1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCSectionXCOFF.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCSymbolXCOFF.h" 100 #include "llvm/MC/MCTargetOptions.h" 101 #include "llvm/MC/MCValue.h" 102 #include "llvm/MC/SectionKind.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Remarks/Remark.h" 105 #include "llvm/Remarks/RemarkFormat.h" 106 #include "llvm/Remarks/RemarkStringTable.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/Format.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/Path.h" 114 #include "llvm/Support/TargetRegistry.h" 115 #include "llvm/Support/Timer.h" 116 #include "llvm/Support/raw_ostream.h" 117 #include "llvm/Target/TargetLoweringObjectFile.h" 118 #include "llvm/Target/TargetMachine.h" 119 #include "llvm/Target/TargetOptions.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cinttypes> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <memory> 127 #include <string> 128 #include <utility> 129 #include <vector> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "asm-printer" 134 135 static const char *const DWARFGroupName = "dwarf"; 136 static const char *const DWARFGroupDescription = "DWARF Emission"; 137 static const char *const DbgTimerName = "emit"; 138 static const char *const DbgTimerDescription = "Debug Info Emission"; 139 static const char *const EHTimerName = "write_exception"; 140 static const char *const EHTimerDescription = "DWARF Exception Writer"; 141 static const char *const CFGuardName = "Control Flow Guard"; 142 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 143 static const char *const CodeViewLineTablesGroupName = "linetables"; 144 static const char *const CodeViewLineTablesGroupDescription = 145 "CodeView Line Tables"; 146 147 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 148 149 static cl::opt<bool> EnableRemarksSection( 150 "remarks-section", 151 cl::desc("Emit a section containing remark diagnostics metadata"), 152 cl::init(false)); 153 154 char AsmPrinter::ID = 0; 155 156 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 157 158 static gcp_map_type &getGCMap(void *&P) { 159 if (!P) 160 P = new gcp_map_type(); 161 return *(gcp_map_type*)P; 162 } 163 164 /// getGVAlignment - Return the alignment to use for the specified global 165 /// value. This rounds up to the preferred alignment if possible and legal. 166 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 167 Align InAlign) { 168 Align Alignment; 169 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 170 Alignment = Align(DL.getPreferredAlignment(GVar)); 171 172 // If InAlign is specified, round it to it. 173 if (InAlign > Alignment) 174 Alignment = InAlign; 175 176 // If the GV has a specified alignment, take it into account. 177 const MaybeAlign GVAlign(GV->getAlignment()); 178 if (!GVAlign) 179 return Alignment; 180 181 assert(GVAlign && "GVAlign must be set"); 182 183 // If the GVAlign is larger than NumBits, or if we are required to obey 184 // NumBits because the GV has an assigned section, obey it. 185 if (*GVAlign > Alignment || GV->hasSection()) 186 Alignment = *GVAlign; 187 return Alignment; 188 } 189 190 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 191 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 192 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 193 VerboseAsm = OutStreamer->isVerboseAsm(); 194 } 195 196 AsmPrinter::~AsmPrinter() { 197 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 198 199 if (GCMetadataPrinters) { 200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 201 202 delete &GCMap; 203 GCMetadataPrinters = nullptr; 204 } 205 } 206 207 bool AsmPrinter::isPositionIndependent() const { 208 return TM.isPositionIndependent(); 209 } 210 211 /// getFunctionNumber - Return a unique ID for the current function. 212 unsigned AsmPrinter::getFunctionNumber() const { 213 return MF->getFunctionNumber(); 214 } 215 216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 217 return *TM.getObjFileLowering(); 218 } 219 220 const DataLayout &AsmPrinter::getDataLayout() const { 221 return MMI->getModule()->getDataLayout(); 222 } 223 224 // Do not use the cached DataLayout because some client use it without a Module 225 // (dsymutil, llvm-dwarfdump). 226 unsigned AsmPrinter::getPointerSize() const { 227 return TM.getPointerSize(0); // FIXME: Default address space 228 } 229 230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 231 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 232 return MF->getSubtarget<MCSubtargetInfo>(); 233 } 234 235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 236 S.EmitInstruction(Inst, getSubtargetInfo()); 237 } 238 239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 240 assert(DD && "Dwarf debug file is not defined."); 241 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 242 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 243 } 244 245 /// getCurrentSection() - Return the current section we are emitting to. 246 const MCSection *AsmPrinter::getCurrentSection() const { 247 return OutStreamer->getCurrentSectionOnly(); 248 } 249 250 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 251 AU.setPreservesAll(); 252 MachineFunctionPass::getAnalysisUsage(AU); 253 AU.addRequired<MachineModuleInfoWrapperPass>(); 254 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 255 AU.addRequired<GCModuleInfo>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 261 262 // Initialize TargetLoweringObjectFile. 263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 264 .Initialize(OutContext, TM); 265 266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 267 .getModuleMetadata(M); 268 269 OutStreamer->InitSections(false); 270 271 // Emit the version-min deployment target directive if needed. 272 // 273 // FIXME: If we end up with a collection of these sorts of Darwin-specific 274 // or ELF-specific things, it may make sense to have a platform helper class 275 // that will work with the target helper class. For now keep it here, as the 276 // alternative is duplicated code in each of the target asm printers that 277 // use the directive, where it would need the same conditionalization 278 // anyway. 279 const Triple &Target = TM.getTargetTriple(); 280 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 281 282 // Allow the target to emit any magic that it wants at the start of the file. 283 EmitStartOfAsmFile(M); 284 285 // Very minimal debug info. It is ignored if we emit actual debug info. If we 286 // don't, this at least helps the user find where a global came from. 287 if (MAI->hasSingleParameterDotFile()) { 288 // .file "foo.c" 289 OutStreamer->EmitFileDirective( 290 llvm::sys::path::filename(M.getSourceFileName())); 291 } 292 293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 294 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 295 for (auto &I : *MI) 296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 297 MP->beginAssembly(M, *MI, *this); 298 299 // Emit module-level inline asm if it exists. 300 if (!M.getModuleInlineAsm().empty()) { 301 // We're at the module level. Construct MCSubtarget from the default CPU 302 // and target triple. 303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 304 TM.getTargetTriple().str(), TM.getTargetCPU(), 305 TM.getTargetFeatureString())); 306 OutStreamer->AddComment("Start of file scope inline assembly"); 307 OutStreamer->AddBlankLine(); 308 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 310 OutStreamer->AddComment("End of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 } 313 314 if (MAI->doesSupportDebugInformation()) { 315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 318 DbgTimerName, DbgTimerDescription, 319 CodeViewLineTablesGroupName, 320 CodeViewLineTablesGroupDescription); 321 } 322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 323 DD = new DwarfDebug(this, &M); 324 DD->beginModule(); 325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 326 DbgTimerDescription, DWARFGroupName, 327 DWARFGroupDescription); 328 } 329 } 330 331 switch (MAI->getExceptionHandlingType()) { 332 case ExceptionHandling::SjLj: 333 case ExceptionHandling::DwarfCFI: 334 case ExceptionHandling::ARM: 335 isCFIMoveForDebugging = true; 336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 337 break; 338 for (auto &F: M.getFunctionList()) { 339 // If the module contains any function with unwind data, 340 // .eh_frame has to be emitted. 341 // Ignore functions that won't get emitted. 342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 } 347 break; 348 default: 349 isCFIMoveForDebugging = false; 350 break; 351 } 352 353 EHStreamer *ES = nullptr; 354 switch (MAI->getExceptionHandlingType()) { 355 case ExceptionHandling::None: 356 break; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 ES = new DwarfCFIException(this); 360 break; 361 case ExceptionHandling::ARM: 362 ES = new ARMException(this); 363 break; 364 case ExceptionHandling::WinEH: 365 switch (MAI->getWinEHEncodingType()) { 366 default: llvm_unreachable("unsupported unwinding information encoding"); 367 case WinEH::EncodingType::Invalid: 368 break; 369 case WinEH::EncodingType::X86: 370 case WinEH::EncodingType::Itanium: 371 ES = new WinException(this); 372 break; 373 } 374 break; 375 case ExceptionHandling::Wasm: 376 ES = new WasmException(this); 377 break; 378 } 379 if (ES) 380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 381 EHTimerDescription, DWARFGroupName, 382 DWARFGroupDescription); 383 384 if (mdconst::extract_or_null<ConstantInt>( 385 MMI->getModule()->getModuleFlag("cfguardtable"))) 386 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 387 CFGuardDescription, DWARFGroupName, 388 DWARFGroupDescription); 389 390 return false; 391 } 392 393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 394 if (!MAI.hasWeakDefCanBeHiddenDirective()) 395 return false; 396 397 return GV->canBeOmittedFromSymbolTable(); 398 } 399 400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 401 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 402 switch (Linkage) { 403 case GlobalValue::CommonLinkage: 404 case GlobalValue::LinkOnceAnyLinkage: 405 case GlobalValue::LinkOnceODRLinkage: 406 case GlobalValue::WeakAnyLinkage: 407 case GlobalValue::WeakODRLinkage: 408 if (MAI->hasWeakDefDirective()) { 409 // .globl _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 411 412 if (!canBeHidden(GV, *MAI)) 413 // .weak_definition _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 415 else 416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 417 } else if (MAI->hasLinkOnceDirective()) { 418 // .globl _foo 419 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 420 //NOTE: linkonce is handled by the section the symbol was assigned to. 421 } else { 422 // .weak _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 424 } 425 return; 426 case GlobalValue::ExternalLinkage: 427 // If external, declare as a global symbol: .globl _foo 428 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 429 return; 430 case GlobalValue::PrivateLinkage: 431 return; 432 case GlobalValue::InternalLinkage: 433 if (MAI->hasDotLGloblDirective()) 434 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); 435 return; 436 case GlobalValue::AppendingLinkage: 437 case GlobalValue::AvailableExternallyLinkage: 438 case GlobalValue::ExternalWeakLinkage: 439 llvm_unreachable("Should never emit this"); 440 } 441 llvm_unreachable("Unknown linkage type!"); 442 } 443 444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 445 const GlobalValue *GV) const { 446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 447 } 448 449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 450 return TM.getSymbol(GV); 451 } 452 453 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 455 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 456 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 457 "No emulated TLS variables in the common section"); 458 459 // Never emit TLS variable xyz in emulated TLS model. 460 // The initialization value is in __emutls_t.xyz instead of xyz. 461 if (IsEmuTLSVar) 462 return; 463 464 if (GV->hasInitializer()) { 465 // Check to see if this is a special global used by LLVM, if so, emit it. 466 if (EmitSpecialLLVMGlobal(GV)) 467 return; 468 469 // Skip the emission of global equivalents. The symbol can be emitted later 470 // on by emitGlobalGOTEquivs in case it turns out to be needed. 471 if (GlobalGOTEquivs.count(getSymbol(GV))) 472 return; 473 474 if (isVerbose()) { 475 // When printing the control variable __emutls_v.*, 476 // we don't need to print the original TLS variable name. 477 GV->printAsOperand(OutStreamer->GetCommentOS(), 478 /*PrintType=*/false, GV->getParent()); 479 OutStreamer->GetCommentOS() << '\n'; 480 } 481 } 482 483 MCSymbol *GVSym = getSymbol(GV); 484 MCSymbol *EmittedSym = GVSym; 485 486 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 487 // attributes. 488 // GV's or GVSym's attributes will be used for the EmittedSym. 489 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 490 491 if (!GV->hasInitializer()) // External globals require no extra code. 492 return; 493 494 GVSym->redefineIfPossible(); 495 if (GVSym->isDefined() || GVSym->isVariable()) 496 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 497 "' is already defined"); 498 499 if (MAI->hasDotTypeDotSizeDirective()) 500 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 501 502 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 503 504 const DataLayout &DL = GV->getParent()->getDataLayout(); 505 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 506 507 // If the alignment is specified, we *must* obey it. Overaligning a global 508 // with a specified alignment is a prompt way to break globals emitted to 509 // sections and expected to be contiguous (e.g. ObjC metadata). 510 const Align Alignment = getGVAlignment(GV, DL); 511 512 for (const HandlerInfo &HI : Handlers) { 513 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 514 HI.TimerGroupName, HI.TimerGroupDescription, 515 TimePassesIsEnabled); 516 HI.Handler->setSymbolSize(GVSym, Size); 517 } 518 519 // Handle common symbols 520 if (GVKind.isCommon()) { 521 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 522 // .comm _foo, 42, 4 523 const bool SupportsAlignment = 524 getObjFileLowering().getCommDirectiveSupportsAlignment(); 525 OutStreamer->EmitCommonSymbol(GVSym, Size, 526 SupportsAlignment ? Alignment.value() : 0); 527 return; 528 } 529 530 // Determine to which section this global should be emitted. 531 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 532 533 // If we have a bss global going to a section that supports the 534 // zerofill directive, do so here. 535 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 536 TheSection->isVirtualSection()) { 537 if (Size == 0) 538 Size = 1; // zerofill of 0 bytes is undefined. 539 EmitLinkage(GV, GVSym); 540 // .zerofill __DATA, __bss, _foo, 400, 5 541 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); 542 return; 543 } 544 545 // If this is a BSS local symbol and we are emitting in the BSS 546 // section use .lcomm/.comm directive. 547 if (GVKind.isBSSLocal() && 548 getObjFileLowering().getBSSSection() == TheSection) { 549 if (Size == 0) 550 Size = 1; // .comm Foo, 0 is undefined, avoid it. 551 552 // Use .lcomm only if it supports user-specified alignment. 553 // Otherwise, while it would still be correct to use .lcomm in some 554 // cases (e.g. when Align == 1), the external assembler might enfore 555 // some -unknown- default alignment behavior, which could cause 556 // spurious differences between external and integrated assembler. 557 // Prefer to simply fall back to .local / .comm in this case. 558 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 559 // .lcomm _foo, 42 560 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); 561 return; 562 } 563 564 // .local _foo 565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 566 // .comm _foo, 42, 4 567 const bool SupportsAlignment = 568 getObjFileLowering().getCommDirectiveSupportsAlignment(); 569 OutStreamer->EmitCommonSymbol(GVSym, Size, 570 SupportsAlignment ? Alignment.value() : 0); 571 return; 572 } 573 574 // Handle thread local data for mach-o which requires us to output an 575 // additional structure of data and mangle the original symbol so that we 576 // can reference it later. 577 // 578 // TODO: This should become an "emit thread local global" method on TLOF. 579 // All of this macho specific stuff should be sunk down into TLOFMachO and 580 // stuff like "TLSExtraDataSection" should no longer be part of the parent 581 // TLOF class. This will also make it more obvious that stuff like 582 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 583 // specific code. 584 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 585 // Emit the .tbss symbol 586 MCSymbol *MangSym = 587 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 588 589 if (GVKind.isThreadBSS()) { 590 TheSection = getObjFileLowering().getTLSBSSSection(); 591 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 592 } else if (GVKind.isThreadData()) { 593 OutStreamer->SwitchSection(TheSection); 594 595 EmitAlignment(Alignment, GV); 596 OutStreamer->EmitLabel(MangSym); 597 598 EmitGlobalConstant(GV->getParent()->getDataLayout(), 599 GV->getInitializer()); 600 } 601 602 OutStreamer->AddBlankLine(); 603 604 // Emit the variable struct for the runtime. 605 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 606 607 OutStreamer->SwitchSection(TLVSect); 608 // Emit the linkage here. 609 EmitLinkage(GV, GVSym); 610 OutStreamer->EmitLabel(GVSym); 611 612 // Three pointers in size: 613 // - __tlv_bootstrap - used to make sure support exists 614 // - spare pointer, used when mapped by the runtime 615 // - pointer to mangled symbol above with initializer 616 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 617 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 618 PtrSize); 619 OutStreamer->EmitIntValue(0, PtrSize); 620 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 621 622 OutStreamer->AddBlankLine(); 623 return; 624 } 625 626 MCSymbol *EmittedInitSym = GVSym; 627 628 OutStreamer->SwitchSection(TheSection); 629 630 EmitLinkage(GV, EmittedInitSym); 631 EmitAlignment(Alignment, GV); 632 633 OutStreamer->EmitLabel(EmittedInitSym); 634 635 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 636 637 if (MAI->hasDotTypeDotSizeDirective()) 638 // .size foo, 42 639 OutStreamer->emitELFSize(EmittedInitSym, 640 MCConstantExpr::create(Size, OutContext)); 641 642 OutStreamer->AddBlankLine(); 643 } 644 645 /// Emit the directive and value for debug thread local expression 646 /// 647 /// \p Value - The value to emit. 648 /// \p Size - The size of the integer (in bytes) to emit. 649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 650 OutStreamer->EmitValue(Value, Size); 651 } 652 653 /// EmitFunctionHeader - This method emits the header for the current 654 /// function. 655 void AsmPrinter::EmitFunctionHeader() { 656 const Function &F = MF->getFunction(); 657 658 if (isVerbose()) 659 OutStreamer->GetCommentOS() 660 << "-- Begin function " 661 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 662 663 // Print out constants referenced by the function 664 EmitConstantPool(); 665 666 // Print the 'header' of function. 667 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 668 EmitVisibility(CurrentFnSym, F.getVisibility()); 669 670 if (MAI->needsFunctionDescriptors() && 671 F.getLinkage() != GlobalValue::InternalLinkage) 672 EmitLinkage(&F, CurrentFnDescSym); 673 674 EmitLinkage(&F, CurrentFnSym); 675 if (MAI->hasFunctionAlignment()) 676 EmitAlignment(MF->getAlignment(), &F); 677 678 if (MAI->hasDotTypeDotSizeDirective()) 679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 680 681 if (F.hasFnAttribute(Attribute::Cold)) 682 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 683 684 if (isVerbose()) { 685 F.printAsOperand(OutStreamer->GetCommentOS(), 686 /*PrintType=*/false, F.getParent()); 687 OutStreamer->GetCommentOS() << '\n'; 688 } 689 690 // Emit the prefix data. 691 if (F.hasPrefixData()) { 692 if (MAI->hasSubsectionsViaSymbols()) { 693 // Preserving prefix data on platforms which use subsections-via-symbols 694 // is a bit tricky. Here we introduce a symbol for the prefix data 695 // and use the .alt_entry attribute to mark the function's real entry point 696 // as an alternative entry point to the prefix-data symbol. 697 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 698 OutStreamer->EmitLabel(PrefixSym); 699 700 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 701 702 // Emit an .alt_entry directive for the actual function symbol. 703 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 704 } else { 705 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 706 } 707 } 708 709 // Emit the function descriptor. This is a virtual function to allow targets 710 // to emit their specific function descriptor. 711 if (MAI->needsFunctionDescriptors()) 712 EmitFunctionDescriptor(); 713 714 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 715 // their wild and crazy things as required. 716 EmitFunctionEntryLabel(); 717 718 // If the function had address-taken blocks that got deleted, then we have 719 // references to the dangling symbols. Emit them at the start of the function 720 // so that we don't get references to undefined symbols. 721 std::vector<MCSymbol*> DeadBlockSyms; 722 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 723 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 724 OutStreamer->AddComment("Address taken block that was later removed"); 725 OutStreamer->EmitLabel(DeadBlockSyms[i]); 726 } 727 728 if (CurrentFnBegin) { 729 if (MAI->useAssignmentForEHBegin()) { 730 MCSymbol *CurPos = OutContext.createTempSymbol(); 731 OutStreamer->EmitLabel(CurPos); 732 OutStreamer->EmitAssignment(CurrentFnBegin, 733 MCSymbolRefExpr::create(CurPos, OutContext)); 734 } else { 735 OutStreamer->EmitLabel(CurrentFnBegin); 736 } 737 } 738 739 // Emit pre-function debug and/or EH information. 740 for (const HandlerInfo &HI : Handlers) { 741 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 742 HI.TimerGroupDescription, TimePassesIsEnabled); 743 HI.Handler->beginFunction(MF); 744 } 745 746 // Emit the prologue data. 747 if (F.hasPrologueData()) 748 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 749 } 750 751 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 752 /// function. This can be overridden by targets as required to do custom stuff. 753 void AsmPrinter::EmitFunctionEntryLabel() { 754 CurrentFnSym->redefineIfPossible(); 755 756 // The function label could have already been emitted if two symbols end up 757 // conflicting due to asm renaming. Detect this and emit an error. 758 if (CurrentFnSym->isVariable()) 759 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 760 "' is a protected alias"); 761 if (CurrentFnSym->isDefined()) 762 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 763 "' label emitted multiple times to assembly file"); 764 765 return OutStreamer->EmitLabel(CurrentFnSym); 766 } 767 768 /// emitComments - Pretty-print comments for instructions. 769 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 770 const MachineFunction *MF = MI.getMF(); 771 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 772 773 // Check for spills and reloads 774 775 // We assume a single instruction only has a spill or reload, not 776 // both. 777 Optional<unsigned> Size; 778 if ((Size = MI.getRestoreSize(TII))) { 779 CommentOS << *Size << "-byte Reload\n"; 780 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 781 if (*Size) 782 CommentOS << *Size << "-byte Folded Reload\n"; 783 } else if ((Size = MI.getSpillSize(TII))) { 784 CommentOS << *Size << "-byte Spill\n"; 785 } else if ((Size = MI.getFoldedSpillSize(TII))) { 786 if (*Size) 787 CommentOS << *Size << "-byte Folded Spill\n"; 788 } 789 790 // Check for spill-induced copies 791 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 792 CommentOS << " Reload Reuse\n"; 793 } 794 795 /// emitImplicitDef - This method emits the specified machine instruction 796 /// that is an implicit def. 797 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 798 Register RegNo = MI->getOperand(0).getReg(); 799 800 SmallString<128> Str; 801 raw_svector_ostream OS(Str); 802 OS << "implicit-def: " 803 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 804 805 OutStreamer->AddComment(OS.str()); 806 OutStreamer->AddBlankLine(); 807 } 808 809 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 810 std::string Str; 811 raw_string_ostream OS(Str); 812 OS << "kill:"; 813 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 814 const MachineOperand &Op = MI->getOperand(i); 815 assert(Op.isReg() && "KILL instruction must have only register operands"); 816 OS << ' ' << (Op.isDef() ? "def " : "killed ") 817 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 818 } 819 AP.OutStreamer->AddComment(OS.str()); 820 AP.OutStreamer->AddBlankLine(); 821 } 822 823 /// emitDebugValueComment - This method handles the target-independent form 824 /// of DBG_VALUE, returning true if it was able to do so. A false return 825 /// means the target will need to handle MI in EmitInstruction. 826 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 827 // This code handles only the 4-operand target-independent form. 828 if (MI->getNumOperands() != 4) 829 return false; 830 831 SmallString<128> Str; 832 raw_svector_ostream OS(Str); 833 OS << "DEBUG_VALUE: "; 834 835 const DILocalVariable *V = MI->getDebugVariable(); 836 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 837 StringRef Name = SP->getName(); 838 if (!Name.empty()) 839 OS << Name << ":"; 840 } 841 OS << V->getName(); 842 OS << " <- "; 843 844 // The second operand is only an offset if it's an immediate. 845 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 846 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 847 const DIExpression *Expr = MI->getDebugExpression(); 848 if (Expr->getNumElements()) { 849 OS << '['; 850 bool NeedSep = false; 851 for (auto Op : Expr->expr_ops()) { 852 if (NeedSep) 853 OS << ", "; 854 else 855 NeedSep = true; 856 OS << dwarf::OperationEncodingString(Op.getOp()); 857 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 858 OS << ' ' << Op.getArg(I); 859 } 860 OS << "] "; 861 } 862 863 // Register or immediate value. Register 0 means undef. 864 if (MI->getOperand(0).isFPImm()) { 865 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 866 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 867 OS << (double)APF.convertToFloat(); 868 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 869 OS << APF.convertToDouble(); 870 } else { 871 // There is no good way to print long double. Convert a copy to 872 // double. Ah well, it's only a comment. 873 bool ignored; 874 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 875 &ignored); 876 OS << "(long double) " << APF.convertToDouble(); 877 } 878 } else if (MI->getOperand(0).isImm()) { 879 OS << MI->getOperand(0).getImm(); 880 } else if (MI->getOperand(0).isCImm()) { 881 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 882 } else { 883 unsigned Reg; 884 if (MI->getOperand(0).isReg()) { 885 Reg = MI->getOperand(0).getReg(); 886 } else { 887 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 888 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 889 Offset += TFI->getFrameIndexReference(*AP.MF, 890 MI->getOperand(0).getIndex(), Reg); 891 MemLoc = true; 892 } 893 if (Reg == 0) { 894 // Suppress offset, it is not meaningful here. 895 OS << "undef"; 896 // NOTE: Want this comment at start of line, don't emit with AddComment. 897 AP.OutStreamer->emitRawComment(OS.str()); 898 return true; 899 } 900 if (MemLoc) 901 OS << '['; 902 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 903 } 904 905 if (MemLoc) 906 OS << '+' << Offset << ']'; 907 908 // NOTE: Want this comment at start of line, don't emit with AddComment. 909 AP.OutStreamer->emitRawComment(OS.str()); 910 return true; 911 } 912 913 /// This method handles the target-independent form of DBG_LABEL, returning 914 /// true if it was able to do so. A false return means the target will need 915 /// to handle MI in EmitInstruction. 916 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 917 if (MI->getNumOperands() != 1) 918 return false; 919 920 SmallString<128> Str; 921 raw_svector_ostream OS(Str); 922 OS << "DEBUG_LABEL: "; 923 924 const DILabel *V = MI->getDebugLabel(); 925 if (auto *SP = dyn_cast<DISubprogram>( 926 V->getScope()->getNonLexicalBlockFileScope())) { 927 StringRef Name = SP->getName(); 928 if (!Name.empty()) 929 OS << Name << ":"; 930 } 931 OS << V->getName(); 932 933 // NOTE: Want this comment at start of line, don't emit with AddComment. 934 AP.OutStreamer->emitRawComment(OS.str()); 935 return true; 936 } 937 938 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 939 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 940 MF->getFunction().needsUnwindTableEntry()) 941 return CFI_M_EH; 942 943 if (MMI->hasDebugInfo()) 944 return CFI_M_Debug; 945 946 return CFI_M_None; 947 } 948 949 bool AsmPrinter::needsSEHMoves() { 950 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 951 } 952 953 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 954 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 955 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 956 ExceptionHandlingType != ExceptionHandling::ARM) 957 return; 958 959 if (needsCFIMoves() == CFI_M_None) 960 return; 961 962 // If there is no "real" instruction following this CFI instruction, skip 963 // emitting it; it would be beyond the end of the function's FDE range. 964 auto *MBB = MI.getParent(); 965 auto I = std::next(MI.getIterator()); 966 while (I != MBB->end() && I->isTransient()) 967 ++I; 968 if (I == MBB->instr_end() && 969 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 970 return; 971 972 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 973 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 974 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 975 emitCFIInstruction(CFI); 976 } 977 978 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 979 // The operands are the MCSymbol and the frame offset of the allocation. 980 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 981 int FrameOffset = MI.getOperand(1).getImm(); 982 983 // Emit a symbol assignment. 984 OutStreamer->EmitAssignment(FrameAllocSym, 985 MCConstantExpr::create(FrameOffset, OutContext)); 986 } 987 988 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 989 if (!MF.getTarget().Options.EmitStackSizeSection) 990 return; 991 992 MCSection *StackSizeSection = 993 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 994 if (!StackSizeSection) 995 return; 996 997 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 998 // Don't emit functions with dynamic stack allocations. 999 if (FrameInfo.hasVarSizedObjects()) 1000 return; 1001 1002 OutStreamer->PushSection(); 1003 OutStreamer->SwitchSection(StackSizeSection); 1004 1005 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1006 uint64_t StackSize = FrameInfo.getStackSize(); 1007 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1008 OutStreamer->EmitULEB128IntValue(StackSize); 1009 1010 OutStreamer->PopSection(); 1011 } 1012 1013 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1014 MachineModuleInfo *MMI) { 1015 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1016 return true; 1017 1018 // We might emit an EH table that uses function begin and end labels even if 1019 // we don't have any landingpads. 1020 if (!MF.getFunction().hasPersonalityFn()) 1021 return false; 1022 return !isNoOpWithoutInvoke( 1023 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1024 } 1025 1026 /// EmitFunctionBody - This method emits the body and trailer for a 1027 /// function. 1028 void AsmPrinter::EmitFunctionBody() { 1029 EmitFunctionHeader(); 1030 1031 // Emit target-specific gunk before the function body. 1032 EmitFunctionBodyStart(); 1033 1034 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1035 1036 if (isVerbose()) { 1037 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1038 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1039 if (!MDT) { 1040 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1041 OwnedMDT->getBase().recalculate(*MF); 1042 MDT = OwnedMDT.get(); 1043 } 1044 1045 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1046 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1047 if (!MLI) { 1048 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1049 OwnedMLI->getBase().analyze(MDT->getBase()); 1050 MLI = OwnedMLI.get(); 1051 } 1052 } 1053 1054 // Print out code for the function. 1055 bool HasAnyRealCode = false; 1056 int NumInstsInFunction = 0; 1057 for (auto &MBB : *MF) { 1058 // Print a label for the basic block. 1059 EmitBasicBlockStart(MBB); 1060 for (auto &MI : MBB) { 1061 // Print the assembly for the instruction. 1062 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1063 !MI.isDebugInstr()) { 1064 HasAnyRealCode = true; 1065 ++NumInstsInFunction; 1066 } 1067 1068 // If there is a pre-instruction symbol, emit a label for it here. If the 1069 // instruction was duplicated and the label has already been emitted, 1070 // don't re-emit the same label. 1071 // FIXME: Consider strengthening that to an assertion. 1072 if (MCSymbol *S = MI.getPreInstrSymbol()) 1073 if (S->isUndefined()) 1074 OutStreamer->EmitLabel(S); 1075 1076 if (ShouldPrintDebugScopes) { 1077 for (const HandlerInfo &HI : Handlers) { 1078 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1079 HI.TimerGroupName, HI.TimerGroupDescription, 1080 TimePassesIsEnabled); 1081 HI.Handler->beginInstruction(&MI); 1082 } 1083 } 1084 1085 if (isVerbose()) 1086 emitComments(MI, OutStreamer->GetCommentOS()); 1087 1088 switch (MI.getOpcode()) { 1089 case TargetOpcode::CFI_INSTRUCTION: 1090 emitCFIInstruction(MI); 1091 break; 1092 case TargetOpcode::LOCAL_ESCAPE: 1093 emitFrameAlloc(MI); 1094 break; 1095 case TargetOpcode::ANNOTATION_LABEL: 1096 case TargetOpcode::EH_LABEL: 1097 case TargetOpcode::GC_LABEL: 1098 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1099 break; 1100 case TargetOpcode::INLINEASM: 1101 case TargetOpcode::INLINEASM_BR: 1102 EmitInlineAsm(&MI); 1103 break; 1104 case TargetOpcode::DBG_VALUE: 1105 if (isVerbose()) { 1106 if (!emitDebugValueComment(&MI, *this)) 1107 EmitInstruction(&MI); 1108 } 1109 break; 1110 case TargetOpcode::DBG_LABEL: 1111 if (isVerbose()) { 1112 if (!emitDebugLabelComment(&MI, *this)) 1113 EmitInstruction(&MI); 1114 } 1115 break; 1116 case TargetOpcode::IMPLICIT_DEF: 1117 if (isVerbose()) emitImplicitDef(&MI); 1118 break; 1119 case TargetOpcode::KILL: 1120 if (isVerbose()) emitKill(&MI, *this); 1121 break; 1122 default: 1123 EmitInstruction(&MI); 1124 break; 1125 } 1126 1127 // If there is a post-instruction symbol, emit a label for it here. If 1128 // the instruction was duplicated and the label has already been emitted, 1129 // don't re-emit the same label. 1130 // FIXME: Consider strengthening that to an assertion. 1131 if (MCSymbol *S = MI.getPostInstrSymbol()) 1132 if (S->isUndefined()) 1133 OutStreamer->EmitLabel(S); 1134 1135 if (ShouldPrintDebugScopes) { 1136 for (const HandlerInfo &HI : Handlers) { 1137 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1138 HI.TimerGroupName, HI.TimerGroupDescription, 1139 TimePassesIsEnabled); 1140 HI.Handler->endInstruction(); 1141 } 1142 } 1143 } 1144 1145 EmitBasicBlockEnd(MBB); 1146 } 1147 1148 EmittedInsts += NumInstsInFunction; 1149 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1150 MF->getFunction().getSubprogram(), 1151 &MF->front()); 1152 R << ore::NV("NumInstructions", NumInstsInFunction) 1153 << " instructions in function"; 1154 ORE->emit(R); 1155 1156 // If the function is empty and the object file uses .subsections_via_symbols, 1157 // then we need to emit *something* to the function body to prevent the 1158 // labels from collapsing together. Just emit a noop. 1159 // Similarly, don't emit empty functions on Windows either. It can lead to 1160 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1161 // after linking, causing the kernel not to load the binary: 1162 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1163 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1164 const Triple &TT = TM.getTargetTriple(); 1165 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1166 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1167 MCInst Noop; 1168 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1169 1170 // Targets can opt-out of emitting the noop here by leaving the opcode 1171 // unspecified. 1172 if (Noop.getOpcode()) { 1173 OutStreamer->AddComment("avoids zero-length function"); 1174 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1175 } 1176 } 1177 1178 const Function &F = MF->getFunction(); 1179 for (const auto &BB : F) { 1180 if (!BB.hasAddressTaken()) 1181 continue; 1182 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1183 if (Sym->isDefined()) 1184 continue; 1185 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1186 OutStreamer->EmitLabel(Sym); 1187 } 1188 1189 // Emit target-specific gunk after the function body. 1190 EmitFunctionBodyEnd(); 1191 1192 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1193 MAI->hasDotTypeDotSizeDirective()) { 1194 // Create a symbol for the end of function. 1195 CurrentFnEnd = createTempSymbol("func_end"); 1196 OutStreamer->EmitLabel(CurrentFnEnd); 1197 } 1198 1199 // If the target wants a .size directive for the size of the function, emit 1200 // it. 1201 if (MAI->hasDotTypeDotSizeDirective()) { 1202 // We can get the size as difference between the function label and the 1203 // temp label. 1204 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1205 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1206 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1207 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1208 } 1209 1210 for (const HandlerInfo &HI : Handlers) { 1211 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1212 HI.TimerGroupDescription, TimePassesIsEnabled); 1213 HI.Handler->markFunctionEnd(); 1214 } 1215 1216 // Print out jump tables referenced by the function. 1217 EmitJumpTableInfo(); 1218 1219 // Emit post-function debug and/or EH information. 1220 for (const HandlerInfo &HI : Handlers) { 1221 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1222 HI.TimerGroupDescription, TimePassesIsEnabled); 1223 HI.Handler->endFunction(MF); 1224 } 1225 1226 // Emit section containing stack size metadata. 1227 emitStackSizeSection(*MF); 1228 1229 if (isVerbose()) 1230 OutStreamer->GetCommentOS() << "-- End function\n"; 1231 1232 OutStreamer->AddBlankLine(); 1233 } 1234 1235 /// Compute the number of Global Variables that uses a Constant. 1236 static unsigned getNumGlobalVariableUses(const Constant *C) { 1237 if (!C) 1238 return 0; 1239 1240 if (isa<GlobalVariable>(C)) 1241 return 1; 1242 1243 unsigned NumUses = 0; 1244 for (auto *CU : C->users()) 1245 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1246 1247 return NumUses; 1248 } 1249 1250 /// Only consider global GOT equivalents if at least one user is a 1251 /// cstexpr inside an initializer of another global variables. Also, don't 1252 /// handle cstexpr inside instructions. During global variable emission, 1253 /// candidates are skipped and are emitted later in case at least one cstexpr 1254 /// isn't replaced by a PC relative GOT entry access. 1255 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1256 unsigned &NumGOTEquivUsers) { 1257 // Global GOT equivalents are unnamed private globals with a constant 1258 // pointer initializer to another global symbol. They must point to a 1259 // GlobalVariable or Function, i.e., as GlobalValue. 1260 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1261 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1262 !isa<GlobalValue>(GV->getOperand(0))) 1263 return false; 1264 1265 // To be a got equivalent, at least one of its users need to be a constant 1266 // expression used by another global variable. 1267 for (auto *U : GV->users()) 1268 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1269 1270 return NumGOTEquivUsers > 0; 1271 } 1272 1273 /// Unnamed constant global variables solely contaning a pointer to 1274 /// another globals variable is equivalent to a GOT table entry; it contains the 1275 /// the address of another symbol. Optimize it and replace accesses to these 1276 /// "GOT equivalents" by using the GOT entry for the final global instead. 1277 /// Compute GOT equivalent candidates among all global variables to avoid 1278 /// emitting them if possible later on, after it use is replaced by a GOT entry 1279 /// access. 1280 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1281 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1282 return; 1283 1284 for (const auto &G : M.globals()) { 1285 unsigned NumGOTEquivUsers = 0; 1286 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1287 continue; 1288 1289 const MCSymbol *GOTEquivSym = getSymbol(&G); 1290 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1291 } 1292 } 1293 1294 /// Constant expressions using GOT equivalent globals may not be eligible 1295 /// for PC relative GOT entry conversion, in such cases we need to emit such 1296 /// globals we previously omitted in EmitGlobalVariable. 1297 void AsmPrinter::emitGlobalGOTEquivs() { 1298 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1299 return; 1300 1301 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1302 for (auto &I : GlobalGOTEquivs) { 1303 const GlobalVariable *GV = I.second.first; 1304 unsigned Cnt = I.second.second; 1305 if (Cnt) 1306 FailedCandidates.push_back(GV); 1307 } 1308 GlobalGOTEquivs.clear(); 1309 1310 for (auto *GV : FailedCandidates) 1311 EmitGlobalVariable(GV); 1312 } 1313 1314 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1315 const GlobalIndirectSymbol& GIS) { 1316 MCSymbol *Name = getSymbol(&GIS); 1317 1318 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1319 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1320 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1321 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1322 else 1323 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1324 1325 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1326 1327 // Treat bitcasts of functions as functions also. This is important at least 1328 // on WebAssembly where object and function addresses can't alias each other. 1329 if (!IsFunction) 1330 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1331 if (CE->getOpcode() == Instruction::BitCast) 1332 IsFunction = 1333 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1334 1335 // Set the symbol type to function if the alias has a function type. 1336 // This affects codegen when the aliasee is not a function. 1337 if (IsFunction) 1338 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1339 ? MCSA_ELF_TypeIndFunction 1340 : MCSA_ELF_TypeFunction); 1341 1342 EmitVisibility(Name, GIS.getVisibility()); 1343 1344 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1345 1346 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1347 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1348 1349 // Emit the directives as assignments aka .set: 1350 OutStreamer->EmitAssignment(Name, Expr); 1351 1352 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1353 // If the aliasee does not correspond to a symbol in the output, i.e. the 1354 // alias is not of an object or the aliased object is private, then set the 1355 // size of the alias symbol from the type of the alias. We don't do this in 1356 // other situations as the alias and aliasee having differing types but same 1357 // size may be intentional. 1358 const GlobalObject *BaseObject = GA->getBaseObject(); 1359 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1360 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1361 const DataLayout &DL = M.getDataLayout(); 1362 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1363 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1364 } 1365 } 1366 } 1367 1368 void AsmPrinter::emitRemarksSection(Module &M) { 1369 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1370 if (!RS) 1371 return; 1372 remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer(); 1373 1374 Optional<SmallString<128>> Filename; 1375 if (Optional<StringRef> FilenameRef = RS->getFilename()) { 1376 Filename = *FilenameRef; 1377 sys::fs::make_absolute(*Filename); 1378 assert(!Filename->empty() && "The filename can't be empty."); 1379 } 1380 1381 std::string Buf; 1382 raw_string_ostream OS(Buf); 1383 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1384 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1385 : RemarkSerializer.metaSerializer(OS); 1386 MetaSerializer->emit(); 1387 1388 // Switch to the right section: .remarks/__remarks. 1389 MCSection *RemarksSection = 1390 OutContext.getObjectFileInfo()->getRemarksSection(); 1391 OutStreamer->SwitchSection(RemarksSection); 1392 1393 OutStreamer->EmitBinaryData(OS.str()); 1394 } 1395 1396 bool AsmPrinter::doFinalization(Module &M) { 1397 // Set the MachineFunction to nullptr so that we can catch attempted 1398 // accesses to MF specific features at the module level and so that 1399 // we can conditionalize accesses based on whether or not it is nullptr. 1400 MF = nullptr; 1401 1402 // Gather all GOT equivalent globals in the module. We really need two 1403 // passes over the globals: one to compute and another to avoid its emission 1404 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1405 // where the got equivalent shows up before its use. 1406 computeGlobalGOTEquivs(M); 1407 1408 // Emit global variables. 1409 for (const auto &G : M.globals()) 1410 EmitGlobalVariable(&G); 1411 1412 // Emit remaining GOT equivalent globals. 1413 emitGlobalGOTEquivs(); 1414 1415 // Emit visibility info for declarations 1416 for (const Function &F : M) { 1417 if (!F.isDeclarationForLinker()) 1418 continue; 1419 GlobalValue::VisibilityTypes V = F.getVisibility(); 1420 if (V == GlobalValue::DefaultVisibility) 1421 continue; 1422 1423 MCSymbol *Name = getSymbol(&F); 1424 EmitVisibility(Name, V, false); 1425 } 1426 1427 // Emit the remarks section contents. 1428 // FIXME: Figure out when is the safest time to emit this section. It should 1429 // not come after debug info. 1430 if (EnableRemarksSection) 1431 emitRemarksSection(M); 1432 1433 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1434 1435 TLOF.emitModuleMetadata(*OutStreamer, M); 1436 1437 if (TM.getTargetTriple().isOSBinFormatELF()) { 1438 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1439 1440 // Output stubs for external and common global variables. 1441 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1442 if (!Stubs.empty()) { 1443 OutStreamer->SwitchSection(TLOF.getDataSection()); 1444 const DataLayout &DL = M.getDataLayout(); 1445 1446 EmitAlignment(Align(DL.getPointerSize())); 1447 for (const auto &Stub : Stubs) { 1448 OutStreamer->EmitLabel(Stub.first); 1449 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1450 DL.getPointerSize()); 1451 } 1452 } 1453 } 1454 1455 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1456 MachineModuleInfoCOFF &MMICOFF = 1457 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1458 1459 // Output stubs for external and common global variables. 1460 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1461 if (!Stubs.empty()) { 1462 const DataLayout &DL = M.getDataLayout(); 1463 1464 for (const auto &Stub : Stubs) { 1465 SmallString<256> SectionName = StringRef(".rdata$"); 1466 SectionName += Stub.first->getName(); 1467 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1468 SectionName, 1469 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1470 COFF::IMAGE_SCN_LNK_COMDAT, 1471 SectionKind::getReadOnly(), Stub.first->getName(), 1472 COFF::IMAGE_COMDAT_SELECT_ANY)); 1473 EmitAlignment(Align(DL.getPointerSize())); 1474 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1475 OutStreamer->EmitLabel(Stub.first); 1476 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1477 DL.getPointerSize()); 1478 } 1479 } 1480 } 1481 1482 // Finalize debug and EH information. 1483 for (const HandlerInfo &HI : Handlers) { 1484 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1485 HI.TimerGroupDescription, TimePassesIsEnabled); 1486 HI.Handler->endModule(); 1487 } 1488 Handlers.clear(); 1489 DD = nullptr; 1490 1491 // If the target wants to know about weak references, print them all. 1492 if (MAI->getWeakRefDirective()) { 1493 // FIXME: This is not lazy, it would be nice to only print weak references 1494 // to stuff that is actually used. Note that doing so would require targets 1495 // to notice uses in operands (due to constant exprs etc). This should 1496 // happen with the MC stuff eventually. 1497 1498 // Print out module-level global objects here. 1499 for (const auto &GO : M.global_objects()) { 1500 if (!GO.hasExternalWeakLinkage()) 1501 continue; 1502 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1503 } 1504 } 1505 1506 OutStreamer->AddBlankLine(); 1507 1508 // Print aliases in topological order, that is, for each alias a = b, 1509 // b must be printed before a. 1510 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1511 // such an order to generate correct TOC information. 1512 SmallVector<const GlobalAlias *, 16> AliasStack; 1513 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1514 for (const auto &Alias : M.aliases()) { 1515 for (const GlobalAlias *Cur = &Alias; Cur; 1516 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1517 if (!AliasVisited.insert(Cur).second) 1518 break; 1519 AliasStack.push_back(Cur); 1520 } 1521 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1522 emitGlobalIndirectSymbol(M, *AncestorAlias); 1523 AliasStack.clear(); 1524 } 1525 for (const auto &IFunc : M.ifuncs()) 1526 emitGlobalIndirectSymbol(M, IFunc); 1527 1528 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1529 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1530 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1531 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1532 MP->finishAssembly(M, *MI, *this); 1533 1534 // Emit llvm.ident metadata in an '.ident' directive. 1535 EmitModuleIdents(M); 1536 1537 // Emit bytes for llvm.commandline metadata. 1538 EmitModuleCommandLines(M); 1539 1540 // Emit __morestack address if needed for indirect calls. 1541 if (MMI->usesMorestackAddr()) { 1542 unsigned Align = 1; 1543 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1544 getDataLayout(), SectionKind::getReadOnly(), 1545 /*C=*/nullptr, Align); 1546 OutStreamer->SwitchSection(ReadOnlySection); 1547 1548 MCSymbol *AddrSymbol = 1549 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1550 OutStreamer->EmitLabel(AddrSymbol); 1551 1552 unsigned PtrSize = MAI->getCodePointerSize(); 1553 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1554 PtrSize); 1555 } 1556 1557 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1558 // split-stack is used. 1559 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1560 OutStreamer->SwitchSection( 1561 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1562 if (MMI->hasNosplitStack()) 1563 OutStreamer->SwitchSection( 1564 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1565 } 1566 1567 // If we don't have any trampolines, then we don't require stack memory 1568 // to be executable. Some targets have a directive to declare this. 1569 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1570 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1571 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1572 OutStreamer->SwitchSection(S); 1573 1574 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1575 // Emit /EXPORT: flags for each exported global as necessary. 1576 const auto &TLOF = getObjFileLowering(); 1577 std::string Flags; 1578 1579 for (const GlobalValue &GV : M.global_values()) { 1580 raw_string_ostream OS(Flags); 1581 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1582 OS.flush(); 1583 if (!Flags.empty()) { 1584 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1585 OutStreamer->EmitBytes(Flags); 1586 } 1587 Flags.clear(); 1588 } 1589 1590 // Emit /INCLUDE: flags for each used global as necessary. 1591 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1592 assert(LU->hasInitializer() && 1593 "expected llvm.used to have an initializer"); 1594 assert(isa<ArrayType>(LU->getValueType()) && 1595 "expected llvm.used to be an array type"); 1596 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1597 for (const Value *Op : A->operands()) { 1598 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1599 // Global symbols with internal or private linkage are not visible to 1600 // the linker, and thus would cause an error when the linker tried to 1601 // preserve the symbol due to the `/include:` directive. 1602 if (GV->hasLocalLinkage()) 1603 continue; 1604 1605 raw_string_ostream OS(Flags); 1606 TLOF.emitLinkerFlagsForUsed(OS, GV); 1607 OS.flush(); 1608 1609 if (!Flags.empty()) { 1610 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1611 OutStreamer->EmitBytes(Flags); 1612 } 1613 Flags.clear(); 1614 } 1615 } 1616 } 1617 } 1618 1619 if (TM.Options.EmitAddrsig) { 1620 // Emit address-significance attributes for all globals. 1621 OutStreamer->EmitAddrsig(); 1622 for (const GlobalValue &GV : M.global_values()) 1623 if (!GV.use_empty() && !GV.isThreadLocal() && 1624 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1625 !GV.hasAtLeastLocalUnnamedAddr()) 1626 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1627 } 1628 1629 // Emit symbol partition specifications (ELF only). 1630 if (TM.getTargetTriple().isOSBinFormatELF()) { 1631 unsigned UniqueID = 0; 1632 for (const GlobalValue &GV : M.global_values()) { 1633 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1634 GV.getVisibility() != GlobalValue::DefaultVisibility) 1635 continue; 1636 1637 OutStreamer->SwitchSection(OutContext.getELFSection( 1638 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1639 OutStreamer->EmitBytes(GV.getPartition()); 1640 OutStreamer->EmitZeros(1); 1641 OutStreamer->EmitValue( 1642 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1643 MAI->getCodePointerSize()); 1644 } 1645 } 1646 1647 // Allow the target to emit any magic that it wants at the end of the file, 1648 // after everything else has gone out. 1649 EmitEndOfAsmFile(M); 1650 1651 MMI = nullptr; 1652 1653 OutStreamer->Finish(); 1654 OutStreamer->reset(); 1655 OwnedMLI.reset(); 1656 OwnedMDT.reset(); 1657 1658 return false; 1659 } 1660 1661 MCSymbol *AsmPrinter::getCurExceptionSym() { 1662 if (!CurExceptionSym) 1663 CurExceptionSym = createTempSymbol("exception"); 1664 return CurExceptionSym; 1665 } 1666 1667 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1668 this->MF = &MF; 1669 1670 // Get the function symbol. 1671 if (MAI->needsFunctionDescriptors()) { 1672 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" 1673 " supported on AIX."); 1674 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1675 " initalized first."); 1676 1677 // Get the function entry point symbol. 1678 CurrentFnSym = 1679 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1680 1681 const Function &F = MF.getFunction(); 1682 MCSectionXCOFF *FnEntryPointSec = 1683 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1684 // Set the containing csect. 1685 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1686 } else { 1687 CurrentFnSym = getSymbol(&MF.getFunction()); 1688 } 1689 1690 CurrentFnSymForSize = CurrentFnSym; 1691 CurrentFnBegin = nullptr; 1692 CurExceptionSym = nullptr; 1693 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1694 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1695 MF.getTarget().Options.EmitStackSizeSection) { 1696 CurrentFnBegin = createTempSymbol("func_begin"); 1697 if (NeedsLocalForSize) 1698 CurrentFnSymForSize = CurrentFnBegin; 1699 } 1700 1701 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1702 } 1703 1704 namespace { 1705 1706 // Keep track the alignment, constpool entries per Section. 1707 struct SectionCPs { 1708 MCSection *S; 1709 unsigned Alignment; 1710 SmallVector<unsigned, 4> CPEs; 1711 1712 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1713 }; 1714 1715 } // end anonymous namespace 1716 1717 /// EmitConstantPool - Print to the current output stream assembly 1718 /// representations of the constants in the constant pool MCP. This is 1719 /// used to print out constants which have been "spilled to memory" by 1720 /// the code generator. 1721 void AsmPrinter::EmitConstantPool() { 1722 const MachineConstantPool *MCP = MF->getConstantPool(); 1723 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1724 if (CP.empty()) return; 1725 1726 // Calculate sections for constant pool entries. We collect entries to go into 1727 // the same section together to reduce amount of section switch statements. 1728 SmallVector<SectionCPs, 4> CPSections; 1729 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1730 const MachineConstantPoolEntry &CPE = CP[i]; 1731 unsigned Align = CPE.getAlignment(); 1732 1733 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1734 1735 const Constant *C = nullptr; 1736 if (!CPE.isMachineConstantPoolEntry()) 1737 C = CPE.Val.ConstVal; 1738 1739 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1740 Kind, C, Align); 1741 1742 // The number of sections are small, just do a linear search from the 1743 // last section to the first. 1744 bool Found = false; 1745 unsigned SecIdx = CPSections.size(); 1746 while (SecIdx != 0) { 1747 if (CPSections[--SecIdx].S == S) { 1748 Found = true; 1749 break; 1750 } 1751 } 1752 if (!Found) { 1753 SecIdx = CPSections.size(); 1754 CPSections.push_back(SectionCPs(S, Align)); 1755 } 1756 1757 if (Align > CPSections[SecIdx].Alignment) 1758 CPSections[SecIdx].Alignment = Align; 1759 CPSections[SecIdx].CPEs.push_back(i); 1760 } 1761 1762 // Now print stuff into the calculated sections. 1763 const MCSection *CurSection = nullptr; 1764 unsigned Offset = 0; 1765 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1766 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1767 unsigned CPI = CPSections[i].CPEs[j]; 1768 MCSymbol *Sym = GetCPISymbol(CPI); 1769 if (!Sym->isUndefined()) 1770 continue; 1771 1772 if (CurSection != CPSections[i].S) { 1773 OutStreamer->SwitchSection(CPSections[i].S); 1774 EmitAlignment(Align(CPSections[i].Alignment)); 1775 CurSection = CPSections[i].S; 1776 Offset = 0; 1777 } 1778 1779 MachineConstantPoolEntry CPE = CP[CPI]; 1780 1781 // Emit inter-object padding for alignment. 1782 unsigned AlignMask = CPE.getAlignment() - 1; 1783 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1784 OutStreamer->EmitZeros(NewOffset - Offset); 1785 1786 Type *Ty = CPE.getType(); 1787 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1788 1789 OutStreamer->EmitLabel(Sym); 1790 if (CPE.isMachineConstantPoolEntry()) 1791 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1792 else 1793 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1794 } 1795 } 1796 } 1797 1798 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1799 /// by the current function to the current output stream. 1800 void AsmPrinter::EmitJumpTableInfo() { 1801 const DataLayout &DL = MF->getDataLayout(); 1802 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1803 if (!MJTI) return; 1804 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1805 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1806 if (JT.empty()) return; 1807 1808 // Pick the directive to use to print the jump table entries, and switch to 1809 // the appropriate section. 1810 const Function &F = MF->getFunction(); 1811 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1812 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1813 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1814 F); 1815 if (JTInDiffSection) { 1816 // Drop it in the readonly section. 1817 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1818 OutStreamer->SwitchSection(ReadOnlySection); 1819 } 1820 1821 EmitAlignment(Align(MJTI->getEntryAlignment(DL))); 1822 1823 // Jump tables in code sections are marked with a data_region directive 1824 // where that's supported. 1825 if (!JTInDiffSection) 1826 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1827 1828 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1829 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1830 1831 // If this jump table was deleted, ignore it. 1832 if (JTBBs.empty()) continue; 1833 1834 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1835 /// emit a .set directive for each unique entry. 1836 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1837 MAI->doesSetDirectiveSuppressReloc()) { 1838 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1839 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1840 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1841 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1842 const MachineBasicBlock *MBB = JTBBs[ii]; 1843 if (!EmittedSets.insert(MBB).second) 1844 continue; 1845 1846 // .set LJTSet, LBB32-base 1847 const MCExpr *LHS = 1848 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1849 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1850 MCBinaryExpr::createSub(LHS, Base, 1851 OutContext)); 1852 } 1853 } 1854 1855 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1856 // before each jump table. The first label is never referenced, but tells 1857 // the assembler and linker the extents of the jump table object. The 1858 // second label is actually referenced by the code. 1859 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1860 // FIXME: This doesn't have to have any specific name, just any randomly 1861 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1862 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1863 1864 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1865 1866 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1867 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1868 } 1869 if (!JTInDiffSection) 1870 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1871 } 1872 1873 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1874 /// current stream. 1875 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1876 const MachineBasicBlock *MBB, 1877 unsigned UID) const { 1878 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1879 const MCExpr *Value = nullptr; 1880 switch (MJTI->getEntryKind()) { 1881 case MachineJumpTableInfo::EK_Inline: 1882 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1883 case MachineJumpTableInfo::EK_Custom32: 1884 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1885 MJTI, MBB, UID, OutContext); 1886 break; 1887 case MachineJumpTableInfo::EK_BlockAddress: 1888 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1889 // .word LBB123 1890 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1891 break; 1892 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1893 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1894 // with a relocation as gp-relative, e.g.: 1895 // .gprel32 LBB123 1896 MCSymbol *MBBSym = MBB->getSymbol(); 1897 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1898 return; 1899 } 1900 1901 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1902 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1903 // with a relocation as gp-relative, e.g.: 1904 // .gpdword LBB123 1905 MCSymbol *MBBSym = MBB->getSymbol(); 1906 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1907 return; 1908 } 1909 1910 case MachineJumpTableInfo::EK_LabelDifference32: { 1911 // Each entry is the address of the block minus the address of the jump 1912 // table. This is used for PIC jump tables where gprel32 is not supported. 1913 // e.g.: 1914 // .word LBB123 - LJTI1_2 1915 // If the .set directive avoids relocations, this is emitted as: 1916 // .set L4_5_set_123, LBB123 - LJTI1_2 1917 // .word L4_5_set_123 1918 if (MAI->doesSetDirectiveSuppressReloc()) { 1919 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1920 OutContext); 1921 break; 1922 } 1923 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1924 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1925 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1926 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1927 break; 1928 } 1929 } 1930 1931 assert(Value && "Unknown entry kind!"); 1932 1933 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1934 OutStreamer->EmitValue(Value, EntrySize); 1935 } 1936 1937 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1938 /// special global used by LLVM. If so, emit it and return true, otherwise 1939 /// do nothing and return false. 1940 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1941 if (GV->getName() == "llvm.used") { 1942 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1943 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1944 return true; 1945 } 1946 1947 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1948 if (GV->getSection() == "llvm.metadata" || 1949 GV->hasAvailableExternallyLinkage()) 1950 return true; 1951 1952 if (!GV->hasAppendingLinkage()) return false; 1953 1954 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1955 1956 if (GV->getName() == "llvm.global_ctors") { 1957 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1958 /* isCtor */ true); 1959 1960 return true; 1961 } 1962 1963 if (GV->getName() == "llvm.global_dtors") { 1964 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1965 /* isCtor */ false); 1966 1967 return true; 1968 } 1969 1970 report_fatal_error("unknown special variable"); 1971 } 1972 1973 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1974 /// global in the specified llvm.used list. 1975 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1976 // Should be an array of 'i8*'. 1977 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1978 const GlobalValue *GV = 1979 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1980 if (GV) 1981 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1982 } 1983 } 1984 1985 namespace { 1986 1987 struct Structor { 1988 int Priority = 0; 1989 Constant *Func = nullptr; 1990 GlobalValue *ComdatKey = nullptr; 1991 1992 Structor() = default; 1993 }; 1994 1995 } // end anonymous namespace 1996 1997 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1998 /// priority. 1999 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 2000 bool isCtor) { 2001 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2002 // init priority. 2003 if (!isa<ConstantArray>(List)) return; 2004 2005 // Sanity check the structors list. 2006 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2007 if (!InitList) return; // Not an array! 2008 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2009 if (!ETy || ETy->getNumElements() != 3 || 2010 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2011 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2012 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2013 return; // Not (int, ptr, ptr). 2014 2015 // Gather the structors in a form that's convenient for sorting by priority. 2016 SmallVector<Structor, 8> Structors; 2017 for (Value *O : InitList->operands()) { 2018 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2019 if (!CS) continue; // Malformed. 2020 if (CS->getOperand(1)->isNullValue()) 2021 break; // Found a null terminator, skip the rest. 2022 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2023 if (!Priority) continue; // Malformed. 2024 Structors.push_back(Structor()); 2025 Structor &S = Structors.back(); 2026 S.Priority = Priority->getLimitedValue(65535); 2027 S.Func = CS->getOperand(1); 2028 if (!CS->getOperand(2)->isNullValue()) 2029 S.ComdatKey = 2030 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2031 } 2032 2033 // Emit the function pointers in the target-specific order 2034 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2035 return L.Priority < R.Priority; 2036 }); 2037 const Align Align = DL.getPointerPrefAlignment(); 2038 for (Structor &S : Structors) { 2039 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2040 const MCSymbol *KeySym = nullptr; 2041 if (GlobalValue *GV = S.ComdatKey) { 2042 if (GV->isDeclarationForLinker()) 2043 // If the associated variable is not defined in this module 2044 // (it might be available_externally, or have been an 2045 // available_externally definition that was dropped by the 2046 // EliminateAvailableExternally pass), some other TU 2047 // will provide its dynamic initializer. 2048 continue; 2049 2050 KeySym = getSymbol(GV); 2051 } 2052 MCSection *OutputSection = 2053 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2054 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2055 OutStreamer->SwitchSection(OutputSection); 2056 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2057 EmitAlignment(Align); 2058 EmitXXStructor(DL, S.Func); 2059 } 2060 } 2061 2062 void AsmPrinter::EmitModuleIdents(Module &M) { 2063 if (!MAI->hasIdentDirective()) 2064 return; 2065 2066 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2067 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2068 const MDNode *N = NMD->getOperand(i); 2069 assert(N->getNumOperands() == 1 && 2070 "llvm.ident metadata entry can have only one operand"); 2071 const MDString *S = cast<MDString>(N->getOperand(0)); 2072 OutStreamer->EmitIdent(S->getString()); 2073 } 2074 } 2075 } 2076 2077 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2078 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2079 if (!CommandLine) 2080 return; 2081 2082 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2083 if (!NMD || !NMD->getNumOperands()) 2084 return; 2085 2086 OutStreamer->PushSection(); 2087 OutStreamer->SwitchSection(CommandLine); 2088 OutStreamer->EmitZeros(1); 2089 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2090 const MDNode *N = NMD->getOperand(i); 2091 assert(N->getNumOperands() == 1 && 2092 "llvm.commandline metadata entry can have only one operand"); 2093 const MDString *S = cast<MDString>(N->getOperand(0)); 2094 OutStreamer->EmitBytes(S->getString()); 2095 OutStreamer->EmitZeros(1); 2096 } 2097 OutStreamer->PopSection(); 2098 } 2099 2100 //===--------------------------------------------------------------------===// 2101 // Emission and print routines 2102 // 2103 2104 /// Emit a byte directive and value. 2105 /// 2106 void AsmPrinter::emitInt8(int Value) const { 2107 OutStreamer->EmitIntValue(Value, 1); 2108 } 2109 2110 /// Emit a short directive and value. 2111 void AsmPrinter::emitInt16(int Value) const { 2112 OutStreamer->EmitIntValue(Value, 2); 2113 } 2114 2115 /// Emit a long directive and value. 2116 void AsmPrinter::emitInt32(int Value) const { 2117 OutStreamer->EmitIntValue(Value, 4); 2118 } 2119 2120 /// Emit a long long directive and value. 2121 void AsmPrinter::emitInt64(uint64_t Value) const { 2122 OutStreamer->EmitIntValue(Value, 8); 2123 } 2124 2125 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2126 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2127 /// .set if it avoids relocations. 2128 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2129 unsigned Size) const { 2130 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2131 } 2132 2133 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2134 /// where the size in bytes of the directive is specified by Size and Label 2135 /// specifies the label. This implicitly uses .set if it is available. 2136 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2137 unsigned Size, 2138 bool IsSectionRelative) const { 2139 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2140 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2141 if (Size > 4) 2142 OutStreamer->EmitZeros(Size - 4); 2143 return; 2144 } 2145 2146 // Emit Label+Offset (or just Label if Offset is zero) 2147 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2148 if (Offset) 2149 Expr = MCBinaryExpr::createAdd( 2150 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2151 2152 OutStreamer->EmitValue(Expr, Size); 2153 } 2154 2155 //===----------------------------------------------------------------------===// 2156 2157 // EmitAlignment - Emit an alignment directive to the specified power of 2158 // two boundary. If a global value is specified, and if that global has 2159 // an explicit alignment requested, it will override the alignment request 2160 // if required for correctness. 2161 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { 2162 if (GV) 2163 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2164 2165 if (Alignment == Align::None()) 2166 return; // 1-byte aligned: no need to emit alignment. 2167 2168 if (getCurrentSection()->getKind().isText()) 2169 OutStreamer->EmitCodeAlignment(Alignment.value()); 2170 else 2171 OutStreamer->EmitValueToAlignment(Alignment.value()); 2172 } 2173 2174 //===----------------------------------------------------------------------===// 2175 // Constant emission. 2176 //===----------------------------------------------------------------------===// 2177 2178 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2179 MCContext &Ctx = OutContext; 2180 2181 if (CV->isNullValue() || isa<UndefValue>(CV)) 2182 return MCConstantExpr::create(0, Ctx); 2183 2184 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2185 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2186 2187 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2188 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2189 2190 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2191 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2192 2193 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2194 if (!CE) { 2195 llvm_unreachable("Unknown constant value to lower!"); 2196 } 2197 2198 switch (CE->getOpcode()) { 2199 default: 2200 // If the code isn't optimized, there may be outstanding folding 2201 // opportunities. Attempt to fold the expression using DataLayout as a 2202 // last resort before giving up. 2203 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2204 if (C != CE) 2205 return lowerConstant(C); 2206 2207 // Otherwise report the problem to the user. 2208 { 2209 std::string S; 2210 raw_string_ostream OS(S); 2211 OS << "Unsupported expression in static initializer: "; 2212 CE->printAsOperand(OS, /*PrintType=*/false, 2213 !MF ? nullptr : MF->getFunction().getParent()); 2214 report_fatal_error(OS.str()); 2215 } 2216 case Instruction::GetElementPtr: { 2217 // Generate a symbolic expression for the byte address 2218 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2219 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2220 2221 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2222 if (!OffsetAI) 2223 return Base; 2224 2225 int64_t Offset = OffsetAI.getSExtValue(); 2226 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2227 Ctx); 2228 } 2229 2230 case Instruction::Trunc: 2231 // We emit the value and depend on the assembler to truncate the generated 2232 // expression properly. This is important for differences between 2233 // blockaddress labels. Since the two labels are in the same function, it 2234 // is reasonable to treat their delta as a 32-bit value. 2235 LLVM_FALLTHROUGH; 2236 case Instruction::BitCast: 2237 return lowerConstant(CE->getOperand(0)); 2238 2239 case Instruction::IntToPtr: { 2240 const DataLayout &DL = getDataLayout(); 2241 2242 // Handle casts to pointers by changing them into casts to the appropriate 2243 // integer type. This promotes constant folding and simplifies this code. 2244 Constant *Op = CE->getOperand(0); 2245 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2246 false/*ZExt*/); 2247 return lowerConstant(Op); 2248 } 2249 2250 case Instruction::PtrToInt: { 2251 const DataLayout &DL = getDataLayout(); 2252 2253 // Support only foldable casts to/from pointers that can be eliminated by 2254 // changing the pointer to the appropriately sized integer type. 2255 Constant *Op = CE->getOperand(0); 2256 Type *Ty = CE->getType(); 2257 2258 const MCExpr *OpExpr = lowerConstant(Op); 2259 2260 // We can emit the pointer value into this slot if the slot is an 2261 // integer slot equal to the size of the pointer. 2262 // 2263 // If the pointer is larger than the resultant integer, then 2264 // as with Trunc just depend on the assembler to truncate it. 2265 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2266 return OpExpr; 2267 2268 // Otherwise the pointer is smaller than the resultant integer, mask off 2269 // the high bits so we are sure to get a proper truncation if the input is 2270 // a constant expr. 2271 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2272 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2273 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2274 } 2275 2276 case Instruction::Sub: { 2277 GlobalValue *LHSGV; 2278 APInt LHSOffset; 2279 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2280 getDataLayout())) { 2281 GlobalValue *RHSGV; 2282 APInt RHSOffset; 2283 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2284 getDataLayout())) { 2285 const MCExpr *RelocExpr = 2286 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2287 if (!RelocExpr) 2288 RelocExpr = MCBinaryExpr::createSub( 2289 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2290 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2291 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2292 if (Addend != 0) 2293 RelocExpr = MCBinaryExpr::createAdd( 2294 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2295 return RelocExpr; 2296 } 2297 } 2298 } 2299 // else fallthrough 2300 LLVM_FALLTHROUGH; 2301 2302 // The MC library also has a right-shift operator, but it isn't consistently 2303 // signed or unsigned between different targets. 2304 case Instruction::Add: 2305 case Instruction::Mul: 2306 case Instruction::SDiv: 2307 case Instruction::SRem: 2308 case Instruction::Shl: 2309 case Instruction::And: 2310 case Instruction::Or: 2311 case Instruction::Xor: { 2312 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2313 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2314 switch (CE->getOpcode()) { 2315 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2316 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2317 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2318 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2319 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2320 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2321 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2322 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2323 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2324 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2325 } 2326 } 2327 } 2328 } 2329 2330 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2331 AsmPrinter &AP, 2332 const Constant *BaseCV = nullptr, 2333 uint64_t Offset = 0); 2334 2335 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2336 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2337 2338 /// isRepeatedByteSequence - Determine whether the given value is 2339 /// composed of a repeated sequence of identical bytes and return the 2340 /// byte value. If it is not a repeated sequence, return -1. 2341 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2342 StringRef Data = V->getRawDataValues(); 2343 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2344 char C = Data[0]; 2345 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2346 if (Data[i] != C) return -1; 2347 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2348 } 2349 2350 /// isRepeatedByteSequence - Determine whether the given value is 2351 /// composed of a repeated sequence of identical bytes and return the 2352 /// byte value. If it is not a repeated sequence, return -1. 2353 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2354 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2355 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2356 assert(Size % 8 == 0); 2357 2358 // Extend the element to take zero padding into account. 2359 APInt Value = CI->getValue().zextOrSelf(Size); 2360 if (!Value.isSplat(8)) 2361 return -1; 2362 2363 return Value.zextOrTrunc(8).getZExtValue(); 2364 } 2365 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2366 // Make sure all array elements are sequences of the same repeated 2367 // byte. 2368 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2369 Constant *Op0 = CA->getOperand(0); 2370 int Byte = isRepeatedByteSequence(Op0, DL); 2371 if (Byte == -1) 2372 return -1; 2373 2374 // All array elements must be equal. 2375 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2376 if (CA->getOperand(i) != Op0) 2377 return -1; 2378 return Byte; 2379 } 2380 2381 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2382 return isRepeatedByteSequence(CDS); 2383 2384 return -1; 2385 } 2386 2387 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2388 const ConstantDataSequential *CDS, 2389 AsmPrinter &AP) { 2390 // See if we can aggregate this into a .fill, if so, emit it as such. 2391 int Value = isRepeatedByteSequence(CDS, DL); 2392 if (Value != -1) { 2393 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2394 // Don't emit a 1-byte object as a .fill. 2395 if (Bytes > 1) 2396 return AP.OutStreamer->emitFill(Bytes, Value); 2397 } 2398 2399 // If this can be emitted with .ascii/.asciz, emit it as such. 2400 if (CDS->isString()) 2401 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2402 2403 // Otherwise, emit the values in successive locations. 2404 unsigned ElementByteSize = CDS->getElementByteSize(); 2405 if (isa<IntegerType>(CDS->getElementType())) { 2406 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2407 if (AP.isVerbose()) 2408 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2409 CDS->getElementAsInteger(i)); 2410 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2411 ElementByteSize); 2412 } 2413 } else { 2414 Type *ET = CDS->getElementType(); 2415 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2416 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2417 } 2418 2419 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2420 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2421 CDS->getNumElements(); 2422 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2423 if (unsigned Padding = Size - EmittedSize) 2424 AP.OutStreamer->EmitZeros(Padding); 2425 } 2426 2427 static void emitGlobalConstantArray(const DataLayout &DL, 2428 const ConstantArray *CA, AsmPrinter &AP, 2429 const Constant *BaseCV, uint64_t Offset) { 2430 // See if we can aggregate some values. Make sure it can be 2431 // represented as a series of bytes of the constant value. 2432 int Value = isRepeatedByteSequence(CA, DL); 2433 2434 if (Value != -1) { 2435 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2436 AP.OutStreamer->emitFill(Bytes, Value); 2437 } 2438 else { 2439 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2440 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2441 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2442 } 2443 } 2444 } 2445 2446 static void emitGlobalConstantVector(const DataLayout &DL, 2447 const ConstantVector *CV, AsmPrinter &AP) { 2448 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2449 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2450 2451 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2452 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2453 CV->getType()->getNumElements(); 2454 if (unsigned Padding = Size - EmittedSize) 2455 AP.OutStreamer->EmitZeros(Padding); 2456 } 2457 2458 static void emitGlobalConstantStruct(const DataLayout &DL, 2459 const ConstantStruct *CS, AsmPrinter &AP, 2460 const Constant *BaseCV, uint64_t Offset) { 2461 // Print the fields in successive locations. Pad to align if needed! 2462 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2463 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2464 uint64_t SizeSoFar = 0; 2465 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2466 const Constant *Field = CS->getOperand(i); 2467 2468 // Print the actual field value. 2469 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2470 2471 // Check if padding is needed and insert one or more 0s. 2472 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2473 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2474 - Layout->getElementOffset(i)) - FieldSize; 2475 SizeSoFar += FieldSize + PadSize; 2476 2477 // Insert padding - this may include padding to increase the size of the 2478 // current field up to the ABI size (if the struct is not packed) as well 2479 // as padding to ensure that the next field starts at the right offset. 2480 AP.OutStreamer->EmitZeros(PadSize); 2481 } 2482 assert(SizeSoFar == Layout->getSizeInBytes() && 2483 "Layout of constant struct may be incorrect!"); 2484 } 2485 2486 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2487 assert(ET && "Unknown float type"); 2488 APInt API = APF.bitcastToAPInt(); 2489 2490 // First print a comment with what we think the original floating-point value 2491 // should have been. 2492 if (AP.isVerbose()) { 2493 SmallString<8> StrVal; 2494 APF.toString(StrVal); 2495 ET->print(AP.OutStreamer->GetCommentOS()); 2496 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2497 } 2498 2499 // Now iterate through the APInt chunks, emitting them in endian-correct 2500 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2501 // floats). 2502 unsigned NumBytes = API.getBitWidth() / 8; 2503 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2504 const uint64_t *p = API.getRawData(); 2505 2506 // PPC's long double has odd notions of endianness compared to how LLVM 2507 // handles it: p[0] goes first for *big* endian on PPC. 2508 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2509 int Chunk = API.getNumWords() - 1; 2510 2511 if (TrailingBytes) 2512 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2513 2514 for (; Chunk >= 0; --Chunk) 2515 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2516 } else { 2517 unsigned Chunk; 2518 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2519 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2520 2521 if (TrailingBytes) 2522 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2523 } 2524 2525 // Emit the tail padding for the long double. 2526 const DataLayout &DL = AP.getDataLayout(); 2527 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2528 } 2529 2530 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2531 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2532 } 2533 2534 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2535 const DataLayout &DL = AP.getDataLayout(); 2536 unsigned BitWidth = CI->getBitWidth(); 2537 2538 // Copy the value as we may massage the layout for constants whose bit width 2539 // is not a multiple of 64-bits. 2540 APInt Realigned(CI->getValue()); 2541 uint64_t ExtraBits = 0; 2542 unsigned ExtraBitsSize = BitWidth & 63; 2543 2544 if (ExtraBitsSize) { 2545 // The bit width of the data is not a multiple of 64-bits. 2546 // The extra bits are expected to be at the end of the chunk of the memory. 2547 // Little endian: 2548 // * Nothing to be done, just record the extra bits to emit. 2549 // Big endian: 2550 // * Record the extra bits to emit. 2551 // * Realign the raw data to emit the chunks of 64-bits. 2552 if (DL.isBigEndian()) { 2553 // Basically the structure of the raw data is a chunk of 64-bits cells: 2554 // 0 1 BitWidth / 64 2555 // [chunk1][chunk2] ... [chunkN]. 2556 // The most significant chunk is chunkN and it should be emitted first. 2557 // However, due to the alignment issue chunkN contains useless bits. 2558 // Realign the chunks so that they contain only useless information: 2559 // ExtraBits 0 1 (BitWidth / 64) - 1 2560 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2561 ExtraBits = Realigned.getRawData()[0] & 2562 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2563 Realigned.lshrInPlace(ExtraBitsSize); 2564 } else 2565 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2566 } 2567 2568 // We don't expect assemblers to support integer data directives 2569 // for more than 64 bits, so we emit the data in at most 64-bit 2570 // quantities at a time. 2571 const uint64_t *RawData = Realigned.getRawData(); 2572 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2573 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2574 AP.OutStreamer->EmitIntValue(Val, 8); 2575 } 2576 2577 if (ExtraBitsSize) { 2578 // Emit the extra bits after the 64-bits chunks. 2579 2580 // Emit a directive that fills the expected size. 2581 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2582 Size -= (BitWidth / 64) * 8; 2583 assert(Size && Size * 8 >= ExtraBitsSize && 2584 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2585 == ExtraBits && "Directive too small for extra bits."); 2586 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2587 } 2588 } 2589 2590 /// Transform a not absolute MCExpr containing a reference to a GOT 2591 /// equivalent global, by a target specific GOT pc relative access to the 2592 /// final symbol. 2593 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2594 const Constant *BaseCst, 2595 uint64_t Offset) { 2596 // The global @foo below illustrates a global that uses a got equivalent. 2597 // 2598 // @bar = global i32 42 2599 // @gotequiv = private unnamed_addr constant i32* @bar 2600 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2601 // i64 ptrtoint (i32* @foo to i64)) 2602 // to i32) 2603 // 2604 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2605 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2606 // form: 2607 // 2608 // foo = cstexpr, where 2609 // cstexpr := <gotequiv> - "." + <cst> 2610 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2611 // 2612 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2613 // 2614 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2615 // gotpcrelcst := <offset from @foo base> + <cst> 2616 MCValue MV; 2617 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2618 return; 2619 const MCSymbolRefExpr *SymA = MV.getSymA(); 2620 if (!SymA) 2621 return; 2622 2623 // Check that GOT equivalent symbol is cached. 2624 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2625 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2626 return; 2627 2628 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2629 if (!BaseGV) 2630 return; 2631 2632 // Check for a valid base symbol 2633 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2634 const MCSymbolRefExpr *SymB = MV.getSymB(); 2635 2636 if (!SymB || BaseSym != &SymB->getSymbol()) 2637 return; 2638 2639 // Make sure to match: 2640 // 2641 // gotpcrelcst := <offset from @foo base> + <cst> 2642 // 2643 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2644 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2645 // if the target knows how to encode it. 2646 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2647 if (GOTPCRelCst < 0) 2648 return; 2649 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2650 return; 2651 2652 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2653 // 2654 // bar: 2655 // .long 42 2656 // gotequiv: 2657 // .quad bar 2658 // foo: 2659 // .long gotequiv - "." + <cst> 2660 // 2661 // is replaced by the target specific equivalent to: 2662 // 2663 // bar: 2664 // .long 42 2665 // foo: 2666 // .long bar@GOTPCREL+<gotpcrelcst> 2667 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2668 const GlobalVariable *GV = Result.first; 2669 int NumUses = (int)Result.second; 2670 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2671 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2672 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2673 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2674 2675 // Update GOT equivalent usage information 2676 --NumUses; 2677 if (NumUses >= 0) 2678 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2679 } 2680 2681 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2682 AsmPrinter &AP, const Constant *BaseCV, 2683 uint64_t Offset) { 2684 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2685 2686 // Globals with sub-elements such as combinations of arrays and structs 2687 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2688 // constant symbol base and the current position with BaseCV and Offset. 2689 if (!BaseCV && CV->hasOneUse()) 2690 BaseCV = dyn_cast<Constant>(CV->user_back()); 2691 2692 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2693 return AP.OutStreamer->EmitZeros(Size); 2694 2695 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2696 switch (Size) { 2697 case 1: 2698 case 2: 2699 case 4: 2700 case 8: 2701 if (AP.isVerbose()) 2702 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2703 CI->getZExtValue()); 2704 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2705 return; 2706 default: 2707 emitGlobalConstantLargeInt(CI, AP); 2708 return; 2709 } 2710 } 2711 2712 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2713 return emitGlobalConstantFP(CFP, AP); 2714 2715 if (isa<ConstantPointerNull>(CV)) { 2716 AP.OutStreamer->EmitIntValue(0, Size); 2717 return; 2718 } 2719 2720 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2721 return emitGlobalConstantDataSequential(DL, CDS, AP); 2722 2723 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2724 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2725 2726 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2727 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2728 2729 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2730 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2731 // vectors). 2732 if (CE->getOpcode() == Instruction::BitCast) 2733 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2734 2735 if (Size > 8) { 2736 // If the constant expression's size is greater than 64-bits, then we have 2737 // to emit the value in chunks. Try to constant fold the value and emit it 2738 // that way. 2739 Constant *New = ConstantFoldConstant(CE, DL); 2740 if (New && New != CE) 2741 return emitGlobalConstantImpl(DL, New, AP); 2742 } 2743 } 2744 2745 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2746 return emitGlobalConstantVector(DL, V, AP); 2747 2748 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2749 // thread the streamer with EmitValue. 2750 const MCExpr *ME = AP.lowerConstant(CV); 2751 2752 // Since lowerConstant already folded and got rid of all IR pointer and 2753 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2754 // directly. 2755 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2756 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2757 2758 AP.OutStreamer->EmitValue(ME, Size); 2759 } 2760 2761 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2762 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2763 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2764 if (Size) 2765 emitGlobalConstantImpl(DL, CV, *this); 2766 else if (MAI->hasSubsectionsViaSymbols()) { 2767 // If the global has zero size, emit a single byte so that two labels don't 2768 // look like they are at the same location. 2769 OutStreamer->EmitIntValue(0, 1); 2770 } 2771 } 2772 2773 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2774 // Target doesn't support this yet! 2775 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2776 } 2777 2778 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2779 if (Offset > 0) 2780 OS << '+' << Offset; 2781 else if (Offset < 0) 2782 OS << Offset; 2783 } 2784 2785 //===----------------------------------------------------------------------===// 2786 // Symbol Lowering Routines. 2787 //===----------------------------------------------------------------------===// 2788 2789 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2790 return OutContext.createTempSymbol(Name, true); 2791 } 2792 2793 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2794 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2795 } 2796 2797 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2798 return MMI->getAddrLabelSymbol(BB); 2799 } 2800 2801 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2802 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2803 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2804 const MachineConstantPoolEntry &CPE = 2805 MF->getConstantPool()->getConstants()[CPID]; 2806 if (!CPE.isMachineConstantPoolEntry()) { 2807 const DataLayout &DL = MF->getDataLayout(); 2808 SectionKind Kind = CPE.getSectionKind(&DL); 2809 const Constant *C = CPE.Val.ConstVal; 2810 unsigned Align = CPE.Alignment; 2811 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2812 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2813 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2814 if (Sym->isUndefined()) 2815 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2816 return Sym; 2817 } 2818 } 2819 } 2820 } 2821 2822 const DataLayout &DL = getDataLayout(); 2823 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2824 "CPI" + Twine(getFunctionNumber()) + "_" + 2825 Twine(CPID)); 2826 } 2827 2828 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2829 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2830 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2831 } 2832 2833 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2834 /// FIXME: privatize to AsmPrinter. 2835 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2836 const DataLayout &DL = getDataLayout(); 2837 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2838 Twine(getFunctionNumber()) + "_" + 2839 Twine(UID) + "_set_" + Twine(MBBID)); 2840 } 2841 2842 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2843 StringRef Suffix) const { 2844 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2845 } 2846 2847 /// Return the MCSymbol for the specified ExternalSymbol. 2848 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2849 SmallString<60> NameStr; 2850 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2851 return OutContext.getOrCreateSymbol(NameStr); 2852 } 2853 2854 /// PrintParentLoopComment - Print comments about parent loops of this one. 2855 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2856 unsigned FunctionNumber) { 2857 if (!Loop) return; 2858 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2859 OS.indent(Loop->getLoopDepth()*2) 2860 << "Parent Loop BB" << FunctionNumber << "_" 2861 << Loop->getHeader()->getNumber() 2862 << " Depth=" << Loop->getLoopDepth() << '\n'; 2863 } 2864 2865 /// PrintChildLoopComment - Print comments about child loops within 2866 /// the loop for this basic block, with nesting. 2867 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2868 unsigned FunctionNumber) { 2869 // Add child loop information 2870 for (const MachineLoop *CL : *Loop) { 2871 OS.indent(CL->getLoopDepth()*2) 2872 << "Child Loop BB" << FunctionNumber << "_" 2873 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2874 << '\n'; 2875 PrintChildLoopComment(OS, CL, FunctionNumber); 2876 } 2877 } 2878 2879 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2880 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2881 const MachineLoopInfo *LI, 2882 const AsmPrinter &AP) { 2883 // Add loop depth information 2884 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2885 if (!Loop) return; 2886 2887 MachineBasicBlock *Header = Loop->getHeader(); 2888 assert(Header && "No header for loop"); 2889 2890 // If this block is not a loop header, just print out what is the loop header 2891 // and return. 2892 if (Header != &MBB) { 2893 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2894 Twine(AP.getFunctionNumber())+"_" + 2895 Twine(Loop->getHeader()->getNumber())+ 2896 " Depth="+Twine(Loop->getLoopDepth())); 2897 return; 2898 } 2899 2900 // Otherwise, it is a loop header. Print out information about child and 2901 // parent loops. 2902 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2903 2904 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2905 2906 OS << "=>"; 2907 OS.indent(Loop->getLoopDepth()*2-2); 2908 2909 OS << "This "; 2910 if (Loop->empty()) 2911 OS << "Inner "; 2912 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2913 2914 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2915 } 2916 2917 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2918 MCCodePaddingContext &Context) const { 2919 assert(MF != nullptr && "Machine function must be valid"); 2920 Context.IsPaddingActive = !MF->hasInlineAsm() && 2921 !MF->getFunction().hasOptSize() && 2922 TM.getOptLevel() != CodeGenOpt::None; 2923 Context.IsBasicBlockReachableViaFallthrough = 2924 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2925 MBB.pred_end(); 2926 Context.IsBasicBlockReachableViaBranch = 2927 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2928 } 2929 2930 /// EmitBasicBlockStart - This method prints the label for the specified 2931 /// MachineBasicBlock, an alignment (if present) and a comment describing 2932 /// it if appropriate. 2933 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { 2934 // End the previous funclet and start a new one. 2935 if (MBB.isEHFuncletEntry()) { 2936 for (const HandlerInfo &HI : Handlers) { 2937 HI.Handler->endFunclet(); 2938 HI.Handler->beginFunclet(MBB); 2939 } 2940 } 2941 2942 // Emit an alignment directive for this block, if needed. 2943 const Align Alignment = MBB.getAlignment(); 2944 if (Alignment != Align::None()) 2945 EmitAlignment(Alignment); 2946 MCCodePaddingContext Context; 2947 setupCodePaddingContext(MBB, Context); 2948 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2949 2950 // If the block has its address taken, emit any labels that were used to 2951 // reference the block. It is possible that there is more than one label 2952 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2953 // the references were generated. 2954 if (MBB.hasAddressTaken()) { 2955 const BasicBlock *BB = MBB.getBasicBlock(); 2956 if (isVerbose()) 2957 OutStreamer->AddComment("Block address taken"); 2958 2959 // MBBs can have their address taken as part of CodeGen without having 2960 // their corresponding BB's address taken in IR 2961 if (BB->hasAddressTaken()) 2962 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2963 OutStreamer->EmitLabel(Sym); 2964 } 2965 2966 // Print some verbose block comments. 2967 if (isVerbose()) { 2968 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2969 if (BB->hasName()) { 2970 BB->printAsOperand(OutStreamer->GetCommentOS(), 2971 /*PrintType=*/false, BB->getModule()); 2972 OutStreamer->GetCommentOS() << '\n'; 2973 } 2974 } 2975 2976 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2977 emitBasicBlockLoopComments(MBB, MLI, *this); 2978 } 2979 2980 // Print the main label for the block. 2981 if (MBB.pred_empty() || 2982 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2983 !MBB.hasLabelMustBeEmitted())) { 2984 if (isVerbose()) { 2985 // NOTE: Want this comment at start of line, don't emit with AddComment. 2986 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2987 false); 2988 } 2989 } else { 2990 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2991 OutStreamer->AddComment("Label of block must be emitted"); 2992 OutStreamer->EmitLabel(MBB.getSymbol()); 2993 } 2994 } 2995 2996 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2997 MCCodePaddingContext Context; 2998 setupCodePaddingContext(MBB, Context); 2999 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 3000 } 3001 3002 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 3003 bool IsDefinition) const { 3004 MCSymbolAttr Attr = MCSA_Invalid; 3005 3006 switch (Visibility) { 3007 default: break; 3008 case GlobalValue::HiddenVisibility: 3009 if (IsDefinition) 3010 Attr = MAI->getHiddenVisibilityAttr(); 3011 else 3012 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3013 break; 3014 case GlobalValue::ProtectedVisibility: 3015 Attr = MAI->getProtectedVisibilityAttr(); 3016 break; 3017 } 3018 3019 if (Attr != MCSA_Invalid) 3020 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3021 } 3022 3023 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3024 /// exactly one predecessor and the control transfer mechanism between 3025 /// the predecessor and this block is a fall-through. 3026 bool AsmPrinter:: 3027 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3028 // If this is a landing pad, it isn't a fall through. If it has no preds, 3029 // then nothing falls through to it. 3030 if (MBB->isEHPad() || MBB->pred_empty()) 3031 return false; 3032 3033 // If there isn't exactly one predecessor, it can't be a fall through. 3034 if (MBB->pred_size() > 1) 3035 return false; 3036 3037 // The predecessor has to be immediately before this block. 3038 MachineBasicBlock *Pred = *MBB->pred_begin(); 3039 if (!Pred->isLayoutSuccessor(MBB)) 3040 return false; 3041 3042 // If the block is completely empty, then it definitely does fall through. 3043 if (Pred->empty()) 3044 return true; 3045 3046 // Check the terminators in the previous blocks 3047 for (const auto &MI : Pred->terminators()) { 3048 // If it is not a simple branch, we are in a table somewhere. 3049 if (!MI.isBranch() || MI.isIndirectBranch()) 3050 return false; 3051 3052 // If we are the operands of one of the branches, this is not a fall 3053 // through. Note that targets with delay slots will usually bundle 3054 // terminators with the delay slot instruction. 3055 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3056 if (OP->isJTI()) 3057 return false; 3058 if (OP->isMBB() && OP->getMBB() == MBB) 3059 return false; 3060 } 3061 } 3062 3063 return true; 3064 } 3065 3066 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3067 if (!S.usesMetadata()) 3068 return nullptr; 3069 3070 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3071 gcp_map_type::iterator GCPI = GCMap.find(&S); 3072 if (GCPI != GCMap.end()) 3073 return GCPI->second.get(); 3074 3075 auto Name = S.getName(); 3076 3077 for (GCMetadataPrinterRegistry::iterator 3078 I = GCMetadataPrinterRegistry::begin(), 3079 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3080 if (Name == I->getName()) { 3081 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3082 GMP->S = &S; 3083 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3084 return IterBool.first->second.get(); 3085 } 3086 3087 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3088 } 3089 3090 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3091 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3092 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3093 bool NeedsDefault = false; 3094 if (MI->begin() == MI->end()) 3095 // No GC strategy, use the default format. 3096 NeedsDefault = true; 3097 else 3098 for (auto &I : *MI) { 3099 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3100 if (MP->emitStackMaps(SM, *this)) 3101 continue; 3102 // The strategy doesn't have printer or doesn't emit custom stack maps. 3103 // Use the default format. 3104 NeedsDefault = true; 3105 } 3106 3107 if (NeedsDefault) 3108 SM.serializeToStackMapSection(); 3109 } 3110 3111 /// Pin vtable to this file. 3112 AsmPrinterHandler::~AsmPrinterHandler() = default; 3113 3114 void AsmPrinterHandler::markFunctionEnd() {} 3115 3116 // In the binary's "xray_instr_map" section, an array of these function entries 3117 // describes each instrumentation point. When XRay patches your code, the index 3118 // into this table will be given to your handler as a patch point identifier. 3119 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3120 const MCSymbol *CurrentFnSym) const { 3121 Out->EmitSymbolValue(Sled, Bytes); 3122 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3123 auto Kind8 = static_cast<uint8_t>(Kind); 3124 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3125 Out->EmitBinaryData( 3126 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3127 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3128 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3129 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3130 Out->EmitZeros(Padding); 3131 } 3132 3133 void AsmPrinter::emitXRayTable() { 3134 if (Sleds.empty()) 3135 return; 3136 3137 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3138 const Function &F = MF->getFunction(); 3139 MCSection *InstMap = nullptr; 3140 MCSection *FnSledIndex = nullptr; 3141 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3142 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3143 assert(Associated != nullptr); 3144 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3145 std::string GroupName; 3146 if (F.hasComdat()) { 3147 Flags |= ELF::SHF_GROUP; 3148 GroupName = F.getComdat()->getName(); 3149 } 3150 3151 auto UniqueID = ++XRayFnUniqueID; 3152 InstMap = 3153 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3154 GroupName, UniqueID, Associated); 3155 FnSledIndex = 3156 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3157 GroupName, UniqueID, Associated); 3158 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3159 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3160 SectionKind::getReadOnlyWithRel()); 3161 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3162 SectionKind::getReadOnlyWithRel()); 3163 } else { 3164 llvm_unreachable("Unsupported target"); 3165 } 3166 3167 auto WordSizeBytes = MAI->getCodePointerSize(); 3168 3169 // Now we switch to the instrumentation map section. Because this is done 3170 // per-function, we are able to create an index entry that will represent the 3171 // range of sleds associated with a function. 3172 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3173 OutStreamer->SwitchSection(InstMap); 3174 OutStreamer->EmitLabel(SledsStart); 3175 for (const auto &Sled : Sleds) 3176 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3177 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3178 OutStreamer->EmitLabel(SledsEnd); 3179 3180 // We then emit a single entry in the index per function. We use the symbols 3181 // that bound the instrumentation map as the range for a specific function. 3182 // Each entry here will be 2 * word size aligned, as we're writing down two 3183 // pointers. This should work for both 32-bit and 64-bit platforms. 3184 OutStreamer->SwitchSection(FnSledIndex); 3185 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3186 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3187 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3188 OutStreamer->SwitchSection(PrevSection); 3189 Sleds.clear(); 3190 } 3191 3192 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3193 SledKind Kind, uint8_t Version) { 3194 const Function &F = MI.getMF()->getFunction(); 3195 auto Attr = F.getFnAttribute("function-instrument"); 3196 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3197 bool AlwaysInstrument = 3198 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3199 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3200 Kind = SledKind::LOG_ARGS_ENTER; 3201 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3202 AlwaysInstrument, &F, Version}); 3203 } 3204 3205 uint16_t AsmPrinter::getDwarfVersion() const { 3206 return OutStreamer->getContext().getDwarfVersion(); 3207 } 3208 3209 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3210 OutStreamer->getContext().setDwarfVersion(Version); 3211 } 3212