1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 713 OutStreamer->SwitchSection(MF->getSection()); 714 715 if (!MAI->hasVisibilityOnlyWithLinkage()) 716 emitVisibility(CurrentFnSym, F.getVisibility()); 717 718 if (MAI->needsFunctionDescriptors()) 719 emitLinkage(&F, CurrentFnDescSym); 720 721 emitLinkage(&F, CurrentFnSym); 722 if (MAI->hasFunctionAlignment()) 723 emitAlignment(MF->getAlignment(), &F); 724 725 if (MAI->hasDotTypeDotSizeDirective()) 726 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 727 728 if (F.hasFnAttribute(Attribute::Cold)) 729 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 730 731 if (isVerbose()) { 732 F.printAsOperand(OutStreamer->GetCommentOS(), 733 /*PrintType=*/false, F.getParent()); 734 emitFunctionHeaderComment(); 735 OutStreamer->GetCommentOS() << '\n'; 736 } 737 738 // Emit the prefix data. 739 if (F.hasPrefixData()) { 740 if (MAI->hasSubsectionsViaSymbols()) { 741 // Preserving prefix data on platforms which use subsections-via-symbols 742 // is a bit tricky. Here we introduce a symbol for the prefix data 743 // and use the .alt_entry attribute to mark the function's real entry point 744 // as an alternative entry point to the prefix-data symbol. 745 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 746 OutStreamer->emitLabel(PrefixSym); 747 748 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 749 750 // Emit an .alt_entry directive for the actual function symbol. 751 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 752 } else { 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 } 755 } 756 757 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 758 // place prefix data before NOPs. 759 unsigned PatchableFunctionPrefix = 0; 760 unsigned PatchableFunctionEntry = 0; 761 (void)F.getFnAttribute("patchable-function-prefix") 762 .getValueAsString() 763 .getAsInteger(10, PatchableFunctionPrefix); 764 (void)F.getFnAttribute("patchable-function-entry") 765 .getValueAsString() 766 .getAsInteger(10, PatchableFunctionEntry); 767 if (PatchableFunctionPrefix) { 768 CurrentPatchableFunctionEntrySym = 769 OutContext.createLinkerPrivateTempSymbol(); 770 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 771 emitNops(PatchableFunctionPrefix); 772 } else if (PatchableFunctionEntry) { 773 // May be reassigned when emitting the body, to reference the label after 774 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 775 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 776 } 777 778 // Emit the function descriptor. This is a virtual function to allow targets 779 // to emit their specific function descriptor. Right now it is only used by 780 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 781 // descriptors and should be converted to use this hook as well. 782 if (MAI->needsFunctionDescriptors()) 783 emitFunctionDescriptor(); 784 785 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 786 // their wild and crazy things as required. 787 emitFunctionEntryLabel(); 788 789 if (CurrentFnBegin) { 790 if (MAI->useAssignmentForEHBegin()) { 791 MCSymbol *CurPos = OutContext.createTempSymbol(); 792 OutStreamer->emitLabel(CurPos); 793 OutStreamer->emitAssignment(CurrentFnBegin, 794 MCSymbolRefExpr::create(CurPos, OutContext)); 795 } else { 796 OutStreamer->emitLabel(CurrentFnBegin); 797 } 798 } 799 800 // Emit pre-function debug and/or EH information. 801 for (const HandlerInfo &HI : Handlers) { 802 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 803 HI.TimerGroupDescription, TimePassesIsEnabled); 804 HI.Handler->beginFunction(MF); 805 } 806 807 // Emit the prologue data. 808 if (F.hasPrologueData()) 809 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 810 } 811 812 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 813 /// function. This can be overridden by targets as required to do custom stuff. 814 void AsmPrinter::emitFunctionEntryLabel() { 815 CurrentFnSym->redefineIfPossible(); 816 817 // The function label could have already been emitted if two symbols end up 818 // conflicting due to asm renaming. Detect this and emit an error. 819 if (CurrentFnSym->isVariable()) 820 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 821 "' is a protected alias"); 822 if (CurrentFnSym->isDefined()) 823 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 824 "' label emitted multiple times to assembly file"); 825 826 OutStreamer->emitLabel(CurrentFnSym); 827 828 if (TM.getTargetTriple().isOSBinFormatELF()) { 829 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 830 if (Sym != CurrentFnSym) 831 OutStreamer->emitLabel(Sym); 832 } 833 } 834 835 /// emitComments - Pretty-print comments for instructions. 836 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 837 const MachineFunction *MF = MI.getMF(); 838 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 839 840 // Check for spills and reloads 841 842 // We assume a single instruction only has a spill or reload, not 843 // both. 844 Optional<unsigned> Size; 845 if ((Size = MI.getRestoreSize(TII))) { 846 CommentOS << *Size << "-byte Reload\n"; 847 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 848 if (*Size) { 849 if (*Size == unsigned(MemoryLocation::UnknownSize)) 850 CommentOS << "Unknown-size Folded Reload\n"; 851 else 852 CommentOS << *Size << "-byte Folded Reload\n"; 853 } 854 } else if ((Size = MI.getSpillSize(TII))) { 855 CommentOS << *Size << "-byte Spill\n"; 856 } else if ((Size = MI.getFoldedSpillSize(TII))) { 857 if (*Size) { 858 if (*Size == unsigned(MemoryLocation::UnknownSize)) 859 CommentOS << "Unknown-size Folded Spill\n"; 860 else 861 CommentOS << *Size << "-byte Folded Spill\n"; 862 } 863 } 864 865 // Check for spill-induced copies 866 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 867 CommentOS << " Reload Reuse\n"; 868 } 869 870 /// emitImplicitDef - This method emits the specified machine instruction 871 /// that is an implicit def. 872 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 873 Register RegNo = MI->getOperand(0).getReg(); 874 875 SmallString<128> Str; 876 raw_svector_ostream OS(Str); 877 OS << "implicit-def: " 878 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 879 880 OutStreamer->AddComment(OS.str()); 881 OutStreamer->AddBlankLine(); 882 } 883 884 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 885 std::string Str; 886 raw_string_ostream OS(Str); 887 OS << "kill:"; 888 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 889 const MachineOperand &Op = MI->getOperand(i); 890 assert(Op.isReg() && "KILL instruction must have only register operands"); 891 OS << ' ' << (Op.isDef() ? "def " : "killed ") 892 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 893 } 894 AP.OutStreamer->AddComment(OS.str()); 895 AP.OutStreamer->AddBlankLine(); 896 } 897 898 /// emitDebugValueComment - This method handles the target-independent form 899 /// of DBG_VALUE, returning true if it was able to do so. A false return 900 /// means the target will need to handle MI in EmitInstruction. 901 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 902 // This code handles only the 4-operand target-independent form. 903 if (MI->getNumOperands() != 4) 904 return false; 905 906 SmallString<128> Str; 907 raw_svector_ostream OS(Str); 908 OS << "DEBUG_VALUE: "; 909 910 const DILocalVariable *V = MI->getDebugVariable(); 911 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 912 StringRef Name = SP->getName(); 913 if (!Name.empty()) 914 OS << Name << ":"; 915 } 916 OS << V->getName(); 917 OS << " <- "; 918 919 // The second operand is only an offset if it's an immediate. 920 bool MemLoc = MI->isIndirectDebugValue(); 921 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 922 const DIExpression *Expr = MI->getDebugExpression(); 923 if (Expr->getNumElements()) { 924 OS << '['; 925 bool NeedSep = false; 926 for (auto Op : Expr->expr_ops()) { 927 if (NeedSep) 928 OS << ", "; 929 else 930 NeedSep = true; 931 OS << dwarf::OperationEncodingString(Op.getOp()); 932 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 933 OS << ' ' << Op.getArg(I); 934 } 935 OS << "] "; 936 } 937 938 // Register or immediate value. Register 0 means undef. 939 if (MI->getDebugOperand(0).isFPImm()) { 940 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 941 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 942 OS << (double)APF.convertToFloat(); 943 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 944 OS << APF.convertToDouble(); 945 } else { 946 // There is no good way to print long double. Convert a copy to 947 // double. Ah well, it's only a comment. 948 bool ignored; 949 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 950 &ignored); 951 OS << "(long double) " << APF.convertToDouble(); 952 } 953 } else if (MI->getDebugOperand(0).isImm()) { 954 OS << MI->getDebugOperand(0).getImm(); 955 } else if (MI->getDebugOperand(0).isCImm()) { 956 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 957 } else if (MI->getDebugOperand(0).isTargetIndex()) { 958 auto Op = MI->getDebugOperand(0); 959 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 960 // NOTE: Want this comment at start of line, don't emit with AddComment. 961 AP.OutStreamer->emitRawComment(OS.str()); 962 return true; 963 } else { 964 Register Reg; 965 if (MI->getDebugOperand(0).isReg()) { 966 Reg = MI->getDebugOperand(0).getReg(); 967 } else { 968 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 969 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 970 Offset += TFI->getFrameIndexReference( 971 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 972 MemLoc = true; 973 } 974 if (Reg == 0) { 975 // Suppress offset, it is not meaningful here. 976 OS << "undef"; 977 // NOTE: Want this comment at start of line, don't emit with AddComment. 978 AP.OutStreamer->emitRawComment(OS.str()); 979 return true; 980 } 981 if (MemLoc) 982 OS << '['; 983 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 984 } 985 986 if (MemLoc) 987 OS << '+' << Offset.getFixed() << ']'; 988 989 // NOTE: Want this comment at start of line, don't emit with AddComment. 990 AP.OutStreamer->emitRawComment(OS.str()); 991 return true; 992 } 993 994 /// This method handles the target-independent form of DBG_LABEL, returning 995 /// true if it was able to do so. A false return means the target will need 996 /// to handle MI in EmitInstruction. 997 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 998 if (MI->getNumOperands() != 1) 999 return false; 1000 1001 SmallString<128> Str; 1002 raw_svector_ostream OS(Str); 1003 OS << "DEBUG_LABEL: "; 1004 1005 const DILabel *V = MI->getDebugLabel(); 1006 if (auto *SP = dyn_cast<DISubprogram>( 1007 V->getScope()->getNonLexicalBlockFileScope())) { 1008 StringRef Name = SP->getName(); 1009 if (!Name.empty()) 1010 OS << Name << ":"; 1011 } 1012 OS << V->getName(); 1013 1014 // NOTE: Want this comment at start of line, don't emit with AddComment. 1015 AP.OutStreamer->emitRawComment(OS.str()); 1016 return true; 1017 } 1018 1019 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1020 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1021 MF->getFunction().needsUnwindTableEntry()) 1022 return CFI_M_EH; 1023 1024 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1025 return CFI_M_Debug; 1026 1027 return CFI_M_None; 1028 } 1029 1030 bool AsmPrinter::needsSEHMoves() { 1031 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1032 } 1033 1034 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1035 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1036 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1037 ExceptionHandlingType != ExceptionHandling::ARM) 1038 return; 1039 1040 if (needsCFIMoves() == CFI_M_None) 1041 return; 1042 1043 // If there is no "real" instruction following this CFI instruction, skip 1044 // emitting it; it would be beyond the end of the function's FDE range. 1045 auto *MBB = MI.getParent(); 1046 auto I = std::next(MI.getIterator()); 1047 while (I != MBB->end() && I->isTransient()) 1048 ++I; 1049 if (I == MBB->instr_end() && 1050 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1051 return; 1052 1053 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1054 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1055 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1056 emitCFIInstruction(CFI); 1057 } 1058 1059 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1060 // The operands are the MCSymbol and the frame offset of the allocation. 1061 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1062 int FrameOffset = MI.getOperand(1).getImm(); 1063 1064 // Emit a symbol assignment. 1065 OutStreamer->emitAssignment(FrameAllocSym, 1066 MCConstantExpr::create(FrameOffset, OutContext)); 1067 } 1068 1069 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1070 /// given basic block. This can be used to capture more precise profile 1071 /// information. We use the last 3 bits (LSBs) to ecnode the following 1072 /// information: 1073 /// * (1): set if return block (ret or tail call). 1074 /// * (2): set if ends with a tail call. 1075 /// * (3): set if exception handling (EH) landing pad. 1076 /// The remaining bits are zero. 1077 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1078 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1079 return ((unsigned)MBB.isReturnBlock()) | 1080 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1081 (MBB.isEHPad() << 2); 1082 } 1083 1084 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1085 MCSection *BBAddrMapSection = 1086 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1087 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1088 1089 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1090 1091 OutStreamer->PushSection(); 1092 OutStreamer->SwitchSection(BBAddrMapSection); 1093 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1094 // Emit the total number of basic blocks in this function. 1095 OutStreamer->emitULEB128IntValue(MF.size()); 1096 // Emit BB Information for each basic block in the funciton. 1097 for (const MachineBasicBlock &MBB : MF) { 1098 const MCSymbol *MBBSymbol = 1099 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1100 // Emit the basic block offset. 1101 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1102 // Emit the basic block size. When BBs have alignments, their size cannot 1103 // always be computed from their offsets. 1104 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1105 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1106 } 1107 OutStreamer->PopSection(); 1108 } 1109 1110 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1111 auto GUID = MI.getOperand(0).getImm(); 1112 auto Index = MI.getOperand(1).getImm(); 1113 auto Type = MI.getOperand(2).getImm(); 1114 auto Attr = MI.getOperand(3).getImm(); 1115 DILocation *DebugLoc = MI.getDebugLoc(); 1116 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1117 } 1118 1119 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1120 if (!MF.getTarget().Options.EmitStackSizeSection) 1121 return; 1122 1123 MCSection *StackSizeSection = 1124 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1125 if (!StackSizeSection) 1126 return; 1127 1128 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1129 // Don't emit functions with dynamic stack allocations. 1130 if (FrameInfo.hasVarSizedObjects()) 1131 return; 1132 1133 OutStreamer->PushSection(); 1134 OutStreamer->SwitchSection(StackSizeSection); 1135 1136 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1137 uint64_t StackSize = FrameInfo.getStackSize(); 1138 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1139 OutStreamer->emitULEB128IntValue(StackSize); 1140 1141 OutStreamer->PopSection(); 1142 } 1143 1144 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1145 MachineModuleInfo &MMI = MF.getMMI(); 1146 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1147 return true; 1148 1149 // We might emit an EH table that uses function begin and end labels even if 1150 // we don't have any landingpads. 1151 if (!MF.getFunction().hasPersonalityFn()) 1152 return false; 1153 return !isNoOpWithoutInvoke( 1154 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1155 } 1156 1157 /// EmitFunctionBody - This method emits the body and trailer for a 1158 /// function. 1159 void AsmPrinter::emitFunctionBody() { 1160 emitFunctionHeader(); 1161 1162 // Emit target-specific gunk before the function body. 1163 emitFunctionBodyStart(); 1164 1165 if (isVerbose()) { 1166 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1167 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1168 if (!MDT) { 1169 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1170 OwnedMDT->getBase().recalculate(*MF); 1171 MDT = OwnedMDT.get(); 1172 } 1173 1174 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1175 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1176 if (!MLI) { 1177 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1178 OwnedMLI->getBase().analyze(MDT->getBase()); 1179 MLI = OwnedMLI.get(); 1180 } 1181 } 1182 1183 // Print out code for the function. 1184 bool HasAnyRealCode = false; 1185 int NumInstsInFunction = 0; 1186 1187 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1188 for (auto &MBB : *MF) { 1189 // Print a label for the basic block. 1190 emitBasicBlockStart(MBB); 1191 DenseMap<StringRef, unsigned> MnemonicCounts; 1192 for (auto &MI : MBB) { 1193 // Print the assembly for the instruction. 1194 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1195 !MI.isDebugInstr()) { 1196 HasAnyRealCode = true; 1197 ++NumInstsInFunction; 1198 } 1199 1200 // If there is a pre-instruction symbol, emit a label for it here. 1201 if (MCSymbol *S = MI.getPreInstrSymbol()) 1202 OutStreamer->emitLabel(S); 1203 1204 for (const HandlerInfo &HI : Handlers) { 1205 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1206 HI.TimerGroupDescription, TimePassesIsEnabled); 1207 HI.Handler->beginInstruction(&MI); 1208 } 1209 1210 if (isVerbose()) 1211 emitComments(MI, OutStreamer->GetCommentOS()); 1212 1213 switch (MI.getOpcode()) { 1214 case TargetOpcode::CFI_INSTRUCTION: 1215 emitCFIInstruction(MI); 1216 break; 1217 case TargetOpcode::LOCAL_ESCAPE: 1218 emitFrameAlloc(MI); 1219 break; 1220 case TargetOpcode::ANNOTATION_LABEL: 1221 case TargetOpcode::EH_LABEL: 1222 case TargetOpcode::GC_LABEL: 1223 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1224 break; 1225 case TargetOpcode::INLINEASM: 1226 case TargetOpcode::INLINEASM_BR: 1227 emitInlineAsm(&MI); 1228 break; 1229 case TargetOpcode::DBG_VALUE: 1230 if (isVerbose()) { 1231 if (!emitDebugValueComment(&MI, *this)) 1232 emitInstruction(&MI); 1233 } 1234 break; 1235 case TargetOpcode::DBG_INSTR_REF: 1236 // This instruction reference will have been resolved to a machine 1237 // location, and a nearby DBG_VALUE created. We can safely ignore 1238 // the instruction reference. 1239 break; 1240 case TargetOpcode::DBG_LABEL: 1241 if (isVerbose()) { 1242 if (!emitDebugLabelComment(&MI, *this)) 1243 emitInstruction(&MI); 1244 } 1245 break; 1246 case TargetOpcode::IMPLICIT_DEF: 1247 if (isVerbose()) emitImplicitDef(&MI); 1248 break; 1249 case TargetOpcode::KILL: 1250 if (isVerbose()) emitKill(&MI, *this); 1251 break; 1252 case TargetOpcode::PSEUDO_PROBE: 1253 emitPseudoProbe(MI); 1254 break; 1255 default: 1256 emitInstruction(&MI); 1257 if (CanDoExtraAnalysis) { 1258 MCInst MCI; 1259 MCI.setOpcode(MI.getOpcode()); 1260 auto Name = OutStreamer->getMnemonic(MCI); 1261 auto I = MnemonicCounts.insert({Name, 0u}); 1262 I.first->second++; 1263 } 1264 break; 1265 } 1266 1267 // If there is a post-instruction symbol, emit a label for it here. 1268 if (MCSymbol *S = MI.getPostInstrSymbol()) 1269 OutStreamer->emitLabel(S); 1270 1271 for (const HandlerInfo &HI : Handlers) { 1272 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1273 HI.TimerGroupDescription, TimePassesIsEnabled); 1274 HI.Handler->endInstruction(); 1275 } 1276 } 1277 1278 // We must emit temporary symbol for the end of this basic block, if either 1279 // we have BBLabels enabled or if this basic blocks marks the end of a 1280 // section (except the section containing the entry basic block as the end 1281 // symbol for that section is CurrentFnEnd). 1282 if (MF->hasBBLabels() || 1283 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1284 !MBB.sameSection(&MF->front()))) 1285 OutStreamer->emitLabel(MBB.getEndSymbol()); 1286 1287 if (MBB.isEndSection()) { 1288 // The size directive for the section containing the entry block is 1289 // handled separately by the function section. 1290 if (!MBB.sameSection(&MF->front())) { 1291 if (MAI->hasDotTypeDotSizeDirective()) { 1292 // Emit the size directive for the basic block section. 1293 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1294 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1295 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1296 OutContext); 1297 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1298 } 1299 MBBSectionRanges[MBB.getSectionIDNum()] = 1300 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1301 } 1302 } 1303 emitBasicBlockEnd(MBB); 1304 1305 if (CanDoExtraAnalysis) { 1306 // Skip empty blocks. 1307 if (MBB.empty()) 1308 continue; 1309 1310 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1311 MBB.begin()->getDebugLoc(), &MBB); 1312 1313 // Generate instruction mix remark. First, sort counts in descending order 1314 // by count and name. 1315 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1316 for (auto &KV : MnemonicCounts) 1317 MnemonicVec.emplace_back(KV.first, KV.second); 1318 1319 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1320 const std::pair<StringRef, unsigned> &B) { 1321 if (A.second > B.second) 1322 return true; 1323 if (A.second == B.second) 1324 return StringRef(A.first) < StringRef(B.first); 1325 return false; 1326 }); 1327 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1328 for (auto &KV : MnemonicVec) { 1329 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1330 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1331 } 1332 ORE->emit(R); 1333 } 1334 } 1335 1336 EmittedInsts += NumInstsInFunction; 1337 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1338 MF->getFunction().getSubprogram(), 1339 &MF->front()); 1340 R << ore::NV("NumInstructions", NumInstsInFunction) 1341 << " instructions in function"; 1342 ORE->emit(R); 1343 1344 // If the function is empty and the object file uses .subsections_via_symbols, 1345 // then we need to emit *something* to the function body to prevent the 1346 // labels from collapsing together. Just emit a noop. 1347 // Similarly, don't emit empty functions on Windows either. It can lead to 1348 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1349 // after linking, causing the kernel not to load the binary: 1350 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1351 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1352 const Triple &TT = TM.getTargetTriple(); 1353 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1354 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1355 MCInst Noop; 1356 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1357 1358 // Targets can opt-out of emitting the noop here by leaving the opcode 1359 // unspecified. 1360 if (Noop.getOpcode()) { 1361 OutStreamer->AddComment("avoids zero-length function"); 1362 emitNops(1); 1363 } 1364 } 1365 1366 // Switch to the original section in case basic block sections was used. 1367 OutStreamer->SwitchSection(MF->getSection()); 1368 1369 const Function &F = MF->getFunction(); 1370 for (const auto &BB : F) { 1371 if (!BB.hasAddressTaken()) 1372 continue; 1373 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1374 if (Sym->isDefined()) 1375 continue; 1376 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1377 OutStreamer->emitLabel(Sym); 1378 } 1379 1380 // Emit target-specific gunk after the function body. 1381 emitFunctionBodyEnd(); 1382 1383 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1384 MAI->hasDotTypeDotSizeDirective()) { 1385 // Create a symbol for the end of function. 1386 CurrentFnEnd = createTempSymbol("func_end"); 1387 OutStreamer->emitLabel(CurrentFnEnd); 1388 } 1389 1390 // If the target wants a .size directive for the size of the function, emit 1391 // it. 1392 if (MAI->hasDotTypeDotSizeDirective()) { 1393 // We can get the size as difference between the function label and the 1394 // temp label. 1395 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1396 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1397 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1398 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1399 } 1400 1401 for (const HandlerInfo &HI : Handlers) { 1402 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1403 HI.TimerGroupDescription, TimePassesIsEnabled); 1404 HI.Handler->markFunctionEnd(); 1405 } 1406 1407 MBBSectionRanges[MF->front().getSectionIDNum()] = 1408 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1409 1410 // Print out jump tables referenced by the function. 1411 emitJumpTableInfo(); 1412 1413 // Emit post-function debug and/or EH information. 1414 for (const HandlerInfo &HI : Handlers) { 1415 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1416 HI.TimerGroupDescription, TimePassesIsEnabled); 1417 HI.Handler->endFunction(MF); 1418 } 1419 1420 // Emit section containing BB address offsets and their metadata, when 1421 // BB labels are requested for this function. 1422 if (MF->hasBBLabels()) 1423 emitBBAddrMapSection(*MF); 1424 1425 // Emit section containing stack size metadata. 1426 emitStackSizeSection(*MF); 1427 1428 emitPatchableFunctionEntries(); 1429 1430 if (isVerbose()) 1431 OutStreamer->GetCommentOS() << "-- End function\n"; 1432 1433 OutStreamer->AddBlankLine(); 1434 } 1435 1436 /// Compute the number of Global Variables that uses a Constant. 1437 static unsigned getNumGlobalVariableUses(const Constant *C) { 1438 if (!C) 1439 return 0; 1440 1441 if (isa<GlobalVariable>(C)) 1442 return 1; 1443 1444 unsigned NumUses = 0; 1445 for (auto *CU : C->users()) 1446 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1447 1448 return NumUses; 1449 } 1450 1451 /// Only consider global GOT equivalents if at least one user is a 1452 /// cstexpr inside an initializer of another global variables. Also, don't 1453 /// handle cstexpr inside instructions. During global variable emission, 1454 /// candidates are skipped and are emitted later in case at least one cstexpr 1455 /// isn't replaced by a PC relative GOT entry access. 1456 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1457 unsigned &NumGOTEquivUsers) { 1458 // Global GOT equivalents are unnamed private globals with a constant 1459 // pointer initializer to another global symbol. They must point to a 1460 // GlobalVariable or Function, i.e., as GlobalValue. 1461 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1462 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1463 !isa<GlobalValue>(GV->getOperand(0))) 1464 return false; 1465 1466 // To be a got equivalent, at least one of its users need to be a constant 1467 // expression used by another global variable. 1468 for (auto *U : GV->users()) 1469 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1470 1471 return NumGOTEquivUsers > 0; 1472 } 1473 1474 /// Unnamed constant global variables solely contaning a pointer to 1475 /// another globals variable is equivalent to a GOT table entry; it contains the 1476 /// the address of another symbol. Optimize it and replace accesses to these 1477 /// "GOT equivalents" by using the GOT entry for the final global instead. 1478 /// Compute GOT equivalent candidates among all global variables to avoid 1479 /// emitting them if possible later on, after it use is replaced by a GOT entry 1480 /// access. 1481 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1482 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1483 return; 1484 1485 for (const auto &G : M.globals()) { 1486 unsigned NumGOTEquivUsers = 0; 1487 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1488 continue; 1489 1490 const MCSymbol *GOTEquivSym = getSymbol(&G); 1491 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1492 } 1493 } 1494 1495 /// Constant expressions using GOT equivalent globals may not be eligible 1496 /// for PC relative GOT entry conversion, in such cases we need to emit such 1497 /// globals we previously omitted in EmitGlobalVariable. 1498 void AsmPrinter::emitGlobalGOTEquivs() { 1499 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1500 return; 1501 1502 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1503 for (auto &I : GlobalGOTEquivs) { 1504 const GlobalVariable *GV = I.second.first; 1505 unsigned Cnt = I.second.second; 1506 if (Cnt) 1507 FailedCandidates.push_back(GV); 1508 } 1509 GlobalGOTEquivs.clear(); 1510 1511 for (auto *GV : FailedCandidates) 1512 emitGlobalVariable(GV); 1513 } 1514 1515 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1516 const GlobalIndirectSymbol& GIS) { 1517 MCSymbol *Name = getSymbol(&GIS); 1518 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1519 // Treat bitcasts of functions as functions also. This is important at least 1520 // on WebAssembly where object and function addresses can't alias each other. 1521 if (!IsFunction) 1522 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1523 if (CE->getOpcode() == Instruction::BitCast) 1524 IsFunction = 1525 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1526 1527 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1528 // so AIX has to use the extra-label-at-definition strategy. At this 1529 // point, all the extra label is emitted, we just have to emit linkage for 1530 // those labels. 1531 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1532 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1533 assert(MAI->hasVisibilityOnlyWithLinkage() && 1534 "Visibility should be handled with emitLinkage() on AIX."); 1535 emitLinkage(&GIS, Name); 1536 // If it's a function, also emit linkage for aliases of function entry 1537 // point. 1538 if (IsFunction) 1539 emitLinkage(&GIS, 1540 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1541 return; 1542 } 1543 1544 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1545 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1546 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1547 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1548 else 1549 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1550 1551 // Set the symbol type to function if the alias has a function type. 1552 // This affects codegen when the aliasee is not a function. 1553 if (IsFunction) 1554 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1555 ? MCSA_ELF_TypeIndFunction 1556 : MCSA_ELF_TypeFunction); 1557 1558 emitVisibility(Name, GIS.getVisibility()); 1559 1560 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1561 1562 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1563 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1564 1565 // Emit the directives as assignments aka .set: 1566 OutStreamer->emitAssignment(Name, Expr); 1567 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1568 if (LocalAlias != Name) 1569 OutStreamer->emitAssignment(LocalAlias, Expr); 1570 1571 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1572 // If the aliasee does not correspond to a symbol in the output, i.e. the 1573 // alias is not of an object or the aliased object is private, then set the 1574 // size of the alias symbol from the type of the alias. We don't do this in 1575 // other situations as the alias and aliasee having differing types but same 1576 // size may be intentional. 1577 const GlobalObject *BaseObject = GA->getBaseObject(); 1578 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1579 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1580 const DataLayout &DL = M.getDataLayout(); 1581 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1582 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1583 } 1584 } 1585 } 1586 1587 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1588 if (!RS.needsSection()) 1589 return; 1590 1591 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1592 1593 Optional<SmallString<128>> Filename; 1594 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1595 Filename = *FilenameRef; 1596 sys::fs::make_absolute(*Filename); 1597 assert(!Filename->empty() && "The filename can't be empty."); 1598 } 1599 1600 std::string Buf; 1601 raw_string_ostream OS(Buf); 1602 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1603 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1604 : RemarkSerializer.metaSerializer(OS); 1605 MetaSerializer->emit(); 1606 1607 // Switch to the remarks section. 1608 MCSection *RemarksSection = 1609 OutContext.getObjectFileInfo()->getRemarksSection(); 1610 OutStreamer->SwitchSection(RemarksSection); 1611 1612 OutStreamer->emitBinaryData(OS.str()); 1613 } 1614 1615 bool AsmPrinter::doFinalization(Module &M) { 1616 // Set the MachineFunction to nullptr so that we can catch attempted 1617 // accesses to MF specific features at the module level and so that 1618 // we can conditionalize accesses based on whether or not it is nullptr. 1619 MF = nullptr; 1620 1621 // Gather all GOT equivalent globals in the module. We really need two 1622 // passes over the globals: one to compute and another to avoid its emission 1623 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1624 // where the got equivalent shows up before its use. 1625 computeGlobalGOTEquivs(M); 1626 1627 // Emit global variables. 1628 for (const auto &G : M.globals()) 1629 emitGlobalVariable(&G); 1630 1631 // Emit remaining GOT equivalent globals. 1632 emitGlobalGOTEquivs(); 1633 1634 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1635 1636 // Emit linkage(XCOFF) and visibility info for declarations 1637 for (const Function &F : M) { 1638 if (!F.isDeclarationForLinker()) 1639 continue; 1640 1641 MCSymbol *Name = getSymbol(&F); 1642 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1643 1644 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1645 GlobalValue::VisibilityTypes V = F.getVisibility(); 1646 if (V == GlobalValue::DefaultVisibility) 1647 continue; 1648 1649 emitVisibility(Name, V, false); 1650 continue; 1651 } 1652 1653 if (F.isIntrinsic()) 1654 continue; 1655 1656 // Handle the XCOFF case. 1657 // Variable `Name` is the function descriptor symbol (see above). Get the 1658 // function entry point symbol. 1659 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1660 // Emit linkage for the function entry point. 1661 emitLinkage(&F, FnEntryPointSym); 1662 1663 // Emit linkage for the function descriptor. 1664 emitLinkage(&F, Name); 1665 } 1666 1667 // Emit the remarks section contents. 1668 // FIXME: Figure out when is the safest time to emit this section. It should 1669 // not come after debug info. 1670 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1671 emitRemarksSection(*RS); 1672 1673 TLOF.emitModuleMetadata(*OutStreamer, M); 1674 1675 if (TM.getTargetTriple().isOSBinFormatELF()) { 1676 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1677 1678 // Output stubs for external and common global variables. 1679 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1680 if (!Stubs.empty()) { 1681 OutStreamer->SwitchSection(TLOF.getDataSection()); 1682 const DataLayout &DL = M.getDataLayout(); 1683 1684 emitAlignment(Align(DL.getPointerSize())); 1685 for (const auto &Stub : Stubs) { 1686 OutStreamer->emitLabel(Stub.first); 1687 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1688 DL.getPointerSize()); 1689 } 1690 } 1691 } 1692 1693 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1694 MachineModuleInfoCOFF &MMICOFF = 1695 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1696 1697 // Output stubs for external and common global variables. 1698 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1699 if (!Stubs.empty()) { 1700 const DataLayout &DL = M.getDataLayout(); 1701 1702 for (const auto &Stub : Stubs) { 1703 SmallString<256> SectionName = StringRef(".rdata$"); 1704 SectionName += Stub.first->getName(); 1705 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1706 SectionName, 1707 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1708 COFF::IMAGE_SCN_LNK_COMDAT, 1709 SectionKind::getReadOnly(), Stub.first->getName(), 1710 COFF::IMAGE_COMDAT_SELECT_ANY)); 1711 emitAlignment(Align(DL.getPointerSize())); 1712 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1713 OutStreamer->emitLabel(Stub.first); 1714 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1715 DL.getPointerSize()); 1716 } 1717 } 1718 } 1719 1720 // Finalize debug and EH information. 1721 for (const HandlerInfo &HI : Handlers) { 1722 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1723 HI.TimerGroupDescription, TimePassesIsEnabled); 1724 HI.Handler->endModule(); 1725 } 1726 1727 // This deletes all the ephemeral handlers that AsmPrinter added, while 1728 // keeping all the user-added handlers alive until the AsmPrinter is 1729 // destroyed. 1730 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1731 DD = nullptr; 1732 1733 // If the target wants to know about weak references, print them all. 1734 if (MAI->getWeakRefDirective()) { 1735 // FIXME: This is not lazy, it would be nice to only print weak references 1736 // to stuff that is actually used. Note that doing so would require targets 1737 // to notice uses in operands (due to constant exprs etc). This should 1738 // happen with the MC stuff eventually. 1739 1740 // Print out module-level global objects here. 1741 for (const auto &GO : M.global_objects()) { 1742 if (!GO.hasExternalWeakLinkage()) 1743 continue; 1744 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1745 } 1746 } 1747 1748 // Print aliases in topological order, that is, for each alias a = b, 1749 // b must be printed before a. 1750 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1751 // such an order to generate correct TOC information. 1752 SmallVector<const GlobalAlias *, 16> AliasStack; 1753 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1754 for (const auto &Alias : M.aliases()) { 1755 for (const GlobalAlias *Cur = &Alias; Cur; 1756 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1757 if (!AliasVisited.insert(Cur).second) 1758 break; 1759 AliasStack.push_back(Cur); 1760 } 1761 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1762 emitGlobalIndirectSymbol(M, *AncestorAlias); 1763 AliasStack.clear(); 1764 } 1765 for (const auto &IFunc : M.ifuncs()) 1766 emitGlobalIndirectSymbol(M, IFunc); 1767 1768 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1769 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1770 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1771 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1772 MP->finishAssembly(M, *MI, *this); 1773 1774 // Emit llvm.ident metadata in an '.ident' directive. 1775 emitModuleIdents(M); 1776 1777 // Emit bytes for llvm.commandline metadata. 1778 emitModuleCommandLines(M); 1779 1780 // Emit __morestack address if needed for indirect calls. 1781 if (MMI->usesMorestackAddr()) { 1782 Align Alignment(1); 1783 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1784 getDataLayout(), SectionKind::getReadOnly(), 1785 /*C=*/nullptr, Alignment); 1786 OutStreamer->SwitchSection(ReadOnlySection); 1787 1788 MCSymbol *AddrSymbol = 1789 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1790 OutStreamer->emitLabel(AddrSymbol); 1791 1792 unsigned PtrSize = MAI->getCodePointerSize(); 1793 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1794 PtrSize); 1795 } 1796 1797 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1798 // split-stack is used. 1799 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1800 OutStreamer->SwitchSection( 1801 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1802 if (MMI->hasNosplitStack()) 1803 OutStreamer->SwitchSection( 1804 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1805 } 1806 1807 // If we don't have any trampolines, then we don't require stack memory 1808 // to be executable. Some targets have a directive to declare this. 1809 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1810 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1811 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1812 OutStreamer->SwitchSection(S); 1813 1814 if (TM.Options.EmitAddrsig) { 1815 // Emit address-significance attributes for all globals. 1816 OutStreamer->emitAddrsig(); 1817 for (const GlobalValue &GV : M.global_values()) 1818 if (!GV.use_empty() && !GV.isThreadLocal() && 1819 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1820 !GV.hasAtLeastLocalUnnamedAddr()) 1821 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1822 } 1823 1824 // Emit symbol partition specifications (ELF only). 1825 if (TM.getTargetTriple().isOSBinFormatELF()) { 1826 unsigned UniqueID = 0; 1827 for (const GlobalValue &GV : M.global_values()) { 1828 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1829 GV.getVisibility() != GlobalValue::DefaultVisibility) 1830 continue; 1831 1832 OutStreamer->SwitchSection( 1833 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1834 "", ++UniqueID, nullptr)); 1835 OutStreamer->emitBytes(GV.getPartition()); 1836 OutStreamer->emitZeros(1); 1837 OutStreamer->emitValue( 1838 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1839 MAI->getCodePointerSize()); 1840 } 1841 } 1842 1843 // Allow the target to emit any magic that it wants at the end of the file, 1844 // after everything else has gone out. 1845 emitEndOfAsmFile(M); 1846 1847 MMI = nullptr; 1848 1849 OutStreamer->Finish(); 1850 OutStreamer->reset(); 1851 OwnedMLI.reset(); 1852 OwnedMDT.reset(); 1853 1854 return false; 1855 } 1856 1857 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1858 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1859 if (Res.second) 1860 Res.first->second = createTempSymbol("exception"); 1861 return Res.first->second; 1862 } 1863 1864 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1865 this->MF = &MF; 1866 const Function &F = MF.getFunction(); 1867 1868 // Get the function symbol. 1869 if (!MAI->needsFunctionDescriptors()) { 1870 CurrentFnSym = getSymbol(&MF.getFunction()); 1871 } else { 1872 assert(TM.getTargetTriple().isOSAIX() && 1873 "Only AIX uses the function descriptor hooks."); 1874 // AIX is unique here in that the name of the symbol emitted for the 1875 // function body does not have the same name as the source function's 1876 // C-linkage name. 1877 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1878 " initalized first."); 1879 1880 // Get the function entry point symbol. 1881 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1882 } 1883 1884 CurrentFnSymForSize = CurrentFnSym; 1885 CurrentFnBegin = nullptr; 1886 CurrentSectionBeginSym = nullptr; 1887 MBBSectionRanges.clear(); 1888 MBBSectionExceptionSyms.clear(); 1889 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1890 if (F.hasFnAttribute("patchable-function-entry") || 1891 F.hasFnAttribute("function-instrument") || 1892 F.hasFnAttribute("xray-instruction-threshold") || 1893 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1894 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1895 CurrentFnBegin = createTempSymbol("func_begin"); 1896 if (NeedsLocalForSize) 1897 CurrentFnSymForSize = CurrentFnBegin; 1898 } 1899 1900 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1901 } 1902 1903 namespace { 1904 1905 // Keep track the alignment, constpool entries per Section. 1906 struct SectionCPs { 1907 MCSection *S; 1908 Align Alignment; 1909 SmallVector<unsigned, 4> CPEs; 1910 1911 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1912 }; 1913 1914 } // end anonymous namespace 1915 1916 /// EmitConstantPool - Print to the current output stream assembly 1917 /// representations of the constants in the constant pool MCP. This is 1918 /// used to print out constants which have been "spilled to memory" by 1919 /// the code generator. 1920 void AsmPrinter::emitConstantPool() { 1921 const MachineConstantPool *MCP = MF->getConstantPool(); 1922 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1923 if (CP.empty()) return; 1924 1925 // Calculate sections for constant pool entries. We collect entries to go into 1926 // the same section together to reduce amount of section switch statements. 1927 SmallVector<SectionCPs, 4> CPSections; 1928 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1929 const MachineConstantPoolEntry &CPE = CP[i]; 1930 Align Alignment = CPE.getAlign(); 1931 1932 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1933 1934 const Constant *C = nullptr; 1935 if (!CPE.isMachineConstantPoolEntry()) 1936 C = CPE.Val.ConstVal; 1937 1938 MCSection *S = getObjFileLowering().getSectionForConstant( 1939 getDataLayout(), Kind, C, Alignment); 1940 1941 // The number of sections are small, just do a linear search from the 1942 // last section to the first. 1943 bool Found = false; 1944 unsigned SecIdx = CPSections.size(); 1945 while (SecIdx != 0) { 1946 if (CPSections[--SecIdx].S == S) { 1947 Found = true; 1948 break; 1949 } 1950 } 1951 if (!Found) { 1952 SecIdx = CPSections.size(); 1953 CPSections.push_back(SectionCPs(S, Alignment)); 1954 } 1955 1956 if (Alignment > CPSections[SecIdx].Alignment) 1957 CPSections[SecIdx].Alignment = Alignment; 1958 CPSections[SecIdx].CPEs.push_back(i); 1959 } 1960 1961 // Now print stuff into the calculated sections. 1962 const MCSection *CurSection = nullptr; 1963 unsigned Offset = 0; 1964 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1965 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1966 unsigned CPI = CPSections[i].CPEs[j]; 1967 MCSymbol *Sym = GetCPISymbol(CPI); 1968 if (!Sym->isUndefined()) 1969 continue; 1970 1971 if (CurSection != CPSections[i].S) { 1972 OutStreamer->SwitchSection(CPSections[i].S); 1973 emitAlignment(Align(CPSections[i].Alignment)); 1974 CurSection = CPSections[i].S; 1975 Offset = 0; 1976 } 1977 1978 MachineConstantPoolEntry CPE = CP[CPI]; 1979 1980 // Emit inter-object padding for alignment. 1981 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1982 OutStreamer->emitZeros(NewOffset - Offset); 1983 1984 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 1985 1986 OutStreamer->emitLabel(Sym); 1987 if (CPE.isMachineConstantPoolEntry()) 1988 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1989 else 1990 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1991 } 1992 } 1993 } 1994 1995 // Print assembly representations of the jump tables used by the current 1996 // function. 1997 void AsmPrinter::emitJumpTableInfo() { 1998 const DataLayout &DL = MF->getDataLayout(); 1999 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2000 if (!MJTI) return; 2001 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2002 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2003 if (JT.empty()) return; 2004 2005 // Pick the directive to use to print the jump table entries, and switch to 2006 // the appropriate section. 2007 const Function &F = MF->getFunction(); 2008 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2009 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2010 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2011 F); 2012 if (JTInDiffSection) { 2013 // Drop it in the readonly section. 2014 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2015 OutStreamer->SwitchSection(ReadOnlySection); 2016 } 2017 2018 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2019 2020 // Jump tables in code sections are marked with a data_region directive 2021 // where that's supported. 2022 if (!JTInDiffSection) 2023 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2024 2025 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2026 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2027 2028 // If this jump table was deleted, ignore it. 2029 if (JTBBs.empty()) continue; 2030 2031 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2032 /// emit a .set directive for each unique entry. 2033 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2034 MAI->doesSetDirectiveSuppressReloc()) { 2035 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2036 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2037 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2038 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2039 const MachineBasicBlock *MBB = JTBBs[ii]; 2040 if (!EmittedSets.insert(MBB).second) 2041 continue; 2042 2043 // .set LJTSet, LBB32-base 2044 const MCExpr *LHS = 2045 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2046 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2047 MCBinaryExpr::createSub(LHS, Base, 2048 OutContext)); 2049 } 2050 } 2051 2052 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2053 // before each jump table. The first label is never referenced, but tells 2054 // the assembler and linker the extents of the jump table object. The 2055 // second label is actually referenced by the code. 2056 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2057 // FIXME: This doesn't have to have any specific name, just any randomly 2058 // named and numbered local label started with 'l' would work. Simplify 2059 // GetJTISymbol. 2060 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2061 2062 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2063 OutStreamer->emitLabel(JTISymbol); 2064 2065 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2066 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2067 } 2068 if (!JTInDiffSection) 2069 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2070 } 2071 2072 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2073 /// current stream. 2074 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2075 const MachineBasicBlock *MBB, 2076 unsigned UID) const { 2077 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2078 const MCExpr *Value = nullptr; 2079 switch (MJTI->getEntryKind()) { 2080 case MachineJumpTableInfo::EK_Inline: 2081 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2082 case MachineJumpTableInfo::EK_Custom32: 2083 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2084 MJTI, MBB, UID, OutContext); 2085 break; 2086 case MachineJumpTableInfo::EK_BlockAddress: 2087 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2088 // .word LBB123 2089 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2090 break; 2091 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2092 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2093 // with a relocation as gp-relative, e.g.: 2094 // .gprel32 LBB123 2095 MCSymbol *MBBSym = MBB->getSymbol(); 2096 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2097 return; 2098 } 2099 2100 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2101 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2102 // with a relocation as gp-relative, e.g.: 2103 // .gpdword LBB123 2104 MCSymbol *MBBSym = MBB->getSymbol(); 2105 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2106 return; 2107 } 2108 2109 case MachineJumpTableInfo::EK_LabelDifference32: { 2110 // Each entry is the address of the block minus the address of the jump 2111 // table. This is used for PIC jump tables where gprel32 is not supported. 2112 // e.g.: 2113 // .word LBB123 - LJTI1_2 2114 // If the .set directive avoids relocations, this is emitted as: 2115 // .set L4_5_set_123, LBB123 - LJTI1_2 2116 // .word L4_5_set_123 2117 if (MAI->doesSetDirectiveSuppressReloc()) { 2118 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2119 OutContext); 2120 break; 2121 } 2122 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2123 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2124 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2125 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2126 break; 2127 } 2128 } 2129 2130 assert(Value && "Unknown entry kind!"); 2131 2132 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2133 OutStreamer->emitValue(Value, EntrySize); 2134 } 2135 2136 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2137 /// special global used by LLVM. If so, emit it and return true, otherwise 2138 /// do nothing and return false. 2139 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2140 if (GV->getName() == "llvm.used") { 2141 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2142 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2143 return true; 2144 } 2145 2146 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2147 if (GV->getSection() == "llvm.metadata" || 2148 GV->hasAvailableExternallyLinkage()) 2149 return true; 2150 2151 if (!GV->hasAppendingLinkage()) return false; 2152 2153 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2154 2155 if (GV->getName() == "llvm.global_ctors") { 2156 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2157 /* isCtor */ true); 2158 2159 return true; 2160 } 2161 2162 if (GV->getName() == "llvm.global_dtors") { 2163 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2164 /* isCtor */ false); 2165 2166 return true; 2167 } 2168 2169 report_fatal_error("unknown special variable"); 2170 } 2171 2172 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2173 /// global in the specified llvm.used list. 2174 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2175 // Should be an array of 'i8*'. 2176 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2177 const GlobalValue *GV = 2178 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2179 if (GV) 2180 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2181 } 2182 } 2183 2184 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2185 const Constant *List, 2186 SmallVector<Structor, 8> &Structors) { 2187 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2188 // the init priority. 2189 if (!isa<ConstantArray>(List)) 2190 return; 2191 2192 // Gather the structors in a form that's convenient for sorting by priority. 2193 for (Value *O : cast<ConstantArray>(List)->operands()) { 2194 auto *CS = cast<ConstantStruct>(O); 2195 if (CS->getOperand(1)->isNullValue()) 2196 break; // Found a null terminator, skip the rest. 2197 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2198 if (!Priority) 2199 continue; // Malformed. 2200 Structors.push_back(Structor()); 2201 Structor &S = Structors.back(); 2202 S.Priority = Priority->getLimitedValue(65535); 2203 S.Func = CS->getOperand(1); 2204 if (!CS->getOperand(2)->isNullValue()) { 2205 if (TM.getTargetTriple().isOSAIX()) 2206 llvm::report_fatal_error( 2207 "associated data of XXStructor list is not yet supported on AIX"); 2208 S.ComdatKey = 2209 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2210 } 2211 } 2212 2213 // Emit the function pointers in the target-specific order 2214 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2215 return L.Priority < R.Priority; 2216 }); 2217 } 2218 2219 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2220 /// priority. 2221 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2222 bool IsCtor) { 2223 SmallVector<Structor, 8> Structors; 2224 preprocessXXStructorList(DL, List, Structors); 2225 if (Structors.empty()) 2226 return; 2227 2228 const Align Align = DL.getPointerPrefAlignment(); 2229 for (Structor &S : Structors) { 2230 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2231 const MCSymbol *KeySym = nullptr; 2232 if (GlobalValue *GV = S.ComdatKey) { 2233 if (GV->isDeclarationForLinker()) 2234 // If the associated variable is not defined in this module 2235 // (it might be available_externally, or have been an 2236 // available_externally definition that was dropped by the 2237 // EliminateAvailableExternally pass), some other TU 2238 // will provide its dynamic initializer. 2239 continue; 2240 2241 KeySym = getSymbol(GV); 2242 } 2243 2244 MCSection *OutputSection = 2245 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2246 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2247 OutStreamer->SwitchSection(OutputSection); 2248 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2249 emitAlignment(Align); 2250 emitXXStructor(DL, S.Func); 2251 } 2252 } 2253 2254 void AsmPrinter::emitModuleIdents(Module &M) { 2255 if (!MAI->hasIdentDirective()) 2256 return; 2257 2258 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2259 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2260 const MDNode *N = NMD->getOperand(i); 2261 assert(N->getNumOperands() == 1 && 2262 "llvm.ident metadata entry can have only one operand"); 2263 const MDString *S = cast<MDString>(N->getOperand(0)); 2264 OutStreamer->emitIdent(S->getString()); 2265 } 2266 } 2267 } 2268 2269 void AsmPrinter::emitModuleCommandLines(Module &M) { 2270 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2271 if (!CommandLine) 2272 return; 2273 2274 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2275 if (!NMD || !NMD->getNumOperands()) 2276 return; 2277 2278 OutStreamer->PushSection(); 2279 OutStreamer->SwitchSection(CommandLine); 2280 OutStreamer->emitZeros(1); 2281 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2282 const MDNode *N = NMD->getOperand(i); 2283 assert(N->getNumOperands() == 1 && 2284 "llvm.commandline metadata entry can have only one operand"); 2285 const MDString *S = cast<MDString>(N->getOperand(0)); 2286 OutStreamer->emitBytes(S->getString()); 2287 OutStreamer->emitZeros(1); 2288 } 2289 OutStreamer->PopSection(); 2290 } 2291 2292 //===--------------------------------------------------------------------===// 2293 // Emission and print routines 2294 // 2295 2296 /// Emit a byte directive and value. 2297 /// 2298 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2299 2300 /// Emit a short directive and value. 2301 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2302 2303 /// Emit a long directive and value. 2304 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2305 2306 /// Emit a long long directive and value. 2307 void AsmPrinter::emitInt64(uint64_t Value) const { 2308 OutStreamer->emitInt64(Value); 2309 } 2310 2311 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2312 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2313 /// .set if it avoids relocations. 2314 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2315 unsigned Size) const { 2316 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2317 } 2318 2319 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2320 /// where the size in bytes of the directive is specified by Size and Label 2321 /// specifies the label. This implicitly uses .set if it is available. 2322 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2323 unsigned Size, 2324 bool IsSectionRelative) const { 2325 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2326 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2327 if (Size > 4) 2328 OutStreamer->emitZeros(Size - 4); 2329 return; 2330 } 2331 2332 // Emit Label+Offset (or just Label if Offset is zero) 2333 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2334 if (Offset) 2335 Expr = MCBinaryExpr::createAdd( 2336 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2337 2338 OutStreamer->emitValue(Expr, Size); 2339 } 2340 2341 //===----------------------------------------------------------------------===// 2342 2343 // EmitAlignment - Emit an alignment directive to the specified power of 2344 // two boundary. If a global value is specified, and if that global has 2345 // an explicit alignment requested, it will override the alignment request 2346 // if required for correctness. 2347 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2348 if (GV) 2349 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2350 2351 if (Alignment == Align(1)) 2352 return; // 1-byte aligned: no need to emit alignment. 2353 2354 if (getCurrentSection()->getKind().isText()) 2355 OutStreamer->emitCodeAlignment(Alignment.value()); 2356 else 2357 OutStreamer->emitValueToAlignment(Alignment.value()); 2358 } 2359 2360 //===----------------------------------------------------------------------===// 2361 // Constant emission. 2362 //===----------------------------------------------------------------------===// 2363 2364 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2365 MCContext &Ctx = OutContext; 2366 2367 if (CV->isNullValue() || isa<UndefValue>(CV)) 2368 return MCConstantExpr::create(0, Ctx); 2369 2370 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2371 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2372 2373 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2374 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2375 2376 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2377 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2378 2379 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2380 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2381 2382 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2383 if (!CE) { 2384 llvm_unreachable("Unknown constant value to lower!"); 2385 } 2386 2387 switch (CE->getOpcode()) { 2388 case Instruction::AddrSpaceCast: { 2389 const Constant *Op = CE->getOperand(0); 2390 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2391 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2392 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2393 return lowerConstant(Op); 2394 2395 // Fallthrough to error. 2396 LLVM_FALLTHROUGH; 2397 } 2398 default: { 2399 // If the code isn't optimized, there may be outstanding folding 2400 // opportunities. Attempt to fold the expression using DataLayout as a 2401 // last resort before giving up. 2402 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2403 if (C != CE) 2404 return lowerConstant(C); 2405 2406 // Otherwise report the problem to the user. 2407 std::string S; 2408 raw_string_ostream OS(S); 2409 OS << "Unsupported expression in static initializer: "; 2410 CE->printAsOperand(OS, /*PrintType=*/false, 2411 !MF ? nullptr : MF->getFunction().getParent()); 2412 report_fatal_error(OS.str()); 2413 } 2414 case Instruction::GetElementPtr: { 2415 // Generate a symbolic expression for the byte address 2416 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2417 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2418 2419 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2420 if (!OffsetAI) 2421 return Base; 2422 2423 int64_t Offset = OffsetAI.getSExtValue(); 2424 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2425 Ctx); 2426 } 2427 2428 case Instruction::Trunc: 2429 // We emit the value and depend on the assembler to truncate the generated 2430 // expression properly. This is important for differences between 2431 // blockaddress labels. Since the two labels are in the same function, it 2432 // is reasonable to treat their delta as a 32-bit value. 2433 LLVM_FALLTHROUGH; 2434 case Instruction::BitCast: 2435 return lowerConstant(CE->getOperand(0)); 2436 2437 case Instruction::IntToPtr: { 2438 const DataLayout &DL = getDataLayout(); 2439 2440 // Handle casts to pointers by changing them into casts to the appropriate 2441 // integer type. This promotes constant folding and simplifies this code. 2442 Constant *Op = CE->getOperand(0); 2443 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2444 false/*ZExt*/); 2445 return lowerConstant(Op); 2446 } 2447 2448 case Instruction::PtrToInt: { 2449 const DataLayout &DL = getDataLayout(); 2450 2451 // Support only foldable casts to/from pointers that can be eliminated by 2452 // changing the pointer to the appropriately sized integer type. 2453 Constant *Op = CE->getOperand(0); 2454 Type *Ty = CE->getType(); 2455 2456 const MCExpr *OpExpr = lowerConstant(Op); 2457 2458 // We can emit the pointer value into this slot if the slot is an 2459 // integer slot equal to the size of the pointer. 2460 // 2461 // If the pointer is larger than the resultant integer, then 2462 // as with Trunc just depend on the assembler to truncate it. 2463 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2464 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2465 return OpExpr; 2466 2467 // Otherwise the pointer is smaller than the resultant integer, mask off 2468 // the high bits so we are sure to get a proper truncation if the input is 2469 // a constant expr. 2470 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2471 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2472 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2473 } 2474 2475 case Instruction::Sub: { 2476 GlobalValue *LHSGV; 2477 APInt LHSOffset; 2478 DSOLocalEquivalent *DSOEquiv; 2479 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2480 getDataLayout(), &DSOEquiv)) { 2481 GlobalValue *RHSGV; 2482 APInt RHSOffset; 2483 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2484 getDataLayout())) { 2485 const MCExpr *RelocExpr = 2486 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2487 if (!RelocExpr) { 2488 const MCExpr *LHSExpr = 2489 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2490 if (DSOEquiv && 2491 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2492 LHSExpr = 2493 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2494 RelocExpr = MCBinaryExpr::createSub( 2495 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2496 } 2497 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2498 if (Addend != 0) 2499 RelocExpr = MCBinaryExpr::createAdd( 2500 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2501 return RelocExpr; 2502 } 2503 } 2504 } 2505 // else fallthrough 2506 LLVM_FALLTHROUGH; 2507 2508 // The MC library also has a right-shift operator, but it isn't consistently 2509 // signed or unsigned between different targets. 2510 case Instruction::Add: 2511 case Instruction::Mul: 2512 case Instruction::SDiv: 2513 case Instruction::SRem: 2514 case Instruction::Shl: 2515 case Instruction::And: 2516 case Instruction::Or: 2517 case Instruction::Xor: { 2518 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2519 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2520 switch (CE->getOpcode()) { 2521 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2522 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2523 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2524 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2525 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2526 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2527 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2528 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2529 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2530 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2531 } 2532 } 2533 } 2534 } 2535 2536 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2537 AsmPrinter &AP, 2538 const Constant *BaseCV = nullptr, 2539 uint64_t Offset = 0); 2540 2541 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2542 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2543 2544 /// isRepeatedByteSequence - Determine whether the given value is 2545 /// composed of a repeated sequence of identical bytes and return the 2546 /// byte value. If it is not a repeated sequence, return -1. 2547 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2548 StringRef Data = V->getRawDataValues(); 2549 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2550 char C = Data[0]; 2551 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2552 if (Data[i] != C) return -1; 2553 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2554 } 2555 2556 /// isRepeatedByteSequence - Determine whether the given value is 2557 /// composed of a repeated sequence of identical bytes and return the 2558 /// byte value. If it is not a repeated sequence, return -1. 2559 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2560 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2561 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2562 assert(Size % 8 == 0); 2563 2564 // Extend the element to take zero padding into account. 2565 APInt Value = CI->getValue().zextOrSelf(Size); 2566 if (!Value.isSplat(8)) 2567 return -1; 2568 2569 return Value.zextOrTrunc(8).getZExtValue(); 2570 } 2571 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2572 // Make sure all array elements are sequences of the same repeated 2573 // byte. 2574 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2575 Constant *Op0 = CA->getOperand(0); 2576 int Byte = isRepeatedByteSequence(Op0, DL); 2577 if (Byte == -1) 2578 return -1; 2579 2580 // All array elements must be equal. 2581 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2582 if (CA->getOperand(i) != Op0) 2583 return -1; 2584 return Byte; 2585 } 2586 2587 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2588 return isRepeatedByteSequence(CDS); 2589 2590 return -1; 2591 } 2592 2593 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2594 const ConstantDataSequential *CDS, 2595 AsmPrinter &AP) { 2596 // See if we can aggregate this into a .fill, if so, emit it as such. 2597 int Value = isRepeatedByteSequence(CDS, DL); 2598 if (Value != -1) { 2599 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2600 // Don't emit a 1-byte object as a .fill. 2601 if (Bytes > 1) 2602 return AP.OutStreamer->emitFill(Bytes, Value); 2603 } 2604 2605 // If this can be emitted with .ascii/.asciz, emit it as such. 2606 if (CDS->isString()) 2607 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2608 2609 // Otherwise, emit the values in successive locations. 2610 unsigned ElementByteSize = CDS->getElementByteSize(); 2611 if (isa<IntegerType>(CDS->getElementType())) { 2612 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2613 if (AP.isVerbose()) 2614 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2615 CDS->getElementAsInteger(i)); 2616 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2617 ElementByteSize); 2618 } 2619 } else { 2620 Type *ET = CDS->getElementType(); 2621 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2622 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2623 } 2624 2625 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2626 unsigned EmittedSize = 2627 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2628 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2629 if (unsigned Padding = Size - EmittedSize) 2630 AP.OutStreamer->emitZeros(Padding); 2631 } 2632 2633 static void emitGlobalConstantArray(const DataLayout &DL, 2634 const ConstantArray *CA, AsmPrinter &AP, 2635 const Constant *BaseCV, uint64_t Offset) { 2636 // See if we can aggregate some values. Make sure it can be 2637 // represented as a series of bytes of the constant value. 2638 int Value = isRepeatedByteSequence(CA, DL); 2639 2640 if (Value != -1) { 2641 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2642 AP.OutStreamer->emitFill(Bytes, Value); 2643 } 2644 else { 2645 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2646 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2647 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2648 } 2649 } 2650 } 2651 2652 static void emitGlobalConstantVector(const DataLayout &DL, 2653 const ConstantVector *CV, AsmPrinter &AP) { 2654 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2655 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2656 2657 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2658 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2659 CV->getType()->getNumElements(); 2660 if (unsigned Padding = Size - EmittedSize) 2661 AP.OutStreamer->emitZeros(Padding); 2662 } 2663 2664 static void emitGlobalConstantStruct(const DataLayout &DL, 2665 const ConstantStruct *CS, AsmPrinter &AP, 2666 const Constant *BaseCV, uint64_t Offset) { 2667 // Print the fields in successive locations. Pad to align if needed! 2668 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2669 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2670 uint64_t SizeSoFar = 0; 2671 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2672 const Constant *Field = CS->getOperand(i); 2673 2674 // Print the actual field value. 2675 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2676 2677 // Check if padding is needed and insert one or more 0s. 2678 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2679 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2680 - Layout->getElementOffset(i)) - FieldSize; 2681 SizeSoFar += FieldSize + PadSize; 2682 2683 // Insert padding - this may include padding to increase the size of the 2684 // current field up to the ABI size (if the struct is not packed) as well 2685 // as padding to ensure that the next field starts at the right offset. 2686 AP.OutStreamer->emitZeros(PadSize); 2687 } 2688 assert(SizeSoFar == Layout->getSizeInBytes() && 2689 "Layout of constant struct may be incorrect!"); 2690 } 2691 2692 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2693 assert(ET && "Unknown float type"); 2694 APInt API = APF.bitcastToAPInt(); 2695 2696 // First print a comment with what we think the original floating-point value 2697 // should have been. 2698 if (AP.isVerbose()) { 2699 SmallString<8> StrVal; 2700 APF.toString(StrVal); 2701 ET->print(AP.OutStreamer->GetCommentOS()); 2702 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2703 } 2704 2705 // Now iterate through the APInt chunks, emitting them in endian-correct 2706 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2707 // floats). 2708 unsigned NumBytes = API.getBitWidth() / 8; 2709 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2710 const uint64_t *p = API.getRawData(); 2711 2712 // PPC's long double has odd notions of endianness compared to how LLVM 2713 // handles it: p[0] goes first for *big* endian on PPC. 2714 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2715 int Chunk = API.getNumWords() - 1; 2716 2717 if (TrailingBytes) 2718 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2719 2720 for (; Chunk >= 0; --Chunk) 2721 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2722 } else { 2723 unsigned Chunk; 2724 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2725 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2726 2727 if (TrailingBytes) 2728 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2729 } 2730 2731 // Emit the tail padding for the long double. 2732 const DataLayout &DL = AP.getDataLayout(); 2733 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2734 } 2735 2736 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2737 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2738 } 2739 2740 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2741 const DataLayout &DL = AP.getDataLayout(); 2742 unsigned BitWidth = CI->getBitWidth(); 2743 2744 // Copy the value as we may massage the layout for constants whose bit width 2745 // is not a multiple of 64-bits. 2746 APInt Realigned(CI->getValue()); 2747 uint64_t ExtraBits = 0; 2748 unsigned ExtraBitsSize = BitWidth & 63; 2749 2750 if (ExtraBitsSize) { 2751 // The bit width of the data is not a multiple of 64-bits. 2752 // The extra bits are expected to be at the end of the chunk of the memory. 2753 // Little endian: 2754 // * Nothing to be done, just record the extra bits to emit. 2755 // Big endian: 2756 // * Record the extra bits to emit. 2757 // * Realign the raw data to emit the chunks of 64-bits. 2758 if (DL.isBigEndian()) { 2759 // Basically the structure of the raw data is a chunk of 64-bits cells: 2760 // 0 1 BitWidth / 64 2761 // [chunk1][chunk2] ... [chunkN]. 2762 // The most significant chunk is chunkN and it should be emitted first. 2763 // However, due to the alignment issue chunkN contains useless bits. 2764 // Realign the chunks so that they contain only useful information: 2765 // ExtraBits 0 1 (BitWidth / 64) - 1 2766 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2767 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2768 ExtraBits = Realigned.getRawData()[0] & 2769 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2770 Realigned.lshrInPlace(ExtraBitsSize); 2771 } else 2772 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2773 } 2774 2775 // We don't expect assemblers to support integer data directives 2776 // for more than 64 bits, so we emit the data in at most 64-bit 2777 // quantities at a time. 2778 const uint64_t *RawData = Realigned.getRawData(); 2779 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2780 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2781 AP.OutStreamer->emitIntValue(Val, 8); 2782 } 2783 2784 if (ExtraBitsSize) { 2785 // Emit the extra bits after the 64-bits chunks. 2786 2787 // Emit a directive that fills the expected size. 2788 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2789 Size -= (BitWidth / 64) * 8; 2790 assert(Size && Size * 8 >= ExtraBitsSize && 2791 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2792 == ExtraBits && "Directive too small for extra bits."); 2793 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2794 } 2795 } 2796 2797 /// Transform a not absolute MCExpr containing a reference to a GOT 2798 /// equivalent global, by a target specific GOT pc relative access to the 2799 /// final symbol. 2800 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2801 const Constant *BaseCst, 2802 uint64_t Offset) { 2803 // The global @foo below illustrates a global that uses a got equivalent. 2804 // 2805 // @bar = global i32 42 2806 // @gotequiv = private unnamed_addr constant i32* @bar 2807 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2808 // i64 ptrtoint (i32* @foo to i64)) 2809 // to i32) 2810 // 2811 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2812 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2813 // form: 2814 // 2815 // foo = cstexpr, where 2816 // cstexpr := <gotequiv> - "." + <cst> 2817 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2818 // 2819 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2820 // 2821 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2822 // gotpcrelcst := <offset from @foo base> + <cst> 2823 MCValue MV; 2824 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2825 return; 2826 const MCSymbolRefExpr *SymA = MV.getSymA(); 2827 if (!SymA) 2828 return; 2829 2830 // Check that GOT equivalent symbol is cached. 2831 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2832 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2833 return; 2834 2835 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2836 if (!BaseGV) 2837 return; 2838 2839 // Check for a valid base symbol 2840 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2841 const MCSymbolRefExpr *SymB = MV.getSymB(); 2842 2843 if (!SymB || BaseSym != &SymB->getSymbol()) 2844 return; 2845 2846 // Make sure to match: 2847 // 2848 // gotpcrelcst := <offset from @foo base> + <cst> 2849 // 2850 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2851 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2852 // if the target knows how to encode it. 2853 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2854 if (GOTPCRelCst < 0) 2855 return; 2856 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2857 return; 2858 2859 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2860 // 2861 // bar: 2862 // .long 42 2863 // gotequiv: 2864 // .quad bar 2865 // foo: 2866 // .long gotequiv - "." + <cst> 2867 // 2868 // is replaced by the target specific equivalent to: 2869 // 2870 // bar: 2871 // .long 42 2872 // foo: 2873 // .long bar@GOTPCREL+<gotpcrelcst> 2874 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2875 const GlobalVariable *GV = Result.first; 2876 int NumUses = (int)Result.second; 2877 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2878 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2879 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2880 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2881 2882 // Update GOT equivalent usage information 2883 --NumUses; 2884 if (NumUses >= 0) 2885 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2886 } 2887 2888 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2889 AsmPrinter &AP, const Constant *BaseCV, 2890 uint64_t Offset) { 2891 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2892 2893 // Globals with sub-elements such as combinations of arrays and structs 2894 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2895 // constant symbol base and the current position with BaseCV and Offset. 2896 if (!BaseCV && CV->hasOneUse()) 2897 BaseCV = dyn_cast<Constant>(CV->user_back()); 2898 2899 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2900 return AP.OutStreamer->emitZeros(Size); 2901 2902 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2903 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2904 2905 if (StoreSize <= 8) { 2906 if (AP.isVerbose()) 2907 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2908 CI->getZExtValue()); 2909 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2910 } else { 2911 emitGlobalConstantLargeInt(CI, AP); 2912 } 2913 2914 // Emit tail padding if needed 2915 if (Size != StoreSize) 2916 AP.OutStreamer->emitZeros(Size - StoreSize); 2917 2918 return; 2919 } 2920 2921 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2922 return emitGlobalConstantFP(CFP, AP); 2923 2924 if (isa<ConstantPointerNull>(CV)) { 2925 AP.OutStreamer->emitIntValue(0, Size); 2926 return; 2927 } 2928 2929 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2930 return emitGlobalConstantDataSequential(DL, CDS, AP); 2931 2932 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2933 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2934 2935 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2936 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2937 2938 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2939 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2940 // vectors). 2941 if (CE->getOpcode() == Instruction::BitCast) 2942 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2943 2944 if (Size > 8) { 2945 // If the constant expression's size is greater than 64-bits, then we have 2946 // to emit the value in chunks. Try to constant fold the value and emit it 2947 // that way. 2948 Constant *New = ConstantFoldConstant(CE, DL); 2949 if (New != CE) 2950 return emitGlobalConstantImpl(DL, New, AP); 2951 } 2952 } 2953 2954 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2955 return emitGlobalConstantVector(DL, V, AP); 2956 2957 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2958 // thread the streamer with EmitValue. 2959 const MCExpr *ME = AP.lowerConstant(CV); 2960 2961 // Since lowerConstant already folded and got rid of all IR pointer and 2962 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2963 // directly. 2964 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2965 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2966 2967 AP.OutStreamer->emitValue(ME, Size); 2968 } 2969 2970 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2971 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2972 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2973 if (Size) 2974 emitGlobalConstantImpl(DL, CV, *this); 2975 else if (MAI->hasSubsectionsViaSymbols()) { 2976 // If the global has zero size, emit a single byte so that two labels don't 2977 // look like they are at the same location. 2978 OutStreamer->emitIntValue(0, 1); 2979 } 2980 } 2981 2982 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2983 // Target doesn't support this yet! 2984 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2985 } 2986 2987 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2988 if (Offset > 0) 2989 OS << '+' << Offset; 2990 else if (Offset < 0) 2991 OS << Offset; 2992 } 2993 2994 void AsmPrinter::emitNops(unsigned N) { 2995 MCInst Nop; 2996 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2997 for (; N; --N) 2998 EmitToStreamer(*OutStreamer, Nop); 2999 } 3000 3001 //===----------------------------------------------------------------------===// 3002 // Symbol Lowering Routines. 3003 //===----------------------------------------------------------------------===// 3004 3005 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3006 return OutContext.createTempSymbol(Name, true); 3007 } 3008 3009 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3010 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3011 } 3012 3013 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3014 return MMI->getAddrLabelSymbol(BB); 3015 } 3016 3017 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3018 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3019 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3020 const MachineConstantPoolEntry &CPE = 3021 MF->getConstantPool()->getConstants()[CPID]; 3022 if (!CPE.isMachineConstantPoolEntry()) { 3023 const DataLayout &DL = MF->getDataLayout(); 3024 SectionKind Kind = CPE.getSectionKind(&DL); 3025 const Constant *C = CPE.Val.ConstVal; 3026 Align Alignment = CPE.Alignment; 3027 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3028 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3029 Alignment))) { 3030 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3031 if (Sym->isUndefined()) 3032 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3033 return Sym; 3034 } 3035 } 3036 } 3037 } 3038 3039 const DataLayout &DL = getDataLayout(); 3040 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3041 "CPI" + Twine(getFunctionNumber()) + "_" + 3042 Twine(CPID)); 3043 } 3044 3045 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3046 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3047 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3048 } 3049 3050 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3051 /// FIXME: privatize to AsmPrinter. 3052 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3053 const DataLayout &DL = getDataLayout(); 3054 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3055 Twine(getFunctionNumber()) + "_" + 3056 Twine(UID) + "_set_" + Twine(MBBID)); 3057 } 3058 3059 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3060 StringRef Suffix) const { 3061 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3062 } 3063 3064 /// Return the MCSymbol for the specified ExternalSymbol. 3065 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3066 SmallString<60> NameStr; 3067 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3068 return OutContext.getOrCreateSymbol(NameStr); 3069 } 3070 3071 /// PrintParentLoopComment - Print comments about parent loops of this one. 3072 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3073 unsigned FunctionNumber) { 3074 if (!Loop) return; 3075 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3076 OS.indent(Loop->getLoopDepth()*2) 3077 << "Parent Loop BB" << FunctionNumber << "_" 3078 << Loop->getHeader()->getNumber() 3079 << " Depth=" << Loop->getLoopDepth() << '\n'; 3080 } 3081 3082 /// PrintChildLoopComment - Print comments about child loops within 3083 /// the loop for this basic block, with nesting. 3084 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3085 unsigned FunctionNumber) { 3086 // Add child loop information 3087 for (const MachineLoop *CL : *Loop) { 3088 OS.indent(CL->getLoopDepth()*2) 3089 << "Child Loop BB" << FunctionNumber << "_" 3090 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3091 << '\n'; 3092 PrintChildLoopComment(OS, CL, FunctionNumber); 3093 } 3094 } 3095 3096 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3097 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3098 const MachineLoopInfo *LI, 3099 const AsmPrinter &AP) { 3100 // Add loop depth information 3101 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3102 if (!Loop) return; 3103 3104 MachineBasicBlock *Header = Loop->getHeader(); 3105 assert(Header && "No header for loop"); 3106 3107 // If this block is not a loop header, just print out what is the loop header 3108 // and return. 3109 if (Header != &MBB) { 3110 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3111 Twine(AP.getFunctionNumber())+"_" + 3112 Twine(Loop->getHeader()->getNumber())+ 3113 " Depth="+Twine(Loop->getLoopDepth())); 3114 return; 3115 } 3116 3117 // Otherwise, it is a loop header. Print out information about child and 3118 // parent loops. 3119 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3120 3121 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3122 3123 OS << "=>"; 3124 OS.indent(Loop->getLoopDepth()*2-2); 3125 3126 OS << "This "; 3127 if (Loop->isInnermost()) 3128 OS << "Inner "; 3129 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3130 3131 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3132 } 3133 3134 /// emitBasicBlockStart - This method prints the label for the specified 3135 /// MachineBasicBlock, an alignment (if present) and a comment describing 3136 /// it if appropriate. 3137 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3138 // End the previous funclet and start a new one. 3139 if (MBB.isEHFuncletEntry()) { 3140 for (const HandlerInfo &HI : Handlers) { 3141 HI.Handler->endFunclet(); 3142 HI.Handler->beginFunclet(MBB); 3143 } 3144 } 3145 3146 // Emit an alignment directive for this block, if needed. 3147 const Align Alignment = MBB.getAlignment(); 3148 if (Alignment != Align(1)) 3149 emitAlignment(Alignment); 3150 3151 // Switch to a new section if this basic block must begin a section. The 3152 // entry block is always placed in the function section and is handled 3153 // separately. 3154 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3155 OutStreamer->SwitchSection( 3156 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3157 MBB, TM)); 3158 CurrentSectionBeginSym = MBB.getSymbol(); 3159 } 3160 3161 // If the block has its address taken, emit any labels that were used to 3162 // reference the block. It is possible that there is more than one label 3163 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3164 // the references were generated. 3165 if (MBB.hasAddressTaken()) { 3166 const BasicBlock *BB = MBB.getBasicBlock(); 3167 if (isVerbose()) 3168 OutStreamer->AddComment("Block address taken"); 3169 3170 // MBBs can have their address taken as part of CodeGen without having 3171 // their corresponding BB's address taken in IR 3172 if (BB->hasAddressTaken()) 3173 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3174 OutStreamer->emitLabel(Sym); 3175 } 3176 3177 // Print some verbose block comments. 3178 if (isVerbose()) { 3179 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3180 if (BB->hasName()) { 3181 BB->printAsOperand(OutStreamer->GetCommentOS(), 3182 /*PrintType=*/false, BB->getModule()); 3183 OutStreamer->GetCommentOS() << '\n'; 3184 } 3185 } 3186 3187 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3188 emitBasicBlockLoopComments(MBB, MLI, *this); 3189 } 3190 3191 // Print the main label for the block. 3192 if (shouldEmitLabelForBasicBlock(MBB)) { 3193 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3194 OutStreamer->AddComment("Label of block must be emitted"); 3195 OutStreamer->emitLabel(MBB.getSymbol()); 3196 } else { 3197 if (isVerbose()) { 3198 // NOTE: Want this comment at start of line, don't emit with AddComment. 3199 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3200 false); 3201 } 3202 } 3203 3204 // With BB sections, each basic block must handle CFI information on its own 3205 // if it begins a section (Entry block is handled separately by 3206 // AsmPrinterHandler::beginFunction). 3207 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3208 for (const HandlerInfo &HI : Handlers) 3209 HI.Handler->beginBasicBlock(MBB); 3210 } 3211 3212 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3213 // Check if CFI information needs to be updated for this MBB with basic block 3214 // sections. 3215 if (MBB.isEndSection()) 3216 for (const HandlerInfo &HI : Handlers) 3217 HI.Handler->endBasicBlock(MBB); 3218 } 3219 3220 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3221 bool IsDefinition) const { 3222 MCSymbolAttr Attr = MCSA_Invalid; 3223 3224 switch (Visibility) { 3225 default: break; 3226 case GlobalValue::HiddenVisibility: 3227 if (IsDefinition) 3228 Attr = MAI->getHiddenVisibilityAttr(); 3229 else 3230 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3231 break; 3232 case GlobalValue::ProtectedVisibility: 3233 Attr = MAI->getProtectedVisibilityAttr(); 3234 break; 3235 } 3236 3237 if (Attr != MCSA_Invalid) 3238 OutStreamer->emitSymbolAttribute(Sym, Attr); 3239 } 3240 3241 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3242 const MachineBasicBlock &MBB) const { 3243 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3244 // in the labels mode (option `=labels`) and every section beginning in the 3245 // sections mode (`=all` and `=list=`). 3246 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3247 return true; 3248 // A label is needed for any block with at least one predecessor (when that 3249 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3250 // entry, or if a label is forced). 3251 return !MBB.pred_empty() && 3252 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3253 MBB.hasLabelMustBeEmitted()); 3254 } 3255 3256 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3257 /// exactly one predecessor and the control transfer mechanism between 3258 /// the predecessor and this block is a fall-through. 3259 bool AsmPrinter:: 3260 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3261 // If this is a landing pad, it isn't a fall through. If it has no preds, 3262 // then nothing falls through to it. 3263 if (MBB->isEHPad() || MBB->pred_empty()) 3264 return false; 3265 3266 // If there isn't exactly one predecessor, it can't be a fall through. 3267 if (MBB->pred_size() > 1) 3268 return false; 3269 3270 // The predecessor has to be immediately before this block. 3271 MachineBasicBlock *Pred = *MBB->pred_begin(); 3272 if (!Pred->isLayoutSuccessor(MBB)) 3273 return false; 3274 3275 // If the block is completely empty, then it definitely does fall through. 3276 if (Pred->empty()) 3277 return true; 3278 3279 // Check the terminators in the previous blocks 3280 for (const auto &MI : Pred->terminators()) { 3281 // If it is not a simple branch, we are in a table somewhere. 3282 if (!MI.isBranch() || MI.isIndirectBranch()) 3283 return false; 3284 3285 // If we are the operands of one of the branches, this is not a fall 3286 // through. Note that targets with delay slots will usually bundle 3287 // terminators with the delay slot instruction. 3288 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3289 if (OP->isJTI()) 3290 return false; 3291 if (OP->isMBB() && OP->getMBB() == MBB) 3292 return false; 3293 } 3294 } 3295 3296 return true; 3297 } 3298 3299 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3300 if (!S.usesMetadata()) 3301 return nullptr; 3302 3303 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3304 gcp_map_type::iterator GCPI = GCMap.find(&S); 3305 if (GCPI != GCMap.end()) 3306 return GCPI->second.get(); 3307 3308 auto Name = S.getName(); 3309 3310 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3311 GCMetadataPrinterRegistry::entries()) 3312 if (Name == GCMetaPrinter.getName()) { 3313 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3314 GMP->S = &S; 3315 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3316 return IterBool.first->second.get(); 3317 } 3318 3319 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3320 } 3321 3322 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3323 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3324 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3325 bool NeedsDefault = false; 3326 if (MI->begin() == MI->end()) 3327 // No GC strategy, use the default format. 3328 NeedsDefault = true; 3329 else 3330 for (auto &I : *MI) { 3331 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3332 if (MP->emitStackMaps(SM, *this)) 3333 continue; 3334 // The strategy doesn't have printer or doesn't emit custom stack maps. 3335 // Use the default format. 3336 NeedsDefault = true; 3337 } 3338 3339 if (NeedsDefault) 3340 SM.serializeToStackMapSection(); 3341 } 3342 3343 /// Pin vtable to this file. 3344 AsmPrinterHandler::~AsmPrinterHandler() = default; 3345 3346 void AsmPrinterHandler::markFunctionEnd() {} 3347 3348 // In the binary's "xray_instr_map" section, an array of these function entries 3349 // describes each instrumentation point. When XRay patches your code, the index 3350 // into this table will be given to your handler as a patch point identifier. 3351 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3352 auto Kind8 = static_cast<uint8_t>(Kind); 3353 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3354 Out->emitBinaryData( 3355 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3356 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3357 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3358 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3359 Out->emitZeros(Padding); 3360 } 3361 3362 void AsmPrinter::emitXRayTable() { 3363 if (Sleds.empty()) 3364 return; 3365 3366 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3367 const Function &F = MF->getFunction(); 3368 MCSection *InstMap = nullptr; 3369 MCSection *FnSledIndex = nullptr; 3370 const Triple &TT = TM.getTargetTriple(); 3371 // Use PC-relative addresses on all targets. 3372 if (TT.isOSBinFormatELF()) { 3373 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3374 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3375 StringRef GroupName; 3376 if (F.hasComdat()) { 3377 Flags |= ELF::SHF_GROUP; 3378 GroupName = F.getComdat()->getName(); 3379 } 3380 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3381 Flags, 0, GroupName, 3382 MCSection::NonUniqueID, LinkedToSym); 3383 3384 if (!TM.Options.XRayOmitFunctionIndex) 3385 FnSledIndex = OutContext.getELFSection( 3386 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3387 GroupName, MCSection::NonUniqueID, LinkedToSym); 3388 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3389 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3390 SectionKind::getReadOnlyWithRel()); 3391 if (!TM.Options.XRayOmitFunctionIndex) 3392 FnSledIndex = OutContext.getMachOSection( 3393 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3394 } else { 3395 llvm_unreachable("Unsupported target"); 3396 } 3397 3398 auto WordSizeBytes = MAI->getCodePointerSize(); 3399 3400 // Now we switch to the instrumentation map section. Because this is done 3401 // per-function, we are able to create an index entry that will represent the 3402 // range of sleds associated with a function. 3403 auto &Ctx = OutContext; 3404 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3405 OutStreamer->SwitchSection(InstMap); 3406 OutStreamer->emitLabel(SledsStart); 3407 for (const auto &Sled : Sleds) { 3408 MCSymbol *Dot = Ctx.createTempSymbol(); 3409 OutStreamer->emitLabel(Dot); 3410 OutStreamer->emitValueImpl( 3411 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3412 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3413 WordSizeBytes); 3414 OutStreamer->emitValueImpl( 3415 MCBinaryExpr::createSub( 3416 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3417 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3418 MCConstantExpr::create(WordSizeBytes, Ctx), 3419 Ctx), 3420 Ctx), 3421 WordSizeBytes); 3422 Sled.emit(WordSizeBytes, OutStreamer.get()); 3423 } 3424 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3425 OutStreamer->emitLabel(SledsEnd); 3426 3427 // We then emit a single entry in the index per function. We use the symbols 3428 // that bound the instrumentation map as the range for a specific function. 3429 // Each entry here will be 2 * word size aligned, as we're writing down two 3430 // pointers. This should work for both 32-bit and 64-bit platforms. 3431 if (FnSledIndex) { 3432 OutStreamer->SwitchSection(FnSledIndex); 3433 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3434 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3435 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3436 OutStreamer->SwitchSection(PrevSection); 3437 } 3438 Sleds.clear(); 3439 } 3440 3441 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3442 SledKind Kind, uint8_t Version) { 3443 const Function &F = MI.getMF()->getFunction(); 3444 auto Attr = F.getFnAttribute("function-instrument"); 3445 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3446 bool AlwaysInstrument = 3447 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3448 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3449 Kind = SledKind::LOG_ARGS_ENTER; 3450 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3451 AlwaysInstrument, &F, Version}); 3452 } 3453 3454 void AsmPrinter::emitPatchableFunctionEntries() { 3455 const Function &F = MF->getFunction(); 3456 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3457 (void)F.getFnAttribute("patchable-function-prefix") 3458 .getValueAsString() 3459 .getAsInteger(10, PatchableFunctionPrefix); 3460 (void)F.getFnAttribute("patchable-function-entry") 3461 .getValueAsString() 3462 .getAsInteger(10, PatchableFunctionEntry); 3463 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3464 return; 3465 const unsigned PointerSize = getPointerSize(); 3466 if (TM.getTargetTriple().isOSBinFormatELF()) { 3467 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3468 const MCSymbolELF *LinkedToSym = nullptr; 3469 StringRef GroupName; 3470 3471 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3472 // if we are using the integrated assembler. 3473 if (MAI->useIntegratedAssembler()) { 3474 Flags |= ELF::SHF_LINK_ORDER; 3475 if (F.hasComdat()) { 3476 Flags |= ELF::SHF_GROUP; 3477 GroupName = F.getComdat()->getName(); 3478 } 3479 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3480 } 3481 OutStreamer->SwitchSection(OutContext.getELFSection( 3482 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3483 MCSection::NonUniqueID, LinkedToSym)); 3484 emitAlignment(Align(PointerSize)); 3485 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3486 } 3487 } 3488 3489 uint16_t AsmPrinter::getDwarfVersion() const { 3490 return OutStreamer->getContext().getDwarfVersion(); 3491 } 3492 3493 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3494 OutStreamer->getContext().setDwarfVersion(Version); 3495 } 3496 3497 bool AsmPrinter::isDwarf64() const { 3498 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3499 } 3500 3501 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3502 return dwarf::getDwarfOffsetByteSize( 3503 OutStreamer->getContext().getDwarfFormat()); 3504 } 3505 3506 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3507 return dwarf::getUnitLengthFieldByteSize( 3508 OutStreamer->getContext().getDwarfFormat()); 3509 } 3510