1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/TinyPtrVector.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/ConstantFolding.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/Config/config.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/EHPersonalities.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GCStrategy.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalIFunc.h" 77 #include "llvm/IR/GlobalObject.h" 78 #include "llvm/IR/GlobalValue.h" 79 #include "llvm/IR/GlobalVariable.h" 80 #include "llvm/IR/Instruction.h" 81 #include "llvm/IR/Mangler.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PseudoProbe.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/MC/MCAsmInfo.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCDirectives.h" 92 #include "llvm/MC/MCExpr.h" 93 #include "llvm/MC/MCInst.h" 94 #include "llvm/MC/MCSection.h" 95 #include "llvm/MC/MCSectionCOFF.h" 96 #include "llvm/MC/MCSectionELF.h" 97 #include "llvm/MC/MCSectionMachO.h" 98 #include "llvm/MC/MCSectionXCOFF.h" 99 #include "llvm/MC/MCStreamer.h" 100 #include "llvm/MC/MCSubtargetInfo.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/MC/MCSymbolELF.h" 103 #include "llvm/MC/MCTargetOptions.h" 104 #include "llvm/MC/MCValue.h" 105 #include "llvm/MC/SectionKind.h" 106 #include "llvm/Object/ELFTypes.h" 107 #include "llvm/Pass.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/Compiler.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/FileSystem.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/Timer.h" 117 #include "llvm/Support/raw_ostream.h" 118 #include "llvm/Target/TargetLoweringObjectFile.h" 119 #include "llvm/Target/TargetMachine.h" 120 #include "llvm/Target/TargetOptions.h" 121 #include "llvm/TargetParser/Triple.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <memory> 128 #include <optional> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // This is a replication of fields of object::PGOAnalysisMap::Features. It 138 // should match the order of the fields so that 139 // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())` 140 // succeeds. 141 enum class PGOMapFeaturesEnum { 142 FuncEntryCount, 143 BBFreq, 144 BrProb, 145 }; 146 static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures( 147 "pgo-analysis-map", cl::Hidden, cl::CommaSeparated, 148 cl::values(clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, 149 "func-entry-count", "Function Entry Count"), 150 clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", 151 "Basic Block Frequency"), 152 clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", 153 "Branch Probability")), 154 cl::desc("Enable extended information within the BBAddrMap that is " 155 "extracted from PGO related analysis.")); 156 157 const char DWARFGroupName[] = "dwarf"; 158 const char DWARFGroupDescription[] = "DWARF Emission"; 159 const char DbgTimerName[] = "emit"; 160 const char DbgTimerDescription[] = "Debug Info Emission"; 161 const char EHTimerName[] = "write_exception"; 162 const char EHTimerDescription[] = "DWARF Exception Writer"; 163 const char CFGuardName[] = "Control Flow Guard"; 164 const char CFGuardDescription[] = "Control Flow Guard"; 165 const char CodeViewLineTablesGroupName[] = "linetables"; 166 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 167 const char PPTimerName[] = "emit"; 168 const char PPTimerDescription[] = "Pseudo Probe Emission"; 169 const char PPGroupName[] = "pseudo probe"; 170 const char PPGroupDescription[] = "Pseudo Probe Emission"; 171 172 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 173 174 char AsmPrinter::ID = 0; 175 176 namespace { 177 class AddrLabelMapCallbackPtr final : CallbackVH { 178 AddrLabelMap *Map = nullptr; 179 180 public: 181 AddrLabelMapCallbackPtr() = default; 182 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} 183 184 void setPtr(BasicBlock *BB) { 185 ValueHandleBase::operator=(BB); 186 } 187 188 void setMap(AddrLabelMap *map) { Map = map; } 189 190 void deleted() override; 191 void allUsesReplacedWith(Value *V2) override; 192 }; 193 } // namespace 194 195 class llvm::AddrLabelMap { 196 MCContext &Context; 197 struct AddrLabelSymEntry { 198 /// The symbols for the label. 199 TinyPtrVector<MCSymbol *> Symbols; 200 201 Function *Fn; // The containing function of the BasicBlock. 202 unsigned Index; // The index in BBCallbacks for the BasicBlock. 203 }; 204 205 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; 206 207 /// Callbacks for the BasicBlock's that we have entries for. We use this so 208 /// we get notified if a block is deleted or RAUWd. 209 std::vector<AddrLabelMapCallbackPtr> BBCallbacks; 210 211 /// This is a per-function list of symbols whose corresponding BasicBlock got 212 /// deleted. These symbols need to be emitted at some point in the file, so 213 /// AsmPrinter emits them after the function body. 214 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> 215 DeletedAddrLabelsNeedingEmission; 216 217 public: 218 AddrLabelMap(MCContext &context) : Context(context) {} 219 220 ~AddrLabelMap() { 221 assert(DeletedAddrLabelsNeedingEmission.empty() && 222 "Some labels for deleted blocks never got emitted"); 223 } 224 225 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); 226 227 void takeDeletedSymbolsForFunction(Function *F, 228 std::vector<MCSymbol *> &Result); 229 230 void UpdateForDeletedBlock(BasicBlock *BB); 231 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); 232 }; 233 234 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { 235 assert(BB->hasAddressTaken() && 236 "Shouldn't get label for block without address taken"); 237 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; 238 239 // If we already had an entry for this block, just return it. 240 if (!Entry.Symbols.empty()) { 241 assert(BB->getParent() == Entry.Fn && "Parent changed"); 242 return Entry.Symbols; 243 } 244 245 // Otherwise, this is a new entry, create a new symbol for it and add an 246 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. 247 BBCallbacks.emplace_back(BB); 248 BBCallbacks.back().setMap(this); 249 Entry.Index = BBCallbacks.size() - 1; 250 Entry.Fn = BB->getParent(); 251 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() 252 : Context.createTempSymbol(); 253 Entry.Symbols.push_back(Sym); 254 return Entry.Symbols; 255 } 256 257 /// If we have any deleted symbols for F, return them. 258 void AddrLabelMap::takeDeletedSymbolsForFunction( 259 Function *F, std::vector<MCSymbol *> &Result) { 260 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = 261 DeletedAddrLabelsNeedingEmission.find(F); 262 263 // If there are no entries for the function, just return. 264 if (I == DeletedAddrLabelsNeedingEmission.end()) 265 return; 266 267 // Otherwise, take the list. 268 std::swap(Result, I->second); 269 DeletedAddrLabelsNeedingEmission.erase(I); 270 } 271 272 //===- Address of Block Management ----------------------------------------===// 273 274 ArrayRef<MCSymbol *> 275 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { 276 // Lazily create AddrLabelSymbols. 277 if (!AddrLabelSymbols) 278 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); 279 return AddrLabelSymbols->getAddrLabelSymbolToEmit( 280 const_cast<BasicBlock *>(BB)); 281 } 282 283 void AsmPrinter::takeDeletedSymbolsForFunction( 284 const Function *F, std::vector<MCSymbol *> &Result) { 285 // If no blocks have had their addresses taken, we're done. 286 if (!AddrLabelSymbols) 287 return; 288 return AddrLabelSymbols->takeDeletedSymbolsForFunction( 289 const_cast<Function *>(F), Result); 290 } 291 292 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { 293 // If the block got deleted, there is no need for the symbol. If the symbol 294 // was already emitted, we can just forget about it, otherwise we need to 295 // queue it up for later emission when the function is output. 296 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); 297 AddrLabelSymbols.erase(BB); 298 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 299 BBCallbacks[Entry.Index] = nullptr; // Clear the callback. 300 301 #if !LLVM_MEMORY_SANITIZER_BUILD 302 // BasicBlock is destroyed already, so this access is UB detectable by msan. 303 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && 304 "Block/parent mismatch"); 305 #endif 306 307 for (MCSymbol *Sym : Entry.Symbols) { 308 if (Sym->isDefined()) 309 return; 310 311 // If the block is not yet defined, we need to emit it at the end of the 312 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list 313 // for the containing Function. Since the block is being deleted, its 314 // parent may already be removed, we have to get the function from 'Entry'. 315 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); 316 } 317 } 318 319 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { 320 // Get the entry for the RAUW'd block and remove it from our map. 321 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); 322 AddrLabelSymbols.erase(Old); 323 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 324 325 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; 326 327 // If New is not address taken, just move our symbol over to it. 328 if (NewEntry.Symbols.empty()) { 329 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. 330 NewEntry = std::move(OldEntry); // Set New's entry. 331 return; 332 } 333 334 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. 335 336 // Otherwise, we need to add the old symbols to the new block's set. 337 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); 338 } 339 340 void AddrLabelMapCallbackPtr::deleted() { 341 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); 342 } 343 344 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { 345 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); 346 } 347 348 /// getGVAlignment - Return the alignment to use for the specified global 349 /// value. This rounds up to the preferred alignment if possible and legal. 350 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 351 Align InAlign) { 352 Align Alignment; 353 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 354 Alignment = DL.getPreferredAlign(GVar); 355 356 // If InAlign is specified, round it to it. 357 if (InAlign > Alignment) 358 Alignment = InAlign; 359 360 // If the GV has a specified alignment, take it into account. 361 const MaybeAlign GVAlign(GV->getAlign()); 362 if (!GVAlign) 363 return Alignment; 364 365 assert(GVAlign && "GVAlign must be set"); 366 367 // If the GVAlign is larger than NumBits, or if we are required to obey 368 // NumBits because the GV has an assigned section, obey it. 369 if (*GVAlign > Alignment || GV->hasSection()) 370 Alignment = *GVAlign; 371 return Alignment; 372 } 373 374 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 375 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 376 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 377 SM(*this) { 378 VerboseAsm = OutStreamer->isVerboseAsm(); 379 DwarfUsesRelocationsAcrossSections = 380 MAI->doesDwarfUseRelocationsAcrossSections(); 381 } 382 383 AsmPrinter::~AsmPrinter() { 384 assert(!DD && Handlers.size() == NumUserHandlers && 385 "Debug/EH info didn't get finalized"); 386 } 387 388 bool AsmPrinter::isPositionIndependent() const { 389 return TM.isPositionIndependent(); 390 } 391 392 /// getFunctionNumber - Return a unique ID for the current function. 393 unsigned AsmPrinter::getFunctionNumber() const { 394 return MF->getFunctionNumber(); 395 } 396 397 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 398 return *TM.getObjFileLowering(); 399 } 400 401 const DataLayout &AsmPrinter::getDataLayout() const { 402 assert(MMI && "MMI could not be nullptr!"); 403 return MMI->getModule()->getDataLayout(); 404 } 405 406 // Do not use the cached DataLayout because some client use it without a Module 407 // (dsymutil, llvm-dwarfdump). 408 unsigned AsmPrinter::getPointerSize() const { 409 return TM.getPointerSize(0); // FIXME: Default address space 410 } 411 412 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 413 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 414 return MF->getSubtarget<MCSubtargetInfo>(); 415 } 416 417 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 418 S.emitInstruction(Inst, getSubtargetInfo()); 419 } 420 421 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 422 if (DD) { 423 assert(OutStreamer->hasRawTextSupport() && 424 "Expected assembly output mode."); 425 // This is NVPTX specific and it's unclear why. 426 // PR51079: If we have code without debug information we need to give up. 427 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 428 if (!MFSP) 429 return; 430 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 431 } 432 } 433 434 /// getCurrentSection() - Return the current section we are emitting to. 435 const MCSection *AsmPrinter::getCurrentSection() const { 436 return OutStreamer->getCurrentSectionOnly(); 437 } 438 439 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 440 AU.setPreservesAll(); 441 MachineFunctionPass::getAnalysisUsage(AU); 442 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 443 AU.addRequired<GCModuleInfo>(); 444 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 445 AU.addRequired<MachineBranchProbabilityInfo>(); 446 } 447 448 bool AsmPrinter::doInitialization(Module &M) { 449 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 450 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 451 HasSplitStack = false; 452 HasNoSplitStack = false; 453 454 AddrLabelSymbols = nullptr; 455 456 // Initialize TargetLoweringObjectFile. 457 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 458 .Initialize(OutContext, TM); 459 460 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 461 .getModuleMetadata(M); 462 463 // On AIX, we delay emitting any section information until 464 // after emitting the .file pseudo-op. This allows additional 465 // information (such as the embedded command line) to be associated 466 // with all sections in the object file rather than a single section. 467 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 468 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 469 470 // Emit the version-min deployment target directive if needed. 471 // 472 // FIXME: If we end up with a collection of these sorts of Darwin-specific 473 // or ELF-specific things, it may make sense to have a platform helper class 474 // that will work with the target helper class. For now keep it here, as the 475 // alternative is duplicated code in each of the target asm printers that 476 // use the directive, where it would need the same conditionalization 477 // anyway. 478 const Triple &Target = TM.getTargetTriple(); 479 Triple TVT(M.getDarwinTargetVariantTriple()); 480 OutStreamer->emitVersionForTarget( 481 Target, M.getSDKVersion(), 482 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 483 M.getDarwinTargetVariantSDKVersion()); 484 485 // Allow the target to emit any magic that it wants at the start of the file. 486 emitStartOfAsmFile(M); 487 488 // Very minimal debug info. It is ignored if we emit actual debug info. If we 489 // don't, this at least helps the user find where a global came from. 490 if (MAI->hasSingleParameterDotFile()) { 491 // .file "foo.c" 492 493 SmallString<128> FileName; 494 if (MAI->hasBasenameOnlyForFileDirective()) 495 FileName = llvm::sys::path::filename(M.getSourceFileName()); 496 else 497 FileName = M.getSourceFileName(); 498 if (MAI->hasFourStringsDotFile()) { 499 #ifdef PACKAGE_VENDOR 500 const char VerStr[] = 501 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 502 #else 503 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 504 #endif 505 // TODO: Add timestamp and description. 506 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 507 } else { 508 OutStreamer->emitFileDirective(FileName); 509 } 510 } 511 512 // On AIX, emit bytes for llvm.commandline metadata after .file so that the 513 // C_INFO symbol is preserved if any csect is kept by the linker. 514 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 515 emitModuleCommandLines(M); 516 // Now we can generate section information. 517 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 518 519 // To work around an AIX assembler and/or linker bug, generate 520 // a rename for the default text-section symbol name. This call has 521 // no effect when generating object code directly. 522 MCSection *TextSection = 523 OutStreamer->getContext().getObjectFileInfo()->getTextSection(); 524 MCSymbolXCOFF *XSym = 525 static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); 526 if (XSym->hasRename()) 527 OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName()); 528 } 529 530 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 531 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 532 for (const auto &I : *MI) 533 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 534 MP->beginAssembly(M, *MI, *this); 535 536 // Emit module-level inline asm if it exists. 537 if (!M.getModuleInlineAsm().empty()) { 538 OutStreamer->AddComment("Start of file scope inline assembly"); 539 OutStreamer->addBlankLine(); 540 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 541 TM.Options.MCOptions); 542 OutStreamer->AddComment("End of file scope inline assembly"); 543 OutStreamer->addBlankLine(); 544 } 545 546 if (MAI->doesSupportDebugInformation()) { 547 bool EmitCodeView = M.getCodeViewFlag(); 548 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 549 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 550 DbgTimerName, DbgTimerDescription, 551 CodeViewLineTablesGroupName, 552 CodeViewLineTablesGroupDescription); 553 } 554 if (!EmitCodeView || M.getDwarfVersion()) { 555 assert(MMI && "MMI could not be nullptr here!"); 556 if (MMI->hasDebugInfo()) { 557 DD = new DwarfDebug(this); 558 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 559 DbgTimerDescription, DWARFGroupName, 560 DWARFGroupDescription); 561 } 562 } 563 } 564 565 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 566 PP = new PseudoProbeHandler(this); 567 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 568 PPTimerDescription, PPGroupName, PPGroupDescription); 569 } 570 571 switch (MAI->getExceptionHandlingType()) { 572 case ExceptionHandling::None: 573 // We may want to emit CFI for debug. 574 [[fallthrough]]; 575 case ExceptionHandling::SjLj: 576 case ExceptionHandling::DwarfCFI: 577 case ExceptionHandling::ARM: 578 for (auto &F : M.getFunctionList()) { 579 if (getFunctionCFISectionType(F) != CFISection::None) 580 ModuleCFISection = getFunctionCFISectionType(F); 581 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 582 // the module needs .eh_frame. If we have found that case, we are done. 583 if (ModuleCFISection == CFISection::EH) 584 break; 585 } 586 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 587 usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); 588 break; 589 default: 590 break; 591 } 592 593 EHStreamer *ES = nullptr; 594 switch (MAI->getExceptionHandlingType()) { 595 case ExceptionHandling::None: 596 if (!usesCFIWithoutEH()) 597 break; 598 [[fallthrough]]; 599 case ExceptionHandling::SjLj: 600 case ExceptionHandling::DwarfCFI: 601 case ExceptionHandling::ZOS: 602 ES = new DwarfCFIException(this); 603 break; 604 case ExceptionHandling::ARM: 605 ES = new ARMException(this); 606 break; 607 case ExceptionHandling::WinEH: 608 switch (MAI->getWinEHEncodingType()) { 609 default: llvm_unreachable("unsupported unwinding information encoding"); 610 case WinEH::EncodingType::Invalid: 611 break; 612 case WinEH::EncodingType::X86: 613 case WinEH::EncodingType::Itanium: 614 ES = new WinException(this); 615 break; 616 } 617 break; 618 case ExceptionHandling::Wasm: 619 ES = new WasmException(this); 620 break; 621 case ExceptionHandling::AIX: 622 ES = new AIXException(this); 623 break; 624 } 625 if (ES) 626 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 627 EHTimerDescription, DWARFGroupName, 628 DWARFGroupDescription); 629 630 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 631 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 632 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 633 CFGuardDescription, DWARFGroupName, 634 DWARFGroupDescription); 635 636 for (const HandlerInfo &HI : Handlers) { 637 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 638 HI.TimerGroupDescription, TimePassesIsEnabled); 639 HI.Handler->beginModule(&M); 640 } 641 642 return false; 643 } 644 645 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 646 if (!MAI.hasWeakDefCanBeHiddenDirective()) 647 return false; 648 649 return GV->canBeOmittedFromSymbolTable(); 650 } 651 652 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 653 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 654 switch (Linkage) { 655 case GlobalValue::CommonLinkage: 656 case GlobalValue::LinkOnceAnyLinkage: 657 case GlobalValue::LinkOnceODRLinkage: 658 case GlobalValue::WeakAnyLinkage: 659 case GlobalValue::WeakODRLinkage: 660 if (MAI->hasWeakDefDirective()) { 661 // .globl _foo 662 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 663 664 if (!canBeHidden(GV, *MAI)) 665 // .weak_definition _foo 666 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 667 else 668 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 669 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 670 // .globl _foo 671 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 672 //NOTE: linkonce is handled by the section the symbol was assigned to. 673 } else { 674 // .weak _foo 675 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 676 } 677 return; 678 case GlobalValue::ExternalLinkage: 679 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 680 return; 681 case GlobalValue::PrivateLinkage: 682 case GlobalValue::InternalLinkage: 683 return; 684 case GlobalValue::ExternalWeakLinkage: 685 case GlobalValue::AvailableExternallyLinkage: 686 case GlobalValue::AppendingLinkage: 687 llvm_unreachable("Should never emit this"); 688 } 689 llvm_unreachable("Unknown linkage type!"); 690 } 691 692 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 693 const GlobalValue *GV) const { 694 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 695 } 696 697 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 698 return TM.getSymbol(GV); 699 } 700 701 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 702 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 703 // exact definion (intersection of GlobalValue::hasExactDefinition() and 704 // !isInterposable()). These linkages include: external, appending, internal, 705 // private. It may be profitable to use a local alias for external. The 706 // assembler would otherwise be conservative and assume a global default 707 // visibility symbol can be interposable, even if the code generator already 708 // assumed it. 709 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 710 const Module &M = *GV.getParent(); 711 if (TM.getRelocationModel() != Reloc::Static && 712 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 713 return getSymbolWithGlobalValueBase(&GV, "$local"); 714 } 715 return TM.getSymbol(&GV); 716 } 717 718 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 719 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 720 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 721 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 722 "No emulated TLS variables in the common section"); 723 724 // Never emit TLS variable xyz in emulated TLS model. 725 // The initialization value is in __emutls_t.xyz instead of xyz. 726 if (IsEmuTLSVar) 727 return; 728 729 if (GV->hasInitializer()) { 730 // Check to see if this is a special global used by LLVM, if so, emit it. 731 if (emitSpecialLLVMGlobal(GV)) 732 return; 733 734 // Skip the emission of global equivalents. The symbol can be emitted later 735 // on by emitGlobalGOTEquivs in case it turns out to be needed. 736 if (GlobalGOTEquivs.count(getSymbol(GV))) 737 return; 738 739 if (isVerbose()) { 740 // When printing the control variable __emutls_v.*, 741 // we don't need to print the original TLS variable name. 742 GV->printAsOperand(OutStreamer->getCommentOS(), 743 /*PrintType=*/false, GV->getParent()); 744 OutStreamer->getCommentOS() << '\n'; 745 } 746 } 747 748 MCSymbol *GVSym = getSymbol(GV); 749 MCSymbol *EmittedSym = GVSym; 750 751 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 752 // attributes. 753 // GV's or GVSym's attributes will be used for the EmittedSym. 754 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 755 756 if (GV->isTagged()) { 757 Triple T = TM.getTargetTriple(); 758 759 if (T.getArch() != Triple::aarch64 || !T.isAndroid()) 760 OutContext.reportError(SMLoc(), 761 "tagged symbols (-fsanitize=memtag-globals) are " 762 "only supported on AArch64 Android"); 763 OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); 764 } 765 766 if (!GV->hasInitializer()) // External globals require no extra code. 767 return; 768 769 GVSym->redefineIfPossible(); 770 if (GVSym->isDefined() || GVSym->isVariable()) 771 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 772 "' is already defined"); 773 774 if (MAI->hasDotTypeDotSizeDirective()) 775 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 776 777 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 778 779 const DataLayout &DL = GV->getParent()->getDataLayout(); 780 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 781 782 // If the alignment is specified, we *must* obey it. Overaligning a global 783 // with a specified alignment is a prompt way to break globals emitted to 784 // sections and expected to be contiguous (e.g. ObjC metadata). 785 const Align Alignment = getGVAlignment(GV, DL); 786 787 for (const HandlerInfo &HI : Handlers) { 788 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 789 HI.TimerGroupName, HI.TimerGroupDescription, 790 TimePassesIsEnabled); 791 HI.Handler->setSymbolSize(GVSym, Size); 792 } 793 794 // Handle common symbols 795 if (GVKind.isCommon()) { 796 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 797 // .comm _foo, 42, 4 798 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 799 return; 800 } 801 802 // Determine to which section this global should be emitted. 803 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 804 805 // If we have a bss global going to a section that supports the 806 // zerofill directive, do so here. 807 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 808 TheSection->isVirtualSection()) { 809 if (Size == 0) 810 Size = 1; // zerofill of 0 bytes is undefined. 811 emitLinkage(GV, GVSym); 812 // .zerofill __DATA, __bss, _foo, 400, 5 813 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); 814 return; 815 } 816 817 // If this is a BSS local symbol and we are emitting in the BSS 818 // section use .lcomm/.comm directive. 819 if (GVKind.isBSSLocal() && 820 getObjFileLowering().getBSSSection() == TheSection) { 821 if (Size == 0) 822 Size = 1; // .comm Foo, 0 is undefined, avoid it. 823 824 // Use .lcomm only if it supports user-specified alignment. 825 // Otherwise, while it would still be correct to use .lcomm in some 826 // cases (e.g. when Align == 1), the external assembler might enfore 827 // some -unknown- default alignment behavior, which could cause 828 // spurious differences between external and integrated assembler. 829 // Prefer to simply fall back to .local / .comm in this case. 830 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 831 // .lcomm _foo, 42 832 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); 833 return; 834 } 835 836 // .local _foo 837 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 838 // .comm _foo, 42, 4 839 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 840 return; 841 } 842 843 // Handle thread local data for mach-o which requires us to output an 844 // additional structure of data and mangle the original symbol so that we 845 // can reference it later. 846 // 847 // TODO: This should become an "emit thread local global" method on TLOF. 848 // All of this macho specific stuff should be sunk down into TLOFMachO and 849 // stuff like "TLSExtraDataSection" should no longer be part of the parent 850 // TLOF class. This will also make it more obvious that stuff like 851 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 852 // specific code. 853 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 854 // Emit the .tbss symbol 855 MCSymbol *MangSym = 856 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 857 858 if (GVKind.isThreadBSS()) { 859 TheSection = getObjFileLowering().getTLSBSSSection(); 860 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); 861 } else if (GVKind.isThreadData()) { 862 OutStreamer->switchSection(TheSection); 863 864 emitAlignment(Alignment, GV); 865 OutStreamer->emitLabel(MangSym); 866 867 emitGlobalConstant(GV->getParent()->getDataLayout(), 868 GV->getInitializer()); 869 } 870 871 OutStreamer->addBlankLine(); 872 873 // Emit the variable struct for the runtime. 874 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 875 876 OutStreamer->switchSection(TLVSect); 877 // Emit the linkage here. 878 emitLinkage(GV, GVSym); 879 OutStreamer->emitLabel(GVSym); 880 881 // Three pointers in size: 882 // - __tlv_bootstrap - used to make sure support exists 883 // - spare pointer, used when mapped by the runtime 884 // - pointer to mangled symbol above with initializer 885 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 886 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 887 PtrSize); 888 OutStreamer->emitIntValue(0, PtrSize); 889 OutStreamer->emitSymbolValue(MangSym, PtrSize); 890 891 OutStreamer->addBlankLine(); 892 return; 893 } 894 895 MCSymbol *EmittedInitSym = GVSym; 896 897 OutStreamer->switchSection(TheSection); 898 899 emitLinkage(GV, EmittedInitSym); 900 emitAlignment(Alignment, GV); 901 902 OutStreamer->emitLabel(EmittedInitSym); 903 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 904 if (LocalAlias != EmittedInitSym) 905 OutStreamer->emitLabel(LocalAlias); 906 907 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 908 909 if (MAI->hasDotTypeDotSizeDirective()) 910 // .size foo, 42 911 OutStreamer->emitELFSize(EmittedInitSym, 912 MCConstantExpr::create(Size, OutContext)); 913 914 OutStreamer->addBlankLine(); 915 } 916 917 /// Emit the directive and value for debug thread local expression 918 /// 919 /// \p Value - The value to emit. 920 /// \p Size - The size of the integer (in bytes) to emit. 921 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 922 OutStreamer->emitValue(Value, Size); 923 } 924 925 void AsmPrinter::emitFunctionHeaderComment() {} 926 927 /// EmitFunctionHeader - This method emits the header for the current 928 /// function. 929 void AsmPrinter::emitFunctionHeader() { 930 const Function &F = MF->getFunction(); 931 932 if (isVerbose()) 933 OutStreamer->getCommentOS() 934 << "-- Begin function " 935 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 936 937 // Print out constants referenced by the function 938 emitConstantPool(); 939 940 // Print the 'header' of function. 941 // If basic block sections are desired, explicitly request a unique section 942 // for this function's entry block. 943 if (MF->front().isBeginSection()) 944 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 945 else 946 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 947 OutStreamer->switchSection(MF->getSection()); 948 949 if (!MAI->hasVisibilityOnlyWithLinkage()) 950 emitVisibility(CurrentFnSym, F.getVisibility()); 951 952 if (MAI->needsFunctionDescriptors()) 953 emitLinkage(&F, CurrentFnDescSym); 954 955 emitLinkage(&F, CurrentFnSym); 956 if (MAI->hasFunctionAlignment()) 957 emitAlignment(MF->getAlignment(), &F); 958 959 if (MAI->hasDotTypeDotSizeDirective()) 960 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 961 962 if (F.hasFnAttribute(Attribute::Cold)) 963 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 964 965 // Emit the prefix data. 966 if (F.hasPrefixData()) { 967 if (MAI->hasSubsectionsViaSymbols()) { 968 // Preserving prefix data on platforms which use subsections-via-symbols 969 // is a bit tricky. Here we introduce a symbol for the prefix data 970 // and use the .alt_entry attribute to mark the function's real entry point 971 // as an alternative entry point to the prefix-data symbol. 972 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 973 OutStreamer->emitLabel(PrefixSym); 974 975 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 976 977 // Emit an .alt_entry directive for the actual function symbol. 978 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 979 } else { 980 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 981 } 982 } 983 984 // Emit KCFI type information before patchable-function-prefix nops. 985 emitKCFITypeId(*MF); 986 987 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 988 // place prefix data before NOPs. 989 unsigned PatchableFunctionPrefix = 0; 990 unsigned PatchableFunctionEntry = 0; 991 (void)F.getFnAttribute("patchable-function-prefix") 992 .getValueAsString() 993 .getAsInteger(10, PatchableFunctionPrefix); 994 (void)F.getFnAttribute("patchable-function-entry") 995 .getValueAsString() 996 .getAsInteger(10, PatchableFunctionEntry); 997 if (PatchableFunctionPrefix) { 998 CurrentPatchableFunctionEntrySym = 999 OutContext.createLinkerPrivateTempSymbol(); 1000 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 1001 emitNops(PatchableFunctionPrefix); 1002 } else if (PatchableFunctionEntry) { 1003 // May be reassigned when emitting the body, to reference the label after 1004 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 1005 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 1006 } 1007 1008 // Emit the function prologue data for the indirect call sanitizer. 1009 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { 1010 assert(MD->getNumOperands() == 2); 1011 1012 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); 1013 auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1)); 1014 emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig); 1015 emitGlobalConstant(F.getParent()->getDataLayout(), TypeHash); 1016 } 1017 1018 if (isVerbose()) { 1019 F.printAsOperand(OutStreamer->getCommentOS(), 1020 /*PrintType=*/false, F.getParent()); 1021 emitFunctionHeaderComment(); 1022 OutStreamer->getCommentOS() << '\n'; 1023 } 1024 1025 // Emit the function descriptor. This is a virtual function to allow targets 1026 // to emit their specific function descriptor. Right now it is only used by 1027 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 1028 // descriptors and should be converted to use this hook as well. 1029 if (MAI->needsFunctionDescriptors()) 1030 emitFunctionDescriptor(); 1031 1032 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 1033 // their wild and crazy things as required. 1034 emitFunctionEntryLabel(); 1035 1036 // If the function had address-taken blocks that got deleted, then we have 1037 // references to the dangling symbols. Emit them at the start of the function 1038 // so that we don't get references to undefined symbols. 1039 std::vector<MCSymbol*> DeadBlockSyms; 1040 takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 1041 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 1042 OutStreamer->AddComment("Address taken block that was later removed"); 1043 OutStreamer->emitLabel(DeadBlockSym); 1044 } 1045 1046 if (CurrentFnBegin) { 1047 if (MAI->useAssignmentForEHBegin()) { 1048 MCSymbol *CurPos = OutContext.createTempSymbol(); 1049 OutStreamer->emitLabel(CurPos); 1050 OutStreamer->emitAssignment(CurrentFnBegin, 1051 MCSymbolRefExpr::create(CurPos, OutContext)); 1052 } else { 1053 OutStreamer->emitLabel(CurrentFnBegin); 1054 } 1055 } 1056 1057 // Emit pre-function debug and/or EH information. 1058 for (const HandlerInfo &HI : Handlers) { 1059 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1060 HI.TimerGroupDescription, TimePassesIsEnabled); 1061 HI.Handler->beginFunction(MF); 1062 } 1063 for (const HandlerInfo &HI : Handlers) { 1064 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1065 HI.TimerGroupDescription, TimePassesIsEnabled); 1066 HI.Handler->beginBasicBlockSection(MF->front()); 1067 } 1068 1069 // Emit the prologue data. 1070 if (F.hasPrologueData()) 1071 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 1072 } 1073 1074 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 1075 /// function. This can be overridden by targets as required to do custom stuff. 1076 void AsmPrinter::emitFunctionEntryLabel() { 1077 CurrentFnSym->redefineIfPossible(); 1078 1079 // The function label could have already been emitted if two symbols end up 1080 // conflicting due to asm renaming. Detect this and emit an error. 1081 if (CurrentFnSym->isVariable()) 1082 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 1083 "' is a protected alias"); 1084 1085 OutStreamer->emitLabel(CurrentFnSym); 1086 1087 if (TM.getTargetTriple().isOSBinFormatELF()) { 1088 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 1089 if (Sym != CurrentFnSym) { 1090 cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); 1091 CurrentFnBeginLocal = Sym; 1092 OutStreamer->emitLabel(Sym); 1093 if (MAI->hasDotTypeDotSizeDirective()) 1094 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 1095 } 1096 } 1097 } 1098 1099 /// emitComments - Pretty-print comments for instructions. 1100 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 1101 const MachineFunction *MF = MI.getMF(); 1102 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1103 1104 // Check for spills and reloads 1105 1106 // We assume a single instruction only has a spill or reload, not 1107 // both. 1108 std::optional<unsigned> Size; 1109 if ((Size = MI.getRestoreSize(TII))) { 1110 CommentOS << *Size << "-byte Reload\n"; 1111 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 1112 if (*Size) { 1113 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1114 CommentOS << "Unknown-size Folded Reload\n"; 1115 else 1116 CommentOS << *Size << "-byte Folded Reload\n"; 1117 } 1118 } else if ((Size = MI.getSpillSize(TII))) { 1119 CommentOS << *Size << "-byte Spill\n"; 1120 } else if ((Size = MI.getFoldedSpillSize(TII))) { 1121 if (*Size) { 1122 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1123 CommentOS << "Unknown-size Folded Spill\n"; 1124 else 1125 CommentOS << *Size << "-byte Folded Spill\n"; 1126 } 1127 } 1128 1129 // Check for spill-induced copies 1130 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 1131 CommentOS << " Reload Reuse\n"; 1132 } 1133 1134 /// emitImplicitDef - This method emits the specified machine instruction 1135 /// that is an implicit def. 1136 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 1137 Register RegNo = MI->getOperand(0).getReg(); 1138 1139 SmallString<128> Str; 1140 raw_svector_ostream OS(Str); 1141 OS << "implicit-def: " 1142 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 1143 1144 OutStreamer->AddComment(OS.str()); 1145 OutStreamer->addBlankLine(); 1146 } 1147 1148 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 1149 std::string Str; 1150 raw_string_ostream OS(Str); 1151 OS << "kill:"; 1152 for (const MachineOperand &Op : MI->operands()) { 1153 assert(Op.isReg() && "KILL instruction must have only register operands"); 1154 OS << ' ' << (Op.isDef() ? "def " : "killed ") 1155 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1156 } 1157 AP.OutStreamer->AddComment(OS.str()); 1158 AP.OutStreamer->addBlankLine(); 1159 } 1160 1161 /// emitDebugValueComment - This method handles the target-independent form 1162 /// of DBG_VALUE, returning true if it was able to do so. A false return 1163 /// means the target will need to handle MI in EmitInstruction. 1164 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 1165 // This code handles only the 4-operand target-independent form. 1166 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 1167 return false; 1168 1169 SmallString<128> Str; 1170 raw_svector_ostream OS(Str); 1171 OS << "DEBUG_VALUE: "; 1172 1173 const DILocalVariable *V = MI->getDebugVariable(); 1174 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 1175 StringRef Name = SP->getName(); 1176 if (!Name.empty()) 1177 OS << Name << ":"; 1178 } 1179 OS << V->getName(); 1180 OS << " <- "; 1181 1182 const DIExpression *Expr = MI->getDebugExpression(); 1183 // First convert this to a non-variadic expression if possible, to simplify 1184 // the output. 1185 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) 1186 Expr = *NonVariadicExpr; 1187 // Then, output the possibly-simplified expression. 1188 if (Expr->getNumElements()) { 1189 OS << '['; 1190 ListSeparator LS; 1191 for (auto &Op : Expr->expr_ops()) { 1192 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 1193 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 1194 OS << ' ' << Op.getArg(I); 1195 } 1196 OS << "] "; 1197 } 1198 1199 // Register or immediate value. Register 0 means undef. 1200 for (const MachineOperand &Op : MI->debug_operands()) { 1201 if (&Op != MI->debug_operands().begin()) 1202 OS << ", "; 1203 switch (Op.getType()) { 1204 case MachineOperand::MO_FPImmediate: { 1205 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 1206 Type *ImmTy = Op.getFPImm()->getType(); 1207 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 1208 ImmTy->isDoubleTy()) { 1209 OS << APF.convertToDouble(); 1210 } else { 1211 // There is no good way to print long double. Convert a copy to 1212 // double. Ah well, it's only a comment. 1213 bool ignored; 1214 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1215 &ignored); 1216 OS << "(long double) " << APF.convertToDouble(); 1217 } 1218 break; 1219 } 1220 case MachineOperand::MO_Immediate: { 1221 OS << Op.getImm(); 1222 break; 1223 } 1224 case MachineOperand::MO_CImmediate: { 1225 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 1226 break; 1227 } 1228 case MachineOperand::MO_TargetIndex: { 1229 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 1230 break; 1231 } 1232 case MachineOperand::MO_Register: 1233 case MachineOperand::MO_FrameIndex: { 1234 Register Reg; 1235 std::optional<StackOffset> Offset; 1236 if (Op.isReg()) { 1237 Reg = Op.getReg(); 1238 } else { 1239 const TargetFrameLowering *TFI = 1240 AP.MF->getSubtarget().getFrameLowering(); 1241 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1242 } 1243 if (!Reg) { 1244 // Suppress offset, it is not meaningful here. 1245 OS << "undef"; 1246 break; 1247 } 1248 // The second operand is only an offset if it's an immediate. 1249 if (MI->isIndirectDebugValue()) 1250 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1251 if (Offset) 1252 OS << '['; 1253 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1254 if (Offset) 1255 OS << '+' << Offset->getFixed() << ']'; 1256 break; 1257 } 1258 default: 1259 llvm_unreachable("Unknown operand type"); 1260 } 1261 } 1262 1263 // NOTE: Want this comment at start of line, don't emit with AddComment. 1264 AP.OutStreamer->emitRawComment(OS.str()); 1265 return true; 1266 } 1267 1268 /// This method handles the target-independent form of DBG_LABEL, returning 1269 /// true if it was able to do so. A false return means the target will need 1270 /// to handle MI in EmitInstruction. 1271 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1272 if (MI->getNumOperands() != 1) 1273 return false; 1274 1275 SmallString<128> Str; 1276 raw_svector_ostream OS(Str); 1277 OS << "DEBUG_LABEL: "; 1278 1279 const DILabel *V = MI->getDebugLabel(); 1280 if (auto *SP = dyn_cast<DISubprogram>( 1281 V->getScope()->getNonLexicalBlockFileScope())) { 1282 StringRef Name = SP->getName(); 1283 if (!Name.empty()) 1284 OS << Name << ":"; 1285 } 1286 OS << V->getName(); 1287 1288 // NOTE: Want this comment at start of line, don't emit with AddComment. 1289 AP.OutStreamer->emitRawComment(OS.str()); 1290 return true; 1291 } 1292 1293 AsmPrinter::CFISection 1294 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1295 // Ignore functions that won't get emitted. 1296 if (F.isDeclarationForLinker()) 1297 return CFISection::None; 1298 1299 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1300 F.needsUnwindTableEntry()) 1301 return CFISection::EH; 1302 1303 if (MAI->usesCFIWithoutEH() && F.hasUWTable()) 1304 return CFISection::EH; 1305 1306 assert(MMI != nullptr && "Invalid machine module info"); 1307 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1308 return CFISection::Debug; 1309 1310 return CFISection::None; 1311 } 1312 1313 AsmPrinter::CFISection 1314 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1315 return getFunctionCFISectionType(MF.getFunction()); 1316 } 1317 1318 bool AsmPrinter::needsSEHMoves() { 1319 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1320 } 1321 1322 bool AsmPrinter::usesCFIWithoutEH() const { 1323 return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; 1324 } 1325 1326 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1327 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1328 if (!usesCFIWithoutEH() && 1329 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1330 ExceptionHandlingType != ExceptionHandling::ARM) 1331 return; 1332 1333 if (getFunctionCFISectionType(*MF) == CFISection::None) 1334 return; 1335 1336 // If there is no "real" instruction following this CFI instruction, skip 1337 // emitting it; it would be beyond the end of the function's FDE range. 1338 auto *MBB = MI.getParent(); 1339 auto I = std::next(MI.getIterator()); 1340 while (I != MBB->end() && I->isTransient()) 1341 ++I; 1342 if (I == MBB->instr_end() && 1343 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1344 return; 1345 1346 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1347 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1348 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1349 emitCFIInstruction(CFI); 1350 } 1351 1352 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1353 // The operands are the MCSymbol and the frame offset of the allocation. 1354 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1355 int FrameOffset = MI.getOperand(1).getImm(); 1356 1357 // Emit a symbol assignment. 1358 OutStreamer->emitAssignment(FrameAllocSym, 1359 MCConstantExpr::create(FrameOffset, OutContext)); 1360 } 1361 1362 /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section 1363 /// for a given basic block. This can be used to capture more precise profile 1364 /// information. 1365 static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1366 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1367 return object::BBAddrMap::BBEntry::Metadata{ 1368 MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()), 1369 MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(), 1370 !MBB.empty() && MBB.rbegin()->isIndirectBranch()} 1371 .encode(); 1372 } 1373 1374 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1375 MCSection *BBAddrMapSection = 1376 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1377 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1378 1379 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1380 1381 OutStreamer->pushSection(); 1382 OutStreamer->switchSection(BBAddrMapSection); 1383 OutStreamer->AddComment("version"); 1384 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); 1385 OutStreamer->emitInt8(BBAddrMapVersion); 1386 OutStreamer->AddComment("feature"); 1387 auto FeaturesBits = static_cast<uint8_t>(PgoAnalysisMapFeatures.getBits()); 1388 OutStreamer->emitInt8(FeaturesBits); 1389 OutStreamer->AddComment("function address"); 1390 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1391 OutStreamer->AddComment("number of basic blocks"); 1392 OutStreamer->emitULEB128IntValue(MF.size()); 1393 const MCSymbol *PrevMBBEndSymbol = FunctionSymbol; 1394 // Emit BB Information for each basic block in the function. 1395 for (const MachineBasicBlock &MBB : MF) { 1396 const MCSymbol *MBBSymbol = 1397 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1398 // TODO: Remove this check when version 1 is deprecated. 1399 if (BBAddrMapVersion > 1) { 1400 OutStreamer->AddComment("BB id"); 1401 // Emit the BB ID for this basic block. 1402 // We only emit BaseID since CloneID is unset for 1403 // basic-block-sections=labels. 1404 // TODO: Emit the full BBID when labels and sections can be mixed 1405 // together. 1406 OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID); 1407 } 1408 // Emit the basic block offset relative to the end of the previous block. 1409 // This is zero unless the block is padded due to alignment. 1410 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); 1411 // Emit the basic block size. When BBs have alignments, their size cannot 1412 // always be computed from their offsets. 1413 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1414 // Emit the Metadata. 1415 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1416 PrevMBBEndSymbol = MBB.getEndSymbol(); 1417 } 1418 1419 if (FeaturesBits != 0) { 1420 assert(BBAddrMapVersion >= 2 && 1421 "PGOAnalysisMap only supports version 2 or later"); 1422 1423 auto FeatEnable = 1424 cantFail(object::PGOAnalysisMap::Features::decode(FeaturesBits)); 1425 1426 if (FeatEnable.FuncEntryCount) { 1427 OutStreamer->AddComment("function entry count"); 1428 auto MaybeEntryCount = MF.getFunction().getEntryCount(); 1429 OutStreamer->emitULEB128IntValue( 1430 MaybeEntryCount ? MaybeEntryCount->getCount() : 0); 1431 } 1432 const MachineBlockFrequencyInfo *MBFI = 1433 FeatEnable.BBFreq 1434 ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() 1435 : nullptr; 1436 const MachineBranchProbabilityInfo *MBPI = 1437 FeatEnable.BrProb ? &getAnalysis<MachineBranchProbabilityInfo>() 1438 : nullptr; 1439 1440 if (FeatEnable.BBFreq || FeatEnable.BrProb) { 1441 for (const MachineBasicBlock &MBB : MF) { 1442 if (FeatEnable.BBFreq) { 1443 OutStreamer->AddComment("basic block frequency"); 1444 OutStreamer->emitULEB128IntValue( 1445 MBFI->getBlockFreq(&MBB).getFrequency()); 1446 } 1447 if (FeatEnable.BrProb) { 1448 unsigned SuccCount = MBB.succ_size(); 1449 OutStreamer->AddComment("basic block successor count"); 1450 OutStreamer->emitULEB128IntValue(SuccCount); 1451 for (const MachineBasicBlock *SuccMBB : MBB.successors()) { 1452 OutStreamer->AddComment("successor BB ID"); 1453 OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID); 1454 OutStreamer->AddComment("successor branch probability"); 1455 OutStreamer->emitULEB128IntValue( 1456 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator()); 1457 } 1458 } 1459 } 1460 } 1461 } 1462 1463 OutStreamer->popSection(); 1464 } 1465 1466 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, 1467 const MCSymbol *Symbol) { 1468 MCSection *Section = 1469 getObjFileLowering().getKCFITrapSection(*MF.getSection()); 1470 if (!Section) 1471 return; 1472 1473 OutStreamer->pushSection(); 1474 OutStreamer->switchSection(Section); 1475 1476 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); 1477 OutStreamer->emitLabel(Loc); 1478 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); 1479 1480 OutStreamer->popSection(); 1481 } 1482 1483 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { 1484 const Function &F = MF.getFunction(); 1485 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) 1486 emitGlobalConstant(F.getParent()->getDataLayout(), 1487 mdconst::extract<ConstantInt>(MD->getOperand(0))); 1488 } 1489 1490 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1491 if (PP) { 1492 auto GUID = MI.getOperand(0).getImm(); 1493 auto Index = MI.getOperand(1).getImm(); 1494 auto Type = MI.getOperand(2).getImm(); 1495 auto Attr = MI.getOperand(3).getImm(); 1496 DILocation *DebugLoc = MI.getDebugLoc(); 1497 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1498 } 1499 } 1500 1501 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1502 if (!MF.getTarget().Options.EmitStackSizeSection) 1503 return; 1504 1505 MCSection *StackSizeSection = 1506 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1507 if (!StackSizeSection) 1508 return; 1509 1510 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1511 // Don't emit functions with dynamic stack allocations. 1512 if (FrameInfo.hasVarSizedObjects()) 1513 return; 1514 1515 OutStreamer->pushSection(); 1516 OutStreamer->switchSection(StackSizeSection); 1517 1518 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1519 uint64_t StackSize = 1520 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1521 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1522 OutStreamer->emitULEB128IntValue(StackSize); 1523 1524 OutStreamer->popSection(); 1525 } 1526 1527 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1528 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1529 1530 // OutputFilename empty implies -fstack-usage is not passed. 1531 if (OutputFilename.empty()) 1532 return; 1533 1534 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1535 uint64_t StackSize = 1536 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1537 1538 if (StackUsageStream == nullptr) { 1539 std::error_code EC; 1540 StackUsageStream = 1541 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1542 if (EC) { 1543 errs() << "Could not open file: " << EC.message(); 1544 return; 1545 } 1546 } 1547 1548 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1549 *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); 1550 else 1551 *StackUsageStream << MF.getFunction().getParent()->getName(); 1552 1553 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1554 if (FrameInfo.hasVarSizedObjects()) 1555 *StackUsageStream << "dynamic\n"; 1556 else 1557 *StackUsageStream << "static\n"; 1558 } 1559 1560 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, 1561 const MDNode &MD) { 1562 MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); 1563 OutStreamer->emitLabel(S); 1564 PCSectionsSymbols[&MD].emplace_back(S); 1565 } 1566 1567 void AsmPrinter::emitPCSections(const MachineFunction &MF) { 1568 const Function &F = MF.getFunction(); 1569 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) 1570 return; 1571 1572 const CodeModel::Model CM = MF.getTarget().getCodeModel(); 1573 const unsigned RelativeRelocSize = 1574 (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() 1575 : 4; 1576 1577 // Switch to PCSection, short-circuiting the common case where the current 1578 // section is still valid (assume most MD_pcsections contain just 1 section). 1579 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { 1580 if (Sec == Prev) 1581 return; 1582 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); 1583 assert(S && "PC section is not initialized"); 1584 OutStreamer->switchSection(S); 1585 Prev = Sec; 1586 }; 1587 // Emit symbols into sections and data as specified in the pcsections MDNode. 1588 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, 1589 bool Deltas) { 1590 // Expect the first operand to be a section name. After that, a tuple of 1591 // constants may appear, which will simply be emitted into the current 1592 // section (the user of MD_pcsections decides the format of encoded data). 1593 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); 1594 bool ConstULEB128 = false; 1595 for (const MDOperand &MDO : MD.operands()) { 1596 if (auto *S = dyn_cast<MDString>(MDO)) { 1597 // Found string, start of new section! 1598 // Find options for this section "<section>!<opts>" - supported options: 1599 // C = Compress constant integers of size 2-8 bytes as ULEB128. 1600 const StringRef SecWithOpt = S->getString(); 1601 const size_t OptStart = SecWithOpt.find('!'); // likely npos 1602 const StringRef Sec = SecWithOpt.substr(0, OptStart); 1603 const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty 1604 ConstULEB128 = Opts.contains('C'); 1605 #ifndef NDEBUG 1606 for (char O : Opts) 1607 assert((O == '!' || O == 'C') && "Invalid !pcsections options"); 1608 #endif 1609 SwitchSection(Sec); 1610 const MCSymbol *Prev = Syms.front(); 1611 for (const MCSymbol *Sym : Syms) { 1612 if (Sym == Prev || !Deltas) { 1613 // Use the entry itself as the base of the relative offset. 1614 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); 1615 OutStreamer->emitLabel(Base); 1616 // Emit relative relocation `addr - base`, which avoids a dynamic 1617 // relocation in the final binary. User will get the address with 1618 // `base + addr`. 1619 emitLabelDifference(Sym, Base, RelativeRelocSize); 1620 } else { 1621 // Emit delta between symbol and previous symbol. 1622 if (ConstULEB128) 1623 emitLabelDifferenceAsULEB128(Sym, Prev); 1624 else 1625 emitLabelDifference(Sym, Prev, 4); 1626 } 1627 Prev = Sym; 1628 } 1629 } else { 1630 // Emit auxiliary data after PC. 1631 assert(isa<MDNode>(MDO) && "expecting either string or tuple"); 1632 const auto *AuxMDs = cast<MDNode>(MDO); 1633 for (const MDOperand &AuxMDO : AuxMDs->operands()) { 1634 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); 1635 const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue(); 1636 const DataLayout &DL = F.getParent()->getDataLayout(); 1637 const uint64_t Size = DL.getTypeStoreSize(C->getType()); 1638 1639 if (auto *CI = dyn_cast<ConstantInt>(C); 1640 CI && ConstULEB128 && Size > 1 && Size <= 8) { 1641 emitULEB128(CI->getZExtValue()); 1642 } else { 1643 emitGlobalConstant(DL, C); 1644 } 1645 } 1646 } 1647 } 1648 }; 1649 1650 OutStreamer->pushSection(); 1651 // Emit PCs for function start and function size. 1652 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) 1653 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); 1654 // Emit PCs for instructions collected. 1655 for (const auto &MS : PCSectionsSymbols) 1656 EmitForMD(*MS.first, MS.second, false); 1657 OutStreamer->popSection(); 1658 PCSectionsSymbols.clear(); 1659 } 1660 1661 /// Returns true if function begin and end labels should be emitted. 1662 static bool needFuncLabels(const MachineFunction &MF) { 1663 MachineModuleInfo &MMI = MF.getMMI(); 1664 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || 1665 MMI.hasDebugInfo() || 1666 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) 1667 return true; 1668 1669 // We might emit an EH table that uses function begin and end labels even if 1670 // we don't have any landingpads. 1671 if (!MF.getFunction().hasPersonalityFn()) 1672 return false; 1673 return !isNoOpWithoutInvoke( 1674 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1675 } 1676 1677 /// EmitFunctionBody - This method emits the body and trailer for a 1678 /// function. 1679 void AsmPrinter::emitFunctionBody() { 1680 emitFunctionHeader(); 1681 1682 // Emit target-specific gunk before the function body. 1683 emitFunctionBodyStart(); 1684 1685 if (isVerbose()) { 1686 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1687 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1688 if (!MDT) { 1689 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1690 OwnedMDT->getBase().recalculate(*MF); 1691 MDT = OwnedMDT.get(); 1692 } 1693 1694 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1695 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1696 if (!MLI) { 1697 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1698 OwnedMLI->getBase().analyze(MDT->getBase()); 1699 MLI = OwnedMLI.get(); 1700 } 1701 } 1702 1703 // Print out code for the function. 1704 bool HasAnyRealCode = false; 1705 int NumInstsInFunction = 0; 1706 bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch"); 1707 1708 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1709 for (auto &MBB : *MF) { 1710 // Print a label for the basic block. 1711 emitBasicBlockStart(MBB); 1712 DenseMap<StringRef, unsigned> MnemonicCounts; 1713 for (auto &MI : MBB) { 1714 // Print the assembly for the instruction. 1715 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1716 !MI.isDebugInstr()) { 1717 HasAnyRealCode = true; 1718 ++NumInstsInFunction; 1719 } 1720 1721 // If there is a pre-instruction symbol, emit a label for it here. 1722 if (MCSymbol *S = MI.getPreInstrSymbol()) 1723 OutStreamer->emitLabel(S); 1724 1725 if (MDNode *MD = MI.getPCSections()) 1726 emitPCSectionsLabel(*MF, *MD); 1727 1728 for (const HandlerInfo &HI : Handlers) { 1729 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1730 HI.TimerGroupDescription, TimePassesIsEnabled); 1731 HI.Handler->beginInstruction(&MI); 1732 } 1733 1734 if (isVerbose()) 1735 emitComments(MI, OutStreamer->getCommentOS()); 1736 1737 switch (MI.getOpcode()) { 1738 case TargetOpcode::CFI_INSTRUCTION: 1739 emitCFIInstruction(MI); 1740 break; 1741 case TargetOpcode::LOCAL_ESCAPE: 1742 emitFrameAlloc(MI); 1743 break; 1744 case TargetOpcode::ANNOTATION_LABEL: 1745 case TargetOpcode::GC_LABEL: 1746 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1747 break; 1748 case TargetOpcode::EH_LABEL: 1749 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1750 // For AsynchEH, insert a Nop if followed by a trap inst 1751 // Or the exception won't be caught. 1752 // (see MCConstantExpr::create(1,..) in WinException.cpp) 1753 // Ignore SDiv/UDiv because a DIV with Const-0 divisor 1754 // must have being turned into an UndefValue. 1755 // Div with variable opnds won't be the first instruction in 1756 // an EH region as it must be led by at least a Load 1757 { 1758 auto MI2 = std::next(MI.getIterator()); 1759 if (IsEHa && MI2 != MBB.end() && 1760 (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) 1761 emitNops(1); 1762 } 1763 break; 1764 case TargetOpcode::INLINEASM: 1765 case TargetOpcode::INLINEASM_BR: 1766 emitInlineAsm(&MI); 1767 break; 1768 case TargetOpcode::DBG_VALUE: 1769 case TargetOpcode::DBG_VALUE_LIST: 1770 if (isVerbose()) { 1771 if (!emitDebugValueComment(&MI, *this)) 1772 emitInstruction(&MI); 1773 } 1774 break; 1775 case TargetOpcode::DBG_INSTR_REF: 1776 // This instruction reference will have been resolved to a machine 1777 // location, and a nearby DBG_VALUE created. We can safely ignore 1778 // the instruction reference. 1779 break; 1780 case TargetOpcode::DBG_PHI: 1781 // This instruction is only used to label a program point, it's purely 1782 // meta information. 1783 break; 1784 case TargetOpcode::DBG_LABEL: 1785 if (isVerbose()) { 1786 if (!emitDebugLabelComment(&MI, *this)) 1787 emitInstruction(&MI); 1788 } 1789 break; 1790 case TargetOpcode::IMPLICIT_DEF: 1791 if (isVerbose()) emitImplicitDef(&MI); 1792 break; 1793 case TargetOpcode::KILL: 1794 if (isVerbose()) emitKill(&MI, *this); 1795 break; 1796 case TargetOpcode::PSEUDO_PROBE: 1797 emitPseudoProbe(MI); 1798 break; 1799 case TargetOpcode::ARITH_FENCE: 1800 if (isVerbose()) 1801 OutStreamer->emitRawComment("ARITH_FENCE"); 1802 break; 1803 case TargetOpcode::MEMBARRIER: 1804 OutStreamer->emitRawComment("MEMBARRIER"); 1805 break; 1806 case TargetOpcode::JUMP_TABLE_DEBUG_INFO: 1807 // This instruction is only used to note jump table debug info, it's 1808 // purely meta information. 1809 break; 1810 default: 1811 emitInstruction(&MI); 1812 if (CanDoExtraAnalysis) { 1813 MCInst MCI; 1814 MCI.setOpcode(MI.getOpcode()); 1815 auto Name = OutStreamer->getMnemonic(MCI); 1816 auto I = MnemonicCounts.insert({Name, 0u}); 1817 I.first->second++; 1818 } 1819 break; 1820 } 1821 1822 // If there is a post-instruction symbol, emit a label for it here. 1823 if (MCSymbol *S = MI.getPostInstrSymbol()) 1824 OutStreamer->emitLabel(S); 1825 1826 for (const HandlerInfo &HI : Handlers) { 1827 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1828 HI.TimerGroupDescription, TimePassesIsEnabled); 1829 HI.Handler->endInstruction(); 1830 } 1831 } 1832 1833 // We must emit temporary symbol for the end of this basic block, if either 1834 // we have BBLabels enabled or if this basic blocks marks the end of a 1835 // section. 1836 if (MF->hasBBLabels() || 1837 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1838 OutStreamer->emitLabel(MBB.getEndSymbol()); 1839 1840 if (MBB.isEndSection()) { 1841 // The size directive for the section containing the entry block is 1842 // handled separately by the function section. 1843 if (!MBB.sameSection(&MF->front())) { 1844 if (MAI->hasDotTypeDotSizeDirective()) { 1845 // Emit the size directive for the basic block section. 1846 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1847 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1848 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1849 OutContext); 1850 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1851 } 1852 MBBSectionRanges[MBB.getSectionIDNum()] = 1853 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1854 } 1855 } 1856 emitBasicBlockEnd(MBB); 1857 1858 if (CanDoExtraAnalysis) { 1859 // Skip empty blocks. 1860 if (MBB.empty()) 1861 continue; 1862 1863 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1864 MBB.begin()->getDebugLoc(), &MBB); 1865 1866 // Generate instruction mix remark. First, sort counts in descending order 1867 // by count and name. 1868 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1869 for (auto &KV : MnemonicCounts) 1870 MnemonicVec.emplace_back(KV.first, KV.second); 1871 1872 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1873 const std::pair<StringRef, unsigned> &B) { 1874 if (A.second > B.second) 1875 return true; 1876 if (A.second == B.second) 1877 return StringRef(A.first) < StringRef(B.first); 1878 return false; 1879 }); 1880 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1881 for (auto &KV : MnemonicVec) { 1882 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1883 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1884 } 1885 ORE->emit(R); 1886 } 1887 } 1888 1889 EmittedInsts += NumInstsInFunction; 1890 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1891 MF->getFunction().getSubprogram(), 1892 &MF->front()); 1893 R << ore::NV("NumInstructions", NumInstsInFunction) 1894 << " instructions in function"; 1895 ORE->emit(R); 1896 1897 // If the function is empty and the object file uses .subsections_via_symbols, 1898 // then we need to emit *something* to the function body to prevent the 1899 // labels from collapsing together. Just emit a noop. 1900 // Similarly, don't emit empty functions on Windows either. It can lead to 1901 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1902 // after linking, causing the kernel not to load the binary: 1903 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1904 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1905 const Triple &TT = TM.getTargetTriple(); 1906 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1907 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1908 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1909 1910 // Targets can opt-out of emitting the noop here by leaving the opcode 1911 // unspecified. 1912 if (Noop.getOpcode()) { 1913 OutStreamer->AddComment("avoids zero-length function"); 1914 emitNops(1); 1915 } 1916 } 1917 1918 // Switch to the original section in case basic block sections was used. 1919 OutStreamer->switchSection(MF->getSection()); 1920 1921 const Function &F = MF->getFunction(); 1922 for (const auto &BB : F) { 1923 if (!BB.hasAddressTaken()) 1924 continue; 1925 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1926 if (Sym->isDefined()) 1927 continue; 1928 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1929 OutStreamer->emitLabel(Sym); 1930 } 1931 1932 // Emit target-specific gunk after the function body. 1933 emitFunctionBodyEnd(); 1934 1935 // Even though wasm supports .type and .size in general, function symbols 1936 // are automatically sized. 1937 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); 1938 1939 if (needFuncLabels(*MF) || EmitFunctionSize) { 1940 // Create a symbol for the end of function. 1941 CurrentFnEnd = createTempSymbol("func_end"); 1942 OutStreamer->emitLabel(CurrentFnEnd); 1943 } 1944 1945 // If the target wants a .size directive for the size of the function, emit 1946 // it. 1947 if (EmitFunctionSize) { 1948 // We can get the size as difference between the function label and the 1949 // temp label. 1950 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1951 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1952 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1953 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1954 if (CurrentFnBeginLocal) 1955 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); 1956 } 1957 1958 // Call endBasicBlockSection on the last block now, if it wasn't already 1959 // called. 1960 if (!MF->back().isEndSection()) { 1961 for (const HandlerInfo &HI : Handlers) { 1962 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1963 HI.TimerGroupDescription, TimePassesIsEnabled); 1964 HI.Handler->endBasicBlockSection(MF->back()); 1965 } 1966 } 1967 for (const HandlerInfo &HI : Handlers) { 1968 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1969 HI.TimerGroupDescription, TimePassesIsEnabled); 1970 HI.Handler->markFunctionEnd(); 1971 } 1972 1973 MBBSectionRanges[MF->front().getSectionIDNum()] = 1974 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1975 1976 // Print out jump tables referenced by the function. 1977 emitJumpTableInfo(); 1978 1979 // Emit post-function debug and/or EH information. 1980 for (const HandlerInfo &HI : Handlers) { 1981 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1982 HI.TimerGroupDescription, TimePassesIsEnabled); 1983 HI.Handler->endFunction(MF); 1984 } 1985 1986 // Emit section containing BB address offsets and their metadata, when 1987 // BB labels are requested for this function. Skip empty functions. 1988 if (HasAnyRealCode) { 1989 if (MF->hasBBLabels()) 1990 emitBBAddrMapSection(*MF); 1991 else if (PgoAnalysisMapFeatures.getBits() != 0) 1992 MF->getContext().reportWarning( 1993 SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() + 1994 " but it does not have labels"); 1995 } 1996 1997 // Emit sections containing instruction and function PCs. 1998 emitPCSections(*MF); 1999 2000 // Emit section containing stack size metadata. 2001 emitStackSizeSection(*MF); 2002 2003 // Emit .su file containing function stack size information. 2004 emitStackUsage(*MF); 2005 2006 emitPatchableFunctionEntries(); 2007 2008 if (isVerbose()) 2009 OutStreamer->getCommentOS() << "-- End function\n"; 2010 2011 OutStreamer->addBlankLine(); 2012 } 2013 2014 /// Compute the number of Global Variables that uses a Constant. 2015 static unsigned getNumGlobalVariableUses(const Constant *C) { 2016 if (!C) 2017 return 0; 2018 2019 if (isa<GlobalVariable>(C)) 2020 return 1; 2021 2022 unsigned NumUses = 0; 2023 for (const auto *CU : C->users()) 2024 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 2025 2026 return NumUses; 2027 } 2028 2029 /// Only consider global GOT equivalents if at least one user is a 2030 /// cstexpr inside an initializer of another global variables. Also, don't 2031 /// handle cstexpr inside instructions. During global variable emission, 2032 /// candidates are skipped and are emitted later in case at least one cstexpr 2033 /// isn't replaced by a PC relative GOT entry access. 2034 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 2035 unsigned &NumGOTEquivUsers) { 2036 // Global GOT equivalents are unnamed private globals with a constant 2037 // pointer initializer to another global symbol. They must point to a 2038 // GlobalVariable or Function, i.e., as GlobalValue. 2039 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 2040 !GV->isConstant() || !GV->isDiscardableIfUnused() || 2041 !isa<GlobalValue>(GV->getOperand(0))) 2042 return false; 2043 2044 // To be a got equivalent, at least one of its users need to be a constant 2045 // expression used by another global variable. 2046 for (const auto *U : GV->users()) 2047 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 2048 2049 return NumGOTEquivUsers > 0; 2050 } 2051 2052 /// Unnamed constant global variables solely contaning a pointer to 2053 /// another globals variable is equivalent to a GOT table entry; it contains the 2054 /// the address of another symbol. Optimize it and replace accesses to these 2055 /// "GOT equivalents" by using the GOT entry for the final global instead. 2056 /// Compute GOT equivalent candidates among all global variables to avoid 2057 /// emitting them if possible later on, after it use is replaced by a GOT entry 2058 /// access. 2059 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 2060 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2061 return; 2062 2063 for (const auto &G : M.globals()) { 2064 unsigned NumGOTEquivUsers = 0; 2065 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 2066 continue; 2067 2068 const MCSymbol *GOTEquivSym = getSymbol(&G); 2069 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 2070 } 2071 } 2072 2073 /// Constant expressions using GOT equivalent globals may not be eligible 2074 /// for PC relative GOT entry conversion, in such cases we need to emit such 2075 /// globals we previously omitted in EmitGlobalVariable. 2076 void AsmPrinter::emitGlobalGOTEquivs() { 2077 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2078 return; 2079 2080 SmallVector<const GlobalVariable *, 8> FailedCandidates; 2081 for (auto &I : GlobalGOTEquivs) { 2082 const GlobalVariable *GV = I.second.first; 2083 unsigned Cnt = I.second.second; 2084 if (Cnt) 2085 FailedCandidates.push_back(GV); 2086 } 2087 GlobalGOTEquivs.clear(); 2088 2089 for (const auto *GV : FailedCandidates) 2090 emitGlobalVariable(GV); 2091 } 2092 2093 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 2094 MCSymbol *Name = getSymbol(&GA); 2095 bool IsFunction = GA.getValueType()->isFunctionTy(); 2096 // Treat bitcasts of functions as functions also. This is important at least 2097 // on WebAssembly where object and function addresses can't alias each other. 2098 if (!IsFunction) 2099 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); 2100 2101 // AIX's assembly directive `.set` is not usable for aliasing purpose, 2102 // so AIX has to use the extra-label-at-definition strategy. At this 2103 // point, all the extra label is emitted, we just have to emit linkage for 2104 // those labels. 2105 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 2106 assert(MAI->hasVisibilityOnlyWithLinkage() && 2107 "Visibility should be handled with emitLinkage() on AIX."); 2108 2109 // Linkage for alias of global variable has been emitted. 2110 if (isa<GlobalVariable>(GA.getAliaseeObject())) 2111 return; 2112 2113 emitLinkage(&GA, Name); 2114 // If it's a function, also emit linkage for aliases of function entry 2115 // point. 2116 if (IsFunction) 2117 emitLinkage(&GA, 2118 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 2119 return; 2120 } 2121 2122 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2123 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 2124 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 2125 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 2126 else 2127 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 2128 2129 // Set the symbol type to function if the alias has a function type. 2130 // This affects codegen when the aliasee is not a function. 2131 if (IsFunction) { 2132 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 2133 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2134 OutStreamer->beginCOFFSymbolDef(Name); 2135 OutStreamer->emitCOFFSymbolStorageClass( 2136 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 2137 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 2138 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 2139 << COFF::SCT_COMPLEX_TYPE_SHIFT); 2140 OutStreamer->endCOFFSymbolDef(); 2141 } 2142 } 2143 2144 emitVisibility(Name, GA.getVisibility()); 2145 2146 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 2147 2148 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 2149 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 2150 2151 // Emit the directives as assignments aka .set: 2152 OutStreamer->emitAssignment(Name, Expr); 2153 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 2154 if (LocalAlias != Name) 2155 OutStreamer->emitAssignment(LocalAlias, Expr); 2156 2157 // If the aliasee does not correspond to a symbol in the output, i.e. the 2158 // alias is not of an object or the aliased object is private, then set the 2159 // size of the alias symbol from the type of the alias. We don't do this in 2160 // other situations as the alias and aliasee having differing types but same 2161 // size may be intentional. 2162 const GlobalObject *BaseObject = GA.getAliaseeObject(); 2163 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 2164 (!BaseObject || BaseObject->hasPrivateLinkage())) { 2165 const DataLayout &DL = M.getDataLayout(); 2166 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 2167 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 2168 } 2169 } 2170 2171 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 2172 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 2173 "IFunc is not supported on AIX."); 2174 2175 auto EmitLinkage = [&](MCSymbol *Sym) { 2176 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2177 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2178 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 2179 OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference); 2180 else 2181 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 2182 }; 2183 2184 if (TM.getTargetTriple().isOSBinFormatELF()) { 2185 MCSymbol *Name = getSymbol(&GI); 2186 EmitLinkage(Name); 2187 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 2188 emitVisibility(Name, GI.getVisibility()); 2189 2190 // Emit the directives as assignments aka .set: 2191 const MCExpr *Expr = lowerConstant(GI.getResolver()); 2192 OutStreamer->emitAssignment(Name, Expr); 2193 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 2194 if (LocalAlias != Name) 2195 OutStreamer->emitAssignment(LocalAlias, Expr); 2196 2197 return; 2198 } 2199 2200 if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) 2201 llvm::report_fatal_error("IFuncs are not supported on this platform"); 2202 2203 // On Darwin platforms, emit a manually-constructed .symbol_resolver that 2204 // implements the symbol resolution duties of the IFunc. 2205 // 2206 // Normally, this would be handled by linker magic, but unfortunately there 2207 // are a few limitations in ld64 and ld-prime's implementation of 2208 // .symbol_resolver that mean we can't always use them: 2209 // 2210 // * resolvers cannot be the target of an alias 2211 // * resolvers cannot have private linkage 2212 // * resolvers cannot have linkonce linkage 2213 // * resolvers cannot appear in executables 2214 // * resolvers cannot appear in bundles 2215 // 2216 // This works around that by emitting a close approximation of what the 2217 // linker would have done. 2218 2219 MCSymbol *LazyPointer = 2220 GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer"); 2221 MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper"); 2222 2223 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); 2224 2225 const DataLayout &DL = M.getDataLayout(); 2226 emitAlignment(Align(DL.getPointerSize())); 2227 OutStreamer->emitLabel(LazyPointer); 2228 emitVisibility(LazyPointer, GI.getVisibility()); 2229 OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8); 2230 2231 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); 2232 2233 const TargetSubtargetInfo *STI = 2234 TM.getSubtargetImpl(*GI.getResolverFunction()); 2235 const TargetLowering *TLI = STI->getTargetLowering(); 2236 Align TextAlign(TLI->getMinFunctionAlignment()); 2237 2238 MCSymbol *Stub = getSymbol(&GI); 2239 EmitLinkage(Stub); 2240 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2241 OutStreamer->emitLabel(Stub); 2242 emitVisibility(Stub, GI.getVisibility()); 2243 emitMachOIFuncStubBody(M, GI, LazyPointer); 2244 2245 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2246 OutStreamer->emitLabel(StubHelper); 2247 emitVisibility(StubHelper, GI.getVisibility()); 2248 emitMachOIFuncStubHelperBody(M, GI, LazyPointer); 2249 } 2250 2251 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 2252 if (!RS.needsSection()) 2253 return; 2254 2255 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 2256 2257 std::optional<SmallString<128>> Filename; 2258 if (std::optional<StringRef> FilenameRef = RS.getFilename()) { 2259 Filename = *FilenameRef; 2260 sys::fs::make_absolute(*Filename); 2261 assert(!Filename->empty() && "The filename can't be empty."); 2262 } 2263 2264 std::string Buf; 2265 raw_string_ostream OS(Buf); 2266 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 2267 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 2268 : RemarkSerializer.metaSerializer(OS); 2269 MetaSerializer->emit(); 2270 2271 // Switch to the remarks section. 2272 MCSection *RemarksSection = 2273 OutContext.getObjectFileInfo()->getRemarksSection(); 2274 OutStreamer->switchSection(RemarksSection); 2275 2276 OutStreamer->emitBinaryData(OS.str()); 2277 } 2278 2279 bool AsmPrinter::doFinalization(Module &M) { 2280 // Set the MachineFunction to nullptr so that we can catch attempted 2281 // accesses to MF specific features at the module level and so that 2282 // we can conditionalize accesses based on whether or not it is nullptr. 2283 MF = nullptr; 2284 2285 // Gather all GOT equivalent globals in the module. We really need two 2286 // passes over the globals: one to compute and another to avoid its emission 2287 // in EmitGlobalVariable, otherwise we would not be able to handle cases 2288 // where the got equivalent shows up before its use. 2289 computeGlobalGOTEquivs(M); 2290 2291 // Emit global variables. 2292 for (const auto &G : M.globals()) 2293 emitGlobalVariable(&G); 2294 2295 // Emit remaining GOT equivalent globals. 2296 emitGlobalGOTEquivs(); 2297 2298 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2299 2300 // Emit linkage(XCOFF) and visibility info for declarations 2301 for (const Function &F : M) { 2302 if (!F.isDeclarationForLinker()) 2303 continue; 2304 2305 MCSymbol *Name = getSymbol(&F); 2306 // Function getSymbol gives us the function descriptor symbol for XCOFF. 2307 2308 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 2309 GlobalValue::VisibilityTypes V = F.getVisibility(); 2310 if (V == GlobalValue::DefaultVisibility) 2311 continue; 2312 2313 emitVisibility(Name, V, false); 2314 continue; 2315 } 2316 2317 if (F.isIntrinsic()) 2318 continue; 2319 2320 // Handle the XCOFF case. 2321 // Variable `Name` is the function descriptor symbol (see above). Get the 2322 // function entry point symbol. 2323 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 2324 // Emit linkage for the function entry point. 2325 emitLinkage(&F, FnEntryPointSym); 2326 2327 // Emit linkage for the function descriptor. 2328 emitLinkage(&F, Name); 2329 } 2330 2331 // Emit the remarks section contents. 2332 // FIXME: Figure out when is the safest time to emit this section. It should 2333 // not come after debug info. 2334 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 2335 emitRemarksSection(*RS); 2336 2337 TLOF.emitModuleMetadata(*OutStreamer, M); 2338 2339 if (TM.getTargetTriple().isOSBinFormatELF()) { 2340 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 2341 2342 // Output stubs for external and common global variables. 2343 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 2344 if (!Stubs.empty()) { 2345 OutStreamer->switchSection(TLOF.getDataSection()); 2346 const DataLayout &DL = M.getDataLayout(); 2347 2348 emitAlignment(Align(DL.getPointerSize())); 2349 for (const auto &Stub : Stubs) { 2350 OutStreamer->emitLabel(Stub.first); 2351 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2352 DL.getPointerSize()); 2353 } 2354 } 2355 } 2356 2357 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2358 MachineModuleInfoCOFF &MMICOFF = 2359 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 2360 2361 // Output stubs for external and common global variables. 2362 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 2363 if (!Stubs.empty()) { 2364 const DataLayout &DL = M.getDataLayout(); 2365 2366 for (const auto &Stub : Stubs) { 2367 SmallString<256> SectionName = StringRef(".rdata$"); 2368 SectionName += Stub.first->getName(); 2369 OutStreamer->switchSection(OutContext.getCOFFSection( 2370 SectionName, 2371 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 2372 COFF::IMAGE_SCN_LNK_COMDAT, 2373 SectionKind::getReadOnly(), Stub.first->getName(), 2374 COFF::IMAGE_COMDAT_SELECT_ANY)); 2375 emitAlignment(Align(DL.getPointerSize())); 2376 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 2377 OutStreamer->emitLabel(Stub.first); 2378 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2379 DL.getPointerSize()); 2380 } 2381 } 2382 } 2383 2384 // This needs to happen before emitting debug information since that can end 2385 // arbitrary sections. 2386 if (auto *TS = OutStreamer->getTargetStreamer()) 2387 TS->emitConstantPools(); 2388 2389 // Emit Stack maps before any debug info. Mach-O requires that no data or 2390 // text sections come after debug info has been emitted. This matters for 2391 // stack maps as they are arbitrary data, and may even have a custom format 2392 // through user plugins. 2393 emitStackMaps(); 2394 2395 // Print aliases in topological order, that is, for each alias a = b, 2396 // b must be printed before a. 2397 // This is because on some targets (e.g. PowerPC) linker expects aliases in 2398 // such an order to generate correct TOC information. 2399 SmallVector<const GlobalAlias *, 16> AliasStack; 2400 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 2401 for (const auto &Alias : M.aliases()) { 2402 if (Alias.hasAvailableExternallyLinkage()) 2403 continue; 2404 for (const GlobalAlias *Cur = &Alias; Cur; 2405 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 2406 if (!AliasVisited.insert(Cur).second) 2407 break; 2408 AliasStack.push_back(Cur); 2409 } 2410 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 2411 emitGlobalAlias(M, *AncestorAlias); 2412 AliasStack.clear(); 2413 } 2414 2415 // IFuncs must come before deubginfo in case the backend decides to emit them 2416 // as actual functions, since on Mach-O targets, we cannot create regular 2417 // sections after DWARF. 2418 for (const auto &IFunc : M.ifuncs()) 2419 emitGlobalIFunc(M, IFunc); 2420 2421 // Finalize debug and EH information. 2422 for (const HandlerInfo &HI : Handlers) { 2423 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 2424 HI.TimerGroupDescription, TimePassesIsEnabled); 2425 HI.Handler->endModule(); 2426 } 2427 2428 // This deletes all the ephemeral handlers that AsmPrinter added, while 2429 // keeping all the user-added handlers alive until the AsmPrinter is 2430 // destroyed. 2431 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 2432 DD = nullptr; 2433 2434 // If the target wants to know about weak references, print them all. 2435 if (MAI->getWeakRefDirective()) { 2436 // FIXME: This is not lazy, it would be nice to only print weak references 2437 // to stuff that is actually used. Note that doing so would require targets 2438 // to notice uses in operands (due to constant exprs etc). This should 2439 // happen with the MC stuff eventually. 2440 2441 // Print out module-level global objects here. 2442 for (const auto &GO : M.global_objects()) { 2443 if (!GO.hasExternalWeakLinkage()) 2444 continue; 2445 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 2446 } 2447 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 2448 auto SymbolName = "swift_async_extendedFramePointerFlags"; 2449 auto Global = M.getGlobalVariable(SymbolName); 2450 if (!Global) { 2451 auto Int8PtrTy = PointerType::getUnqual(M.getContext()); 2452 Global = new GlobalVariable(M, Int8PtrTy, false, 2453 GlobalValue::ExternalWeakLinkage, nullptr, 2454 SymbolName); 2455 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 2456 } 2457 } 2458 } 2459 2460 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2461 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2462 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 2463 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) 2464 MP->finishAssembly(M, *MI, *this); 2465 2466 // Emit llvm.ident metadata in an '.ident' directive. 2467 emitModuleIdents(M); 2468 2469 // Emit bytes for llvm.commandline metadata. 2470 // The command line metadata is emitted earlier on XCOFF. 2471 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 2472 emitModuleCommandLines(M); 2473 2474 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 2475 // split-stack is used. 2476 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { 2477 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", 2478 ELF::SHT_PROGBITS, 0)); 2479 if (HasNoSplitStack) 2480 OutStreamer->switchSection(OutContext.getELFSection( 2481 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 2482 } 2483 2484 // If we don't have any trampolines, then we don't require stack memory 2485 // to be executable. Some targets have a directive to declare this. 2486 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 2487 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 2488 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 2489 OutStreamer->switchSection(S); 2490 2491 if (TM.Options.EmitAddrsig) { 2492 // Emit address-significance attributes for all globals. 2493 OutStreamer->emitAddrsig(); 2494 for (const GlobalValue &GV : M.global_values()) { 2495 if (!GV.use_empty() && !GV.isThreadLocal() && 2496 !GV.hasDLLImportStorageClass() && 2497 !GV.getName().starts_with("llvm.") && 2498 !GV.hasAtLeastLocalUnnamedAddr()) 2499 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 2500 } 2501 } 2502 2503 // Emit symbol partition specifications (ELF only). 2504 if (TM.getTargetTriple().isOSBinFormatELF()) { 2505 unsigned UniqueID = 0; 2506 for (const GlobalValue &GV : M.global_values()) { 2507 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 2508 GV.getVisibility() != GlobalValue::DefaultVisibility) 2509 continue; 2510 2511 OutStreamer->switchSection( 2512 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 2513 "", false, ++UniqueID, nullptr)); 2514 OutStreamer->emitBytes(GV.getPartition()); 2515 OutStreamer->emitZeros(1); 2516 OutStreamer->emitValue( 2517 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 2518 MAI->getCodePointerSize()); 2519 } 2520 } 2521 2522 // Allow the target to emit any magic that it wants at the end of the file, 2523 // after everything else has gone out. 2524 emitEndOfAsmFile(M); 2525 2526 MMI = nullptr; 2527 AddrLabelSymbols = nullptr; 2528 2529 OutStreamer->finish(); 2530 OutStreamer->reset(); 2531 OwnedMLI.reset(); 2532 OwnedMDT.reset(); 2533 2534 return false; 2535 } 2536 2537 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2538 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 2539 if (Res.second) 2540 Res.first->second = createTempSymbol("exception"); 2541 return Res.first->second; 2542 } 2543 2544 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2545 this->MF = &MF; 2546 const Function &F = MF.getFunction(); 2547 2548 // Record that there are split-stack functions, so we will emit a special 2549 // section to tell the linker. 2550 if (MF.shouldSplitStack()) { 2551 HasSplitStack = true; 2552 2553 if (!MF.getFrameInfo().needsSplitStackProlog()) 2554 HasNoSplitStack = true; 2555 } else 2556 HasNoSplitStack = true; 2557 2558 // Get the function symbol. 2559 if (!MAI->needsFunctionDescriptors()) { 2560 CurrentFnSym = getSymbol(&MF.getFunction()); 2561 } else { 2562 assert(TM.getTargetTriple().isOSAIX() && 2563 "Only AIX uses the function descriptor hooks."); 2564 // AIX is unique here in that the name of the symbol emitted for the 2565 // function body does not have the same name as the source function's 2566 // C-linkage name. 2567 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2568 " initalized first."); 2569 2570 // Get the function entry point symbol. 2571 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2572 } 2573 2574 CurrentFnSymForSize = CurrentFnSym; 2575 CurrentFnBegin = nullptr; 2576 CurrentFnBeginLocal = nullptr; 2577 CurrentSectionBeginSym = nullptr; 2578 MBBSectionRanges.clear(); 2579 MBBSectionExceptionSyms.clear(); 2580 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2581 if (F.hasFnAttribute("patchable-function-entry") || 2582 F.hasFnAttribute("function-instrument") || 2583 F.hasFnAttribute("xray-instruction-threshold") || 2584 needFuncLabels(MF) || NeedsLocalForSize || 2585 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2586 CurrentFnBegin = createTempSymbol("func_begin"); 2587 if (NeedsLocalForSize) 2588 CurrentFnSymForSize = CurrentFnBegin; 2589 } 2590 2591 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2592 } 2593 2594 namespace { 2595 2596 // Keep track the alignment, constpool entries per Section. 2597 struct SectionCPs { 2598 MCSection *S; 2599 Align Alignment; 2600 SmallVector<unsigned, 4> CPEs; 2601 2602 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2603 }; 2604 2605 } // end anonymous namespace 2606 2607 /// EmitConstantPool - Print to the current output stream assembly 2608 /// representations of the constants in the constant pool MCP. This is 2609 /// used to print out constants which have been "spilled to memory" by 2610 /// the code generator. 2611 void AsmPrinter::emitConstantPool() { 2612 const MachineConstantPool *MCP = MF->getConstantPool(); 2613 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2614 if (CP.empty()) return; 2615 2616 // Calculate sections for constant pool entries. We collect entries to go into 2617 // the same section together to reduce amount of section switch statements. 2618 SmallVector<SectionCPs, 4> CPSections; 2619 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2620 const MachineConstantPoolEntry &CPE = CP[i]; 2621 Align Alignment = CPE.getAlign(); 2622 2623 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2624 2625 const Constant *C = nullptr; 2626 if (!CPE.isMachineConstantPoolEntry()) 2627 C = CPE.Val.ConstVal; 2628 2629 MCSection *S = getObjFileLowering().getSectionForConstant( 2630 getDataLayout(), Kind, C, Alignment); 2631 2632 // The number of sections are small, just do a linear search from the 2633 // last section to the first. 2634 bool Found = false; 2635 unsigned SecIdx = CPSections.size(); 2636 while (SecIdx != 0) { 2637 if (CPSections[--SecIdx].S == S) { 2638 Found = true; 2639 break; 2640 } 2641 } 2642 if (!Found) { 2643 SecIdx = CPSections.size(); 2644 CPSections.push_back(SectionCPs(S, Alignment)); 2645 } 2646 2647 if (Alignment > CPSections[SecIdx].Alignment) 2648 CPSections[SecIdx].Alignment = Alignment; 2649 CPSections[SecIdx].CPEs.push_back(i); 2650 } 2651 2652 // Now print stuff into the calculated sections. 2653 const MCSection *CurSection = nullptr; 2654 unsigned Offset = 0; 2655 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2656 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2657 unsigned CPI = CPSections[i].CPEs[j]; 2658 MCSymbol *Sym = GetCPISymbol(CPI); 2659 if (!Sym->isUndefined()) 2660 continue; 2661 2662 if (CurSection != CPSections[i].S) { 2663 OutStreamer->switchSection(CPSections[i].S); 2664 emitAlignment(Align(CPSections[i].Alignment)); 2665 CurSection = CPSections[i].S; 2666 Offset = 0; 2667 } 2668 2669 MachineConstantPoolEntry CPE = CP[CPI]; 2670 2671 // Emit inter-object padding for alignment. 2672 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2673 OutStreamer->emitZeros(NewOffset - Offset); 2674 2675 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2676 2677 OutStreamer->emitLabel(Sym); 2678 if (CPE.isMachineConstantPoolEntry()) 2679 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2680 else 2681 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2682 } 2683 } 2684 } 2685 2686 // Print assembly representations of the jump tables used by the current 2687 // function. 2688 void AsmPrinter::emitJumpTableInfo() { 2689 const DataLayout &DL = MF->getDataLayout(); 2690 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2691 if (!MJTI) return; 2692 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2693 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2694 if (JT.empty()) return; 2695 2696 // Pick the directive to use to print the jump table entries, and switch to 2697 // the appropriate section. 2698 const Function &F = MF->getFunction(); 2699 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2700 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2701 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 2702 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64, 2703 F); 2704 if (JTInDiffSection) { 2705 // Drop it in the readonly section. 2706 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2707 OutStreamer->switchSection(ReadOnlySection); 2708 } 2709 2710 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2711 2712 // Jump tables in code sections are marked with a data_region directive 2713 // where that's supported. 2714 if (!JTInDiffSection) 2715 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2716 2717 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2718 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2719 2720 // If this jump table was deleted, ignore it. 2721 if (JTBBs.empty()) continue; 2722 2723 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2724 /// emit a .set directive for each unique entry. 2725 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2726 MAI->doesSetDirectiveSuppressReloc()) { 2727 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2728 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2729 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2730 for (const MachineBasicBlock *MBB : JTBBs) { 2731 if (!EmittedSets.insert(MBB).second) 2732 continue; 2733 2734 // .set LJTSet, LBB32-base 2735 const MCExpr *LHS = 2736 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2737 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2738 MCBinaryExpr::createSub(LHS, Base, 2739 OutContext)); 2740 } 2741 } 2742 2743 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2744 // before each jump table. The first label is never referenced, but tells 2745 // the assembler and linker the extents of the jump table object. The 2746 // second label is actually referenced by the code. 2747 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2748 // FIXME: This doesn't have to have any specific name, just any randomly 2749 // named and numbered local label started with 'l' would work. Simplify 2750 // GetJTISymbol. 2751 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2752 2753 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2754 OutStreamer->emitLabel(JTISymbol); 2755 2756 for (const MachineBasicBlock *MBB : JTBBs) 2757 emitJumpTableEntry(MJTI, MBB, JTI); 2758 } 2759 if (!JTInDiffSection) 2760 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2761 } 2762 2763 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2764 /// current stream. 2765 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2766 const MachineBasicBlock *MBB, 2767 unsigned UID) const { 2768 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2769 const MCExpr *Value = nullptr; 2770 switch (MJTI->getEntryKind()) { 2771 case MachineJumpTableInfo::EK_Inline: 2772 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2773 case MachineJumpTableInfo::EK_Custom32: 2774 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2775 MJTI, MBB, UID, OutContext); 2776 break; 2777 case MachineJumpTableInfo::EK_BlockAddress: 2778 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2779 // .word LBB123 2780 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2781 break; 2782 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2783 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2784 // with a relocation as gp-relative, e.g.: 2785 // .gprel32 LBB123 2786 MCSymbol *MBBSym = MBB->getSymbol(); 2787 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2788 return; 2789 } 2790 2791 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2792 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2793 // with a relocation as gp-relative, e.g.: 2794 // .gpdword LBB123 2795 MCSymbol *MBBSym = MBB->getSymbol(); 2796 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2797 return; 2798 } 2799 2800 case MachineJumpTableInfo::EK_LabelDifference32: 2801 case MachineJumpTableInfo::EK_LabelDifference64: { 2802 // Each entry is the address of the block minus the address of the jump 2803 // table. This is used for PIC jump tables where gprel32 is not supported. 2804 // e.g.: 2805 // .word LBB123 - LJTI1_2 2806 // If the .set directive avoids relocations, this is emitted as: 2807 // .set L4_5_set_123, LBB123 - LJTI1_2 2808 // .word L4_5_set_123 2809 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2810 MAI->doesSetDirectiveSuppressReloc()) { 2811 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2812 OutContext); 2813 break; 2814 } 2815 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2816 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2817 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2818 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2819 break; 2820 } 2821 } 2822 2823 assert(Value && "Unknown entry kind!"); 2824 2825 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2826 OutStreamer->emitValue(Value, EntrySize); 2827 } 2828 2829 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2830 /// special global used by LLVM. If so, emit it and return true, otherwise 2831 /// do nothing and return false. 2832 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2833 if (GV->getName() == "llvm.used") { 2834 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2835 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2836 return true; 2837 } 2838 2839 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2840 if (GV->getSection() == "llvm.metadata" || 2841 GV->hasAvailableExternallyLinkage()) 2842 return true; 2843 2844 if (GV->getName() == "llvm.arm64ec.symbolmap") { 2845 // For ARM64EC, print the table that maps between symbols and the 2846 // corresponding thunks to translate between x64 and AArch64 code. 2847 // This table is generated by AArch64Arm64ECCallLowering. 2848 OutStreamer->switchSection(OutContext.getCOFFSection( 2849 ".hybmp$x", COFF::IMAGE_SCN_LNK_INFO, SectionKind::getMetadata())); 2850 auto *Arr = cast<ConstantArray>(GV->getInitializer()); 2851 for (auto &U : Arr->operands()) { 2852 auto *C = cast<Constant>(U); 2853 auto *Src = cast<Function>(C->getOperand(0)->stripPointerCasts()); 2854 auto *Dst = cast<Function>(C->getOperand(1)->stripPointerCasts()); 2855 int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue(); 2856 2857 if (Src->hasDLLImportStorageClass()) { 2858 // For now, we assume dllimport functions aren't directly called. 2859 // (We might change this later to match MSVC.) 2860 OutStreamer->emitCOFFSymbolIndex( 2861 OutContext.getOrCreateSymbol("__imp_" + Src->getName())); 2862 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); 2863 OutStreamer->emitInt32(Kind); 2864 } else { 2865 // FIXME: For non-dllimport functions, MSVC emits the same entry 2866 // twice, for reasons I don't understand. I have to assume the linker 2867 // ignores the redundant entry; there aren't any reasonable semantics 2868 // to attach to it. 2869 OutStreamer->emitCOFFSymbolIndex(getSymbol(Src)); 2870 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); 2871 OutStreamer->emitInt32(Kind); 2872 } 2873 } 2874 return true; 2875 } 2876 2877 if (!GV->hasAppendingLinkage()) return false; 2878 2879 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2880 2881 if (GV->getName() == "llvm.global_ctors") { 2882 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2883 /* isCtor */ true); 2884 2885 return true; 2886 } 2887 2888 if (GV->getName() == "llvm.global_dtors") { 2889 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2890 /* isCtor */ false); 2891 2892 return true; 2893 } 2894 2895 report_fatal_error("unknown special variable"); 2896 } 2897 2898 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2899 /// global in the specified llvm.used list. 2900 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2901 // Should be an array of 'i8*'. 2902 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2903 const GlobalValue *GV = 2904 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2905 if (GV) 2906 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2907 } 2908 } 2909 2910 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2911 const Constant *List, 2912 SmallVector<Structor, 8> &Structors) { 2913 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2914 // the init priority. 2915 if (!isa<ConstantArray>(List)) 2916 return; 2917 2918 // Gather the structors in a form that's convenient for sorting by priority. 2919 for (Value *O : cast<ConstantArray>(List)->operands()) { 2920 auto *CS = cast<ConstantStruct>(O); 2921 if (CS->getOperand(1)->isNullValue()) 2922 break; // Found a null terminator, skip the rest. 2923 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2924 if (!Priority) 2925 continue; // Malformed. 2926 Structors.push_back(Structor()); 2927 Structor &S = Structors.back(); 2928 S.Priority = Priority->getLimitedValue(65535); 2929 S.Func = CS->getOperand(1); 2930 if (!CS->getOperand(2)->isNullValue()) { 2931 if (TM.getTargetTriple().isOSAIX()) 2932 llvm::report_fatal_error( 2933 "associated data of XXStructor list is not yet supported on AIX"); 2934 S.ComdatKey = 2935 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2936 } 2937 } 2938 2939 // Emit the function pointers in the target-specific order 2940 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2941 return L.Priority < R.Priority; 2942 }); 2943 } 2944 2945 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2946 /// priority. 2947 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2948 bool IsCtor) { 2949 SmallVector<Structor, 8> Structors; 2950 preprocessXXStructorList(DL, List, Structors); 2951 if (Structors.empty()) 2952 return; 2953 2954 // Emit the structors in reverse order if we are using the .ctor/.dtor 2955 // initialization scheme. 2956 if (!TM.Options.UseInitArray) 2957 std::reverse(Structors.begin(), Structors.end()); 2958 2959 const Align Align = DL.getPointerPrefAlignment(); 2960 for (Structor &S : Structors) { 2961 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2962 const MCSymbol *KeySym = nullptr; 2963 if (GlobalValue *GV = S.ComdatKey) { 2964 if (GV->isDeclarationForLinker()) 2965 // If the associated variable is not defined in this module 2966 // (it might be available_externally, or have been an 2967 // available_externally definition that was dropped by the 2968 // EliminateAvailableExternally pass), some other TU 2969 // will provide its dynamic initializer. 2970 continue; 2971 2972 KeySym = getSymbol(GV); 2973 } 2974 2975 MCSection *OutputSection = 2976 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2977 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2978 OutStreamer->switchSection(OutputSection); 2979 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2980 emitAlignment(Align); 2981 emitXXStructor(DL, S.Func); 2982 } 2983 } 2984 2985 void AsmPrinter::emitModuleIdents(Module &M) { 2986 if (!MAI->hasIdentDirective()) 2987 return; 2988 2989 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2990 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2991 const MDNode *N = NMD->getOperand(i); 2992 assert(N->getNumOperands() == 1 && 2993 "llvm.ident metadata entry can have only one operand"); 2994 const MDString *S = cast<MDString>(N->getOperand(0)); 2995 OutStreamer->emitIdent(S->getString()); 2996 } 2997 } 2998 } 2999 3000 void AsmPrinter::emitModuleCommandLines(Module &M) { 3001 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 3002 if (!CommandLine) 3003 return; 3004 3005 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 3006 if (!NMD || !NMD->getNumOperands()) 3007 return; 3008 3009 OutStreamer->pushSection(); 3010 OutStreamer->switchSection(CommandLine); 3011 OutStreamer->emitZeros(1); 3012 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3013 const MDNode *N = NMD->getOperand(i); 3014 assert(N->getNumOperands() == 1 && 3015 "llvm.commandline metadata entry can have only one operand"); 3016 const MDString *S = cast<MDString>(N->getOperand(0)); 3017 OutStreamer->emitBytes(S->getString()); 3018 OutStreamer->emitZeros(1); 3019 } 3020 OutStreamer->popSection(); 3021 } 3022 3023 //===--------------------------------------------------------------------===// 3024 // Emission and print routines 3025 // 3026 3027 /// Emit a byte directive and value. 3028 /// 3029 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 3030 3031 /// Emit a short directive and value. 3032 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 3033 3034 /// Emit a long directive and value. 3035 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 3036 3037 /// EmitSLEB128 - emit the specified signed leb128 value. 3038 void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { 3039 if (isVerbose() && Desc) 3040 OutStreamer->AddComment(Desc); 3041 3042 OutStreamer->emitSLEB128IntValue(Value); 3043 } 3044 3045 void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, 3046 unsigned PadTo) const { 3047 if (isVerbose() && Desc) 3048 OutStreamer->AddComment(Desc); 3049 3050 OutStreamer->emitULEB128IntValue(Value, PadTo); 3051 } 3052 3053 /// Emit a long long directive and value. 3054 void AsmPrinter::emitInt64(uint64_t Value) const { 3055 OutStreamer->emitInt64(Value); 3056 } 3057 3058 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 3059 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 3060 /// .set if it avoids relocations. 3061 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 3062 unsigned Size) const { 3063 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 3064 } 3065 3066 /// Emit something like ".uleb128 Hi-Lo". 3067 void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, 3068 const MCSymbol *Lo) const { 3069 OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); 3070 } 3071 3072 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 3073 /// where the size in bytes of the directive is specified by Size and Label 3074 /// specifies the label. This implicitly uses .set if it is available. 3075 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 3076 unsigned Size, 3077 bool IsSectionRelative) const { 3078 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 3079 OutStreamer->emitCOFFSecRel32(Label, Offset); 3080 if (Size > 4) 3081 OutStreamer->emitZeros(Size - 4); 3082 return; 3083 } 3084 3085 // Emit Label+Offset (or just Label if Offset is zero) 3086 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 3087 if (Offset) 3088 Expr = MCBinaryExpr::createAdd( 3089 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 3090 3091 OutStreamer->emitValue(Expr, Size); 3092 } 3093 3094 //===----------------------------------------------------------------------===// 3095 3096 // EmitAlignment - Emit an alignment directive to the specified power of 3097 // two boundary. If a global value is specified, and if that global has 3098 // an explicit alignment requested, it will override the alignment request 3099 // if required for correctness. 3100 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 3101 unsigned MaxBytesToEmit) const { 3102 if (GV) 3103 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 3104 3105 if (Alignment == Align(1)) 3106 return; // 1-byte aligned: no need to emit alignment. 3107 3108 if (getCurrentSection()->getKind().isText()) { 3109 const MCSubtargetInfo *STI = nullptr; 3110 if (this->MF) 3111 STI = &getSubtargetInfo(); 3112 else 3113 STI = TM.getMCSubtargetInfo(); 3114 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); 3115 } else 3116 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); 3117 } 3118 3119 //===----------------------------------------------------------------------===// 3120 // Constant emission. 3121 //===----------------------------------------------------------------------===// 3122 3123 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 3124 MCContext &Ctx = OutContext; 3125 3126 if (CV->isNullValue() || isa<UndefValue>(CV)) 3127 return MCConstantExpr::create(0, Ctx); 3128 3129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 3130 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 3131 3132 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 3133 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 3134 3135 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 3136 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 3137 3138 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 3139 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 3140 3141 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 3142 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 3143 3144 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 3145 if (!CE) { 3146 llvm_unreachable("Unknown constant value to lower!"); 3147 } 3148 3149 // The constant expression opcodes are limited to those that are necessary 3150 // to represent relocations on supported targets. Expressions involving only 3151 // constant addresses are constant folded instead. 3152 switch (CE->getOpcode()) { 3153 default: 3154 break; // Error 3155 case Instruction::AddrSpaceCast: { 3156 const Constant *Op = CE->getOperand(0); 3157 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 3158 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 3159 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 3160 return lowerConstant(Op); 3161 3162 break; // Error 3163 } 3164 case Instruction::GetElementPtr: { 3165 // Generate a symbolic expression for the byte address 3166 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 3167 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 3168 3169 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 3170 if (!OffsetAI) 3171 return Base; 3172 3173 int64_t Offset = OffsetAI.getSExtValue(); 3174 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 3175 Ctx); 3176 } 3177 3178 case Instruction::Trunc: 3179 // We emit the value and depend on the assembler to truncate the generated 3180 // expression properly. This is important for differences between 3181 // blockaddress labels. Since the two labels are in the same function, it 3182 // is reasonable to treat their delta as a 32-bit value. 3183 [[fallthrough]]; 3184 case Instruction::BitCast: 3185 return lowerConstant(CE->getOperand(0)); 3186 3187 case Instruction::IntToPtr: { 3188 const DataLayout &DL = getDataLayout(); 3189 3190 // Handle casts to pointers by changing them into casts to the appropriate 3191 // integer type. This promotes constant folding and simplifies this code. 3192 Constant *Op = CE->getOperand(0); 3193 Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), 3194 /*IsSigned*/ false, DL); 3195 if (Op) 3196 return lowerConstant(Op); 3197 3198 break; // Error 3199 } 3200 3201 case Instruction::PtrToInt: { 3202 const DataLayout &DL = getDataLayout(); 3203 3204 // Support only foldable casts to/from pointers that can be eliminated by 3205 // changing the pointer to the appropriately sized integer type. 3206 Constant *Op = CE->getOperand(0); 3207 Type *Ty = CE->getType(); 3208 3209 const MCExpr *OpExpr = lowerConstant(Op); 3210 3211 // We can emit the pointer value into this slot if the slot is an 3212 // integer slot equal to the size of the pointer. 3213 // 3214 // If the pointer is larger than the resultant integer, then 3215 // as with Trunc just depend on the assembler to truncate it. 3216 if (DL.getTypeAllocSize(Ty).getFixedValue() <= 3217 DL.getTypeAllocSize(Op->getType()).getFixedValue()) 3218 return OpExpr; 3219 3220 break; // Error 3221 } 3222 3223 case Instruction::Sub: { 3224 GlobalValue *LHSGV; 3225 APInt LHSOffset; 3226 DSOLocalEquivalent *DSOEquiv; 3227 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 3228 getDataLayout(), &DSOEquiv)) { 3229 GlobalValue *RHSGV; 3230 APInt RHSOffset; 3231 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 3232 getDataLayout())) { 3233 const MCExpr *RelocExpr = 3234 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 3235 if (!RelocExpr) { 3236 const MCExpr *LHSExpr = 3237 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 3238 if (DSOEquiv && 3239 getObjFileLowering().supportDSOLocalEquivalentLowering()) 3240 LHSExpr = 3241 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 3242 RelocExpr = MCBinaryExpr::createSub( 3243 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 3244 } 3245 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 3246 if (Addend != 0) 3247 RelocExpr = MCBinaryExpr::createAdd( 3248 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 3249 return RelocExpr; 3250 } 3251 } 3252 3253 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3254 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3255 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 3256 break; 3257 } 3258 3259 case Instruction::Add: { 3260 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3261 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3262 return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 3263 } 3264 } 3265 3266 // If the code isn't optimized, there may be outstanding folding 3267 // opportunities. Attempt to fold the expression using DataLayout as a 3268 // last resort before giving up. 3269 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 3270 if (C != CE) 3271 return lowerConstant(C); 3272 3273 // Otherwise report the problem to the user. 3274 std::string S; 3275 raw_string_ostream OS(S); 3276 OS << "Unsupported expression in static initializer: "; 3277 CE->printAsOperand(OS, /*PrintType=*/false, 3278 !MF ? nullptr : MF->getFunction().getParent()); 3279 report_fatal_error(Twine(OS.str())); 3280 } 3281 3282 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 3283 AsmPrinter &AP, 3284 const Constant *BaseCV = nullptr, 3285 uint64_t Offset = 0, 3286 AsmPrinter::AliasMapTy *AliasList = nullptr); 3287 3288 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 3289 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 3290 3291 /// isRepeatedByteSequence - Determine whether the given value is 3292 /// composed of a repeated sequence of identical bytes and return the 3293 /// byte value. If it is not a repeated sequence, return -1. 3294 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 3295 StringRef Data = V->getRawDataValues(); 3296 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 3297 char C = Data[0]; 3298 for (unsigned i = 1, e = Data.size(); i != e; ++i) 3299 if (Data[i] != C) return -1; 3300 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 3301 } 3302 3303 /// isRepeatedByteSequence - Determine whether the given value is 3304 /// composed of a repeated sequence of identical bytes and return the 3305 /// byte value. If it is not a repeated sequence, return -1. 3306 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 3307 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3308 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 3309 assert(Size % 8 == 0); 3310 3311 // Extend the element to take zero padding into account. 3312 APInt Value = CI->getValue().zext(Size); 3313 if (!Value.isSplat(8)) 3314 return -1; 3315 3316 return Value.zextOrTrunc(8).getZExtValue(); 3317 } 3318 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 3319 // Make sure all array elements are sequences of the same repeated 3320 // byte. 3321 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 3322 Constant *Op0 = CA->getOperand(0); 3323 int Byte = isRepeatedByteSequence(Op0, DL); 3324 if (Byte == -1) 3325 return -1; 3326 3327 // All array elements must be equal. 3328 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 3329 if (CA->getOperand(i) != Op0) 3330 return -1; 3331 return Byte; 3332 } 3333 3334 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 3335 return isRepeatedByteSequence(CDS); 3336 3337 return -1; 3338 } 3339 3340 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, 3341 AsmPrinter::AliasMapTy *AliasList) { 3342 if (AliasList) { 3343 auto AliasIt = AliasList->find(Offset); 3344 if (AliasIt != AliasList->end()) { 3345 for (const GlobalAlias *GA : AliasIt->second) 3346 AP.OutStreamer->emitLabel(AP.getSymbol(GA)); 3347 AliasList->erase(Offset); 3348 } 3349 } 3350 } 3351 3352 static void emitGlobalConstantDataSequential( 3353 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, 3354 AsmPrinter::AliasMapTy *AliasList) { 3355 // See if we can aggregate this into a .fill, if so, emit it as such. 3356 int Value = isRepeatedByteSequence(CDS, DL); 3357 if (Value != -1) { 3358 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 3359 // Don't emit a 1-byte object as a .fill. 3360 if (Bytes > 1) 3361 return AP.OutStreamer->emitFill(Bytes, Value); 3362 } 3363 3364 // If this can be emitted with .ascii/.asciz, emit it as such. 3365 if (CDS->isString()) 3366 return AP.OutStreamer->emitBytes(CDS->getAsString()); 3367 3368 // Otherwise, emit the values in successive locations. 3369 unsigned ElementByteSize = CDS->getElementByteSize(); 3370 if (isa<IntegerType>(CDS->getElementType())) { 3371 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3372 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3373 if (AP.isVerbose()) 3374 AP.OutStreamer->getCommentOS() 3375 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); 3376 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), 3377 ElementByteSize); 3378 } 3379 } else { 3380 Type *ET = CDS->getElementType(); 3381 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3382 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3383 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 3384 } 3385 } 3386 3387 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 3388 unsigned EmittedSize = 3389 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 3390 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 3391 if (unsigned Padding = Size - EmittedSize) 3392 AP.OutStreamer->emitZeros(Padding); 3393 } 3394 3395 static void emitGlobalConstantArray(const DataLayout &DL, 3396 const ConstantArray *CA, AsmPrinter &AP, 3397 const Constant *BaseCV, uint64_t Offset, 3398 AsmPrinter::AliasMapTy *AliasList) { 3399 // See if we can aggregate some values. Make sure it can be 3400 // represented as a series of bytes of the constant value. 3401 int Value = isRepeatedByteSequence(CA, DL); 3402 3403 if (Value != -1) { 3404 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 3405 AP.OutStreamer->emitFill(Bytes, Value); 3406 } else { 3407 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { 3408 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, 3409 AliasList); 3410 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); 3411 } 3412 } 3413 } 3414 3415 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); 3416 3417 static void emitGlobalConstantVector(const DataLayout &DL, 3418 const ConstantVector *CV, AsmPrinter &AP, 3419 AsmPrinter::AliasMapTy *AliasList) { 3420 Type *ElementType = CV->getType()->getElementType(); 3421 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); 3422 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); 3423 uint64_t EmittedSize; 3424 if (ElementSizeInBits != ElementAllocSizeInBits) { 3425 // If the allocation size of an element is different from the size in bits, 3426 // printing each element separately will insert incorrect padding. 3427 // 3428 // The general algorithm here is complicated; instead of writing it out 3429 // here, just use the existing code in ConstantFolding. 3430 Type *IntT = 3431 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); 3432 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( 3433 ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL)); 3434 if (!CI) { 3435 report_fatal_error( 3436 "Cannot lower vector global with unusual element type"); 3437 } 3438 emitGlobalAliasInline(AP, 0, AliasList); 3439 emitGlobalConstantLargeInt(CI, AP); 3440 EmittedSize = DL.getTypeStoreSize(CV->getType()); 3441 } else { 3442 for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) { 3443 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); 3444 emitGlobalConstantImpl(DL, CV->getOperand(I), AP); 3445 } 3446 EmittedSize = 3447 DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements(); 3448 } 3449 3450 unsigned Size = DL.getTypeAllocSize(CV->getType()); 3451 if (unsigned Padding = Size - EmittedSize) 3452 AP.OutStreamer->emitZeros(Padding); 3453 } 3454 3455 static void emitGlobalConstantStruct(const DataLayout &DL, 3456 const ConstantStruct *CS, AsmPrinter &AP, 3457 const Constant *BaseCV, uint64_t Offset, 3458 AsmPrinter::AliasMapTy *AliasList) { 3459 // Print the fields in successive locations. Pad to align if needed! 3460 unsigned Size = DL.getTypeAllocSize(CS->getType()); 3461 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 3462 uint64_t SizeSoFar = 0; 3463 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { 3464 const Constant *Field = CS->getOperand(I); 3465 3466 // Print the actual field value. 3467 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, 3468 AliasList); 3469 3470 // Check if padding is needed and insert one or more 0s. 3471 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 3472 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - 3473 Layout->getElementOffset(I)) - 3474 FieldSize; 3475 SizeSoFar += FieldSize + PadSize; 3476 3477 // Insert padding - this may include padding to increase the size of the 3478 // current field up to the ABI size (if the struct is not packed) as well 3479 // as padding to ensure that the next field starts at the right offset. 3480 AP.OutStreamer->emitZeros(PadSize); 3481 } 3482 assert(SizeSoFar == Layout->getSizeInBytes() && 3483 "Layout of constant struct may be incorrect!"); 3484 } 3485 3486 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 3487 assert(ET && "Unknown float type"); 3488 APInt API = APF.bitcastToAPInt(); 3489 3490 // First print a comment with what we think the original floating-point value 3491 // should have been. 3492 if (AP.isVerbose()) { 3493 SmallString<8> StrVal; 3494 APF.toString(StrVal); 3495 ET->print(AP.OutStreamer->getCommentOS()); 3496 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; 3497 } 3498 3499 // Now iterate through the APInt chunks, emitting them in endian-correct 3500 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 3501 // floats). 3502 unsigned NumBytes = API.getBitWidth() / 8; 3503 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 3504 const uint64_t *p = API.getRawData(); 3505 3506 // PPC's long double has odd notions of endianness compared to how LLVM 3507 // handles it: p[0] goes first for *big* endian on PPC. 3508 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 3509 int Chunk = API.getNumWords() - 1; 3510 3511 if (TrailingBytes) 3512 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 3513 3514 for (; Chunk >= 0; --Chunk) 3515 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3516 } else { 3517 unsigned Chunk; 3518 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 3519 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3520 3521 if (TrailingBytes) 3522 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 3523 } 3524 3525 // Emit the tail padding for the long double. 3526 const DataLayout &DL = AP.getDataLayout(); 3527 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 3528 } 3529 3530 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 3531 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 3532 } 3533 3534 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 3535 const DataLayout &DL = AP.getDataLayout(); 3536 unsigned BitWidth = CI->getBitWidth(); 3537 3538 // Copy the value as we may massage the layout for constants whose bit width 3539 // is not a multiple of 64-bits. 3540 APInt Realigned(CI->getValue()); 3541 uint64_t ExtraBits = 0; 3542 unsigned ExtraBitsSize = BitWidth & 63; 3543 3544 if (ExtraBitsSize) { 3545 // The bit width of the data is not a multiple of 64-bits. 3546 // The extra bits are expected to be at the end of the chunk of the memory. 3547 // Little endian: 3548 // * Nothing to be done, just record the extra bits to emit. 3549 // Big endian: 3550 // * Record the extra bits to emit. 3551 // * Realign the raw data to emit the chunks of 64-bits. 3552 if (DL.isBigEndian()) { 3553 // Basically the structure of the raw data is a chunk of 64-bits cells: 3554 // 0 1 BitWidth / 64 3555 // [chunk1][chunk2] ... [chunkN]. 3556 // The most significant chunk is chunkN and it should be emitted first. 3557 // However, due to the alignment issue chunkN contains useless bits. 3558 // Realign the chunks so that they contain only useful information: 3559 // ExtraBits 0 1 (BitWidth / 64) - 1 3560 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 3561 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 3562 ExtraBits = Realigned.getRawData()[0] & 3563 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 3564 if (BitWidth >= 64) 3565 Realigned.lshrInPlace(ExtraBitsSize); 3566 } else 3567 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 3568 } 3569 3570 // We don't expect assemblers to support integer data directives 3571 // for more than 64 bits, so we emit the data in at most 64-bit 3572 // quantities at a time. 3573 const uint64_t *RawData = Realigned.getRawData(); 3574 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 3575 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 3576 AP.OutStreamer->emitIntValue(Val, 8); 3577 } 3578 3579 if (ExtraBitsSize) { 3580 // Emit the extra bits after the 64-bits chunks. 3581 3582 // Emit a directive that fills the expected size. 3583 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 3584 Size -= (BitWidth / 64) * 8; 3585 assert(Size && Size * 8 >= ExtraBitsSize && 3586 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 3587 == ExtraBits && "Directive too small for extra bits."); 3588 AP.OutStreamer->emitIntValue(ExtraBits, Size); 3589 } 3590 } 3591 3592 /// Transform a not absolute MCExpr containing a reference to a GOT 3593 /// equivalent global, by a target specific GOT pc relative access to the 3594 /// final symbol. 3595 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 3596 const Constant *BaseCst, 3597 uint64_t Offset) { 3598 // The global @foo below illustrates a global that uses a got equivalent. 3599 // 3600 // @bar = global i32 42 3601 // @gotequiv = private unnamed_addr constant i32* @bar 3602 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 3603 // i64 ptrtoint (i32* @foo to i64)) 3604 // to i32) 3605 // 3606 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 3607 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 3608 // form: 3609 // 3610 // foo = cstexpr, where 3611 // cstexpr := <gotequiv> - "." + <cst> 3612 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 3613 // 3614 // After canonicalization by evaluateAsRelocatable `ME` turns into: 3615 // 3616 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 3617 // gotpcrelcst := <offset from @foo base> + <cst> 3618 MCValue MV; 3619 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 3620 return; 3621 const MCSymbolRefExpr *SymA = MV.getSymA(); 3622 if (!SymA) 3623 return; 3624 3625 // Check that GOT equivalent symbol is cached. 3626 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 3627 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 3628 return; 3629 3630 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 3631 if (!BaseGV) 3632 return; 3633 3634 // Check for a valid base symbol 3635 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 3636 const MCSymbolRefExpr *SymB = MV.getSymB(); 3637 3638 if (!SymB || BaseSym != &SymB->getSymbol()) 3639 return; 3640 3641 // Make sure to match: 3642 // 3643 // gotpcrelcst := <offset from @foo base> + <cst> 3644 // 3645 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3646 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3647 return; 3648 3649 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3650 // 3651 // bar: 3652 // .long 42 3653 // gotequiv: 3654 // .quad bar 3655 // foo: 3656 // .long gotequiv - "." + <cst> 3657 // 3658 // is replaced by the target specific equivalent to: 3659 // 3660 // bar: 3661 // .long 42 3662 // foo: 3663 // .long bar@GOTPCREL+<gotpcrelcst> 3664 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3665 const GlobalVariable *GV = Result.first; 3666 int NumUses = (int)Result.second; 3667 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3668 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3669 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3670 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3671 3672 // Update GOT equivalent usage information 3673 --NumUses; 3674 if (NumUses >= 0) 3675 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3676 } 3677 3678 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3679 AsmPrinter &AP, const Constant *BaseCV, 3680 uint64_t Offset, 3681 AsmPrinter::AliasMapTy *AliasList) { 3682 emitGlobalAliasInline(AP, Offset, AliasList); 3683 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3684 3685 // Globals with sub-elements such as combinations of arrays and structs 3686 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3687 // constant symbol base and the current position with BaseCV and Offset. 3688 if (!BaseCV && CV->hasOneUse()) 3689 BaseCV = dyn_cast<Constant>(CV->user_back()); 3690 3691 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3692 return AP.OutStreamer->emitZeros(Size); 3693 3694 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3695 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3696 3697 if (StoreSize <= 8) { 3698 if (AP.isVerbose()) 3699 AP.OutStreamer->getCommentOS() 3700 << format("0x%" PRIx64 "\n", CI->getZExtValue()); 3701 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3702 } else { 3703 emitGlobalConstantLargeInt(CI, AP); 3704 } 3705 3706 // Emit tail padding if needed 3707 if (Size != StoreSize) 3708 AP.OutStreamer->emitZeros(Size - StoreSize); 3709 3710 return; 3711 } 3712 3713 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3714 return emitGlobalConstantFP(CFP, AP); 3715 3716 if (isa<ConstantPointerNull>(CV)) { 3717 AP.OutStreamer->emitIntValue(0, Size); 3718 return; 3719 } 3720 3721 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3722 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); 3723 3724 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3725 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); 3726 3727 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3728 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); 3729 3730 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3731 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3732 // vectors). 3733 if (CE->getOpcode() == Instruction::BitCast) 3734 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3735 3736 if (Size > 8) { 3737 // If the constant expression's size is greater than 64-bits, then we have 3738 // to emit the value in chunks. Try to constant fold the value and emit it 3739 // that way. 3740 Constant *New = ConstantFoldConstant(CE, DL); 3741 if (New != CE) 3742 return emitGlobalConstantImpl(DL, New, AP); 3743 } 3744 } 3745 3746 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3747 return emitGlobalConstantVector(DL, V, AP, AliasList); 3748 3749 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3750 // thread the streamer with EmitValue. 3751 const MCExpr *ME = AP.lowerConstant(CV); 3752 3753 // Since lowerConstant already folded and got rid of all IR pointer and 3754 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3755 // directly. 3756 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3757 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3758 3759 AP.OutStreamer->emitValue(ME, Size); 3760 } 3761 3762 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3763 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, 3764 AliasMapTy *AliasList) { 3765 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3766 if (Size) 3767 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); 3768 else if (MAI->hasSubsectionsViaSymbols()) { 3769 // If the global has zero size, emit a single byte so that two labels don't 3770 // look like they are at the same location. 3771 OutStreamer->emitIntValue(0, 1); 3772 } 3773 if (!AliasList) 3774 return; 3775 // TODO: These remaining aliases are not emitted in the correct location. Need 3776 // to handle the case where the alias offset doesn't refer to any sub-element. 3777 for (auto &AliasPair : *AliasList) { 3778 for (const GlobalAlias *GA : AliasPair.second) 3779 OutStreamer->emitLabel(getSymbol(GA)); 3780 } 3781 } 3782 3783 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3784 // Target doesn't support this yet! 3785 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3786 } 3787 3788 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3789 if (Offset > 0) 3790 OS << '+' << Offset; 3791 else if (Offset < 0) 3792 OS << Offset; 3793 } 3794 3795 void AsmPrinter::emitNops(unsigned N) { 3796 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3797 for (; N; --N) 3798 EmitToStreamer(*OutStreamer, Nop); 3799 } 3800 3801 //===----------------------------------------------------------------------===// 3802 // Symbol Lowering Routines. 3803 //===----------------------------------------------------------------------===// 3804 3805 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3806 return OutContext.createTempSymbol(Name, true); 3807 } 3808 3809 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3810 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( 3811 BA->getBasicBlock()); 3812 } 3813 3814 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3815 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); 3816 } 3817 3818 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3819 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3820 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3821 const MachineConstantPoolEntry &CPE = 3822 MF->getConstantPool()->getConstants()[CPID]; 3823 if (!CPE.isMachineConstantPoolEntry()) { 3824 const DataLayout &DL = MF->getDataLayout(); 3825 SectionKind Kind = CPE.getSectionKind(&DL); 3826 const Constant *C = CPE.Val.ConstVal; 3827 Align Alignment = CPE.Alignment; 3828 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3829 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3830 Alignment))) { 3831 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3832 if (Sym->isUndefined()) 3833 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3834 return Sym; 3835 } 3836 } 3837 } 3838 } 3839 3840 const DataLayout &DL = getDataLayout(); 3841 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3842 "CPI" + Twine(getFunctionNumber()) + "_" + 3843 Twine(CPID)); 3844 } 3845 3846 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3847 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3848 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3849 } 3850 3851 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3852 /// FIXME: privatize to AsmPrinter. 3853 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3854 const DataLayout &DL = getDataLayout(); 3855 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3856 Twine(getFunctionNumber()) + "_" + 3857 Twine(UID) + "_set_" + Twine(MBBID)); 3858 } 3859 3860 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3861 StringRef Suffix) const { 3862 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3863 } 3864 3865 /// Return the MCSymbol for the specified ExternalSymbol. 3866 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const { 3867 SmallString<60> NameStr; 3868 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3869 return OutContext.getOrCreateSymbol(NameStr); 3870 } 3871 3872 /// PrintParentLoopComment - Print comments about parent loops of this one. 3873 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3874 unsigned FunctionNumber) { 3875 if (!Loop) return; 3876 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3877 OS.indent(Loop->getLoopDepth()*2) 3878 << "Parent Loop BB" << FunctionNumber << "_" 3879 << Loop->getHeader()->getNumber() 3880 << " Depth=" << Loop->getLoopDepth() << '\n'; 3881 } 3882 3883 /// PrintChildLoopComment - Print comments about child loops within 3884 /// the loop for this basic block, with nesting. 3885 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3886 unsigned FunctionNumber) { 3887 // Add child loop information 3888 for (const MachineLoop *CL : *Loop) { 3889 OS.indent(CL->getLoopDepth()*2) 3890 << "Child Loop BB" << FunctionNumber << "_" 3891 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3892 << '\n'; 3893 PrintChildLoopComment(OS, CL, FunctionNumber); 3894 } 3895 } 3896 3897 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3898 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3899 const MachineLoopInfo *LI, 3900 const AsmPrinter &AP) { 3901 // Add loop depth information 3902 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3903 if (!Loop) return; 3904 3905 MachineBasicBlock *Header = Loop->getHeader(); 3906 assert(Header && "No header for loop"); 3907 3908 // If this block is not a loop header, just print out what is the loop header 3909 // and return. 3910 if (Header != &MBB) { 3911 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3912 Twine(AP.getFunctionNumber())+"_" + 3913 Twine(Loop->getHeader()->getNumber())+ 3914 " Depth="+Twine(Loop->getLoopDepth())); 3915 return; 3916 } 3917 3918 // Otherwise, it is a loop header. Print out information about child and 3919 // parent loops. 3920 raw_ostream &OS = AP.OutStreamer->getCommentOS(); 3921 3922 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3923 3924 OS << "=>"; 3925 OS.indent(Loop->getLoopDepth()*2-2); 3926 3927 OS << "This "; 3928 if (Loop->isInnermost()) 3929 OS << "Inner "; 3930 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3931 3932 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3933 } 3934 3935 /// emitBasicBlockStart - This method prints the label for the specified 3936 /// MachineBasicBlock, an alignment (if present) and a comment describing 3937 /// it if appropriate. 3938 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3939 // End the previous funclet and start a new one. 3940 if (MBB.isEHFuncletEntry()) { 3941 for (const HandlerInfo &HI : Handlers) { 3942 HI.Handler->endFunclet(); 3943 HI.Handler->beginFunclet(MBB); 3944 } 3945 } 3946 3947 // Switch to a new section if this basic block must begin a section. The 3948 // entry block is always placed in the function section and is handled 3949 // separately. 3950 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3951 OutStreamer->switchSection( 3952 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3953 MBB, TM)); 3954 CurrentSectionBeginSym = MBB.getSymbol(); 3955 } 3956 3957 // Emit an alignment directive for this block, if needed. 3958 const Align Alignment = MBB.getAlignment(); 3959 if (Alignment != Align(1)) 3960 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 3961 3962 // If the block has its address taken, emit any labels that were used to 3963 // reference the block. It is possible that there is more than one label 3964 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3965 // the references were generated. 3966 if (MBB.isIRBlockAddressTaken()) { 3967 if (isVerbose()) 3968 OutStreamer->AddComment("Block address taken"); 3969 3970 BasicBlock *BB = MBB.getAddressTakenIRBlock(); 3971 assert(BB && BB->hasAddressTaken() && "Missing BB"); 3972 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) 3973 OutStreamer->emitLabel(Sym); 3974 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { 3975 OutStreamer->AddComment("Block address taken"); 3976 } 3977 3978 // Print some verbose block comments. 3979 if (isVerbose()) { 3980 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3981 if (BB->hasName()) { 3982 BB->printAsOperand(OutStreamer->getCommentOS(), 3983 /*PrintType=*/false, BB->getModule()); 3984 OutStreamer->getCommentOS() << '\n'; 3985 } 3986 } 3987 3988 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3989 emitBasicBlockLoopComments(MBB, MLI, *this); 3990 } 3991 3992 // Print the main label for the block. 3993 if (shouldEmitLabelForBasicBlock(MBB)) { 3994 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3995 OutStreamer->AddComment("Label of block must be emitted"); 3996 OutStreamer->emitLabel(MBB.getSymbol()); 3997 } else { 3998 if (isVerbose()) { 3999 // NOTE: Want this comment at start of line, don't emit with AddComment. 4000 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 4001 false); 4002 } 4003 } 4004 4005 if (MBB.isEHCatchretTarget() && 4006 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 4007 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 4008 } 4009 4010 // With BB sections, each basic block must handle CFI information on its own 4011 // if it begins a section (Entry block call is handled separately, next to 4012 // beginFunction). 4013 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 4014 for (const HandlerInfo &HI : Handlers) 4015 HI.Handler->beginBasicBlockSection(MBB); 4016 } 4017 4018 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 4019 // Check if CFI information needs to be updated for this MBB with basic block 4020 // sections. 4021 if (MBB.isEndSection()) 4022 for (const HandlerInfo &HI : Handlers) 4023 HI.Handler->endBasicBlockSection(MBB); 4024 } 4025 4026 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 4027 bool IsDefinition) const { 4028 MCSymbolAttr Attr = MCSA_Invalid; 4029 4030 switch (Visibility) { 4031 default: break; 4032 case GlobalValue::HiddenVisibility: 4033 if (IsDefinition) 4034 Attr = MAI->getHiddenVisibilityAttr(); 4035 else 4036 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 4037 break; 4038 case GlobalValue::ProtectedVisibility: 4039 Attr = MAI->getProtectedVisibilityAttr(); 4040 break; 4041 } 4042 4043 if (Attr != MCSA_Invalid) 4044 OutStreamer->emitSymbolAttribute(Sym, Attr); 4045 } 4046 4047 bool AsmPrinter::shouldEmitLabelForBasicBlock( 4048 const MachineBasicBlock &MBB) const { 4049 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 4050 // in the labels mode (option `=labels`) and every section beginning in the 4051 // sections mode (`=all` and `=list=`). 4052 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 4053 return true; 4054 // A label is needed for any block with at least one predecessor (when that 4055 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 4056 // entry, or if a label is forced). 4057 return !MBB.pred_empty() && 4058 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 4059 MBB.hasLabelMustBeEmitted()); 4060 } 4061 4062 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 4063 /// exactly one predecessor and the control transfer mechanism between 4064 /// the predecessor and this block is a fall-through. 4065 bool AsmPrinter:: 4066 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 4067 // If this is a landing pad, it isn't a fall through. If it has no preds, 4068 // then nothing falls through to it. 4069 if (MBB->isEHPad() || MBB->pred_empty()) 4070 return false; 4071 4072 // If there isn't exactly one predecessor, it can't be a fall through. 4073 if (MBB->pred_size() > 1) 4074 return false; 4075 4076 // The predecessor has to be immediately before this block. 4077 MachineBasicBlock *Pred = *MBB->pred_begin(); 4078 if (!Pred->isLayoutSuccessor(MBB)) 4079 return false; 4080 4081 // If the block is completely empty, then it definitely does fall through. 4082 if (Pred->empty()) 4083 return true; 4084 4085 // Check the terminators in the previous blocks 4086 for (const auto &MI : Pred->terminators()) { 4087 // If it is not a simple branch, we are in a table somewhere. 4088 if (!MI.isBranch() || MI.isIndirectBranch()) 4089 return false; 4090 4091 // If we are the operands of one of the branches, this is not a fall 4092 // through. Note that targets with delay slots will usually bundle 4093 // terminators with the delay slot instruction. 4094 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 4095 if (OP->isJTI()) 4096 return false; 4097 if (OP->isMBB() && OP->getMBB() == MBB) 4098 return false; 4099 } 4100 } 4101 4102 return true; 4103 } 4104 4105 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { 4106 if (!S.usesMetadata()) 4107 return nullptr; 4108 4109 auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); 4110 if (!Inserted) 4111 return GCPI->second.get(); 4112 4113 auto Name = S.getName(); 4114 4115 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 4116 GCMetadataPrinterRegistry::entries()) 4117 if (Name == GCMetaPrinter.getName()) { 4118 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 4119 GMP->S = &S; 4120 GCPI->second = std::move(GMP); 4121 return GCPI->second.get(); 4122 } 4123 4124 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 4125 } 4126 4127 void AsmPrinter::emitStackMaps() { 4128 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 4129 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 4130 bool NeedsDefault = false; 4131 if (MI->begin() == MI->end()) 4132 // No GC strategy, use the default format. 4133 NeedsDefault = true; 4134 else 4135 for (const auto &I : *MI) { 4136 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 4137 if (MP->emitStackMaps(SM, *this)) 4138 continue; 4139 // The strategy doesn't have printer or doesn't emit custom stack maps. 4140 // Use the default format. 4141 NeedsDefault = true; 4142 } 4143 4144 if (NeedsDefault) 4145 SM.serializeToStackMapSection(); 4146 } 4147 4148 /// Pin vtable to this file. 4149 AsmPrinterHandler::~AsmPrinterHandler() = default; 4150 4151 void AsmPrinterHandler::markFunctionEnd() {} 4152 4153 // In the binary's "xray_instr_map" section, an array of these function entries 4154 // describes each instrumentation point. When XRay patches your code, the index 4155 // into this table will be given to your handler as a patch point identifier. 4156 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 4157 auto Kind8 = static_cast<uint8_t>(Kind); 4158 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 4159 Out->emitBinaryData( 4160 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 4161 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 4162 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 4163 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 4164 Out->emitZeros(Padding); 4165 } 4166 4167 void AsmPrinter::emitXRayTable() { 4168 if (Sleds.empty()) 4169 return; 4170 4171 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 4172 const Function &F = MF->getFunction(); 4173 MCSection *InstMap = nullptr; 4174 MCSection *FnSledIndex = nullptr; 4175 const Triple &TT = TM.getTargetTriple(); 4176 // Use PC-relative addresses on all targets. 4177 if (TT.isOSBinFormatELF()) { 4178 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4179 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 4180 StringRef GroupName; 4181 if (F.hasComdat()) { 4182 Flags |= ELF::SHF_GROUP; 4183 GroupName = F.getComdat()->getName(); 4184 } 4185 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 4186 Flags, 0, GroupName, F.hasComdat(), 4187 MCSection::NonUniqueID, LinkedToSym); 4188 4189 if (TM.Options.XRayFunctionIndex) 4190 FnSledIndex = OutContext.getELFSection( 4191 "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), 4192 MCSection::NonUniqueID, LinkedToSym); 4193 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 4194 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 4195 MachO::S_ATTR_LIVE_SUPPORT, 4196 SectionKind::getReadOnlyWithRel()); 4197 if (TM.Options.XRayFunctionIndex) 4198 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 4199 MachO::S_ATTR_LIVE_SUPPORT, 4200 SectionKind::getReadOnly()); 4201 } else { 4202 llvm_unreachable("Unsupported target"); 4203 } 4204 4205 auto WordSizeBytes = MAI->getCodePointerSize(); 4206 4207 // Now we switch to the instrumentation map section. Because this is done 4208 // per-function, we are able to create an index entry that will represent the 4209 // range of sleds associated with a function. 4210 auto &Ctx = OutContext; 4211 MCSymbol *SledsStart = 4212 OutContext.createLinkerPrivateSymbol("xray_sleds_start"); 4213 OutStreamer->switchSection(InstMap); 4214 OutStreamer->emitLabel(SledsStart); 4215 for (const auto &Sled : Sleds) { 4216 MCSymbol *Dot = Ctx.createTempSymbol(); 4217 OutStreamer->emitLabel(Dot); 4218 OutStreamer->emitValueImpl( 4219 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 4220 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4221 WordSizeBytes); 4222 OutStreamer->emitValueImpl( 4223 MCBinaryExpr::createSub( 4224 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 4225 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 4226 MCConstantExpr::create(WordSizeBytes, Ctx), 4227 Ctx), 4228 Ctx), 4229 WordSizeBytes); 4230 Sled.emit(WordSizeBytes, OutStreamer.get()); 4231 } 4232 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 4233 OutStreamer->emitLabel(SledsEnd); 4234 4235 // We then emit a single entry in the index per function. We use the symbols 4236 // that bound the instrumentation map as the range for a specific function. 4237 // Each entry here will be 2 * word size aligned, as we're writing down two 4238 // pointers. This should work for both 32-bit and 64-bit platforms. 4239 if (FnSledIndex) { 4240 OutStreamer->switchSection(FnSledIndex); 4241 OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), 4242 &getSubtargetInfo()); 4243 // For Mach-O, use an "l" symbol as the atom of this subsection. The label 4244 // difference uses a SUBTRACTOR external relocation which references the 4245 // symbol. 4246 MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx"); 4247 OutStreamer->emitLabel(Dot); 4248 OutStreamer->emitValueImpl( 4249 MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx), 4250 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4251 WordSizeBytes); 4252 OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx), 4253 WordSizeBytes); 4254 OutStreamer->switchSection(PrevSection); 4255 } 4256 Sleds.clear(); 4257 } 4258 4259 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 4260 SledKind Kind, uint8_t Version) { 4261 const Function &F = MI.getMF()->getFunction(); 4262 auto Attr = F.getFnAttribute("function-instrument"); 4263 bool LogArgs = F.hasFnAttribute("xray-log-args"); 4264 bool AlwaysInstrument = 4265 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 4266 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 4267 Kind = SledKind::LOG_ARGS_ENTER; 4268 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 4269 AlwaysInstrument, &F, Version}); 4270 } 4271 4272 void AsmPrinter::emitPatchableFunctionEntries() { 4273 const Function &F = MF->getFunction(); 4274 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 4275 (void)F.getFnAttribute("patchable-function-prefix") 4276 .getValueAsString() 4277 .getAsInteger(10, PatchableFunctionPrefix); 4278 (void)F.getFnAttribute("patchable-function-entry") 4279 .getValueAsString() 4280 .getAsInteger(10, PatchableFunctionEntry); 4281 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 4282 return; 4283 const unsigned PointerSize = getPointerSize(); 4284 if (TM.getTargetTriple().isOSBinFormatELF()) { 4285 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 4286 const MCSymbolELF *LinkedToSym = nullptr; 4287 StringRef GroupName; 4288 4289 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 4290 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 4291 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 4292 Flags |= ELF::SHF_LINK_ORDER; 4293 if (F.hasComdat()) { 4294 Flags |= ELF::SHF_GROUP; 4295 GroupName = F.getComdat()->getName(); 4296 } 4297 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4298 } 4299 OutStreamer->switchSection(OutContext.getELFSection( 4300 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 4301 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 4302 emitAlignment(Align(PointerSize)); 4303 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 4304 } 4305 } 4306 4307 uint16_t AsmPrinter::getDwarfVersion() const { 4308 return OutStreamer->getContext().getDwarfVersion(); 4309 } 4310 4311 void AsmPrinter::setDwarfVersion(uint16_t Version) { 4312 OutStreamer->getContext().setDwarfVersion(Version); 4313 } 4314 4315 bool AsmPrinter::isDwarf64() const { 4316 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 4317 } 4318 4319 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 4320 return dwarf::getDwarfOffsetByteSize( 4321 OutStreamer->getContext().getDwarfFormat()); 4322 } 4323 4324 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 4325 return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()), 4326 OutStreamer->getContext().getDwarfFormat(), 4327 doesDwarfUseRelocationsAcrossSections()}; 4328 } 4329 4330 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 4331 return dwarf::getUnitLengthFieldByteSize( 4332 OutStreamer->getContext().getDwarfFormat()); 4333 } 4334 4335 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, 4336 codeview::JumpTableEntrySize> 4337 AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, 4338 const MCSymbol *BranchLabel) const { 4339 const auto TLI = MF->getSubtarget().getTargetLowering(); 4340 const auto BaseExpr = 4341 TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext()); 4342 const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol(); 4343 4344 // By default, for the architectures that support CodeView, 4345 // EK_LabelDifference32 is implemented as an Int32 from the base address. 4346 return std::make_tuple(Base, 0, BranchLabel, 4347 codeview::JumpTableEntrySize::Int32); 4348 } 4349