xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/Format.h"
114 #include "llvm/Support/MathExtras.h"
115 #include "llvm/Support/Path.h"
116 #include "llvm/Support/TargetRegistry.h"
117 #include "llvm/Support/Timer.h"
118 #include "llvm/Support/raw_ostream.h"
119 #include "llvm/Target/TargetLoweringObjectFile.h"
120 #include "llvm/Target/TargetMachine.h"
121 #include "llvm/Target/TargetOptions.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <cinttypes>
125 #include <cstdint>
126 #include <iterator>
127 #include <limits>
128 #include <memory>
129 #include <string>
130 #include <utility>
131 #include <vector>
132 
133 using namespace llvm;
134 
135 #define DEBUG_TYPE "asm-printer"
136 
137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
138 static cl::opt<bool>
139     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
140                              cl::desc("Disable debug info printing"));
141 
142 const char DWARFGroupName[] = "dwarf";
143 const char DWARFGroupDescription[] = "DWARF Emission";
144 const char DbgTimerName[] = "emit";
145 const char DbgTimerDescription[] = "Debug Info Emission";
146 const char EHTimerName[] = "write_exception";
147 const char EHTimerDescription[] = "DWARF Exception Writer";
148 const char CFGuardName[] = "Control Flow Guard";
149 const char CFGuardDescription[] = "Control Flow Guard";
150 const char CodeViewLineTablesGroupName[] = "linetables";
151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
152 const char PPTimerName[] = "emit";
153 const char PPTimerDescription[] = "Pseudo Probe Emission";
154 const char PPGroupName[] = "pseudo probe";
155 const char PPGroupDescription[] = "Pseudo Probe Emission";
156 
157 STATISTIC(EmittedInsts, "Number of machine instrs printed");
158 
159 char AsmPrinter::ID = 0;
160 
161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
162 
163 static gcp_map_type &getGCMap(void *&P) {
164   if (!P)
165     P = new gcp_map_type();
166   return *(gcp_map_type*)P;
167 }
168 
169 /// getGVAlignment - Return the alignment to use for the specified global
170 /// value.  This rounds up to the preferred alignment if possible and legal.
171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
172                                  Align InAlign) {
173   Align Alignment;
174   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
175     Alignment = DL.getPreferredAlign(GVar);
176 
177   // If InAlign is specified, round it to it.
178   if (InAlign > Alignment)
179     Alignment = InAlign;
180 
181   // If the GV has a specified alignment, take it into account.
182   const MaybeAlign GVAlign(GV->getAlignment());
183   if (!GVAlign)
184     return Alignment;
185 
186   assert(GVAlign && "GVAlign must be set");
187 
188   // If the GVAlign is larger than NumBits, or if we are required to obey
189   // NumBits because the GV has an assigned section, obey it.
190   if (*GVAlign > Alignment || GV->hasSection())
191     Alignment = *GVAlign;
192   return Alignment;
193 }
194 
195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
196     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
197       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
198   VerboseAsm = OutStreamer->isVerboseAsm();
199 }
200 
201 AsmPrinter::~AsmPrinter() {
202   assert(!DD && Handlers.size() == NumUserHandlers &&
203          "Debug/EH info didn't get finalized");
204 
205   if (GCMetadataPrinters) {
206     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
207 
208     delete &GCMap;
209     GCMetadataPrinters = nullptr;
210   }
211 }
212 
213 bool AsmPrinter::isPositionIndependent() const {
214   return TM.isPositionIndependent();
215 }
216 
217 /// getFunctionNumber - Return a unique ID for the current function.
218 unsigned AsmPrinter::getFunctionNumber() const {
219   return MF->getFunctionNumber();
220 }
221 
222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
223   return *TM.getObjFileLowering();
224 }
225 
226 const DataLayout &AsmPrinter::getDataLayout() const {
227   return MMI->getModule()->getDataLayout();
228 }
229 
230 // Do not use the cached DataLayout because some client use it without a Module
231 // (dsymutil, llvm-dwarfdump).
232 unsigned AsmPrinter::getPointerSize() const {
233   return TM.getPointerSize(0); // FIXME: Default address space
234 }
235 
236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
237   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
238   return MF->getSubtarget<MCSubtargetInfo>();
239 }
240 
241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
242   S.emitInstruction(Inst, getSubtargetInfo());
243 }
244 
245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
246   if (DD) {
247     assert(OutStreamer->hasRawTextSupport() &&
248            "Expected assembly output mode.");
249     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
250   }
251 }
252 
253 /// getCurrentSection() - Return the current section we are emitting to.
254 const MCSection *AsmPrinter::getCurrentSection() const {
255   return OutStreamer->getCurrentSectionOnly();
256 }
257 
258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
259   AU.setPreservesAll();
260   MachineFunctionPass::getAnalysisUsage(AU);
261   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
262   AU.addRequired<GCModuleInfo>();
263 }
264 
265 bool AsmPrinter::doInitialization(Module &M) {
266   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
267   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
268 
269   // Initialize TargetLoweringObjectFile.
270   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
271     .Initialize(OutContext, TM);
272 
273   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
274       .getModuleMetadata(M);
275 
276   OutStreamer->InitSections(false);
277 
278   if (DisableDebugInfoPrinting)
279     MMI->setDebugInfoAvailability(false);
280 
281   // Emit the version-min deployment target directive if needed.
282   //
283   // FIXME: If we end up with a collection of these sorts of Darwin-specific
284   // or ELF-specific things, it may make sense to have a platform helper class
285   // that will work with the target helper class. For now keep it here, as the
286   // alternative is duplicated code in each of the target asm printers that
287   // use the directive, where it would need the same conditionalization
288   // anyway.
289   const Triple &Target = TM.getTargetTriple();
290   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
291 
292   // Allow the target to emit any magic that it wants at the start of the file.
293   emitStartOfAsmFile(M);
294 
295   // Very minimal debug info. It is ignored if we emit actual debug info. If we
296   // don't, this at least helps the user find where a global came from.
297   if (MAI->hasSingleParameterDotFile()) {
298     // .file "foo.c"
299     OutStreamer->emitFileDirective(
300         llvm::sys::path::filename(M.getSourceFileName()));
301   }
302 
303   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
304   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
305   for (auto &I : *MI)
306     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
307       MP->beginAssembly(M, *MI, *this);
308 
309   // Emit module-level inline asm if it exists.
310   if (!M.getModuleInlineAsm().empty()) {
311     // We're at the module level. Construct MCSubtarget from the default CPU
312     // and target triple.
313     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
314         TM.getTargetTriple().str(), TM.getTargetCPU(),
315         TM.getTargetFeatureString()));
316     assert(STI && "Unable to create subtarget info");
317     OutStreamer->AddComment("Start of file scope inline assembly");
318     OutStreamer->AddBlankLine();
319     emitInlineAsm(M.getModuleInlineAsm() + "\n",
320                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
321     OutStreamer->AddComment("End of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323   }
324 
325   if (MAI->doesSupportDebugInformation()) {
326     bool EmitCodeView = M.getCodeViewFlag();
327     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
328       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
329                             DbgTimerName, DbgTimerDescription,
330                             CodeViewLineTablesGroupName,
331                             CodeViewLineTablesGroupDescription);
332     }
333     if (!EmitCodeView || M.getDwarfVersion()) {
334       if (!DisableDebugInfoPrinting) {
335         DD = new DwarfDebug(this);
336         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
337                               DbgTimerDescription, DWARFGroupName,
338                               DWARFGroupDescription);
339       }
340     }
341   }
342 
343   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
344     PP = new PseudoProbeHandler(this, &M);
345     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
346                           PPTimerDescription, PPGroupName, PPGroupDescription);
347   }
348 
349   switch (MAI->getExceptionHandlingType()) {
350   case ExceptionHandling::SjLj:
351   case ExceptionHandling::DwarfCFI:
352   case ExceptionHandling::ARM:
353     isCFIMoveForDebugging = true;
354     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
355       break;
356     for (auto &F: M.getFunctionList()) {
357       // If the module contains any function with unwind data,
358       // .eh_frame has to be emitted.
359       // Ignore functions that won't get emitted.
360       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
361         isCFIMoveForDebugging = false;
362         break;
363       }
364     }
365     break;
366   default:
367     isCFIMoveForDebugging = false;
368     break;
369   }
370 
371   EHStreamer *ES = nullptr;
372   switch (MAI->getExceptionHandlingType()) {
373   case ExceptionHandling::None:
374     break;
375   case ExceptionHandling::SjLj:
376   case ExceptionHandling::DwarfCFI:
377     ES = new DwarfCFIException(this);
378     break;
379   case ExceptionHandling::ARM:
380     ES = new ARMException(this);
381     break;
382   case ExceptionHandling::WinEH:
383     switch (MAI->getWinEHEncodingType()) {
384     default: llvm_unreachable("unsupported unwinding information encoding");
385     case WinEH::EncodingType::Invalid:
386       break;
387     case WinEH::EncodingType::X86:
388     case WinEH::EncodingType::Itanium:
389       ES = new WinException(this);
390       break;
391     }
392     break;
393   case ExceptionHandling::Wasm:
394     ES = new WasmException(this);
395     break;
396   case ExceptionHandling::AIX:
397     ES = new AIXException(this);
398     break;
399   }
400   if (ES)
401     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
402                           EHTimerDescription, DWARFGroupName,
403                           DWARFGroupDescription);
404 
405   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
406   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
407     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
408                           CFGuardDescription, DWARFGroupName,
409                           DWARFGroupDescription);
410 
411   for (const HandlerInfo &HI : Handlers) {
412     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
413                        HI.TimerGroupDescription, TimePassesIsEnabled);
414     HI.Handler->beginModule(&M);
415   }
416 
417   return false;
418 }
419 
420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
421   if (!MAI.hasWeakDefCanBeHiddenDirective())
422     return false;
423 
424   return GV->canBeOmittedFromSymbolTable();
425 }
426 
427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
428   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
429   switch (Linkage) {
430   case GlobalValue::CommonLinkage:
431   case GlobalValue::LinkOnceAnyLinkage:
432   case GlobalValue::LinkOnceODRLinkage:
433   case GlobalValue::WeakAnyLinkage:
434   case GlobalValue::WeakODRLinkage:
435     if (MAI->hasWeakDefDirective()) {
436       // .globl _foo
437       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
438 
439       if (!canBeHidden(GV, *MAI))
440         // .weak_definition _foo
441         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
442       else
443         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
444     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
445       // .globl _foo
446       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
447       //NOTE: linkonce is handled by the section the symbol was assigned to.
448     } else {
449       // .weak _foo
450       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
451     }
452     return;
453   case GlobalValue::ExternalLinkage:
454     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
455     return;
456   case GlobalValue::PrivateLinkage:
457   case GlobalValue::InternalLinkage:
458     return;
459   case GlobalValue::ExternalWeakLinkage:
460   case GlobalValue::AvailableExternallyLinkage:
461   case GlobalValue::AppendingLinkage:
462     llvm_unreachable("Should never emit this");
463   }
464   llvm_unreachable("Unknown linkage type!");
465 }
466 
467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
468                                    const GlobalValue *GV) const {
469   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
470 }
471 
472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
473   return TM.getSymbol(GV);
474 }
475 
476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
477   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
478   // exact definion (intersection of GlobalValue::hasExactDefinition() and
479   // !isInterposable()). These linkages include: external, appending, internal,
480   // private. It may be profitable to use a local alias for external. The
481   // assembler would otherwise be conservative and assume a global default
482   // visibility symbol can be interposable, even if the code generator already
483   // assumed it.
484   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
485     const Module &M = *GV.getParent();
486     if (TM.getRelocationModel() != Reloc::Static &&
487         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
488       return getSymbolWithGlobalValueBase(&GV, "$local");
489   }
490   return TM.getSymbol(&GV);
491 }
492 
493 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
495   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
496   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
497          "No emulated TLS variables in the common section");
498 
499   // Never emit TLS variable xyz in emulated TLS model.
500   // The initialization value is in __emutls_t.xyz instead of xyz.
501   if (IsEmuTLSVar)
502     return;
503 
504   if (GV->hasInitializer()) {
505     // Check to see if this is a special global used by LLVM, if so, emit it.
506     if (emitSpecialLLVMGlobal(GV))
507       return;
508 
509     // Skip the emission of global equivalents. The symbol can be emitted later
510     // on by emitGlobalGOTEquivs in case it turns out to be needed.
511     if (GlobalGOTEquivs.count(getSymbol(GV)))
512       return;
513 
514     if (isVerbose()) {
515       // When printing the control variable __emutls_v.*,
516       // we don't need to print the original TLS variable name.
517       GV->printAsOperand(OutStreamer->GetCommentOS(),
518                      /*PrintType=*/false, GV->getParent());
519       OutStreamer->GetCommentOS() << '\n';
520     }
521   }
522 
523   MCSymbol *GVSym = getSymbol(GV);
524   MCSymbol *EmittedSym = GVSym;
525 
526   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
527   // attributes.
528   // GV's or GVSym's attributes will be used for the EmittedSym.
529   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
530 
531   if (!GV->hasInitializer())   // External globals require no extra code.
532     return;
533 
534   GVSym->redefineIfPossible();
535   if (GVSym->isDefined() || GVSym->isVariable())
536     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
537                                         "' is already defined");
538 
539   if (MAI->hasDotTypeDotSizeDirective())
540     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
541 
542   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
543 
544   const DataLayout &DL = GV->getParent()->getDataLayout();
545   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
546 
547   // If the alignment is specified, we *must* obey it.  Overaligning a global
548   // with a specified alignment is a prompt way to break globals emitted to
549   // sections and expected to be contiguous (e.g. ObjC metadata).
550   const Align Alignment = getGVAlignment(GV, DL);
551 
552   for (const HandlerInfo &HI : Handlers) {
553     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
554                        HI.TimerGroupName, HI.TimerGroupDescription,
555                        TimePassesIsEnabled);
556     HI.Handler->setSymbolSize(GVSym, Size);
557   }
558 
559   // Handle common symbols
560   if (GVKind.isCommon()) {
561     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
562     // .comm _foo, 42, 4
563     const bool SupportsAlignment =
564         getObjFileLowering().getCommDirectiveSupportsAlignment();
565     OutStreamer->emitCommonSymbol(GVSym, Size,
566                                   SupportsAlignment ? Alignment.value() : 0);
567     return;
568   }
569 
570   // Determine to which section this global should be emitted.
571   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
572 
573   // If we have a bss global going to a section that supports the
574   // zerofill directive, do so here.
575   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
576       TheSection->isVirtualSection()) {
577     if (Size == 0)
578       Size = 1; // zerofill of 0 bytes is undefined.
579     emitLinkage(GV, GVSym);
580     // .zerofill __DATA, __bss, _foo, 400, 5
581     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
582     return;
583   }
584 
585   // If this is a BSS local symbol and we are emitting in the BSS
586   // section use .lcomm/.comm directive.
587   if (GVKind.isBSSLocal() &&
588       getObjFileLowering().getBSSSection() == TheSection) {
589     if (Size == 0)
590       Size = 1; // .comm Foo, 0 is undefined, avoid it.
591 
592     // Use .lcomm only if it supports user-specified alignment.
593     // Otherwise, while it would still be correct to use .lcomm in some
594     // cases (e.g. when Align == 1), the external assembler might enfore
595     // some -unknown- default alignment behavior, which could cause
596     // spurious differences between external and integrated assembler.
597     // Prefer to simply fall back to .local / .comm in this case.
598     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
599       // .lcomm _foo, 42
600       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
601       return;
602     }
603 
604     // .local _foo
605     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
606     // .comm _foo, 42, 4
607     const bool SupportsAlignment =
608         getObjFileLowering().getCommDirectiveSupportsAlignment();
609     OutStreamer->emitCommonSymbol(GVSym, Size,
610                                   SupportsAlignment ? Alignment.value() : 0);
611     return;
612   }
613 
614   // Handle thread local data for mach-o which requires us to output an
615   // additional structure of data and mangle the original symbol so that we
616   // can reference it later.
617   //
618   // TODO: This should become an "emit thread local global" method on TLOF.
619   // All of this macho specific stuff should be sunk down into TLOFMachO and
620   // stuff like "TLSExtraDataSection" should no longer be part of the parent
621   // TLOF class.  This will also make it more obvious that stuff like
622   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
623   // specific code.
624   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
625     // Emit the .tbss symbol
626     MCSymbol *MangSym =
627         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
628 
629     if (GVKind.isThreadBSS()) {
630       TheSection = getObjFileLowering().getTLSBSSSection();
631       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
632     } else if (GVKind.isThreadData()) {
633       OutStreamer->SwitchSection(TheSection);
634 
635       emitAlignment(Alignment, GV);
636       OutStreamer->emitLabel(MangSym);
637 
638       emitGlobalConstant(GV->getParent()->getDataLayout(),
639                          GV->getInitializer());
640     }
641 
642     OutStreamer->AddBlankLine();
643 
644     // Emit the variable struct for the runtime.
645     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
646 
647     OutStreamer->SwitchSection(TLVSect);
648     // Emit the linkage here.
649     emitLinkage(GV, GVSym);
650     OutStreamer->emitLabel(GVSym);
651 
652     // Three pointers in size:
653     //   - __tlv_bootstrap - used to make sure support exists
654     //   - spare pointer, used when mapped by the runtime
655     //   - pointer to mangled symbol above with initializer
656     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
657     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
658                                 PtrSize);
659     OutStreamer->emitIntValue(0, PtrSize);
660     OutStreamer->emitSymbolValue(MangSym, PtrSize);
661 
662     OutStreamer->AddBlankLine();
663     return;
664   }
665 
666   MCSymbol *EmittedInitSym = GVSym;
667 
668   OutStreamer->SwitchSection(TheSection);
669 
670   emitLinkage(GV, EmittedInitSym);
671   emitAlignment(Alignment, GV);
672 
673   OutStreamer->emitLabel(EmittedInitSym);
674   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
675   if (LocalAlias != EmittedInitSym)
676     OutStreamer->emitLabel(LocalAlias);
677 
678   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
679 
680   if (MAI->hasDotTypeDotSizeDirective())
681     // .size foo, 42
682     OutStreamer->emitELFSize(EmittedInitSym,
683                              MCConstantExpr::create(Size, OutContext));
684 
685   OutStreamer->AddBlankLine();
686 }
687 
688 /// Emit the directive and value for debug thread local expression
689 ///
690 /// \p Value - The value to emit.
691 /// \p Size - The size of the integer (in bytes) to emit.
692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
693   OutStreamer->emitValue(Value, Size);
694 }
695 
696 void AsmPrinter::emitFunctionHeaderComment() {}
697 
698 /// EmitFunctionHeader - This method emits the header for the current
699 /// function.
700 void AsmPrinter::emitFunctionHeader() {
701   const Function &F = MF->getFunction();
702 
703   if (isVerbose())
704     OutStreamer->GetCommentOS()
705         << "-- Begin function "
706         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
707 
708   // Print out constants referenced by the function
709   emitConstantPool();
710 
711   // Print the 'header' of function.
712   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
713   OutStreamer->SwitchSection(MF->getSection());
714 
715   if (!MAI->hasVisibilityOnlyWithLinkage())
716     emitVisibility(CurrentFnSym, F.getVisibility());
717 
718   if (MAI->needsFunctionDescriptors())
719     emitLinkage(&F, CurrentFnDescSym);
720 
721   emitLinkage(&F, CurrentFnSym);
722   if (MAI->hasFunctionAlignment())
723     emitAlignment(MF->getAlignment(), &F);
724 
725   if (MAI->hasDotTypeDotSizeDirective())
726     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
727 
728   if (F.hasFnAttribute(Attribute::Cold))
729     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
730 
731   if (isVerbose()) {
732     F.printAsOperand(OutStreamer->GetCommentOS(),
733                    /*PrintType=*/false, F.getParent());
734     emitFunctionHeaderComment();
735     OutStreamer->GetCommentOS() << '\n';
736   }
737 
738   // Emit the prefix data.
739   if (F.hasPrefixData()) {
740     if (MAI->hasSubsectionsViaSymbols()) {
741       // Preserving prefix data on platforms which use subsections-via-symbols
742       // is a bit tricky. Here we introduce a symbol for the prefix data
743       // and use the .alt_entry attribute to mark the function's real entry point
744       // as an alternative entry point to the prefix-data symbol.
745       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
746       OutStreamer->emitLabel(PrefixSym);
747 
748       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
749 
750       // Emit an .alt_entry directive for the actual function symbol.
751       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
752     } else {
753       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
754     }
755   }
756 
757   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
758   // place prefix data before NOPs.
759   unsigned PatchableFunctionPrefix = 0;
760   unsigned PatchableFunctionEntry = 0;
761   (void)F.getFnAttribute("patchable-function-prefix")
762       .getValueAsString()
763       .getAsInteger(10, PatchableFunctionPrefix);
764   (void)F.getFnAttribute("patchable-function-entry")
765       .getValueAsString()
766       .getAsInteger(10, PatchableFunctionEntry);
767   if (PatchableFunctionPrefix) {
768     CurrentPatchableFunctionEntrySym =
769         OutContext.createLinkerPrivateTempSymbol();
770     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
771     emitNops(PatchableFunctionPrefix);
772   } else if (PatchableFunctionEntry) {
773     // May be reassigned when emitting the body, to reference the label after
774     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
775     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
776   }
777 
778   // Emit the function descriptor. This is a virtual function to allow targets
779   // to emit their specific function descriptor. Right now it is only used by
780   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
781   // descriptors and should be converted to use this hook as well.
782   if (MAI->needsFunctionDescriptors())
783     emitFunctionDescriptor();
784 
785   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
786   // their wild and crazy things as required.
787   emitFunctionEntryLabel();
788 
789   if (CurrentFnBegin) {
790     if (MAI->useAssignmentForEHBegin()) {
791       MCSymbol *CurPos = OutContext.createTempSymbol();
792       OutStreamer->emitLabel(CurPos);
793       OutStreamer->emitAssignment(CurrentFnBegin,
794                                  MCSymbolRefExpr::create(CurPos, OutContext));
795     } else {
796       OutStreamer->emitLabel(CurrentFnBegin);
797     }
798   }
799 
800   // Emit pre-function debug and/or EH information.
801   for (const HandlerInfo &HI : Handlers) {
802     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
803                        HI.TimerGroupDescription, TimePassesIsEnabled);
804     HI.Handler->beginFunction(MF);
805   }
806 
807   // Emit the prologue data.
808   if (F.hasPrologueData())
809     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
810 }
811 
812 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
813 /// function.  This can be overridden by targets as required to do custom stuff.
814 void AsmPrinter::emitFunctionEntryLabel() {
815   CurrentFnSym->redefineIfPossible();
816 
817   // The function label could have already been emitted if two symbols end up
818   // conflicting due to asm renaming.  Detect this and emit an error.
819   if (CurrentFnSym->isVariable())
820     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
821                        "' is a protected alias");
822   if (CurrentFnSym->isDefined())
823     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
824                        "' label emitted multiple times to assembly file");
825 
826   OutStreamer->emitLabel(CurrentFnSym);
827 
828   if (TM.getTargetTriple().isOSBinFormatELF()) {
829     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
830     if (Sym != CurrentFnSym)
831       OutStreamer->emitLabel(Sym);
832   }
833 }
834 
835 /// emitComments - Pretty-print comments for instructions.
836 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
837   const MachineFunction *MF = MI.getMF();
838   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
839 
840   // Check for spills and reloads
841 
842   // We assume a single instruction only has a spill or reload, not
843   // both.
844   Optional<unsigned> Size;
845   if ((Size = MI.getRestoreSize(TII))) {
846     CommentOS << *Size << "-byte Reload\n";
847   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
848     if (*Size) {
849       if (*Size == unsigned(MemoryLocation::UnknownSize))
850         CommentOS << "Unknown-size Folded Reload\n";
851       else
852         CommentOS << *Size << "-byte Folded Reload\n";
853     }
854   } else if ((Size = MI.getSpillSize(TII))) {
855     CommentOS << *Size << "-byte Spill\n";
856   } else if ((Size = MI.getFoldedSpillSize(TII))) {
857     if (*Size) {
858       if (*Size == unsigned(MemoryLocation::UnknownSize))
859         CommentOS << "Unknown-size Folded Spill\n";
860       else
861         CommentOS << *Size << "-byte Folded Spill\n";
862     }
863   }
864 
865   // Check for spill-induced copies
866   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
867     CommentOS << " Reload Reuse\n";
868 }
869 
870 /// emitImplicitDef - This method emits the specified machine instruction
871 /// that is an implicit def.
872 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
873   Register RegNo = MI->getOperand(0).getReg();
874 
875   SmallString<128> Str;
876   raw_svector_ostream OS(Str);
877   OS << "implicit-def: "
878      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
879 
880   OutStreamer->AddComment(OS.str());
881   OutStreamer->AddBlankLine();
882 }
883 
884 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
885   std::string Str;
886   raw_string_ostream OS(Str);
887   OS << "kill:";
888   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
889     const MachineOperand &Op = MI->getOperand(i);
890     assert(Op.isReg() && "KILL instruction must have only register operands");
891     OS << ' ' << (Op.isDef() ? "def " : "killed ")
892        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
893   }
894   AP.OutStreamer->AddComment(OS.str());
895   AP.OutStreamer->AddBlankLine();
896 }
897 
898 /// emitDebugValueComment - This method handles the target-independent form
899 /// of DBG_VALUE, returning true if it was able to do so.  A false return
900 /// means the target will need to handle MI in EmitInstruction.
901 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
902   // This code handles only the 4-operand target-independent form.
903   if (MI->getNumOperands() != 4)
904     return false;
905 
906   SmallString<128> Str;
907   raw_svector_ostream OS(Str);
908   OS << "DEBUG_VALUE: ";
909 
910   const DILocalVariable *V = MI->getDebugVariable();
911   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
912     StringRef Name = SP->getName();
913     if (!Name.empty())
914       OS << Name << ":";
915   }
916   OS << V->getName();
917   OS << " <- ";
918 
919   // The second operand is only an offset if it's an immediate.
920   bool MemLoc = MI->isIndirectDebugValue();
921   auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
922   const DIExpression *Expr = MI->getDebugExpression();
923   if (Expr->getNumElements()) {
924     OS << '[';
925     bool NeedSep = false;
926     for (auto Op : Expr->expr_ops()) {
927       if (NeedSep)
928         OS << ", ";
929       else
930         NeedSep = true;
931       OS << dwarf::OperationEncodingString(Op.getOp());
932       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
933         OS << ' ' << Op.getArg(I);
934     }
935     OS << "] ";
936   }
937 
938   // Register or immediate value. Register 0 means undef.
939   if (MI->getDebugOperand(0).isFPImm()) {
940     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
941     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
942       OS << (double)APF.convertToFloat();
943     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
944       OS << APF.convertToDouble();
945     } else {
946       // There is no good way to print long double.  Convert a copy to
947       // double.  Ah well, it's only a comment.
948       bool ignored;
949       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
950                   &ignored);
951       OS << "(long double) " << APF.convertToDouble();
952     }
953   } else if (MI->getDebugOperand(0).isImm()) {
954     OS << MI->getDebugOperand(0).getImm();
955   } else if (MI->getDebugOperand(0).isCImm()) {
956     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
957   } else if (MI->getDebugOperand(0).isTargetIndex()) {
958     auto Op = MI->getDebugOperand(0);
959     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
960     // NOTE: Want this comment at start of line, don't emit with AddComment.
961     AP.OutStreamer->emitRawComment(OS.str());
962     return true;
963   } else {
964     Register Reg;
965     if (MI->getDebugOperand(0).isReg()) {
966       Reg = MI->getDebugOperand(0).getReg();
967     } else {
968       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
969       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
970       Offset += TFI->getFrameIndexReference(
971           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
972       MemLoc = true;
973     }
974     if (Reg == 0) {
975       // Suppress offset, it is not meaningful here.
976       OS << "undef";
977       // NOTE: Want this comment at start of line, don't emit with AddComment.
978       AP.OutStreamer->emitRawComment(OS.str());
979       return true;
980     }
981     if (MemLoc)
982       OS << '[';
983     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
984   }
985 
986   if (MemLoc)
987     OS << '+' << Offset.getFixed() << ']';
988 
989   // NOTE: Want this comment at start of line, don't emit with AddComment.
990   AP.OutStreamer->emitRawComment(OS.str());
991   return true;
992 }
993 
994 /// This method handles the target-independent form of DBG_LABEL, returning
995 /// true if it was able to do so.  A false return means the target will need
996 /// to handle MI in EmitInstruction.
997 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
998   if (MI->getNumOperands() != 1)
999     return false;
1000 
1001   SmallString<128> Str;
1002   raw_svector_ostream OS(Str);
1003   OS << "DEBUG_LABEL: ";
1004 
1005   const DILabel *V = MI->getDebugLabel();
1006   if (auto *SP = dyn_cast<DISubprogram>(
1007           V->getScope()->getNonLexicalBlockFileScope())) {
1008     StringRef Name = SP->getName();
1009     if (!Name.empty())
1010       OS << Name << ":";
1011   }
1012   OS << V->getName();
1013 
1014   // NOTE: Want this comment at start of line, don't emit with AddComment.
1015   AP.OutStreamer->emitRawComment(OS.str());
1016   return true;
1017 }
1018 
1019 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
1020   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1021       MF->getFunction().needsUnwindTableEntry())
1022     return CFI_M_EH;
1023 
1024   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1025     return CFI_M_Debug;
1026 
1027   return CFI_M_None;
1028 }
1029 
1030 bool AsmPrinter::needsSEHMoves() {
1031   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1032 }
1033 
1034 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1035   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1036   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1037       ExceptionHandlingType != ExceptionHandling::ARM)
1038     return;
1039 
1040   if (needsCFIMoves() == CFI_M_None)
1041     return;
1042 
1043   // If there is no "real" instruction following this CFI instruction, skip
1044   // emitting it; it would be beyond the end of the function's FDE range.
1045   auto *MBB = MI.getParent();
1046   auto I = std::next(MI.getIterator());
1047   while (I != MBB->end() && I->isTransient())
1048     ++I;
1049   if (I == MBB->instr_end() &&
1050       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1051     return;
1052 
1053   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1054   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1055   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1056   emitCFIInstruction(CFI);
1057 }
1058 
1059 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1060   // The operands are the MCSymbol and the frame offset of the allocation.
1061   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1062   int FrameOffset = MI.getOperand(1).getImm();
1063 
1064   // Emit a symbol assignment.
1065   OutStreamer->emitAssignment(FrameAllocSym,
1066                              MCConstantExpr::create(FrameOffset, OutContext));
1067 }
1068 
1069 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1070 /// given basic block. This can be used to capture more precise profile
1071 /// information. We use the last 3 bits (LSBs) to ecnode the following
1072 /// information:
1073 ///  * (1): set if return block (ret or tail call).
1074 ///  * (2): set if ends with a tail call.
1075 ///  * (3): set if exception handling (EH) landing pad.
1076 /// The remaining bits are zero.
1077 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1078   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1079   return ((unsigned)MBB.isReturnBlock()) |
1080          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1081          (MBB.isEHPad() << 2);
1082 }
1083 
1084 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1085   MCSection *BBAddrMapSection =
1086       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1087   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1088 
1089   const MCSymbol *FunctionSymbol = getFunctionBegin();
1090 
1091   OutStreamer->PushSection();
1092   OutStreamer->SwitchSection(BBAddrMapSection);
1093   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1094   // Emit the total number of basic blocks in this function.
1095   OutStreamer->emitULEB128IntValue(MF.size());
1096   // Emit BB Information for each basic block in the funciton.
1097   for (const MachineBasicBlock &MBB : MF) {
1098     const MCSymbol *MBBSymbol =
1099         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1100     // Emit the basic block offset.
1101     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1102     // Emit the basic block size. When BBs have alignments, their size cannot
1103     // always be computed from their offsets.
1104     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1105     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1106   }
1107   OutStreamer->PopSection();
1108 }
1109 
1110 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1111   auto GUID = MI.getOperand(0).getImm();
1112   auto Index = MI.getOperand(1).getImm();
1113   auto Type = MI.getOperand(2).getImm();
1114   auto Attr = MI.getOperand(3).getImm();
1115   DILocation *DebugLoc = MI.getDebugLoc();
1116   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1117 }
1118 
1119 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1120   if (!MF.getTarget().Options.EmitStackSizeSection)
1121     return;
1122 
1123   MCSection *StackSizeSection =
1124       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1125   if (!StackSizeSection)
1126     return;
1127 
1128   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1129   // Don't emit functions with dynamic stack allocations.
1130   if (FrameInfo.hasVarSizedObjects())
1131     return;
1132 
1133   OutStreamer->PushSection();
1134   OutStreamer->SwitchSection(StackSizeSection);
1135 
1136   const MCSymbol *FunctionSymbol = getFunctionBegin();
1137   uint64_t StackSize = FrameInfo.getStackSize();
1138   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1139   OutStreamer->emitULEB128IntValue(StackSize);
1140 
1141   OutStreamer->PopSection();
1142 }
1143 
1144 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1145   MachineModuleInfo &MMI = MF.getMMI();
1146   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1147     return true;
1148 
1149   // We might emit an EH table that uses function begin and end labels even if
1150   // we don't have any landingpads.
1151   if (!MF.getFunction().hasPersonalityFn())
1152     return false;
1153   return !isNoOpWithoutInvoke(
1154       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1155 }
1156 
1157 /// EmitFunctionBody - This method emits the body and trailer for a
1158 /// function.
1159 void AsmPrinter::emitFunctionBody() {
1160   emitFunctionHeader();
1161 
1162   // Emit target-specific gunk before the function body.
1163   emitFunctionBodyStart();
1164 
1165   if (isVerbose()) {
1166     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1167     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1168     if (!MDT) {
1169       OwnedMDT = std::make_unique<MachineDominatorTree>();
1170       OwnedMDT->getBase().recalculate(*MF);
1171       MDT = OwnedMDT.get();
1172     }
1173 
1174     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1175     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1176     if (!MLI) {
1177       OwnedMLI = std::make_unique<MachineLoopInfo>();
1178       OwnedMLI->getBase().analyze(MDT->getBase());
1179       MLI = OwnedMLI.get();
1180     }
1181   }
1182 
1183   // Print out code for the function.
1184   bool HasAnyRealCode = false;
1185   int NumInstsInFunction = 0;
1186 
1187   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1188   for (auto &MBB : *MF) {
1189     // Print a label for the basic block.
1190     emitBasicBlockStart(MBB);
1191     DenseMap<StringRef, unsigned> MnemonicCounts;
1192     for (auto &MI : MBB) {
1193       // Print the assembly for the instruction.
1194       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1195           !MI.isDebugInstr()) {
1196         HasAnyRealCode = true;
1197         ++NumInstsInFunction;
1198       }
1199 
1200       // If there is a pre-instruction symbol, emit a label for it here.
1201       if (MCSymbol *S = MI.getPreInstrSymbol())
1202         OutStreamer->emitLabel(S);
1203 
1204       for (const HandlerInfo &HI : Handlers) {
1205         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1206                            HI.TimerGroupDescription, TimePassesIsEnabled);
1207         HI.Handler->beginInstruction(&MI);
1208       }
1209 
1210       if (isVerbose())
1211         emitComments(MI, OutStreamer->GetCommentOS());
1212 
1213       switch (MI.getOpcode()) {
1214       case TargetOpcode::CFI_INSTRUCTION:
1215         emitCFIInstruction(MI);
1216         break;
1217       case TargetOpcode::LOCAL_ESCAPE:
1218         emitFrameAlloc(MI);
1219         break;
1220       case TargetOpcode::ANNOTATION_LABEL:
1221       case TargetOpcode::EH_LABEL:
1222       case TargetOpcode::GC_LABEL:
1223         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1224         break;
1225       case TargetOpcode::INLINEASM:
1226       case TargetOpcode::INLINEASM_BR:
1227         emitInlineAsm(&MI);
1228         break;
1229       case TargetOpcode::DBG_VALUE:
1230         if (isVerbose()) {
1231           if (!emitDebugValueComment(&MI, *this))
1232             emitInstruction(&MI);
1233         }
1234         break;
1235       case TargetOpcode::DBG_INSTR_REF:
1236         // This instruction reference will have been resolved to a machine
1237         // location, and a nearby DBG_VALUE created. We can safely ignore
1238         // the instruction reference.
1239         break;
1240       case TargetOpcode::DBG_LABEL:
1241         if (isVerbose()) {
1242           if (!emitDebugLabelComment(&MI, *this))
1243             emitInstruction(&MI);
1244         }
1245         break;
1246       case TargetOpcode::IMPLICIT_DEF:
1247         if (isVerbose()) emitImplicitDef(&MI);
1248         break;
1249       case TargetOpcode::KILL:
1250         if (isVerbose()) emitKill(&MI, *this);
1251         break;
1252       case TargetOpcode::PSEUDO_PROBE:
1253         emitPseudoProbe(MI);
1254         break;
1255       default:
1256         emitInstruction(&MI);
1257         if (CanDoExtraAnalysis) {
1258           MCInst MCI;
1259           MCI.setOpcode(MI.getOpcode());
1260           auto Name = OutStreamer->getMnemonic(MCI);
1261           auto I = MnemonicCounts.insert({Name, 0u});
1262           I.first->second++;
1263         }
1264         break;
1265       }
1266 
1267       // If there is a post-instruction symbol, emit a label for it here.
1268       if (MCSymbol *S = MI.getPostInstrSymbol())
1269         OutStreamer->emitLabel(S);
1270 
1271       for (const HandlerInfo &HI : Handlers) {
1272         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1273                            HI.TimerGroupDescription, TimePassesIsEnabled);
1274         HI.Handler->endInstruction();
1275       }
1276     }
1277 
1278     // We must emit temporary symbol for the end of this basic block, if either
1279     // we have BBLabels enabled or if this basic blocks marks the end of a
1280     // section (except the section containing the entry basic block as the end
1281     // symbol for that section is CurrentFnEnd).
1282     if (MF->hasBBLabels() ||
1283         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1284          !MBB.sameSection(&MF->front())))
1285       OutStreamer->emitLabel(MBB.getEndSymbol());
1286 
1287     if (MBB.isEndSection()) {
1288       // The size directive for the section containing the entry block is
1289       // handled separately by the function section.
1290       if (!MBB.sameSection(&MF->front())) {
1291         if (MAI->hasDotTypeDotSizeDirective()) {
1292           // Emit the size directive for the basic block section.
1293           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1294               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1295               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1296               OutContext);
1297           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1298         }
1299         MBBSectionRanges[MBB.getSectionIDNum()] =
1300             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1301       }
1302     }
1303     emitBasicBlockEnd(MBB);
1304 
1305     if (CanDoExtraAnalysis) {
1306       // Skip empty blocks.
1307       if (MBB.empty())
1308         continue;
1309 
1310       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1311                                           MBB.begin()->getDebugLoc(), &MBB);
1312 
1313       // Generate instruction mix remark. First, sort counts in descending order
1314       // by count and name.
1315       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1316       for (auto &KV : MnemonicCounts)
1317         MnemonicVec.emplace_back(KV.first, KV.second);
1318 
1319       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1320                            const std::pair<StringRef, unsigned> &B) {
1321         if (A.second > B.second)
1322           return true;
1323         if (A.second == B.second)
1324           return StringRef(A.first) < StringRef(B.first);
1325         return false;
1326       });
1327       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1328       for (auto &KV : MnemonicVec) {
1329         auto Name = (Twine("INST_") + KV.first.trim()).str();
1330         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1331       }
1332       ORE->emit(R);
1333     }
1334   }
1335 
1336   EmittedInsts += NumInstsInFunction;
1337   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1338                                       MF->getFunction().getSubprogram(),
1339                                       &MF->front());
1340   R << ore::NV("NumInstructions", NumInstsInFunction)
1341     << " instructions in function";
1342   ORE->emit(R);
1343 
1344   // If the function is empty and the object file uses .subsections_via_symbols,
1345   // then we need to emit *something* to the function body to prevent the
1346   // labels from collapsing together.  Just emit a noop.
1347   // Similarly, don't emit empty functions on Windows either. It can lead to
1348   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1349   // after linking, causing the kernel not to load the binary:
1350   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1351   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1352   const Triple &TT = TM.getTargetTriple();
1353   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1354                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1355     MCInst Noop;
1356     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1357 
1358     // Targets can opt-out of emitting the noop here by leaving the opcode
1359     // unspecified.
1360     if (Noop.getOpcode()) {
1361       OutStreamer->AddComment("avoids zero-length function");
1362       emitNops(1);
1363     }
1364   }
1365 
1366   // Switch to the original section in case basic block sections was used.
1367   OutStreamer->SwitchSection(MF->getSection());
1368 
1369   const Function &F = MF->getFunction();
1370   for (const auto &BB : F) {
1371     if (!BB.hasAddressTaken())
1372       continue;
1373     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1374     if (Sym->isDefined())
1375       continue;
1376     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1377     OutStreamer->emitLabel(Sym);
1378   }
1379 
1380   // Emit target-specific gunk after the function body.
1381   emitFunctionBodyEnd();
1382 
1383   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1384       MAI->hasDotTypeDotSizeDirective()) {
1385     // Create a symbol for the end of function.
1386     CurrentFnEnd = createTempSymbol("func_end");
1387     OutStreamer->emitLabel(CurrentFnEnd);
1388   }
1389 
1390   // If the target wants a .size directive for the size of the function, emit
1391   // it.
1392   if (MAI->hasDotTypeDotSizeDirective()) {
1393     // We can get the size as difference between the function label and the
1394     // temp label.
1395     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1396         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1397         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1398     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1399   }
1400 
1401   for (const HandlerInfo &HI : Handlers) {
1402     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1403                        HI.TimerGroupDescription, TimePassesIsEnabled);
1404     HI.Handler->markFunctionEnd();
1405   }
1406 
1407   MBBSectionRanges[MF->front().getSectionIDNum()] =
1408       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1409 
1410   // Print out jump tables referenced by the function.
1411   emitJumpTableInfo();
1412 
1413   // Emit post-function debug and/or EH information.
1414   for (const HandlerInfo &HI : Handlers) {
1415     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1416                        HI.TimerGroupDescription, TimePassesIsEnabled);
1417     HI.Handler->endFunction(MF);
1418   }
1419 
1420   // Emit section containing BB address offsets and their metadata, when
1421   // BB labels are requested for this function.
1422   if (MF->hasBBLabels())
1423     emitBBAddrMapSection(*MF);
1424 
1425   // Emit section containing stack size metadata.
1426   emitStackSizeSection(*MF);
1427 
1428   emitPatchableFunctionEntries();
1429 
1430   if (isVerbose())
1431     OutStreamer->GetCommentOS() << "-- End function\n";
1432 
1433   OutStreamer->AddBlankLine();
1434 }
1435 
1436 /// Compute the number of Global Variables that uses a Constant.
1437 static unsigned getNumGlobalVariableUses(const Constant *C) {
1438   if (!C)
1439     return 0;
1440 
1441   if (isa<GlobalVariable>(C))
1442     return 1;
1443 
1444   unsigned NumUses = 0;
1445   for (auto *CU : C->users())
1446     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1447 
1448   return NumUses;
1449 }
1450 
1451 /// Only consider global GOT equivalents if at least one user is a
1452 /// cstexpr inside an initializer of another global variables. Also, don't
1453 /// handle cstexpr inside instructions. During global variable emission,
1454 /// candidates are skipped and are emitted later in case at least one cstexpr
1455 /// isn't replaced by a PC relative GOT entry access.
1456 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1457                                      unsigned &NumGOTEquivUsers) {
1458   // Global GOT equivalents are unnamed private globals with a constant
1459   // pointer initializer to another global symbol. They must point to a
1460   // GlobalVariable or Function, i.e., as GlobalValue.
1461   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1462       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1463       !isa<GlobalValue>(GV->getOperand(0)))
1464     return false;
1465 
1466   // To be a got equivalent, at least one of its users need to be a constant
1467   // expression used by another global variable.
1468   for (auto *U : GV->users())
1469     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1470 
1471   return NumGOTEquivUsers > 0;
1472 }
1473 
1474 /// Unnamed constant global variables solely contaning a pointer to
1475 /// another globals variable is equivalent to a GOT table entry; it contains the
1476 /// the address of another symbol. Optimize it and replace accesses to these
1477 /// "GOT equivalents" by using the GOT entry for the final global instead.
1478 /// Compute GOT equivalent candidates among all global variables to avoid
1479 /// emitting them if possible later on, after it use is replaced by a GOT entry
1480 /// access.
1481 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1482   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1483     return;
1484 
1485   for (const auto &G : M.globals()) {
1486     unsigned NumGOTEquivUsers = 0;
1487     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1488       continue;
1489 
1490     const MCSymbol *GOTEquivSym = getSymbol(&G);
1491     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1492   }
1493 }
1494 
1495 /// Constant expressions using GOT equivalent globals may not be eligible
1496 /// for PC relative GOT entry conversion, in such cases we need to emit such
1497 /// globals we previously omitted in EmitGlobalVariable.
1498 void AsmPrinter::emitGlobalGOTEquivs() {
1499   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1500     return;
1501 
1502   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1503   for (auto &I : GlobalGOTEquivs) {
1504     const GlobalVariable *GV = I.second.first;
1505     unsigned Cnt = I.second.second;
1506     if (Cnt)
1507       FailedCandidates.push_back(GV);
1508   }
1509   GlobalGOTEquivs.clear();
1510 
1511   for (auto *GV : FailedCandidates)
1512     emitGlobalVariable(GV);
1513 }
1514 
1515 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1516                                           const GlobalIndirectSymbol& GIS) {
1517   MCSymbol *Name = getSymbol(&GIS);
1518   bool IsFunction = GIS.getValueType()->isFunctionTy();
1519   // Treat bitcasts of functions as functions also. This is important at least
1520   // on WebAssembly where object and function addresses can't alias each other.
1521   if (!IsFunction)
1522     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1523       if (CE->getOpcode() == Instruction::BitCast)
1524         IsFunction =
1525           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1526 
1527   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1528   // so AIX has to use the extra-label-at-definition strategy. At this
1529   // point, all the extra label is emitted, we just have to emit linkage for
1530   // those labels.
1531   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1532     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1533     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1534            "Visibility should be handled with emitLinkage() on AIX.");
1535     emitLinkage(&GIS, Name);
1536     // If it's a function, also emit linkage for aliases of function entry
1537     // point.
1538     if (IsFunction)
1539       emitLinkage(&GIS,
1540                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1541     return;
1542   }
1543 
1544   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1545     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1546   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1547     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1548   else
1549     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1550 
1551   // Set the symbol type to function if the alias has a function type.
1552   // This affects codegen when the aliasee is not a function.
1553   if (IsFunction)
1554     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1555                                                ? MCSA_ELF_TypeIndFunction
1556                                                : MCSA_ELF_TypeFunction);
1557 
1558   emitVisibility(Name, GIS.getVisibility());
1559 
1560   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1561 
1562   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1563     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1564 
1565   // Emit the directives as assignments aka .set:
1566   OutStreamer->emitAssignment(Name, Expr);
1567   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1568   if (LocalAlias != Name)
1569     OutStreamer->emitAssignment(LocalAlias, Expr);
1570 
1571   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1572     // If the aliasee does not correspond to a symbol in the output, i.e. the
1573     // alias is not of an object or the aliased object is private, then set the
1574     // size of the alias symbol from the type of the alias. We don't do this in
1575     // other situations as the alias and aliasee having differing types but same
1576     // size may be intentional.
1577     const GlobalObject *BaseObject = GA->getBaseObject();
1578     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1579         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1580       const DataLayout &DL = M.getDataLayout();
1581       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1582       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1583     }
1584   }
1585 }
1586 
1587 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1588   if (!RS.needsSection())
1589     return;
1590 
1591   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1592 
1593   Optional<SmallString<128>> Filename;
1594   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1595     Filename = *FilenameRef;
1596     sys::fs::make_absolute(*Filename);
1597     assert(!Filename->empty() && "The filename can't be empty.");
1598   }
1599 
1600   std::string Buf;
1601   raw_string_ostream OS(Buf);
1602   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1603       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1604                : RemarkSerializer.metaSerializer(OS);
1605   MetaSerializer->emit();
1606 
1607   // Switch to the remarks section.
1608   MCSection *RemarksSection =
1609       OutContext.getObjectFileInfo()->getRemarksSection();
1610   OutStreamer->SwitchSection(RemarksSection);
1611 
1612   OutStreamer->emitBinaryData(OS.str());
1613 }
1614 
1615 bool AsmPrinter::doFinalization(Module &M) {
1616   // Set the MachineFunction to nullptr so that we can catch attempted
1617   // accesses to MF specific features at the module level and so that
1618   // we can conditionalize accesses based on whether or not it is nullptr.
1619   MF = nullptr;
1620 
1621   // Gather all GOT equivalent globals in the module. We really need two
1622   // passes over the globals: one to compute and another to avoid its emission
1623   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1624   // where the got equivalent shows up before its use.
1625   computeGlobalGOTEquivs(M);
1626 
1627   // Emit global variables.
1628   for (const auto &G : M.globals())
1629     emitGlobalVariable(&G);
1630 
1631   // Emit remaining GOT equivalent globals.
1632   emitGlobalGOTEquivs();
1633 
1634   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1635 
1636   // Emit linkage(XCOFF) and visibility info for declarations
1637   for (const Function &F : M) {
1638     if (!F.isDeclarationForLinker())
1639       continue;
1640 
1641     MCSymbol *Name = getSymbol(&F);
1642     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1643 
1644     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1645       GlobalValue::VisibilityTypes V = F.getVisibility();
1646       if (V == GlobalValue::DefaultVisibility)
1647         continue;
1648 
1649       emitVisibility(Name, V, false);
1650       continue;
1651     }
1652 
1653     if (F.isIntrinsic())
1654       continue;
1655 
1656     // Handle the XCOFF case.
1657     // Variable `Name` is the function descriptor symbol (see above). Get the
1658     // function entry point symbol.
1659     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1660     // Emit linkage for the function entry point.
1661     emitLinkage(&F, FnEntryPointSym);
1662 
1663     // Emit linkage for the function descriptor.
1664     emitLinkage(&F, Name);
1665   }
1666 
1667   // Emit the remarks section contents.
1668   // FIXME: Figure out when is the safest time to emit this section. It should
1669   // not come after debug info.
1670   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1671     emitRemarksSection(*RS);
1672 
1673   TLOF.emitModuleMetadata(*OutStreamer, M);
1674 
1675   if (TM.getTargetTriple().isOSBinFormatELF()) {
1676     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1677 
1678     // Output stubs for external and common global variables.
1679     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1680     if (!Stubs.empty()) {
1681       OutStreamer->SwitchSection(TLOF.getDataSection());
1682       const DataLayout &DL = M.getDataLayout();
1683 
1684       emitAlignment(Align(DL.getPointerSize()));
1685       for (const auto &Stub : Stubs) {
1686         OutStreamer->emitLabel(Stub.first);
1687         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1688                                      DL.getPointerSize());
1689       }
1690     }
1691   }
1692 
1693   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1694     MachineModuleInfoCOFF &MMICOFF =
1695         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1696 
1697     // Output stubs for external and common global variables.
1698     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1699     if (!Stubs.empty()) {
1700       const DataLayout &DL = M.getDataLayout();
1701 
1702       for (const auto &Stub : Stubs) {
1703         SmallString<256> SectionName = StringRef(".rdata$");
1704         SectionName += Stub.first->getName();
1705         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1706             SectionName,
1707             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1708                 COFF::IMAGE_SCN_LNK_COMDAT,
1709             SectionKind::getReadOnly(), Stub.first->getName(),
1710             COFF::IMAGE_COMDAT_SELECT_ANY));
1711         emitAlignment(Align(DL.getPointerSize()));
1712         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1713         OutStreamer->emitLabel(Stub.first);
1714         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1715                                      DL.getPointerSize());
1716       }
1717     }
1718   }
1719 
1720   // Finalize debug and EH information.
1721   for (const HandlerInfo &HI : Handlers) {
1722     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1723                        HI.TimerGroupDescription, TimePassesIsEnabled);
1724     HI.Handler->endModule();
1725   }
1726 
1727   // This deletes all the ephemeral handlers that AsmPrinter added, while
1728   // keeping all the user-added handlers alive until the AsmPrinter is
1729   // destroyed.
1730   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1731   DD = nullptr;
1732 
1733   // If the target wants to know about weak references, print them all.
1734   if (MAI->getWeakRefDirective()) {
1735     // FIXME: This is not lazy, it would be nice to only print weak references
1736     // to stuff that is actually used.  Note that doing so would require targets
1737     // to notice uses in operands (due to constant exprs etc).  This should
1738     // happen with the MC stuff eventually.
1739 
1740     // Print out module-level global objects here.
1741     for (const auto &GO : M.global_objects()) {
1742       if (!GO.hasExternalWeakLinkage())
1743         continue;
1744       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1745     }
1746   }
1747 
1748   // Print aliases in topological order, that is, for each alias a = b,
1749   // b must be printed before a.
1750   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1751   // such an order to generate correct TOC information.
1752   SmallVector<const GlobalAlias *, 16> AliasStack;
1753   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1754   for (const auto &Alias : M.aliases()) {
1755     for (const GlobalAlias *Cur = &Alias; Cur;
1756          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1757       if (!AliasVisited.insert(Cur).second)
1758         break;
1759       AliasStack.push_back(Cur);
1760     }
1761     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1762       emitGlobalIndirectSymbol(M, *AncestorAlias);
1763     AliasStack.clear();
1764   }
1765   for (const auto &IFunc : M.ifuncs())
1766     emitGlobalIndirectSymbol(M, IFunc);
1767 
1768   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1769   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1770   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1771     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1772       MP->finishAssembly(M, *MI, *this);
1773 
1774   // Emit llvm.ident metadata in an '.ident' directive.
1775   emitModuleIdents(M);
1776 
1777   // Emit bytes for llvm.commandline metadata.
1778   emitModuleCommandLines(M);
1779 
1780   // Emit __morestack address if needed for indirect calls.
1781   if (MMI->usesMorestackAddr()) {
1782     Align Alignment(1);
1783     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1784         getDataLayout(), SectionKind::getReadOnly(),
1785         /*C=*/nullptr, Alignment);
1786     OutStreamer->SwitchSection(ReadOnlySection);
1787 
1788     MCSymbol *AddrSymbol =
1789         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1790     OutStreamer->emitLabel(AddrSymbol);
1791 
1792     unsigned PtrSize = MAI->getCodePointerSize();
1793     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1794                                  PtrSize);
1795   }
1796 
1797   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1798   // split-stack is used.
1799   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1800     OutStreamer->SwitchSection(
1801         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1802     if (MMI->hasNosplitStack())
1803       OutStreamer->SwitchSection(
1804           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1805   }
1806 
1807   // If we don't have any trampolines, then we don't require stack memory
1808   // to be executable. Some targets have a directive to declare this.
1809   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1810   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1811     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1812       OutStreamer->SwitchSection(S);
1813 
1814   if (TM.Options.EmitAddrsig) {
1815     // Emit address-significance attributes for all globals.
1816     OutStreamer->emitAddrsig();
1817     for (const GlobalValue &GV : M.global_values())
1818       if (!GV.use_empty() && !GV.isThreadLocal() &&
1819           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1820           !GV.hasAtLeastLocalUnnamedAddr())
1821         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1822   }
1823 
1824   // Emit symbol partition specifications (ELF only).
1825   if (TM.getTargetTriple().isOSBinFormatELF()) {
1826     unsigned UniqueID = 0;
1827     for (const GlobalValue &GV : M.global_values()) {
1828       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1829           GV.getVisibility() != GlobalValue::DefaultVisibility)
1830         continue;
1831 
1832       OutStreamer->SwitchSection(
1833           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1834                                    "", ++UniqueID, nullptr));
1835       OutStreamer->emitBytes(GV.getPartition());
1836       OutStreamer->emitZeros(1);
1837       OutStreamer->emitValue(
1838           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1839           MAI->getCodePointerSize());
1840     }
1841   }
1842 
1843   // Allow the target to emit any magic that it wants at the end of the file,
1844   // after everything else has gone out.
1845   emitEndOfAsmFile(M);
1846 
1847   MMI = nullptr;
1848 
1849   OutStreamer->Finish();
1850   OutStreamer->reset();
1851   OwnedMLI.reset();
1852   OwnedMDT.reset();
1853 
1854   return false;
1855 }
1856 
1857 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1858   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1859   if (Res.second)
1860     Res.first->second = createTempSymbol("exception");
1861   return Res.first->second;
1862 }
1863 
1864 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1865   this->MF = &MF;
1866   const Function &F = MF.getFunction();
1867 
1868   // Get the function symbol.
1869   if (!MAI->needsFunctionDescriptors()) {
1870     CurrentFnSym = getSymbol(&MF.getFunction());
1871   } else {
1872     assert(TM.getTargetTriple().isOSAIX() &&
1873            "Only AIX uses the function descriptor hooks.");
1874     // AIX is unique here in that the name of the symbol emitted for the
1875     // function body does not have the same name as the source function's
1876     // C-linkage name.
1877     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1878                                " initalized first.");
1879 
1880     // Get the function entry point symbol.
1881     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1882   }
1883 
1884   CurrentFnSymForSize = CurrentFnSym;
1885   CurrentFnBegin = nullptr;
1886   CurrentSectionBeginSym = nullptr;
1887   MBBSectionRanges.clear();
1888   MBBSectionExceptionSyms.clear();
1889   bool NeedsLocalForSize = MAI->needsLocalForSize();
1890   if (F.hasFnAttribute("patchable-function-entry") ||
1891       F.hasFnAttribute("function-instrument") ||
1892       F.hasFnAttribute("xray-instruction-threshold") ||
1893       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1894       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1895     CurrentFnBegin = createTempSymbol("func_begin");
1896     if (NeedsLocalForSize)
1897       CurrentFnSymForSize = CurrentFnBegin;
1898   }
1899 
1900   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1901 }
1902 
1903 namespace {
1904 
1905 // Keep track the alignment, constpool entries per Section.
1906   struct SectionCPs {
1907     MCSection *S;
1908     Align Alignment;
1909     SmallVector<unsigned, 4> CPEs;
1910 
1911     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1912   };
1913 
1914 } // end anonymous namespace
1915 
1916 /// EmitConstantPool - Print to the current output stream assembly
1917 /// representations of the constants in the constant pool MCP. This is
1918 /// used to print out constants which have been "spilled to memory" by
1919 /// the code generator.
1920 void AsmPrinter::emitConstantPool() {
1921   const MachineConstantPool *MCP = MF->getConstantPool();
1922   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1923   if (CP.empty()) return;
1924 
1925   // Calculate sections for constant pool entries. We collect entries to go into
1926   // the same section together to reduce amount of section switch statements.
1927   SmallVector<SectionCPs, 4> CPSections;
1928   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1929     const MachineConstantPoolEntry &CPE = CP[i];
1930     Align Alignment = CPE.getAlign();
1931 
1932     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1933 
1934     const Constant *C = nullptr;
1935     if (!CPE.isMachineConstantPoolEntry())
1936       C = CPE.Val.ConstVal;
1937 
1938     MCSection *S = getObjFileLowering().getSectionForConstant(
1939         getDataLayout(), Kind, C, Alignment);
1940 
1941     // The number of sections are small, just do a linear search from the
1942     // last section to the first.
1943     bool Found = false;
1944     unsigned SecIdx = CPSections.size();
1945     while (SecIdx != 0) {
1946       if (CPSections[--SecIdx].S == S) {
1947         Found = true;
1948         break;
1949       }
1950     }
1951     if (!Found) {
1952       SecIdx = CPSections.size();
1953       CPSections.push_back(SectionCPs(S, Alignment));
1954     }
1955 
1956     if (Alignment > CPSections[SecIdx].Alignment)
1957       CPSections[SecIdx].Alignment = Alignment;
1958     CPSections[SecIdx].CPEs.push_back(i);
1959   }
1960 
1961   // Now print stuff into the calculated sections.
1962   const MCSection *CurSection = nullptr;
1963   unsigned Offset = 0;
1964   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1965     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1966       unsigned CPI = CPSections[i].CPEs[j];
1967       MCSymbol *Sym = GetCPISymbol(CPI);
1968       if (!Sym->isUndefined())
1969         continue;
1970 
1971       if (CurSection != CPSections[i].S) {
1972         OutStreamer->SwitchSection(CPSections[i].S);
1973         emitAlignment(Align(CPSections[i].Alignment));
1974         CurSection = CPSections[i].S;
1975         Offset = 0;
1976       }
1977 
1978       MachineConstantPoolEntry CPE = CP[CPI];
1979 
1980       // Emit inter-object padding for alignment.
1981       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1982       OutStreamer->emitZeros(NewOffset - Offset);
1983 
1984       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
1985 
1986       OutStreamer->emitLabel(Sym);
1987       if (CPE.isMachineConstantPoolEntry())
1988         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1989       else
1990         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1991     }
1992   }
1993 }
1994 
1995 // Print assembly representations of the jump tables used by the current
1996 // function.
1997 void AsmPrinter::emitJumpTableInfo() {
1998   const DataLayout &DL = MF->getDataLayout();
1999   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2000   if (!MJTI) return;
2001   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2002   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2003   if (JT.empty()) return;
2004 
2005   // Pick the directive to use to print the jump table entries, and switch to
2006   // the appropriate section.
2007   const Function &F = MF->getFunction();
2008   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2009   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2010       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2011       F);
2012   if (JTInDiffSection) {
2013     // Drop it in the readonly section.
2014     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2015     OutStreamer->SwitchSection(ReadOnlySection);
2016   }
2017 
2018   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2019 
2020   // Jump tables in code sections are marked with a data_region directive
2021   // where that's supported.
2022   if (!JTInDiffSection)
2023     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2024 
2025   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2026     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2027 
2028     // If this jump table was deleted, ignore it.
2029     if (JTBBs.empty()) continue;
2030 
2031     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2032     /// emit a .set directive for each unique entry.
2033     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2034         MAI->doesSetDirectiveSuppressReloc()) {
2035       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2036       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2037       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2038       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2039         const MachineBasicBlock *MBB = JTBBs[ii];
2040         if (!EmittedSets.insert(MBB).second)
2041           continue;
2042 
2043         // .set LJTSet, LBB32-base
2044         const MCExpr *LHS =
2045           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2046         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2047                                     MCBinaryExpr::createSub(LHS, Base,
2048                                                             OutContext));
2049       }
2050     }
2051 
2052     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2053     // before each jump table.  The first label is never referenced, but tells
2054     // the assembler and linker the extents of the jump table object.  The
2055     // second label is actually referenced by the code.
2056     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2057       // FIXME: This doesn't have to have any specific name, just any randomly
2058       // named and numbered local label started with 'l' would work.  Simplify
2059       // GetJTISymbol.
2060       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2061 
2062     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2063     OutStreamer->emitLabel(JTISymbol);
2064 
2065     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2066       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2067   }
2068   if (!JTInDiffSection)
2069     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2070 }
2071 
2072 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2073 /// current stream.
2074 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2075                                     const MachineBasicBlock *MBB,
2076                                     unsigned UID) const {
2077   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2078   const MCExpr *Value = nullptr;
2079   switch (MJTI->getEntryKind()) {
2080   case MachineJumpTableInfo::EK_Inline:
2081     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2082   case MachineJumpTableInfo::EK_Custom32:
2083     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2084         MJTI, MBB, UID, OutContext);
2085     break;
2086   case MachineJumpTableInfo::EK_BlockAddress:
2087     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2088     //     .word LBB123
2089     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2090     break;
2091   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2092     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2093     // with a relocation as gp-relative, e.g.:
2094     //     .gprel32 LBB123
2095     MCSymbol *MBBSym = MBB->getSymbol();
2096     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2097     return;
2098   }
2099 
2100   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2101     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2102     // with a relocation as gp-relative, e.g.:
2103     //     .gpdword LBB123
2104     MCSymbol *MBBSym = MBB->getSymbol();
2105     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2106     return;
2107   }
2108 
2109   case MachineJumpTableInfo::EK_LabelDifference32: {
2110     // Each entry is the address of the block minus the address of the jump
2111     // table. This is used for PIC jump tables where gprel32 is not supported.
2112     // e.g.:
2113     //      .word LBB123 - LJTI1_2
2114     // If the .set directive avoids relocations, this is emitted as:
2115     //      .set L4_5_set_123, LBB123 - LJTI1_2
2116     //      .word L4_5_set_123
2117     if (MAI->doesSetDirectiveSuppressReloc()) {
2118       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2119                                       OutContext);
2120       break;
2121     }
2122     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2123     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2124     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2125     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2126     break;
2127   }
2128   }
2129 
2130   assert(Value && "Unknown entry kind!");
2131 
2132   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2133   OutStreamer->emitValue(Value, EntrySize);
2134 }
2135 
2136 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2137 /// special global used by LLVM.  If so, emit it and return true, otherwise
2138 /// do nothing and return false.
2139 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2140   if (GV->getName() == "llvm.used") {
2141     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2142       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2143     return true;
2144   }
2145 
2146   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2147   if (GV->getSection() == "llvm.metadata" ||
2148       GV->hasAvailableExternallyLinkage())
2149     return true;
2150 
2151   if (!GV->hasAppendingLinkage()) return false;
2152 
2153   assert(GV->hasInitializer() && "Not a special LLVM global!");
2154 
2155   if (GV->getName() == "llvm.global_ctors") {
2156     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2157                        /* isCtor */ true);
2158 
2159     return true;
2160   }
2161 
2162   if (GV->getName() == "llvm.global_dtors") {
2163     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2164                        /* isCtor */ false);
2165 
2166     return true;
2167   }
2168 
2169   report_fatal_error("unknown special variable");
2170 }
2171 
2172 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2173 /// global in the specified llvm.used list.
2174 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2175   // Should be an array of 'i8*'.
2176   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2177     const GlobalValue *GV =
2178       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2179     if (GV)
2180       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2181   }
2182 }
2183 
2184 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2185                                           const Constant *List,
2186                                           SmallVector<Structor, 8> &Structors) {
2187   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2188   // the init priority.
2189   if (!isa<ConstantArray>(List))
2190     return;
2191 
2192   // Gather the structors in a form that's convenient for sorting by priority.
2193   for (Value *O : cast<ConstantArray>(List)->operands()) {
2194     auto *CS = cast<ConstantStruct>(O);
2195     if (CS->getOperand(1)->isNullValue())
2196       break; // Found a null terminator, skip the rest.
2197     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2198     if (!Priority)
2199       continue; // Malformed.
2200     Structors.push_back(Structor());
2201     Structor &S = Structors.back();
2202     S.Priority = Priority->getLimitedValue(65535);
2203     S.Func = CS->getOperand(1);
2204     if (!CS->getOperand(2)->isNullValue()) {
2205       if (TM.getTargetTriple().isOSAIX())
2206         llvm::report_fatal_error(
2207             "associated data of XXStructor list is not yet supported on AIX");
2208       S.ComdatKey =
2209           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2210     }
2211   }
2212 
2213   // Emit the function pointers in the target-specific order
2214   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2215     return L.Priority < R.Priority;
2216   });
2217 }
2218 
2219 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2220 /// priority.
2221 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2222                                     bool IsCtor) {
2223   SmallVector<Structor, 8> Structors;
2224   preprocessXXStructorList(DL, List, Structors);
2225   if (Structors.empty())
2226     return;
2227 
2228   const Align Align = DL.getPointerPrefAlignment();
2229   for (Structor &S : Structors) {
2230     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2231     const MCSymbol *KeySym = nullptr;
2232     if (GlobalValue *GV = S.ComdatKey) {
2233       if (GV->isDeclarationForLinker())
2234         // If the associated variable is not defined in this module
2235         // (it might be available_externally, or have been an
2236         // available_externally definition that was dropped by the
2237         // EliminateAvailableExternally pass), some other TU
2238         // will provide its dynamic initializer.
2239         continue;
2240 
2241       KeySym = getSymbol(GV);
2242     }
2243 
2244     MCSection *OutputSection =
2245         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2246                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2247     OutStreamer->SwitchSection(OutputSection);
2248     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2249       emitAlignment(Align);
2250     emitXXStructor(DL, S.Func);
2251   }
2252 }
2253 
2254 void AsmPrinter::emitModuleIdents(Module &M) {
2255   if (!MAI->hasIdentDirective())
2256     return;
2257 
2258   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2259     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2260       const MDNode *N = NMD->getOperand(i);
2261       assert(N->getNumOperands() == 1 &&
2262              "llvm.ident metadata entry can have only one operand");
2263       const MDString *S = cast<MDString>(N->getOperand(0));
2264       OutStreamer->emitIdent(S->getString());
2265     }
2266   }
2267 }
2268 
2269 void AsmPrinter::emitModuleCommandLines(Module &M) {
2270   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2271   if (!CommandLine)
2272     return;
2273 
2274   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2275   if (!NMD || !NMD->getNumOperands())
2276     return;
2277 
2278   OutStreamer->PushSection();
2279   OutStreamer->SwitchSection(CommandLine);
2280   OutStreamer->emitZeros(1);
2281   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2282     const MDNode *N = NMD->getOperand(i);
2283     assert(N->getNumOperands() == 1 &&
2284            "llvm.commandline metadata entry can have only one operand");
2285     const MDString *S = cast<MDString>(N->getOperand(0));
2286     OutStreamer->emitBytes(S->getString());
2287     OutStreamer->emitZeros(1);
2288   }
2289   OutStreamer->PopSection();
2290 }
2291 
2292 //===--------------------------------------------------------------------===//
2293 // Emission and print routines
2294 //
2295 
2296 /// Emit a byte directive and value.
2297 ///
2298 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2299 
2300 /// Emit a short directive and value.
2301 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2302 
2303 /// Emit a long directive and value.
2304 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2305 
2306 /// Emit a long long directive and value.
2307 void AsmPrinter::emitInt64(uint64_t Value) const {
2308   OutStreamer->emitInt64(Value);
2309 }
2310 
2311 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2312 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2313 /// .set if it avoids relocations.
2314 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2315                                      unsigned Size) const {
2316   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2317 }
2318 
2319 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2320 /// where the size in bytes of the directive is specified by Size and Label
2321 /// specifies the label.  This implicitly uses .set if it is available.
2322 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2323                                      unsigned Size,
2324                                      bool IsSectionRelative) const {
2325   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2326     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2327     if (Size > 4)
2328       OutStreamer->emitZeros(Size - 4);
2329     return;
2330   }
2331 
2332   // Emit Label+Offset (or just Label if Offset is zero)
2333   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2334   if (Offset)
2335     Expr = MCBinaryExpr::createAdd(
2336         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2337 
2338   OutStreamer->emitValue(Expr, Size);
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 
2343 // EmitAlignment - Emit an alignment directive to the specified power of
2344 // two boundary.  If a global value is specified, and if that global has
2345 // an explicit alignment requested, it will override the alignment request
2346 // if required for correctness.
2347 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2348   if (GV)
2349     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2350 
2351   if (Alignment == Align(1))
2352     return; // 1-byte aligned: no need to emit alignment.
2353 
2354   if (getCurrentSection()->getKind().isText())
2355     OutStreamer->emitCodeAlignment(Alignment.value());
2356   else
2357     OutStreamer->emitValueToAlignment(Alignment.value());
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 // Constant emission.
2362 //===----------------------------------------------------------------------===//
2363 
2364 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2365   MCContext &Ctx = OutContext;
2366 
2367   if (CV->isNullValue() || isa<UndefValue>(CV))
2368     return MCConstantExpr::create(0, Ctx);
2369 
2370   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2371     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2372 
2373   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2374     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2375 
2376   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2377     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2378 
2379   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2380     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2381 
2382   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2383   if (!CE) {
2384     llvm_unreachable("Unknown constant value to lower!");
2385   }
2386 
2387   switch (CE->getOpcode()) {
2388   case Instruction::AddrSpaceCast: {
2389     const Constant *Op = CE->getOperand(0);
2390     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2391     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2392     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2393       return lowerConstant(Op);
2394 
2395     // Fallthrough to error.
2396     LLVM_FALLTHROUGH;
2397   }
2398   default: {
2399     // If the code isn't optimized, there may be outstanding folding
2400     // opportunities. Attempt to fold the expression using DataLayout as a
2401     // last resort before giving up.
2402     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2403     if (C != CE)
2404       return lowerConstant(C);
2405 
2406     // Otherwise report the problem to the user.
2407     std::string S;
2408     raw_string_ostream OS(S);
2409     OS << "Unsupported expression in static initializer: ";
2410     CE->printAsOperand(OS, /*PrintType=*/false,
2411                    !MF ? nullptr : MF->getFunction().getParent());
2412     report_fatal_error(OS.str());
2413   }
2414   case Instruction::GetElementPtr: {
2415     // Generate a symbolic expression for the byte address
2416     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2417     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2418 
2419     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2420     if (!OffsetAI)
2421       return Base;
2422 
2423     int64_t Offset = OffsetAI.getSExtValue();
2424     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2425                                    Ctx);
2426   }
2427 
2428   case Instruction::Trunc:
2429     // We emit the value and depend on the assembler to truncate the generated
2430     // expression properly.  This is important for differences between
2431     // blockaddress labels.  Since the two labels are in the same function, it
2432     // is reasonable to treat their delta as a 32-bit value.
2433     LLVM_FALLTHROUGH;
2434   case Instruction::BitCast:
2435     return lowerConstant(CE->getOperand(0));
2436 
2437   case Instruction::IntToPtr: {
2438     const DataLayout &DL = getDataLayout();
2439 
2440     // Handle casts to pointers by changing them into casts to the appropriate
2441     // integer type.  This promotes constant folding and simplifies this code.
2442     Constant *Op = CE->getOperand(0);
2443     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2444                                       false/*ZExt*/);
2445     return lowerConstant(Op);
2446   }
2447 
2448   case Instruction::PtrToInt: {
2449     const DataLayout &DL = getDataLayout();
2450 
2451     // Support only foldable casts to/from pointers that can be eliminated by
2452     // changing the pointer to the appropriately sized integer type.
2453     Constant *Op = CE->getOperand(0);
2454     Type *Ty = CE->getType();
2455 
2456     const MCExpr *OpExpr = lowerConstant(Op);
2457 
2458     // We can emit the pointer value into this slot if the slot is an
2459     // integer slot equal to the size of the pointer.
2460     //
2461     // If the pointer is larger than the resultant integer, then
2462     // as with Trunc just depend on the assembler to truncate it.
2463     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2464         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2465       return OpExpr;
2466 
2467     // Otherwise the pointer is smaller than the resultant integer, mask off
2468     // the high bits so we are sure to get a proper truncation if the input is
2469     // a constant expr.
2470     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2471     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2472     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2473   }
2474 
2475   case Instruction::Sub: {
2476     GlobalValue *LHSGV;
2477     APInt LHSOffset;
2478     DSOLocalEquivalent *DSOEquiv;
2479     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2480                                    getDataLayout(), &DSOEquiv)) {
2481       GlobalValue *RHSGV;
2482       APInt RHSOffset;
2483       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2484                                      getDataLayout())) {
2485         const MCExpr *RelocExpr =
2486             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2487         if (!RelocExpr) {
2488           const MCExpr *LHSExpr =
2489               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2490           if (DSOEquiv &&
2491               getObjFileLowering().supportDSOLocalEquivalentLowering())
2492             LHSExpr =
2493                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2494           RelocExpr = MCBinaryExpr::createSub(
2495               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2496         }
2497         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2498         if (Addend != 0)
2499           RelocExpr = MCBinaryExpr::createAdd(
2500               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2501         return RelocExpr;
2502       }
2503     }
2504   }
2505   // else fallthrough
2506   LLVM_FALLTHROUGH;
2507 
2508   // The MC library also has a right-shift operator, but it isn't consistently
2509   // signed or unsigned between different targets.
2510   case Instruction::Add:
2511   case Instruction::Mul:
2512   case Instruction::SDiv:
2513   case Instruction::SRem:
2514   case Instruction::Shl:
2515   case Instruction::And:
2516   case Instruction::Or:
2517   case Instruction::Xor: {
2518     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2519     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2520     switch (CE->getOpcode()) {
2521     default: llvm_unreachable("Unknown binary operator constant cast expr");
2522     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2523     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2524     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2525     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2526     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2527     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2528     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2529     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2530     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2531     }
2532   }
2533   }
2534 }
2535 
2536 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2537                                    AsmPrinter &AP,
2538                                    const Constant *BaseCV = nullptr,
2539                                    uint64_t Offset = 0);
2540 
2541 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2542 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2543 
2544 /// isRepeatedByteSequence - Determine whether the given value is
2545 /// composed of a repeated sequence of identical bytes and return the
2546 /// byte value.  If it is not a repeated sequence, return -1.
2547 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2548   StringRef Data = V->getRawDataValues();
2549   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2550   char C = Data[0];
2551   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2552     if (Data[i] != C) return -1;
2553   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2554 }
2555 
2556 /// isRepeatedByteSequence - Determine whether the given value is
2557 /// composed of a repeated sequence of identical bytes and return the
2558 /// byte value.  If it is not a repeated sequence, return -1.
2559 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2560   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2561     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2562     assert(Size % 8 == 0);
2563 
2564     // Extend the element to take zero padding into account.
2565     APInt Value = CI->getValue().zextOrSelf(Size);
2566     if (!Value.isSplat(8))
2567       return -1;
2568 
2569     return Value.zextOrTrunc(8).getZExtValue();
2570   }
2571   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2572     // Make sure all array elements are sequences of the same repeated
2573     // byte.
2574     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2575     Constant *Op0 = CA->getOperand(0);
2576     int Byte = isRepeatedByteSequence(Op0, DL);
2577     if (Byte == -1)
2578       return -1;
2579 
2580     // All array elements must be equal.
2581     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2582       if (CA->getOperand(i) != Op0)
2583         return -1;
2584     return Byte;
2585   }
2586 
2587   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2588     return isRepeatedByteSequence(CDS);
2589 
2590   return -1;
2591 }
2592 
2593 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2594                                              const ConstantDataSequential *CDS,
2595                                              AsmPrinter &AP) {
2596   // See if we can aggregate this into a .fill, if so, emit it as such.
2597   int Value = isRepeatedByteSequence(CDS, DL);
2598   if (Value != -1) {
2599     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2600     // Don't emit a 1-byte object as a .fill.
2601     if (Bytes > 1)
2602       return AP.OutStreamer->emitFill(Bytes, Value);
2603   }
2604 
2605   // If this can be emitted with .ascii/.asciz, emit it as such.
2606   if (CDS->isString())
2607     return AP.OutStreamer->emitBytes(CDS->getAsString());
2608 
2609   // Otherwise, emit the values in successive locations.
2610   unsigned ElementByteSize = CDS->getElementByteSize();
2611   if (isa<IntegerType>(CDS->getElementType())) {
2612     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2613       if (AP.isVerbose())
2614         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2615                                                  CDS->getElementAsInteger(i));
2616       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2617                                    ElementByteSize);
2618     }
2619   } else {
2620     Type *ET = CDS->getElementType();
2621     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2622       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2623   }
2624 
2625   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2626   unsigned EmittedSize =
2627       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2628   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2629   if (unsigned Padding = Size - EmittedSize)
2630     AP.OutStreamer->emitZeros(Padding);
2631 }
2632 
2633 static void emitGlobalConstantArray(const DataLayout &DL,
2634                                     const ConstantArray *CA, AsmPrinter &AP,
2635                                     const Constant *BaseCV, uint64_t Offset) {
2636   // See if we can aggregate some values.  Make sure it can be
2637   // represented as a series of bytes of the constant value.
2638   int Value = isRepeatedByteSequence(CA, DL);
2639 
2640   if (Value != -1) {
2641     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2642     AP.OutStreamer->emitFill(Bytes, Value);
2643   }
2644   else {
2645     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2646       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2647       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2648     }
2649   }
2650 }
2651 
2652 static void emitGlobalConstantVector(const DataLayout &DL,
2653                                      const ConstantVector *CV, AsmPrinter &AP) {
2654   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2655     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2656 
2657   unsigned Size = DL.getTypeAllocSize(CV->getType());
2658   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2659                          CV->getType()->getNumElements();
2660   if (unsigned Padding = Size - EmittedSize)
2661     AP.OutStreamer->emitZeros(Padding);
2662 }
2663 
2664 static void emitGlobalConstantStruct(const DataLayout &DL,
2665                                      const ConstantStruct *CS, AsmPrinter &AP,
2666                                      const Constant *BaseCV, uint64_t Offset) {
2667   // Print the fields in successive locations. Pad to align if needed!
2668   unsigned Size = DL.getTypeAllocSize(CS->getType());
2669   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2670   uint64_t SizeSoFar = 0;
2671   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2672     const Constant *Field = CS->getOperand(i);
2673 
2674     // Print the actual field value.
2675     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2676 
2677     // Check if padding is needed and insert one or more 0s.
2678     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2679     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2680                         - Layout->getElementOffset(i)) - FieldSize;
2681     SizeSoFar += FieldSize + PadSize;
2682 
2683     // Insert padding - this may include padding to increase the size of the
2684     // current field up to the ABI size (if the struct is not packed) as well
2685     // as padding to ensure that the next field starts at the right offset.
2686     AP.OutStreamer->emitZeros(PadSize);
2687   }
2688   assert(SizeSoFar == Layout->getSizeInBytes() &&
2689          "Layout of constant struct may be incorrect!");
2690 }
2691 
2692 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2693   assert(ET && "Unknown float type");
2694   APInt API = APF.bitcastToAPInt();
2695 
2696   // First print a comment with what we think the original floating-point value
2697   // should have been.
2698   if (AP.isVerbose()) {
2699     SmallString<8> StrVal;
2700     APF.toString(StrVal);
2701     ET->print(AP.OutStreamer->GetCommentOS());
2702     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2703   }
2704 
2705   // Now iterate through the APInt chunks, emitting them in endian-correct
2706   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2707   // floats).
2708   unsigned NumBytes = API.getBitWidth() / 8;
2709   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2710   const uint64_t *p = API.getRawData();
2711 
2712   // PPC's long double has odd notions of endianness compared to how LLVM
2713   // handles it: p[0] goes first for *big* endian on PPC.
2714   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2715     int Chunk = API.getNumWords() - 1;
2716 
2717     if (TrailingBytes)
2718       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2719 
2720     for (; Chunk >= 0; --Chunk)
2721       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2722   } else {
2723     unsigned Chunk;
2724     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2725       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2726 
2727     if (TrailingBytes)
2728       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2729   }
2730 
2731   // Emit the tail padding for the long double.
2732   const DataLayout &DL = AP.getDataLayout();
2733   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2734 }
2735 
2736 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2737   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2738 }
2739 
2740 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2741   const DataLayout &DL = AP.getDataLayout();
2742   unsigned BitWidth = CI->getBitWidth();
2743 
2744   // Copy the value as we may massage the layout for constants whose bit width
2745   // is not a multiple of 64-bits.
2746   APInt Realigned(CI->getValue());
2747   uint64_t ExtraBits = 0;
2748   unsigned ExtraBitsSize = BitWidth & 63;
2749 
2750   if (ExtraBitsSize) {
2751     // The bit width of the data is not a multiple of 64-bits.
2752     // The extra bits are expected to be at the end of the chunk of the memory.
2753     // Little endian:
2754     // * Nothing to be done, just record the extra bits to emit.
2755     // Big endian:
2756     // * Record the extra bits to emit.
2757     // * Realign the raw data to emit the chunks of 64-bits.
2758     if (DL.isBigEndian()) {
2759       // Basically the structure of the raw data is a chunk of 64-bits cells:
2760       //    0        1         BitWidth / 64
2761       // [chunk1][chunk2] ... [chunkN].
2762       // The most significant chunk is chunkN and it should be emitted first.
2763       // However, due to the alignment issue chunkN contains useless bits.
2764       // Realign the chunks so that they contain only useful information:
2765       // ExtraBits     0       1       (BitWidth / 64) - 1
2766       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2767       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2768       ExtraBits = Realigned.getRawData()[0] &
2769         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2770       Realigned.lshrInPlace(ExtraBitsSize);
2771     } else
2772       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2773   }
2774 
2775   // We don't expect assemblers to support integer data directives
2776   // for more than 64 bits, so we emit the data in at most 64-bit
2777   // quantities at a time.
2778   const uint64_t *RawData = Realigned.getRawData();
2779   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2780     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2781     AP.OutStreamer->emitIntValue(Val, 8);
2782   }
2783 
2784   if (ExtraBitsSize) {
2785     // Emit the extra bits after the 64-bits chunks.
2786 
2787     // Emit a directive that fills the expected size.
2788     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2789     Size -= (BitWidth / 64) * 8;
2790     assert(Size && Size * 8 >= ExtraBitsSize &&
2791            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2792            == ExtraBits && "Directive too small for extra bits.");
2793     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2794   }
2795 }
2796 
2797 /// Transform a not absolute MCExpr containing a reference to a GOT
2798 /// equivalent global, by a target specific GOT pc relative access to the
2799 /// final symbol.
2800 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2801                                          const Constant *BaseCst,
2802                                          uint64_t Offset) {
2803   // The global @foo below illustrates a global that uses a got equivalent.
2804   //
2805   //  @bar = global i32 42
2806   //  @gotequiv = private unnamed_addr constant i32* @bar
2807   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2808   //                             i64 ptrtoint (i32* @foo to i64))
2809   //                        to i32)
2810   //
2811   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2812   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2813   // form:
2814   //
2815   //  foo = cstexpr, where
2816   //    cstexpr := <gotequiv> - "." + <cst>
2817   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2818   //
2819   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2820   //
2821   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2822   //    gotpcrelcst := <offset from @foo base> + <cst>
2823   MCValue MV;
2824   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2825     return;
2826   const MCSymbolRefExpr *SymA = MV.getSymA();
2827   if (!SymA)
2828     return;
2829 
2830   // Check that GOT equivalent symbol is cached.
2831   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2832   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2833     return;
2834 
2835   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2836   if (!BaseGV)
2837     return;
2838 
2839   // Check for a valid base symbol
2840   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2841   const MCSymbolRefExpr *SymB = MV.getSymB();
2842 
2843   if (!SymB || BaseSym != &SymB->getSymbol())
2844     return;
2845 
2846   // Make sure to match:
2847   //
2848   //    gotpcrelcst := <offset from @foo base> + <cst>
2849   //
2850   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2851   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2852   // if the target knows how to encode it.
2853   int64_t GOTPCRelCst = Offset + MV.getConstant();
2854   if (GOTPCRelCst < 0)
2855     return;
2856   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2857     return;
2858 
2859   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2860   //
2861   //  bar:
2862   //    .long 42
2863   //  gotequiv:
2864   //    .quad bar
2865   //  foo:
2866   //    .long gotequiv - "." + <cst>
2867   //
2868   // is replaced by the target specific equivalent to:
2869   //
2870   //  bar:
2871   //    .long 42
2872   //  foo:
2873   //    .long bar@GOTPCREL+<gotpcrelcst>
2874   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2875   const GlobalVariable *GV = Result.first;
2876   int NumUses = (int)Result.second;
2877   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2878   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2879   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2880       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2881 
2882   // Update GOT equivalent usage information
2883   --NumUses;
2884   if (NumUses >= 0)
2885     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2886 }
2887 
2888 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2889                                    AsmPrinter &AP, const Constant *BaseCV,
2890                                    uint64_t Offset) {
2891   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2892 
2893   // Globals with sub-elements such as combinations of arrays and structs
2894   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2895   // constant symbol base and the current position with BaseCV and Offset.
2896   if (!BaseCV && CV->hasOneUse())
2897     BaseCV = dyn_cast<Constant>(CV->user_back());
2898 
2899   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2900     return AP.OutStreamer->emitZeros(Size);
2901 
2902   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2903     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2904 
2905     if (StoreSize <= 8) {
2906       if (AP.isVerbose())
2907         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2908                                                  CI->getZExtValue());
2909       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2910     } else {
2911       emitGlobalConstantLargeInt(CI, AP);
2912     }
2913 
2914     // Emit tail padding if needed
2915     if (Size != StoreSize)
2916       AP.OutStreamer->emitZeros(Size - StoreSize);
2917 
2918     return;
2919   }
2920 
2921   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2922     return emitGlobalConstantFP(CFP, AP);
2923 
2924   if (isa<ConstantPointerNull>(CV)) {
2925     AP.OutStreamer->emitIntValue(0, Size);
2926     return;
2927   }
2928 
2929   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2930     return emitGlobalConstantDataSequential(DL, CDS, AP);
2931 
2932   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2933     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2934 
2935   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2936     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2937 
2938   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2939     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2940     // vectors).
2941     if (CE->getOpcode() == Instruction::BitCast)
2942       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2943 
2944     if (Size > 8) {
2945       // If the constant expression's size is greater than 64-bits, then we have
2946       // to emit the value in chunks. Try to constant fold the value and emit it
2947       // that way.
2948       Constant *New = ConstantFoldConstant(CE, DL);
2949       if (New != CE)
2950         return emitGlobalConstantImpl(DL, New, AP);
2951     }
2952   }
2953 
2954   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2955     return emitGlobalConstantVector(DL, V, AP);
2956 
2957   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2958   // thread the streamer with EmitValue.
2959   const MCExpr *ME = AP.lowerConstant(CV);
2960 
2961   // Since lowerConstant already folded and got rid of all IR pointer and
2962   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2963   // directly.
2964   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2965     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2966 
2967   AP.OutStreamer->emitValue(ME, Size);
2968 }
2969 
2970 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2971 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2972   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2973   if (Size)
2974     emitGlobalConstantImpl(DL, CV, *this);
2975   else if (MAI->hasSubsectionsViaSymbols()) {
2976     // If the global has zero size, emit a single byte so that two labels don't
2977     // look like they are at the same location.
2978     OutStreamer->emitIntValue(0, 1);
2979   }
2980 }
2981 
2982 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2983   // Target doesn't support this yet!
2984   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2985 }
2986 
2987 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2988   if (Offset > 0)
2989     OS << '+' << Offset;
2990   else if (Offset < 0)
2991     OS << Offset;
2992 }
2993 
2994 void AsmPrinter::emitNops(unsigned N) {
2995   MCInst Nop;
2996   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2997   for (; N; --N)
2998     EmitToStreamer(*OutStreamer, Nop);
2999 }
3000 
3001 //===----------------------------------------------------------------------===//
3002 // Symbol Lowering Routines.
3003 //===----------------------------------------------------------------------===//
3004 
3005 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3006   return OutContext.createTempSymbol(Name, true);
3007 }
3008 
3009 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3010   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3011 }
3012 
3013 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3014   return MMI->getAddrLabelSymbol(BB);
3015 }
3016 
3017 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3018 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3019   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3020     const MachineConstantPoolEntry &CPE =
3021         MF->getConstantPool()->getConstants()[CPID];
3022     if (!CPE.isMachineConstantPoolEntry()) {
3023       const DataLayout &DL = MF->getDataLayout();
3024       SectionKind Kind = CPE.getSectionKind(&DL);
3025       const Constant *C = CPE.Val.ConstVal;
3026       Align Alignment = CPE.Alignment;
3027       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3028               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3029                                                          Alignment))) {
3030         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3031           if (Sym->isUndefined())
3032             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3033           return Sym;
3034         }
3035       }
3036     }
3037   }
3038 
3039   const DataLayout &DL = getDataLayout();
3040   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3041                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3042                                       Twine(CPID));
3043 }
3044 
3045 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3046 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3047   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3048 }
3049 
3050 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3051 /// FIXME: privatize to AsmPrinter.
3052 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3053   const DataLayout &DL = getDataLayout();
3054   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3055                                       Twine(getFunctionNumber()) + "_" +
3056                                       Twine(UID) + "_set_" + Twine(MBBID));
3057 }
3058 
3059 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3060                                                    StringRef Suffix) const {
3061   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3062 }
3063 
3064 /// Return the MCSymbol for the specified ExternalSymbol.
3065 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3066   SmallString<60> NameStr;
3067   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3068   return OutContext.getOrCreateSymbol(NameStr);
3069 }
3070 
3071 /// PrintParentLoopComment - Print comments about parent loops of this one.
3072 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3073                                    unsigned FunctionNumber) {
3074   if (!Loop) return;
3075   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3076   OS.indent(Loop->getLoopDepth()*2)
3077     << "Parent Loop BB" << FunctionNumber << "_"
3078     << Loop->getHeader()->getNumber()
3079     << " Depth=" << Loop->getLoopDepth() << '\n';
3080 }
3081 
3082 /// PrintChildLoopComment - Print comments about child loops within
3083 /// the loop for this basic block, with nesting.
3084 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3085                                   unsigned FunctionNumber) {
3086   // Add child loop information
3087   for (const MachineLoop *CL : *Loop) {
3088     OS.indent(CL->getLoopDepth()*2)
3089       << "Child Loop BB" << FunctionNumber << "_"
3090       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3091       << '\n';
3092     PrintChildLoopComment(OS, CL, FunctionNumber);
3093   }
3094 }
3095 
3096 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3097 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3098                                        const MachineLoopInfo *LI,
3099                                        const AsmPrinter &AP) {
3100   // Add loop depth information
3101   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3102   if (!Loop) return;
3103 
3104   MachineBasicBlock *Header = Loop->getHeader();
3105   assert(Header && "No header for loop");
3106 
3107   // If this block is not a loop header, just print out what is the loop header
3108   // and return.
3109   if (Header != &MBB) {
3110     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3111                                Twine(AP.getFunctionNumber())+"_" +
3112                                Twine(Loop->getHeader()->getNumber())+
3113                                " Depth="+Twine(Loop->getLoopDepth()));
3114     return;
3115   }
3116 
3117   // Otherwise, it is a loop header.  Print out information about child and
3118   // parent loops.
3119   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3120 
3121   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3122 
3123   OS << "=>";
3124   OS.indent(Loop->getLoopDepth()*2-2);
3125 
3126   OS << "This ";
3127   if (Loop->isInnermost())
3128     OS << "Inner ";
3129   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3130 
3131   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3132 }
3133 
3134 /// emitBasicBlockStart - This method prints the label for the specified
3135 /// MachineBasicBlock, an alignment (if present) and a comment describing
3136 /// it if appropriate.
3137 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3138   // End the previous funclet and start a new one.
3139   if (MBB.isEHFuncletEntry()) {
3140     for (const HandlerInfo &HI : Handlers) {
3141       HI.Handler->endFunclet();
3142       HI.Handler->beginFunclet(MBB);
3143     }
3144   }
3145 
3146   // Emit an alignment directive for this block, if needed.
3147   const Align Alignment = MBB.getAlignment();
3148   if (Alignment != Align(1))
3149     emitAlignment(Alignment);
3150 
3151   // Switch to a new section if this basic block must begin a section. The
3152   // entry block is always placed in the function section and is handled
3153   // separately.
3154   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3155     OutStreamer->SwitchSection(
3156         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3157                                                             MBB, TM));
3158     CurrentSectionBeginSym = MBB.getSymbol();
3159   }
3160 
3161   // If the block has its address taken, emit any labels that were used to
3162   // reference the block.  It is possible that there is more than one label
3163   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3164   // the references were generated.
3165   if (MBB.hasAddressTaken()) {
3166     const BasicBlock *BB = MBB.getBasicBlock();
3167     if (isVerbose())
3168       OutStreamer->AddComment("Block address taken");
3169 
3170     // MBBs can have their address taken as part of CodeGen without having
3171     // their corresponding BB's address taken in IR
3172     if (BB->hasAddressTaken())
3173       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3174         OutStreamer->emitLabel(Sym);
3175   }
3176 
3177   // Print some verbose block comments.
3178   if (isVerbose()) {
3179     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3180       if (BB->hasName()) {
3181         BB->printAsOperand(OutStreamer->GetCommentOS(),
3182                            /*PrintType=*/false, BB->getModule());
3183         OutStreamer->GetCommentOS() << '\n';
3184       }
3185     }
3186 
3187     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3188     emitBasicBlockLoopComments(MBB, MLI, *this);
3189   }
3190 
3191   // Print the main label for the block.
3192   if (shouldEmitLabelForBasicBlock(MBB)) {
3193     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3194       OutStreamer->AddComment("Label of block must be emitted");
3195     OutStreamer->emitLabel(MBB.getSymbol());
3196   } else {
3197     if (isVerbose()) {
3198       // NOTE: Want this comment at start of line, don't emit with AddComment.
3199       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3200                                   false);
3201     }
3202   }
3203 
3204   // With BB sections, each basic block must handle CFI information on its own
3205   // if it begins a section (Entry block is handled separately by
3206   // AsmPrinterHandler::beginFunction).
3207   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3208     for (const HandlerInfo &HI : Handlers)
3209       HI.Handler->beginBasicBlock(MBB);
3210 }
3211 
3212 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3213   // Check if CFI information needs to be updated for this MBB with basic block
3214   // sections.
3215   if (MBB.isEndSection())
3216     for (const HandlerInfo &HI : Handlers)
3217       HI.Handler->endBasicBlock(MBB);
3218 }
3219 
3220 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3221                                 bool IsDefinition) const {
3222   MCSymbolAttr Attr = MCSA_Invalid;
3223 
3224   switch (Visibility) {
3225   default: break;
3226   case GlobalValue::HiddenVisibility:
3227     if (IsDefinition)
3228       Attr = MAI->getHiddenVisibilityAttr();
3229     else
3230       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3231     break;
3232   case GlobalValue::ProtectedVisibility:
3233     Attr = MAI->getProtectedVisibilityAttr();
3234     break;
3235   }
3236 
3237   if (Attr != MCSA_Invalid)
3238     OutStreamer->emitSymbolAttribute(Sym, Attr);
3239 }
3240 
3241 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3242     const MachineBasicBlock &MBB) const {
3243   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3244   // in the labels mode (option `=labels`) and every section beginning in the
3245   // sections mode (`=all` and `=list=`).
3246   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3247     return true;
3248   // A label is needed for any block with at least one predecessor (when that
3249   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3250   // entry, or if a label is forced).
3251   return !MBB.pred_empty() &&
3252          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3253           MBB.hasLabelMustBeEmitted());
3254 }
3255 
3256 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3257 /// exactly one predecessor and the control transfer mechanism between
3258 /// the predecessor and this block is a fall-through.
3259 bool AsmPrinter::
3260 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3261   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3262   // then nothing falls through to it.
3263   if (MBB->isEHPad() || MBB->pred_empty())
3264     return false;
3265 
3266   // If there isn't exactly one predecessor, it can't be a fall through.
3267   if (MBB->pred_size() > 1)
3268     return false;
3269 
3270   // The predecessor has to be immediately before this block.
3271   MachineBasicBlock *Pred = *MBB->pred_begin();
3272   if (!Pred->isLayoutSuccessor(MBB))
3273     return false;
3274 
3275   // If the block is completely empty, then it definitely does fall through.
3276   if (Pred->empty())
3277     return true;
3278 
3279   // Check the terminators in the previous blocks
3280   for (const auto &MI : Pred->terminators()) {
3281     // If it is not a simple branch, we are in a table somewhere.
3282     if (!MI.isBranch() || MI.isIndirectBranch())
3283       return false;
3284 
3285     // If we are the operands of one of the branches, this is not a fall
3286     // through. Note that targets with delay slots will usually bundle
3287     // terminators with the delay slot instruction.
3288     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3289       if (OP->isJTI())
3290         return false;
3291       if (OP->isMBB() && OP->getMBB() == MBB)
3292         return false;
3293     }
3294   }
3295 
3296   return true;
3297 }
3298 
3299 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3300   if (!S.usesMetadata())
3301     return nullptr;
3302 
3303   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3304   gcp_map_type::iterator GCPI = GCMap.find(&S);
3305   if (GCPI != GCMap.end())
3306     return GCPI->second.get();
3307 
3308   auto Name = S.getName();
3309 
3310   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3311        GCMetadataPrinterRegistry::entries())
3312     if (Name == GCMetaPrinter.getName()) {
3313       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3314       GMP->S = &S;
3315       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3316       return IterBool.first->second.get();
3317     }
3318 
3319   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3320 }
3321 
3322 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3323   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3324   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3325   bool NeedsDefault = false;
3326   if (MI->begin() == MI->end())
3327     // No GC strategy, use the default format.
3328     NeedsDefault = true;
3329   else
3330     for (auto &I : *MI) {
3331       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3332         if (MP->emitStackMaps(SM, *this))
3333           continue;
3334       // The strategy doesn't have printer or doesn't emit custom stack maps.
3335       // Use the default format.
3336       NeedsDefault = true;
3337     }
3338 
3339   if (NeedsDefault)
3340     SM.serializeToStackMapSection();
3341 }
3342 
3343 /// Pin vtable to this file.
3344 AsmPrinterHandler::~AsmPrinterHandler() = default;
3345 
3346 void AsmPrinterHandler::markFunctionEnd() {}
3347 
3348 // In the binary's "xray_instr_map" section, an array of these function entries
3349 // describes each instrumentation point.  When XRay patches your code, the index
3350 // into this table will be given to your handler as a patch point identifier.
3351 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3352   auto Kind8 = static_cast<uint8_t>(Kind);
3353   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3354   Out->emitBinaryData(
3355       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3356   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3357   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3358   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3359   Out->emitZeros(Padding);
3360 }
3361 
3362 void AsmPrinter::emitXRayTable() {
3363   if (Sleds.empty())
3364     return;
3365 
3366   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3367   const Function &F = MF->getFunction();
3368   MCSection *InstMap = nullptr;
3369   MCSection *FnSledIndex = nullptr;
3370   const Triple &TT = TM.getTargetTriple();
3371   // Use PC-relative addresses on all targets.
3372   if (TT.isOSBinFormatELF()) {
3373     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3374     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3375     StringRef GroupName;
3376     if (F.hasComdat()) {
3377       Flags |= ELF::SHF_GROUP;
3378       GroupName = F.getComdat()->getName();
3379     }
3380     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3381                                        Flags, 0, GroupName,
3382                                        MCSection::NonUniqueID, LinkedToSym);
3383 
3384     if (!TM.Options.XRayOmitFunctionIndex)
3385       FnSledIndex = OutContext.getELFSection(
3386           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3387           GroupName, MCSection::NonUniqueID, LinkedToSym);
3388   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3389     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3390                                          SectionKind::getReadOnlyWithRel());
3391     if (!TM.Options.XRayOmitFunctionIndex)
3392       FnSledIndex = OutContext.getMachOSection(
3393           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3394   } else {
3395     llvm_unreachable("Unsupported target");
3396   }
3397 
3398   auto WordSizeBytes = MAI->getCodePointerSize();
3399 
3400   // Now we switch to the instrumentation map section. Because this is done
3401   // per-function, we are able to create an index entry that will represent the
3402   // range of sleds associated with a function.
3403   auto &Ctx = OutContext;
3404   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3405   OutStreamer->SwitchSection(InstMap);
3406   OutStreamer->emitLabel(SledsStart);
3407   for (const auto &Sled : Sleds) {
3408     MCSymbol *Dot = Ctx.createTempSymbol();
3409     OutStreamer->emitLabel(Dot);
3410     OutStreamer->emitValueImpl(
3411         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3412                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3413         WordSizeBytes);
3414     OutStreamer->emitValueImpl(
3415         MCBinaryExpr::createSub(
3416             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3417             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3418                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3419                                     Ctx),
3420             Ctx),
3421         WordSizeBytes);
3422     Sled.emit(WordSizeBytes, OutStreamer.get());
3423   }
3424   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3425   OutStreamer->emitLabel(SledsEnd);
3426 
3427   // We then emit a single entry in the index per function. We use the symbols
3428   // that bound the instrumentation map as the range for a specific function.
3429   // Each entry here will be 2 * word size aligned, as we're writing down two
3430   // pointers. This should work for both 32-bit and 64-bit platforms.
3431   if (FnSledIndex) {
3432     OutStreamer->SwitchSection(FnSledIndex);
3433     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3434     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3435     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3436     OutStreamer->SwitchSection(PrevSection);
3437   }
3438   Sleds.clear();
3439 }
3440 
3441 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3442                             SledKind Kind, uint8_t Version) {
3443   const Function &F = MI.getMF()->getFunction();
3444   auto Attr = F.getFnAttribute("function-instrument");
3445   bool LogArgs = F.hasFnAttribute("xray-log-args");
3446   bool AlwaysInstrument =
3447     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3448   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3449     Kind = SledKind::LOG_ARGS_ENTER;
3450   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3451                                        AlwaysInstrument, &F, Version});
3452 }
3453 
3454 void AsmPrinter::emitPatchableFunctionEntries() {
3455   const Function &F = MF->getFunction();
3456   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3457   (void)F.getFnAttribute("patchable-function-prefix")
3458       .getValueAsString()
3459       .getAsInteger(10, PatchableFunctionPrefix);
3460   (void)F.getFnAttribute("patchable-function-entry")
3461       .getValueAsString()
3462       .getAsInteger(10, PatchableFunctionEntry);
3463   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3464     return;
3465   const unsigned PointerSize = getPointerSize();
3466   if (TM.getTargetTriple().isOSBinFormatELF()) {
3467     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3468     const MCSymbolELF *LinkedToSym = nullptr;
3469     StringRef GroupName;
3470 
3471     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3472     // if we are using the integrated assembler.
3473     if (MAI->useIntegratedAssembler()) {
3474       Flags |= ELF::SHF_LINK_ORDER;
3475       if (F.hasComdat()) {
3476         Flags |= ELF::SHF_GROUP;
3477         GroupName = F.getComdat()->getName();
3478       }
3479       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3480     }
3481     OutStreamer->SwitchSection(OutContext.getELFSection(
3482         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3483         MCSection::NonUniqueID, LinkedToSym));
3484     emitAlignment(Align(PointerSize));
3485     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3486   }
3487 }
3488 
3489 uint16_t AsmPrinter::getDwarfVersion() const {
3490   return OutStreamer->getContext().getDwarfVersion();
3491 }
3492 
3493 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3494   OutStreamer->getContext().setDwarfVersion(Version);
3495 }
3496 
3497 bool AsmPrinter::isDwarf64() const {
3498   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3499 }
3500 
3501 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3502   return dwarf::getDwarfOffsetByteSize(
3503       OutStreamer->getContext().getDwarfFormat());
3504 }
3505 
3506 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3507   return dwarf::getUnitLengthFieldByteSize(
3508       OutStreamer->getContext().getDwarfFormat());
3509 }
3510