"); 1023 OutStreamer->emitLabel(DeadBlockSym); 1024 } 1025 1026 if (CurrentFnBegin) { 1027 if (MAI->useAssignmentForEHBegin()) { 1028 MCSymbol *CurPos = OutContext.createTempSymbol(); 1029 OutStreamer->emitLabel(CurPos); 1030 OutStreamer->emitAssignment(CurrentFnBegin, 1031 MCSymbolRefExpr::create(CurPos, OutContext)); 1032 } else { 1033 OutStreamer->emitLabel(CurrentFnBegin); 1034 } 1035 } 1036 1037 // Emit pre-function debug and/or EH information. 1038 for (auto &Handler : DebugHandlers) { 1039 Handler->beginFunction(MF); 1040 Handler->beginBasicBlockSection(MF->front()); 1041 } 1042 for (auto &Handler : Handlers) 1043 Handler->beginFunction(MF); 1044 for (auto &Handler : Handlers) 1045 Handler->beginBasicBlockSection(MF->front()); 1046 1047 // Emit the prologue data. 1048 if (F.hasPrologueData()) 1049 emitGlobalConstant(F.getDataLayout(), F.getPrologueData()); 1050 } 1051 1052 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 1053 /// function. This can be overridden by targets as required to do custom stuff. 1054 void AsmPrinter::emitFunctionEntryLabel() { 1055 CurrentFnSym->redefineIfPossible(); 1056 1057 // The function label could have already been emitted if two symbols end up 1058 // conflicting due to asm renaming. Detect this and emit an error. 1059 if (CurrentFnSym->isVariable()) 1060 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 1061 "' is a protected alias"); 1062 1063 OutStreamer->emitLabel(CurrentFnSym); 1064 1065 if (TM.getTargetTriple().isOSBinFormatELF()) { 1066 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 1067 if (Sym != CurrentFnSym) { 1068 cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); 1069 CurrentFnBeginLocal = Sym; 1070 OutStreamer->emitLabel(Sym); 1071 if (MAI->hasDotTypeDotSizeDirective()) 1072 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 1073 } 1074 } 1075 } 1076 1077 /// emitComments - Pretty-print comments for instructions. 1078 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 1079 const MachineFunction *MF = MI.getMF(); 1080 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1081 1082 // Check for spills and reloads 1083 1084 // We assume a single instruction only has a spill or reload, not 1085 // both. 1086 std::optional<LocationSize> Size; 1087 if ((Size = MI.getRestoreSize(TII))) { 1088 CommentOS << Size->getValue() << "-byte Reload\n"; 1089 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 1090 if (!Size->hasValue()) 1091 CommentOS << "Unknown-size Folded Reload\n"; 1092 else if (Size->getValue()) 1093 CommentOS << Size->getValue() << "-byte Folded Reload\n"; 1094 } else if ((Size = MI.getSpillSize(TII))) { 1095 CommentOS << Size->getValue() << "-byte Spill\n"; 1096 } else if ((Size = MI.getFoldedSpillSize(TII))) { 1097 if (!Size->hasValue()) 1098 CommentOS << "Unknown-size Folded Spill\n"; 1099 else if (Size->getValue()) 1100 CommentOS << Size->getValue() << "-byte Folded Spill\n"; 1101 } 1102 1103 // Check for spill-induced copies 1104 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 1105 CommentOS << " Reload Reuse\n"; 1106 } 1107 1108 /// emitImplicitDef - This method emits the specified machine instruction 1109 /// that is an implicit def. 1110 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 1111 Register RegNo = MI->getOperand(0).getReg(); 1112 1113 SmallString<128> Str; 1114 raw_svector_ostream OS(Str); 1115 OS << "implicit-def: " 1116 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 1117 1118 OutStreamer->AddComment(OS.str()); 1119 OutStreamer->addBlankLine(); 1120 } 1121 1122 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 1123 std::string Str; 1124 raw_string_ostream OS(Str); 1125 OS << "kill:"; 1126 for (const MachineOperand &Op : MI->operands()) { 1127 assert(Op.isReg() && "KILL instruction must have only register operands"); 1128 OS << ' ' << (Op.isDef() ? "def " : "killed ") 1129 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1130 } 1131 AP.OutStreamer->AddComment(Str); 1132 AP.OutStreamer->addBlankLine(); 1133 } 1134 1135 /// emitDebugValueComment - This method handles the target-independent form 1136 /// of DBG_VALUE, returning true if it was able to do so. A false return 1137 /// means the target will need to handle MI in EmitInstruction. 1138 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 1139 // This code handles only the 4-operand target-independent form. 1140 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 1141 return false; 1142 1143 SmallString<128> Str; 1144 raw_svector_ostream OS(Str); 1145 OS << "DEBUG_VALUE: "; 1146 1147 const DILocalVariable *V = MI->getDebugVariable(); 1148 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 1149 StringRef Name = SP->getName(); 1150 if (!Name.empty()) 1151 OS << Name << ":"; 1152 } 1153 OS << V->getName(); 1154 OS << " <- "; 1155 1156 const DIExpression *Expr = MI->getDebugExpression(); 1157 // First convert this to a non-variadic expression if possible, to simplify 1158 // the output. 1159 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) 1160 Expr = *NonVariadicExpr; 1161 // Then, output the possibly-simplified expression. 1162 if (Expr->getNumElements()) { 1163 OS << '['; 1164 ListSeparator LS; 1165 for (auto &Op : Expr->expr_ops()) { 1166 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 1167 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 1168 OS << ' ' << Op.getArg(I); 1169 } 1170 OS << "] "; 1171 } 1172 1173 // Register or immediate value. Register 0 means undef. 1174 for (const MachineOperand &Op : MI->debug_operands()) { 1175 if (&Op != MI->debug_operands().begin()) 1176 OS << ", "; 1177 switch (Op.getType()) { 1178 case MachineOperand::MO_FPImmediate: { 1179 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 1180 Type *ImmTy = Op.getFPImm()->getType(); 1181 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 1182 ImmTy->isDoubleTy()) { 1183 OS << APF.convertToDouble(); 1184 } else { 1185 // There is no good way to print long double. Convert a copy to 1186 // double. Ah well, it's only a comment. 1187 bool ignored; 1188 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1189 &ignored); 1190 OS << "(long double) " << APF.convertToDouble(); 1191 } 1192 break; 1193 } 1194 case MachineOperand::MO_Immediate: { 1195 OS << Op.getImm(); 1196 break; 1197 } 1198 case MachineOperand::MO_CImmediate: { 1199 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 1200 break; 1201 } 1202 case MachineOperand::MO_TargetIndex: { 1203 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 1204 break; 1205 } 1206 case MachineOperand::MO_Register: 1207 case MachineOperand::MO_FrameIndex: { 1208 Register Reg; 1209 std::optional<StackOffset> Offset; 1210 if (Op.isReg()) { 1211 Reg = Op.getReg(); 1212 } else { 1213 const TargetFrameLowering *TFI = 1214 AP.MF->getSubtarget().getFrameLowering(); 1215 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1216 } 1217 if (!Reg) { 1218 // Suppress offset, it is not meaningful here. 1219 OS << "undef"; 1220 break; 1221 } 1222 // The second operand is only an offset if it's an immediate. 1223 if (MI->isIndirectDebugValue()) 1224 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1225 if (Offset) 1226 OS << '['; 1227 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1228 if (Offset) 1229 OS << '+' << Offset->getFixed() << ']'; 1230 break; 1231 } 1232 default: 1233 llvm_unreachable("Unknown operand type"); 1234 } 1235 } 1236 1237 // NOTE: Want this comment at start of line, don't emit with AddComment. 1238 AP.OutStreamer->emitRawComment(Str); 1239 return true; 1240 } 1241 1242 /// This method handles the target-independent form of DBG_LABEL, returning 1243 /// true if it was able to do so. A false return means the target will need 1244 /// to handle MI in EmitInstruction. 1245 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1246 if (MI->getNumOperands() != 1) 1247 return false; 1248 1249 SmallString<128> Str; 1250 raw_svector_ostream OS(Str); 1251 OS << "DEBUG_LABEL: "; 1252 1253 const DILabel *V = MI->getDebugLabel(); 1254 if (auto *SP = dyn_cast<DISubprogram>( 1255 V->getScope()->getNonLexicalBlockFileScope())) { 1256 StringRef Name = SP->getName(); 1257 if (!Name.empty()) 1258 OS << Name << ":"; 1259 } 1260 OS << V->getName(); 1261 1262 // NOTE: Want this comment at start of line, don't emit with AddComment. 1263 AP.OutStreamer->emitRawComment(OS.str()); 1264 return true; 1265 } 1266 1267 AsmPrinter::CFISection 1268 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1269 // Ignore functions that won't get emitted. 1270 if (F.isDeclarationForLinker()) 1271 return CFISection::None; 1272 1273 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1274 F.needsUnwindTableEntry()) 1275 return CFISection::EH; 1276 1277 if (MAI->usesCFIWithoutEH() && F.hasUWTable()) 1278 return CFISection::EH; 1279 1280 assert(MMI != nullptr && "Invalid machine module info"); 1281 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1282 return CFISection::Debug; 1283 1284 return CFISection::None; 1285 } 1286 1287 AsmPrinter::CFISection 1288 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1289 return getFunctionCFISectionType(MF.getFunction()); 1290 } 1291 1292 bool AsmPrinter::needsSEHMoves() { 1293 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1294 } 1295 1296 bool AsmPrinter::usesCFIWithoutEH() const { 1297 return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; 1298 } 1299 1300 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1301 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1302 if (!usesCFIWithoutEH() && 1303 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1304 ExceptionHandlingType != ExceptionHandling::ARM) 1305 return; 1306 1307 if (getFunctionCFISectionType(*MF) == CFISection::None) 1308 return; 1309 1310 // If there is no "real" instruction following this CFI instruction, skip 1311 // emitting it; it would be beyond the end of the function's FDE range. 1312 auto *MBB = MI.getParent(); 1313 auto I = std::next(MI.getIterator()); 1314 while (I != MBB->end() && I->isTransient()) 1315 ++I; 1316 if (I == MBB->instr_end() && 1317 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1318 return; 1319 1320 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1321 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1322 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1323 emitCFIInstruction(CFI); 1324 } 1325 1326 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1327 // The operands are the MCSymbol and the frame offset of the allocation. 1328 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1329 int FrameOffset = MI.getOperand(1).getImm(); 1330 1331 // Emit a symbol assignment. 1332 OutStreamer->emitAssignment(FrameAllocSym, 1333 MCConstantExpr::create(FrameOffset, OutContext)); 1334 } 1335 1336 /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section 1337 /// for a given basic block. This can be used to capture more precise profile 1338 /// information. 1339 static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1340 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1341 return object::BBAddrMap::BBEntry::Metadata{ 1342 MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()), 1343 MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(), 1344 !MBB.empty() && MBB.rbegin()->isIndirectBranch()} 1345 .encode(); 1346 } 1347 1348 static llvm::object::BBAddrMap::Features 1349 getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges) { 1350 return {PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::FuncEntryCount), 1351 PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq), 1352 PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb), 1353 MF.hasBBSections() && NumMBBSectionRanges > 1}; 1354 } 1355 1356 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1357 MCSection *BBAddrMapSection = 1358 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1359 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1360 1361 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1362 1363 OutStreamer->pushSection(); 1364 OutStreamer->switchSection(BBAddrMapSection); 1365 OutStreamer->AddComment("version"); 1366 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); 1367 OutStreamer->emitInt8(BBAddrMapVersion); 1368 OutStreamer->AddComment("feature"); 1369 auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size()); 1370 OutStreamer->emitInt8(Features.encode()); 1371 // Emit BB Information for each basic block in the function. 1372 if (Features.MultiBBRange) { 1373 OutStreamer->AddComment("number of basic block ranges"); 1374 OutStreamer->emitULEB128IntValue(MBBSectionRanges.size()); 1375 } 1376 // Number of blocks in each MBB section. 1377 MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks; 1378 const MCSymbol *PrevMBBEndSymbol = nullptr; 1379 if (!Features.MultiBBRange) { 1380 OutStreamer->AddComment("function address"); 1381 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1382 OutStreamer->AddComment("number of basic blocks"); 1383 OutStreamer->emitULEB128IntValue(MF.size()); 1384 PrevMBBEndSymbol = FunctionSymbol; 1385 } else { 1386 unsigned BBCount = 0; 1387 for (const MachineBasicBlock &MBB : MF) { 1388 BBCount++; 1389 if (MBB.isEndSection()) { 1390 // Store each section's basic block count when it ends. 1391 MBBSectionNumBlocks[MBB.getSectionID()] = BBCount; 1392 // Reset the count for the next section. 1393 BBCount = 0; 1394 } 1395 } 1396 } 1397 // Emit the BB entry for each basic block in the function. 1398 for (const MachineBasicBlock &MBB : MF) { 1399 const MCSymbol *MBBSymbol = 1400 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1401 bool IsBeginSection = 1402 Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock()); 1403 if (IsBeginSection) { 1404 OutStreamer->AddComment("base address"); 1405 OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize()); 1406 OutStreamer->AddComment("number of basic blocks"); 1407 OutStreamer->emitULEB128IntValue(MBBSectionNumBlocks[MBB.getSectionID()]); 1408 PrevMBBEndSymbol = MBBSymbol; 1409 } 1410 // TODO: Remove this check when version 1 is deprecated. 1411 if (BBAddrMapVersion > 1) { 1412 OutStreamer->AddComment("BB id"); 1413 // Emit the BB ID for this basic block. 1414 // We only emit BaseID since CloneID is unset for 1415 // basic-block-sections=labels. 1416 // TODO: Emit the full BBID when labels and sections can be mixed 1417 // together. 1418 OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID); 1419 } 1420 // Emit the basic block offset relative to the end of the previous block. 1421 // This is zero unless the block is padded due to alignment. 1422 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); 1423 // Emit the basic block size. When BBs have alignments, their size cannot 1424 // always be computed from their offsets. 1425 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1426 // Emit the Metadata. 1427 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1428 PrevMBBEndSymbol = MBB.getEndSymbol(); 1429 } 1430 1431 if (Features.hasPGOAnalysis()) { 1432 assert(BBAddrMapVersion >= 2 && 1433 "PGOAnalysisMap only supports version 2 or later"); 1434 1435 if (Features.FuncEntryCount) { 1436 OutStreamer->AddComment("function entry count"); 1437 auto MaybeEntryCount = MF.getFunction().getEntryCount(); 1438 OutStreamer->emitULEB128IntValue( 1439 MaybeEntryCount ? MaybeEntryCount->getCount() : 0); 1440 } 1441 const MachineBlockFrequencyInfo *MBFI = 1442 Features.BBFreq 1443 ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() 1444 : nullptr; 1445 const MachineBranchProbabilityInfo *MBPI = 1446 Features.BrProb 1447 ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI() 1448 : nullptr; 1449 1450 if (Features.BBFreq || Features.BrProb) { 1451 for (const MachineBasicBlock &MBB : MF) { 1452 if (Features.BBFreq) { 1453 OutStreamer->AddComment("basic block frequency"); 1454 OutStreamer->emitULEB128IntValue( 1455 MBFI->getBlockFreq(&MBB).getFrequency()); 1456 } 1457 if (Features.BrProb) { 1458 unsigned SuccCount = MBB.succ_size(); 1459 OutStreamer->AddComment("basic block successor count"); 1460 OutStreamer->emitULEB128IntValue(SuccCount); 1461 for (const MachineBasicBlock *SuccMBB : MBB.successors()) { 1462 OutStreamer->AddComment("successor BB ID"); 1463 OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID); 1464 OutStreamer->AddComment("successor branch probability"); 1465 OutStreamer->emitULEB128IntValue( 1466 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator()); 1467 } 1468 } 1469 } 1470 } 1471 } 1472 1473 OutStreamer->popSection(); 1474 } 1475 1476 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, 1477 const MCSymbol *Symbol) { 1478 MCSection *Section = 1479 getObjFileLowering().getKCFITrapSection(*MF.getSection()); 1480 if (!Section) 1481 return; 1482 1483 OutStreamer->pushSection(); 1484 OutStreamer->switchSection(Section); 1485 1486 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); 1487 OutStreamer->emitLabel(Loc); 1488 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); 1489 1490 OutStreamer->popSection(); 1491 } 1492 1493 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { 1494 const Function &F = MF.getFunction(); 1495 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) 1496 emitGlobalConstant(F.getDataLayout(), 1497 mdconst::extract<ConstantInt>(MD->getOperand(0))); 1498 } 1499 1500 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1501 if (PP) { 1502 auto GUID = MI.getOperand(0).getImm(); 1503 auto Index = MI.getOperand(1).getImm(); 1504 auto Type = MI.getOperand(2).getImm(); 1505 auto Attr = MI.getOperand(3).getImm(); 1506 DILocation *DebugLoc = MI.getDebugLoc(); 1507 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1508 } 1509 } 1510 1511 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1512 if (!MF.getTarget().Options.EmitStackSizeSection) 1513 return; 1514 1515 MCSection *StackSizeSection = 1516 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1517 if (!StackSizeSection) 1518 return; 1519 1520 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1521 // Don't emit functions with dynamic stack allocations. 1522 if (FrameInfo.hasVarSizedObjects()) 1523 return; 1524 1525 OutStreamer->pushSection(); 1526 OutStreamer->switchSection(StackSizeSection); 1527 1528 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1529 uint64_t StackSize = 1530 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1531 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1532 OutStreamer->emitULEB128IntValue(StackSize); 1533 1534 OutStreamer->popSection(); 1535 } 1536 1537 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1538 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1539 1540 // OutputFilename empty implies -fstack-usage is not passed. 1541 if (OutputFilename.empty()) 1542 return; 1543 1544 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1545 uint64_t StackSize = 1546 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1547 1548 if (StackUsageStream == nullptr) { 1549 std::error_code EC; 1550 StackUsageStream = 1551 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1552 if (EC) { 1553 errs() << "Could not open file: " << EC.message(); 1554 return; 1555 } 1556 } 1557 1558 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1559 *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); 1560 else 1561 *StackUsageStream << MF.getFunction().getParent()->getName(); 1562 1563 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1564 if (FrameInfo.hasVarSizedObjects()) 1565 *StackUsageStream << "dynamic\n"; 1566 else 1567 *StackUsageStream << "static\n"; 1568 } 1569 1570 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, 1571 const MDNode &MD) { 1572 MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); 1573 OutStreamer->emitLabel(S); 1574 PCSectionsSymbols[&MD].emplace_back(S); 1575 } 1576 1577 void AsmPrinter::emitPCSections(const MachineFunction &MF) { 1578 const Function &F = MF.getFunction(); 1579 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) 1580 return; 1581 1582 const CodeModel::Model CM = MF.getTarget().getCodeModel(); 1583 const unsigned RelativeRelocSize = 1584 (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() 1585 : 4; 1586 1587 // Switch to PCSection, short-circuiting the common case where the current 1588 // section is still valid (assume most MD_pcsections contain just 1 section). 1589 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { 1590 if (Sec == Prev) 1591 return; 1592 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); 1593 assert(S && "PC section is not initialized"); 1594 OutStreamer->switchSection(S); 1595 Prev = Sec; 1596 }; 1597 // Emit symbols into sections and data as specified in the pcsections MDNode. 1598 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, 1599 bool Deltas) { 1600 // Expect the first operand to be a section name. After that, a tuple of 1601 // constants may appear, which will simply be emitted into the current 1602 // section (the user of MD_pcsections decides the format of encoded data). 1603 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); 1604 bool ConstULEB128 = false; 1605 for (const MDOperand &MDO : MD.operands()) { 1606 if (auto *S = dyn_cast<MDString>(MDO)) { 1607 // Found string, start of new section! 1608 // Find options for this section "<section>!<opts>" - supported options: 1609 // C = Compress constant integers of size 2-8 bytes as ULEB128. 1610 const StringRef SecWithOpt = S->getString(); 1611 const size_t OptStart = SecWithOpt.find('!'); // likely npos 1612 const StringRef Sec = SecWithOpt.substr(0, OptStart); 1613 const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty 1614 ConstULEB128 = Opts.contains('C'); 1615 #ifndef NDEBUG 1616 for (char O : Opts) 1617 assert((O == '!' || O == 'C') && "Invalid !pcsections options"); 1618 #endif 1619 SwitchSection(Sec); 1620 const MCSymbol *Prev = Syms.front(); 1621 for (const MCSymbol *Sym : Syms) { 1622 if (Sym == Prev || !Deltas) { 1623 // Use the entry itself as the base of the relative offset. 1624 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); 1625 OutStreamer->emitLabel(Base); 1626 // Emit relative relocation `addr - base`, which avoids a dynamic 1627 // relocation in the final binary. User will get the address with 1628 // `base + addr`. 1629 emitLabelDifference(Sym, Base, RelativeRelocSize); 1630 } else { 1631 // Emit delta between symbol and previous symbol. 1632 if (ConstULEB128) 1633 emitLabelDifferenceAsULEB128(Sym, Prev); 1634 else 1635 emitLabelDifference(Sym, Prev, 4); 1636 } 1637 Prev = Sym; 1638 } 1639 } else { 1640 // Emit auxiliary data after PC. 1641 assert(isa<MDNode>(MDO) && "expecting either string or tuple"); 1642 const auto *AuxMDs = cast<MDNode>(MDO); 1643 for (const MDOperand &AuxMDO : AuxMDs->operands()) { 1644 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); 1645 const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue(); 1646 const DataLayout &DL = F.getDataLayout(); 1647 const uint64_t Size = DL.getTypeStoreSize(C->getType()); 1648 1649 if (auto *CI = dyn_cast<ConstantInt>(C); 1650 CI && ConstULEB128 && Size > 1 && Size <= 8) { 1651 emitULEB128(CI->getZExtValue()); 1652 } else { 1653 emitGlobalConstant(DL, C); 1654 } 1655 } 1656 } 1657 } 1658 }; 1659 1660 OutStreamer->pushSection(); 1661 // Emit PCs for function start and function size. 1662 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) 1663 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); 1664 // Emit PCs for instructions collected. 1665 for (const auto &MS : PCSectionsSymbols) 1666 EmitForMD(*MS.first, MS.second, false); 1667 OutStreamer->popSection(); 1668 PCSectionsSymbols.clear(); 1669 } 1670 1671 /// Returns true if function begin and end labels should be emitted. 1672 static bool needFuncLabels(const MachineFunction &MF, 1673 const MachineModuleInfo &MMI) { 1674 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || 1675 MMI.hasDebugInfo() || 1676 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) 1677 return true; 1678 1679 // We might emit an EH table that uses function begin and end labels even if 1680 // we don't have any landingpads. 1681 if (!MF.getFunction().hasPersonalityFn()) 1682 return false; 1683 return !isNoOpWithoutInvoke( 1684 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1685 } 1686 1687 /// EmitFunctionBody - This method emits the body and trailer for a 1688 /// function. 1689 void AsmPrinter::emitFunctionBody() { 1690 emitFunctionHeader(); 1691 1692 // Emit target-specific gunk before the function body. 1693 emitFunctionBodyStart(); 1694 1695 if (isVerbose()) { 1696 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1697 auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 1698 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 1699 if (!MDT) { 1700 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1701 OwnedMDT->getBase().recalculate(*MF); 1702 MDT = OwnedMDT.get(); 1703 } 1704 1705 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1706 auto *MLIWrapper = getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 1707 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 1708 if (!MLI) { 1709 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1710 OwnedMLI->analyze(MDT->getBase()); 1711 MLI = OwnedMLI.get(); 1712 } 1713 } 1714 1715 // Print out code for the function. 1716 bool HasAnyRealCode = false; 1717 int NumInstsInFunction = 0; 1718 bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch"); 1719 1720 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1721 for (auto &MBB : *MF) { 1722 // Print a label for the basic block. 1723 emitBasicBlockStart(MBB); 1724 DenseMap<StringRef, unsigned> MnemonicCounts; 1725 for (auto &MI : MBB) { 1726 // Print the assembly for the instruction. 1727 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1728 !MI.isDebugInstr()) { 1729 HasAnyRealCode = true; 1730 ++NumInstsInFunction; 1731 } 1732 1733 // If there is a pre-instruction symbol, emit a label for it here. 1734 if (MCSymbol *S = MI.getPreInstrSymbol()) 1735 OutStreamer->emitLabel(S); 1736 1737 if (MDNode *MD = MI.getPCSections()) 1738 emitPCSectionsLabel(*MF, *MD); 1739 1740 for (auto &Handler : DebugHandlers) 1741 Handler->beginInstruction(&MI); 1742 1743 if (isVerbose()) 1744 emitComments(MI, OutStreamer->getCommentOS()); 1745 1746 switch (MI.getOpcode()) { 1747 case TargetOpcode::CFI_INSTRUCTION: 1748 emitCFIInstruction(MI); 1749 break; 1750 case TargetOpcode::LOCAL_ESCAPE: 1751 emitFrameAlloc(MI); 1752 break; 1753 case TargetOpcode::ANNOTATION_LABEL: 1754 case TargetOpcode::GC_LABEL: 1755 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1756 break; 1757 case TargetOpcode::EH_LABEL: 1758 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1759 // For AsynchEH, insert a Nop if followed by a trap inst 1760 // Or the exception won't be caught. 1761 // (see MCConstantExpr::create(1,..) in WinException.cpp) 1762 // Ignore SDiv/UDiv because a DIV with Const-0 divisor 1763 // must have being turned into an UndefValue. 1764 // Div with variable opnds won't be the first instruction in 1765 // an EH region as it must be led by at least a Load 1766 { 1767 auto MI2 = std::next(MI.getIterator()); 1768 if (IsEHa && MI2 != MBB.end() && 1769 (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) 1770 emitNops(1); 1771 } 1772 break; 1773 case TargetOpcode::INLINEASM: 1774 case TargetOpcode::INLINEASM_BR: 1775 emitInlineAsm(&MI); 1776 break; 1777 case TargetOpcode::DBG_VALUE: 1778 case TargetOpcode::DBG_VALUE_LIST: 1779 if (isVerbose()) { 1780 if (!emitDebugValueComment(&MI, *this)) 1781 emitInstruction(&MI); 1782 } 1783 break; 1784 case TargetOpcode::DBG_INSTR_REF: 1785 // This instruction reference will have been resolved to a machine 1786 // location, and a nearby DBG_VALUE created. We can safely ignore 1787 // the instruction reference. 1788 break; 1789 case TargetOpcode::DBG_PHI: 1790 // This instruction is only used to label a program point, it's purely 1791 // meta information. 1792 break; 1793 case TargetOpcode::DBG_LABEL: 1794 if (isVerbose()) { 1795 if (!emitDebugLabelComment(&MI, *this)) 1796 emitInstruction(&MI); 1797 } 1798 break; 1799 case TargetOpcode::IMPLICIT_DEF: 1800 if (isVerbose()) emitImplicitDef(&MI); 1801 break; 1802 case TargetOpcode::KILL: 1803 if (isVerbose()) emitKill(&MI, *this); 1804 break; 1805 case TargetOpcode::PSEUDO_PROBE: 1806 emitPseudoProbe(MI); 1807 break; 1808 case TargetOpcode::ARITH_FENCE: 1809 if (isVerbose()) 1810 OutStreamer->emitRawComment("ARITH_FENCE"); 1811 break; 1812 case TargetOpcode::MEMBARRIER: 1813 OutStreamer->emitRawComment("MEMBARRIER"); 1814 break; 1815 case TargetOpcode::JUMP_TABLE_DEBUG_INFO: 1816 // This instruction is only used to note jump table debug info, it's 1817 // purely meta information. 1818 break; 1819 default: 1820 emitInstruction(&MI); 1821 if (CanDoExtraAnalysis) { 1822 MCInst MCI; 1823 MCI.setOpcode(MI.getOpcode()); 1824 auto Name = OutStreamer->getMnemonic(MCI); 1825 auto I = MnemonicCounts.insert({Name, 0u}); 1826 I.first->second++; 1827 } 1828 break; 1829 } 1830 1831 // If there is a post-instruction symbol, emit a label for it here. 1832 if (MCSymbol *S = MI.getPostInstrSymbol()) 1833 OutStreamer->emitLabel(S); 1834 1835 for (auto &Handler : DebugHandlers) 1836 Handler->endInstruction(); 1837 } 1838 1839 // We must emit temporary symbol for the end of this basic block, if either 1840 // we have BBLabels enabled or if this basic blocks marks the end of a 1841 // section. 1842 if (MF->hasBBLabels() || MF->getTarget().Options.BBAddrMap || 1843 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1844 OutStreamer->emitLabel(MBB.getEndSymbol()); 1845 1846 if (MBB.isEndSection()) { 1847 // The size directive for the section containing the entry block is 1848 // handled separately by the function section. 1849 if (!MBB.sameSection(&MF->front())) { 1850 if (MAI->hasDotTypeDotSizeDirective()) { 1851 // Emit the size directive for the basic block section. 1852 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1853 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1854 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1855 OutContext); 1856 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1857 } 1858 assert(!MBBSectionRanges.contains(MBB.getSectionID()) && 1859 "Overwrite section range"); 1860 MBBSectionRanges[MBB.getSectionID()] = 1861 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1862 } 1863 } 1864 emitBasicBlockEnd(MBB); 1865 1866 if (CanDoExtraAnalysis) { 1867 // Skip empty blocks. 1868 if (MBB.empty()) 1869 continue; 1870 1871 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1872 MBB.begin()->getDebugLoc(), &MBB); 1873 1874 // Generate instruction mix remark. First, sort counts in descending order 1875 // by count and name. 1876 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1877 for (auto &KV : MnemonicCounts) 1878 MnemonicVec.emplace_back(KV.first, KV.second); 1879 1880 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1881 const std::pair<StringRef, unsigned> &B) { 1882 if (A.second > B.second) 1883 return true; 1884 if (A.second == B.second) 1885 return StringRef(A.first) < StringRef(B.first); 1886 return false; 1887 }); 1888 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1889 for (auto &KV : MnemonicVec) { 1890 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1891 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1892 } 1893 ORE->emit(R); 1894 } 1895 } 1896 1897 EmittedInsts += NumInstsInFunction; 1898 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1899 MF->getFunction().getSubprogram(), 1900 &MF->front()); 1901 R << ore::NV("NumInstructions", NumInstsInFunction) 1902 << " instructions in function"; 1903 ORE->emit(R); 1904 1905 // If the function is empty and the object file uses .subsections_via_symbols, 1906 // then we need to emit *something* to the function body to prevent the 1907 // labels from collapsing together. Just emit a noop. 1908 // Similarly, don't emit empty functions on Windows either. It can lead to 1909 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1910 // after linking, causing the kernel not to load the binary: 1911 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1912 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1913 const Triple &TT = TM.getTargetTriple(); 1914 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1915 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1916 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1917 1918 // Targets can opt-out of emitting the noop here by leaving the opcode 1919 // unspecified. 1920 if (Noop.getOpcode()) { 1921 OutStreamer->AddComment("avoids zero-length function"); 1922 emitNops(1); 1923 } 1924 } 1925 1926 // Switch to the original section in case basic block sections was used. 1927 OutStreamer->switchSection(MF->getSection()); 1928 1929 const Function &F = MF->getFunction(); 1930 for (const auto &BB : F) { 1931 if (!BB.hasAddressTaken()) 1932 continue; 1933 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1934 if (Sym->isDefined()) 1935 continue; 1936 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1937 OutStreamer->emitLabel(Sym); 1938 } 1939 1940 // Emit target-specific gunk after the function body. 1941 emitFunctionBodyEnd(); 1942 1943 // Even though wasm supports .type and .size in general, function symbols 1944 // are automatically sized. 1945 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); 1946 1947 if (needFuncLabels(*MF, *MMI) || EmitFunctionSize) { 1948 // Create a symbol for the end of function. 1949 CurrentFnEnd = createTempSymbol("func_end"); 1950 OutStreamer->emitLabel(CurrentFnEnd); 1951 } 1952 1953 // If the target wants a .size directive for the size of the function, emit 1954 // it. 1955 if (EmitFunctionSize) { 1956 // We can get the size as difference between the function label and the 1957 // temp label. 1958 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1959 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1960 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1961 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1962 if (CurrentFnBeginLocal) 1963 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); 1964 } 1965 1966 // Call endBasicBlockSection on the last block now, if it wasn't already 1967 // called. 1968 if (!MF->back().isEndSection()) { 1969 for (auto &Handler : DebugHandlers) 1970 Handler->endBasicBlockSection(MF->back()); 1971 for (auto &Handler : Handlers) 1972 Handler->endBasicBlockSection(MF->back()); 1973 } 1974 for (auto &Handler : Handlers) 1975 Handler->markFunctionEnd(); 1976 1977 assert(!MBBSectionRanges.contains(MF->front().getSectionID()) && 1978 "Overwrite section range"); 1979 MBBSectionRanges[MF->front().getSectionID()] = 1980 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1981 1982 // Print out jump tables referenced by the function. 1983 emitJumpTableInfo(); 1984 1985 // Emit post-function debug and/or EH information. 1986 for (auto &Handler : DebugHandlers) 1987 Handler->endFunction(MF); 1988 for (auto &Handler : Handlers) 1989 Handler->endFunction(MF); 1990 1991 // Emit section containing BB address offsets and their metadata, when 1992 // BB labels are requested for this function. Skip empty functions. 1993 if (HasAnyRealCode) { 1994 if (MF->hasBBLabels() || MF->getTarget().Options.BBAddrMap) 1995 emitBBAddrMapSection(*MF); 1996 else if (PgoAnalysisMapFeatures.getBits() != 0) 1997 MF->getContext().reportWarning( 1998 SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() + 1999 " but it does not have labels"); 2000 } 2001 2002 // Emit sections containing instruction and function PCs. 2003 emitPCSections(*MF); 2004 2005 // Emit section containing stack size metadata. 2006 emitStackSizeSection(*MF); 2007 2008 // Emit .su file containing function stack size information. 2009 emitStackUsage(*MF); 2010 2011 emitPatchableFunctionEntries(); 2012 2013 if (isVerbose()) 2014 OutStreamer->getCommentOS() << "-- End function\n"; 2015 2016 OutStreamer->addBlankLine(); 2017 } 2018 2019 /// Compute the number of Global Variables that uses a Constant. 2020 static unsigned getNumGlobalVariableUses(const Constant *C) { 2021 if (!C) 2022 return 0; 2023 2024 if (isa<GlobalVariable>(C)) 2025 return 1; 2026 2027 unsigned NumUses = 0; 2028 for (const auto *CU : C->users()) 2029 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 2030 2031 return NumUses; 2032 } 2033 2034 /// Only consider global GOT equivalents if at least one user is a 2035 /// cstexpr inside an initializer of another global variables. Also, don't 2036 /// handle cstexpr inside instructions. During global variable emission, 2037 /// candidates are skipped and are emitted later in case at least one cstexpr 2038 /// isn't replaced by a PC relative GOT entry access. 2039 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 2040 unsigned &NumGOTEquivUsers) { 2041 // Global GOT equivalents are unnamed private globals with a constant 2042 // pointer initializer to another global symbol. They must point to a 2043 // GlobalVariable or Function, i.e., as GlobalValue. 2044 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 2045 !GV->isConstant() || !GV->isDiscardableIfUnused() || 2046 !isa<GlobalValue>(GV->getOperand(0))) 2047 return false; 2048 2049 // To be a got equivalent, at least one of its users need to be a constant 2050 // expression used by another global variable. 2051 for (const auto *U : GV->users()) 2052 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 2053 2054 return NumGOTEquivUsers > 0; 2055 } 2056 2057 /// Unnamed constant global variables solely contaning a pointer to 2058 /// another globals variable is equivalent to a GOT table entry; it contains the 2059 /// the address of another symbol. Optimize it and replace accesses to these 2060 /// "GOT equivalents" by using the GOT entry for the final global instead. 2061 /// Compute GOT equivalent candidates among all global variables to avoid 2062 /// emitting them if possible later on, after it use is replaced by a GOT entry 2063 /// access. 2064 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 2065 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2066 return; 2067 2068 for (const auto &G : M.globals()) { 2069 unsigned NumGOTEquivUsers = 0; 2070 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 2071 continue; 2072 2073 const MCSymbol *GOTEquivSym = getSymbol(&G); 2074 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 2075 } 2076 } 2077 2078 /// Constant expressions using GOT equivalent globals may not be eligible 2079 /// for PC relative GOT entry conversion, in such cases we need to emit such 2080 /// globals we previously omitted in EmitGlobalVariable. 2081 void AsmPrinter::emitGlobalGOTEquivs() { 2082 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2083 return; 2084 2085 SmallVector<const GlobalVariable *, 8> FailedCandidates; 2086 for (auto &I : GlobalGOTEquivs) { 2087 const GlobalVariable *GV = I.second.first; 2088 unsigned Cnt = I.second.second; 2089 if (Cnt) 2090 FailedCandidates.push_back(GV); 2091 } 2092 GlobalGOTEquivs.clear(); 2093 2094 for (const auto *GV : FailedCandidates) 2095 emitGlobalVariable(GV); 2096 } 2097 2098 void AsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { 2099 MCSymbol *Name = getSymbol(&GA); 2100 bool IsFunction = GA.getValueType()->isFunctionTy(); 2101 // Treat bitcasts of functions as functions also. This is important at least 2102 // on WebAssembly where object and function addresses can't alias each other. 2103 if (!IsFunction) 2104 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); 2105 2106 // AIX's assembly directive `.set` is not usable for aliasing purpose, 2107 // so AIX has to use the extra-label-at-definition strategy. At this 2108 // point, all the extra label is emitted, we just have to emit linkage for 2109 // those labels. 2110 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 2111 assert(MAI->hasVisibilityOnlyWithLinkage() && 2112 "Visibility should be handled with emitLinkage() on AIX."); 2113 2114 // Linkage for alias of global variable has been emitted. 2115 if (isa<GlobalVariable>(GA.getAliaseeObject())) 2116 return; 2117 2118 emitLinkage(&GA, Name); 2119 // If it's a function, also emit linkage for aliases of function entry 2120 // point. 2121 if (IsFunction) 2122 emitLinkage(&GA, 2123 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 2124 return; 2125 } 2126 2127 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2128 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 2129 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 2130 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 2131 else 2132 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 2133 2134 // Set the symbol type to function if the alias has a function type. 2135 // This affects codegen when the aliasee is not a function. 2136 if (IsFunction) { 2137 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 2138 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2139 OutStreamer->beginCOFFSymbolDef(Name); 2140 OutStreamer->emitCOFFSymbolStorageClass( 2141 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 2142 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 2143 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 2144 << COFF::SCT_COMPLEX_TYPE_SHIFT); 2145 OutStreamer->endCOFFSymbolDef(); 2146 } 2147 } 2148 2149 emitVisibility(Name, GA.getVisibility()); 2150 2151 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 2152 2153 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 2154 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 2155 2156 // Emit the directives as assignments aka .set: 2157 OutStreamer->emitAssignment(Name, Expr); 2158 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 2159 if (LocalAlias != Name) 2160 OutStreamer->emitAssignment(LocalAlias, Expr); 2161 2162 // If the aliasee does not correspond to a symbol in the output, i.e. the 2163 // alias is not of an object or the aliased object is private, then set the 2164 // size of the alias symbol from the type of the alias. We don't do this in 2165 // other situations as the alias and aliasee having differing types but same 2166 // size may be intentional. 2167 const GlobalObject *BaseObject = GA.getAliaseeObject(); 2168 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 2169 (!BaseObject || BaseObject->hasPrivateLinkage())) { 2170 const DataLayout &DL = M.getDataLayout(); 2171 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 2172 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 2173 } 2174 } 2175 2176 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 2177 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 2178 "IFunc is not supported on AIX."); 2179 2180 auto EmitLinkage = [&](MCSymbol *Sym) { 2181 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2182 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2183 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 2184 OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference); 2185 else 2186 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 2187 }; 2188 2189 if (TM.getTargetTriple().isOSBinFormatELF()) { 2190 MCSymbol *Name = getSymbol(&GI); 2191 EmitLinkage(Name); 2192 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 2193 emitVisibility(Name, GI.getVisibility()); 2194 2195 // Emit the directives as assignments aka .set: 2196 const MCExpr *Expr = lowerConstant(GI.getResolver()); 2197 OutStreamer->emitAssignment(Name, Expr); 2198 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 2199 if (LocalAlias != Name) 2200 OutStreamer->emitAssignment(LocalAlias, Expr); 2201 2202 return; 2203 } 2204 2205 if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) 2206 llvm::report_fatal_error("IFuncs are not supported on this platform"); 2207 2208 // On Darwin platforms, emit a manually-constructed .symbol_resolver that 2209 // implements the symbol resolution duties of the IFunc. 2210 // 2211 // Normally, this would be handled by linker magic, but unfortunately there 2212 // are a few limitations in ld64 and ld-prime's implementation of 2213 // .symbol_resolver that mean we can't always use them: 2214 // 2215 // * resolvers cannot be the target of an alias 2216 // * resolvers cannot have private linkage 2217 // * resolvers cannot have linkonce linkage 2218 // * resolvers cannot appear in executables 2219 // * resolvers cannot appear in bundles 2220 // 2221 // This works around that by emitting a close approximation of what the 2222 // linker would have done. 2223 2224 MCSymbol *LazyPointer = 2225 GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer"); 2226 MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper"); 2227 2228 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); 2229 2230 const DataLayout &DL = M.getDataLayout(); 2231 emitAlignment(Align(DL.getPointerSize())); 2232 OutStreamer->emitLabel(LazyPointer); 2233 emitVisibility(LazyPointer, GI.getVisibility()); 2234 OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8); 2235 2236 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); 2237 2238 const TargetSubtargetInfo *STI = 2239 TM.getSubtargetImpl(*GI.getResolverFunction()); 2240 const TargetLowering *TLI = STI->getTargetLowering(); 2241 Align TextAlign(TLI->getMinFunctionAlignment()); 2242 2243 MCSymbol *Stub = getSymbol(&GI); 2244 EmitLinkage(Stub); 2245 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2246 OutStreamer->emitLabel(Stub); 2247 emitVisibility(Stub, GI.getVisibility()); 2248 emitMachOIFuncStubBody(M, GI, LazyPointer); 2249 2250 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2251 OutStreamer->emitLabel(StubHelper); 2252 emitVisibility(StubHelper, GI.getVisibility()); 2253 emitMachOIFuncStubHelperBody(M, GI, LazyPointer); 2254 } 2255 2256 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 2257 if (!RS.needsSection()) 2258 return; 2259 2260 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 2261 2262 std::optional<SmallString<128>> Filename; 2263 if (std::optional<StringRef> FilenameRef = RS.getFilename()) { 2264 Filename = *FilenameRef; 2265 sys::fs::make_absolute(*Filename); 2266 assert(!Filename->empty() && "The filename can't be empty."); 2267 } 2268 2269 std::string Buf; 2270 raw_string_ostream OS(Buf); 2271 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 2272 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 2273 : RemarkSerializer.metaSerializer(OS); 2274 MetaSerializer->emit(); 2275 2276 // Switch to the remarks section. 2277 MCSection *RemarksSection = 2278 OutContext.getObjectFileInfo()->getRemarksSection(); 2279 OutStreamer->switchSection(RemarksSection); 2280 2281 OutStreamer->emitBinaryData(Buf); 2282 } 2283 2284 bool AsmPrinter::doFinalization(Module &M) { 2285 // Set the MachineFunction to nullptr so that we can catch attempted 2286 // accesses to MF specific features at the module level and so that 2287 // we can conditionalize accesses based on whether or not it is nullptr. 2288 MF = nullptr; 2289 2290 // Gather all GOT equivalent globals in the module. We really need two 2291 // passes over the globals: one to compute and another to avoid its emission 2292 // in EmitGlobalVariable, otherwise we would not be able to handle cases 2293 // where the got equivalent shows up before its use. 2294 computeGlobalGOTEquivs(M); 2295 2296 // Emit global variables. 2297 for (const auto &G : M.globals()) 2298 emitGlobalVariable(&G); 2299 2300 // Emit remaining GOT equivalent globals. 2301 emitGlobalGOTEquivs(); 2302 2303 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2304 2305 // Emit linkage(XCOFF) and visibility info for declarations 2306 for (const Function &F : M) { 2307 if (!F.isDeclarationForLinker()) 2308 continue; 2309 2310 MCSymbol *Name = getSymbol(&F); 2311 // Function getSymbol gives us the function descriptor symbol for XCOFF. 2312 2313 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 2314 GlobalValue::VisibilityTypes V = F.getVisibility(); 2315 if (V == GlobalValue::DefaultVisibility) 2316 continue; 2317 2318 emitVisibility(Name, V, false); 2319 continue; 2320 } 2321 2322 if (F.isIntrinsic()) 2323 continue; 2324 2325 // Handle the XCOFF case. 2326 // Variable `Name` is the function descriptor symbol (see above). Get the 2327 // function entry point symbol. 2328 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 2329 // Emit linkage for the function entry point. 2330 emitLinkage(&F, FnEntryPointSym); 2331 2332 // If a function's address is taken, which means it may be called via a 2333 // function pointer, we need the function descriptor for it. 2334 if (F.hasAddressTaken()) 2335 emitLinkage(&F, Name); 2336 } 2337 2338 // Emit the remarks section contents. 2339 // FIXME: Figure out when is the safest time to emit this section. It should 2340 // not come after debug info. 2341 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 2342 emitRemarksSection(*RS); 2343 2344 TLOF.emitModuleMetadata(*OutStreamer, M); 2345 2346 if (TM.getTargetTriple().isOSBinFormatELF()) { 2347 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 2348 2349 // Output stubs for external and common global variables. 2350 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 2351 if (!Stubs.empty()) { 2352 OutStreamer->switchSection(TLOF.getDataSection()); 2353 const DataLayout &DL = M.getDataLayout(); 2354 2355 emitAlignment(Align(DL.getPointerSize())); 2356 for (const auto &Stub : Stubs) { 2357 OutStreamer->emitLabel(Stub.first); 2358 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2359 DL.getPointerSize()); 2360 } 2361 } 2362 } 2363 2364 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2365 MachineModuleInfoCOFF &MMICOFF = 2366 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 2367 2368 // Output stubs for external and common global variables. 2369 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 2370 if (!Stubs.empty()) { 2371 const DataLayout &DL = M.getDataLayout(); 2372 2373 for (const auto &Stub : Stubs) { 2374 SmallString<256> SectionName = StringRef(".rdata$"); 2375 SectionName += Stub.first->getName(); 2376 OutStreamer->switchSection(OutContext.getCOFFSection( 2377 SectionName, 2378 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 2379 COFF::IMAGE_SCN_LNK_COMDAT, 2380 Stub.first->getName(), COFF::IMAGE_COMDAT_SELECT_ANY)); 2381 emitAlignment(Align(DL.getPointerSize())); 2382 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 2383 OutStreamer->emitLabel(Stub.first); 2384 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2385 DL.getPointerSize()); 2386 } 2387 } 2388 } 2389 2390 // This needs to happen before emitting debug information since that can end 2391 // arbitrary sections. 2392 if (auto *TS = OutStreamer->getTargetStreamer()) 2393 TS->emitConstantPools(); 2394 2395 // Emit Stack maps before any debug info. Mach-O requires that no data or 2396 // text sections come after debug info has been emitted. This matters for 2397 // stack maps as they are arbitrary data, and may even have a custom format 2398 // through user plugins. 2399 emitStackMaps(); 2400 2401 // Print aliases in topological order, that is, for each alias a = b, 2402 // b must be printed before a. 2403 // This is because on some targets (e.g. PowerPC) linker expects aliases in 2404 // such an order to generate correct TOC information. 2405 SmallVector<const GlobalAlias *, 16> AliasStack; 2406 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 2407 for (const auto &Alias : M.aliases()) { 2408 if (Alias.hasAvailableExternallyLinkage()) 2409 continue; 2410 for (const GlobalAlias *Cur = &Alias; Cur; 2411 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 2412 if (!AliasVisited.insert(Cur).second) 2413 break; 2414 AliasStack.push_back(Cur); 2415 } 2416 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 2417 emitGlobalAlias(M, *AncestorAlias); 2418 AliasStack.clear(); 2419 } 2420 2421 // IFuncs must come before deubginfo in case the backend decides to emit them 2422 // as actual functions, since on Mach-O targets, we cannot create regular 2423 // sections after DWARF. 2424 for (const auto &IFunc : M.ifuncs()) 2425 emitGlobalIFunc(M, IFunc); 2426 2427 // Finalize debug and EH information. 2428 for (auto &Handler : DebugHandlers) 2429 Handler->endModule(); 2430 for (auto &Handler : Handlers) 2431 Handler->endModule(); 2432 2433 // This deletes all the ephemeral handlers that AsmPrinter added, while 2434 // keeping all the user-added handlers alive until the AsmPrinter is 2435 // destroyed. 2436 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 2437 DebugHandlers.erase(DebugHandlers.begin() + NumUserDebugHandlers, 2438 DebugHandlers.end()); 2439 DD = nullptr; 2440 2441 // If the target wants to know about weak references, print them all. 2442 if (MAI->getWeakRefDirective()) { 2443 // FIXME: This is not lazy, it would be nice to only print weak references 2444 // to stuff that is actually used. Note that doing so would require targets 2445 // to notice uses in operands (due to constant exprs etc). This should 2446 // happen with the MC stuff eventually. 2447 2448 // Print out module-level global objects here. 2449 for (const auto &GO : M.global_objects()) { 2450 if (!GO.hasExternalWeakLinkage()) 2451 continue; 2452 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 2453 } 2454 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 2455 auto SymbolName = "swift_async_extendedFramePointerFlags"; 2456 auto Global = M.getGlobalVariable(SymbolName); 2457 if (!Global) { 2458 auto Int8PtrTy = PointerType::getUnqual(M.getContext()); 2459 Global = new GlobalVariable(M, Int8PtrTy, false, 2460 GlobalValue::ExternalWeakLinkage, nullptr, 2461 SymbolName); 2462 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 2463 } 2464 } 2465 } 2466 2467 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2468 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2469 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 2470 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) 2471 MP->finishAssembly(M, *MI, *this); 2472 2473 // Emit llvm.ident metadata in an '.ident' directive. 2474 emitModuleIdents(M); 2475 2476 // Emit bytes for llvm.commandline metadata. 2477 // The command line metadata is emitted earlier on XCOFF. 2478 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 2479 emitModuleCommandLines(M); 2480 2481 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 2482 // split-stack is used. 2483 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { 2484 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", 2485 ELF::SHT_PROGBITS, 0)); 2486 if (HasNoSplitStack) 2487 OutStreamer->switchSection(OutContext.getELFSection( 2488 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 2489 } 2490 2491 // If we don't have any trampolines, then we don't require stack memory 2492 // to be executable. Some targets have a directive to declare this. 2493 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 2494 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 2495 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 2496 OutStreamer->switchSection(S); 2497 2498 if (TM.Options.EmitAddrsig) { 2499 // Emit address-significance attributes for all globals. 2500 OutStreamer->emitAddrsig(); 2501 for (const GlobalValue &GV : M.global_values()) { 2502 if (!GV.use_empty() && !GV.isThreadLocal() && 2503 !GV.hasDLLImportStorageClass() && 2504 !GV.getName().starts_with("llvm.") && 2505 !GV.hasAtLeastLocalUnnamedAddr()) 2506 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 2507 } 2508 } 2509 2510 // Emit symbol partition specifications (ELF only). 2511 if (TM.getTargetTriple().isOSBinFormatELF()) { 2512 unsigned UniqueID = 0; 2513 for (const GlobalValue &GV : M.global_values()) { 2514 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 2515 GV.getVisibility() != GlobalValue::DefaultVisibility) 2516 continue; 2517 2518 OutStreamer->switchSection( 2519 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 2520 "", false, ++UniqueID, nullptr)); 2521 OutStreamer->emitBytes(GV.getPartition()); 2522 OutStreamer->emitZeros(1); 2523 OutStreamer->emitValue( 2524 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 2525 MAI->getCodePointerSize()); 2526 } 2527 } 2528 2529 // Allow the target to emit any magic that it wants at the end of the file, 2530 // after everything else has gone out. 2531 emitEndOfAsmFile(M); 2532 2533 MMI = nullptr; 2534 AddrLabelSymbols = nullptr; 2535 2536 OutStreamer->finish(); 2537 OutStreamer->reset(); 2538 OwnedMLI.reset(); 2539 OwnedMDT.reset(); 2540 2541 return false; 2542 } 2543 2544 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2545 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionID()); 2546 if (Res.second) 2547 Res.first->second = createTempSymbol("exception"); 2548 return Res.first->second; 2549 } 2550 2551 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2552 this->MF = &MF; 2553 const Function &F = MF.getFunction(); 2554 2555 // Record that there are split-stack functions, so we will emit a special 2556 // section to tell the linker. 2557 if (MF.shouldSplitStack()) { 2558 HasSplitStack = true; 2559 2560 if (!MF.getFrameInfo().needsSplitStackProlog()) 2561 HasNoSplitStack = true; 2562 } else 2563 HasNoSplitStack = true; 2564 2565 // Get the function symbol. 2566 if (!MAI->needsFunctionDescriptors()) { 2567 CurrentFnSym = getSymbol(&MF.getFunction()); 2568 } else { 2569 assert(TM.getTargetTriple().isOSAIX() && 2570 "Only AIX uses the function descriptor hooks."); 2571 // AIX is unique here in that the name of the symbol emitted for the 2572 // function body does not have the same name as the source function's 2573 // C-linkage name. 2574 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2575 " initalized first."); 2576 2577 // Get the function entry point symbol. 2578 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2579 } 2580 2581 CurrentFnSymForSize = CurrentFnSym; 2582 CurrentFnBegin = nullptr; 2583 CurrentFnBeginLocal = nullptr; 2584 CurrentSectionBeginSym = nullptr; 2585 MBBSectionRanges.clear(); 2586 MBBSectionExceptionSyms.clear(); 2587 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2588 if (F.hasFnAttribute("patchable-function-entry") || 2589 F.hasFnAttribute("function-instrument") || 2590 F.hasFnAttribute("xray-instruction-threshold") || 2591 needFuncLabels(MF, *MMI) || NeedsLocalForSize || 2592 MF.getTarget().Options.EmitStackSizeSection || 2593 MF.getTarget().Options.BBAddrMap || MF.hasBBLabels()) { 2594 CurrentFnBegin = createTempSymbol("func_begin"); 2595 if (NeedsLocalForSize) 2596 CurrentFnSymForSize = CurrentFnBegin; 2597 } 2598 2599 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2600 } 2601 2602 namespace { 2603 2604 // Keep track the alignment, constpool entries per Section. 2605 struct SectionCPs { 2606 MCSection *S; 2607 Align Alignment; 2608 SmallVector<unsigned, 4> CPEs; 2609 2610 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2611 }; 2612 2613 } // end anonymous namespace 2614 2615 /// EmitConstantPool - Print to the current output stream assembly 2616 /// representations of the constants in the constant pool MCP. This is 2617 /// used to print out constants which have been "spilled to memory" by 2618 /// the code generator. 2619 void AsmPrinter::emitConstantPool() { 2620 const MachineConstantPool *MCP = MF->getConstantPool(); 2621 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2622 if (CP.empty()) return; 2623 2624 // Calculate sections for constant pool entries. We collect entries to go into 2625 // the same section together to reduce amount of section switch statements. 2626 SmallVector<SectionCPs, 4> CPSections; 2627 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2628 const MachineConstantPoolEntry &CPE = CP[i]; 2629 Align Alignment = CPE.getAlign(); 2630 2631 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2632 2633 const Constant *C = nullptr; 2634 if (!CPE.isMachineConstantPoolEntry()) 2635 C = CPE.Val.ConstVal; 2636 2637 MCSection *S = getObjFileLowering().getSectionForConstant( 2638 getDataLayout(), Kind, C, Alignment); 2639 2640 // The number of sections are small, just do a linear search from the 2641 // last section to the first. 2642 bool Found = false; 2643 unsigned SecIdx = CPSections.size(); 2644 while (SecIdx != 0) { 2645 if (CPSections[--SecIdx].S == S) { 2646 Found = true; 2647 break; 2648 } 2649 } 2650 if (!Found) { 2651 SecIdx = CPSections.size(); 2652 CPSections.push_back(SectionCPs(S, Alignment)); 2653 } 2654 2655 if (Alignment > CPSections[SecIdx].Alignment) 2656 CPSections[SecIdx].Alignment = Alignment; 2657 CPSections[SecIdx].CPEs.push_back(i); 2658 } 2659 2660 // Now print stuff into the calculated sections. 2661 const MCSection *CurSection = nullptr; 2662 unsigned Offset = 0; 2663 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2664 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2665 unsigned CPI = CPSections[i].CPEs[j]; 2666 MCSymbol *Sym = GetCPISymbol(CPI); 2667 if (!Sym->isUndefined()) 2668 continue; 2669 2670 if (CurSection != CPSections[i].S) { 2671 OutStreamer->switchSection(CPSections[i].S); 2672 emitAlignment(Align(CPSections[i].Alignment)); 2673 CurSection = CPSections[i].S; 2674 Offset = 0; 2675 } 2676 2677 MachineConstantPoolEntry CPE = CP[CPI]; 2678 2679 // Emit inter-object padding for alignment. 2680 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2681 OutStreamer->emitZeros(NewOffset - Offset); 2682 2683 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2684 2685 OutStreamer->emitLabel(Sym); 2686 if (CPE.isMachineConstantPoolEntry()) 2687 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2688 else 2689 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2690 } 2691 } 2692 } 2693 2694 // Print assembly representations of the jump tables used by the current 2695 // function. 2696 void AsmPrinter::emitJumpTableInfo() { 2697 const DataLayout &DL = MF->getDataLayout(); 2698 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2699 if (!MJTI) return; 2700 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2701 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2702 if (JT.empty()) return; 2703 2704 // Pick the directive to use to print the jump table entries, and switch to 2705 // the appropriate section. 2706 const Function &F = MF->getFunction(); 2707 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2708 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2709 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 2710 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64, 2711 F); 2712 if (JTInDiffSection) { 2713 // Drop it in the readonly section. 2714 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2715 OutStreamer->switchSection(ReadOnlySection); 2716 } 2717 2718 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2719 2720 // Jump tables in code sections are marked with a data_region directive 2721 // where that's supported. 2722 if (!JTInDiffSection) 2723 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2724 2725 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2726 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2727 2728 // If this jump table was deleted, ignore it. 2729 if (JTBBs.empty()) continue; 2730 2731 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2732 /// emit a .set directive for each unique entry. 2733 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2734 MAI->doesSetDirectiveSuppressReloc()) { 2735 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2736 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2737 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2738 for (const MachineBasicBlock *MBB : JTBBs) { 2739 if (!EmittedSets.insert(MBB).second) 2740 continue; 2741 2742 // .set LJTSet, LBB32-base 2743 const MCExpr *LHS = 2744 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2745 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2746 MCBinaryExpr::createSub(LHS, Base, 2747 OutContext)); 2748 } 2749 } 2750 2751 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2752 // before each jump table. The first label is never referenced, but tells 2753 // the assembler and linker the extents of the jump table object. The 2754 // second label is actually referenced by the code. 2755 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2756 // FIXME: This doesn't have to have any specific name, just any randomly 2757 // named and numbered local label started with 'l' would work. Simplify 2758 // GetJTISymbol. 2759 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2760 2761 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2762 OutStreamer->emitLabel(JTISymbol); 2763 2764 // Defer MCAssembler based constant folding due to a performance issue. The 2765 // label differences will be evaluated at write time. 2766 for (const MachineBasicBlock *MBB : JTBBs) 2767 emitJumpTableEntry(MJTI, MBB, JTI); 2768 } 2769 if (!JTInDiffSection) 2770 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2771 } 2772 2773 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2774 /// current stream. 2775 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2776 const MachineBasicBlock *MBB, 2777 unsigned UID) const { 2778 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2779 const MCExpr *Value = nullptr; 2780 switch (MJTI->getEntryKind()) { 2781 case MachineJumpTableInfo::EK_Inline: 2782 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2783 case MachineJumpTableInfo::EK_Custom32: 2784 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2785 MJTI, MBB, UID, OutContext); 2786 break; 2787 case MachineJumpTableInfo::EK_BlockAddress: 2788 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2789 // .word LBB123 2790 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2791 break; 2792 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2793 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2794 // with a relocation as gp-relative, e.g.: 2795 // .gprel32 LBB123 2796 MCSymbol *MBBSym = MBB->getSymbol(); 2797 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2798 return; 2799 } 2800 2801 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2802 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2803 // with a relocation as gp-relative, e.g.: 2804 // .gpdword LBB123 2805 MCSymbol *MBBSym = MBB->getSymbol(); 2806 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2807 return; 2808 } 2809 2810 case MachineJumpTableInfo::EK_LabelDifference32: 2811 case MachineJumpTableInfo::EK_LabelDifference64: { 2812 // Each entry is the address of the block minus the address of the jump 2813 // table. This is used for PIC jump tables where gprel32 is not supported. 2814 // e.g.: 2815 // .word LBB123 - LJTI1_2 2816 // If the .set directive avoids relocations, this is emitted as: 2817 // .set L4_5_set_123, LBB123 - LJTI1_2 2818 // .word L4_5_set_123 2819 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2820 MAI->doesSetDirectiveSuppressReloc()) { 2821 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2822 OutContext); 2823 break; 2824 } 2825 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2826 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2827 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2828 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2829 break; 2830 } 2831 } 2832 2833 assert(Value && "Unknown entry kind!"); 2834 2835 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2836 OutStreamer->emitValue(Value, EntrySize); 2837 } 2838 2839 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2840 /// special global used by LLVM. If so, emit it and return true, otherwise 2841 /// do nothing and return false. 2842 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2843 if (GV->getName() == "llvm.used") { 2844 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2845 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2846 return true; 2847 } 2848 2849 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2850 if (GV->getSection() == "llvm.metadata" || 2851 GV->hasAvailableExternallyLinkage()) 2852 return true; 2853 2854 if (GV->getName() == "llvm.arm64ec.symbolmap") { 2855 // For ARM64EC, print the table that maps between symbols and the 2856 // corresponding thunks to translate between x64 and AArch64 code. 2857 // This table is generated by AArch64Arm64ECCallLowering. 2858 OutStreamer->switchSection( 2859 OutContext.getCOFFSection(".hybmp$x", COFF::IMAGE_SCN_LNK_INFO)); 2860 auto *Arr = cast<ConstantArray>(GV->getInitializer()); 2861 for (auto &U : Arr->operands()) { 2862 auto *C = cast<Constant>(U); 2863 auto *Src = cast<GlobalValue>(C->getOperand(0)->stripPointerCasts()); 2864 auto *Dst = cast<GlobalValue>(C->getOperand(1)->stripPointerCasts()); 2865 int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue(); 2866 2867 if (Src->hasDLLImportStorageClass()) { 2868 // For now, we assume dllimport functions aren't directly called. 2869 // (We might change this later to match MSVC.) 2870 OutStreamer->emitCOFFSymbolIndex( 2871 OutContext.getOrCreateSymbol("__imp_" + Src->getName())); 2872 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); 2873 OutStreamer->emitInt32(Kind); 2874 } else { 2875 // FIXME: For non-dllimport functions, MSVC emits the same entry 2876 // twice, for reasons I don't understand. I have to assume the linker 2877 // ignores the redundant entry; there aren't any reasonable semantics 2878 // to attach to it. 2879 OutStreamer->emitCOFFSymbolIndex(getSymbol(Src)); 2880 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); 2881 OutStreamer->emitInt32(Kind); 2882 } 2883 } 2884 return true; 2885 } 2886 2887 if (!GV->hasAppendingLinkage()) return false; 2888 2889 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2890 2891 if (GV->getName() == "llvm.global_ctors") { 2892 emitXXStructorList(GV->getDataLayout(), GV->getInitializer(), 2893 /* isCtor */ true); 2894 2895 return true; 2896 } 2897 2898 if (GV->getName() == "llvm.global_dtors") { 2899 emitXXStructorList(GV->getDataLayout(), GV->getInitializer(), 2900 /* isCtor */ false); 2901 2902 return true; 2903 } 2904 2905 report_fatal_error("unknown special variable with appending linkage"); 2906 } 2907 2908 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2909 /// global in the specified llvm.used list. 2910 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2911 // Should be an array of 'i8*'. 2912 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2913 const GlobalValue *GV = 2914 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2915 if (GV) 2916 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2917 } 2918 } 2919 2920 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2921 const Constant *List, 2922 SmallVector<Structor, 8> &Structors) { 2923 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2924 // the init priority. 2925 if (!isa<ConstantArray>(List)) 2926 return; 2927 2928 // Gather the structors in a form that's convenient for sorting by priority. 2929 for (Value *O : cast<ConstantArray>(List)->operands()) { 2930 auto *CS = cast<ConstantStruct>(O); 2931 if (CS->getOperand(1)->isNullValue()) 2932 break; // Found a null terminator, skip the rest. 2933 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2934 if (!Priority) 2935 continue; // Malformed. 2936 Structors.push_back(Structor()); 2937 Structor &S = Structors.back(); 2938 S.Priority = Priority->getLimitedValue(65535); 2939 S.Func = CS->getOperand(1); 2940 if (!CS->getOperand(2)->isNullValue()) { 2941 if (TM.getTargetTriple().isOSAIX()) 2942 llvm::report_fatal_error( 2943 "associated data of XXStructor list is not yet supported on AIX"); 2944 S.ComdatKey = 2945 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2946 } 2947 } 2948 2949 // Emit the function pointers in the target-specific order 2950 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2951 return L.Priority < R.Priority; 2952 }); 2953 } 2954 2955 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2956 /// priority. 2957 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2958 bool IsCtor) { 2959 SmallVector<Structor, 8> Structors; 2960 preprocessXXStructorList(DL, List, Structors); 2961 if (Structors.empty()) 2962 return; 2963 2964 // Emit the structors in reverse order if we are using the .ctor/.dtor 2965 // initialization scheme. 2966 if (!TM.Options.UseInitArray) 2967 std::reverse(Structors.begin(), Structors.end()); 2968 2969 const Align Align = DL.getPointerPrefAlignment(); 2970 for (Structor &S : Structors) { 2971 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2972 const MCSymbol *KeySym = nullptr; 2973 if (GlobalValue *GV = S.ComdatKey) { 2974 if (GV->isDeclarationForLinker()) 2975 // If the associated variable is not defined in this module 2976 // (it might be available_externally, or have been an 2977 // available_externally definition that was dropped by the 2978 // EliminateAvailableExternally pass), some other TU 2979 // will provide its dynamic initializer. 2980 continue; 2981 2982 KeySym = getSymbol(GV); 2983 } 2984 2985 MCSection *OutputSection = 2986 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2987 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2988 OutStreamer->switchSection(OutputSection); 2989 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2990 emitAlignment(Align); 2991 emitXXStructor(DL, S.Func); 2992 } 2993 } 2994 2995 void AsmPrinter::emitModuleIdents(Module &M) { 2996 if (!MAI->hasIdentDirective()) 2997 return; 2998 2999 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 3000 for (const MDNode *N : NMD->operands()) { 3001 assert(N->getNumOperands() == 1 && 3002 "llvm.ident metadata entry can have only one operand"); 3003 const MDString *S = cast<MDString>(N->getOperand(0)); 3004 OutStreamer->emitIdent(S->getString()); 3005 } 3006 } 3007 } 3008 3009 void AsmPrinter::emitModuleCommandLines(Module &M) { 3010 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 3011 if (!CommandLine) 3012 return; 3013 3014 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 3015 if (!NMD || !NMD->getNumOperands()) 3016 return; 3017 3018 OutStreamer->pushSection(); 3019 OutStreamer->switchSection(CommandLine); 3020 OutStreamer->emitZeros(1); 3021 for (const MDNode *N : NMD->operands()) { 3022 assert(N->getNumOperands() == 1 && 3023 "llvm.commandline metadata entry can have only one operand"); 3024 const MDString *S = cast<MDString>(N->getOperand(0)); 3025 OutStreamer->emitBytes(S->getString()); 3026 OutStreamer->emitZeros(1); 3027 } 3028 OutStreamer->popSection(); 3029 } 3030 3031 //===--------------------------------------------------------------------===// 3032 // Emission and print routines 3033 // 3034 3035 /// Emit a byte directive and value. 3036 /// 3037 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 3038 3039 /// Emit a short directive and value. 3040 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 3041 3042 /// Emit a long directive and value. 3043 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 3044 3045 /// EmitSLEB128 - emit the specified signed leb128 value. 3046 void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { 3047 if (isVerbose() && Desc) 3048 OutStreamer->AddComment(Desc); 3049 3050 OutStreamer->emitSLEB128IntValue(Value); 3051 } 3052 3053 void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, 3054 unsigned PadTo) const { 3055 if (isVerbose() && Desc) 3056 OutStreamer->AddComment(Desc); 3057 3058 OutStreamer->emitULEB128IntValue(Value, PadTo); 3059 } 3060 3061 /// Emit a long long directive and value. 3062 void AsmPrinter::emitInt64(uint64_t Value) const { 3063 OutStreamer->emitInt64(Value); 3064 } 3065 3066 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 3067 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 3068 /// .set if it avoids relocations. 3069 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 3070 unsigned Size) const { 3071 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 3072 } 3073 3074 /// Emit something like ".uleb128 Hi-Lo". 3075 void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, 3076 const MCSymbol *Lo) const { 3077 OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); 3078 } 3079 3080 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 3081 /// where the size in bytes of the directive is specified by Size and Label 3082 /// specifies the label. This implicitly uses .set if it is available. 3083 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 3084 unsigned Size, 3085 bool IsSectionRelative) const { 3086 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 3087 OutStreamer->emitCOFFSecRel32(Label, Offset); 3088 if (Size > 4) 3089 OutStreamer->emitZeros(Size - 4); 3090 return; 3091 } 3092 3093 // Emit Label+Offset (or just Label if Offset is zero) 3094 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 3095 if (Offset) 3096 Expr = MCBinaryExpr::createAdd( 3097 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 3098 3099 OutStreamer->emitValue(Expr, Size); 3100 } 3101 3102 //===----------------------------------------------------------------------===// 3103 3104 // EmitAlignment - Emit an alignment directive to the specified power of 3105 // two boundary. If a global value is specified, and if that global has 3106 // an explicit alignment requested, it will override the alignment request 3107 // if required for correctness. 3108 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 3109 unsigned MaxBytesToEmit) const { 3110 if (GV) 3111 Alignment = getGVAlignment(GV, GV->getDataLayout(), Alignment); 3112 3113 if (Alignment == Align(1)) 3114 return; // 1-byte aligned: no need to emit alignment. 3115 3116 if (getCurrentSection()->isText()) { 3117 const MCSubtargetInfo *STI = nullptr; 3118 if (this->MF) 3119 STI = &getSubtargetInfo(); 3120 else 3121 STI = TM.getMCSubtargetInfo(); 3122 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); 3123 } else 3124 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); 3125 } 3126 3127 //===----------------------------------------------------------------------===// 3128 // Constant emission. 3129 //===----------------------------------------------------------------------===// 3130 3131 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 3132 MCContext &Ctx = OutContext; 3133 3134 if (CV->isNullValue() || isa<UndefValue>(CV)) 3135 return MCConstantExpr::create(0, Ctx); 3136 3137 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 3138 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 3139 3140 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) 3141 return lowerConstantPtrAuth(*CPA); 3142 3143 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 3144 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 3145 3146 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 3147 return lowerBlockAddressConstant(*BA); 3148 3149 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 3150 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 3151 3152 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 3153 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 3154 3155 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 3156 if (!CE) { 3157 llvm_unreachable("Unknown constant value to lower!"); 3158 } 3159 3160 // The constant expression opcodes are limited to those that are necessary 3161 // to represent relocations on supported targets. Expressions involving only 3162 // constant addresses are constant folded instead. 3163 switch (CE->getOpcode()) { 3164 default: 3165 break; // Error 3166 case Instruction::AddrSpaceCast: { 3167 const Constant *Op = CE->getOperand(0); 3168 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 3169 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 3170 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 3171 return lowerConstant(Op); 3172 3173 break; // Error 3174 } 3175 case Instruction::GetElementPtr: { 3176 // Generate a symbolic expression for the byte address 3177 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 3178 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 3179 3180 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 3181 if (!OffsetAI) 3182 return Base; 3183 3184 int64_t Offset = OffsetAI.getSExtValue(); 3185 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 3186 Ctx); 3187 } 3188 3189 case Instruction::Trunc: 3190 // We emit the value and depend on the assembler to truncate the generated 3191 // expression properly. This is important for differences between 3192 // blockaddress labels. Since the two labels are in the same function, it 3193 // is reasonable to treat their delta as a 32-bit value. 3194 [[fallthrough]]; 3195 case Instruction::BitCast: 3196 return lowerConstant(CE->getOperand(0)); 3197 3198 case Instruction::IntToPtr: { 3199 const DataLayout &DL = getDataLayout(); 3200 3201 // Handle casts to pointers by changing them into casts to the appropriate 3202 // integer type. This promotes constant folding and simplifies this code. 3203 Constant *Op = CE->getOperand(0); 3204 Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), 3205 /*IsSigned*/ false, DL); 3206 if (Op) 3207 return lowerConstant(Op); 3208 3209 break; // Error 3210 } 3211 3212 case Instruction::PtrToInt: { 3213 const DataLayout &DL = getDataLayout(); 3214 3215 // Support only foldable casts to/from pointers that can be eliminated by 3216 // changing the pointer to the appropriately sized integer type. 3217 Constant *Op = CE->getOperand(0); 3218 Type *Ty = CE->getType(); 3219 3220 const MCExpr *OpExpr = lowerConstant(Op); 3221 3222 // We can emit the pointer value into this slot if the slot is an 3223 // integer slot equal to the size of the pointer. 3224 // 3225 // If the pointer is larger than the resultant integer, then 3226 // as with Trunc just depend on the assembler to truncate it. 3227 if (DL.getTypeAllocSize(Ty).getFixedValue() <= 3228 DL.getTypeAllocSize(Op->getType()).getFixedValue()) 3229 return OpExpr; 3230 3231 break; // Error 3232 } 3233 3234 case Instruction::Sub: { 3235 GlobalValue *LHSGV; 3236 APInt LHSOffset; 3237 DSOLocalEquivalent *DSOEquiv; 3238 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 3239 getDataLayout(), &DSOEquiv)) { 3240 GlobalValue *RHSGV; 3241 APInt RHSOffset; 3242 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 3243 getDataLayout())) { 3244 const MCExpr *RelocExpr = 3245 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 3246 if (!RelocExpr) { 3247 const MCExpr *LHSExpr = 3248 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 3249 if (DSOEquiv && 3250 getObjFileLowering().supportDSOLocalEquivalentLowering()) 3251 LHSExpr = 3252 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 3253 RelocExpr = MCBinaryExpr::createSub( 3254 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 3255 } 3256 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 3257 if (Addend != 0) 3258 RelocExpr = MCBinaryExpr::createAdd( 3259 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 3260 return RelocExpr; 3261 } 3262 } 3263 3264 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3265 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3266 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 3267 break; 3268 } 3269 3270 case Instruction::Add: { 3271 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3272 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3273 return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 3274 } 3275 } 3276 3277 // If the code isn't optimized, there may be outstanding folding 3278 // opportunities. Attempt to fold the expression using DataLayout as a 3279 // last resort before giving up. 3280 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 3281 if (C != CE) 3282 return lowerConstant(C); 3283 3284 // Otherwise report the problem to the user. 3285 std::string S; 3286 raw_string_ostream OS(S); 3287 OS << "Unsupported expression in static initializer: "; 3288 CE->printAsOperand(OS, /*PrintType=*/false, 3289 !MF ? nullptr : MF->getFunction().getParent()); 3290 report_fatal_error(Twine(S)); 3291 } 3292 3293 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 3294 AsmPrinter &AP, 3295 const Constant *BaseCV = nullptr, 3296 uint64_t Offset = 0, 3297 AsmPrinter::AliasMapTy *AliasList = nullptr); 3298 3299 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 3300 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 3301 3302 /// isRepeatedByteSequence - Determine whether the given value is 3303 /// composed of a repeated sequence of identical bytes and return the 3304 /// byte value. If it is not a repeated sequence, return -1. 3305 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 3306 StringRef Data = V->getRawDataValues(); 3307 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 3308 char C = Data[0]; 3309 for (unsigned i = 1, e = Data.size(); i != e; ++i) 3310 if (Data[i] != C) return -1; 3311 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 3312 } 3313 3314 /// isRepeatedByteSequence - Determine whether the given value is 3315 /// composed of a repeated sequence of identical bytes and return the 3316 /// byte value. If it is not a repeated sequence, return -1. 3317 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 3318 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3319 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 3320 assert(Size % 8 == 0); 3321 3322 // Extend the element to take zero padding into account. 3323 APInt Value = CI->getValue().zext(Size); 3324 if (!Value.isSplat(8)) 3325 return -1; 3326 3327 return Value.zextOrTrunc(8).getZExtValue(); 3328 } 3329 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 3330 // Make sure all array elements are sequences of the same repeated 3331 // byte. 3332 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 3333 Constant *Op0 = CA->getOperand(0); 3334 int Byte = isRepeatedByteSequence(Op0, DL); 3335 if (Byte == -1) 3336 return -1; 3337 3338 // All array elements must be equal. 3339 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 3340 if (CA->getOperand(i) != Op0) 3341 return -1; 3342 return Byte; 3343 } 3344 3345 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 3346 return isRepeatedByteSequence(CDS); 3347 3348 return -1; 3349 } 3350 3351 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, 3352 AsmPrinter::AliasMapTy *AliasList) { 3353 if (AliasList) { 3354 auto AliasIt = AliasList->find(Offset); 3355 if (AliasIt != AliasList->end()) { 3356 for (const GlobalAlias *GA : AliasIt->second) 3357 AP.OutStreamer->emitLabel(AP.getSymbol(GA)); 3358 AliasList->erase(Offset); 3359 } 3360 } 3361 } 3362 3363 static void emitGlobalConstantDataSequential( 3364 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, 3365 AsmPrinter::AliasMapTy *AliasList) { 3366 // See if we can aggregate this into a .fill, if so, emit it as such. 3367 int Value = isRepeatedByteSequence(CDS, DL); 3368 if (Value != -1) { 3369 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 3370 // Don't emit a 1-byte object as a .fill. 3371 if (Bytes > 1) 3372 return AP.OutStreamer->emitFill(Bytes, Value); 3373 } 3374 3375 // If this can be emitted with .ascii/.asciz, emit it as such. 3376 if (CDS->isString()) 3377 return AP.OutStreamer->emitBytes(CDS->getAsString()); 3378 3379 // Otherwise, emit the values in successive locations. 3380 unsigned ElementByteSize = CDS->getElementByteSize(); 3381 if (isa<IntegerType>(CDS->getElementType())) { 3382 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3383 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3384 if (AP.isVerbose()) 3385 AP.OutStreamer->getCommentOS() 3386 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); 3387 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), 3388 ElementByteSize); 3389 } 3390 } else { 3391 Type *ET = CDS->getElementType(); 3392 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3393 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3394 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 3395 } 3396 } 3397 3398 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 3399 unsigned EmittedSize = 3400 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 3401 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 3402 if (unsigned Padding = Size - EmittedSize) 3403 AP.OutStreamer->emitZeros(Padding); 3404 } 3405 3406 static void emitGlobalConstantArray(const DataLayout &DL, 3407 const ConstantArray *CA, AsmPrinter &AP, 3408 const Constant *BaseCV, uint64_t Offset, 3409 AsmPrinter::AliasMapTy *AliasList) { 3410 // See if we can aggregate some values. Make sure it can be 3411 // represented as a series of bytes of the constant value. 3412 int Value = isRepeatedByteSequence(CA, DL); 3413 3414 if (Value != -1) { 3415 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 3416 AP.OutStreamer->emitFill(Bytes, Value); 3417 } else { 3418 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { 3419 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, 3420 AliasList); 3421 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); 3422 } 3423 } 3424 } 3425 3426 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); 3427 3428 static void emitGlobalConstantVector(const DataLayout &DL, 3429 const ConstantVector *CV, AsmPrinter &AP, 3430 AsmPrinter::AliasMapTy *AliasList) { 3431 Type *ElementType = CV->getType()->getElementType(); 3432 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); 3433 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); 3434 uint64_t EmittedSize; 3435 if (ElementSizeInBits != ElementAllocSizeInBits) { 3436 // If the allocation size of an element is different from the size in bits, 3437 // printing each element separately will insert incorrect padding. 3438 // 3439 // The general algorithm here is complicated; instead of writing it out 3440 // here, just use the existing code in ConstantFolding. 3441 Type *IntT = 3442 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); 3443 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( 3444 ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL)); 3445 if (!CI) { 3446 report_fatal_error( 3447 "Cannot lower vector global with unusual element type"); 3448 } 3449 emitGlobalAliasInline(AP, 0, AliasList); 3450 emitGlobalConstantLargeInt(CI, AP); 3451 EmittedSize = DL.getTypeStoreSize(CV->getType()); 3452 } else { 3453 for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) { 3454 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); 3455 emitGlobalConstantImpl(DL, CV->getOperand(I), AP); 3456 } 3457 EmittedSize = 3458 DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements(); 3459 } 3460 3461 unsigned Size = DL.getTypeAllocSize(CV->getType()); 3462 if (unsigned Padding = Size - EmittedSize) 3463 AP.OutStreamer->emitZeros(Padding); 3464 } 3465 3466 static void emitGlobalConstantStruct(const DataLayout &DL, 3467 const ConstantStruct *CS, AsmPrinter &AP, 3468 const Constant *BaseCV, uint64_t Offset, 3469 AsmPrinter::AliasMapTy *AliasList) { 3470 // Print the fields in successive locations. Pad to align if needed! 3471 uint64_t Size = DL.getTypeAllocSize(CS->getType()); 3472 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 3473 uint64_t SizeSoFar = 0; 3474 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { 3475 const Constant *Field = CS->getOperand(I); 3476 3477 // Print the actual field value. 3478 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, 3479 AliasList); 3480 3481 // Check if padding is needed and insert one or more 0s. 3482 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 3483 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - 3484 Layout->getElementOffset(I)) - 3485 FieldSize; 3486 SizeSoFar += FieldSize + PadSize; 3487 3488 // Insert padding - this may include padding to increase the size of the 3489 // current field up to the ABI size (if the struct is not packed) as well 3490 // as padding to ensure that the next field starts at the right offset. 3491 AP.OutStreamer->emitZeros(PadSize); 3492 } 3493 assert(SizeSoFar == Layout->getSizeInBytes() && 3494 "Layout of constant struct may be incorrect!"); 3495 } 3496 3497 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 3498 assert(ET && "Unknown float type"); 3499 APInt API = APF.bitcastToAPInt(); 3500 3501 // First print a comment with what we think the original floating-point value 3502 // should have been. 3503 if (AP.isVerbose()) { 3504 SmallString<8> StrVal; 3505 APF.toString(StrVal); 3506 ET->print(AP.OutStreamer->getCommentOS()); 3507 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; 3508 } 3509 3510 // Now iterate through the APInt chunks, emitting them in endian-correct 3511 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 3512 // floats). 3513 unsigned NumBytes = API.getBitWidth() / 8; 3514 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 3515 const uint64_t *p = API.getRawData(); 3516 3517 // PPC's long double has odd notions of endianness compared to how LLVM 3518 // handles it: p[0] goes first for *big* endian on PPC. 3519 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 3520 int Chunk = API.getNumWords() - 1; 3521 3522 if (TrailingBytes) 3523 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 3524 3525 for (; Chunk >= 0; --Chunk) 3526 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3527 } else { 3528 unsigned Chunk; 3529 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 3530 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3531 3532 if (TrailingBytes) 3533 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 3534 } 3535 3536 // Emit the tail padding for the long double. 3537 const DataLayout &DL = AP.getDataLayout(); 3538 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 3539 } 3540 3541 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 3542 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 3543 } 3544 3545 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 3546 const DataLayout &DL = AP.getDataLayout(); 3547 unsigned BitWidth = CI->getBitWidth(); 3548 3549 // Copy the value as we may massage the layout for constants whose bit width 3550 // is not a multiple of 64-bits. 3551 APInt Realigned(CI->getValue()); 3552 uint64_t ExtraBits = 0; 3553 unsigned ExtraBitsSize = BitWidth & 63; 3554 3555 if (ExtraBitsSize) { 3556 // The bit width of the data is not a multiple of 64-bits. 3557 // The extra bits are expected to be at the end of the chunk of the memory. 3558 // Little endian: 3559 // * Nothing to be done, just record the extra bits to emit. 3560 // Big endian: 3561 // * Record the extra bits to emit. 3562 // * Realign the raw data to emit the chunks of 64-bits. 3563 if (DL.isBigEndian()) { 3564 // Basically the structure of the raw data is a chunk of 64-bits cells: 3565 // 0 1 BitWidth / 64 3566 // [chunk1][chunk2] ... [chunkN]. 3567 // The most significant chunk is chunkN and it should be emitted first. 3568 // However, due to the alignment issue chunkN contains useless bits. 3569 // Realign the chunks so that they contain only useful information: 3570 // ExtraBits 0 1 (BitWidth / 64) - 1 3571 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 3572 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 3573 ExtraBits = Realigned.getRawData()[0] & 3574 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 3575 if (BitWidth >= 64) 3576 Realigned.lshrInPlace(ExtraBitsSize); 3577 } else 3578 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 3579 } 3580 3581 // We don't expect assemblers to support integer data directives 3582 // for more than 64 bits, so we emit the data in at most 64-bit 3583 // quantities at a time. 3584 const uint64_t *RawData = Realigned.getRawData(); 3585 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 3586 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 3587 AP.OutStreamer->emitIntValue(Val, 8); 3588 } 3589 3590 if (ExtraBitsSize) { 3591 // Emit the extra bits after the 64-bits chunks. 3592 3593 // Emit a directive that fills the expected size. 3594 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 3595 Size -= (BitWidth / 64) * 8; 3596 assert(Size && Size * 8 >= ExtraBitsSize && 3597 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 3598 == ExtraBits && "Directive too small for extra bits."); 3599 AP.OutStreamer->emitIntValue(ExtraBits, Size); 3600 } 3601 } 3602 3603 /// Transform a not absolute MCExpr containing a reference to a GOT 3604 /// equivalent global, by a target specific GOT pc relative access to the 3605 /// final symbol. 3606 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 3607 const Constant *BaseCst, 3608 uint64_t Offset) { 3609 // The global @foo below illustrates a global that uses a got equivalent. 3610 // 3611 // @bar = global i32 42 3612 // @gotequiv = private unnamed_addr constant i32* @bar 3613 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 3614 // i64 ptrtoint (i32* @foo to i64)) 3615 // to i32) 3616 // 3617 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 3618 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 3619 // form: 3620 // 3621 // foo = cstexpr, where 3622 // cstexpr := <gotequiv> - "." + <cst> 3623 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 3624 // 3625 // After canonicalization by evaluateAsRelocatable `ME` turns into: 3626 // 3627 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 3628 // gotpcrelcst := <offset from @foo base> + <cst> 3629 MCValue MV; 3630 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 3631 return; 3632 const MCSymbolRefExpr *SymA = MV.getSymA(); 3633 if (!SymA) 3634 return; 3635 3636 // Check that GOT equivalent symbol is cached. 3637 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 3638 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 3639 return; 3640 3641 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 3642 if (!BaseGV) 3643 return; 3644 3645 // Check for a valid base symbol 3646 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 3647 const MCSymbolRefExpr *SymB = MV.getSymB(); 3648 3649 if (!SymB || BaseSym != &SymB->getSymbol()) 3650 return; 3651 3652 // Make sure to match: 3653 // 3654 // gotpcrelcst := <offset from @foo base> + <cst> 3655 // 3656 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3657 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3658 return; 3659 3660 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3661 // 3662 // bar: 3663 // .long 42 3664 // gotequiv: 3665 // .quad bar 3666 // foo: 3667 // .long gotequiv - "." + <cst> 3668 // 3669 // is replaced by the target specific equivalent to: 3670 // 3671 // bar: 3672 // .long 42 3673 // foo: 3674 // .long bar@GOTPCREL+<gotpcrelcst> 3675 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3676 const GlobalVariable *GV = Result.first; 3677 int NumUses = (int)Result.second; 3678 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3679 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3680 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3681 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3682 3683 // Update GOT equivalent usage information 3684 --NumUses; 3685 if (NumUses >= 0) 3686 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3687 } 3688 3689 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3690 AsmPrinter &AP, const Constant *BaseCV, 3691 uint64_t Offset, 3692 AsmPrinter::AliasMapTy *AliasList) { 3693 emitGlobalAliasInline(AP, Offset, AliasList); 3694 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3695 3696 // Globals with sub-elements such as combinations of arrays and structs 3697 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3698 // constant symbol base and the current position with BaseCV and Offset. 3699 if (!BaseCV && CV->hasOneUse()) 3700 BaseCV = dyn_cast<Constant>(CV->user_back()); 3701 3702 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3703 return AP.OutStreamer->emitZeros(Size); 3704 3705 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3706 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3707 3708 if (StoreSize <= 8) { 3709 if (AP.isVerbose()) 3710 AP.OutStreamer->getCommentOS() 3711 << format("0x%" PRIx64 "\n", CI->getZExtValue()); 3712 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3713 } else { 3714 emitGlobalConstantLargeInt(CI, AP); 3715 } 3716 3717 // Emit tail padding if needed 3718 if (Size != StoreSize) 3719 AP.OutStreamer->emitZeros(Size - StoreSize); 3720 3721 return; 3722 } 3723 3724 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3725 return emitGlobalConstantFP(CFP, AP); 3726 3727 if (isa<ConstantPointerNull>(CV)) { 3728 AP.OutStreamer->emitIntValue(0, Size); 3729 return; 3730 } 3731 3732 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3733 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); 3734 3735 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3736 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); 3737 3738 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3739 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); 3740 3741 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3742 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3743 // vectors). 3744 if (CE->getOpcode() == Instruction::BitCast) 3745 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3746 3747 if (Size > 8) { 3748 // If the constant expression's size is greater than 64-bits, then we have 3749 // to emit the value in chunks. Try to constant fold the value and emit it 3750 // that way. 3751 Constant *New = ConstantFoldConstant(CE, DL); 3752 if (New != CE) 3753 return emitGlobalConstantImpl(DL, New, AP); 3754 } 3755 } 3756 3757 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3758 return emitGlobalConstantVector(DL, V, AP, AliasList); 3759 3760 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3761 // thread the streamer with EmitValue. 3762 const MCExpr *ME = AP.lowerConstant(CV); 3763 3764 // Since lowerConstant already folded and got rid of all IR pointer and 3765 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3766 // directly. 3767 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3768 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3769 3770 AP.OutStreamer->emitValue(ME, Size); 3771 } 3772 3773 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3774 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, 3775 AliasMapTy *AliasList) { 3776 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3777 if (Size) 3778 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); 3779 else if (MAI->hasSubsectionsViaSymbols()) { 3780 // If the global has zero size, emit a single byte so that two labels don't 3781 // look like they are at the same location. 3782 OutStreamer->emitIntValue(0, 1); 3783 } 3784 if (!AliasList) 3785 return; 3786 // TODO: These remaining aliases are not emitted in the correct location. Need 3787 // to handle the case where the alias offset doesn't refer to any sub-element. 3788 for (auto &AliasPair : *AliasList) { 3789 for (const GlobalAlias *GA : AliasPair.second) 3790 OutStreamer->emitLabel(getSymbol(GA)); 3791 } 3792 } 3793 3794 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3795 // Target doesn't support this yet! 3796 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3797 } 3798 3799 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3800 if (Offset > 0) 3801 OS << '+' << Offset; 3802 else if (Offset < 0) 3803 OS << Offset; 3804 } 3805 3806 void AsmPrinter::emitNops(unsigned N) { 3807 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3808 for (; N; --N) 3809 EmitToStreamer(*OutStreamer, Nop); 3810 } 3811 3812 //===----------------------------------------------------------------------===// 3813 // Symbol Lowering Routines. 3814 //===----------------------------------------------------------------------===// 3815 3816 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3817 return OutContext.createTempSymbol(Name, true); 3818 } 3819 3820 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3821 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( 3822 BA->getBasicBlock()); 3823 } 3824 3825 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3826 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); 3827 } 3828 3829 const MCExpr *AsmPrinter::lowerBlockAddressConstant(const BlockAddress &BA) { 3830 return MCSymbolRefExpr::create(GetBlockAddressSymbol(&BA), OutContext); 3831 } 3832 3833 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3834 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3835 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3836 const MachineConstantPoolEntry &CPE = 3837 MF->getConstantPool()->getConstants()[CPID]; 3838 if (!CPE.isMachineConstantPoolEntry()) { 3839 const DataLayout &DL = MF->getDataLayout(); 3840 SectionKind Kind = CPE.getSectionKind(&DL); 3841 const Constant *C = CPE.Val.ConstVal; 3842 Align Alignment = CPE.Alignment; 3843 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3844 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3845 Alignment))) { 3846 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3847 if (Sym->isUndefined()) 3848 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3849 return Sym; 3850 } 3851 } 3852 } 3853 } 3854 3855 const DataLayout &DL = getDataLayout(); 3856 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3857 "CPI" + Twine(getFunctionNumber()) + "_" + 3858 Twine(CPID)); 3859 } 3860 3861 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3862 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3863 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3864 } 3865 3866 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3867 /// FIXME: privatize to AsmPrinter. 3868 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3869 const DataLayout &DL = getDataLayout(); 3870 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3871 Twine(getFunctionNumber()) + "_" + 3872 Twine(UID) + "_set_" + Twine(MBBID)); 3873 } 3874 3875 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3876 StringRef Suffix) const { 3877 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3878 } 3879 3880 /// Return the MCSymbol for the specified ExternalSymbol. 3881 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const { 3882 SmallString<60> NameStr; 3883 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3884 return OutContext.getOrCreateSymbol(NameStr); 3885 } 3886 3887 /// PrintParentLoopComment - Print comments about parent loops of this one. 3888 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3889 unsigned FunctionNumber) { 3890 if (!Loop) return; 3891 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3892 OS.indent(Loop->getLoopDepth()*2) 3893 << "Parent Loop BB" << FunctionNumber << "_" 3894 << Loop->getHeader()->getNumber() 3895 << " Depth=" << Loop->getLoopDepth() << '\n'; 3896 } 3897 3898 /// PrintChildLoopComment - Print comments about child loops within 3899 /// the loop for this basic block, with nesting. 3900 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3901 unsigned FunctionNumber) { 3902 // Add child loop information 3903 for (const MachineLoop *CL : *Loop) { 3904 OS.indent(CL->getLoopDepth()*2) 3905 << "Child Loop BB" << FunctionNumber << "_" 3906 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3907 << '\n'; 3908 PrintChildLoopComment(OS, CL, FunctionNumber); 3909 } 3910 } 3911 3912 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3913 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3914 const MachineLoopInfo *LI, 3915 const AsmPrinter &AP) { 3916 // Add loop depth information 3917 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3918 if (!Loop) return; 3919 3920 MachineBasicBlock *Header = Loop->getHeader(); 3921 assert(Header && "No header for loop"); 3922 3923 // If this block is not a loop header, just print out what is the loop header 3924 // and return. 3925 if (Header != &MBB) { 3926 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3927 Twine(AP.getFunctionNumber())+"_" + 3928 Twine(Loop->getHeader()->getNumber())+ 3929 " Depth="+Twine(Loop->getLoopDepth())); 3930 return; 3931 } 3932 3933 // Otherwise, it is a loop header. Print out information about child and 3934 // parent loops. 3935 raw_ostream &OS = AP.OutStreamer->getCommentOS(); 3936 3937 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3938 3939 OS << "=>"; 3940 OS.indent(Loop->getLoopDepth()*2-2); 3941 3942 OS << "This "; 3943 if (Loop->isInnermost()) 3944 OS << "Inner "; 3945 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3946 3947 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3948 } 3949 3950 /// emitBasicBlockStart - This method prints the label for the specified 3951 /// MachineBasicBlock, an alignment (if present) and a comment describing 3952 /// it if appropriate. 3953 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3954 // End the previous funclet and start a new one. 3955 if (MBB.isEHFuncletEntry()) { 3956 for (auto &Handler : Handlers) { 3957 Handler->endFunclet(); 3958 Handler->beginFunclet(MBB); 3959 } 3960 } 3961 3962 // Switch to a new section if this basic block must begin a section. The 3963 // entry block is always placed in the function section and is handled 3964 // separately. 3965 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3966 OutStreamer->switchSection( 3967 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3968 MBB, TM)); 3969 CurrentSectionBeginSym = MBB.getSymbol(); 3970 } 3971 3972 // Emit an alignment directive for this block, if needed. 3973 const Align Alignment = MBB.getAlignment(); 3974 if (Alignment != Align(1)) 3975 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 3976 3977 // If the block has its address taken, emit any labels that were used to 3978 // reference the block. It is possible that there is more than one label 3979 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3980 // the references were generated. 3981 if (MBB.isIRBlockAddressTaken()) { 3982 if (isVerbose()) 3983 OutStreamer->AddComment("Block address taken"); 3984 3985 BasicBlock *BB = MBB.getAddressTakenIRBlock(); 3986 assert(BB && BB->hasAddressTaken() && "Missing BB"); 3987 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) 3988 OutStreamer->emitLabel(Sym); 3989 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { 3990 OutStreamer->AddComment("Block address taken"); 3991 } 3992 3993 // Print some verbose block comments. 3994 if (isVerbose()) { 3995 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3996 if (BB->hasName()) { 3997 BB->printAsOperand(OutStreamer->getCommentOS(), 3998 /*PrintType=*/false, BB->getModule()); 3999 OutStreamer->getCommentOS() << '\n'; 4000 } 4001 } 4002 4003 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 4004 emitBasicBlockLoopComments(MBB, MLI, *this); 4005 } 4006 4007 // Print the main label for the block. 4008 if (shouldEmitLabelForBasicBlock(MBB)) { 4009 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 4010 OutStreamer->AddComment("Label of block must be emitted"); 4011 OutStreamer->emitLabel(MBB.getSymbol()); 4012 } else { 4013 if (isVerbose()) { 4014 // NOTE: Want this comment at start of line, don't emit with AddComment. 4015 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 4016 false); 4017 } 4018 } 4019 4020 if (MBB.isEHCatchretTarget() && 4021 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 4022 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 4023 } 4024 4025 // With BB sections, each basic block must handle CFI information on its own 4026 // if it begins a section (Entry block call is handled separately, next to 4027 // beginFunction). 4028 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 4029 for (auto &Handler : DebugHandlers) 4030 Handler->beginBasicBlockSection(MBB); 4031 for (auto &Handler : Handlers) 4032 Handler->beginBasicBlockSection(MBB); 4033 } 4034 } 4035 4036 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 4037 // Check if CFI information needs to be updated for this MBB with basic block 4038 // sections. 4039 if (MBB.isEndSection()) { 4040 for (auto &Handler : DebugHandlers) 4041 Handler->endBasicBlockSection(MBB); 4042 for (auto &Handler : Handlers) 4043 Handler->endBasicBlockSection(MBB); 4044 } 4045 } 4046 4047 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 4048 bool IsDefinition) const { 4049 MCSymbolAttr Attr = MCSA_Invalid; 4050 4051 switch (Visibility) { 4052 default: break; 4053 case GlobalValue::HiddenVisibility: 4054 if (IsDefinition) 4055 Attr = MAI->getHiddenVisibilityAttr(); 4056 else 4057 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 4058 break; 4059 case GlobalValue::ProtectedVisibility: 4060 Attr = MAI->getProtectedVisibilityAttr(); 4061 break; 4062 } 4063 4064 if (Attr != MCSA_Invalid) 4065 OutStreamer->emitSymbolAttribute(Sym, Attr); 4066 } 4067 4068 bool AsmPrinter::shouldEmitLabelForBasicBlock( 4069 const MachineBasicBlock &MBB) const { 4070 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 4071 // in the labels mode (option `=labels`) and every section beginning in the 4072 // sections mode (`=all` and `=list=`). 4073 if ((MF->hasBBLabels() || MF->getTarget().Options.BBAddrMap || 4074 MBB.isBeginSection()) && 4075 !MBB.isEntryBlock()) 4076 return true; 4077 // A label is needed for any block with at least one predecessor (when that 4078 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 4079 // entry, or if a label is forced). 4080 return !MBB.pred_empty() && 4081 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 4082 MBB.hasLabelMustBeEmitted()); 4083 } 4084 4085 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 4086 /// exactly one predecessor and the control transfer mechanism between 4087 /// the predecessor and this block is a fall-through. 4088 bool AsmPrinter:: 4089 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 4090 // If this is a landing pad, it isn't a fall through. If it has no preds, 4091 // then nothing falls through to it. 4092 if (MBB->isEHPad() || MBB->pred_empty()) 4093 return false; 4094 4095 // If there isn't exactly one predecessor, it can't be a fall through. 4096 if (MBB->pred_size() > 1) 4097 return false; 4098 4099 // The predecessor has to be immediately before this block. 4100 MachineBasicBlock *Pred = *MBB->pred_begin(); 4101 if (!Pred->isLayoutSuccessor(MBB)) 4102 return false; 4103 4104 // If the block is completely empty, then it definitely does fall through. 4105 if (Pred->empty()) 4106 return true; 4107 4108 // Check the terminators in the previous blocks 4109 for (const auto &MI : Pred->terminators()) { 4110 // If it is not a simple branch, we are in a table somewhere. 4111 if (!MI.isBranch() || MI.isIndirectBranch()) 4112 return false; 4113 4114 // If we are the operands of one of the branches, this is not a fall 4115 // through. Note that targets with delay slots will usually bundle 4116 // terminators with the delay slot instruction. 4117 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 4118 if (OP->isJTI()) 4119 return false; 4120 if (OP->isMBB() && OP->getMBB() == MBB) 4121 return false; 4122 } 4123 } 4124 4125 return true; 4126 } 4127 4128 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { 4129 if (!S.usesMetadata()) 4130 return nullptr; 4131 4132 auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); 4133 if (!Inserted) 4134 return GCPI->second.get(); 4135 4136 auto Name = S.getName(); 4137 4138 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 4139 GCMetadataPrinterRegistry::entries()) 4140 if (Name == GCMetaPrinter.getName()) { 4141 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 4142 GMP->S = &S; 4143 GCPI->second = std::move(GMP); 4144 return GCPI->second.get(); 4145 } 4146 4147 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 4148 } 4149 4150 void AsmPrinter::emitStackMaps() { 4151 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 4152 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 4153 bool NeedsDefault = false; 4154 if (MI->begin() == MI->end()) 4155 // No GC strategy, use the default format. 4156 NeedsDefault = true; 4157 else 4158 for (const auto &I : *MI) { 4159 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 4160 if (MP->emitStackMaps(SM, *this)) 4161 continue; 4162 // The strategy doesn't have printer or doesn't emit custom stack maps. 4163 // Use the default format. 4164 NeedsDefault = true; 4165 } 4166 4167 if (NeedsDefault) 4168 SM.serializeToStackMapSection(); 4169 } 4170 4171 void AsmPrinter::addAsmPrinterHandler( 4172 std::unique_ptr<AsmPrinterHandler> Handler) { 4173 Handlers.insert(Handlers.begin(), std::move(Handler)); 4174 NumUserHandlers++; 4175 } 4176 4177 void AsmPrinter::addDebugHandler(std::unique_ptr<DebugHandlerBase> Handler) { 4178 DebugHandlers.insert(DebugHandlers.begin(), std::move(Handler)); 4179 NumUserDebugHandlers++; 4180 } 4181 4182 /// Pin vtable to this file. 4183 AsmPrinterHandler::~AsmPrinterHandler() = default; 4184 4185 void AsmPrinterHandler::markFunctionEnd() {} 4186 4187 // In the binary's "xray_instr_map" section, an array of these function entries 4188 // describes each instrumentation point. When XRay patches your code, the index 4189 // into this table will be given to your handler as a patch point identifier. 4190 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 4191 auto Kind8 = static_cast<uint8_t>(Kind); 4192 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 4193 Out->emitBinaryData( 4194 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 4195 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 4196 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 4197 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 4198 Out->emitZeros(Padding); 4199 } 4200 4201 void AsmPrinter::emitXRayTable() { 4202 if (Sleds.empty()) 4203 return; 4204 4205 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 4206 const Function &F = MF->getFunction(); 4207 MCSection *InstMap = nullptr; 4208 MCSection *FnSledIndex = nullptr; 4209 const Triple &TT = TM.getTargetTriple(); 4210 // Use PC-relative addresses on all targets. 4211 if (TT.isOSBinFormatELF()) { 4212 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4213 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 4214 StringRef GroupName; 4215 if (F.hasComdat()) { 4216 Flags |= ELF::SHF_GROUP; 4217 GroupName = F.getComdat()->getName(); 4218 } 4219 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 4220 Flags, 0, GroupName, F.hasComdat(), 4221 MCSection::NonUniqueID, LinkedToSym); 4222 4223 if (TM.Options.XRayFunctionIndex) 4224 FnSledIndex = OutContext.getELFSection( 4225 "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), 4226 MCSection::NonUniqueID, LinkedToSym); 4227 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 4228 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 4229 MachO::S_ATTR_LIVE_SUPPORT, 4230 SectionKind::getReadOnlyWithRel()); 4231 if (TM.Options.XRayFunctionIndex) 4232 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 4233 MachO::S_ATTR_LIVE_SUPPORT, 4234 SectionKind::getReadOnly()); 4235 } else { 4236 llvm_unreachable("Unsupported target"); 4237 } 4238 4239 auto WordSizeBytes = MAI->getCodePointerSize(); 4240 4241 // Now we switch to the instrumentation map section. Because this is done 4242 // per-function, we are able to create an index entry that will represent the 4243 // range of sleds associated with a function. 4244 auto &Ctx = OutContext; 4245 MCSymbol *SledsStart = 4246 OutContext.createLinkerPrivateSymbol("xray_sleds_start"); 4247 OutStreamer->switchSection(InstMap); 4248 OutStreamer->emitLabel(SledsStart); 4249 for (const auto &Sled : Sleds) { 4250 MCSymbol *Dot = Ctx.createTempSymbol(); 4251 OutStreamer->emitLabel(Dot); 4252 OutStreamer->emitValueImpl( 4253 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 4254 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4255 WordSizeBytes); 4256 OutStreamer->emitValueImpl( 4257 MCBinaryExpr::createSub( 4258 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 4259 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 4260 MCConstantExpr::create(WordSizeBytes, Ctx), 4261 Ctx), 4262 Ctx), 4263 WordSizeBytes); 4264 Sled.emit(WordSizeBytes, OutStreamer.get()); 4265 } 4266 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 4267 OutStreamer->emitLabel(SledsEnd); 4268 4269 // We then emit a single entry in the index per function. We use the symbols 4270 // that bound the instrumentation map as the range for a specific function. 4271 // Each entry here will be 2 * word size aligned, as we're writing down two 4272 // pointers. This should work for both 32-bit and 64-bit platforms. 4273 if (FnSledIndex) { 4274 OutStreamer->switchSection(FnSledIndex); 4275 OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), 4276 &getSubtargetInfo()); 4277 // For Mach-O, use an "l" symbol as the atom of this subsection. The label 4278 // difference uses a SUBTRACTOR external relocation which references the 4279 // symbol. 4280 MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx"); 4281 OutStreamer->emitLabel(Dot); 4282 OutStreamer->emitValueImpl( 4283 MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx), 4284 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4285 WordSizeBytes); 4286 OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx), 4287 WordSizeBytes); 4288 OutStreamer->switchSection(PrevSection); 4289 } 4290 Sleds.clear(); 4291 } 4292 4293 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 4294 SledKind Kind, uint8_t Version) { 4295 const Function &F = MI.getMF()->getFunction(); 4296 auto Attr = F.getFnAttribute("function-instrument"); 4297 bool LogArgs = F.hasFnAttribute("xray-log-args"); 4298 bool AlwaysInstrument = 4299 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 4300 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 4301 Kind = SledKind::LOG_ARGS_ENTER; 4302 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 4303 AlwaysInstrument, &F, Version}); 4304 } 4305 4306 void AsmPrinter::emitPatchableFunctionEntries() { 4307 const Function &F = MF->getFunction(); 4308 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 4309 (void)F.getFnAttribute("patchable-function-prefix") 4310 .getValueAsString() 4311 .getAsInteger(10, PatchableFunctionPrefix); 4312 (void)F.getFnAttribute("patchable-function-entry") 4313 .getValueAsString() 4314 .getAsInteger(10, PatchableFunctionEntry); 4315 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 4316 return; 4317 const unsigned PointerSize = getPointerSize(); 4318 if (TM.getTargetTriple().isOSBinFormatELF()) { 4319 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 4320 const MCSymbolELF *LinkedToSym = nullptr; 4321 StringRef GroupName; 4322 4323 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 4324 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 4325 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 4326 Flags |= ELF::SHF_LINK_ORDER; 4327 if (F.hasComdat()) { 4328 Flags |= ELF::SHF_GROUP; 4329 GroupName = F.getComdat()->getName(); 4330 } 4331 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4332 } 4333 OutStreamer->switchSection(OutContext.getELFSection( 4334 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 4335 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 4336 emitAlignment(Align(PointerSize)); 4337 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 4338 } 4339 } 4340 4341 uint16_t AsmPrinter::getDwarfVersion() const { 4342 return OutStreamer->getContext().getDwarfVersion(); 4343 } 4344 4345 void AsmPrinter::setDwarfVersion(uint16_t Version) { 4346 OutStreamer->getContext().setDwarfVersion(Version); 4347 } 4348 4349 bool AsmPrinter::isDwarf64() const { 4350 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 4351 } 4352 4353 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 4354 return dwarf::getDwarfOffsetByteSize( 4355 OutStreamer->getContext().getDwarfFormat()); 4356 } 4357 4358 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 4359 return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()), 4360 OutStreamer->getContext().getDwarfFormat(), 4361 doesDwarfUseRelocationsAcrossSections()}; 4362 } 4363 4364 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 4365 return dwarf::getUnitLengthFieldByteSize( 4366 OutStreamer->getContext().getDwarfFormat()); 4367 } 4368 4369 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, 4370 codeview::JumpTableEntrySize> 4371 AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, 4372 const MCSymbol *BranchLabel) const { 4373 const auto TLI = MF->getSubtarget().getTargetLowering(); 4374 const auto BaseExpr = 4375 TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext()); 4376 const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol(); 4377 4378 // By default, for the architectures that support CodeView, 4379 // EK_LabelDifference32 is implemented as an Int32 from the base address. 4380 return std::make_tuple(Base, 0, BranchLabel, 4381 codeview::JumpTableEntrySize::Int32); 4382 } 4383