1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/TinyPtrVector.h" 31 #include "llvm/ADT/Triple.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/ConstantFolding.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/BinaryFormat/COFF.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/BinaryFormat/ELF.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/GCMetadataPrinter.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/Config/config.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GCStrategy.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/MC/MCAsmInfo.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/MC/MCDirectives.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCTargetOptions.h" 100 #include "llvm/MC/MCValue.h" 101 #include "llvm/MC/SectionKind.h" 102 #include "llvm/Pass.h" 103 #include "llvm/Remarks/RemarkStreamer.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/FileSystem.h" 108 #include "llvm/Support/Format.h" 109 #include "llvm/Support/MathExtras.h" 110 #include "llvm/Support/Path.h" 111 #include "llvm/Support/Timer.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetLoweringObjectFile.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cinttypes> 119 #include <cstdint> 120 #include <iterator> 121 #include <memory> 122 #include <string> 123 #include <utility> 124 #include <vector> 125 126 using namespace llvm; 127 128 #define DEBUG_TYPE "asm-printer" 129 130 const char DWARFGroupName[] = "dwarf"; 131 const char DWARFGroupDescription[] = "DWARF Emission"; 132 const char DbgTimerName[] = "emit"; 133 const char DbgTimerDescription[] = "Debug Info Emission"; 134 const char EHTimerName[] = "write_exception"; 135 const char EHTimerDescription[] = "DWARF Exception Writer"; 136 const char CFGuardName[] = "Control Flow Guard"; 137 const char CFGuardDescription[] = "Control Flow Guard"; 138 const char CodeViewLineTablesGroupName[] = "linetables"; 139 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 140 const char PPTimerName[] = "emit"; 141 const char PPTimerDescription[] = "Pseudo Probe Emission"; 142 const char PPGroupName[] = "pseudo probe"; 143 const char PPGroupDescription[] = "Pseudo Probe Emission"; 144 145 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 146 147 char AsmPrinter::ID = 0; 148 149 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 150 151 static gcp_map_type &getGCMap(void *&P) { 152 if (!P) 153 P = new gcp_map_type(); 154 return *(gcp_map_type*)P; 155 } 156 157 namespace { 158 class AddrLabelMapCallbackPtr final : CallbackVH { 159 AddrLabelMap *Map = nullptr; 160 161 public: 162 AddrLabelMapCallbackPtr() = default; 163 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} 164 165 void setPtr(BasicBlock *BB) { 166 ValueHandleBase::operator=(BB); 167 } 168 169 void setMap(AddrLabelMap *map) { Map = map; } 170 171 void deleted() override; 172 void allUsesReplacedWith(Value *V2) override; 173 }; 174 } // namespace 175 176 class llvm::AddrLabelMap { 177 MCContext &Context; 178 struct AddrLabelSymEntry { 179 /// The symbols for the label. 180 TinyPtrVector<MCSymbol *> Symbols; 181 182 Function *Fn; // The containing function of the BasicBlock. 183 unsigned Index; // The index in BBCallbacks for the BasicBlock. 184 }; 185 186 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; 187 188 /// Callbacks for the BasicBlock's that we have entries for. We use this so 189 /// we get notified if a block is deleted or RAUWd. 190 std::vector<AddrLabelMapCallbackPtr> BBCallbacks; 191 192 /// This is a per-function list of symbols whose corresponding BasicBlock got 193 /// deleted. These symbols need to be emitted at some point in the file, so 194 /// AsmPrinter emits them after the function body. 195 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> 196 DeletedAddrLabelsNeedingEmission; 197 198 public: 199 AddrLabelMap(MCContext &context) : Context(context) {} 200 201 ~AddrLabelMap() { 202 assert(DeletedAddrLabelsNeedingEmission.empty() && 203 "Some labels for deleted blocks never got emitted"); 204 } 205 206 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); 207 208 void takeDeletedSymbolsForFunction(Function *F, 209 std::vector<MCSymbol *> &Result); 210 211 void UpdateForDeletedBlock(BasicBlock *BB); 212 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); 213 }; 214 215 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { 216 assert(BB->hasAddressTaken() && 217 "Shouldn't get label for block without address taken"); 218 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; 219 220 // If we already had an entry for this block, just return it. 221 if (!Entry.Symbols.empty()) { 222 assert(BB->getParent() == Entry.Fn && "Parent changed"); 223 return Entry.Symbols; 224 } 225 226 // Otherwise, this is a new entry, create a new symbol for it and add an 227 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. 228 BBCallbacks.emplace_back(BB); 229 BBCallbacks.back().setMap(this); 230 Entry.Index = BBCallbacks.size() - 1; 231 Entry.Fn = BB->getParent(); 232 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() 233 : Context.createTempSymbol(); 234 Entry.Symbols.push_back(Sym); 235 return Entry.Symbols; 236 } 237 238 /// If we have any deleted symbols for F, return them. 239 void AddrLabelMap::takeDeletedSymbolsForFunction( 240 Function *F, std::vector<MCSymbol *> &Result) { 241 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = 242 DeletedAddrLabelsNeedingEmission.find(F); 243 244 // If there are no entries for the function, just return. 245 if (I == DeletedAddrLabelsNeedingEmission.end()) 246 return; 247 248 // Otherwise, take the list. 249 std::swap(Result, I->second); 250 DeletedAddrLabelsNeedingEmission.erase(I); 251 } 252 253 //===- Address of Block Management ----------------------------------------===// 254 255 ArrayRef<MCSymbol *> 256 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { 257 // Lazily create AddrLabelSymbols. 258 if (!AddrLabelSymbols) 259 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); 260 return AddrLabelSymbols->getAddrLabelSymbolToEmit( 261 const_cast<BasicBlock *>(BB)); 262 } 263 264 void AsmPrinter::takeDeletedSymbolsForFunction( 265 const Function *F, std::vector<MCSymbol *> &Result) { 266 // If no blocks have had their addresses taken, we're done. 267 if (!AddrLabelSymbols) 268 return; 269 return AddrLabelSymbols->takeDeletedSymbolsForFunction( 270 const_cast<Function *>(F), Result); 271 } 272 273 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { 274 // If the block got deleted, there is no need for the symbol. If the symbol 275 // was already emitted, we can just forget about it, otherwise we need to 276 // queue it up for later emission when the function is output. 277 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); 278 AddrLabelSymbols.erase(BB); 279 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 280 BBCallbacks[Entry.Index] = nullptr; // Clear the callback. 281 282 #if !LLVM_MEMORY_SANITIZER_BUILD 283 // BasicBlock is destroyed already, so this access is UB detectable by msan. 284 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && 285 "Block/parent mismatch"); 286 #endif 287 288 for (MCSymbol *Sym : Entry.Symbols) { 289 if (Sym->isDefined()) 290 return; 291 292 // If the block is not yet defined, we need to emit it at the end of the 293 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list 294 // for the containing Function. Since the block is being deleted, its 295 // parent may already be removed, we have to get the function from 'Entry'. 296 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); 297 } 298 } 299 300 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { 301 // Get the entry for the RAUW'd block and remove it from our map. 302 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); 303 AddrLabelSymbols.erase(Old); 304 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 305 306 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; 307 308 // If New is not address taken, just move our symbol over to it. 309 if (NewEntry.Symbols.empty()) { 310 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. 311 NewEntry = std::move(OldEntry); // Set New's entry. 312 return; 313 } 314 315 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. 316 317 // Otherwise, we need to add the old symbols to the new block's set. 318 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); 319 } 320 321 void AddrLabelMapCallbackPtr::deleted() { 322 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); 323 } 324 325 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { 326 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); 327 } 328 329 /// getGVAlignment - Return the alignment to use for the specified global 330 /// value. This rounds up to the preferred alignment if possible and legal. 331 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 332 Align InAlign) { 333 Align Alignment; 334 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 335 Alignment = DL.getPreferredAlign(GVar); 336 337 // If InAlign is specified, round it to it. 338 if (InAlign > Alignment) 339 Alignment = InAlign; 340 341 // If the GV has a specified alignment, take it into account. 342 const MaybeAlign GVAlign(GV->getAlign()); 343 if (!GVAlign) 344 return Alignment; 345 346 assert(GVAlign && "GVAlign must be set"); 347 348 // If the GVAlign is larger than NumBits, or if we are required to obey 349 // NumBits because the GV has an assigned section, obey it. 350 if (*GVAlign > Alignment || GV->hasSection()) 351 Alignment = *GVAlign; 352 return Alignment; 353 } 354 355 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 356 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 357 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 358 VerboseAsm = OutStreamer->isVerboseAsm(); 359 } 360 361 AsmPrinter::~AsmPrinter() { 362 assert(!DD && Handlers.size() == NumUserHandlers && 363 "Debug/EH info didn't get finalized"); 364 365 if (GCMetadataPrinters) { 366 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 367 368 delete &GCMap; 369 GCMetadataPrinters = nullptr; 370 } 371 } 372 373 bool AsmPrinter::isPositionIndependent() const { 374 return TM.isPositionIndependent(); 375 } 376 377 /// getFunctionNumber - Return a unique ID for the current function. 378 unsigned AsmPrinter::getFunctionNumber() const { 379 return MF->getFunctionNumber(); 380 } 381 382 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 383 return *TM.getObjFileLowering(); 384 } 385 386 const DataLayout &AsmPrinter::getDataLayout() const { 387 return MMI->getModule()->getDataLayout(); 388 } 389 390 // Do not use the cached DataLayout because some client use it without a Module 391 // (dsymutil, llvm-dwarfdump). 392 unsigned AsmPrinter::getPointerSize() const { 393 return TM.getPointerSize(0); // FIXME: Default address space 394 } 395 396 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 397 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 398 return MF->getSubtarget<MCSubtargetInfo>(); 399 } 400 401 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 402 S.emitInstruction(Inst, getSubtargetInfo()); 403 } 404 405 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 406 if (DD) { 407 assert(OutStreamer->hasRawTextSupport() && 408 "Expected assembly output mode."); 409 // This is NVPTX specific and it's unclear why. 410 // PR51079: If we have code without debug information we need to give up. 411 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 412 if (!MFSP) 413 return; 414 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 415 } 416 } 417 418 /// getCurrentSection() - Return the current section we are emitting to. 419 const MCSection *AsmPrinter::getCurrentSection() const { 420 return OutStreamer->getCurrentSectionOnly(); 421 } 422 423 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 424 AU.setPreservesAll(); 425 MachineFunctionPass::getAnalysisUsage(AU); 426 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 427 AU.addRequired<GCModuleInfo>(); 428 } 429 430 bool AsmPrinter::doInitialization(Module &M) { 431 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 432 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 433 HasSplitStack = false; 434 HasNoSplitStack = false; 435 436 AddrLabelSymbols = nullptr; 437 438 // Initialize TargetLoweringObjectFile. 439 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 440 .Initialize(OutContext, TM); 441 442 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 443 .getModuleMetadata(M); 444 445 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 446 447 // Emit the version-min deployment target directive if needed. 448 // 449 // FIXME: If we end up with a collection of these sorts of Darwin-specific 450 // or ELF-specific things, it may make sense to have a platform helper class 451 // that will work with the target helper class. For now keep it here, as the 452 // alternative is duplicated code in each of the target asm printers that 453 // use the directive, where it would need the same conditionalization 454 // anyway. 455 const Triple &Target = TM.getTargetTriple(); 456 Triple TVT(M.getDarwinTargetVariantTriple()); 457 OutStreamer->emitVersionForTarget( 458 Target, M.getSDKVersion(), 459 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 460 M.getDarwinTargetVariantSDKVersion()); 461 462 // Allow the target to emit any magic that it wants at the start of the file. 463 emitStartOfAsmFile(M); 464 465 // Very minimal debug info. It is ignored if we emit actual debug info. If we 466 // don't, this at least helps the user find where a global came from. 467 if (MAI->hasSingleParameterDotFile()) { 468 // .file "foo.c" 469 470 SmallString<128> FileName; 471 if (MAI->hasBasenameOnlyForFileDirective()) 472 FileName = llvm::sys::path::filename(M.getSourceFileName()); 473 else 474 FileName = M.getSourceFileName(); 475 if (MAI->hasFourStringsDotFile()) { 476 #ifdef PACKAGE_VENDOR 477 const char VerStr[] = 478 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 479 #else 480 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 481 #endif 482 // TODO: Add timestamp and description. 483 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 484 } else { 485 OutStreamer->emitFileDirective(FileName); 486 } 487 } 488 489 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 490 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 491 for (auto &I : *MI) 492 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 493 MP->beginAssembly(M, *MI, *this); 494 495 // Emit module-level inline asm if it exists. 496 if (!M.getModuleInlineAsm().empty()) { 497 OutStreamer->AddComment("Start of file scope inline assembly"); 498 OutStreamer->addBlankLine(); 499 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 500 TM.Options.MCOptions); 501 OutStreamer->AddComment("End of file scope inline assembly"); 502 OutStreamer->addBlankLine(); 503 } 504 505 if (MAI->doesSupportDebugInformation()) { 506 bool EmitCodeView = M.getCodeViewFlag(); 507 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 508 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 509 DbgTimerName, DbgTimerDescription, 510 CodeViewLineTablesGroupName, 511 CodeViewLineTablesGroupDescription); 512 } 513 if (!EmitCodeView || M.getDwarfVersion()) { 514 if (MMI->hasDebugInfo()) { 515 DD = new DwarfDebug(this); 516 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 517 DbgTimerDescription, DWARFGroupName, 518 DWARFGroupDescription); 519 } 520 } 521 } 522 523 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 524 PP = new PseudoProbeHandler(this); 525 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 526 PPTimerDescription, PPGroupName, PPGroupDescription); 527 } 528 529 switch (MAI->getExceptionHandlingType()) { 530 case ExceptionHandling::None: 531 // We may want to emit CFI for debug. 532 LLVM_FALLTHROUGH; 533 case ExceptionHandling::SjLj: 534 case ExceptionHandling::DwarfCFI: 535 case ExceptionHandling::ARM: 536 for (auto &F : M.getFunctionList()) { 537 if (getFunctionCFISectionType(F) != CFISection::None) 538 ModuleCFISection = getFunctionCFISectionType(F); 539 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 540 // the module needs .eh_frame. If we have found that case, we are done. 541 if (ModuleCFISection == CFISection::EH) 542 break; 543 } 544 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 545 ModuleCFISection != CFISection::EH); 546 break; 547 default: 548 break; 549 } 550 551 EHStreamer *ES = nullptr; 552 switch (MAI->getExceptionHandlingType()) { 553 case ExceptionHandling::None: 554 if (!needsCFIForDebug()) 555 break; 556 LLVM_FALLTHROUGH; 557 case ExceptionHandling::SjLj: 558 case ExceptionHandling::DwarfCFI: 559 ES = new DwarfCFIException(this); 560 break; 561 case ExceptionHandling::ARM: 562 ES = new ARMException(this); 563 break; 564 case ExceptionHandling::WinEH: 565 switch (MAI->getWinEHEncodingType()) { 566 default: llvm_unreachable("unsupported unwinding information encoding"); 567 case WinEH::EncodingType::Invalid: 568 break; 569 case WinEH::EncodingType::X86: 570 case WinEH::EncodingType::Itanium: 571 ES = new WinException(this); 572 break; 573 } 574 break; 575 case ExceptionHandling::Wasm: 576 ES = new WasmException(this); 577 break; 578 case ExceptionHandling::AIX: 579 ES = new AIXException(this); 580 break; 581 } 582 if (ES) 583 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 584 EHTimerDescription, DWARFGroupName, 585 DWARFGroupDescription); 586 587 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 588 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 589 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 590 CFGuardDescription, DWARFGroupName, 591 DWARFGroupDescription); 592 593 for (const HandlerInfo &HI : Handlers) { 594 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 595 HI.TimerGroupDescription, TimePassesIsEnabled); 596 HI.Handler->beginModule(&M); 597 } 598 599 return false; 600 } 601 602 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 603 if (!MAI.hasWeakDefCanBeHiddenDirective()) 604 return false; 605 606 return GV->canBeOmittedFromSymbolTable(); 607 } 608 609 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 610 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 611 switch (Linkage) { 612 case GlobalValue::CommonLinkage: 613 case GlobalValue::LinkOnceAnyLinkage: 614 case GlobalValue::LinkOnceODRLinkage: 615 case GlobalValue::WeakAnyLinkage: 616 case GlobalValue::WeakODRLinkage: 617 if (MAI->hasWeakDefDirective()) { 618 // .globl _foo 619 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 620 621 if (!canBeHidden(GV, *MAI)) 622 // .weak_definition _foo 623 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 624 else 625 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 626 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 627 // .globl _foo 628 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 629 //NOTE: linkonce is handled by the section the symbol was assigned to. 630 } else { 631 // .weak _foo 632 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 633 } 634 return; 635 case GlobalValue::ExternalLinkage: 636 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 637 return; 638 case GlobalValue::PrivateLinkage: 639 case GlobalValue::InternalLinkage: 640 return; 641 case GlobalValue::ExternalWeakLinkage: 642 case GlobalValue::AvailableExternallyLinkage: 643 case GlobalValue::AppendingLinkage: 644 llvm_unreachable("Should never emit this"); 645 } 646 llvm_unreachable("Unknown linkage type!"); 647 } 648 649 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 650 const GlobalValue *GV) const { 651 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 652 } 653 654 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 655 return TM.getSymbol(GV); 656 } 657 658 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 659 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 660 // exact definion (intersection of GlobalValue::hasExactDefinition() and 661 // !isInterposable()). These linkages include: external, appending, internal, 662 // private. It may be profitable to use a local alias for external. The 663 // assembler would otherwise be conservative and assume a global default 664 // visibility symbol can be interposable, even if the code generator already 665 // assumed it. 666 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 667 const Module &M = *GV.getParent(); 668 if (TM.getRelocationModel() != Reloc::Static && 669 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 670 return getSymbolWithGlobalValueBase(&GV, "$local"); 671 } 672 return TM.getSymbol(&GV); 673 } 674 675 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 676 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 677 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 678 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 679 "No emulated TLS variables in the common section"); 680 681 // Never emit TLS variable xyz in emulated TLS model. 682 // The initialization value is in __emutls_t.xyz instead of xyz. 683 if (IsEmuTLSVar) 684 return; 685 686 if (GV->hasInitializer()) { 687 // Check to see if this is a special global used by LLVM, if so, emit it. 688 if (emitSpecialLLVMGlobal(GV)) 689 return; 690 691 // Skip the emission of global equivalents. The symbol can be emitted later 692 // on by emitGlobalGOTEquivs in case it turns out to be needed. 693 if (GlobalGOTEquivs.count(getSymbol(GV))) 694 return; 695 696 if (isVerbose()) { 697 // When printing the control variable __emutls_v.*, 698 // we don't need to print the original TLS variable name. 699 GV->printAsOperand(OutStreamer->getCommentOS(), 700 /*PrintType=*/false, GV->getParent()); 701 OutStreamer->getCommentOS() << '\n'; 702 } 703 } 704 705 MCSymbol *GVSym = getSymbol(GV); 706 MCSymbol *EmittedSym = GVSym; 707 708 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 709 // attributes. 710 // GV's or GVSym's attributes will be used for the EmittedSym. 711 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 712 713 if (!GV->hasInitializer()) // External globals require no extra code. 714 return; 715 716 GVSym->redefineIfPossible(); 717 if (GVSym->isDefined() || GVSym->isVariable()) 718 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 719 "' is already defined"); 720 721 if (MAI->hasDotTypeDotSizeDirective()) 722 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 723 724 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 725 726 const DataLayout &DL = GV->getParent()->getDataLayout(); 727 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 728 729 // If the alignment is specified, we *must* obey it. Overaligning a global 730 // with a specified alignment is a prompt way to break globals emitted to 731 // sections and expected to be contiguous (e.g. ObjC metadata). 732 const Align Alignment = getGVAlignment(GV, DL); 733 734 for (const HandlerInfo &HI : Handlers) { 735 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 736 HI.TimerGroupName, HI.TimerGroupDescription, 737 TimePassesIsEnabled); 738 HI.Handler->setSymbolSize(GVSym, Size); 739 } 740 741 // Handle common symbols 742 if (GVKind.isCommon()) { 743 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 744 // .comm _foo, 42, 4 745 const bool SupportsAlignment = 746 getObjFileLowering().getCommDirectiveSupportsAlignment(); 747 OutStreamer->emitCommonSymbol(GVSym, Size, 748 SupportsAlignment ? Alignment.value() : 0); 749 return; 750 } 751 752 // Determine to which section this global should be emitted. 753 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 754 755 // If we have a bss global going to a section that supports the 756 // zerofill directive, do so here. 757 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 758 TheSection->isVirtualSection()) { 759 if (Size == 0) 760 Size = 1; // zerofill of 0 bytes is undefined. 761 emitLinkage(GV, GVSym); 762 // .zerofill __DATA, __bss, _foo, 400, 5 763 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 764 return; 765 } 766 767 // If this is a BSS local symbol and we are emitting in the BSS 768 // section use .lcomm/.comm directive. 769 if (GVKind.isBSSLocal() && 770 getObjFileLowering().getBSSSection() == TheSection) { 771 if (Size == 0) 772 Size = 1; // .comm Foo, 0 is undefined, avoid it. 773 774 // Use .lcomm only if it supports user-specified alignment. 775 // Otherwise, while it would still be correct to use .lcomm in some 776 // cases (e.g. when Align == 1), the external assembler might enfore 777 // some -unknown- default alignment behavior, which could cause 778 // spurious differences between external and integrated assembler. 779 // Prefer to simply fall back to .local / .comm in this case. 780 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 781 // .lcomm _foo, 42 782 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 783 return; 784 } 785 786 // .local _foo 787 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 788 // .comm _foo, 42, 4 789 const bool SupportsAlignment = 790 getObjFileLowering().getCommDirectiveSupportsAlignment(); 791 OutStreamer->emitCommonSymbol(GVSym, Size, 792 SupportsAlignment ? Alignment.value() : 0); 793 return; 794 } 795 796 // Handle thread local data for mach-o which requires us to output an 797 // additional structure of data and mangle the original symbol so that we 798 // can reference it later. 799 // 800 // TODO: This should become an "emit thread local global" method on TLOF. 801 // All of this macho specific stuff should be sunk down into TLOFMachO and 802 // stuff like "TLSExtraDataSection" should no longer be part of the parent 803 // TLOF class. This will also make it more obvious that stuff like 804 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 805 // specific code. 806 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 807 // Emit the .tbss symbol 808 MCSymbol *MangSym = 809 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 810 811 if (GVKind.isThreadBSS()) { 812 TheSection = getObjFileLowering().getTLSBSSSection(); 813 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 814 } else if (GVKind.isThreadData()) { 815 OutStreamer->switchSection(TheSection); 816 817 emitAlignment(Alignment, GV); 818 OutStreamer->emitLabel(MangSym); 819 820 emitGlobalConstant(GV->getParent()->getDataLayout(), 821 GV->getInitializer()); 822 } 823 824 OutStreamer->addBlankLine(); 825 826 // Emit the variable struct for the runtime. 827 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 828 829 OutStreamer->switchSection(TLVSect); 830 // Emit the linkage here. 831 emitLinkage(GV, GVSym); 832 OutStreamer->emitLabel(GVSym); 833 834 // Three pointers in size: 835 // - __tlv_bootstrap - used to make sure support exists 836 // - spare pointer, used when mapped by the runtime 837 // - pointer to mangled symbol above with initializer 838 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 839 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 840 PtrSize); 841 OutStreamer->emitIntValue(0, PtrSize); 842 OutStreamer->emitSymbolValue(MangSym, PtrSize); 843 844 OutStreamer->addBlankLine(); 845 return; 846 } 847 848 MCSymbol *EmittedInitSym = GVSym; 849 850 OutStreamer->switchSection(TheSection); 851 852 emitLinkage(GV, EmittedInitSym); 853 emitAlignment(Alignment, GV); 854 855 OutStreamer->emitLabel(EmittedInitSym); 856 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 857 if (LocalAlias != EmittedInitSym) 858 OutStreamer->emitLabel(LocalAlias); 859 860 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 861 862 if (MAI->hasDotTypeDotSizeDirective()) 863 // .size foo, 42 864 OutStreamer->emitELFSize(EmittedInitSym, 865 MCConstantExpr::create(Size, OutContext)); 866 867 OutStreamer->addBlankLine(); 868 } 869 870 /// Emit the directive and value for debug thread local expression 871 /// 872 /// \p Value - The value to emit. 873 /// \p Size - The size of the integer (in bytes) to emit. 874 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 875 OutStreamer->emitValue(Value, Size); 876 } 877 878 void AsmPrinter::emitFunctionHeaderComment() {} 879 880 /// EmitFunctionHeader - This method emits the header for the current 881 /// function. 882 void AsmPrinter::emitFunctionHeader() { 883 const Function &F = MF->getFunction(); 884 885 if (isVerbose()) 886 OutStreamer->getCommentOS() 887 << "-- Begin function " 888 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 889 890 // Print out constants referenced by the function 891 emitConstantPool(); 892 893 // Print the 'header' of function. 894 // If basic block sections are desired, explicitly request a unique section 895 // for this function's entry block. 896 if (MF->front().isBeginSection()) 897 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 898 else 899 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 900 OutStreamer->switchSection(MF->getSection()); 901 902 if (!MAI->hasVisibilityOnlyWithLinkage()) 903 emitVisibility(CurrentFnSym, F.getVisibility()); 904 905 if (MAI->needsFunctionDescriptors()) 906 emitLinkage(&F, CurrentFnDescSym); 907 908 emitLinkage(&F, CurrentFnSym); 909 if (MAI->hasFunctionAlignment()) 910 emitAlignment(MF->getAlignment(), &F); 911 912 if (MAI->hasDotTypeDotSizeDirective()) 913 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 914 915 if (F.hasFnAttribute(Attribute::Cold)) 916 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 917 918 if (isVerbose()) { 919 F.printAsOperand(OutStreamer->getCommentOS(), 920 /*PrintType=*/false, F.getParent()); 921 emitFunctionHeaderComment(); 922 OutStreamer->getCommentOS() << '\n'; 923 } 924 925 // Emit the prefix data. 926 if (F.hasPrefixData()) { 927 if (MAI->hasSubsectionsViaSymbols()) { 928 // Preserving prefix data on platforms which use subsections-via-symbols 929 // is a bit tricky. Here we introduce a symbol for the prefix data 930 // and use the .alt_entry attribute to mark the function's real entry point 931 // as an alternative entry point to the prefix-data symbol. 932 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 933 OutStreamer->emitLabel(PrefixSym); 934 935 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 936 937 // Emit an .alt_entry directive for the actual function symbol. 938 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 939 } else { 940 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 941 } 942 } 943 944 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 945 // place prefix data before NOPs. 946 unsigned PatchableFunctionPrefix = 0; 947 unsigned PatchableFunctionEntry = 0; 948 (void)F.getFnAttribute("patchable-function-prefix") 949 .getValueAsString() 950 .getAsInteger(10, PatchableFunctionPrefix); 951 (void)F.getFnAttribute("patchable-function-entry") 952 .getValueAsString() 953 .getAsInteger(10, PatchableFunctionEntry); 954 if (PatchableFunctionPrefix) { 955 CurrentPatchableFunctionEntrySym = 956 OutContext.createLinkerPrivateTempSymbol(); 957 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 958 emitNops(PatchableFunctionPrefix); 959 } else if (PatchableFunctionEntry) { 960 // May be reassigned when emitting the body, to reference the label after 961 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 962 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 963 } 964 965 // Emit the function descriptor. This is a virtual function to allow targets 966 // to emit their specific function descriptor. Right now it is only used by 967 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 968 // descriptors and should be converted to use this hook as well. 969 if (MAI->needsFunctionDescriptors()) 970 emitFunctionDescriptor(); 971 972 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 973 // their wild and crazy things as required. 974 emitFunctionEntryLabel(); 975 976 // If the function had address-taken blocks that got deleted, then we have 977 // references to the dangling symbols. Emit them at the start of the function 978 // so that we don't get references to undefined symbols. 979 std::vector<MCSymbol*> DeadBlockSyms; 980 takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 981 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 982 OutStreamer->AddComment("Address taken block that was later removed"); 983 OutStreamer->emitLabel(DeadBlockSym); 984 } 985 986 if (CurrentFnBegin) { 987 if (MAI->useAssignmentForEHBegin()) { 988 MCSymbol *CurPos = OutContext.createTempSymbol(); 989 OutStreamer->emitLabel(CurPos); 990 OutStreamer->emitAssignment(CurrentFnBegin, 991 MCSymbolRefExpr::create(CurPos, OutContext)); 992 } else { 993 OutStreamer->emitLabel(CurrentFnBegin); 994 } 995 } 996 997 // Emit pre-function debug and/or EH information. 998 for (const HandlerInfo &HI : Handlers) { 999 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1000 HI.TimerGroupDescription, TimePassesIsEnabled); 1001 HI.Handler->beginFunction(MF); 1002 } 1003 1004 // Emit the prologue data. 1005 if (F.hasPrologueData()) 1006 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 1007 1008 // Emit the function prologue data for the indirect call sanitizer. 1009 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { 1010 assert(TM.getTargetTriple().getArch() == Triple::x86 || 1011 TM.getTargetTriple().getArch() == Triple::x86_64); 1012 assert(MD->getNumOperands() == 2); 1013 1014 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); 1015 auto *FTRTTIProxy = mdconst::extract<Constant>(MD->getOperand(1)); 1016 assert(PrologueSig && FTRTTIProxy); 1017 emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig); 1018 1019 const MCExpr *Proxy = lowerConstant(FTRTTIProxy); 1020 const MCExpr *FnExp = MCSymbolRefExpr::create(CurrentFnSym, OutContext); 1021 const MCExpr *PCRel = MCBinaryExpr::createSub(Proxy, FnExp, OutContext); 1022 // Use 32 bit since only small code model is supported. 1023 OutStreamer->emitValue(PCRel, 4u); 1024 } 1025 } 1026 1027 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 1028 /// function. This can be overridden by targets as required to do custom stuff. 1029 void AsmPrinter::emitFunctionEntryLabel() { 1030 CurrentFnSym->redefineIfPossible(); 1031 1032 // The function label could have already been emitted if two symbols end up 1033 // conflicting due to asm renaming. Detect this and emit an error. 1034 if (CurrentFnSym->isVariable()) 1035 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 1036 "' is a protected alias"); 1037 1038 OutStreamer->emitLabel(CurrentFnSym); 1039 1040 if (TM.getTargetTriple().isOSBinFormatELF()) { 1041 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 1042 if (Sym != CurrentFnSym) 1043 OutStreamer->emitLabel(Sym); 1044 } 1045 } 1046 1047 /// emitComments - Pretty-print comments for instructions. 1048 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 1049 const MachineFunction *MF = MI.getMF(); 1050 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1051 1052 // Check for spills and reloads 1053 1054 // We assume a single instruction only has a spill or reload, not 1055 // both. 1056 Optional<unsigned> Size; 1057 if ((Size = MI.getRestoreSize(TII))) { 1058 CommentOS << *Size << "-byte Reload\n"; 1059 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 1060 if (*Size) { 1061 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1062 CommentOS << "Unknown-size Folded Reload\n"; 1063 else 1064 CommentOS << *Size << "-byte Folded Reload\n"; 1065 } 1066 } else if ((Size = MI.getSpillSize(TII))) { 1067 CommentOS << *Size << "-byte Spill\n"; 1068 } else if ((Size = MI.getFoldedSpillSize(TII))) { 1069 if (*Size) { 1070 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1071 CommentOS << "Unknown-size Folded Spill\n"; 1072 else 1073 CommentOS << *Size << "-byte Folded Spill\n"; 1074 } 1075 } 1076 1077 // Check for spill-induced copies 1078 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 1079 CommentOS << " Reload Reuse\n"; 1080 } 1081 1082 /// emitImplicitDef - This method emits the specified machine instruction 1083 /// that is an implicit def. 1084 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 1085 Register RegNo = MI->getOperand(0).getReg(); 1086 1087 SmallString<128> Str; 1088 raw_svector_ostream OS(Str); 1089 OS << "implicit-def: " 1090 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 1091 1092 OutStreamer->AddComment(OS.str()); 1093 OutStreamer->addBlankLine(); 1094 } 1095 1096 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 1097 std::string Str; 1098 raw_string_ostream OS(Str); 1099 OS << "kill:"; 1100 for (const MachineOperand &Op : MI->operands()) { 1101 assert(Op.isReg() && "KILL instruction must have only register operands"); 1102 OS << ' ' << (Op.isDef() ? "def " : "killed ") 1103 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1104 } 1105 AP.OutStreamer->AddComment(OS.str()); 1106 AP.OutStreamer->addBlankLine(); 1107 } 1108 1109 /// emitDebugValueComment - This method handles the target-independent form 1110 /// of DBG_VALUE, returning true if it was able to do so. A false return 1111 /// means the target will need to handle MI in EmitInstruction. 1112 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 1113 // This code handles only the 4-operand target-independent form. 1114 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 1115 return false; 1116 1117 SmallString<128> Str; 1118 raw_svector_ostream OS(Str); 1119 OS << "DEBUG_VALUE: "; 1120 1121 const DILocalVariable *V = MI->getDebugVariable(); 1122 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 1123 StringRef Name = SP->getName(); 1124 if (!Name.empty()) 1125 OS << Name << ":"; 1126 } 1127 OS << V->getName(); 1128 OS << " <- "; 1129 1130 const DIExpression *Expr = MI->getDebugExpression(); 1131 if (Expr->getNumElements()) { 1132 OS << '['; 1133 ListSeparator LS; 1134 for (auto Op : Expr->expr_ops()) { 1135 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 1136 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 1137 OS << ' ' << Op.getArg(I); 1138 } 1139 OS << "] "; 1140 } 1141 1142 // Register or immediate value. Register 0 means undef. 1143 for (const MachineOperand &Op : MI->debug_operands()) { 1144 if (&Op != MI->debug_operands().begin()) 1145 OS << ", "; 1146 switch (Op.getType()) { 1147 case MachineOperand::MO_FPImmediate: { 1148 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 1149 Type *ImmTy = Op.getFPImm()->getType(); 1150 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 1151 ImmTy->isDoubleTy()) { 1152 OS << APF.convertToDouble(); 1153 } else { 1154 // There is no good way to print long double. Convert a copy to 1155 // double. Ah well, it's only a comment. 1156 bool ignored; 1157 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1158 &ignored); 1159 OS << "(long double) " << APF.convertToDouble(); 1160 } 1161 break; 1162 } 1163 case MachineOperand::MO_Immediate: { 1164 OS << Op.getImm(); 1165 break; 1166 } 1167 case MachineOperand::MO_CImmediate: { 1168 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 1169 break; 1170 } 1171 case MachineOperand::MO_TargetIndex: { 1172 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 1173 // NOTE: Want this comment at start of line, don't emit with AddComment. 1174 AP.OutStreamer->emitRawComment(OS.str()); 1175 break; 1176 } 1177 case MachineOperand::MO_Register: 1178 case MachineOperand::MO_FrameIndex: { 1179 Register Reg; 1180 Optional<StackOffset> Offset; 1181 if (Op.isReg()) { 1182 Reg = Op.getReg(); 1183 } else { 1184 const TargetFrameLowering *TFI = 1185 AP.MF->getSubtarget().getFrameLowering(); 1186 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1187 } 1188 if (!Reg) { 1189 // Suppress offset, it is not meaningful here. 1190 OS << "undef"; 1191 break; 1192 } 1193 // The second operand is only an offset if it's an immediate. 1194 if (MI->isIndirectDebugValue()) 1195 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1196 if (Offset) 1197 OS << '['; 1198 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1199 if (Offset) 1200 OS << '+' << Offset->getFixed() << ']'; 1201 break; 1202 } 1203 default: 1204 llvm_unreachable("Unknown operand type"); 1205 } 1206 } 1207 1208 // NOTE: Want this comment at start of line, don't emit with AddComment. 1209 AP.OutStreamer->emitRawComment(OS.str()); 1210 return true; 1211 } 1212 1213 /// This method handles the target-independent form of DBG_LABEL, returning 1214 /// true if it was able to do so. A false return means the target will need 1215 /// to handle MI in EmitInstruction. 1216 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1217 if (MI->getNumOperands() != 1) 1218 return false; 1219 1220 SmallString<128> Str; 1221 raw_svector_ostream OS(Str); 1222 OS << "DEBUG_LABEL: "; 1223 1224 const DILabel *V = MI->getDebugLabel(); 1225 if (auto *SP = dyn_cast<DISubprogram>( 1226 V->getScope()->getNonLexicalBlockFileScope())) { 1227 StringRef Name = SP->getName(); 1228 if (!Name.empty()) 1229 OS << Name << ":"; 1230 } 1231 OS << V->getName(); 1232 1233 // NOTE: Want this comment at start of line, don't emit with AddComment. 1234 AP.OutStreamer->emitRawComment(OS.str()); 1235 return true; 1236 } 1237 1238 AsmPrinter::CFISection 1239 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1240 // Ignore functions that won't get emitted. 1241 if (F.isDeclarationForLinker()) 1242 return CFISection::None; 1243 1244 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1245 F.needsUnwindTableEntry()) 1246 return CFISection::EH; 1247 1248 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1249 return CFISection::Debug; 1250 1251 return CFISection::None; 1252 } 1253 1254 AsmPrinter::CFISection 1255 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1256 return getFunctionCFISectionType(MF.getFunction()); 1257 } 1258 1259 bool AsmPrinter::needsSEHMoves() { 1260 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1261 } 1262 1263 bool AsmPrinter::needsCFIForDebug() const { 1264 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1265 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1266 } 1267 1268 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1269 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1270 if (!needsCFIForDebug() && 1271 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1272 ExceptionHandlingType != ExceptionHandling::ARM) 1273 return; 1274 1275 if (getFunctionCFISectionType(*MF) == CFISection::None) 1276 return; 1277 1278 // If there is no "real" instruction following this CFI instruction, skip 1279 // emitting it; it would be beyond the end of the function's FDE range. 1280 auto *MBB = MI.getParent(); 1281 auto I = std::next(MI.getIterator()); 1282 while (I != MBB->end() && I->isTransient()) 1283 ++I; 1284 if (I == MBB->instr_end() && 1285 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1286 return; 1287 1288 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1289 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1290 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1291 emitCFIInstruction(CFI); 1292 } 1293 1294 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1295 // The operands are the MCSymbol and the frame offset of the allocation. 1296 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1297 int FrameOffset = MI.getOperand(1).getImm(); 1298 1299 // Emit a symbol assignment. 1300 OutStreamer->emitAssignment(FrameAllocSym, 1301 MCConstantExpr::create(FrameOffset, OutContext)); 1302 } 1303 1304 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1305 /// given basic block. This can be used to capture more precise profile 1306 /// information. We use the last 4 bits (LSBs) to encode the following 1307 /// information: 1308 /// * (1): set if return block (ret or tail call). 1309 /// * (2): set if ends with a tail call. 1310 /// * (3): set if exception handling (EH) landing pad. 1311 /// * (4): set if the block can fall through to its next. 1312 /// The remaining bits are zero. 1313 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1314 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1315 return ((unsigned)MBB.isReturnBlock()) | 1316 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1317 (MBB.isEHPad() << 2) | 1318 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1319 } 1320 1321 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1322 MCSection *BBAddrMapSection = 1323 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1324 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1325 1326 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1327 1328 OutStreamer->pushSection(); 1329 OutStreamer->switchSection(BBAddrMapSection); 1330 OutStreamer->AddComment("version"); 1331 OutStreamer->emitInt8(OutStreamer->getContext().getBBAddrMapVersion()); 1332 OutStreamer->AddComment("feature"); 1333 OutStreamer->emitInt8(0); 1334 OutStreamer->AddComment("function address"); 1335 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1336 OutStreamer->AddComment("number of basic blocks"); 1337 OutStreamer->emitULEB128IntValue(MF.size()); 1338 const MCSymbol *PrevMBBEndSymbol = FunctionSymbol; 1339 // Emit BB Information for each basic block in the funciton. 1340 for (const MachineBasicBlock &MBB : MF) { 1341 const MCSymbol *MBBSymbol = 1342 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1343 // Emit the basic block offset relative to the end of the previous block. 1344 // This is zero unless the block is padded due to alignment. 1345 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); 1346 // Emit the basic block size. When BBs have alignments, their size cannot 1347 // always be computed from their offsets. 1348 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1349 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1350 PrevMBBEndSymbol = MBB.getEndSymbol(); 1351 } 1352 OutStreamer->popSection(); 1353 } 1354 1355 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1356 if (PP) { 1357 auto GUID = MI.getOperand(0).getImm(); 1358 auto Index = MI.getOperand(1).getImm(); 1359 auto Type = MI.getOperand(2).getImm(); 1360 auto Attr = MI.getOperand(3).getImm(); 1361 DILocation *DebugLoc = MI.getDebugLoc(); 1362 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1363 } 1364 } 1365 1366 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1367 if (!MF.getTarget().Options.EmitStackSizeSection) 1368 return; 1369 1370 MCSection *StackSizeSection = 1371 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1372 if (!StackSizeSection) 1373 return; 1374 1375 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1376 // Don't emit functions with dynamic stack allocations. 1377 if (FrameInfo.hasVarSizedObjects()) 1378 return; 1379 1380 OutStreamer->pushSection(); 1381 OutStreamer->switchSection(StackSizeSection); 1382 1383 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1384 uint64_t StackSize = 1385 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1386 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1387 OutStreamer->emitULEB128IntValue(StackSize); 1388 1389 OutStreamer->popSection(); 1390 } 1391 1392 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1393 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1394 1395 // OutputFilename empty implies -fstack-usage is not passed. 1396 if (OutputFilename.empty()) 1397 return; 1398 1399 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1400 uint64_t StackSize = 1401 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1402 1403 if (StackUsageStream == nullptr) { 1404 std::error_code EC; 1405 StackUsageStream = 1406 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1407 if (EC) { 1408 errs() << "Could not open file: " << EC.message(); 1409 return; 1410 } 1411 } 1412 1413 *StackUsageStream << MF.getFunction().getParent()->getName(); 1414 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1415 *StackUsageStream << ':' << DSP->getLine(); 1416 1417 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1418 if (FrameInfo.hasVarSizedObjects()) 1419 *StackUsageStream << "dynamic\n"; 1420 else 1421 *StackUsageStream << "static\n"; 1422 } 1423 1424 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1425 MachineModuleInfo &MMI = MF.getMMI(); 1426 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1427 return true; 1428 1429 // We might emit an EH table that uses function begin and end labels even if 1430 // we don't have any landingpads. 1431 if (!MF.getFunction().hasPersonalityFn()) 1432 return false; 1433 return !isNoOpWithoutInvoke( 1434 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1435 } 1436 1437 /// EmitFunctionBody - This method emits the body and trailer for a 1438 /// function. 1439 void AsmPrinter::emitFunctionBody() { 1440 emitFunctionHeader(); 1441 1442 // Emit target-specific gunk before the function body. 1443 emitFunctionBodyStart(); 1444 1445 if (isVerbose()) { 1446 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1447 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1448 if (!MDT) { 1449 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1450 OwnedMDT->getBase().recalculate(*MF); 1451 MDT = OwnedMDT.get(); 1452 } 1453 1454 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1455 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1456 if (!MLI) { 1457 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1458 OwnedMLI->getBase().analyze(MDT->getBase()); 1459 MLI = OwnedMLI.get(); 1460 } 1461 } 1462 1463 // Print out code for the function. 1464 bool HasAnyRealCode = false; 1465 int NumInstsInFunction = 0; 1466 1467 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1468 for (auto &MBB : *MF) { 1469 // Print a label for the basic block. 1470 emitBasicBlockStart(MBB); 1471 DenseMap<StringRef, unsigned> MnemonicCounts; 1472 for (auto &MI : MBB) { 1473 // Print the assembly for the instruction. 1474 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1475 !MI.isDebugInstr()) { 1476 HasAnyRealCode = true; 1477 ++NumInstsInFunction; 1478 } 1479 1480 // If there is a pre-instruction symbol, emit a label for it here. 1481 if (MCSymbol *S = MI.getPreInstrSymbol()) 1482 OutStreamer->emitLabel(S); 1483 1484 for (const HandlerInfo &HI : Handlers) { 1485 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1486 HI.TimerGroupDescription, TimePassesIsEnabled); 1487 HI.Handler->beginInstruction(&MI); 1488 } 1489 1490 if (isVerbose()) 1491 emitComments(MI, OutStreamer->getCommentOS()); 1492 1493 switch (MI.getOpcode()) { 1494 case TargetOpcode::CFI_INSTRUCTION: 1495 emitCFIInstruction(MI); 1496 break; 1497 case TargetOpcode::LOCAL_ESCAPE: 1498 emitFrameAlloc(MI); 1499 break; 1500 case TargetOpcode::ANNOTATION_LABEL: 1501 case TargetOpcode::EH_LABEL: 1502 case TargetOpcode::GC_LABEL: 1503 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1504 break; 1505 case TargetOpcode::INLINEASM: 1506 case TargetOpcode::INLINEASM_BR: 1507 emitInlineAsm(&MI); 1508 break; 1509 case TargetOpcode::DBG_VALUE: 1510 case TargetOpcode::DBG_VALUE_LIST: 1511 if (isVerbose()) { 1512 if (!emitDebugValueComment(&MI, *this)) 1513 emitInstruction(&MI); 1514 } 1515 break; 1516 case TargetOpcode::DBG_INSTR_REF: 1517 // This instruction reference will have been resolved to a machine 1518 // location, and a nearby DBG_VALUE created. We can safely ignore 1519 // the instruction reference. 1520 break; 1521 case TargetOpcode::DBG_PHI: 1522 // This instruction is only used to label a program point, it's purely 1523 // meta information. 1524 break; 1525 case TargetOpcode::DBG_LABEL: 1526 if (isVerbose()) { 1527 if (!emitDebugLabelComment(&MI, *this)) 1528 emitInstruction(&MI); 1529 } 1530 break; 1531 case TargetOpcode::IMPLICIT_DEF: 1532 if (isVerbose()) emitImplicitDef(&MI); 1533 break; 1534 case TargetOpcode::KILL: 1535 if (isVerbose()) emitKill(&MI, *this); 1536 break; 1537 case TargetOpcode::PSEUDO_PROBE: 1538 emitPseudoProbe(MI); 1539 break; 1540 case TargetOpcode::ARITH_FENCE: 1541 if (isVerbose()) 1542 OutStreamer->emitRawComment("ARITH_FENCE"); 1543 break; 1544 default: 1545 emitInstruction(&MI); 1546 if (CanDoExtraAnalysis) { 1547 MCInst MCI; 1548 MCI.setOpcode(MI.getOpcode()); 1549 auto Name = OutStreamer->getMnemonic(MCI); 1550 auto I = MnemonicCounts.insert({Name, 0u}); 1551 I.first->second++; 1552 } 1553 break; 1554 } 1555 1556 // If there is a post-instruction symbol, emit a label for it here. 1557 if (MCSymbol *S = MI.getPostInstrSymbol()) 1558 OutStreamer->emitLabel(S); 1559 1560 for (const HandlerInfo &HI : Handlers) { 1561 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1562 HI.TimerGroupDescription, TimePassesIsEnabled); 1563 HI.Handler->endInstruction(); 1564 } 1565 } 1566 1567 // We must emit temporary symbol for the end of this basic block, if either 1568 // we have BBLabels enabled or if this basic blocks marks the end of a 1569 // section. 1570 if (MF->hasBBLabels() || 1571 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1572 OutStreamer->emitLabel(MBB.getEndSymbol()); 1573 1574 if (MBB.isEndSection()) { 1575 // The size directive for the section containing the entry block is 1576 // handled separately by the function section. 1577 if (!MBB.sameSection(&MF->front())) { 1578 if (MAI->hasDotTypeDotSizeDirective()) { 1579 // Emit the size directive for the basic block section. 1580 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1581 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1582 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1583 OutContext); 1584 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1585 } 1586 MBBSectionRanges[MBB.getSectionIDNum()] = 1587 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1588 } 1589 } 1590 emitBasicBlockEnd(MBB); 1591 1592 if (CanDoExtraAnalysis) { 1593 // Skip empty blocks. 1594 if (MBB.empty()) 1595 continue; 1596 1597 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1598 MBB.begin()->getDebugLoc(), &MBB); 1599 1600 // Generate instruction mix remark. First, sort counts in descending order 1601 // by count and name. 1602 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1603 for (auto &KV : MnemonicCounts) 1604 MnemonicVec.emplace_back(KV.first, KV.second); 1605 1606 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1607 const std::pair<StringRef, unsigned> &B) { 1608 if (A.second > B.second) 1609 return true; 1610 if (A.second == B.second) 1611 return StringRef(A.first) < StringRef(B.first); 1612 return false; 1613 }); 1614 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1615 for (auto &KV : MnemonicVec) { 1616 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1617 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1618 } 1619 ORE->emit(R); 1620 } 1621 } 1622 1623 EmittedInsts += NumInstsInFunction; 1624 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1625 MF->getFunction().getSubprogram(), 1626 &MF->front()); 1627 R << ore::NV("NumInstructions", NumInstsInFunction) 1628 << " instructions in function"; 1629 ORE->emit(R); 1630 1631 // If the function is empty and the object file uses .subsections_via_symbols, 1632 // then we need to emit *something* to the function body to prevent the 1633 // labels from collapsing together. Just emit a noop. 1634 // Similarly, don't emit empty functions on Windows either. It can lead to 1635 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1636 // after linking, causing the kernel not to load the binary: 1637 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1638 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1639 const Triple &TT = TM.getTargetTriple(); 1640 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1641 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1642 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1643 1644 // Targets can opt-out of emitting the noop here by leaving the opcode 1645 // unspecified. 1646 if (Noop.getOpcode()) { 1647 OutStreamer->AddComment("avoids zero-length function"); 1648 emitNops(1); 1649 } 1650 } 1651 1652 // Switch to the original section in case basic block sections was used. 1653 OutStreamer->switchSection(MF->getSection()); 1654 1655 const Function &F = MF->getFunction(); 1656 for (const auto &BB : F) { 1657 if (!BB.hasAddressTaken()) 1658 continue; 1659 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1660 if (Sym->isDefined()) 1661 continue; 1662 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1663 OutStreamer->emitLabel(Sym); 1664 } 1665 1666 // Emit target-specific gunk after the function body. 1667 emitFunctionBodyEnd(); 1668 1669 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1670 MAI->hasDotTypeDotSizeDirective()) { 1671 // Create a symbol for the end of function. 1672 CurrentFnEnd = createTempSymbol("func_end"); 1673 OutStreamer->emitLabel(CurrentFnEnd); 1674 } 1675 1676 // If the target wants a .size directive for the size of the function, emit 1677 // it. 1678 if (MAI->hasDotTypeDotSizeDirective()) { 1679 // We can get the size as difference between the function label and the 1680 // temp label. 1681 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1682 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1683 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1684 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1685 } 1686 1687 for (const HandlerInfo &HI : Handlers) { 1688 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1689 HI.TimerGroupDescription, TimePassesIsEnabled); 1690 HI.Handler->markFunctionEnd(); 1691 } 1692 1693 MBBSectionRanges[MF->front().getSectionIDNum()] = 1694 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1695 1696 // Print out jump tables referenced by the function. 1697 emitJumpTableInfo(); 1698 1699 // Emit post-function debug and/or EH information. 1700 for (const HandlerInfo &HI : Handlers) { 1701 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1702 HI.TimerGroupDescription, TimePassesIsEnabled); 1703 HI.Handler->endFunction(MF); 1704 } 1705 1706 // Emit section containing BB address offsets and their metadata, when 1707 // BB labels are requested for this function. Skip empty functions. 1708 if (MF->hasBBLabels() && HasAnyRealCode) 1709 emitBBAddrMapSection(*MF); 1710 1711 // Emit section containing stack size metadata. 1712 emitStackSizeSection(*MF); 1713 1714 // Emit .su file containing function stack size information. 1715 emitStackUsage(*MF); 1716 1717 emitPatchableFunctionEntries(); 1718 1719 if (isVerbose()) 1720 OutStreamer->getCommentOS() << "-- End function\n"; 1721 1722 OutStreamer->addBlankLine(); 1723 } 1724 1725 /// Compute the number of Global Variables that uses a Constant. 1726 static unsigned getNumGlobalVariableUses(const Constant *C) { 1727 if (!C) 1728 return 0; 1729 1730 if (isa<GlobalVariable>(C)) 1731 return 1; 1732 1733 unsigned NumUses = 0; 1734 for (auto *CU : C->users()) 1735 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1736 1737 return NumUses; 1738 } 1739 1740 /// Only consider global GOT equivalents if at least one user is a 1741 /// cstexpr inside an initializer of another global variables. Also, don't 1742 /// handle cstexpr inside instructions. During global variable emission, 1743 /// candidates are skipped and are emitted later in case at least one cstexpr 1744 /// isn't replaced by a PC relative GOT entry access. 1745 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1746 unsigned &NumGOTEquivUsers) { 1747 // Global GOT equivalents are unnamed private globals with a constant 1748 // pointer initializer to another global symbol. They must point to a 1749 // GlobalVariable or Function, i.e., as GlobalValue. 1750 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1751 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1752 !isa<GlobalValue>(GV->getOperand(0))) 1753 return false; 1754 1755 // To be a got equivalent, at least one of its users need to be a constant 1756 // expression used by another global variable. 1757 for (auto *U : GV->users()) 1758 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1759 1760 return NumGOTEquivUsers > 0; 1761 } 1762 1763 /// Unnamed constant global variables solely contaning a pointer to 1764 /// another globals variable is equivalent to a GOT table entry; it contains the 1765 /// the address of another symbol. Optimize it and replace accesses to these 1766 /// "GOT equivalents" by using the GOT entry for the final global instead. 1767 /// Compute GOT equivalent candidates among all global variables to avoid 1768 /// emitting them if possible later on, after it use is replaced by a GOT entry 1769 /// access. 1770 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1771 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1772 return; 1773 1774 for (const auto &G : M.globals()) { 1775 unsigned NumGOTEquivUsers = 0; 1776 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1777 continue; 1778 1779 const MCSymbol *GOTEquivSym = getSymbol(&G); 1780 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1781 } 1782 } 1783 1784 /// Constant expressions using GOT equivalent globals may not be eligible 1785 /// for PC relative GOT entry conversion, in such cases we need to emit such 1786 /// globals we previously omitted in EmitGlobalVariable. 1787 void AsmPrinter::emitGlobalGOTEquivs() { 1788 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1789 return; 1790 1791 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1792 for (auto &I : GlobalGOTEquivs) { 1793 const GlobalVariable *GV = I.second.first; 1794 unsigned Cnt = I.second.second; 1795 if (Cnt) 1796 FailedCandidates.push_back(GV); 1797 } 1798 GlobalGOTEquivs.clear(); 1799 1800 for (auto *GV : FailedCandidates) 1801 emitGlobalVariable(GV); 1802 } 1803 1804 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 1805 MCSymbol *Name = getSymbol(&GA); 1806 bool IsFunction = GA.getValueType()->isFunctionTy(); 1807 // Treat bitcasts of functions as functions also. This is important at least 1808 // on WebAssembly where object and function addresses can't alias each other. 1809 if (!IsFunction) 1810 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); 1811 1812 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1813 // so AIX has to use the extra-label-at-definition strategy. At this 1814 // point, all the extra label is emitted, we just have to emit linkage for 1815 // those labels. 1816 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1817 assert(MAI->hasVisibilityOnlyWithLinkage() && 1818 "Visibility should be handled with emitLinkage() on AIX."); 1819 emitLinkage(&GA, Name); 1820 // If it's a function, also emit linkage for aliases of function entry 1821 // point. 1822 if (IsFunction) 1823 emitLinkage(&GA, 1824 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 1825 return; 1826 } 1827 1828 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1829 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1830 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 1831 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1832 else 1833 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 1834 1835 // Set the symbol type to function if the alias has a function type. 1836 // This affects codegen when the aliasee is not a function. 1837 if (IsFunction) { 1838 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1839 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1840 OutStreamer->beginCOFFSymbolDef(Name); 1841 OutStreamer->emitCOFFSymbolStorageClass( 1842 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 1843 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 1844 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 1845 << COFF::SCT_COMPLEX_TYPE_SHIFT); 1846 OutStreamer->endCOFFSymbolDef(); 1847 } 1848 } 1849 1850 emitVisibility(Name, GA.getVisibility()); 1851 1852 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 1853 1854 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1855 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1856 1857 // Emit the directives as assignments aka .set: 1858 OutStreamer->emitAssignment(Name, Expr); 1859 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 1860 if (LocalAlias != Name) 1861 OutStreamer->emitAssignment(LocalAlias, Expr); 1862 1863 // If the aliasee does not correspond to a symbol in the output, i.e. the 1864 // alias is not of an object or the aliased object is private, then set the 1865 // size of the alias symbol from the type of the alias. We don't do this in 1866 // other situations as the alias and aliasee having differing types but same 1867 // size may be intentional. 1868 const GlobalObject *BaseObject = GA.getAliaseeObject(); 1869 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 1870 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1871 const DataLayout &DL = M.getDataLayout(); 1872 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 1873 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1874 } 1875 } 1876 1877 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 1878 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 1879 "IFunc is not supported on AIX."); 1880 1881 MCSymbol *Name = getSymbol(&GI); 1882 1883 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1884 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1885 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 1886 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1887 else 1888 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 1889 1890 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1891 emitVisibility(Name, GI.getVisibility()); 1892 1893 // Emit the directives as assignments aka .set: 1894 const MCExpr *Expr = lowerConstant(GI.getResolver()); 1895 OutStreamer->emitAssignment(Name, Expr); 1896 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 1897 if (LocalAlias != Name) 1898 OutStreamer->emitAssignment(LocalAlias, Expr); 1899 } 1900 1901 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1902 if (!RS.needsSection()) 1903 return; 1904 1905 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1906 1907 Optional<SmallString<128>> Filename; 1908 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1909 Filename = *FilenameRef; 1910 sys::fs::make_absolute(*Filename); 1911 assert(!Filename->empty() && "The filename can't be empty."); 1912 } 1913 1914 std::string Buf; 1915 raw_string_ostream OS(Buf); 1916 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1917 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 1918 : RemarkSerializer.metaSerializer(OS); 1919 MetaSerializer->emit(); 1920 1921 // Switch to the remarks section. 1922 MCSection *RemarksSection = 1923 OutContext.getObjectFileInfo()->getRemarksSection(); 1924 OutStreamer->switchSection(RemarksSection); 1925 1926 OutStreamer->emitBinaryData(OS.str()); 1927 } 1928 1929 bool AsmPrinter::doFinalization(Module &M) { 1930 // Set the MachineFunction to nullptr so that we can catch attempted 1931 // accesses to MF specific features at the module level and so that 1932 // we can conditionalize accesses based on whether or not it is nullptr. 1933 MF = nullptr; 1934 1935 // Gather all GOT equivalent globals in the module. We really need two 1936 // passes over the globals: one to compute and another to avoid its emission 1937 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1938 // where the got equivalent shows up before its use. 1939 computeGlobalGOTEquivs(M); 1940 1941 // Emit global variables. 1942 for (const auto &G : M.globals()) 1943 emitGlobalVariable(&G); 1944 1945 // Emit remaining GOT equivalent globals. 1946 emitGlobalGOTEquivs(); 1947 1948 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1949 1950 // Emit linkage(XCOFF) and visibility info for declarations 1951 for (const Function &F : M) { 1952 if (!F.isDeclarationForLinker()) 1953 continue; 1954 1955 MCSymbol *Name = getSymbol(&F); 1956 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1957 1958 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1959 GlobalValue::VisibilityTypes V = F.getVisibility(); 1960 if (V == GlobalValue::DefaultVisibility) 1961 continue; 1962 1963 emitVisibility(Name, V, false); 1964 continue; 1965 } 1966 1967 if (F.isIntrinsic()) 1968 continue; 1969 1970 // Handle the XCOFF case. 1971 // Variable `Name` is the function descriptor symbol (see above). Get the 1972 // function entry point symbol. 1973 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1974 // Emit linkage for the function entry point. 1975 emitLinkage(&F, FnEntryPointSym); 1976 1977 // Emit linkage for the function descriptor. 1978 emitLinkage(&F, Name); 1979 } 1980 1981 // Emit the remarks section contents. 1982 // FIXME: Figure out when is the safest time to emit this section. It should 1983 // not come after debug info. 1984 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1985 emitRemarksSection(*RS); 1986 1987 TLOF.emitModuleMetadata(*OutStreamer, M); 1988 1989 if (TM.getTargetTriple().isOSBinFormatELF()) { 1990 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1991 1992 // Output stubs for external and common global variables. 1993 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1994 if (!Stubs.empty()) { 1995 OutStreamer->switchSection(TLOF.getDataSection()); 1996 const DataLayout &DL = M.getDataLayout(); 1997 1998 emitAlignment(Align(DL.getPointerSize())); 1999 for (const auto &Stub : Stubs) { 2000 OutStreamer->emitLabel(Stub.first); 2001 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2002 DL.getPointerSize()); 2003 } 2004 } 2005 } 2006 2007 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2008 MachineModuleInfoCOFF &MMICOFF = 2009 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 2010 2011 // Output stubs for external and common global variables. 2012 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 2013 if (!Stubs.empty()) { 2014 const DataLayout &DL = M.getDataLayout(); 2015 2016 for (const auto &Stub : Stubs) { 2017 SmallString<256> SectionName = StringRef(".rdata$"); 2018 SectionName += Stub.first->getName(); 2019 OutStreamer->switchSection(OutContext.getCOFFSection( 2020 SectionName, 2021 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 2022 COFF::IMAGE_SCN_LNK_COMDAT, 2023 SectionKind::getReadOnly(), Stub.first->getName(), 2024 COFF::IMAGE_COMDAT_SELECT_ANY)); 2025 emitAlignment(Align(DL.getPointerSize())); 2026 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 2027 OutStreamer->emitLabel(Stub.first); 2028 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2029 DL.getPointerSize()); 2030 } 2031 } 2032 } 2033 2034 // This needs to happen before emitting debug information since that can end 2035 // arbitrary sections. 2036 if (auto *TS = OutStreamer->getTargetStreamer()) 2037 TS->emitConstantPools(); 2038 2039 // Finalize debug and EH information. 2040 for (const HandlerInfo &HI : Handlers) { 2041 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 2042 HI.TimerGroupDescription, TimePassesIsEnabled); 2043 HI.Handler->endModule(); 2044 } 2045 2046 // This deletes all the ephemeral handlers that AsmPrinter added, while 2047 // keeping all the user-added handlers alive until the AsmPrinter is 2048 // destroyed. 2049 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 2050 DD = nullptr; 2051 2052 // If the target wants to know about weak references, print them all. 2053 if (MAI->getWeakRefDirective()) { 2054 // FIXME: This is not lazy, it would be nice to only print weak references 2055 // to stuff that is actually used. Note that doing so would require targets 2056 // to notice uses in operands (due to constant exprs etc). This should 2057 // happen with the MC stuff eventually. 2058 2059 // Print out module-level global objects here. 2060 for (const auto &GO : M.global_objects()) { 2061 if (!GO.hasExternalWeakLinkage()) 2062 continue; 2063 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 2064 } 2065 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 2066 auto SymbolName = "swift_async_extendedFramePointerFlags"; 2067 auto Global = M.getGlobalVariable(SymbolName); 2068 if (!Global) { 2069 auto Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 2070 Global = new GlobalVariable(M, Int8PtrTy, false, 2071 GlobalValue::ExternalWeakLinkage, nullptr, 2072 SymbolName); 2073 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 2074 } 2075 } 2076 } 2077 2078 // Print aliases in topological order, that is, for each alias a = b, 2079 // b must be printed before a. 2080 // This is because on some targets (e.g. PowerPC) linker expects aliases in 2081 // such an order to generate correct TOC information. 2082 SmallVector<const GlobalAlias *, 16> AliasStack; 2083 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 2084 for (const auto &Alias : M.aliases()) { 2085 for (const GlobalAlias *Cur = &Alias; Cur; 2086 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 2087 if (!AliasVisited.insert(Cur).second) 2088 break; 2089 AliasStack.push_back(Cur); 2090 } 2091 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 2092 emitGlobalAlias(M, *AncestorAlias); 2093 AliasStack.clear(); 2094 } 2095 for (const auto &IFunc : M.ifuncs()) 2096 emitGlobalIFunc(M, IFunc); 2097 2098 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2099 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2100 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 2101 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 2102 MP->finishAssembly(M, *MI, *this); 2103 2104 // Emit llvm.ident metadata in an '.ident' directive. 2105 emitModuleIdents(M); 2106 2107 // Emit bytes for llvm.commandline metadata. 2108 emitModuleCommandLines(M); 2109 2110 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 2111 // split-stack is used. 2112 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { 2113 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", 2114 ELF::SHT_PROGBITS, 0)); 2115 if (HasNoSplitStack) 2116 OutStreamer->switchSection(OutContext.getELFSection( 2117 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 2118 } 2119 2120 // If we don't have any trampolines, then we don't require stack memory 2121 // to be executable. Some targets have a directive to declare this. 2122 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 2123 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 2124 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 2125 OutStreamer->switchSection(S); 2126 2127 if (TM.Options.EmitAddrsig) { 2128 // Emit address-significance attributes for all globals. 2129 OutStreamer->emitAddrsig(); 2130 for (const GlobalValue &GV : M.global_values()) { 2131 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 2132 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 2133 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 2134 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 2135 } 2136 } 2137 2138 // Emit symbol partition specifications (ELF only). 2139 if (TM.getTargetTriple().isOSBinFormatELF()) { 2140 unsigned UniqueID = 0; 2141 for (const GlobalValue &GV : M.global_values()) { 2142 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 2143 GV.getVisibility() != GlobalValue::DefaultVisibility) 2144 continue; 2145 2146 OutStreamer->switchSection( 2147 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 2148 "", false, ++UniqueID, nullptr)); 2149 OutStreamer->emitBytes(GV.getPartition()); 2150 OutStreamer->emitZeros(1); 2151 OutStreamer->emitValue( 2152 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 2153 MAI->getCodePointerSize()); 2154 } 2155 } 2156 2157 // Allow the target to emit any magic that it wants at the end of the file, 2158 // after everything else has gone out. 2159 emitEndOfAsmFile(M); 2160 2161 MMI = nullptr; 2162 AddrLabelSymbols = nullptr; 2163 2164 OutStreamer->finish(); 2165 OutStreamer->reset(); 2166 OwnedMLI.reset(); 2167 OwnedMDT.reset(); 2168 2169 return false; 2170 } 2171 2172 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2173 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 2174 if (Res.second) 2175 Res.first->second = createTempSymbol("exception"); 2176 return Res.first->second; 2177 } 2178 2179 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2180 this->MF = &MF; 2181 const Function &F = MF.getFunction(); 2182 2183 // Record that there are split-stack functions, so we will emit a special 2184 // section to tell the linker. 2185 if (MF.shouldSplitStack()) { 2186 HasSplitStack = true; 2187 2188 if (!MF.getFrameInfo().needsSplitStackProlog()) 2189 HasNoSplitStack = true; 2190 } else 2191 HasNoSplitStack = true; 2192 2193 // Get the function symbol. 2194 if (!MAI->needsFunctionDescriptors()) { 2195 CurrentFnSym = getSymbol(&MF.getFunction()); 2196 } else { 2197 assert(TM.getTargetTriple().isOSAIX() && 2198 "Only AIX uses the function descriptor hooks."); 2199 // AIX is unique here in that the name of the symbol emitted for the 2200 // function body does not have the same name as the source function's 2201 // C-linkage name. 2202 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2203 " initalized first."); 2204 2205 // Get the function entry point symbol. 2206 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2207 } 2208 2209 CurrentFnSymForSize = CurrentFnSym; 2210 CurrentFnBegin = nullptr; 2211 CurrentSectionBeginSym = nullptr; 2212 MBBSectionRanges.clear(); 2213 MBBSectionExceptionSyms.clear(); 2214 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2215 if (F.hasFnAttribute("patchable-function-entry") || 2216 F.hasFnAttribute("function-instrument") || 2217 F.hasFnAttribute("xray-instruction-threshold") || 2218 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 2219 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2220 CurrentFnBegin = createTempSymbol("func_begin"); 2221 if (NeedsLocalForSize) 2222 CurrentFnSymForSize = CurrentFnBegin; 2223 } 2224 2225 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2226 } 2227 2228 namespace { 2229 2230 // Keep track the alignment, constpool entries per Section. 2231 struct SectionCPs { 2232 MCSection *S; 2233 Align Alignment; 2234 SmallVector<unsigned, 4> CPEs; 2235 2236 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2237 }; 2238 2239 } // end anonymous namespace 2240 2241 /// EmitConstantPool - Print to the current output stream assembly 2242 /// representations of the constants in the constant pool MCP. This is 2243 /// used to print out constants which have been "spilled to memory" by 2244 /// the code generator. 2245 void AsmPrinter::emitConstantPool() { 2246 const MachineConstantPool *MCP = MF->getConstantPool(); 2247 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2248 if (CP.empty()) return; 2249 2250 // Calculate sections for constant pool entries. We collect entries to go into 2251 // the same section together to reduce amount of section switch statements. 2252 SmallVector<SectionCPs, 4> CPSections; 2253 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2254 const MachineConstantPoolEntry &CPE = CP[i]; 2255 Align Alignment = CPE.getAlign(); 2256 2257 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2258 2259 const Constant *C = nullptr; 2260 if (!CPE.isMachineConstantPoolEntry()) 2261 C = CPE.Val.ConstVal; 2262 2263 MCSection *S = getObjFileLowering().getSectionForConstant( 2264 getDataLayout(), Kind, C, Alignment); 2265 2266 // The number of sections are small, just do a linear search from the 2267 // last section to the first. 2268 bool Found = false; 2269 unsigned SecIdx = CPSections.size(); 2270 while (SecIdx != 0) { 2271 if (CPSections[--SecIdx].S == S) { 2272 Found = true; 2273 break; 2274 } 2275 } 2276 if (!Found) { 2277 SecIdx = CPSections.size(); 2278 CPSections.push_back(SectionCPs(S, Alignment)); 2279 } 2280 2281 if (Alignment > CPSections[SecIdx].Alignment) 2282 CPSections[SecIdx].Alignment = Alignment; 2283 CPSections[SecIdx].CPEs.push_back(i); 2284 } 2285 2286 // Now print stuff into the calculated sections. 2287 const MCSection *CurSection = nullptr; 2288 unsigned Offset = 0; 2289 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2290 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2291 unsigned CPI = CPSections[i].CPEs[j]; 2292 MCSymbol *Sym = GetCPISymbol(CPI); 2293 if (!Sym->isUndefined()) 2294 continue; 2295 2296 if (CurSection != CPSections[i].S) { 2297 OutStreamer->switchSection(CPSections[i].S); 2298 emitAlignment(Align(CPSections[i].Alignment)); 2299 CurSection = CPSections[i].S; 2300 Offset = 0; 2301 } 2302 2303 MachineConstantPoolEntry CPE = CP[CPI]; 2304 2305 // Emit inter-object padding for alignment. 2306 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2307 OutStreamer->emitZeros(NewOffset - Offset); 2308 2309 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2310 2311 OutStreamer->emitLabel(Sym); 2312 if (CPE.isMachineConstantPoolEntry()) 2313 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2314 else 2315 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2316 } 2317 } 2318 } 2319 2320 // Print assembly representations of the jump tables used by the current 2321 // function. 2322 void AsmPrinter::emitJumpTableInfo() { 2323 const DataLayout &DL = MF->getDataLayout(); 2324 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2325 if (!MJTI) return; 2326 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2327 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2328 if (JT.empty()) return; 2329 2330 // Pick the directive to use to print the jump table entries, and switch to 2331 // the appropriate section. 2332 const Function &F = MF->getFunction(); 2333 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2334 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2335 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2336 F); 2337 if (JTInDiffSection) { 2338 // Drop it in the readonly section. 2339 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2340 OutStreamer->switchSection(ReadOnlySection); 2341 } 2342 2343 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2344 2345 // Jump tables in code sections are marked with a data_region directive 2346 // where that's supported. 2347 if (!JTInDiffSection) 2348 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2349 2350 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2351 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2352 2353 // If this jump table was deleted, ignore it. 2354 if (JTBBs.empty()) continue; 2355 2356 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2357 /// emit a .set directive for each unique entry. 2358 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2359 MAI->doesSetDirectiveSuppressReloc()) { 2360 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2361 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2362 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2363 for (const MachineBasicBlock *MBB : JTBBs) { 2364 if (!EmittedSets.insert(MBB).second) 2365 continue; 2366 2367 // .set LJTSet, LBB32-base 2368 const MCExpr *LHS = 2369 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2370 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2371 MCBinaryExpr::createSub(LHS, Base, 2372 OutContext)); 2373 } 2374 } 2375 2376 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2377 // before each jump table. The first label is never referenced, but tells 2378 // the assembler and linker the extents of the jump table object. The 2379 // second label is actually referenced by the code. 2380 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2381 // FIXME: This doesn't have to have any specific name, just any randomly 2382 // named and numbered local label started with 'l' would work. Simplify 2383 // GetJTISymbol. 2384 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2385 2386 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2387 OutStreamer->emitLabel(JTISymbol); 2388 2389 for (const MachineBasicBlock *MBB : JTBBs) 2390 emitJumpTableEntry(MJTI, MBB, JTI); 2391 } 2392 if (!JTInDiffSection) 2393 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2394 } 2395 2396 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2397 /// current stream. 2398 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2399 const MachineBasicBlock *MBB, 2400 unsigned UID) const { 2401 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2402 const MCExpr *Value = nullptr; 2403 switch (MJTI->getEntryKind()) { 2404 case MachineJumpTableInfo::EK_Inline: 2405 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2406 case MachineJumpTableInfo::EK_Custom32: 2407 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2408 MJTI, MBB, UID, OutContext); 2409 break; 2410 case MachineJumpTableInfo::EK_BlockAddress: 2411 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2412 // .word LBB123 2413 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2414 break; 2415 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2416 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2417 // with a relocation as gp-relative, e.g.: 2418 // .gprel32 LBB123 2419 MCSymbol *MBBSym = MBB->getSymbol(); 2420 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2421 return; 2422 } 2423 2424 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2425 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2426 // with a relocation as gp-relative, e.g.: 2427 // .gpdword LBB123 2428 MCSymbol *MBBSym = MBB->getSymbol(); 2429 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2430 return; 2431 } 2432 2433 case MachineJumpTableInfo::EK_LabelDifference32: { 2434 // Each entry is the address of the block minus the address of the jump 2435 // table. This is used for PIC jump tables where gprel32 is not supported. 2436 // e.g.: 2437 // .word LBB123 - LJTI1_2 2438 // If the .set directive avoids relocations, this is emitted as: 2439 // .set L4_5_set_123, LBB123 - LJTI1_2 2440 // .word L4_5_set_123 2441 if (MAI->doesSetDirectiveSuppressReloc()) { 2442 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2443 OutContext); 2444 break; 2445 } 2446 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2447 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2448 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2449 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2450 break; 2451 } 2452 } 2453 2454 assert(Value && "Unknown entry kind!"); 2455 2456 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2457 OutStreamer->emitValue(Value, EntrySize); 2458 } 2459 2460 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2461 /// special global used by LLVM. If so, emit it and return true, otherwise 2462 /// do nothing and return false. 2463 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2464 if (GV->getName() == "llvm.used") { 2465 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2466 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2467 return true; 2468 } 2469 2470 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2471 if (GV->getSection() == "llvm.metadata" || 2472 GV->hasAvailableExternallyLinkage()) 2473 return true; 2474 2475 if (!GV->hasAppendingLinkage()) return false; 2476 2477 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2478 2479 if (GV->getName() == "llvm.global_ctors") { 2480 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2481 /* isCtor */ true); 2482 2483 return true; 2484 } 2485 2486 if (GV->getName() == "llvm.global_dtors") { 2487 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2488 /* isCtor */ false); 2489 2490 return true; 2491 } 2492 2493 report_fatal_error("unknown special variable"); 2494 } 2495 2496 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2497 /// global in the specified llvm.used list. 2498 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2499 // Should be an array of 'i8*'. 2500 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2501 const GlobalValue *GV = 2502 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2503 if (GV) 2504 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2505 } 2506 } 2507 2508 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2509 const Constant *List, 2510 SmallVector<Structor, 8> &Structors) { 2511 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2512 // the init priority. 2513 if (!isa<ConstantArray>(List)) 2514 return; 2515 2516 // Gather the structors in a form that's convenient for sorting by priority. 2517 for (Value *O : cast<ConstantArray>(List)->operands()) { 2518 auto *CS = cast<ConstantStruct>(O); 2519 if (CS->getOperand(1)->isNullValue()) 2520 break; // Found a null terminator, skip the rest. 2521 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2522 if (!Priority) 2523 continue; // Malformed. 2524 Structors.push_back(Structor()); 2525 Structor &S = Structors.back(); 2526 S.Priority = Priority->getLimitedValue(65535); 2527 S.Func = CS->getOperand(1); 2528 if (!CS->getOperand(2)->isNullValue()) { 2529 if (TM.getTargetTriple().isOSAIX()) 2530 llvm::report_fatal_error( 2531 "associated data of XXStructor list is not yet supported on AIX"); 2532 S.ComdatKey = 2533 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2534 } 2535 } 2536 2537 // Emit the function pointers in the target-specific order 2538 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2539 return L.Priority < R.Priority; 2540 }); 2541 } 2542 2543 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2544 /// priority. 2545 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2546 bool IsCtor) { 2547 SmallVector<Structor, 8> Structors; 2548 preprocessXXStructorList(DL, List, Structors); 2549 if (Structors.empty()) 2550 return; 2551 2552 // Emit the structors in reverse order if we are using the .ctor/.dtor 2553 // initialization scheme. 2554 if (!TM.Options.UseInitArray) 2555 std::reverse(Structors.begin(), Structors.end()); 2556 2557 const Align Align = DL.getPointerPrefAlignment(); 2558 for (Structor &S : Structors) { 2559 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2560 const MCSymbol *KeySym = nullptr; 2561 if (GlobalValue *GV = S.ComdatKey) { 2562 if (GV->isDeclarationForLinker()) 2563 // If the associated variable is not defined in this module 2564 // (it might be available_externally, or have been an 2565 // available_externally definition that was dropped by the 2566 // EliminateAvailableExternally pass), some other TU 2567 // will provide its dynamic initializer. 2568 continue; 2569 2570 KeySym = getSymbol(GV); 2571 } 2572 2573 MCSection *OutputSection = 2574 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2575 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2576 OutStreamer->switchSection(OutputSection); 2577 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2578 emitAlignment(Align); 2579 emitXXStructor(DL, S.Func); 2580 } 2581 } 2582 2583 void AsmPrinter::emitModuleIdents(Module &M) { 2584 if (!MAI->hasIdentDirective()) 2585 return; 2586 2587 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2588 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2589 const MDNode *N = NMD->getOperand(i); 2590 assert(N->getNumOperands() == 1 && 2591 "llvm.ident metadata entry can have only one operand"); 2592 const MDString *S = cast<MDString>(N->getOperand(0)); 2593 OutStreamer->emitIdent(S->getString()); 2594 } 2595 } 2596 } 2597 2598 void AsmPrinter::emitModuleCommandLines(Module &M) { 2599 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2600 if (!CommandLine) 2601 return; 2602 2603 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2604 if (!NMD || !NMD->getNumOperands()) 2605 return; 2606 2607 OutStreamer->pushSection(); 2608 OutStreamer->switchSection(CommandLine); 2609 OutStreamer->emitZeros(1); 2610 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2611 const MDNode *N = NMD->getOperand(i); 2612 assert(N->getNumOperands() == 1 && 2613 "llvm.commandline metadata entry can have only one operand"); 2614 const MDString *S = cast<MDString>(N->getOperand(0)); 2615 OutStreamer->emitBytes(S->getString()); 2616 OutStreamer->emitZeros(1); 2617 } 2618 OutStreamer->popSection(); 2619 } 2620 2621 //===--------------------------------------------------------------------===// 2622 // Emission and print routines 2623 // 2624 2625 /// Emit a byte directive and value. 2626 /// 2627 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2628 2629 /// Emit a short directive and value. 2630 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2631 2632 /// Emit a long directive and value. 2633 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2634 2635 /// Emit a long long directive and value. 2636 void AsmPrinter::emitInt64(uint64_t Value) const { 2637 OutStreamer->emitInt64(Value); 2638 } 2639 2640 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2641 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2642 /// .set if it avoids relocations. 2643 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2644 unsigned Size) const { 2645 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2646 } 2647 2648 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2649 /// where the size in bytes of the directive is specified by Size and Label 2650 /// specifies the label. This implicitly uses .set if it is available. 2651 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2652 unsigned Size, 2653 bool IsSectionRelative) const { 2654 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2655 OutStreamer->emitCOFFSecRel32(Label, Offset); 2656 if (Size > 4) 2657 OutStreamer->emitZeros(Size - 4); 2658 return; 2659 } 2660 2661 // Emit Label+Offset (or just Label if Offset is zero) 2662 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2663 if (Offset) 2664 Expr = MCBinaryExpr::createAdd( 2665 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2666 2667 OutStreamer->emitValue(Expr, Size); 2668 } 2669 2670 //===----------------------------------------------------------------------===// 2671 2672 // EmitAlignment - Emit an alignment directive to the specified power of 2673 // two boundary. If a global value is specified, and if that global has 2674 // an explicit alignment requested, it will override the alignment request 2675 // if required for correctness. 2676 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 2677 unsigned MaxBytesToEmit) const { 2678 if (GV) 2679 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2680 2681 if (Alignment == Align(1)) 2682 return; // 1-byte aligned: no need to emit alignment. 2683 2684 if (getCurrentSection()->getKind().isText()) { 2685 const MCSubtargetInfo *STI = nullptr; 2686 if (this->MF) 2687 STI = &getSubtargetInfo(); 2688 else 2689 STI = TM.getMCSubtargetInfo(); 2690 OutStreamer->emitCodeAlignment(Alignment.value(), STI, MaxBytesToEmit); 2691 } else 2692 OutStreamer->emitValueToAlignment(Alignment.value(), 0, 1, MaxBytesToEmit); 2693 } 2694 2695 //===----------------------------------------------------------------------===// 2696 // Constant emission. 2697 //===----------------------------------------------------------------------===// 2698 2699 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2700 MCContext &Ctx = OutContext; 2701 2702 if (CV->isNullValue() || isa<UndefValue>(CV)) 2703 return MCConstantExpr::create(0, Ctx); 2704 2705 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2706 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2707 2708 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2709 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2710 2711 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2712 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2713 2714 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2715 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2716 2717 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 2718 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 2719 2720 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2721 if (!CE) { 2722 llvm_unreachable("Unknown constant value to lower!"); 2723 } 2724 2725 // The constant expression opcodes are limited to those that are necessary 2726 // to represent relocations on supported targets. Expressions involving only 2727 // constant addresses are constant folded instead. 2728 switch (CE->getOpcode()) { 2729 case Instruction::AddrSpaceCast: { 2730 const Constant *Op = CE->getOperand(0); 2731 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2732 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2733 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2734 return lowerConstant(Op); 2735 2736 // Fallthrough to error. 2737 LLVM_FALLTHROUGH; 2738 } 2739 default: { 2740 // If the code isn't optimized, there may be outstanding folding 2741 // opportunities. Attempt to fold the expression using DataLayout as a 2742 // last resort before giving up. 2743 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2744 if (C != CE) 2745 return lowerConstant(C); 2746 2747 // Otherwise report the problem to the user. 2748 std::string S; 2749 raw_string_ostream OS(S); 2750 OS << "Unsupported expression in static initializer: "; 2751 CE->printAsOperand(OS, /*PrintType=*/false, 2752 !MF ? nullptr : MF->getFunction().getParent()); 2753 report_fatal_error(Twine(OS.str())); 2754 } 2755 case Instruction::GetElementPtr: { 2756 // Generate a symbolic expression for the byte address 2757 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2758 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2759 2760 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2761 if (!OffsetAI) 2762 return Base; 2763 2764 int64_t Offset = OffsetAI.getSExtValue(); 2765 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2766 Ctx); 2767 } 2768 2769 case Instruction::Trunc: 2770 // We emit the value and depend on the assembler to truncate the generated 2771 // expression properly. This is important for differences between 2772 // blockaddress labels. Since the two labels are in the same function, it 2773 // is reasonable to treat their delta as a 32-bit value. 2774 LLVM_FALLTHROUGH; 2775 case Instruction::BitCast: 2776 return lowerConstant(CE->getOperand(0)); 2777 2778 case Instruction::IntToPtr: { 2779 const DataLayout &DL = getDataLayout(); 2780 2781 // Handle casts to pointers by changing them into casts to the appropriate 2782 // integer type. This promotes constant folding and simplifies this code. 2783 Constant *Op = CE->getOperand(0); 2784 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2785 false/*ZExt*/); 2786 return lowerConstant(Op); 2787 } 2788 2789 case Instruction::PtrToInt: { 2790 const DataLayout &DL = getDataLayout(); 2791 2792 // Support only foldable casts to/from pointers that can be eliminated by 2793 // changing the pointer to the appropriately sized integer type. 2794 Constant *Op = CE->getOperand(0); 2795 Type *Ty = CE->getType(); 2796 2797 const MCExpr *OpExpr = lowerConstant(Op); 2798 2799 // We can emit the pointer value into this slot if the slot is an 2800 // integer slot equal to the size of the pointer. 2801 // 2802 // If the pointer is larger than the resultant integer, then 2803 // as with Trunc just depend on the assembler to truncate it. 2804 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2805 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2806 return OpExpr; 2807 2808 // Otherwise the pointer is smaller than the resultant integer, mask off 2809 // the high bits so we are sure to get a proper truncation if the input is 2810 // a constant expr. 2811 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2812 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2813 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2814 } 2815 2816 case Instruction::Sub: { 2817 GlobalValue *LHSGV; 2818 APInt LHSOffset; 2819 DSOLocalEquivalent *DSOEquiv; 2820 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2821 getDataLayout(), &DSOEquiv)) { 2822 GlobalValue *RHSGV; 2823 APInt RHSOffset; 2824 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2825 getDataLayout())) { 2826 const MCExpr *RelocExpr = 2827 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2828 if (!RelocExpr) { 2829 const MCExpr *LHSExpr = 2830 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2831 if (DSOEquiv && 2832 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2833 LHSExpr = 2834 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2835 RelocExpr = MCBinaryExpr::createSub( 2836 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2837 } 2838 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2839 if (Addend != 0) 2840 RelocExpr = MCBinaryExpr::createAdd( 2841 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2842 return RelocExpr; 2843 } 2844 } 2845 2846 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2847 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2848 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2849 break; 2850 } 2851 2852 case Instruction::Add: { 2853 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2854 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2855 return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2856 } 2857 } 2858 } 2859 2860 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2861 AsmPrinter &AP, 2862 const Constant *BaseCV = nullptr, 2863 uint64_t Offset = 0); 2864 2865 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2866 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2867 2868 /// isRepeatedByteSequence - Determine whether the given value is 2869 /// composed of a repeated sequence of identical bytes and return the 2870 /// byte value. If it is not a repeated sequence, return -1. 2871 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2872 StringRef Data = V->getRawDataValues(); 2873 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2874 char C = Data[0]; 2875 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2876 if (Data[i] != C) return -1; 2877 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2878 } 2879 2880 /// isRepeatedByteSequence - Determine whether the given value is 2881 /// composed of a repeated sequence of identical bytes and return the 2882 /// byte value. If it is not a repeated sequence, return -1. 2883 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2884 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2885 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2886 assert(Size % 8 == 0); 2887 2888 // Extend the element to take zero padding into account. 2889 APInt Value = CI->getValue().zext(Size); 2890 if (!Value.isSplat(8)) 2891 return -1; 2892 2893 return Value.zextOrTrunc(8).getZExtValue(); 2894 } 2895 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2896 // Make sure all array elements are sequences of the same repeated 2897 // byte. 2898 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2899 Constant *Op0 = CA->getOperand(0); 2900 int Byte = isRepeatedByteSequence(Op0, DL); 2901 if (Byte == -1) 2902 return -1; 2903 2904 // All array elements must be equal. 2905 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2906 if (CA->getOperand(i) != Op0) 2907 return -1; 2908 return Byte; 2909 } 2910 2911 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2912 return isRepeatedByteSequence(CDS); 2913 2914 return -1; 2915 } 2916 2917 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2918 const ConstantDataSequential *CDS, 2919 AsmPrinter &AP) { 2920 // See if we can aggregate this into a .fill, if so, emit it as such. 2921 int Value = isRepeatedByteSequence(CDS, DL); 2922 if (Value != -1) { 2923 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2924 // Don't emit a 1-byte object as a .fill. 2925 if (Bytes > 1) 2926 return AP.OutStreamer->emitFill(Bytes, Value); 2927 } 2928 2929 // If this can be emitted with .ascii/.asciz, emit it as such. 2930 if (CDS->isString()) 2931 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2932 2933 // Otherwise, emit the values in successive locations. 2934 unsigned ElementByteSize = CDS->getElementByteSize(); 2935 if (isa<IntegerType>(CDS->getElementType())) { 2936 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2937 if (AP.isVerbose()) 2938 AP.OutStreamer->getCommentOS() 2939 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(i)); 2940 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2941 ElementByteSize); 2942 } 2943 } else { 2944 Type *ET = CDS->getElementType(); 2945 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2946 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2947 } 2948 2949 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2950 unsigned EmittedSize = 2951 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2952 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2953 if (unsigned Padding = Size - EmittedSize) 2954 AP.OutStreamer->emitZeros(Padding); 2955 } 2956 2957 static void emitGlobalConstantArray(const DataLayout &DL, 2958 const ConstantArray *CA, AsmPrinter &AP, 2959 const Constant *BaseCV, uint64_t Offset) { 2960 // See if we can aggregate some values. Make sure it can be 2961 // represented as a series of bytes of the constant value. 2962 int Value = isRepeatedByteSequence(CA, DL); 2963 2964 if (Value != -1) { 2965 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2966 AP.OutStreamer->emitFill(Bytes, Value); 2967 } 2968 else { 2969 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2970 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2971 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2972 } 2973 } 2974 } 2975 2976 static void emitGlobalConstantVector(const DataLayout &DL, 2977 const ConstantVector *CV, AsmPrinter &AP) { 2978 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2979 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2980 2981 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2982 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2983 CV->getType()->getNumElements(); 2984 if (unsigned Padding = Size - EmittedSize) 2985 AP.OutStreamer->emitZeros(Padding); 2986 } 2987 2988 static void emitGlobalConstantStruct(const DataLayout &DL, 2989 const ConstantStruct *CS, AsmPrinter &AP, 2990 const Constant *BaseCV, uint64_t Offset) { 2991 // Print the fields in successive locations. Pad to align if needed! 2992 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2993 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2994 uint64_t SizeSoFar = 0; 2995 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2996 const Constant *Field = CS->getOperand(i); 2997 2998 // Print the actual field value. 2999 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 3000 3001 // Check if padding is needed and insert one or more 0s. 3002 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 3003 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 3004 - Layout->getElementOffset(i)) - FieldSize; 3005 SizeSoFar += FieldSize + PadSize; 3006 3007 // Insert padding - this may include padding to increase the size of the 3008 // current field up to the ABI size (if the struct is not packed) as well 3009 // as padding to ensure that the next field starts at the right offset. 3010 AP.OutStreamer->emitZeros(PadSize); 3011 } 3012 assert(SizeSoFar == Layout->getSizeInBytes() && 3013 "Layout of constant struct may be incorrect!"); 3014 } 3015 3016 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 3017 assert(ET && "Unknown float type"); 3018 APInt API = APF.bitcastToAPInt(); 3019 3020 // First print a comment with what we think the original floating-point value 3021 // should have been. 3022 if (AP.isVerbose()) { 3023 SmallString<8> StrVal; 3024 APF.toString(StrVal); 3025 ET->print(AP.OutStreamer->getCommentOS()); 3026 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; 3027 } 3028 3029 // Now iterate through the APInt chunks, emitting them in endian-correct 3030 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 3031 // floats). 3032 unsigned NumBytes = API.getBitWidth() / 8; 3033 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 3034 const uint64_t *p = API.getRawData(); 3035 3036 // PPC's long double has odd notions of endianness compared to how LLVM 3037 // handles it: p[0] goes first for *big* endian on PPC. 3038 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 3039 int Chunk = API.getNumWords() - 1; 3040 3041 if (TrailingBytes) 3042 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 3043 3044 for (; Chunk >= 0; --Chunk) 3045 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3046 } else { 3047 unsigned Chunk; 3048 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 3049 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3050 3051 if (TrailingBytes) 3052 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 3053 } 3054 3055 // Emit the tail padding for the long double. 3056 const DataLayout &DL = AP.getDataLayout(); 3057 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 3058 } 3059 3060 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 3061 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 3062 } 3063 3064 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 3065 const DataLayout &DL = AP.getDataLayout(); 3066 unsigned BitWidth = CI->getBitWidth(); 3067 3068 // Copy the value as we may massage the layout for constants whose bit width 3069 // is not a multiple of 64-bits. 3070 APInt Realigned(CI->getValue()); 3071 uint64_t ExtraBits = 0; 3072 unsigned ExtraBitsSize = BitWidth & 63; 3073 3074 if (ExtraBitsSize) { 3075 // The bit width of the data is not a multiple of 64-bits. 3076 // The extra bits are expected to be at the end of the chunk of the memory. 3077 // Little endian: 3078 // * Nothing to be done, just record the extra bits to emit. 3079 // Big endian: 3080 // * Record the extra bits to emit. 3081 // * Realign the raw data to emit the chunks of 64-bits. 3082 if (DL.isBigEndian()) { 3083 // Basically the structure of the raw data is a chunk of 64-bits cells: 3084 // 0 1 BitWidth / 64 3085 // [chunk1][chunk2] ... [chunkN]. 3086 // The most significant chunk is chunkN and it should be emitted first. 3087 // However, due to the alignment issue chunkN contains useless bits. 3088 // Realign the chunks so that they contain only useful information: 3089 // ExtraBits 0 1 (BitWidth / 64) - 1 3090 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 3091 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 3092 ExtraBits = Realigned.getRawData()[0] & 3093 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 3094 Realigned.lshrInPlace(ExtraBitsSize); 3095 } else 3096 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 3097 } 3098 3099 // We don't expect assemblers to support integer data directives 3100 // for more than 64 bits, so we emit the data in at most 64-bit 3101 // quantities at a time. 3102 const uint64_t *RawData = Realigned.getRawData(); 3103 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 3104 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 3105 AP.OutStreamer->emitIntValue(Val, 8); 3106 } 3107 3108 if (ExtraBitsSize) { 3109 // Emit the extra bits after the 64-bits chunks. 3110 3111 // Emit a directive that fills the expected size. 3112 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 3113 Size -= (BitWidth / 64) * 8; 3114 assert(Size && Size * 8 >= ExtraBitsSize && 3115 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 3116 == ExtraBits && "Directive too small for extra bits."); 3117 AP.OutStreamer->emitIntValue(ExtraBits, Size); 3118 } 3119 } 3120 3121 /// Transform a not absolute MCExpr containing a reference to a GOT 3122 /// equivalent global, by a target specific GOT pc relative access to the 3123 /// final symbol. 3124 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 3125 const Constant *BaseCst, 3126 uint64_t Offset) { 3127 // The global @foo below illustrates a global that uses a got equivalent. 3128 // 3129 // @bar = global i32 42 3130 // @gotequiv = private unnamed_addr constant i32* @bar 3131 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 3132 // i64 ptrtoint (i32* @foo to i64)) 3133 // to i32) 3134 // 3135 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 3136 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 3137 // form: 3138 // 3139 // foo = cstexpr, where 3140 // cstexpr := <gotequiv> - "." + <cst> 3141 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 3142 // 3143 // After canonicalization by evaluateAsRelocatable `ME` turns into: 3144 // 3145 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 3146 // gotpcrelcst := <offset from @foo base> + <cst> 3147 MCValue MV; 3148 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 3149 return; 3150 const MCSymbolRefExpr *SymA = MV.getSymA(); 3151 if (!SymA) 3152 return; 3153 3154 // Check that GOT equivalent symbol is cached. 3155 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 3156 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 3157 return; 3158 3159 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 3160 if (!BaseGV) 3161 return; 3162 3163 // Check for a valid base symbol 3164 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 3165 const MCSymbolRefExpr *SymB = MV.getSymB(); 3166 3167 if (!SymB || BaseSym != &SymB->getSymbol()) 3168 return; 3169 3170 // Make sure to match: 3171 // 3172 // gotpcrelcst := <offset from @foo base> + <cst> 3173 // 3174 // If gotpcrelcst is positive it means that we can safely fold the pc rel 3175 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 3176 // if the target knows how to encode it. 3177 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3178 if (GOTPCRelCst < 0) 3179 return; 3180 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3181 return; 3182 3183 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3184 // 3185 // bar: 3186 // .long 42 3187 // gotequiv: 3188 // .quad bar 3189 // foo: 3190 // .long gotequiv - "." + <cst> 3191 // 3192 // is replaced by the target specific equivalent to: 3193 // 3194 // bar: 3195 // .long 42 3196 // foo: 3197 // .long bar@GOTPCREL+<gotpcrelcst> 3198 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3199 const GlobalVariable *GV = Result.first; 3200 int NumUses = (int)Result.second; 3201 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3202 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3203 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3204 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3205 3206 // Update GOT equivalent usage information 3207 --NumUses; 3208 if (NumUses >= 0) 3209 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3210 } 3211 3212 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3213 AsmPrinter &AP, const Constant *BaseCV, 3214 uint64_t Offset) { 3215 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3216 3217 // Globals with sub-elements such as combinations of arrays and structs 3218 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3219 // constant symbol base and the current position with BaseCV and Offset. 3220 if (!BaseCV && CV->hasOneUse()) 3221 BaseCV = dyn_cast<Constant>(CV->user_back()); 3222 3223 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3224 return AP.OutStreamer->emitZeros(Size); 3225 3226 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3227 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3228 3229 if (StoreSize <= 8) { 3230 if (AP.isVerbose()) 3231 AP.OutStreamer->getCommentOS() 3232 << format("0x%" PRIx64 "\n", CI->getZExtValue()); 3233 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3234 } else { 3235 emitGlobalConstantLargeInt(CI, AP); 3236 } 3237 3238 // Emit tail padding if needed 3239 if (Size != StoreSize) 3240 AP.OutStreamer->emitZeros(Size - StoreSize); 3241 3242 return; 3243 } 3244 3245 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3246 return emitGlobalConstantFP(CFP, AP); 3247 3248 if (isa<ConstantPointerNull>(CV)) { 3249 AP.OutStreamer->emitIntValue(0, Size); 3250 return; 3251 } 3252 3253 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3254 return emitGlobalConstantDataSequential(DL, CDS, AP); 3255 3256 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3257 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3258 3259 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3260 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3261 3262 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3263 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3264 // vectors). 3265 if (CE->getOpcode() == Instruction::BitCast) 3266 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3267 3268 if (Size > 8) { 3269 // If the constant expression's size is greater than 64-bits, then we have 3270 // to emit the value in chunks. Try to constant fold the value and emit it 3271 // that way. 3272 Constant *New = ConstantFoldConstant(CE, DL); 3273 if (New != CE) 3274 return emitGlobalConstantImpl(DL, New, AP); 3275 } 3276 } 3277 3278 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3279 return emitGlobalConstantVector(DL, V, AP); 3280 3281 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3282 // thread the streamer with EmitValue. 3283 const MCExpr *ME = AP.lowerConstant(CV); 3284 3285 // Since lowerConstant already folded and got rid of all IR pointer and 3286 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3287 // directly. 3288 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3289 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3290 3291 AP.OutStreamer->emitValue(ME, Size); 3292 } 3293 3294 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3295 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3296 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3297 if (Size) 3298 emitGlobalConstantImpl(DL, CV, *this); 3299 else if (MAI->hasSubsectionsViaSymbols()) { 3300 // If the global has zero size, emit a single byte so that two labels don't 3301 // look like they are at the same location. 3302 OutStreamer->emitIntValue(0, 1); 3303 } 3304 } 3305 3306 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3307 // Target doesn't support this yet! 3308 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3309 } 3310 3311 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3312 if (Offset > 0) 3313 OS << '+' << Offset; 3314 else if (Offset < 0) 3315 OS << Offset; 3316 } 3317 3318 void AsmPrinter::emitNops(unsigned N) { 3319 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3320 for (; N; --N) 3321 EmitToStreamer(*OutStreamer, Nop); 3322 } 3323 3324 //===----------------------------------------------------------------------===// 3325 // Symbol Lowering Routines. 3326 //===----------------------------------------------------------------------===// 3327 3328 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3329 return OutContext.createTempSymbol(Name, true); 3330 } 3331 3332 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3333 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( 3334 BA->getBasicBlock()); 3335 } 3336 3337 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3338 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); 3339 } 3340 3341 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3342 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3343 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3344 const MachineConstantPoolEntry &CPE = 3345 MF->getConstantPool()->getConstants()[CPID]; 3346 if (!CPE.isMachineConstantPoolEntry()) { 3347 const DataLayout &DL = MF->getDataLayout(); 3348 SectionKind Kind = CPE.getSectionKind(&DL); 3349 const Constant *C = CPE.Val.ConstVal; 3350 Align Alignment = CPE.Alignment; 3351 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3352 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3353 Alignment))) { 3354 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3355 if (Sym->isUndefined()) 3356 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3357 return Sym; 3358 } 3359 } 3360 } 3361 } 3362 3363 const DataLayout &DL = getDataLayout(); 3364 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3365 "CPI" + Twine(getFunctionNumber()) + "_" + 3366 Twine(CPID)); 3367 } 3368 3369 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3370 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3371 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3372 } 3373 3374 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3375 /// FIXME: privatize to AsmPrinter. 3376 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3377 const DataLayout &DL = getDataLayout(); 3378 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3379 Twine(getFunctionNumber()) + "_" + 3380 Twine(UID) + "_set_" + Twine(MBBID)); 3381 } 3382 3383 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3384 StringRef Suffix) const { 3385 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3386 } 3387 3388 /// Return the MCSymbol for the specified ExternalSymbol. 3389 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3390 SmallString<60> NameStr; 3391 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3392 return OutContext.getOrCreateSymbol(NameStr); 3393 } 3394 3395 /// PrintParentLoopComment - Print comments about parent loops of this one. 3396 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3397 unsigned FunctionNumber) { 3398 if (!Loop) return; 3399 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3400 OS.indent(Loop->getLoopDepth()*2) 3401 << "Parent Loop BB" << FunctionNumber << "_" 3402 << Loop->getHeader()->getNumber() 3403 << " Depth=" << Loop->getLoopDepth() << '\n'; 3404 } 3405 3406 /// PrintChildLoopComment - Print comments about child loops within 3407 /// the loop for this basic block, with nesting. 3408 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3409 unsigned FunctionNumber) { 3410 // Add child loop information 3411 for (const MachineLoop *CL : *Loop) { 3412 OS.indent(CL->getLoopDepth()*2) 3413 << "Child Loop BB" << FunctionNumber << "_" 3414 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3415 << '\n'; 3416 PrintChildLoopComment(OS, CL, FunctionNumber); 3417 } 3418 } 3419 3420 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3421 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3422 const MachineLoopInfo *LI, 3423 const AsmPrinter &AP) { 3424 // Add loop depth information 3425 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3426 if (!Loop) return; 3427 3428 MachineBasicBlock *Header = Loop->getHeader(); 3429 assert(Header && "No header for loop"); 3430 3431 // If this block is not a loop header, just print out what is the loop header 3432 // and return. 3433 if (Header != &MBB) { 3434 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3435 Twine(AP.getFunctionNumber())+"_" + 3436 Twine(Loop->getHeader()->getNumber())+ 3437 " Depth="+Twine(Loop->getLoopDepth())); 3438 return; 3439 } 3440 3441 // Otherwise, it is a loop header. Print out information about child and 3442 // parent loops. 3443 raw_ostream &OS = AP.OutStreamer->getCommentOS(); 3444 3445 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3446 3447 OS << "=>"; 3448 OS.indent(Loop->getLoopDepth()*2-2); 3449 3450 OS << "This "; 3451 if (Loop->isInnermost()) 3452 OS << "Inner "; 3453 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3454 3455 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3456 } 3457 3458 /// emitBasicBlockStart - This method prints the label for the specified 3459 /// MachineBasicBlock, an alignment (if present) and a comment describing 3460 /// it if appropriate. 3461 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3462 // End the previous funclet and start a new one. 3463 if (MBB.isEHFuncletEntry()) { 3464 for (const HandlerInfo &HI : Handlers) { 3465 HI.Handler->endFunclet(); 3466 HI.Handler->beginFunclet(MBB); 3467 } 3468 } 3469 3470 // Emit an alignment directive for this block, if needed. 3471 const Align Alignment = MBB.getAlignment(); 3472 if (Alignment != Align(1)) 3473 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 3474 3475 // Switch to a new section if this basic block must begin a section. The 3476 // entry block is always placed in the function section and is handled 3477 // separately. 3478 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3479 OutStreamer->switchSection( 3480 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3481 MBB, TM)); 3482 CurrentSectionBeginSym = MBB.getSymbol(); 3483 } 3484 3485 // If the block has its address taken, emit any labels that were used to 3486 // reference the block. It is possible that there is more than one label 3487 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3488 // the references were generated. 3489 const BasicBlock *BB = MBB.getBasicBlock(); 3490 if (MBB.hasAddressTaken()) { 3491 if (isVerbose()) 3492 OutStreamer->AddComment("Block address taken"); 3493 3494 // MBBs can have their address taken as part of CodeGen without having 3495 // their corresponding BB's address taken in IR 3496 if (BB && BB->hasAddressTaken()) 3497 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) 3498 OutStreamer->emitLabel(Sym); 3499 } 3500 3501 // Print some verbose block comments. 3502 if (isVerbose()) { 3503 if (BB) { 3504 if (BB->hasName()) { 3505 BB->printAsOperand(OutStreamer->getCommentOS(), 3506 /*PrintType=*/false, BB->getModule()); 3507 OutStreamer->getCommentOS() << '\n'; 3508 } 3509 } 3510 3511 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3512 emitBasicBlockLoopComments(MBB, MLI, *this); 3513 } 3514 3515 // Print the main label for the block. 3516 if (shouldEmitLabelForBasicBlock(MBB)) { 3517 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3518 OutStreamer->AddComment("Label of block must be emitted"); 3519 OutStreamer->emitLabel(MBB.getSymbol()); 3520 } else { 3521 if (isVerbose()) { 3522 // NOTE: Want this comment at start of line, don't emit with AddComment. 3523 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3524 false); 3525 } 3526 } 3527 3528 if (MBB.isEHCatchretTarget() && 3529 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3530 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3531 } 3532 3533 // With BB sections, each basic block must handle CFI information on its own 3534 // if it begins a section (Entry block is handled separately by 3535 // AsmPrinterHandler::beginFunction). 3536 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3537 for (const HandlerInfo &HI : Handlers) 3538 HI.Handler->beginBasicBlock(MBB); 3539 } 3540 3541 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3542 // Check if CFI information needs to be updated for this MBB with basic block 3543 // sections. 3544 if (MBB.isEndSection()) 3545 for (const HandlerInfo &HI : Handlers) 3546 HI.Handler->endBasicBlock(MBB); 3547 } 3548 3549 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3550 bool IsDefinition) const { 3551 MCSymbolAttr Attr = MCSA_Invalid; 3552 3553 switch (Visibility) { 3554 default: break; 3555 case GlobalValue::HiddenVisibility: 3556 if (IsDefinition) 3557 Attr = MAI->getHiddenVisibilityAttr(); 3558 else 3559 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3560 break; 3561 case GlobalValue::ProtectedVisibility: 3562 Attr = MAI->getProtectedVisibilityAttr(); 3563 break; 3564 } 3565 3566 if (Attr != MCSA_Invalid) 3567 OutStreamer->emitSymbolAttribute(Sym, Attr); 3568 } 3569 3570 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3571 const MachineBasicBlock &MBB) const { 3572 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3573 // in the labels mode (option `=labels`) and every section beginning in the 3574 // sections mode (`=all` and `=list=`). 3575 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3576 return true; 3577 // A label is needed for any block with at least one predecessor (when that 3578 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3579 // entry, or if a label is forced). 3580 return !MBB.pred_empty() && 3581 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3582 MBB.hasLabelMustBeEmitted()); 3583 } 3584 3585 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3586 /// exactly one predecessor and the control transfer mechanism between 3587 /// the predecessor and this block is a fall-through. 3588 bool AsmPrinter:: 3589 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3590 // If this is a landing pad, it isn't a fall through. If it has no preds, 3591 // then nothing falls through to it. 3592 if (MBB->isEHPad() || MBB->pred_empty()) 3593 return false; 3594 3595 // If there isn't exactly one predecessor, it can't be a fall through. 3596 if (MBB->pred_size() > 1) 3597 return false; 3598 3599 // The predecessor has to be immediately before this block. 3600 MachineBasicBlock *Pred = *MBB->pred_begin(); 3601 if (!Pred->isLayoutSuccessor(MBB)) 3602 return false; 3603 3604 // If the block is completely empty, then it definitely does fall through. 3605 if (Pred->empty()) 3606 return true; 3607 3608 // Check the terminators in the previous blocks 3609 for (const auto &MI : Pred->terminators()) { 3610 // If it is not a simple branch, we are in a table somewhere. 3611 if (!MI.isBranch() || MI.isIndirectBranch()) 3612 return false; 3613 3614 // If we are the operands of one of the branches, this is not a fall 3615 // through. Note that targets with delay slots will usually bundle 3616 // terminators with the delay slot instruction. 3617 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3618 if (OP->isJTI()) 3619 return false; 3620 if (OP->isMBB() && OP->getMBB() == MBB) 3621 return false; 3622 } 3623 } 3624 3625 return true; 3626 } 3627 3628 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3629 if (!S.usesMetadata()) 3630 return nullptr; 3631 3632 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3633 gcp_map_type::iterator GCPI = GCMap.find(&S); 3634 if (GCPI != GCMap.end()) 3635 return GCPI->second.get(); 3636 3637 auto Name = S.getName(); 3638 3639 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3640 GCMetadataPrinterRegistry::entries()) 3641 if (Name == GCMetaPrinter.getName()) { 3642 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3643 GMP->S = &S; 3644 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3645 return IterBool.first->second.get(); 3646 } 3647 3648 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3649 } 3650 3651 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3652 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3653 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3654 bool NeedsDefault = false; 3655 if (MI->begin() == MI->end()) 3656 // No GC strategy, use the default format. 3657 NeedsDefault = true; 3658 else 3659 for (auto &I : *MI) { 3660 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3661 if (MP->emitStackMaps(SM, *this)) 3662 continue; 3663 // The strategy doesn't have printer or doesn't emit custom stack maps. 3664 // Use the default format. 3665 NeedsDefault = true; 3666 } 3667 3668 if (NeedsDefault) 3669 SM.serializeToStackMapSection(); 3670 } 3671 3672 /// Pin vtable to this file. 3673 AsmPrinterHandler::~AsmPrinterHandler() = default; 3674 3675 void AsmPrinterHandler::markFunctionEnd() {} 3676 3677 // In the binary's "xray_instr_map" section, an array of these function entries 3678 // describes each instrumentation point. When XRay patches your code, the index 3679 // into this table will be given to your handler as a patch point identifier. 3680 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3681 auto Kind8 = static_cast<uint8_t>(Kind); 3682 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3683 Out->emitBinaryData( 3684 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3685 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3686 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3687 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3688 Out->emitZeros(Padding); 3689 } 3690 3691 void AsmPrinter::emitXRayTable() { 3692 if (Sleds.empty()) 3693 return; 3694 3695 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3696 const Function &F = MF->getFunction(); 3697 MCSection *InstMap = nullptr; 3698 MCSection *FnSledIndex = nullptr; 3699 const Triple &TT = TM.getTargetTriple(); 3700 // Use PC-relative addresses on all targets. 3701 if (TT.isOSBinFormatELF()) { 3702 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3703 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3704 StringRef GroupName; 3705 if (F.hasComdat()) { 3706 Flags |= ELF::SHF_GROUP; 3707 GroupName = F.getComdat()->getName(); 3708 } 3709 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3710 Flags, 0, GroupName, F.hasComdat(), 3711 MCSection::NonUniqueID, LinkedToSym); 3712 3713 if (!TM.Options.XRayOmitFunctionIndex) 3714 FnSledIndex = OutContext.getELFSection( 3715 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3716 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3717 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3718 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3719 SectionKind::getReadOnlyWithRel()); 3720 if (!TM.Options.XRayOmitFunctionIndex) 3721 FnSledIndex = OutContext.getMachOSection( 3722 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3723 } else { 3724 llvm_unreachable("Unsupported target"); 3725 } 3726 3727 auto WordSizeBytes = MAI->getCodePointerSize(); 3728 3729 // Now we switch to the instrumentation map section. Because this is done 3730 // per-function, we are able to create an index entry that will represent the 3731 // range of sleds associated with a function. 3732 auto &Ctx = OutContext; 3733 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3734 OutStreamer->switchSection(InstMap); 3735 OutStreamer->emitLabel(SledsStart); 3736 for (const auto &Sled : Sleds) { 3737 MCSymbol *Dot = Ctx.createTempSymbol(); 3738 OutStreamer->emitLabel(Dot); 3739 OutStreamer->emitValueImpl( 3740 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3741 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3742 WordSizeBytes); 3743 OutStreamer->emitValueImpl( 3744 MCBinaryExpr::createSub( 3745 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3746 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3747 MCConstantExpr::create(WordSizeBytes, Ctx), 3748 Ctx), 3749 Ctx), 3750 WordSizeBytes); 3751 Sled.emit(WordSizeBytes, OutStreamer.get()); 3752 } 3753 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3754 OutStreamer->emitLabel(SledsEnd); 3755 3756 // We then emit a single entry in the index per function. We use the symbols 3757 // that bound the instrumentation map as the range for a specific function. 3758 // Each entry here will be 2 * word size aligned, as we're writing down two 3759 // pointers. This should work for both 32-bit and 64-bit platforms. 3760 if (FnSledIndex) { 3761 OutStreamer->switchSection(FnSledIndex); 3762 OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo()); 3763 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3764 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3765 OutStreamer->switchSection(PrevSection); 3766 } 3767 Sleds.clear(); 3768 } 3769 3770 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3771 SledKind Kind, uint8_t Version) { 3772 const Function &F = MI.getMF()->getFunction(); 3773 auto Attr = F.getFnAttribute("function-instrument"); 3774 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3775 bool AlwaysInstrument = 3776 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3777 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3778 Kind = SledKind::LOG_ARGS_ENTER; 3779 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3780 AlwaysInstrument, &F, Version}); 3781 } 3782 3783 void AsmPrinter::emitPatchableFunctionEntries() { 3784 const Function &F = MF->getFunction(); 3785 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3786 (void)F.getFnAttribute("patchable-function-prefix") 3787 .getValueAsString() 3788 .getAsInteger(10, PatchableFunctionPrefix); 3789 (void)F.getFnAttribute("patchable-function-entry") 3790 .getValueAsString() 3791 .getAsInteger(10, PatchableFunctionEntry); 3792 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3793 return; 3794 const unsigned PointerSize = getPointerSize(); 3795 if (TM.getTargetTriple().isOSBinFormatELF()) { 3796 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3797 const MCSymbolELF *LinkedToSym = nullptr; 3798 StringRef GroupName; 3799 3800 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3801 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3802 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3803 Flags |= ELF::SHF_LINK_ORDER; 3804 if (F.hasComdat()) { 3805 Flags |= ELF::SHF_GROUP; 3806 GroupName = F.getComdat()->getName(); 3807 } 3808 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3809 } 3810 OutStreamer->switchSection(OutContext.getELFSection( 3811 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3812 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3813 emitAlignment(Align(PointerSize)); 3814 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3815 } 3816 } 3817 3818 uint16_t AsmPrinter::getDwarfVersion() const { 3819 return OutStreamer->getContext().getDwarfVersion(); 3820 } 3821 3822 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3823 OutStreamer->getContext().setDwarfVersion(Version); 3824 } 3825 3826 bool AsmPrinter::isDwarf64() const { 3827 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3828 } 3829 3830 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3831 return dwarf::getDwarfOffsetByteSize( 3832 OutStreamer->getContext().getDwarfFormat()); 3833 } 3834 3835 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 3836 return {getDwarfVersion(), uint8_t(getPointerSize()), 3837 OutStreamer->getContext().getDwarfFormat(), 3838 MAI->doesDwarfUseRelocationsAcrossSections()}; 3839 } 3840 3841 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3842 return dwarf::getUnitLengthFieldByteSize( 3843 OutStreamer->getContext().getDwarfFormat()); 3844 } 3845