xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCSectionXCOFF.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCSymbolXCOFF.h"
100 #include "llvm/MC/MCTargetOptions.h"
101 #include "llvm/MC/MCValue.h"
102 #include "llvm/MC/SectionKind.h"
103 #include "llvm/Pass.h"
104 #include "llvm/Remarks/Remark.h"
105 #include "llvm/Remarks/RemarkFormat.h"
106 #include "llvm/Remarks/RemarkStringTable.h"
107 #include "llvm/Support/Casting.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Compiler.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/Format.h"
112 #include "llvm/Support/MathExtras.h"
113 #include "llvm/Support/Path.h"
114 #include "llvm/Support/TargetRegistry.h"
115 #include "llvm/Support/Timer.h"
116 #include "llvm/Support/raw_ostream.h"
117 #include "llvm/Target/TargetLoweringObjectFile.h"
118 #include "llvm/Target/TargetMachine.h"
119 #include "llvm/Target/TargetOptions.h"
120 #include <algorithm>
121 #include <cassert>
122 #include <cinttypes>
123 #include <cstdint>
124 #include <iterator>
125 #include <limits>
126 #include <memory>
127 #include <string>
128 #include <utility>
129 #include <vector>
130 
131 using namespace llvm;
132 
133 #define DEBUG_TYPE "asm-printer"
134 
135 static const char *const DWARFGroupName = "dwarf";
136 static const char *const DWARFGroupDescription = "DWARF Emission";
137 static const char *const DbgTimerName = "emit";
138 static const char *const DbgTimerDescription = "Debug Info Emission";
139 static const char *const EHTimerName = "write_exception";
140 static const char *const EHTimerDescription = "DWARF Exception Writer";
141 static const char *const CFGuardName = "Control Flow Guard";
142 static const char *const CFGuardDescription = "Control Flow Guard Tables";
143 static const char *const CodeViewLineTablesGroupName = "linetables";
144 static const char *const CodeViewLineTablesGroupDescription =
145   "CodeView Line Tables";
146 
147 STATISTIC(EmittedInsts, "Number of machine instrs printed");
148 
149 static cl::opt<bool> EnableRemarksSection(
150     "remarks-section",
151     cl::desc("Emit a section containing remark diagnostics metadata"),
152     cl::init(false));
153 
154 char AsmPrinter::ID = 0;
155 
156 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
157 
158 static gcp_map_type &getGCMap(void *&P) {
159   if (!P)
160     P = new gcp_map_type();
161   return *(gcp_map_type*)P;
162 }
163 
164 /// getGVAlignment - Return the alignment to use for the specified global
165 /// value.  This rounds up to the preferred alignment if possible and legal.
166 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
167                                  Align InAlign) {
168   Align Alignment;
169   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
170     Alignment = Align(DL.getPreferredAlignment(GVar));
171 
172   // If InAlign is specified, round it to it.
173   if (InAlign > Alignment)
174     Alignment = InAlign;
175 
176   // If the GV has a specified alignment, take it into account.
177   const MaybeAlign GVAlign(GV->getAlignment());
178   if (!GVAlign)
179     return Alignment;
180 
181   assert(GVAlign && "GVAlign must be set");
182 
183   // If the GVAlign is larger than NumBits, or if we are required to obey
184   // NumBits because the GV has an assigned section, obey it.
185   if (*GVAlign > Alignment || GV->hasSection())
186     Alignment = *GVAlign;
187   return Alignment;
188 }
189 
190 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
191     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
192       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
193   VerboseAsm = OutStreamer->isVerboseAsm();
194 }
195 
196 AsmPrinter::~AsmPrinter() {
197   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
198 
199   if (GCMetadataPrinters) {
200     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
201 
202     delete &GCMap;
203     GCMetadataPrinters = nullptr;
204   }
205 }
206 
207 bool AsmPrinter::isPositionIndependent() const {
208   return TM.isPositionIndependent();
209 }
210 
211 /// getFunctionNumber - Return a unique ID for the current function.
212 unsigned AsmPrinter::getFunctionNumber() const {
213   return MF->getFunctionNumber();
214 }
215 
216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
217   return *TM.getObjFileLowering();
218 }
219 
220 const DataLayout &AsmPrinter::getDataLayout() const {
221   return MMI->getModule()->getDataLayout();
222 }
223 
224 // Do not use the cached DataLayout because some client use it without a Module
225 // (dsymutil, llvm-dwarfdump).
226 unsigned AsmPrinter::getPointerSize() const {
227   return TM.getPointerSize(0); // FIXME: Default address space
228 }
229 
230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
231   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
232   return MF->getSubtarget<MCSubtargetInfo>();
233 }
234 
235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
236   S.EmitInstruction(Inst, getSubtargetInfo());
237 }
238 
239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
240   assert(DD && "Dwarf debug file is not defined.");
241   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
242   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
243 }
244 
245 /// getCurrentSection() - Return the current section we are emitting to.
246 const MCSection *AsmPrinter::getCurrentSection() const {
247   return OutStreamer->getCurrentSectionOnly();
248 }
249 
250 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
251   AU.setPreservesAll();
252   MachineFunctionPass::getAnalysisUsage(AU);
253   AU.addRequired<MachineModuleInfoWrapperPass>();
254   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
255   AU.addRequired<GCModuleInfo>();
256 }
257 
258 bool AsmPrinter::doInitialization(Module &M) {
259   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261 
262   // Initialize TargetLoweringObjectFile.
263   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264     .Initialize(OutContext, TM);
265 
266   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267       .getModuleMetadata(M);
268 
269   OutStreamer->InitSections(false);
270 
271   // Emit the version-min deployment target directive if needed.
272   //
273   // FIXME: If we end up with a collection of these sorts of Darwin-specific
274   // or ELF-specific things, it may make sense to have a platform helper class
275   // that will work with the target helper class. For now keep it here, as the
276   // alternative is duplicated code in each of the target asm printers that
277   // use the directive, where it would need the same conditionalization
278   // anyway.
279   const Triple &Target = TM.getTargetTriple();
280   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
281 
282   // Allow the target to emit any magic that it wants at the start of the file.
283   EmitStartOfAsmFile(M);
284 
285   // Very minimal debug info. It is ignored if we emit actual debug info. If we
286   // don't, this at least helps the user find where a global came from.
287   if (MAI->hasSingleParameterDotFile()) {
288     // .file "foo.c"
289     OutStreamer->EmitFileDirective(
290         llvm::sys::path::filename(M.getSourceFileName()));
291   }
292 
293   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295   for (auto &I : *MI)
296     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297       MP->beginAssembly(M, *MI, *this);
298 
299   // Emit module-level inline asm if it exists.
300   if (!M.getModuleInlineAsm().empty()) {
301     // We're at the module level. Construct MCSubtarget from the default CPU
302     // and target triple.
303     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304         TM.getTargetTriple().str(), TM.getTargetCPU(),
305         TM.getTargetFeatureString()));
306     OutStreamer->AddComment("Start of file scope inline assembly");
307     OutStreamer->AddBlankLine();
308     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310     OutStreamer->AddComment("End of file scope inline assembly");
311     OutStreamer->AddBlankLine();
312   }
313 
314   if (MAI->doesSupportDebugInformation()) {
315     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318                             DbgTimerName, DbgTimerDescription,
319                             CodeViewLineTablesGroupName,
320                             CodeViewLineTablesGroupDescription);
321     }
322     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323       DD = new DwarfDebug(this, &M);
324       DD->beginModule();
325       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326                             DbgTimerDescription, DWARFGroupName,
327                             DWARFGroupDescription);
328     }
329   }
330 
331   switch (MAI->getExceptionHandlingType()) {
332   case ExceptionHandling::SjLj:
333   case ExceptionHandling::DwarfCFI:
334   case ExceptionHandling::ARM:
335     isCFIMoveForDebugging = true;
336     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337       break;
338     for (auto &F: M.getFunctionList()) {
339       // If the module contains any function with unwind data,
340       // .eh_frame has to be emitted.
341       // Ignore functions that won't get emitted.
342       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343         isCFIMoveForDebugging = false;
344         break;
345       }
346     }
347     break;
348   default:
349     isCFIMoveForDebugging = false;
350     break;
351   }
352 
353   EHStreamer *ES = nullptr;
354   switch (MAI->getExceptionHandlingType()) {
355   case ExceptionHandling::None:
356     break;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359     ES = new DwarfCFIException(this);
360     break;
361   case ExceptionHandling::ARM:
362     ES = new ARMException(this);
363     break;
364   case ExceptionHandling::WinEH:
365     switch (MAI->getWinEHEncodingType()) {
366     default: llvm_unreachable("unsupported unwinding information encoding");
367     case WinEH::EncodingType::Invalid:
368       break;
369     case WinEH::EncodingType::X86:
370     case WinEH::EncodingType::Itanium:
371       ES = new WinException(this);
372       break;
373     }
374     break;
375   case ExceptionHandling::Wasm:
376     ES = new WasmException(this);
377     break;
378   }
379   if (ES)
380     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381                           EHTimerDescription, DWARFGroupName,
382                           DWARFGroupDescription);
383 
384   if (mdconst::extract_or_null<ConstantInt>(
385           MMI->getModule()->getModuleFlag("cfguardtable")))
386     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
387                           CFGuardDescription, DWARFGroupName,
388                           DWARFGroupDescription);
389 
390   return false;
391 }
392 
393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394   if (!MAI.hasWeakDefCanBeHiddenDirective())
395     return false;
396 
397   return GV->canBeOmittedFromSymbolTable();
398 }
399 
400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402   switch (Linkage) {
403   case GlobalValue::CommonLinkage:
404   case GlobalValue::LinkOnceAnyLinkage:
405   case GlobalValue::LinkOnceODRLinkage:
406   case GlobalValue::WeakAnyLinkage:
407   case GlobalValue::WeakODRLinkage:
408     if (MAI->hasWeakDefDirective()) {
409       // .globl _foo
410       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411 
412       if (!canBeHidden(GV, *MAI))
413         // .weak_definition _foo
414         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415       else
416         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417     } else if (MAI->hasLinkOnceDirective()) {
418       // .globl _foo
419       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420       //NOTE: linkonce is handled by the section the symbol was assigned to.
421     } else {
422       // .weak _foo
423       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
424     }
425     return;
426   case GlobalValue::ExternalLinkage:
427     // If external, declare as a global symbol: .globl _foo
428     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429     return;
430   case GlobalValue::PrivateLinkage:
431     return;
432   case GlobalValue::InternalLinkage:
433     if (MAI->hasDotLGloblDirective())
434       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435     return;
436   case GlobalValue::AppendingLinkage:
437   case GlobalValue::AvailableExternallyLinkage:
438   case GlobalValue::ExternalWeakLinkage:
439     llvm_unreachable("Should never emit this");
440   }
441   llvm_unreachable("Unknown linkage type!");
442 }
443 
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445                                    const GlobalValue *GV) const {
446   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447 }
448 
449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450   return TM.getSymbol(GV);
451 }
452 
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457          "No emulated TLS variables in the common section");
458 
459   // Never emit TLS variable xyz in emulated TLS model.
460   // The initialization value is in __emutls_t.xyz instead of xyz.
461   if (IsEmuTLSVar)
462     return;
463 
464   if (GV->hasInitializer()) {
465     // Check to see if this is a special global used by LLVM, if so, emit it.
466     if (EmitSpecialLLVMGlobal(GV))
467       return;
468 
469     // Skip the emission of global equivalents. The symbol can be emitted later
470     // on by emitGlobalGOTEquivs in case it turns out to be needed.
471     if (GlobalGOTEquivs.count(getSymbol(GV)))
472       return;
473 
474     if (isVerbose()) {
475       // When printing the control variable __emutls_v.*,
476       // we don't need to print the original TLS variable name.
477       GV->printAsOperand(OutStreamer->GetCommentOS(),
478                      /*PrintType=*/false, GV->getParent());
479       OutStreamer->GetCommentOS() << '\n';
480     }
481   }
482 
483   MCSymbol *GVSym = getSymbol(GV);
484   MCSymbol *EmittedSym = GVSym;
485 
486   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487   // attributes.
488   // GV's or GVSym's attributes will be used for the EmittedSym.
489   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
490 
491   if (!GV->hasInitializer())   // External globals require no extra code.
492     return;
493 
494   GVSym->redefineIfPossible();
495   if (GVSym->isDefined() || GVSym->isVariable())
496     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497                        "' is already defined");
498 
499   if (MAI->hasDotTypeDotSizeDirective())
500     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
501 
502   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
503 
504   const DataLayout &DL = GV->getParent()->getDataLayout();
505   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
506 
507   // If the alignment is specified, we *must* obey it.  Overaligning a global
508   // with a specified alignment is a prompt way to break globals emitted to
509   // sections and expected to be contiguous (e.g. ObjC metadata).
510   const Align Alignment = getGVAlignment(GV, DL);
511 
512   for (const HandlerInfo &HI : Handlers) {
513     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514                        HI.TimerGroupName, HI.TimerGroupDescription,
515                        TimePassesIsEnabled);
516     HI.Handler->setSymbolSize(GVSym, Size);
517   }
518 
519   // Handle common symbols
520   if (GVKind.isCommon()) {
521     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
522     // .comm _foo, 42, 4
523     const bool SupportsAlignment =
524         getObjFileLowering().getCommDirectiveSupportsAlignment();
525     OutStreamer->EmitCommonSymbol(GVSym, Size,
526                                   SupportsAlignment ? Alignment.value() : 0);
527     return;
528   }
529 
530   // Determine to which section this global should be emitted.
531   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
532 
533   // If we have a bss global going to a section that supports the
534   // zerofill directive, do so here.
535   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536       TheSection->isVirtualSection()) {
537     if (Size == 0)
538       Size = 1; // zerofill of 0 bytes is undefined.
539     EmitLinkage(GV, GVSym);
540     // .zerofill __DATA, __bss, _foo, 400, 5
541     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542     return;
543   }
544 
545   // If this is a BSS local symbol and we are emitting in the BSS
546   // section use .lcomm/.comm directive.
547   if (GVKind.isBSSLocal() &&
548       getObjFileLowering().getBSSSection() == TheSection) {
549     if (Size == 0)
550       Size = 1; // .comm Foo, 0 is undefined, avoid it.
551 
552     // Use .lcomm only if it supports user-specified alignment.
553     // Otherwise, while it would still be correct to use .lcomm in some
554     // cases (e.g. when Align == 1), the external assembler might enfore
555     // some -unknown- default alignment behavior, which could cause
556     // spurious differences between external and integrated assembler.
557     // Prefer to simply fall back to .local / .comm in this case.
558     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559       // .lcomm _foo, 42
560       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561       return;
562     }
563 
564     // .local _foo
565     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566     // .comm _foo, 42, 4
567     const bool SupportsAlignment =
568         getObjFileLowering().getCommDirectiveSupportsAlignment();
569     OutStreamer->EmitCommonSymbol(GVSym, Size,
570                                   SupportsAlignment ? Alignment.value() : 0);
571     return;
572   }
573 
574   // Handle thread local data for mach-o which requires us to output an
575   // additional structure of data and mangle the original symbol so that we
576   // can reference it later.
577   //
578   // TODO: This should become an "emit thread local global" method on TLOF.
579   // All of this macho specific stuff should be sunk down into TLOFMachO and
580   // stuff like "TLSExtraDataSection" should no longer be part of the parent
581   // TLOF class.  This will also make it more obvious that stuff like
582   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583   // specific code.
584   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585     // Emit the .tbss symbol
586     MCSymbol *MangSym =
587         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
588 
589     if (GVKind.isThreadBSS()) {
590       TheSection = getObjFileLowering().getTLSBSSSection();
591       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592     } else if (GVKind.isThreadData()) {
593       OutStreamer->SwitchSection(TheSection);
594 
595       EmitAlignment(Alignment, GV);
596       OutStreamer->EmitLabel(MangSym);
597 
598       EmitGlobalConstant(GV->getParent()->getDataLayout(),
599                          GV->getInitializer());
600     }
601 
602     OutStreamer->AddBlankLine();
603 
604     // Emit the variable struct for the runtime.
605     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
606 
607     OutStreamer->SwitchSection(TLVSect);
608     // Emit the linkage here.
609     EmitLinkage(GV, GVSym);
610     OutStreamer->EmitLabel(GVSym);
611 
612     // Three pointers in size:
613     //   - __tlv_bootstrap - used to make sure support exists
614     //   - spare pointer, used when mapped by the runtime
615     //   - pointer to mangled symbol above with initializer
616     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618                                 PtrSize);
619     OutStreamer->EmitIntValue(0, PtrSize);
620     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
621 
622     OutStreamer->AddBlankLine();
623     return;
624   }
625 
626   MCSymbol *EmittedInitSym = GVSym;
627 
628   OutStreamer->SwitchSection(TheSection);
629 
630   EmitLinkage(GV, EmittedInitSym);
631   EmitAlignment(Alignment, GV);
632 
633   OutStreamer->EmitLabel(EmittedInitSym);
634 
635   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
636 
637   if (MAI->hasDotTypeDotSizeDirective())
638     // .size foo, 42
639     OutStreamer->emitELFSize(EmittedInitSym,
640                              MCConstantExpr::create(Size, OutContext));
641 
642   OutStreamer->AddBlankLine();
643 }
644 
645 /// Emit the directive and value for debug thread local expression
646 ///
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650   OutStreamer->EmitValue(Value, Size);
651 }
652 
653 /// EmitFunctionHeader - This method emits the header for the current
654 /// function.
655 void AsmPrinter::EmitFunctionHeader() {
656   const Function &F = MF->getFunction();
657 
658   if (isVerbose())
659     OutStreamer->GetCommentOS()
660         << "-- Begin function "
661         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
662 
663   // Print out constants referenced by the function
664   EmitConstantPool();
665 
666   // Print the 'header' of function.
667   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668   EmitVisibility(CurrentFnSym, F.getVisibility());
669 
670   if (MAI->needsFunctionDescriptors() &&
671       F.getLinkage() != GlobalValue::InternalLinkage)
672     EmitLinkage(&F, CurrentFnDescSym);
673 
674   EmitLinkage(&F, CurrentFnSym);
675   if (MAI->hasFunctionAlignment())
676     EmitAlignment(MF->getAlignment(), &F);
677 
678   if (MAI->hasDotTypeDotSizeDirective())
679     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
680 
681   if (F.hasFnAttribute(Attribute::Cold))
682     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
683 
684   if (isVerbose()) {
685     F.printAsOperand(OutStreamer->GetCommentOS(),
686                    /*PrintType=*/false, F.getParent());
687     OutStreamer->GetCommentOS() << '\n';
688   }
689 
690   // Emit the prefix data.
691   if (F.hasPrefixData()) {
692     if (MAI->hasSubsectionsViaSymbols()) {
693       // Preserving prefix data on platforms which use subsections-via-symbols
694       // is a bit tricky. Here we introduce a symbol for the prefix data
695       // and use the .alt_entry attribute to mark the function's real entry point
696       // as an alternative entry point to the prefix-data symbol.
697       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698       OutStreamer->EmitLabel(PrefixSym);
699 
700       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
701 
702       // Emit an .alt_entry directive for the actual function symbol.
703       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704     } else {
705       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
706     }
707   }
708 
709   // Emit the function descriptor. This is a virtual function to allow targets
710   // to emit their specific function descriptor.
711   if (MAI->needsFunctionDescriptors())
712     EmitFunctionDescriptor();
713 
714   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
715   // their wild and crazy things as required.
716   EmitFunctionEntryLabel();
717 
718   // If the function had address-taken blocks that got deleted, then we have
719   // references to the dangling symbols.  Emit them at the start of the function
720   // so that we don't get references to undefined symbols.
721   std::vector<MCSymbol*> DeadBlockSyms;
722   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
723   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
724     OutStreamer->AddComment("Address taken block that was later removed");
725     OutStreamer->EmitLabel(DeadBlockSyms[i]);
726   }
727 
728   if (CurrentFnBegin) {
729     if (MAI->useAssignmentForEHBegin()) {
730       MCSymbol *CurPos = OutContext.createTempSymbol();
731       OutStreamer->EmitLabel(CurPos);
732       OutStreamer->EmitAssignment(CurrentFnBegin,
733                                  MCSymbolRefExpr::create(CurPos, OutContext));
734     } else {
735       OutStreamer->EmitLabel(CurrentFnBegin);
736     }
737   }
738 
739   // Emit pre-function debug and/or EH information.
740   for (const HandlerInfo &HI : Handlers) {
741     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
742                        HI.TimerGroupDescription, TimePassesIsEnabled);
743     HI.Handler->beginFunction(MF);
744   }
745 
746   // Emit the prologue data.
747   if (F.hasPrologueData())
748     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
749 }
750 
751 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
752 /// function.  This can be overridden by targets as required to do custom stuff.
753 void AsmPrinter::EmitFunctionEntryLabel() {
754   CurrentFnSym->redefineIfPossible();
755 
756   // The function label could have already been emitted if two symbols end up
757   // conflicting due to asm renaming.  Detect this and emit an error.
758   if (CurrentFnSym->isVariable())
759     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
760                        "' is a protected alias");
761   if (CurrentFnSym->isDefined())
762     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
763                        "' label emitted multiple times to assembly file");
764 
765   return OutStreamer->EmitLabel(CurrentFnSym);
766 }
767 
768 /// emitComments - Pretty-print comments for instructions.
769 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
770   const MachineFunction *MF = MI.getMF();
771   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
772 
773   // Check for spills and reloads
774 
775   // We assume a single instruction only has a spill or reload, not
776   // both.
777   Optional<unsigned> Size;
778   if ((Size = MI.getRestoreSize(TII))) {
779     CommentOS << *Size << "-byte Reload\n";
780   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
781     if (*Size)
782       CommentOS << *Size << "-byte Folded Reload\n";
783   } else if ((Size = MI.getSpillSize(TII))) {
784     CommentOS << *Size << "-byte Spill\n";
785   } else if ((Size = MI.getFoldedSpillSize(TII))) {
786     if (*Size)
787       CommentOS << *Size << "-byte Folded Spill\n";
788   }
789 
790   // Check for spill-induced copies
791   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
792     CommentOS << " Reload Reuse\n";
793 }
794 
795 /// emitImplicitDef - This method emits the specified machine instruction
796 /// that is an implicit def.
797 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
798   Register RegNo = MI->getOperand(0).getReg();
799 
800   SmallString<128> Str;
801   raw_svector_ostream OS(Str);
802   OS << "implicit-def: "
803      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
804 
805   OutStreamer->AddComment(OS.str());
806   OutStreamer->AddBlankLine();
807 }
808 
809 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
810   std::string Str;
811   raw_string_ostream OS(Str);
812   OS << "kill:";
813   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
814     const MachineOperand &Op = MI->getOperand(i);
815     assert(Op.isReg() && "KILL instruction must have only register operands");
816     OS << ' ' << (Op.isDef() ? "def " : "killed ")
817        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
818   }
819   AP.OutStreamer->AddComment(OS.str());
820   AP.OutStreamer->AddBlankLine();
821 }
822 
823 /// emitDebugValueComment - This method handles the target-independent form
824 /// of DBG_VALUE, returning true if it was able to do so.  A false return
825 /// means the target will need to handle MI in EmitInstruction.
826 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
827   // This code handles only the 4-operand target-independent form.
828   if (MI->getNumOperands() != 4)
829     return false;
830 
831   SmallString<128> Str;
832   raw_svector_ostream OS(Str);
833   OS << "DEBUG_VALUE: ";
834 
835   const DILocalVariable *V = MI->getDebugVariable();
836   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
837     StringRef Name = SP->getName();
838     if (!Name.empty())
839       OS << Name << ":";
840   }
841   OS << V->getName();
842   OS << " <- ";
843 
844   // The second operand is only an offset if it's an immediate.
845   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
846   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
847   const DIExpression *Expr = MI->getDebugExpression();
848   if (Expr->getNumElements()) {
849     OS << '[';
850     bool NeedSep = false;
851     for (auto Op : Expr->expr_ops()) {
852       if (NeedSep)
853         OS << ", ";
854       else
855         NeedSep = true;
856       OS << dwarf::OperationEncodingString(Op.getOp());
857       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
858         OS << ' ' << Op.getArg(I);
859     }
860     OS << "] ";
861   }
862 
863   // Register or immediate value. Register 0 means undef.
864   if (MI->getOperand(0).isFPImm()) {
865     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
866     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
867       OS << (double)APF.convertToFloat();
868     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
869       OS << APF.convertToDouble();
870     } else {
871       // There is no good way to print long double.  Convert a copy to
872       // double.  Ah well, it's only a comment.
873       bool ignored;
874       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
875                   &ignored);
876       OS << "(long double) " << APF.convertToDouble();
877     }
878   } else if (MI->getOperand(0).isImm()) {
879     OS << MI->getOperand(0).getImm();
880   } else if (MI->getOperand(0).isCImm()) {
881     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
882   } else {
883     unsigned Reg;
884     if (MI->getOperand(0).isReg()) {
885       Reg = MI->getOperand(0).getReg();
886     } else {
887       assert(MI->getOperand(0).isFI() && "Unknown operand type");
888       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
889       Offset += TFI->getFrameIndexReference(*AP.MF,
890                                             MI->getOperand(0).getIndex(), Reg);
891       MemLoc = true;
892     }
893     if (Reg == 0) {
894       // Suppress offset, it is not meaningful here.
895       OS << "undef";
896       // NOTE: Want this comment at start of line, don't emit with AddComment.
897       AP.OutStreamer->emitRawComment(OS.str());
898       return true;
899     }
900     if (MemLoc)
901       OS << '[';
902     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
903   }
904 
905   if (MemLoc)
906     OS << '+' << Offset << ']';
907 
908   // NOTE: Want this comment at start of line, don't emit with AddComment.
909   AP.OutStreamer->emitRawComment(OS.str());
910   return true;
911 }
912 
913 /// This method handles the target-independent form of DBG_LABEL, returning
914 /// true if it was able to do so.  A false return means the target will need
915 /// to handle MI in EmitInstruction.
916 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
917   if (MI->getNumOperands() != 1)
918     return false;
919 
920   SmallString<128> Str;
921   raw_svector_ostream OS(Str);
922   OS << "DEBUG_LABEL: ";
923 
924   const DILabel *V = MI->getDebugLabel();
925   if (auto *SP = dyn_cast<DISubprogram>(
926           V->getScope()->getNonLexicalBlockFileScope())) {
927     StringRef Name = SP->getName();
928     if (!Name.empty())
929       OS << Name << ":";
930   }
931   OS << V->getName();
932 
933   // NOTE: Want this comment at start of line, don't emit with AddComment.
934   AP.OutStreamer->emitRawComment(OS.str());
935   return true;
936 }
937 
938 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
939   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
940       MF->getFunction().needsUnwindTableEntry())
941     return CFI_M_EH;
942 
943   if (MMI->hasDebugInfo())
944     return CFI_M_Debug;
945 
946   return CFI_M_None;
947 }
948 
949 bool AsmPrinter::needsSEHMoves() {
950   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
951 }
952 
953 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
954   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
955   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
956       ExceptionHandlingType != ExceptionHandling::ARM)
957     return;
958 
959   if (needsCFIMoves() == CFI_M_None)
960     return;
961 
962   // If there is no "real" instruction following this CFI instruction, skip
963   // emitting it; it would be beyond the end of the function's FDE range.
964   auto *MBB = MI.getParent();
965   auto I = std::next(MI.getIterator());
966   while (I != MBB->end() && I->isTransient())
967     ++I;
968   if (I == MBB->instr_end() &&
969       MBB->getReverseIterator() == MBB->getParent()->rbegin())
970     return;
971 
972   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
973   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
974   const MCCFIInstruction &CFI = Instrs[CFIIndex];
975   emitCFIInstruction(CFI);
976 }
977 
978 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
979   // The operands are the MCSymbol and the frame offset of the allocation.
980   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
981   int FrameOffset = MI.getOperand(1).getImm();
982 
983   // Emit a symbol assignment.
984   OutStreamer->EmitAssignment(FrameAllocSym,
985                              MCConstantExpr::create(FrameOffset, OutContext));
986 }
987 
988 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
989   if (!MF.getTarget().Options.EmitStackSizeSection)
990     return;
991 
992   MCSection *StackSizeSection =
993       getObjFileLowering().getStackSizesSection(*getCurrentSection());
994   if (!StackSizeSection)
995     return;
996 
997   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
998   // Don't emit functions with dynamic stack allocations.
999   if (FrameInfo.hasVarSizedObjects())
1000     return;
1001 
1002   OutStreamer->PushSection();
1003   OutStreamer->SwitchSection(StackSizeSection);
1004 
1005   const MCSymbol *FunctionSymbol = getFunctionBegin();
1006   uint64_t StackSize = FrameInfo.getStackSize();
1007   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1008   OutStreamer->EmitULEB128IntValue(StackSize);
1009 
1010   OutStreamer->PopSection();
1011 }
1012 
1013 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1014                                            MachineModuleInfo *MMI) {
1015   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1016     return true;
1017 
1018   // We might emit an EH table that uses function begin and end labels even if
1019   // we don't have any landingpads.
1020   if (!MF.getFunction().hasPersonalityFn())
1021     return false;
1022   return !isNoOpWithoutInvoke(
1023       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1024 }
1025 
1026 /// EmitFunctionBody - This method emits the body and trailer for a
1027 /// function.
1028 void AsmPrinter::EmitFunctionBody() {
1029   EmitFunctionHeader();
1030 
1031   // Emit target-specific gunk before the function body.
1032   EmitFunctionBodyStart();
1033 
1034   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1035 
1036   if (isVerbose()) {
1037     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1038     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1039     if (!MDT) {
1040       OwnedMDT = std::make_unique<MachineDominatorTree>();
1041       OwnedMDT->getBase().recalculate(*MF);
1042       MDT = OwnedMDT.get();
1043     }
1044 
1045     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1046     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1047     if (!MLI) {
1048       OwnedMLI = std::make_unique<MachineLoopInfo>();
1049       OwnedMLI->getBase().analyze(MDT->getBase());
1050       MLI = OwnedMLI.get();
1051     }
1052   }
1053 
1054   // Print out code for the function.
1055   bool HasAnyRealCode = false;
1056   int NumInstsInFunction = 0;
1057   for (auto &MBB : *MF) {
1058     // Print a label for the basic block.
1059     EmitBasicBlockStart(MBB);
1060     for (auto &MI : MBB) {
1061       // Print the assembly for the instruction.
1062       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1063           !MI.isDebugInstr()) {
1064         HasAnyRealCode = true;
1065         ++NumInstsInFunction;
1066       }
1067 
1068       // If there is a pre-instruction symbol, emit a label for it here. If the
1069       // instruction was duplicated and the label has already been emitted,
1070       // don't re-emit the same label.
1071       // FIXME: Consider strengthening that to an assertion.
1072       if (MCSymbol *S = MI.getPreInstrSymbol())
1073         if (S->isUndefined())
1074           OutStreamer->EmitLabel(S);
1075 
1076       if (ShouldPrintDebugScopes) {
1077         for (const HandlerInfo &HI : Handlers) {
1078           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1079                              HI.TimerGroupName, HI.TimerGroupDescription,
1080                              TimePassesIsEnabled);
1081           HI.Handler->beginInstruction(&MI);
1082         }
1083       }
1084 
1085       if (isVerbose())
1086         emitComments(MI, OutStreamer->GetCommentOS());
1087 
1088       switch (MI.getOpcode()) {
1089       case TargetOpcode::CFI_INSTRUCTION:
1090         emitCFIInstruction(MI);
1091         break;
1092       case TargetOpcode::LOCAL_ESCAPE:
1093         emitFrameAlloc(MI);
1094         break;
1095       case TargetOpcode::ANNOTATION_LABEL:
1096       case TargetOpcode::EH_LABEL:
1097       case TargetOpcode::GC_LABEL:
1098         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1099         break;
1100       case TargetOpcode::INLINEASM:
1101       case TargetOpcode::INLINEASM_BR:
1102         EmitInlineAsm(&MI);
1103         break;
1104       case TargetOpcode::DBG_VALUE:
1105         if (isVerbose()) {
1106           if (!emitDebugValueComment(&MI, *this))
1107             EmitInstruction(&MI);
1108         }
1109         break;
1110       case TargetOpcode::DBG_LABEL:
1111         if (isVerbose()) {
1112           if (!emitDebugLabelComment(&MI, *this))
1113             EmitInstruction(&MI);
1114         }
1115         break;
1116       case TargetOpcode::IMPLICIT_DEF:
1117         if (isVerbose()) emitImplicitDef(&MI);
1118         break;
1119       case TargetOpcode::KILL:
1120         if (isVerbose()) emitKill(&MI, *this);
1121         break;
1122       default:
1123         EmitInstruction(&MI);
1124         break;
1125       }
1126 
1127       // If there is a post-instruction symbol, emit a label for it here.  If
1128       // the instruction was duplicated and the label has already been emitted,
1129       // don't re-emit the same label.
1130       // FIXME: Consider strengthening that to an assertion.
1131       if (MCSymbol *S = MI.getPostInstrSymbol())
1132         if (S->isUndefined())
1133           OutStreamer->EmitLabel(S);
1134 
1135       if (ShouldPrintDebugScopes) {
1136         for (const HandlerInfo &HI : Handlers) {
1137           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1138                              HI.TimerGroupName, HI.TimerGroupDescription,
1139                              TimePassesIsEnabled);
1140           HI.Handler->endInstruction();
1141         }
1142       }
1143     }
1144 
1145     EmitBasicBlockEnd(MBB);
1146   }
1147 
1148   EmittedInsts += NumInstsInFunction;
1149   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1150                                       MF->getFunction().getSubprogram(),
1151                                       &MF->front());
1152   R << ore::NV("NumInstructions", NumInstsInFunction)
1153     << " instructions in function";
1154   ORE->emit(R);
1155 
1156   // If the function is empty and the object file uses .subsections_via_symbols,
1157   // then we need to emit *something* to the function body to prevent the
1158   // labels from collapsing together.  Just emit a noop.
1159   // Similarly, don't emit empty functions on Windows either. It can lead to
1160   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1161   // after linking, causing the kernel not to load the binary:
1162   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1163   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1164   const Triple &TT = TM.getTargetTriple();
1165   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1166                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1167     MCInst Noop;
1168     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1169 
1170     // Targets can opt-out of emitting the noop here by leaving the opcode
1171     // unspecified.
1172     if (Noop.getOpcode()) {
1173       OutStreamer->AddComment("avoids zero-length function");
1174       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1175     }
1176   }
1177 
1178   const Function &F = MF->getFunction();
1179   for (const auto &BB : F) {
1180     if (!BB.hasAddressTaken())
1181       continue;
1182     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1183     if (Sym->isDefined())
1184       continue;
1185     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1186     OutStreamer->EmitLabel(Sym);
1187   }
1188 
1189   // Emit target-specific gunk after the function body.
1190   EmitFunctionBodyEnd();
1191 
1192   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1193       MAI->hasDotTypeDotSizeDirective()) {
1194     // Create a symbol for the end of function.
1195     CurrentFnEnd = createTempSymbol("func_end");
1196     OutStreamer->EmitLabel(CurrentFnEnd);
1197   }
1198 
1199   // If the target wants a .size directive for the size of the function, emit
1200   // it.
1201   if (MAI->hasDotTypeDotSizeDirective()) {
1202     // We can get the size as difference between the function label and the
1203     // temp label.
1204     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1205         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1206         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1207     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1208   }
1209 
1210   for (const HandlerInfo &HI : Handlers) {
1211     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1212                        HI.TimerGroupDescription, TimePassesIsEnabled);
1213     HI.Handler->markFunctionEnd();
1214   }
1215 
1216   // Print out jump tables referenced by the function.
1217   EmitJumpTableInfo();
1218 
1219   // Emit post-function debug and/or EH information.
1220   for (const HandlerInfo &HI : Handlers) {
1221     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1222                        HI.TimerGroupDescription, TimePassesIsEnabled);
1223     HI.Handler->endFunction(MF);
1224   }
1225 
1226   // Emit section containing stack size metadata.
1227   emitStackSizeSection(*MF);
1228 
1229   if (isVerbose())
1230     OutStreamer->GetCommentOS() << "-- End function\n";
1231 
1232   OutStreamer->AddBlankLine();
1233 }
1234 
1235 /// Compute the number of Global Variables that uses a Constant.
1236 static unsigned getNumGlobalVariableUses(const Constant *C) {
1237   if (!C)
1238     return 0;
1239 
1240   if (isa<GlobalVariable>(C))
1241     return 1;
1242 
1243   unsigned NumUses = 0;
1244   for (auto *CU : C->users())
1245     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1246 
1247   return NumUses;
1248 }
1249 
1250 /// Only consider global GOT equivalents if at least one user is a
1251 /// cstexpr inside an initializer of another global variables. Also, don't
1252 /// handle cstexpr inside instructions. During global variable emission,
1253 /// candidates are skipped and are emitted later in case at least one cstexpr
1254 /// isn't replaced by a PC relative GOT entry access.
1255 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1256                                      unsigned &NumGOTEquivUsers) {
1257   // Global GOT equivalents are unnamed private globals with a constant
1258   // pointer initializer to another global symbol. They must point to a
1259   // GlobalVariable or Function, i.e., as GlobalValue.
1260   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1261       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1262       !isa<GlobalValue>(GV->getOperand(0)))
1263     return false;
1264 
1265   // To be a got equivalent, at least one of its users need to be a constant
1266   // expression used by another global variable.
1267   for (auto *U : GV->users())
1268     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1269 
1270   return NumGOTEquivUsers > 0;
1271 }
1272 
1273 /// Unnamed constant global variables solely contaning a pointer to
1274 /// another globals variable is equivalent to a GOT table entry; it contains the
1275 /// the address of another symbol. Optimize it and replace accesses to these
1276 /// "GOT equivalents" by using the GOT entry for the final global instead.
1277 /// Compute GOT equivalent candidates among all global variables to avoid
1278 /// emitting them if possible later on, after it use is replaced by a GOT entry
1279 /// access.
1280 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1281   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1282     return;
1283 
1284   for (const auto &G : M.globals()) {
1285     unsigned NumGOTEquivUsers = 0;
1286     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1287       continue;
1288 
1289     const MCSymbol *GOTEquivSym = getSymbol(&G);
1290     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1291   }
1292 }
1293 
1294 /// Constant expressions using GOT equivalent globals may not be eligible
1295 /// for PC relative GOT entry conversion, in such cases we need to emit such
1296 /// globals we previously omitted in EmitGlobalVariable.
1297 void AsmPrinter::emitGlobalGOTEquivs() {
1298   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1299     return;
1300 
1301   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1302   for (auto &I : GlobalGOTEquivs) {
1303     const GlobalVariable *GV = I.second.first;
1304     unsigned Cnt = I.second.second;
1305     if (Cnt)
1306       FailedCandidates.push_back(GV);
1307   }
1308   GlobalGOTEquivs.clear();
1309 
1310   for (auto *GV : FailedCandidates)
1311     EmitGlobalVariable(GV);
1312 }
1313 
1314 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1315                                           const GlobalIndirectSymbol& GIS) {
1316   MCSymbol *Name = getSymbol(&GIS);
1317 
1318   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1319     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1320   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1321     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1322   else
1323     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1324 
1325   bool IsFunction = GIS.getValueType()->isFunctionTy();
1326 
1327   // Treat bitcasts of functions as functions also. This is important at least
1328   // on WebAssembly where object and function addresses can't alias each other.
1329   if (!IsFunction)
1330     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1331       if (CE->getOpcode() == Instruction::BitCast)
1332         IsFunction =
1333           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1334 
1335   // Set the symbol type to function if the alias has a function type.
1336   // This affects codegen when the aliasee is not a function.
1337   if (IsFunction)
1338     OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1339                                                ? MCSA_ELF_TypeIndFunction
1340                                                : MCSA_ELF_TypeFunction);
1341 
1342   EmitVisibility(Name, GIS.getVisibility());
1343 
1344   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1345 
1346   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1347     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1348 
1349   // Emit the directives as assignments aka .set:
1350   OutStreamer->EmitAssignment(Name, Expr);
1351 
1352   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1353     // If the aliasee does not correspond to a symbol in the output, i.e. the
1354     // alias is not of an object or the aliased object is private, then set the
1355     // size of the alias symbol from the type of the alias. We don't do this in
1356     // other situations as the alias and aliasee having differing types but same
1357     // size may be intentional.
1358     const GlobalObject *BaseObject = GA->getBaseObject();
1359     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1360         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1361       const DataLayout &DL = M.getDataLayout();
1362       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1363       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1364     }
1365   }
1366 }
1367 
1368 void AsmPrinter::emitRemarksSection(Module &M) {
1369   RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1370   if (!RS)
1371     return;
1372   remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer();
1373 
1374   Optional<SmallString<128>> Filename;
1375   if (Optional<StringRef> FilenameRef = RS->getFilename()) {
1376     Filename = *FilenameRef;
1377     sys::fs::make_absolute(*Filename);
1378     assert(!Filename->empty() && "The filename can't be empty.");
1379   }
1380 
1381   std::string Buf;
1382   raw_string_ostream OS(Buf);
1383   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1384       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1385                : RemarkSerializer.metaSerializer(OS);
1386   MetaSerializer->emit();
1387 
1388   // Switch to the right section: .remarks/__remarks.
1389   MCSection *RemarksSection =
1390       OutContext.getObjectFileInfo()->getRemarksSection();
1391   OutStreamer->SwitchSection(RemarksSection);
1392 
1393   OutStreamer->EmitBinaryData(OS.str());
1394 }
1395 
1396 bool AsmPrinter::doFinalization(Module &M) {
1397   // Set the MachineFunction to nullptr so that we can catch attempted
1398   // accesses to MF specific features at the module level and so that
1399   // we can conditionalize accesses based on whether or not it is nullptr.
1400   MF = nullptr;
1401 
1402   // Gather all GOT equivalent globals in the module. We really need two
1403   // passes over the globals: one to compute and another to avoid its emission
1404   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1405   // where the got equivalent shows up before its use.
1406   computeGlobalGOTEquivs(M);
1407 
1408   // Emit global variables.
1409   for (const auto &G : M.globals())
1410     EmitGlobalVariable(&G);
1411 
1412   // Emit remaining GOT equivalent globals.
1413   emitGlobalGOTEquivs();
1414 
1415   // Emit visibility info for declarations
1416   for (const Function &F : M) {
1417     if (!F.isDeclarationForLinker())
1418       continue;
1419     GlobalValue::VisibilityTypes V = F.getVisibility();
1420     if (V == GlobalValue::DefaultVisibility)
1421       continue;
1422 
1423     MCSymbol *Name = getSymbol(&F);
1424     EmitVisibility(Name, V, false);
1425   }
1426 
1427   // Emit the remarks section contents.
1428   // FIXME: Figure out when is the safest time to emit this section. It should
1429   // not come after debug info.
1430   if (EnableRemarksSection)
1431     emitRemarksSection(M);
1432 
1433   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1434 
1435   TLOF.emitModuleMetadata(*OutStreamer, M);
1436 
1437   if (TM.getTargetTriple().isOSBinFormatELF()) {
1438     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1439 
1440     // Output stubs for external and common global variables.
1441     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1442     if (!Stubs.empty()) {
1443       OutStreamer->SwitchSection(TLOF.getDataSection());
1444       const DataLayout &DL = M.getDataLayout();
1445 
1446       EmitAlignment(Align(DL.getPointerSize()));
1447       for (const auto &Stub : Stubs) {
1448         OutStreamer->EmitLabel(Stub.first);
1449         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1450                                      DL.getPointerSize());
1451       }
1452     }
1453   }
1454 
1455   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1456     MachineModuleInfoCOFF &MMICOFF =
1457         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1458 
1459     // Output stubs for external and common global variables.
1460     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1461     if (!Stubs.empty()) {
1462       const DataLayout &DL = M.getDataLayout();
1463 
1464       for (const auto &Stub : Stubs) {
1465         SmallString<256> SectionName = StringRef(".rdata$");
1466         SectionName += Stub.first->getName();
1467         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1468             SectionName,
1469             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1470                 COFF::IMAGE_SCN_LNK_COMDAT,
1471             SectionKind::getReadOnly(), Stub.first->getName(),
1472             COFF::IMAGE_COMDAT_SELECT_ANY));
1473         EmitAlignment(Align(DL.getPointerSize()));
1474         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1475         OutStreamer->EmitLabel(Stub.first);
1476         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1477                                      DL.getPointerSize());
1478       }
1479     }
1480   }
1481 
1482   // Finalize debug and EH information.
1483   for (const HandlerInfo &HI : Handlers) {
1484     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1485                        HI.TimerGroupDescription, TimePassesIsEnabled);
1486     HI.Handler->endModule();
1487   }
1488   Handlers.clear();
1489   DD = nullptr;
1490 
1491   // If the target wants to know about weak references, print them all.
1492   if (MAI->getWeakRefDirective()) {
1493     // FIXME: This is not lazy, it would be nice to only print weak references
1494     // to stuff that is actually used.  Note that doing so would require targets
1495     // to notice uses in operands (due to constant exprs etc).  This should
1496     // happen with the MC stuff eventually.
1497 
1498     // Print out module-level global objects here.
1499     for (const auto &GO : M.global_objects()) {
1500       if (!GO.hasExternalWeakLinkage())
1501         continue;
1502       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1503     }
1504   }
1505 
1506   OutStreamer->AddBlankLine();
1507 
1508   // Print aliases in topological order, that is, for each alias a = b,
1509   // b must be printed before a.
1510   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1511   // such an order to generate correct TOC information.
1512   SmallVector<const GlobalAlias *, 16> AliasStack;
1513   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1514   for (const auto &Alias : M.aliases()) {
1515     for (const GlobalAlias *Cur = &Alias; Cur;
1516          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1517       if (!AliasVisited.insert(Cur).second)
1518         break;
1519       AliasStack.push_back(Cur);
1520     }
1521     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1522       emitGlobalIndirectSymbol(M, *AncestorAlias);
1523     AliasStack.clear();
1524   }
1525   for (const auto &IFunc : M.ifuncs())
1526     emitGlobalIndirectSymbol(M, IFunc);
1527 
1528   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1529   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1530   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1531     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1532       MP->finishAssembly(M, *MI, *this);
1533 
1534   // Emit llvm.ident metadata in an '.ident' directive.
1535   EmitModuleIdents(M);
1536 
1537   // Emit bytes for llvm.commandline metadata.
1538   EmitModuleCommandLines(M);
1539 
1540   // Emit __morestack address if needed for indirect calls.
1541   if (MMI->usesMorestackAddr()) {
1542     unsigned Align = 1;
1543     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1544         getDataLayout(), SectionKind::getReadOnly(),
1545         /*C=*/nullptr, Align);
1546     OutStreamer->SwitchSection(ReadOnlySection);
1547 
1548     MCSymbol *AddrSymbol =
1549         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1550     OutStreamer->EmitLabel(AddrSymbol);
1551 
1552     unsigned PtrSize = MAI->getCodePointerSize();
1553     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1554                                  PtrSize);
1555   }
1556 
1557   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1558   // split-stack is used.
1559   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1560     OutStreamer->SwitchSection(
1561         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1562     if (MMI->hasNosplitStack())
1563       OutStreamer->SwitchSection(
1564           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1565   }
1566 
1567   // If we don't have any trampolines, then we don't require stack memory
1568   // to be executable. Some targets have a directive to declare this.
1569   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1570   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1571     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1572       OutStreamer->SwitchSection(S);
1573 
1574   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1575     // Emit /EXPORT: flags for each exported global as necessary.
1576     const auto &TLOF = getObjFileLowering();
1577     std::string Flags;
1578 
1579     for (const GlobalValue &GV : M.global_values()) {
1580       raw_string_ostream OS(Flags);
1581       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1582       OS.flush();
1583       if (!Flags.empty()) {
1584         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1585         OutStreamer->EmitBytes(Flags);
1586       }
1587       Flags.clear();
1588     }
1589 
1590     // Emit /INCLUDE: flags for each used global as necessary.
1591     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1592       assert(LU->hasInitializer() &&
1593              "expected llvm.used to have an initializer");
1594       assert(isa<ArrayType>(LU->getValueType()) &&
1595              "expected llvm.used to be an array type");
1596       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1597         for (const Value *Op : A->operands()) {
1598           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1599           // Global symbols with internal or private linkage are not visible to
1600           // the linker, and thus would cause an error when the linker tried to
1601           // preserve the symbol due to the `/include:` directive.
1602           if (GV->hasLocalLinkage())
1603             continue;
1604 
1605           raw_string_ostream OS(Flags);
1606           TLOF.emitLinkerFlagsForUsed(OS, GV);
1607           OS.flush();
1608 
1609           if (!Flags.empty()) {
1610             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1611             OutStreamer->EmitBytes(Flags);
1612           }
1613           Flags.clear();
1614         }
1615       }
1616     }
1617   }
1618 
1619   if (TM.Options.EmitAddrsig) {
1620     // Emit address-significance attributes for all globals.
1621     OutStreamer->EmitAddrsig();
1622     for (const GlobalValue &GV : M.global_values())
1623       if (!GV.use_empty() && !GV.isThreadLocal() &&
1624           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1625           !GV.hasAtLeastLocalUnnamedAddr())
1626         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1627   }
1628 
1629   // Emit symbol partition specifications (ELF only).
1630   if (TM.getTargetTriple().isOSBinFormatELF()) {
1631     unsigned UniqueID = 0;
1632     for (const GlobalValue &GV : M.global_values()) {
1633       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1634           GV.getVisibility() != GlobalValue::DefaultVisibility)
1635         continue;
1636 
1637       OutStreamer->SwitchSection(OutContext.getELFSection(
1638           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1639       OutStreamer->EmitBytes(GV.getPartition());
1640       OutStreamer->EmitZeros(1);
1641       OutStreamer->EmitValue(
1642           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1643           MAI->getCodePointerSize());
1644     }
1645   }
1646 
1647   // Allow the target to emit any magic that it wants at the end of the file,
1648   // after everything else has gone out.
1649   EmitEndOfAsmFile(M);
1650 
1651   MMI = nullptr;
1652 
1653   OutStreamer->Finish();
1654   OutStreamer->reset();
1655   OwnedMLI.reset();
1656   OwnedMDT.reset();
1657 
1658   return false;
1659 }
1660 
1661 MCSymbol *AsmPrinter::getCurExceptionSym() {
1662   if (!CurExceptionSym)
1663     CurExceptionSym = createTempSymbol("exception");
1664   return CurExceptionSym;
1665 }
1666 
1667 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1668   this->MF = &MF;
1669 
1670   // Get the function symbol.
1671   if (MAI->needsFunctionDescriptors()) {
1672     assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1673                                              " supported on AIX.");
1674     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1675 		                           " initalized first.");
1676 
1677     // Get the function entry point symbol.
1678     CurrentFnSym =
1679         OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1680 
1681     const Function &F = MF.getFunction();
1682     MCSectionXCOFF *FnEntryPointSec =
1683         cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1684     // Set the containing csect.
1685     cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1686   } else {
1687     CurrentFnSym = getSymbol(&MF.getFunction());
1688   }
1689 
1690   CurrentFnSymForSize = CurrentFnSym;
1691   CurrentFnBegin = nullptr;
1692   CurExceptionSym = nullptr;
1693   bool NeedsLocalForSize = MAI->needsLocalForSize();
1694   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1695       MF.getTarget().Options.EmitStackSizeSection) {
1696     CurrentFnBegin = createTempSymbol("func_begin");
1697     if (NeedsLocalForSize)
1698       CurrentFnSymForSize = CurrentFnBegin;
1699   }
1700 
1701   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1702 }
1703 
1704 namespace {
1705 
1706 // Keep track the alignment, constpool entries per Section.
1707   struct SectionCPs {
1708     MCSection *S;
1709     unsigned Alignment;
1710     SmallVector<unsigned, 4> CPEs;
1711 
1712     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1713   };
1714 
1715 } // end anonymous namespace
1716 
1717 /// EmitConstantPool - Print to the current output stream assembly
1718 /// representations of the constants in the constant pool MCP. This is
1719 /// used to print out constants which have been "spilled to memory" by
1720 /// the code generator.
1721 void AsmPrinter::EmitConstantPool() {
1722   const MachineConstantPool *MCP = MF->getConstantPool();
1723   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1724   if (CP.empty()) return;
1725 
1726   // Calculate sections for constant pool entries. We collect entries to go into
1727   // the same section together to reduce amount of section switch statements.
1728   SmallVector<SectionCPs, 4> CPSections;
1729   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1730     const MachineConstantPoolEntry &CPE = CP[i];
1731     unsigned Align = CPE.getAlignment();
1732 
1733     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1734 
1735     const Constant *C = nullptr;
1736     if (!CPE.isMachineConstantPoolEntry())
1737       C = CPE.Val.ConstVal;
1738 
1739     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1740                                                               Kind, C, Align);
1741 
1742     // The number of sections are small, just do a linear search from the
1743     // last section to the first.
1744     bool Found = false;
1745     unsigned SecIdx = CPSections.size();
1746     while (SecIdx != 0) {
1747       if (CPSections[--SecIdx].S == S) {
1748         Found = true;
1749         break;
1750       }
1751     }
1752     if (!Found) {
1753       SecIdx = CPSections.size();
1754       CPSections.push_back(SectionCPs(S, Align));
1755     }
1756 
1757     if (Align > CPSections[SecIdx].Alignment)
1758       CPSections[SecIdx].Alignment = Align;
1759     CPSections[SecIdx].CPEs.push_back(i);
1760   }
1761 
1762   // Now print stuff into the calculated sections.
1763   const MCSection *CurSection = nullptr;
1764   unsigned Offset = 0;
1765   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1766     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1767       unsigned CPI = CPSections[i].CPEs[j];
1768       MCSymbol *Sym = GetCPISymbol(CPI);
1769       if (!Sym->isUndefined())
1770         continue;
1771 
1772       if (CurSection != CPSections[i].S) {
1773         OutStreamer->SwitchSection(CPSections[i].S);
1774         EmitAlignment(Align(CPSections[i].Alignment));
1775         CurSection = CPSections[i].S;
1776         Offset = 0;
1777       }
1778 
1779       MachineConstantPoolEntry CPE = CP[CPI];
1780 
1781       // Emit inter-object padding for alignment.
1782       unsigned AlignMask = CPE.getAlignment() - 1;
1783       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1784       OutStreamer->EmitZeros(NewOffset - Offset);
1785 
1786       Type *Ty = CPE.getType();
1787       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1788 
1789       OutStreamer->EmitLabel(Sym);
1790       if (CPE.isMachineConstantPoolEntry())
1791         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1792       else
1793         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1794     }
1795   }
1796 }
1797 
1798 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1799 /// by the current function to the current output stream.
1800 void AsmPrinter::EmitJumpTableInfo() {
1801   const DataLayout &DL = MF->getDataLayout();
1802   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1803   if (!MJTI) return;
1804   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1805   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1806   if (JT.empty()) return;
1807 
1808   // Pick the directive to use to print the jump table entries, and switch to
1809   // the appropriate section.
1810   const Function &F = MF->getFunction();
1811   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1812   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1813       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1814       F);
1815   if (JTInDiffSection) {
1816     // Drop it in the readonly section.
1817     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1818     OutStreamer->SwitchSection(ReadOnlySection);
1819   }
1820 
1821   EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1822 
1823   // Jump tables in code sections are marked with a data_region directive
1824   // where that's supported.
1825   if (!JTInDiffSection)
1826     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1827 
1828   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1829     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1830 
1831     // If this jump table was deleted, ignore it.
1832     if (JTBBs.empty()) continue;
1833 
1834     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1835     /// emit a .set directive for each unique entry.
1836     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1837         MAI->doesSetDirectiveSuppressReloc()) {
1838       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1839       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1840       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1841       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1842         const MachineBasicBlock *MBB = JTBBs[ii];
1843         if (!EmittedSets.insert(MBB).second)
1844           continue;
1845 
1846         // .set LJTSet, LBB32-base
1847         const MCExpr *LHS =
1848           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1849         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1850                                     MCBinaryExpr::createSub(LHS, Base,
1851                                                             OutContext));
1852       }
1853     }
1854 
1855     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1856     // before each jump table.  The first label is never referenced, but tells
1857     // the assembler and linker the extents of the jump table object.  The
1858     // second label is actually referenced by the code.
1859     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1860       // FIXME: This doesn't have to have any specific name, just any randomly
1861       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1862       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1863 
1864     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1865 
1866     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1867       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1868   }
1869   if (!JTInDiffSection)
1870     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1871 }
1872 
1873 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1874 /// current stream.
1875 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1876                                     const MachineBasicBlock *MBB,
1877                                     unsigned UID) const {
1878   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1879   const MCExpr *Value = nullptr;
1880   switch (MJTI->getEntryKind()) {
1881   case MachineJumpTableInfo::EK_Inline:
1882     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1883   case MachineJumpTableInfo::EK_Custom32:
1884     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1885         MJTI, MBB, UID, OutContext);
1886     break;
1887   case MachineJumpTableInfo::EK_BlockAddress:
1888     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1889     //     .word LBB123
1890     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1891     break;
1892   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1893     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1894     // with a relocation as gp-relative, e.g.:
1895     //     .gprel32 LBB123
1896     MCSymbol *MBBSym = MBB->getSymbol();
1897     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1898     return;
1899   }
1900 
1901   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1902     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1903     // with a relocation as gp-relative, e.g.:
1904     //     .gpdword LBB123
1905     MCSymbol *MBBSym = MBB->getSymbol();
1906     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1907     return;
1908   }
1909 
1910   case MachineJumpTableInfo::EK_LabelDifference32: {
1911     // Each entry is the address of the block minus the address of the jump
1912     // table. This is used for PIC jump tables where gprel32 is not supported.
1913     // e.g.:
1914     //      .word LBB123 - LJTI1_2
1915     // If the .set directive avoids relocations, this is emitted as:
1916     //      .set L4_5_set_123, LBB123 - LJTI1_2
1917     //      .word L4_5_set_123
1918     if (MAI->doesSetDirectiveSuppressReloc()) {
1919       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1920                                       OutContext);
1921       break;
1922     }
1923     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1924     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1925     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1926     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1927     break;
1928   }
1929   }
1930 
1931   assert(Value && "Unknown entry kind!");
1932 
1933   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1934   OutStreamer->EmitValue(Value, EntrySize);
1935 }
1936 
1937 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1938 /// special global used by LLVM.  If so, emit it and return true, otherwise
1939 /// do nothing and return false.
1940 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1941   if (GV->getName() == "llvm.used") {
1942     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1943       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1944     return true;
1945   }
1946 
1947   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1948   if (GV->getSection() == "llvm.metadata" ||
1949       GV->hasAvailableExternallyLinkage())
1950     return true;
1951 
1952   if (!GV->hasAppendingLinkage()) return false;
1953 
1954   assert(GV->hasInitializer() && "Not a special LLVM global!");
1955 
1956   if (GV->getName() == "llvm.global_ctors") {
1957     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1958                        /* isCtor */ true);
1959 
1960     return true;
1961   }
1962 
1963   if (GV->getName() == "llvm.global_dtors") {
1964     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1965                        /* isCtor */ false);
1966 
1967     return true;
1968   }
1969 
1970   report_fatal_error("unknown special variable");
1971 }
1972 
1973 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1974 /// global in the specified llvm.used list.
1975 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1976   // Should be an array of 'i8*'.
1977   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1978     const GlobalValue *GV =
1979       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1980     if (GV)
1981       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1982   }
1983 }
1984 
1985 namespace {
1986 
1987 struct Structor {
1988   int Priority = 0;
1989   Constant *Func = nullptr;
1990   GlobalValue *ComdatKey = nullptr;
1991 
1992   Structor() = default;
1993 };
1994 
1995 } // end anonymous namespace
1996 
1997 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1998 /// priority.
1999 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2000                                     bool isCtor) {
2001   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2002   // init priority.
2003   if (!isa<ConstantArray>(List)) return;
2004 
2005   // Sanity check the structors list.
2006   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2007   if (!InitList) return; // Not an array!
2008   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2009   if (!ETy || ETy->getNumElements() != 3 ||
2010       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2011       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2012       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2013     return; // Not (int, ptr, ptr).
2014 
2015   // Gather the structors in a form that's convenient for sorting by priority.
2016   SmallVector<Structor, 8> Structors;
2017   for (Value *O : InitList->operands()) {
2018     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2019     if (!CS) continue; // Malformed.
2020     if (CS->getOperand(1)->isNullValue())
2021       break;  // Found a null terminator, skip the rest.
2022     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2023     if (!Priority) continue; // Malformed.
2024     Structors.push_back(Structor());
2025     Structor &S = Structors.back();
2026     S.Priority = Priority->getLimitedValue(65535);
2027     S.Func = CS->getOperand(1);
2028     if (!CS->getOperand(2)->isNullValue())
2029       S.ComdatKey =
2030           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2031   }
2032 
2033   // Emit the function pointers in the target-specific order
2034   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2035     return L.Priority < R.Priority;
2036   });
2037   const Align Align = DL.getPointerPrefAlignment();
2038   for (Structor &S : Structors) {
2039     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2040     const MCSymbol *KeySym = nullptr;
2041     if (GlobalValue *GV = S.ComdatKey) {
2042       if (GV->isDeclarationForLinker())
2043         // If the associated variable is not defined in this module
2044         // (it might be available_externally, or have been an
2045         // available_externally definition that was dropped by the
2046         // EliminateAvailableExternally pass), some other TU
2047         // will provide its dynamic initializer.
2048         continue;
2049 
2050       KeySym = getSymbol(GV);
2051     }
2052     MCSection *OutputSection =
2053         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2054                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2055     OutStreamer->SwitchSection(OutputSection);
2056     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2057       EmitAlignment(Align);
2058     EmitXXStructor(DL, S.Func);
2059   }
2060 }
2061 
2062 void AsmPrinter::EmitModuleIdents(Module &M) {
2063   if (!MAI->hasIdentDirective())
2064     return;
2065 
2066   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2067     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2068       const MDNode *N = NMD->getOperand(i);
2069       assert(N->getNumOperands() == 1 &&
2070              "llvm.ident metadata entry can have only one operand");
2071       const MDString *S = cast<MDString>(N->getOperand(0));
2072       OutStreamer->EmitIdent(S->getString());
2073     }
2074   }
2075 }
2076 
2077 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2078   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2079   if (!CommandLine)
2080     return;
2081 
2082   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2083   if (!NMD || !NMD->getNumOperands())
2084     return;
2085 
2086   OutStreamer->PushSection();
2087   OutStreamer->SwitchSection(CommandLine);
2088   OutStreamer->EmitZeros(1);
2089   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2090     const MDNode *N = NMD->getOperand(i);
2091     assert(N->getNumOperands() == 1 &&
2092            "llvm.commandline metadata entry can have only one operand");
2093     const MDString *S = cast<MDString>(N->getOperand(0));
2094     OutStreamer->EmitBytes(S->getString());
2095     OutStreamer->EmitZeros(1);
2096   }
2097   OutStreamer->PopSection();
2098 }
2099 
2100 //===--------------------------------------------------------------------===//
2101 // Emission and print routines
2102 //
2103 
2104 /// Emit a byte directive and value.
2105 ///
2106 void AsmPrinter::emitInt8(int Value) const {
2107   OutStreamer->EmitIntValue(Value, 1);
2108 }
2109 
2110 /// Emit a short directive and value.
2111 void AsmPrinter::emitInt16(int Value) const {
2112   OutStreamer->EmitIntValue(Value, 2);
2113 }
2114 
2115 /// Emit a long directive and value.
2116 void AsmPrinter::emitInt32(int Value) const {
2117   OutStreamer->EmitIntValue(Value, 4);
2118 }
2119 
2120 /// Emit a long long directive and value.
2121 void AsmPrinter::emitInt64(uint64_t Value) const {
2122   OutStreamer->EmitIntValue(Value, 8);
2123 }
2124 
2125 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2126 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2127 /// .set if it avoids relocations.
2128 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2129                                      unsigned Size) const {
2130   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2131 }
2132 
2133 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2134 /// where the size in bytes of the directive is specified by Size and Label
2135 /// specifies the label.  This implicitly uses .set if it is available.
2136 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2137                                      unsigned Size,
2138                                      bool IsSectionRelative) const {
2139   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2140     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2141     if (Size > 4)
2142       OutStreamer->EmitZeros(Size - 4);
2143     return;
2144   }
2145 
2146   // Emit Label+Offset (or just Label if Offset is zero)
2147   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2148   if (Offset)
2149     Expr = MCBinaryExpr::createAdd(
2150         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2151 
2152   OutStreamer->EmitValue(Expr, Size);
2153 }
2154 
2155 //===----------------------------------------------------------------------===//
2156 
2157 // EmitAlignment - Emit an alignment directive to the specified power of
2158 // two boundary.  If a global value is specified, and if that global has
2159 // an explicit alignment requested, it will override the alignment request
2160 // if required for correctness.
2161 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2162   if (GV)
2163     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2164 
2165   if (Alignment == Align::None())
2166     return; // 1-byte aligned: no need to emit alignment.
2167 
2168   if (getCurrentSection()->getKind().isText())
2169     OutStreamer->EmitCodeAlignment(Alignment.value());
2170   else
2171     OutStreamer->EmitValueToAlignment(Alignment.value());
2172 }
2173 
2174 //===----------------------------------------------------------------------===//
2175 // Constant emission.
2176 //===----------------------------------------------------------------------===//
2177 
2178 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2179   MCContext &Ctx = OutContext;
2180 
2181   if (CV->isNullValue() || isa<UndefValue>(CV))
2182     return MCConstantExpr::create(0, Ctx);
2183 
2184   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2185     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2186 
2187   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2188     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2189 
2190   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2191     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2192 
2193   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2194   if (!CE) {
2195     llvm_unreachable("Unknown constant value to lower!");
2196   }
2197 
2198   switch (CE->getOpcode()) {
2199   default:
2200     // If the code isn't optimized, there may be outstanding folding
2201     // opportunities. Attempt to fold the expression using DataLayout as a
2202     // last resort before giving up.
2203     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2204       if (C != CE)
2205         return lowerConstant(C);
2206 
2207     // Otherwise report the problem to the user.
2208     {
2209       std::string S;
2210       raw_string_ostream OS(S);
2211       OS << "Unsupported expression in static initializer: ";
2212       CE->printAsOperand(OS, /*PrintType=*/false,
2213                      !MF ? nullptr : MF->getFunction().getParent());
2214       report_fatal_error(OS.str());
2215     }
2216   case Instruction::GetElementPtr: {
2217     // Generate a symbolic expression for the byte address
2218     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2219     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2220 
2221     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2222     if (!OffsetAI)
2223       return Base;
2224 
2225     int64_t Offset = OffsetAI.getSExtValue();
2226     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2227                                    Ctx);
2228   }
2229 
2230   case Instruction::Trunc:
2231     // We emit the value and depend on the assembler to truncate the generated
2232     // expression properly.  This is important for differences between
2233     // blockaddress labels.  Since the two labels are in the same function, it
2234     // is reasonable to treat their delta as a 32-bit value.
2235     LLVM_FALLTHROUGH;
2236   case Instruction::BitCast:
2237     return lowerConstant(CE->getOperand(0));
2238 
2239   case Instruction::IntToPtr: {
2240     const DataLayout &DL = getDataLayout();
2241 
2242     // Handle casts to pointers by changing them into casts to the appropriate
2243     // integer type.  This promotes constant folding and simplifies this code.
2244     Constant *Op = CE->getOperand(0);
2245     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2246                                       false/*ZExt*/);
2247     return lowerConstant(Op);
2248   }
2249 
2250   case Instruction::PtrToInt: {
2251     const DataLayout &DL = getDataLayout();
2252 
2253     // Support only foldable casts to/from pointers that can be eliminated by
2254     // changing the pointer to the appropriately sized integer type.
2255     Constant *Op = CE->getOperand(0);
2256     Type *Ty = CE->getType();
2257 
2258     const MCExpr *OpExpr = lowerConstant(Op);
2259 
2260     // We can emit the pointer value into this slot if the slot is an
2261     // integer slot equal to the size of the pointer.
2262     //
2263     // If the pointer is larger than the resultant integer, then
2264     // as with Trunc just depend on the assembler to truncate it.
2265     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2266       return OpExpr;
2267 
2268     // Otherwise the pointer is smaller than the resultant integer, mask off
2269     // the high bits so we are sure to get a proper truncation if the input is
2270     // a constant expr.
2271     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2272     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2273     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2274   }
2275 
2276   case Instruction::Sub: {
2277     GlobalValue *LHSGV;
2278     APInt LHSOffset;
2279     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2280                                    getDataLayout())) {
2281       GlobalValue *RHSGV;
2282       APInt RHSOffset;
2283       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2284                                      getDataLayout())) {
2285         const MCExpr *RelocExpr =
2286             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2287         if (!RelocExpr)
2288           RelocExpr = MCBinaryExpr::createSub(
2289               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2290               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2291         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2292         if (Addend != 0)
2293           RelocExpr = MCBinaryExpr::createAdd(
2294               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2295         return RelocExpr;
2296       }
2297     }
2298   }
2299   // else fallthrough
2300   LLVM_FALLTHROUGH;
2301 
2302   // The MC library also has a right-shift operator, but it isn't consistently
2303   // signed or unsigned between different targets.
2304   case Instruction::Add:
2305   case Instruction::Mul:
2306   case Instruction::SDiv:
2307   case Instruction::SRem:
2308   case Instruction::Shl:
2309   case Instruction::And:
2310   case Instruction::Or:
2311   case Instruction::Xor: {
2312     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2313     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2314     switch (CE->getOpcode()) {
2315     default: llvm_unreachable("Unknown binary operator constant cast expr");
2316     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2317     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2318     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2319     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2320     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2321     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2322     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2323     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2324     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2325     }
2326   }
2327   }
2328 }
2329 
2330 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2331                                    AsmPrinter &AP,
2332                                    const Constant *BaseCV = nullptr,
2333                                    uint64_t Offset = 0);
2334 
2335 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2336 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2337 
2338 /// isRepeatedByteSequence - Determine whether the given value is
2339 /// composed of a repeated sequence of identical bytes and return the
2340 /// byte value.  If it is not a repeated sequence, return -1.
2341 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2342   StringRef Data = V->getRawDataValues();
2343   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2344   char C = Data[0];
2345   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2346     if (Data[i] != C) return -1;
2347   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2348 }
2349 
2350 /// isRepeatedByteSequence - Determine whether the given value is
2351 /// composed of a repeated sequence of identical bytes and return the
2352 /// byte value.  If it is not a repeated sequence, return -1.
2353 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2354   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2355     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2356     assert(Size % 8 == 0);
2357 
2358     // Extend the element to take zero padding into account.
2359     APInt Value = CI->getValue().zextOrSelf(Size);
2360     if (!Value.isSplat(8))
2361       return -1;
2362 
2363     return Value.zextOrTrunc(8).getZExtValue();
2364   }
2365   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2366     // Make sure all array elements are sequences of the same repeated
2367     // byte.
2368     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2369     Constant *Op0 = CA->getOperand(0);
2370     int Byte = isRepeatedByteSequence(Op0, DL);
2371     if (Byte == -1)
2372       return -1;
2373 
2374     // All array elements must be equal.
2375     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2376       if (CA->getOperand(i) != Op0)
2377         return -1;
2378     return Byte;
2379   }
2380 
2381   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2382     return isRepeatedByteSequence(CDS);
2383 
2384   return -1;
2385 }
2386 
2387 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2388                                              const ConstantDataSequential *CDS,
2389                                              AsmPrinter &AP) {
2390   // See if we can aggregate this into a .fill, if so, emit it as such.
2391   int Value = isRepeatedByteSequence(CDS, DL);
2392   if (Value != -1) {
2393     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2394     // Don't emit a 1-byte object as a .fill.
2395     if (Bytes > 1)
2396       return AP.OutStreamer->emitFill(Bytes, Value);
2397   }
2398 
2399   // If this can be emitted with .ascii/.asciz, emit it as such.
2400   if (CDS->isString())
2401     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2402 
2403   // Otherwise, emit the values in successive locations.
2404   unsigned ElementByteSize = CDS->getElementByteSize();
2405   if (isa<IntegerType>(CDS->getElementType())) {
2406     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2407       if (AP.isVerbose())
2408         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2409                                                  CDS->getElementAsInteger(i));
2410       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2411                                    ElementByteSize);
2412     }
2413   } else {
2414     Type *ET = CDS->getElementType();
2415     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2416       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2417   }
2418 
2419   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2420   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2421                         CDS->getNumElements();
2422   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2423   if (unsigned Padding = Size - EmittedSize)
2424     AP.OutStreamer->EmitZeros(Padding);
2425 }
2426 
2427 static void emitGlobalConstantArray(const DataLayout &DL,
2428                                     const ConstantArray *CA, AsmPrinter &AP,
2429                                     const Constant *BaseCV, uint64_t Offset) {
2430   // See if we can aggregate some values.  Make sure it can be
2431   // represented as a series of bytes of the constant value.
2432   int Value = isRepeatedByteSequence(CA, DL);
2433 
2434   if (Value != -1) {
2435     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2436     AP.OutStreamer->emitFill(Bytes, Value);
2437   }
2438   else {
2439     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2440       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2441       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2442     }
2443   }
2444 }
2445 
2446 static void emitGlobalConstantVector(const DataLayout &DL,
2447                                      const ConstantVector *CV, AsmPrinter &AP) {
2448   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2449     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2450 
2451   unsigned Size = DL.getTypeAllocSize(CV->getType());
2452   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2453                          CV->getType()->getNumElements();
2454   if (unsigned Padding = Size - EmittedSize)
2455     AP.OutStreamer->EmitZeros(Padding);
2456 }
2457 
2458 static void emitGlobalConstantStruct(const DataLayout &DL,
2459                                      const ConstantStruct *CS, AsmPrinter &AP,
2460                                      const Constant *BaseCV, uint64_t Offset) {
2461   // Print the fields in successive locations. Pad to align if needed!
2462   unsigned Size = DL.getTypeAllocSize(CS->getType());
2463   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2464   uint64_t SizeSoFar = 0;
2465   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2466     const Constant *Field = CS->getOperand(i);
2467 
2468     // Print the actual field value.
2469     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2470 
2471     // Check if padding is needed and insert one or more 0s.
2472     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2473     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2474                         - Layout->getElementOffset(i)) - FieldSize;
2475     SizeSoFar += FieldSize + PadSize;
2476 
2477     // Insert padding - this may include padding to increase the size of the
2478     // current field up to the ABI size (if the struct is not packed) as well
2479     // as padding to ensure that the next field starts at the right offset.
2480     AP.OutStreamer->EmitZeros(PadSize);
2481   }
2482   assert(SizeSoFar == Layout->getSizeInBytes() &&
2483          "Layout of constant struct may be incorrect!");
2484 }
2485 
2486 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2487   assert(ET && "Unknown float type");
2488   APInt API = APF.bitcastToAPInt();
2489 
2490   // First print a comment with what we think the original floating-point value
2491   // should have been.
2492   if (AP.isVerbose()) {
2493     SmallString<8> StrVal;
2494     APF.toString(StrVal);
2495     ET->print(AP.OutStreamer->GetCommentOS());
2496     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2497   }
2498 
2499   // Now iterate through the APInt chunks, emitting them in endian-correct
2500   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2501   // floats).
2502   unsigned NumBytes = API.getBitWidth() / 8;
2503   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2504   const uint64_t *p = API.getRawData();
2505 
2506   // PPC's long double has odd notions of endianness compared to how LLVM
2507   // handles it: p[0] goes first for *big* endian on PPC.
2508   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2509     int Chunk = API.getNumWords() - 1;
2510 
2511     if (TrailingBytes)
2512       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2513 
2514     for (; Chunk >= 0; --Chunk)
2515       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2516   } else {
2517     unsigned Chunk;
2518     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2519       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2520 
2521     if (TrailingBytes)
2522       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2523   }
2524 
2525   // Emit the tail padding for the long double.
2526   const DataLayout &DL = AP.getDataLayout();
2527   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2528 }
2529 
2530 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2531   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2532 }
2533 
2534 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2535   const DataLayout &DL = AP.getDataLayout();
2536   unsigned BitWidth = CI->getBitWidth();
2537 
2538   // Copy the value as we may massage the layout for constants whose bit width
2539   // is not a multiple of 64-bits.
2540   APInt Realigned(CI->getValue());
2541   uint64_t ExtraBits = 0;
2542   unsigned ExtraBitsSize = BitWidth & 63;
2543 
2544   if (ExtraBitsSize) {
2545     // The bit width of the data is not a multiple of 64-bits.
2546     // The extra bits are expected to be at the end of the chunk of the memory.
2547     // Little endian:
2548     // * Nothing to be done, just record the extra bits to emit.
2549     // Big endian:
2550     // * Record the extra bits to emit.
2551     // * Realign the raw data to emit the chunks of 64-bits.
2552     if (DL.isBigEndian()) {
2553       // Basically the structure of the raw data is a chunk of 64-bits cells:
2554       //    0        1         BitWidth / 64
2555       // [chunk1][chunk2] ... [chunkN].
2556       // The most significant chunk is chunkN and it should be emitted first.
2557       // However, due to the alignment issue chunkN contains useless bits.
2558       // Realign the chunks so that they contain only useless information:
2559       // ExtraBits     0       1       (BitWidth / 64) - 1
2560       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2561       ExtraBits = Realigned.getRawData()[0] &
2562         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2563       Realigned.lshrInPlace(ExtraBitsSize);
2564     } else
2565       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2566   }
2567 
2568   // We don't expect assemblers to support integer data directives
2569   // for more than 64 bits, so we emit the data in at most 64-bit
2570   // quantities at a time.
2571   const uint64_t *RawData = Realigned.getRawData();
2572   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2573     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2574     AP.OutStreamer->EmitIntValue(Val, 8);
2575   }
2576 
2577   if (ExtraBitsSize) {
2578     // Emit the extra bits after the 64-bits chunks.
2579 
2580     // Emit a directive that fills the expected size.
2581     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2582     Size -= (BitWidth / 64) * 8;
2583     assert(Size && Size * 8 >= ExtraBitsSize &&
2584            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2585            == ExtraBits && "Directive too small for extra bits.");
2586     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2587   }
2588 }
2589 
2590 /// Transform a not absolute MCExpr containing a reference to a GOT
2591 /// equivalent global, by a target specific GOT pc relative access to the
2592 /// final symbol.
2593 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2594                                          const Constant *BaseCst,
2595                                          uint64_t Offset) {
2596   // The global @foo below illustrates a global that uses a got equivalent.
2597   //
2598   //  @bar = global i32 42
2599   //  @gotequiv = private unnamed_addr constant i32* @bar
2600   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2601   //                             i64 ptrtoint (i32* @foo to i64))
2602   //                        to i32)
2603   //
2604   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2605   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2606   // form:
2607   //
2608   //  foo = cstexpr, where
2609   //    cstexpr := <gotequiv> - "." + <cst>
2610   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2611   //
2612   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2613   //
2614   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2615   //    gotpcrelcst := <offset from @foo base> + <cst>
2616   MCValue MV;
2617   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2618     return;
2619   const MCSymbolRefExpr *SymA = MV.getSymA();
2620   if (!SymA)
2621     return;
2622 
2623   // Check that GOT equivalent symbol is cached.
2624   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2625   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2626     return;
2627 
2628   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2629   if (!BaseGV)
2630     return;
2631 
2632   // Check for a valid base symbol
2633   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2634   const MCSymbolRefExpr *SymB = MV.getSymB();
2635 
2636   if (!SymB || BaseSym != &SymB->getSymbol())
2637     return;
2638 
2639   // Make sure to match:
2640   //
2641   //    gotpcrelcst := <offset from @foo base> + <cst>
2642   //
2643   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2644   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2645   // if the target knows how to encode it.
2646   int64_t GOTPCRelCst = Offset + MV.getConstant();
2647   if (GOTPCRelCst < 0)
2648     return;
2649   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2650     return;
2651 
2652   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2653   //
2654   //  bar:
2655   //    .long 42
2656   //  gotequiv:
2657   //    .quad bar
2658   //  foo:
2659   //    .long gotequiv - "." + <cst>
2660   //
2661   // is replaced by the target specific equivalent to:
2662   //
2663   //  bar:
2664   //    .long 42
2665   //  foo:
2666   //    .long bar@GOTPCREL+<gotpcrelcst>
2667   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2668   const GlobalVariable *GV = Result.first;
2669   int NumUses = (int)Result.second;
2670   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2671   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2672   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2673       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2674 
2675   // Update GOT equivalent usage information
2676   --NumUses;
2677   if (NumUses >= 0)
2678     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2679 }
2680 
2681 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2682                                    AsmPrinter &AP, const Constant *BaseCV,
2683                                    uint64_t Offset) {
2684   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2685 
2686   // Globals with sub-elements such as combinations of arrays and structs
2687   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2688   // constant symbol base and the current position with BaseCV and Offset.
2689   if (!BaseCV && CV->hasOneUse())
2690     BaseCV = dyn_cast<Constant>(CV->user_back());
2691 
2692   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2693     return AP.OutStreamer->EmitZeros(Size);
2694 
2695   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2696     switch (Size) {
2697     case 1:
2698     case 2:
2699     case 4:
2700     case 8:
2701       if (AP.isVerbose())
2702         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2703                                                  CI->getZExtValue());
2704       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2705       return;
2706     default:
2707       emitGlobalConstantLargeInt(CI, AP);
2708       return;
2709     }
2710   }
2711 
2712   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2713     return emitGlobalConstantFP(CFP, AP);
2714 
2715   if (isa<ConstantPointerNull>(CV)) {
2716     AP.OutStreamer->EmitIntValue(0, Size);
2717     return;
2718   }
2719 
2720   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2721     return emitGlobalConstantDataSequential(DL, CDS, AP);
2722 
2723   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2724     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2725 
2726   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2727     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2728 
2729   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2730     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2731     // vectors).
2732     if (CE->getOpcode() == Instruction::BitCast)
2733       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2734 
2735     if (Size > 8) {
2736       // If the constant expression's size is greater than 64-bits, then we have
2737       // to emit the value in chunks. Try to constant fold the value and emit it
2738       // that way.
2739       Constant *New = ConstantFoldConstant(CE, DL);
2740       if (New && New != CE)
2741         return emitGlobalConstantImpl(DL, New, AP);
2742     }
2743   }
2744 
2745   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2746     return emitGlobalConstantVector(DL, V, AP);
2747 
2748   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2749   // thread the streamer with EmitValue.
2750   const MCExpr *ME = AP.lowerConstant(CV);
2751 
2752   // Since lowerConstant already folded and got rid of all IR pointer and
2753   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2754   // directly.
2755   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2756     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2757 
2758   AP.OutStreamer->EmitValue(ME, Size);
2759 }
2760 
2761 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2762 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2763   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2764   if (Size)
2765     emitGlobalConstantImpl(DL, CV, *this);
2766   else if (MAI->hasSubsectionsViaSymbols()) {
2767     // If the global has zero size, emit a single byte so that two labels don't
2768     // look like they are at the same location.
2769     OutStreamer->EmitIntValue(0, 1);
2770   }
2771 }
2772 
2773 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2774   // Target doesn't support this yet!
2775   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2776 }
2777 
2778 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2779   if (Offset > 0)
2780     OS << '+' << Offset;
2781   else if (Offset < 0)
2782     OS << Offset;
2783 }
2784 
2785 //===----------------------------------------------------------------------===//
2786 // Symbol Lowering Routines.
2787 //===----------------------------------------------------------------------===//
2788 
2789 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2790   return OutContext.createTempSymbol(Name, true);
2791 }
2792 
2793 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2794   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2795 }
2796 
2797 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2798   return MMI->getAddrLabelSymbol(BB);
2799 }
2800 
2801 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2802 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2803   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2804     const MachineConstantPoolEntry &CPE =
2805         MF->getConstantPool()->getConstants()[CPID];
2806     if (!CPE.isMachineConstantPoolEntry()) {
2807       const DataLayout &DL = MF->getDataLayout();
2808       SectionKind Kind = CPE.getSectionKind(&DL);
2809       const Constant *C = CPE.Val.ConstVal;
2810       unsigned Align = CPE.Alignment;
2811       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2812               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2813         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2814           if (Sym->isUndefined())
2815             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2816           return Sym;
2817         }
2818       }
2819     }
2820   }
2821 
2822   const DataLayout &DL = getDataLayout();
2823   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2824                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2825                                       Twine(CPID));
2826 }
2827 
2828 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2829 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2830   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2831 }
2832 
2833 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2834 /// FIXME: privatize to AsmPrinter.
2835 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2836   const DataLayout &DL = getDataLayout();
2837   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2838                                       Twine(getFunctionNumber()) + "_" +
2839                                       Twine(UID) + "_set_" + Twine(MBBID));
2840 }
2841 
2842 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2843                                                    StringRef Suffix) const {
2844   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2845 }
2846 
2847 /// Return the MCSymbol for the specified ExternalSymbol.
2848 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2849   SmallString<60> NameStr;
2850   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2851   return OutContext.getOrCreateSymbol(NameStr);
2852 }
2853 
2854 /// PrintParentLoopComment - Print comments about parent loops of this one.
2855 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2856                                    unsigned FunctionNumber) {
2857   if (!Loop) return;
2858   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2859   OS.indent(Loop->getLoopDepth()*2)
2860     << "Parent Loop BB" << FunctionNumber << "_"
2861     << Loop->getHeader()->getNumber()
2862     << " Depth=" << Loop->getLoopDepth() << '\n';
2863 }
2864 
2865 /// PrintChildLoopComment - Print comments about child loops within
2866 /// the loop for this basic block, with nesting.
2867 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2868                                   unsigned FunctionNumber) {
2869   // Add child loop information
2870   for (const MachineLoop *CL : *Loop) {
2871     OS.indent(CL->getLoopDepth()*2)
2872       << "Child Loop BB" << FunctionNumber << "_"
2873       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2874       << '\n';
2875     PrintChildLoopComment(OS, CL, FunctionNumber);
2876   }
2877 }
2878 
2879 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2880 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2881                                        const MachineLoopInfo *LI,
2882                                        const AsmPrinter &AP) {
2883   // Add loop depth information
2884   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2885   if (!Loop) return;
2886 
2887   MachineBasicBlock *Header = Loop->getHeader();
2888   assert(Header && "No header for loop");
2889 
2890   // If this block is not a loop header, just print out what is the loop header
2891   // and return.
2892   if (Header != &MBB) {
2893     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2894                                Twine(AP.getFunctionNumber())+"_" +
2895                                Twine(Loop->getHeader()->getNumber())+
2896                                " Depth="+Twine(Loop->getLoopDepth()));
2897     return;
2898   }
2899 
2900   // Otherwise, it is a loop header.  Print out information about child and
2901   // parent loops.
2902   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2903 
2904   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2905 
2906   OS << "=>";
2907   OS.indent(Loop->getLoopDepth()*2-2);
2908 
2909   OS << "This ";
2910   if (Loop->empty())
2911     OS << "Inner ";
2912   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2913 
2914   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2915 }
2916 
2917 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2918                                          MCCodePaddingContext &Context) const {
2919   assert(MF != nullptr && "Machine function must be valid");
2920   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2921                             !MF->getFunction().hasOptSize() &&
2922                             TM.getOptLevel() != CodeGenOpt::None;
2923   Context.IsBasicBlockReachableViaFallthrough =
2924       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2925       MBB.pred_end();
2926   Context.IsBasicBlockReachableViaBranch =
2927       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2928 }
2929 
2930 /// EmitBasicBlockStart - This method prints the label for the specified
2931 /// MachineBasicBlock, an alignment (if present) and a comment describing
2932 /// it if appropriate.
2933 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2934   // End the previous funclet and start a new one.
2935   if (MBB.isEHFuncletEntry()) {
2936     for (const HandlerInfo &HI : Handlers) {
2937       HI.Handler->endFunclet();
2938       HI.Handler->beginFunclet(MBB);
2939     }
2940   }
2941 
2942   // Emit an alignment directive for this block, if needed.
2943   const Align Alignment = MBB.getAlignment();
2944   if (Alignment != Align::None())
2945     EmitAlignment(Alignment);
2946   MCCodePaddingContext Context;
2947   setupCodePaddingContext(MBB, Context);
2948   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2949 
2950   // If the block has its address taken, emit any labels that were used to
2951   // reference the block.  It is possible that there is more than one label
2952   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2953   // the references were generated.
2954   if (MBB.hasAddressTaken()) {
2955     const BasicBlock *BB = MBB.getBasicBlock();
2956     if (isVerbose())
2957       OutStreamer->AddComment("Block address taken");
2958 
2959     // MBBs can have their address taken as part of CodeGen without having
2960     // their corresponding BB's address taken in IR
2961     if (BB->hasAddressTaken())
2962       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2963         OutStreamer->EmitLabel(Sym);
2964   }
2965 
2966   // Print some verbose block comments.
2967   if (isVerbose()) {
2968     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2969       if (BB->hasName()) {
2970         BB->printAsOperand(OutStreamer->GetCommentOS(),
2971                            /*PrintType=*/false, BB->getModule());
2972         OutStreamer->GetCommentOS() << '\n';
2973       }
2974     }
2975 
2976     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2977     emitBasicBlockLoopComments(MBB, MLI, *this);
2978   }
2979 
2980   // Print the main label for the block.
2981   if (MBB.pred_empty() ||
2982       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2983        !MBB.hasLabelMustBeEmitted())) {
2984     if (isVerbose()) {
2985       // NOTE: Want this comment at start of line, don't emit with AddComment.
2986       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2987                                   false);
2988     }
2989   } else {
2990     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2991       OutStreamer->AddComment("Label of block must be emitted");
2992     OutStreamer->EmitLabel(MBB.getSymbol());
2993   }
2994 }
2995 
2996 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2997   MCCodePaddingContext Context;
2998   setupCodePaddingContext(MBB, Context);
2999   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
3000 }
3001 
3002 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
3003                                 bool IsDefinition) const {
3004   MCSymbolAttr Attr = MCSA_Invalid;
3005 
3006   switch (Visibility) {
3007   default: break;
3008   case GlobalValue::HiddenVisibility:
3009     if (IsDefinition)
3010       Attr = MAI->getHiddenVisibilityAttr();
3011     else
3012       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3013     break;
3014   case GlobalValue::ProtectedVisibility:
3015     Attr = MAI->getProtectedVisibilityAttr();
3016     break;
3017   }
3018 
3019   if (Attr != MCSA_Invalid)
3020     OutStreamer->EmitSymbolAttribute(Sym, Attr);
3021 }
3022 
3023 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3024 /// exactly one predecessor and the control transfer mechanism between
3025 /// the predecessor and this block is a fall-through.
3026 bool AsmPrinter::
3027 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3028   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3029   // then nothing falls through to it.
3030   if (MBB->isEHPad() || MBB->pred_empty())
3031     return false;
3032 
3033   // If there isn't exactly one predecessor, it can't be a fall through.
3034   if (MBB->pred_size() > 1)
3035     return false;
3036 
3037   // The predecessor has to be immediately before this block.
3038   MachineBasicBlock *Pred = *MBB->pred_begin();
3039   if (!Pred->isLayoutSuccessor(MBB))
3040     return false;
3041 
3042   // If the block is completely empty, then it definitely does fall through.
3043   if (Pred->empty())
3044     return true;
3045 
3046   // Check the terminators in the previous blocks
3047   for (const auto &MI : Pred->terminators()) {
3048     // If it is not a simple branch, we are in a table somewhere.
3049     if (!MI.isBranch() || MI.isIndirectBranch())
3050       return false;
3051 
3052     // If we are the operands of one of the branches, this is not a fall
3053     // through. Note that targets with delay slots will usually bundle
3054     // terminators with the delay slot instruction.
3055     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3056       if (OP->isJTI())
3057         return false;
3058       if (OP->isMBB() && OP->getMBB() == MBB)
3059         return false;
3060     }
3061   }
3062 
3063   return true;
3064 }
3065 
3066 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3067   if (!S.usesMetadata())
3068     return nullptr;
3069 
3070   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3071   gcp_map_type::iterator GCPI = GCMap.find(&S);
3072   if (GCPI != GCMap.end())
3073     return GCPI->second.get();
3074 
3075   auto Name = S.getName();
3076 
3077   for (GCMetadataPrinterRegistry::iterator
3078          I = GCMetadataPrinterRegistry::begin(),
3079          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3080     if (Name == I->getName()) {
3081       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3082       GMP->S = &S;
3083       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3084       return IterBool.first->second.get();
3085     }
3086 
3087   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3088 }
3089 
3090 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3091   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3092   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3093   bool NeedsDefault = false;
3094   if (MI->begin() == MI->end())
3095     // No GC strategy, use the default format.
3096     NeedsDefault = true;
3097   else
3098     for (auto &I : *MI) {
3099       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3100         if (MP->emitStackMaps(SM, *this))
3101           continue;
3102       // The strategy doesn't have printer or doesn't emit custom stack maps.
3103       // Use the default format.
3104       NeedsDefault = true;
3105     }
3106 
3107   if (NeedsDefault)
3108     SM.serializeToStackMapSection();
3109 }
3110 
3111 /// Pin vtable to this file.
3112 AsmPrinterHandler::~AsmPrinterHandler() = default;
3113 
3114 void AsmPrinterHandler::markFunctionEnd() {}
3115 
3116 // In the binary's "xray_instr_map" section, an array of these function entries
3117 // describes each instrumentation point.  When XRay patches your code, the index
3118 // into this table will be given to your handler as a patch point identifier.
3119 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3120                                          const MCSymbol *CurrentFnSym) const {
3121   Out->EmitSymbolValue(Sled, Bytes);
3122   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3123   auto Kind8 = static_cast<uint8_t>(Kind);
3124   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3125   Out->EmitBinaryData(
3126       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3127   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3128   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3129   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3130   Out->EmitZeros(Padding);
3131 }
3132 
3133 void AsmPrinter::emitXRayTable() {
3134   if (Sleds.empty())
3135     return;
3136 
3137   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3138   const Function &F = MF->getFunction();
3139   MCSection *InstMap = nullptr;
3140   MCSection *FnSledIndex = nullptr;
3141   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3142     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3143     assert(Associated != nullptr);
3144     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3145     std::string GroupName;
3146     if (F.hasComdat()) {
3147       Flags |= ELF::SHF_GROUP;
3148       GroupName = F.getComdat()->getName();
3149     }
3150 
3151     auto UniqueID = ++XRayFnUniqueID;
3152     InstMap =
3153         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3154                                  GroupName, UniqueID, Associated);
3155     FnSledIndex =
3156         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3157                                  GroupName, UniqueID, Associated);
3158   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3159     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3160                                          SectionKind::getReadOnlyWithRel());
3161     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3162                                              SectionKind::getReadOnlyWithRel());
3163   } else {
3164     llvm_unreachable("Unsupported target");
3165   }
3166 
3167   auto WordSizeBytes = MAI->getCodePointerSize();
3168 
3169   // Now we switch to the instrumentation map section. Because this is done
3170   // per-function, we are able to create an index entry that will represent the
3171   // range of sleds associated with a function.
3172   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3173   OutStreamer->SwitchSection(InstMap);
3174   OutStreamer->EmitLabel(SledsStart);
3175   for (const auto &Sled : Sleds)
3176     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3177   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3178   OutStreamer->EmitLabel(SledsEnd);
3179 
3180   // We then emit a single entry in the index per function. We use the symbols
3181   // that bound the instrumentation map as the range for a specific function.
3182   // Each entry here will be 2 * word size aligned, as we're writing down two
3183   // pointers. This should work for both 32-bit and 64-bit platforms.
3184   OutStreamer->SwitchSection(FnSledIndex);
3185   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3186   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3187   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3188   OutStreamer->SwitchSection(PrevSection);
3189   Sleds.clear();
3190 }
3191 
3192 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3193                             SledKind Kind, uint8_t Version) {
3194   const Function &F = MI.getMF()->getFunction();
3195   auto Attr = F.getFnAttribute("function-instrument");
3196   bool LogArgs = F.hasFnAttribute("xray-log-args");
3197   bool AlwaysInstrument =
3198     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3199   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3200     Kind = SledKind::LOG_ARGS_ENTER;
3201   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3202                                        AlwaysInstrument, &F, Version});
3203 }
3204 
3205 uint16_t AsmPrinter::getDwarfVersion() const {
3206   return OutStreamer->getContext().getDwarfVersion();
3207 }
3208 
3209 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3210   OutStreamer->getContext().setDwarfVersion(Version);
3211 }
3212