1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStringTable.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/Format.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/Path.h" 112 #include "llvm/Support/TargetRegistry.h" 113 #include "llvm/Support/Timer.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include "llvm/Target/TargetLoweringObjectFile.h" 116 #include "llvm/Target/TargetMachine.h" 117 #include "llvm/Target/TargetOptions.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cinttypes> 121 #include <cstdint> 122 #include <iterator> 123 #include <limits> 124 #include <memory> 125 #include <string> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "asm-printer" 132 133 static const char *const DWARFGroupName = "dwarf"; 134 static const char *const DWARFGroupDescription = "DWARF Emission"; 135 static const char *const DbgTimerName = "emit"; 136 static const char *const DbgTimerDescription = "Debug Info Emission"; 137 static const char *const EHTimerName = "write_exception"; 138 static const char *const EHTimerDescription = "DWARF Exception Writer"; 139 static const char *const CFGuardName = "Control Flow Guard"; 140 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 141 static const char *const CodeViewLineTablesGroupName = "linetables"; 142 static const char *const CodeViewLineTablesGroupDescription = 143 "CodeView Line Tables"; 144 145 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 146 147 static cl::opt<bool> EnableRemarksSection( 148 "remarks-section", 149 cl::desc("Emit a section containing remark diagnostics metadata"), 150 cl::init(false)); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 163 /// value in log2 form. This rounds up to the preferred alignment if possible 164 /// and legal. 165 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 166 unsigned InBits = 0) { 167 unsigned NumBits = 0; 168 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 169 NumBits = DL.getPreferredAlignmentLog(GVar); 170 171 // If InBits is specified, round it to it. 172 if (InBits > NumBits) 173 NumBits = InBits; 174 175 // If the GV has a specified alignment, take it into account. 176 if (GV->getAlignment() == 0) 177 return NumBits; 178 179 unsigned GVAlign = Log2_32(GV->getAlignment()); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (GVAlign > NumBits || GV->hasSection()) 184 NumBits = GVAlign; 185 return NumBits; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 196 197 if (GCMetadataPrinters) { 198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 199 200 delete &GCMap; 201 GCMetadataPrinters = nullptr; 202 } 203 } 204 205 bool AsmPrinter::isPositionIndependent() const { 206 return TM.isPositionIndependent(); 207 } 208 209 /// getFunctionNumber - Return a unique ID for the current function. 210 unsigned AsmPrinter::getFunctionNumber() const { 211 return MF->getFunctionNumber(); 212 } 213 214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 215 return *TM.getObjFileLowering(); 216 } 217 218 const DataLayout &AsmPrinter::getDataLayout() const { 219 return MMI->getModule()->getDataLayout(); 220 } 221 222 // Do not use the cached DataLayout because some client use it without a Module 223 // (dsymutil, llvm-dwarfdump). 224 unsigned AsmPrinter::getPointerSize() const { 225 return TM.getPointerSize(0); // FIXME: Default address space 226 } 227 228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 230 return MF->getSubtarget<MCSubtargetInfo>(); 231 } 232 233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 234 S.EmitInstruction(Inst, getSubtargetInfo()); 235 } 236 237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 238 assert(DD && "Dwarf debug file is not defined."); 239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 241 } 242 243 /// getCurrentSection() - Return the current section we are emitting to. 244 const MCSection *AsmPrinter::getCurrentSection() const { 245 return OutStreamer->getCurrentSectionOnly(); 246 } 247 248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 249 AU.setPreservesAll(); 250 MachineFunctionPass::getAnalysisUsage(AU); 251 AU.addRequired<MachineModuleInfo>(); 252 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 253 AU.addRequired<GCModuleInfo>(); 254 } 255 256 bool AsmPrinter::doInitialization(Module &M) { 257 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 258 259 // Initialize TargetLoweringObjectFile. 260 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 261 .Initialize(OutContext, TM); 262 263 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 264 .getModuleMetadata(M); 265 266 OutStreamer->InitSections(false); 267 268 // Emit the version-min deployment target directive if needed. 269 // 270 // FIXME: If we end up with a collection of these sorts of Darwin-specific 271 // or ELF-specific things, it may make sense to have a platform helper class 272 // that will work with the target helper class. For now keep it here, as the 273 // alternative is duplicated code in each of the target asm printers that 274 // use the directive, where it would need the same conditionalization 275 // anyway. 276 const Triple &Target = TM.getTargetTriple(); 277 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 278 279 // Allow the target to emit any magic that it wants at the start of the file. 280 EmitStartOfAsmFile(M); 281 282 // Very minimal debug info. It is ignored if we emit actual debug info. If we 283 // don't, this at least helps the user find where a global came from. 284 if (MAI->hasSingleParameterDotFile()) { 285 // .file "foo.c" 286 OutStreamer->EmitFileDirective( 287 llvm::sys::path::filename(M.getSourceFileName())); 288 } 289 290 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 291 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 292 for (auto &I : *MI) 293 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 294 MP->beginAssembly(M, *MI, *this); 295 296 // Emit module-level inline asm if it exists. 297 if (!M.getModuleInlineAsm().empty()) { 298 // We're at the module level. Construct MCSubtarget from the default CPU 299 // and target triple. 300 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 301 TM.getTargetTriple().str(), TM.getTargetCPU(), 302 TM.getTargetFeatureString())); 303 OutStreamer->AddComment("Start of file scope inline assembly"); 304 OutStreamer->AddBlankLine(); 305 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 306 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 307 OutStreamer->AddComment("End of file scope inline assembly"); 308 OutStreamer->AddBlankLine(); 309 } 310 311 if (MAI->doesSupportDebugInformation()) { 312 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 313 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 314 Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this), 315 DbgTimerName, DbgTimerDescription, 316 CodeViewLineTablesGroupName, 317 CodeViewLineTablesGroupDescription); 318 } 319 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 320 DD = new DwarfDebug(this, &M); 321 DD->beginModule(); 322 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 323 DbgTimerDescription, DWARFGroupName, 324 DWARFGroupDescription); 325 } 326 } 327 328 switch (MAI->getExceptionHandlingType()) { 329 case ExceptionHandling::SjLj: 330 case ExceptionHandling::DwarfCFI: 331 case ExceptionHandling::ARM: 332 isCFIMoveForDebugging = true; 333 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 334 break; 335 for (auto &F: M.getFunctionList()) { 336 // If the module contains any function with unwind data, 337 // .eh_frame has to be emitted. 338 // Ignore functions that won't get emitted. 339 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 340 isCFIMoveForDebugging = false; 341 break; 342 } 343 } 344 break; 345 default: 346 isCFIMoveForDebugging = false; 347 break; 348 } 349 350 EHStreamer *ES = nullptr; 351 switch (MAI->getExceptionHandlingType()) { 352 case ExceptionHandling::None: 353 break; 354 case ExceptionHandling::SjLj: 355 case ExceptionHandling::DwarfCFI: 356 ES = new DwarfCFIException(this); 357 break; 358 case ExceptionHandling::ARM: 359 ES = new ARMException(this); 360 break; 361 case ExceptionHandling::WinEH: 362 switch (MAI->getWinEHEncodingType()) { 363 default: llvm_unreachable("unsupported unwinding information encoding"); 364 case WinEH::EncodingType::Invalid: 365 break; 366 case WinEH::EncodingType::X86: 367 case WinEH::EncodingType::Itanium: 368 ES = new WinException(this); 369 break; 370 } 371 break; 372 case ExceptionHandling::Wasm: 373 ES = new WasmException(this); 374 break; 375 } 376 if (ES) 377 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 378 EHTimerDescription, DWARFGroupName, 379 DWARFGroupDescription); 380 381 if (mdconst::extract_or_null<ConstantInt>( 382 MMI->getModule()->getModuleFlag("cfguardtable"))) 383 Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName, 384 CFGuardDescription, DWARFGroupName, 385 DWARFGroupDescription); 386 387 return false; 388 } 389 390 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 391 if (!MAI.hasWeakDefCanBeHiddenDirective()) 392 return false; 393 394 return GV->canBeOmittedFromSymbolTable(); 395 } 396 397 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 398 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 399 switch (Linkage) { 400 case GlobalValue::CommonLinkage: 401 case GlobalValue::LinkOnceAnyLinkage: 402 case GlobalValue::LinkOnceODRLinkage: 403 case GlobalValue::WeakAnyLinkage: 404 case GlobalValue::WeakODRLinkage: 405 if (MAI->hasWeakDefDirective()) { 406 // .globl _foo 407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 408 409 if (!canBeHidden(GV, *MAI)) 410 // .weak_definition _foo 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 412 else 413 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 414 } else if (MAI->hasLinkOnceDirective()) { 415 // .globl _foo 416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 417 //NOTE: linkonce is handled by the section the symbol was assigned to. 418 } else { 419 // .weak _foo 420 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 421 } 422 return; 423 case GlobalValue::ExternalLinkage: 424 // If external, declare as a global symbol: .globl _foo 425 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 426 return; 427 case GlobalValue::PrivateLinkage: 428 case GlobalValue::InternalLinkage: 429 return; 430 case GlobalValue::AppendingLinkage: 431 case GlobalValue::AvailableExternallyLinkage: 432 case GlobalValue::ExternalWeakLinkage: 433 llvm_unreachable("Should never emit this"); 434 } 435 llvm_unreachable("Unknown linkage type!"); 436 } 437 438 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 439 const GlobalValue *GV) const { 440 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 441 } 442 443 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 444 return TM.getSymbol(GV); 445 } 446 447 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 448 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 449 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 450 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 451 "No emulated TLS variables in the common section"); 452 453 // Never emit TLS variable xyz in emulated TLS model. 454 // The initialization value is in __emutls_t.xyz instead of xyz. 455 if (IsEmuTLSVar) 456 return; 457 458 if (GV->hasInitializer()) { 459 // Check to see if this is a special global used by LLVM, if so, emit it. 460 if (EmitSpecialLLVMGlobal(GV)) 461 return; 462 463 // Skip the emission of global equivalents. The symbol can be emitted later 464 // on by emitGlobalGOTEquivs in case it turns out to be needed. 465 if (GlobalGOTEquivs.count(getSymbol(GV))) 466 return; 467 468 if (isVerbose()) { 469 // When printing the control variable __emutls_v.*, 470 // we don't need to print the original TLS variable name. 471 GV->printAsOperand(OutStreamer->GetCommentOS(), 472 /*PrintType=*/false, GV->getParent()); 473 OutStreamer->GetCommentOS() << '\n'; 474 } 475 } 476 477 MCSymbol *GVSym = getSymbol(GV); 478 MCSymbol *EmittedSym = GVSym; 479 480 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 481 // attributes. 482 // GV's or GVSym's attributes will be used for the EmittedSym. 483 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 484 485 if (!GV->hasInitializer()) // External globals require no extra code. 486 return; 487 488 GVSym->redefineIfPossible(); 489 if (GVSym->isDefined() || GVSym->isVariable()) 490 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 491 "' is already defined"); 492 493 if (MAI->hasDotTypeDotSizeDirective()) 494 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 495 496 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 497 498 const DataLayout &DL = GV->getParent()->getDataLayout(); 499 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 500 501 // If the alignment is specified, we *must* obey it. Overaligning a global 502 // with a specified alignment is a prompt way to break globals emitted to 503 // sections and expected to be contiguous (e.g. ObjC metadata). 504 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 505 506 for (const HandlerInfo &HI : Handlers) { 507 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 508 HI.TimerGroupName, HI.TimerGroupDescription, 509 TimePassesIsEnabled); 510 HI.Handler->setSymbolSize(GVSym, Size); 511 } 512 513 // Handle common symbols 514 if (GVKind.isCommon()) { 515 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 516 unsigned Align = 1 << AlignLog; 517 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 518 Align = 0; 519 520 // .comm _foo, 42, 4 521 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 522 return; 523 } 524 525 // Determine to which section this global should be emitted. 526 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 527 528 // If we have a bss global going to a section that supports the 529 // zerofill directive, do so here. 530 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 531 TheSection->isVirtualSection()) { 532 if (Size == 0) 533 Size = 1; // zerofill of 0 bytes is undefined. 534 unsigned Align = 1 << AlignLog; 535 EmitLinkage(GV, GVSym); 536 // .zerofill __DATA, __bss, _foo, 400, 5 537 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 538 return; 539 } 540 541 // If this is a BSS local symbol and we are emitting in the BSS 542 // section use .lcomm/.comm directive. 543 if (GVKind.isBSSLocal() && 544 getObjFileLowering().getBSSSection() == TheSection) { 545 if (Size == 0) 546 Size = 1; // .comm Foo, 0 is undefined, avoid it. 547 unsigned Align = 1 << AlignLog; 548 549 // Use .lcomm only if it supports user-specified alignment. 550 // Otherwise, while it would still be correct to use .lcomm in some 551 // cases (e.g. when Align == 1), the external assembler might enfore 552 // some -unknown- default alignment behavior, which could cause 553 // spurious differences between external and integrated assembler. 554 // Prefer to simply fall back to .local / .comm in this case. 555 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 556 // .lcomm _foo, 42 557 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 558 return; 559 } 560 561 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 562 Align = 0; 563 564 // .local _foo 565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 566 // .comm _foo, 42, 4 567 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 568 return; 569 } 570 571 // Handle thread local data for mach-o which requires us to output an 572 // additional structure of data and mangle the original symbol so that we 573 // can reference it later. 574 // 575 // TODO: This should become an "emit thread local global" method on TLOF. 576 // All of this macho specific stuff should be sunk down into TLOFMachO and 577 // stuff like "TLSExtraDataSection" should no longer be part of the parent 578 // TLOF class. This will also make it more obvious that stuff like 579 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 580 // specific code. 581 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 582 // Emit the .tbss symbol 583 MCSymbol *MangSym = 584 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 585 586 if (GVKind.isThreadBSS()) { 587 TheSection = getObjFileLowering().getTLSBSSSection(); 588 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 589 } else if (GVKind.isThreadData()) { 590 OutStreamer->SwitchSection(TheSection); 591 592 EmitAlignment(AlignLog, GV); 593 OutStreamer->EmitLabel(MangSym); 594 595 EmitGlobalConstant(GV->getParent()->getDataLayout(), 596 GV->getInitializer()); 597 } 598 599 OutStreamer->AddBlankLine(); 600 601 // Emit the variable struct for the runtime. 602 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 603 604 OutStreamer->SwitchSection(TLVSect); 605 // Emit the linkage here. 606 EmitLinkage(GV, GVSym); 607 OutStreamer->EmitLabel(GVSym); 608 609 // Three pointers in size: 610 // - __tlv_bootstrap - used to make sure support exists 611 // - spare pointer, used when mapped by the runtime 612 // - pointer to mangled symbol above with initializer 613 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 614 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 615 PtrSize); 616 OutStreamer->EmitIntValue(0, PtrSize); 617 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 618 619 OutStreamer->AddBlankLine(); 620 return; 621 } 622 623 MCSymbol *EmittedInitSym = GVSym; 624 625 OutStreamer->SwitchSection(TheSection); 626 627 EmitLinkage(GV, EmittedInitSym); 628 EmitAlignment(AlignLog, GV); 629 630 OutStreamer->EmitLabel(EmittedInitSym); 631 632 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 633 634 if (MAI->hasDotTypeDotSizeDirective()) 635 // .size foo, 42 636 OutStreamer->emitELFSize(EmittedInitSym, 637 MCConstantExpr::create(Size, OutContext)); 638 639 OutStreamer->AddBlankLine(); 640 } 641 642 /// Emit the directive and value for debug thread local expression 643 /// 644 /// \p Value - The value to emit. 645 /// \p Size - The size of the integer (in bytes) to emit. 646 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 647 OutStreamer->EmitValue(Value, Size); 648 } 649 650 /// EmitFunctionHeader - This method emits the header for the current 651 /// function. 652 void AsmPrinter::EmitFunctionHeader() { 653 const Function &F = MF->getFunction(); 654 655 if (isVerbose()) 656 OutStreamer->GetCommentOS() 657 << "-- Begin function " 658 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 659 660 // Print out constants referenced by the function 661 EmitConstantPool(); 662 663 // Print the 'header' of function. 664 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 665 EmitVisibility(CurrentFnSym, F.getVisibility()); 666 667 EmitLinkage(&F, CurrentFnSym); 668 if (MAI->hasFunctionAlignment()) 669 EmitAlignment(MF->getAlignment(), &F); 670 671 if (MAI->hasDotTypeDotSizeDirective()) 672 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 673 674 if (F.hasFnAttribute(Attribute::Cold)) 675 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 676 677 if (isVerbose()) { 678 F.printAsOperand(OutStreamer->GetCommentOS(), 679 /*PrintType=*/false, F.getParent()); 680 OutStreamer->GetCommentOS() << '\n'; 681 } 682 683 // Emit the prefix data. 684 if (F.hasPrefixData()) { 685 if (MAI->hasSubsectionsViaSymbols()) { 686 // Preserving prefix data on platforms which use subsections-via-symbols 687 // is a bit tricky. Here we introduce a symbol for the prefix data 688 // and use the .alt_entry attribute to mark the function's real entry point 689 // as an alternative entry point to the prefix-data symbol. 690 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 691 OutStreamer->EmitLabel(PrefixSym); 692 693 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 694 695 // Emit an .alt_entry directive for the actual function symbol. 696 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 697 } else { 698 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 699 } 700 } 701 702 // Emit the CurrentFnSym. This is a virtual function to allow targets to 703 // do their wild and crazy things as required. 704 EmitFunctionEntryLabel(); 705 706 // If the function had address-taken blocks that got deleted, then we have 707 // references to the dangling symbols. Emit them at the start of the function 708 // so that we don't get references to undefined symbols. 709 std::vector<MCSymbol*> DeadBlockSyms; 710 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 711 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 712 OutStreamer->AddComment("Address taken block that was later removed"); 713 OutStreamer->EmitLabel(DeadBlockSyms[i]); 714 } 715 716 if (CurrentFnBegin) { 717 if (MAI->useAssignmentForEHBegin()) { 718 MCSymbol *CurPos = OutContext.createTempSymbol(); 719 OutStreamer->EmitLabel(CurPos); 720 OutStreamer->EmitAssignment(CurrentFnBegin, 721 MCSymbolRefExpr::create(CurPos, OutContext)); 722 } else { 723 OutStreamer->EmitLabel(CurrentFnBegin); 724 } 725 } 726 727 // Emit pre-function debug and/or EH information. 728 for (const HandlerInfo &HI : Handlers) { 729 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 730 HI.TimerGroupDescription, TimePassesIsEnabled); 731 HI.Handler->beginFunction(MF); 732 } 733 734 // Emit the prologue data. 735 if (F.hasPrologueData()) 736 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 737 } 738 739 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 740 /// function. This can be overridden by targets as required to do custom stuff. 741 void AsmPrinter::EmitFunctionEntryLabel() { 742 CurrentFnSym->redefineIfPossible(); 743 744 // The function label could have already been emitted if two symbols end up 745 // conflicting due to asm renaming. Detect this and emit an error. 746 if (CurrentFnSym->isVariable()) 747 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 748 "' is a protected alias"); 749 if (CurrentFnSym->isDefined()) 750 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 751 "' label emitted multiple times to assembly file"); 752 753 return OutStreamer->EmitLabel(CurrentFnSym); 754 } 755 756 /// emitComments - Pretty-print comments for instructions. 757 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 758 const MachineFunction *MF = MI.getMF(); 759 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 760 761 // Check for spills and reloads 762 763 // We assume a single instruction only has a spill or reload, not 764 // both. 765 Optional<unsigned> Size; 766 if ((Size = MI.getRestoreSize(TII))) { 767 CommentOS << *Size << "-byte Reload\n"; 768 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 769 if (*Size) 770 CommentOS << *Size << "-byte Folded Reload\n"; 771 } else if ((Size = MI.getSpillSize(TII))) { 772 CommentOS << *Size << "-byte Spill\n"; 773 } else if ((Size = MI.getFoldedSpillSize(TII))) { 774 if (*Size) 775 CommentOS << *Size << "-byte Folded Spill\n"; 776 } 777 778 // Check for spill-induced copies 779 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 780 CommentOS << " Reload Reuse\n"; 781 } 782 783 /// emitImplicitDef - This method emits the specified machine instruction 784 /// that is an implicit def. 785 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 786 unsigned RegNo = MI->getOperand(0).getReg(); 787 788 SmallString<128> Str; 789 raw_svector_ostream OS(Str); 790 OS << "implicit-def: " 791 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 792 793 OutStreamer->AddComment(OS.str()); 794 OutStreamer->AddBlankLine(); 795 } 796 797 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 798 std::string Str; 799 raw_string_ostream OS(Str); 800 OS << "kill:"; 801 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 802 const MachineOperand &Op = MI->getOperand(i); 803 assert(Op.isReg() && "KILL instruction must have only register operands"); 804 OS << ' ' << (Op.isDef() ? "def " : "killed ") 805 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 806 } 807 AP.OutStreamer->AddComment(OS.str()); 808 AP.OutStreamer->AddBlankLine(); 809 } 810 811 /// emitDebugValueComment - This method handles the target-independent form 812 /// of DBG_VALUE, returning true if it was able to do so. A false return 813 /// means the target will need to handle MI in EmitInstruction. 814 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 815 // This code handles only the 4-operand target-independent form. 816 if (MI->getNumOperands() != 4) 817 return false; 818 819 SmallString<128> Str; 820 raw_svector_ostream OS(Str); 821 OS << "DEBUG_VALUE: "; 822 823 const DILocalVariable *V = MI->getDebugVariable(); 824 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 825 StringRef Name = SP->getName(); 826 if (!Name.empty()) 827 OS << Name << ":"; 828 } 829 OS << V->getName(); 830 OS << " <- "; 831 832 // The second operand is only an offset if it's an immediate. 833 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 834 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 835 const DIExpression *Expr = MI->getDebugExpression(); 836 if (Expr->getNumElements()) { 837 OS << '['; 838 bool NeedSep = false; 839 for (auto Op : Expr->expr_ops()) { 840 if (NeedSep) 841 OS << ", "; 842 else 843 NeedSep = true; 844 OS << dwarf::OperationEncodingString(Op.getOp()); 845 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 846 OS << ' ' << Op.getArg(I); 847 } 848 OS << "] "; 849 } 850 851 // Register or immediate value. Register 0 means undef. 852 if (MI->getOperand(0).isFPImm()) { 853 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 854 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 855 OS << (double)APF.convertToFloat(); 856 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 857 OS << APF.convertToDouble(); 858 } else { 859 // There is no good way to print long double. Convert a copy to 860 // double. Ah well, it's only a comment. 861 bool ignored; 862 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 863 &ignored); 864 OS << "(long double) " << APF.convertToDouble(); 865 } 866 } else if (MI->getOperand(0).isImm()) { 867 OS << MI->getOperand(0).getImm(); 868 } else if (MI->getOperand(0).isCImm()) { 869 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 870 } else { 871 unsigned Reg; 872 if (MI->getOperand(0).isReg()) { 873 Reg = MI->getOperand(0).getReg(); 874 } else { 875 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 876 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 877 Offset += TFI->getFrameIndexReference(*AP.MF, 878 MI->getOperand(0).getIndex(), Reg); 879 MemLoc = true; 880 } 881 if (Reg == 0) { 882 // Suppress offset, it is not meaningful here. 883 OS << "undef"; 884 // NOTE: Want this comment at start of line, don't emit with AddComment. 885 AP.OutStreamer->emitRawComment(OS.str()); 886 return true; 887 } 888 if (MemLoc) 889 OS << '['; 890 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 891 } 892 893 if (MemLoc) 894 OS << '+' << Offset << ']'; 895 896 // NOTE: Want this comment at start of line, don't emit with AddComment. 897 AP.OutStreamer->emitRawComment(OS.str()); 898 return true; 899 } 900 901 /// This method handles the target-independent form of DBG_LABEL, returning 902 /// true if it was able to do so. A false return means the target will need 903 /// to handle MI in EmitInstruction. 904 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 905 if (MI->getNumOperands() != 1) 906 return false; 907 908 SmallString<128> Str; 909 raw_svector_ostream OS(Str); 910 OS << "DEBUG_LABEL: "; 911 912 const DILabel *V = MI->getDebugLabel(); 913 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 914 StringRef Name = SP->getName(); 915 if (!Name.empty()) 916 OS << Name << ":"; 917 } 918 OS << V->getName(); 919 920 // NOTE: Want this comment at start of line, don't emit with AddComment. 921 AP.OutStreamer->emitRawComment(OS.str()); 922 return true; 923 } 924 925 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 926 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 927 MF->getFunction().needsUnwindTableEntry()) 928 return CFI_M_EH; 929 930 if (MMI->hasDebugInfo()) 931 return CFI_M_Debug; 932 933 return CFI_M_None; 934 } 935 936 bool AsmPrinter::needsSEHMoves() { 937 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 938 } 939 940 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 941 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 942 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 943 ExceptionHandlingType != ExceptionHandling::ARM) 944 return; 945 946 if (needsCFIMoves() == CFI_M_None) 947 return; 948 949 // If there is no "real" instruction following this CFI instruction, skip 950 // emitting it; it would be beyond the end of the function's FDE range. 951 auto *MBB = MI.getParent(); 952 auto I = std::next(MI.getIterator()); 953 while (I != MBB->end() && I->isTransient()) 954 ++I; 955 if (I == MBB->instr_end() && 956 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 957 return; 958 959 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 960 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 961 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 962 emitCFIInstruction(CFI); 963 } 964 965 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 966 // The operands are the MCSymbol and the frame offset of the allocation. 967 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 968 int FrameOffset = MI.getOperand(1).getImm(); 969 970 // Emit a symbol assignment. 971 OutStreamer->EmitAssignment(FrameAllocSym, 972 MCConstantExpr::create(FrameOffset, OutContext)); 973 } 974 975 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 976 if (!MF.getTarget().Options.EmitStackSizeSection) 977 return; 978 979 MCSection *StackSizeSection = 980 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 981 if (!StackSizeSection) 982 return; 983 984 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 985 // Don't emit functions with dynamic stack allocations. 986 if (FrameInfo.hasVarSizedObjects()) 987 return; 988 989 OutStreamer->PushSection(); 990 OutStreamer->SwitchSection(StackSizeSection); 991 992 const MCSymbol *FunctionSymbol = getFunctionBegin(); 993 uint64_t StackSize = FrameInfo.getStackSize(); 994 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 995 OutStreamer->EmitULEB128IntValue(StackSize); 996 997 OutStreamer->PopSection(); 998 } 999 1000 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1001 MachineModuleInfo *MMI) { 1002 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1003 return true; 1004 1005 // We might emit an EH table that uses function begin and end labels even if 1006 // we don't have any landingpads. 1007 if (!MF.getFunction().hasPersonalityFn()) 1008 return false; 1009 return !isNoOpWithoutInvoke( 1010 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1011 } 1012 1013 /// EmitFunctionBody - This method emits the body and trailer for a 1014 /// function. 1015 void AsmPrinter::EmitFunctionBody() { 1016 EmitFunctionHeader(); 1017 1018 // Emit target-specific gunk before the function body. 1019 EmitFunctionBodyStart(); 1020 1021 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1022 1023 if (isVerbose()) { 1024 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1025 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1026 if (!MDT) { 1027 OwnedMDT = make_unique<MachineDominatorTree>(); 1028 OwnedMDT->getBase().recalculate(*MF); 1029 MDT = OwnedMDT.get(); 1030 } 1031 1032 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1033 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1034 if (!MLI) { 1035 OwnedMLI = make_unique<MachineLoopInfo>(); 1036 OwnedMLI->getBase().analyze(MDT->getBase()); 1037 MLI = OwnedMLI.get(); 1038 } 1039 } 1040 1041 // Print out code for the function. 1042 bool HasAnyRealCode = false; 1043 int NumInstsInFunction = 0; 1044 for (auto &MBB : *MF) { 1045 // Print a label for the basic block. 1046 EmitBasicBlockStart(MBB); 1047 for (auto &MI : MBB) { 1048 // Print the assembly for the instruction. 1049 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1050 !MI.isDebugInstr()) { 1051 HasAnyRealCode = true; 1052 ++NumInstsInFunction; 1053 } 1054 1055 // If there is a pre-instruction symbol, emit a label for it here. 1056 if (MCSymbol *S = MI.getPreInstrSymbol()) 1057 OutStreamer->EmitLabel(S); 1058 1059 if (ShouldPrintDebugScopes) { 1060 for (const HandlerInfo &HI : Handlers) { 1061 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1062 HI.TimerGroupName, HI.TimerGroupDescription, 1063 TimePassesIsEnabled); 1064 HI.Handler->beginInstruction(&MI); 1065 } 1066 } 1067 1068 if (isVerbose()) 1069 emitComments(MI, OutStreamer->GetCommentOS()); 1070 1071 switch (MI.getOpcode()) { 1072 case TargetOpcode::CFI_INSTRUCTION: 1073 emitCFIInstruction(MI); 1074 break; 1075 case TargetOpcode::LOCAL_ESCAPE: 1076 emitFrameAlloc(MI); 1077 break; 1078 case TargetOpcode::ANNOTATION_LABEL: 1079 case TargetOpcode::EH_LABEL: 1080 case TargetOpcode::GC_LABEL: 1081 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1082 break; 1083 case TargetOpcode::INLINEASM: 1084 case TargetOpcode::INLINEASM_BR: 1085 EmitInlineAsm(&MI); 1086 break; 1087 case TargetOpcode::DBG_VALUE: 1088 if (isVerbose()) { 1089 if (!emitDebugValueComment(&MI, *this)) 1090 EmitInstruction(&MI); 1091 } 1092 break; 1093 case TargetOpcode::DBG_LABEL: 1094 if (isVerbose()) { 1095 if (!emitDebugLabelComment(&MI, *this)) 1096 EmitInstruction(&MI); 1097 } 1098 break; 1099 case TargetOpcode::IMPLICIT_DEF: 1100 if (isVerbose()) emitImplicitDef(&MI); 1101 break; 1102 case TargetOpcode::KILL: 1103 if (isVerbose()) emitKill(&MI, *this); 1104 break; 1105 default: 1106 EmitInstruction(&MI); 1107 break; 1108 } 1109 1110 // If there is a post-instruction symbol, emit a label for it here. 1111 if (MCSymbol *S = MI.getPostInstrSymbol()) 1112 OutStreamer->EmitLabel(S); 1113 1114 if (ShouldPrintDebugScopes) { 1115 for (const HandlerInfo &HI : Handlers) { 1116 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1117 HI.TimerGroupName, HI.TimerGroupDescription, 1118 TimePassesIsEnabled); 1119 HI.Handler->endInstruction(); 1120 } 1121 } 1122 } 1123 1124 EmitBasicBlockEnd(MBB); 1125 } 1126 1127 EmittedInsts += NumInstsInFunction; 1128 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1129 MF->getFunction().getSubprogram(), 1130 &MF->front()); 1131 R << ore::NV("NumInstructions", NumInstsInFunction) 1132 << " instructions in function"; 1133 ORE->emit(R); 1134 1135 // If the function is empty and the object file uses .subsections_via_symbols, 1136 // then we need to emit *something* to the function body to prevent the 1137 // labels from collapsing together. Just emit a noop. 1138 // Similarly, don't emit empty functions on Windows either. It can lead to 1139 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1140 // after linking, causing the kernel not to load the binary: 1141 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1142 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1143 const Triple &TT = TM.getTargetTriple(); 1144 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1145 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1146 MCInst Noop; 1147 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1148 1149 // Targets can opt-out of emitting the noop here by leaving the opcode 1150 // unspecified. 1151 if (Noop.getOpcode()) { 1152 OutStreamer->AddComment("avoids zero-length function"); 1153 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1154 } 1155 } 1156 1157 const Function &F = MF->getFunction(); 1158 for (const auto &BB : F) { 1159 if (!BB.hasAddressTaken()) 1160 continue; 1161 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1162 if (Sym->isDefined()) 1163 continue; 1164 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1165 OutStreamer->EmitLabel(Sym); 1166 } 1167 1168 // Emit target-specific gunk after the function body. 1169 EmitFunctionBodyEnd(); 1170 1171 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1172 MAI->hasDotTypeDotSizeDirective()) { 1173 // Create a symbol for the end of function. 1174 CurrentFnEnd = createTempSymbol("func_end"); 1175 OutStreamer->EmitLabel(CurrentFnEnd); 1176 } 1177 1178 // If the target wants a .size directive for the size of the function, emit 1179 // it. 1180 if (MAI->hasDotTypeDotSizeDirective()) { 1181 // We can get the size as difference between the function label and the 1182 // temp label. 1183 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1184 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1185 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1186 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1187 } 1188 1189 for (const HandlerInfo &HI : Handlers) { 1190 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1191 HI.TimerGroupDescription, TimePassesIsEnabled); 1192 HI.Handler->markFunctionEnd(); 1193 } 1194 1195 // Print out jump tables referenced by the function. 1196 EmitJumpTableInfo(); 1197 1198 // Emit post-function debug and/or EH information. 1199 for (const HandlerInfo &HI : Handlers) { 1200 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1201 HI.TimerGroupDescription, TimePassesIsEnabled); 1202 HI.Handler->endFunction(MF); 1203 } 1204 1205 // Emit section containing stack size metadata. 1206 emitStackSizeSection(*MF); 1207 1208 if (isVerbose()) 1209 OutStreamer->GetCommentOS() << "-- End function\n"; 1210 1211 OutStreamer->AddBlankLine(); 1212 } 1213 1214 /// Compute the number of Global Variables that uses a Constant. 1215 static unsigned getNumGlobalVariableUses(const Constant *C) { 1216 if (!C) 1217 return 0; 1218 1219 if (isa<GlobalVariable>(C)) 1220 return 1; 1221 1222 unsigned NumUses = 0; 1223 for (auto *CU : C->users()) 1224 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1225 1226 return NumUses; 1227 } 1228 1229 /// Only consider global GOT equivalents if at least one user is a 1230 /// cstexpr inside an initializer of another global variables. Also, don't 1231 /// handle cstexpr inside instructions. During global variable emission, 1232 /// candidates are skipped and are emitted later in case at least one cstexpr 1233 /// isn't replaced by a PC relative GOT entry access. 1234 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1235 unsigned &NumGOTEquivUsers) { 1236 // Global GOT equivalents are unnamed private globals with a constant 1237 // pointer initializer to another global symbol. They must point to a 1238 // GlobalVariable or Function, i.e., as GlobalValue. 1239 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1240 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1241 !isa<GlobalValue>(GV->getOperand(0))) 1242 return false; 1243 1244 // To be a got equivalent, at least one of its users need to be a constant 1245 // expression used by another global variable. 1246 for (auto *U : GV->users()) 1247 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1248 1249 return NumGOTEquivUsers > 0; 1250 } 1251 1252 /// Unnamed constant global variables solely contaning a pointer to 1253 /// another globals variable is equivalent to a GOT table entry; it contains the 1254 /// the address of another symbol. Optimize it and replace accesses to these 1255 /// "GOT equivalents" by using the GOT entry for the final global instead. 1256 /// Compute GOT equivalent candidates among all global variables to avoid 1257 /// emitting them if possible later on, after it use is replaced by a GOT entry 1258 /// access. 1259 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1260 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1261 return; 1262 1263 for (const auto &G : M.globals()) { 1264 unsigned NumGOTEquivUsers = 0; 1265 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1266 continue; 1267 1268 const MCSymbol *GOTEquivSym = getSymbol(&G); 1269 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1270 } 1271 } 1272 1273 /// Constant expressions using GOT equivalent globals may not be eligible 1274 /// for PC relative GOT entry conversion, in such cases we need to emit such 1275 /// globals we previously omitted in EmitGlobalVariable. 1276 void AsmPrinter::emitGlobalGOTEquivs() { 1277 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1278 return; 1279 1280 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1281 for (auto &I : GlobalGOTEquivs) { 1282 const GlobalVariable *GV = I.second.first; 1283 unsigned Cnt = I.second.second; 1284 if (Cnt) 1285 FailedCandidates.push_back(GV); 1286 } 1287 GlobalGOTEquivs.clear(); 1288 1289 for (auto *GV : FailedCandidates) 1290 EmitGlobalVariable(GV); 1291 } 1292 1293 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1294 const GlobalIndirectSymbol& GIS) { 1295 MCSymbol *Name = getSymbol(&GIS); 1296 1297 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1298 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1299 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1300 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1301 else 1302 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1303 1304 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1305 1306 // Treat bitcasts of functions as functions also. This is important at least 1307 // on WebAssembly where object and function addresses can't alias each other. 1308 if (!IsFunction) 1309 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1310 if (CE->getOpcode() == Instruction::BitCast) 1311 IsFunction = 1312 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1313 1314 // Set the symbol type to function if the alias has a function type. 1315 // This affects codegen when the aliasee is not a function. 1316 if (IsFunction) { 1317 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1318 if (isa<GlobalIFunc>(GIS)) 1319 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1320 } 1321 1322 EmitVisibility(Name, GIS.getVisibility()); 1323 1324 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1325 1326 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1327 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1328 1329 // Emit the directives as assignments aka .set: 1330 OutStreamer->EmitAssignment(Name, Expr); 1331 1332 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1333 // If the aliasee does not correspond to a symbol in the output, i.e. the 1334 // alias is not of an object or the aliased object is private, then set the 1335 // size of the alias symbol from the type of the alias. We don't do this in 1336 // other situations as the alias and aliasee having differing types but same 1337 // size may be intentional. 1338 const GlobalObject *BaseObject = GA->getBaseObject(); 1339 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1340 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1341 const DataLayout &DL = M.getDataLayout(); 1342 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1343 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1344 } 1345 } 1346 } 1347 1348 void AsmPrinter::emitRemarksSection(Module &M) { 1349 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1350 if (!RS) 1351 return; 1352 const remarks::Serializer &Serializer = RS->getSerializer(); 1353 1354 // Switch to the right section: .remarks/__remarks. 1355 MCSection *RemarksSection = 1356 OutContext.getObjectFileInfo()->getRemarksSection(); 1357 OutStreamer->SwitchSection(RemarksSection); 1358 1359 // Emit the magic number. 1360 OutStreamer->EmitBytes(remarks::Magic); 1361 // Explicitly emit a '\0'. 1362 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1363 1364 // Emit the version number: little-endian uint64_t. 1365 // The version number is located at the offset 0x0 in the section. 1366 std::array<char, 8> Version; 1367 support::endian::write64le(Version.data(), remarks::Version); 1368 OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size())); 1369 1370 // Emit the string table in the section. 1371 // Note: we need to use the streamer here to emit it in the section. We can't 1372 // just use the serialize function with a raw_ostream because of the way 1373 // MCStreamers work. 1374 uint64_t StrTabSize = 1375 Serializer.StrTab ? Serializer.StrTab->SerializedSize : 0; 1376 // Emit the total size of the string table (the size itself excluded): 1377 // little-endian uint64_t. 1378 // The total size is located after the version number. 1379 // Note: even if no string table is used, emit 0. 1380 std::array<char, 8> StrTabSizeBuf; 1381 support::endian::write64le(StrTabSizeBuf.data(), StrTabSize); 1382 OutStreamer->EmitBinaryData( 1383 StringRef(StrTabSizeBuf.data(), StrTabSizeBuf.size())); 1384 1385 if (const Optional<remarks::StringTable> &StrTab = Serializer.StrTab) { 1386 std::vector<StringRef> StrTabStrings = StrTab->serialize(); 1387 // Emit a list of null-terminated strings. 1388 // Note: the order is important here: the ID used in the remarks corresponds 1389 // to the position of the string in the section. 1390 for (StringRef Str : StrTabStrings) { 1391 OutStreamer->EmitBytes(Str); 1392 // Explicitly emit a '\0'. 1393 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1394 } 1395 } 1396 1397 // Emit the null-terminated absolute path to the remark file. 1398 // The path is located at the offset 0x4 in the section. 1399 StringRef FilenameRef = RS->getFilename(); 1400 SmallString<128> Filename = FilenameRef; 1401 sys::fs::make_absolute(Filename); 1402 assert(!Filename.empty() && "The filename can't be empty."); 1403 OutStreamer->EmitBytes(Filename); 1404 // Explicitly emit a '\0'. 1405 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1406 } 1407 1408 bool AsmPrinter::doFinalization(Module &M) { 1409 // Set the MachineFunction to nullptr so that we can catch attempted 1410 // accesses to MF specific features at the module level and so that 1411 // we can conditionalize accesses based on whether or not it is nullptr. 1412 MF = nullptr; 1413 1414 // Gather all GOT equivalent globals in the module. We really need two 1415 // passes over the globals: one to compute and another to avoid its emission 1416 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1417 // where the got equivalent shows up before its use. 1418 computeGlobalGOTEquivs(M); 1419 1420 // Emit global variables. 1421 for (const auto &G : M.globals()) 1422 EmitGlobalVariable(&G); 1423 1424 // Emit remaining GOT equivalent globals. 1425 emitGlobalGOTEquivs(); 1426 1427 // Emit visibility info for declarations 1428 for (const Function &F : M) { 1429 if (!F.isDeclarationForLinker()) 1430 continue; 1431 GlobalValue::VisibilityTypes V = F.getVisibility(); 1432 if (V == GlobalValue::DefaultVisibility) 1433 continue; 1434 1435 MCSymbol *Name = getSymbol(&F); 1436 EmitVisibility(Name, V, false); 1437 } 1438 1439 // Emit the remarks section contents. 1440 // FIXME: Figure out when is the safest time to emit this section. It should 1441 // not come after debug info. 1442 if (EnableRemarksSection) 1443 emitRemarksSection(M); 1444 1445 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1446 1447 TLOF.emitModuleMetadata(*OutStreamer, M); 1448 1449 if (TM.getTargetTriple().isOSBinFormatELF()) { 1450 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1451 1452 // Output stubs for external and common global variables. 1453 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1454 if (!Stubs.empty()) { 1455 OutStreamer->SwitchSection(TLOF.getDataSection()); 1456 const DataLayout &DL = M.getDataLayout(); 1457 1458 EmitAlignment(Log2_32(DL.getPointerSize())); 1459 for (const auto &Stub : Stubs) { 1460 OutStreamer->EmitLabel(Stub.first); 1461 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1462 DL.getPointerSize()); 1463 } 1464 } 1465 } 1466 1467 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1468 MachineModuleInfoCOFF &MMICOFF = 1469 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1470 1471 // Output stubs for external and common global variables. 1472 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1473 if (!Stubs.empty()) { 1474 const DataLayout &DL = M.getDataLayout(); 1475 1476 for (const auto &Stub : Stubs) { 1477 SmallString<256> SectionName = StringRef(".rdata$"); 1478 SectionName += Stub.first->getName(); 1479 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1480 SectionName, 1481 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1482 COFF::IMAGE_SCN_LNK_COMDAT, 1483 SectionKind::getReadOnly(), Stub.first->getName(), 1484 COFF::IMAGE_COMDAT_SELECT_ANY)); 1485 EmitAlignment(Log2_32(DL.getPointerSize())); 1486 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1487 OutStreamer->EmitLabel(Stub.first); 1488 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1489 DL.getPointerSize()); 1490 } 1491 } 1492 } 1493 1494 // Finalize debug and EH information. 1495 for (const HandlerInfo &HI : Handlers) { 1496 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1497 HI.TimerGroupDescription, TimePassesIsEnabled); 1498 HI.Handler->endModule(); 1499 } 1500 Handlers.clear(); 1501 DD = nullptr; 1502 1503 // If the target wants to know about weak references, print them all. 1504 if (MAI->getWeakRefDirective()) { 1505 // FIXME: This is not lazy, it would be nice to only print weak references 1506 // to stuff that is actually used. Note that doing so would require targets 1507 // to notice uses in operands (due to constant exprs etc). This should 1508 // happen with the MC stuff eventually. 1509 1510 // Print out module-level global objects here. 1511 for (const auto &GO : M.global_objects()) { 1512 if (!GO.hasExternalWeakLinkage()) 1513 continue; 1514 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1515 } 1516 } 1517 1518 OutStreamer->AddBlankLine(); 1519 1520 // Print aliases in topological order, that is, for each alias a = b, 1521 // b must be printed before a. 1522 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1523 // such an order to generate correct TOC information. 1524 SmallVector<const GlobalAlias *, 16> AliasStack; 1525 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1526 for (const auto &Alias : M.aliases()) { 1527 for (const GlobalAlias *Cur = &Alias; Cur; 1528 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1529 if (!AliasVisited.insert(Cur).second) 1530 break; 1531 AliasStack.push_back(Cur); 1532 } 1533 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1534 emitGlobalIndirectSymbol(M, *AncestorAlias); 1535 AliasStack.clear(); 1536 } 1537 for (const auto &IFunc : M.ifuncs()) 1538 emitGlobalIndirectSymbol(M, IFunc); 1539 1540 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1541 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1542 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1543 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1544 MP->finishAssembly(M, *MI, *this); 1545 1546 // Emit llvm.ident metadata in an '.ident' directive. 1547 EmitModuleIdents(M); 1548 1549 // Emit bytes for llvm.commandline metadata. 1550 EmitModuleCommandLines(M); 1551 1552 // Emit __morestack address if needed for indirect calls. 1553 if (MMI->usesMorestackAddr()) { 1554 unsigned Align = 1; 1555 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1556 getDataLayout(), SectionKind::getReadOnly(), 1557 /*C=*/nullptr, Align); 1558 OutStreamer->SwitchSection(ReadOnlySection); 1559 1560 MCSymbol *AddrSymbol = 1561 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1562 OutStreamer->EmitLabel(AddrSymbol); 1563 1564 unsigned PtrSize = MAI->getCodePointerSize(); 1565 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1566 PtrSize); 1567 } 1568 1569 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1570 // split-stack is used. 1571 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1572 OutStreamer->SwitchSection( 1573 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1574 if (MMI->hasNosplitStack()) 1575 OutStreamer->SwitchSection( 1576 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1577 } 1578 1579 // If we don't have any trampolines, then we don't require stack memory 1580 // to be executable. Some targets have a directive to declare this. 1581 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1582 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1583 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1584 OutStreamer->SwitchSection(S); 1585 1586 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1587 // Emit /EXPORT: flags for each exported global as necessary. 1588 const auto &TLOF = getObjFileLowering(); 1589 std::string Flags; 1590 1591 for (const GlobalValue &GV : M.global_values()) { 1592 raw_string_ostream OS(Flags); 1593 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1594 OS.flush(); 1595 if (!Flags.empty()) { 1596 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1597 OutStreamer->EmitBytes(Flags); 1598 } 1599 Flags.clear(); 1600 } 1601 1602 // Emit /INCLUDE: flags for each used global as necessary. 1603 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1604 assert(LU->hasInitializer() && 1605 "expected llvm.used to have an initializer"); 1606 assert(isa<ArrayType>(LU->getValueType()) && 1607 "expected llvm.used to be an array type"); 1608 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1609 for (const Value *Op : A->operands()) { 1610 const auto *GV = 1611 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1612 // Global symbols with internal or private linkage are not visible to 1613 // the linker, and thus would cause an error when the linker tried to 1614 // preserve the symbol due to the `/include:` directive. 1615 if (GV->hasLocalLinkage()) 1616 continue; 1617 1618 raw_string_ostream OS(Flags); 1619 TLOF.emitLinkerFlagsForUsed(OS, GV); 1620 OS.flush(); 1621 1622 if (!Flags.empty()) { 1623 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1624 OutStreamer->EmitBytes(Flags); 1625 } 1626 Flags.clear(); 1627 } 1628 } 1629 } 1630 } 1631 1632 if (TM.Options.EmitAddrsig) { 1633 // Emit address-significance attributes for all globals. 1634 OutStreamer->EmitAddrsig(); 1635 for (const GlobalValue &GV : M.global_values()) 1636 if (!GV.use_empty() && !GV.isThreadLocal() && 1637 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1638 !GV.hasAtLeastLocalUnnamedAddr()) 1639 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1640 } 1641 1642 // Emit symbol partition specifications (ELF only). 1643 if (TM.getTargetTriple().isOSBinFormatELF()) { 1644 unsigned UniqueID = 0; 1645 for (const GlobalValue &GV : M.global_values()) { 1646 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1647 GV.getVisibility() != GlobalValue::DefaultVisibility) 1648 continue; 1649 1650 OutStreamer->SwitchSection(OutContext.getELFSection( 1651 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1652 OutStreamer->EmitBytes(GV.getPartition()); 1653 OutStreamer->EmitZeros(1); 1654 OutStreamer->EmitValue( 1655 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1656 MAI->getCodePointerSize()); 1657 } 1658 } 1659 1660 // Allow the target to emit any magic that it wants at the end of the file, 1661 // after everything else has gone out. 1662 EmitEndOfAsmFile(M); 1663 1664 MMI = nullptr; 1665 1666 OutStreamer->Finish(); 1667 OutStreamer->reset(); 1668 OwnedMLI.reset(); 1669 OwnedMDT.reset(); 1670 1671 return false; 1672 } 1673 1674 MCSymbol *AsmPrinter::getCurExceptionSym() { 1675 if (!CurExceptionSym) 1676 CurExceptionSym = createTempSymbol("exception"); 1677 return CurExceptionSym; 1678 } 1679 1680 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1681 this->MF = &MF; 1682 // Get the function symbol. 1683 CurrentFnSym = getSymbol(&MF.getFunction()); 1684 CurrentFnSymForSize = CurrentFnSym; 1685 CurrentFnBegin = nullptr; 1686 CurExceptionSym = nullptr; 1687 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1688 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1689 MF.getTarget().Options.EmitStackSizeSection) { 1690 CurrentFnBegin = createTempSymbol("func_begin"); 1691 if (NeedsLocalForSize) 1692 CurrentFnSymForSize = CurrentFnBegin; 1693 } 1694 1695 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1696 } 1697 1698 namespace { 1699 1700 // Keep track the alignment, constpool entries per Section. 1701 struct SectionCPs { 1702 MCSection *S; 1703 unsigned Alignment; 1704 SmallVector<unsigned, 4> CPEs; 1705 1706 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1707 }; 1708 1709 } // end anonymous namespace 1710 1711 /// EmitConstantPool - Print to the current output stream assembly 1712 /// representations of the constants in the constant pool MCP. This is 1713 /// used to print out constants which have been "spilled to memory" by 1714 /// the code generator. 1715 void AsmPrinter::EmitConstantPool() { 1716 const MachineConstantPool *MCP = MF->getConstantPool(); 1717 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1718 if (CP.empty()) return; 1719 1720 // Calculate sections for constant pool entries. We collect entries to go into 1721 // the same section together to reduce amount of section switch statements. 1722 SmallVector<SectionCPs, 4> CPSections; 1723 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1724 const MachineConstantPoolEntry &CPE = CP[i]; 1725 unsigned Align = CPE.getAlignment(); 1726 1727 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1728 1729 const Constant *C = nullptr; 1730 if (!CPE.isMachineConstantPoolEntry()) 1731 C = CPE.Val.ConstVal; 1732 1733 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1734 Kind, C, Align); 1735 1736 // The number of sections are small, just do a linear search from the 1737 // last section to the first. 1738 bool Found = false; 1739 unsigned SecIdx = CPSections.size(); 1740 while (SecIdx != 0) { 1741 if (CPSections[--SecIdx].S == S) { 1742 Found = true; 1743 break; 1744 } 1745 } 1746 if (!Found) { 1747 SecIdx = CPSections.size(); 1748 CPSections.push_back(SectionCPs(S, Align)); 1749 } 1750 1751 if (Align > CPSections[SecIdx].Alignment) 1752 CPSections[SecIdx].Alignment = Align; 1753 CPSections[SecIdx].CPEs.push_back(i); 1754 } 1755 1756 // Now print stuff into the calculated sections. 1757 const MCSection *CurSection = nullptr; 1758 unsigned Offset = 0; 1759 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1760 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1761 unsigned CPI = CPSections[i].CPEs[j]; 1762 MCSymbol *Sym = GetCPISymbol(CPI); 1763 if (!Sym->isUndefined()) 1764 continue; 1765 1766 if (CurSection != CPSections[i].S) { 1767 OutStreamer->SwitchSection(CPSections[i].S); 1768 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1769 CurSection = CPSections[i].S; 1770 Offset = 0; 1771 } 1772 1773 MachineConstantPoolEntry CPE = CP[CPI]; 1774 1775 // Emit inter-object padding for alignment. 1776 unsigned AlignMask = CPE.getAlignment() - 1; 1777 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1778 OutStreamer->EmitZeros(NewOffset - Offset); 1779 1780 Type *Ty = CPE.getType(); 1781 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1782 1783 OutStreamer->EmitLabel(Sym); 1784 if (CPE.isMachineConstantPoolEntry()) 1785 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1786 else 1787 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1788 } 1789 } 1790 } 1791 1792 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1793 /// by the current function to the current output stream. 1794 void AsmPrinter::EmitJumpTableInfo() { 1795 const DataLayout &DL = MF->getDataLayout(); 1796 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1797 if (!MJTI) return; 1798 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1799 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1800 if (JT.empty()) return; 1801 1802 // Pick the directive to use to print the jump table entries, and switch to 1803 // the appropriate section. 1804 const Function &F = MF->getFunction(); 1805 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1806 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1807 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1808 F); 1809 if (JTInDiffSection) { 1810 // Drop it in the readonly section. 1811 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1812 OutStreamer->SwitchSection(ReadOnlySection); 1813 } 1814 1815 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1816 1817 // Jump tables in code sections are marked with a data_region directive 1818 // where that's supported. 1819 if (!JTInDiffSection) 1820 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1821 1822 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1823 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1824 1825 // If this jump table was deleted, ignore it. 1826 if (JTBBs.empty()) continue; 1827 1828 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1829 /// emit a .set directive for each unique entry. 1830 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1831 MAI->doesSetDirectiveSuppressReloc()) { 1832 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1833 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1834 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1835 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1836 const MachineBasicBlock *MBB = JTBBs[ii]; 1837 if (!EmittedSets.insert(MBB).second) 1838 continue; 1839 1840 // .set LJTSet, LBB32-base 1841 const MCExpr *LHS = 1842 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1843 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1844 MCBinaryExpr::createSub(LHS, Base, 1845 OutContext)); 1846 } 1847 } 1848 1849 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1850 // before each jump table. The first label is never referenced, but tells 1851 // the assembler and linker the extents of the jump table object. The 1852 // second label is actually referenced by the code. 1853 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1854 // FIXME: This doesn't have to have any specific name, just any randomly 1855 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1856 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1857 1858 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1859 1860 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1861 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1862 } 1863 if (!JTInDiffSection) 1864 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1865 } 1866 1867 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1868 /// current stream. 1869 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1870 const MachineBasicBlock *MBB, 1871 unsigned UID) const { 1872 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1873 const MCExpr *Value = nullptr; 1874 switch (MJTI->getEntryKind()) { 1875 case MachineJumpTableInfo::EK_Inline: 1876 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1877 case MachineJumpTableInfo::EK_Custom32: 1878 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1879 MJTI, MBB, UID, OutContext); 1880 break; 1881 case MachineJumpTableInfo::EK_BlockAddress: 1882 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1883 // .word LBB123 1884 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1885 break; 1886 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1887 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1888 // with a relocation as gp-relative, e.g.: 1889 // .gprel32 LBB123 1890 MCSymbol *MBBSym = MBB->getSymbol(); 1891 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1892 return; 1893 } 1894 1895 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1896 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1897 // with a relocation as gp-relative, e.g.: 1898 // .gpdword LBB123 1899 MCSymbol *MBBSym = MBB->getSymbol(); 1900 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1901 return; 1902 } 1903 1904 case MachineJumpTableInfo::EK_LabelDifference32: { 1905 // Each entry is the address of the block minus the address of the jump 1906 // table. This is used for PIC jump tables where gprel32 is not supported. 1907 // e.g.: 1908 // .word LBB123 - LJTI1_2 1909 // If the .set directive avoids relocations, this is emitted as: 1910 // .set L4_5_set_123, LBB123 - LJTI1_2 1911 // .word L4_5_set_123 1912 if (MAI->doesSetDirectiveSuppressReloc()) { 1913 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1914 OutContext); 1915 break; 1916 } 1917 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1918 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1919 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1920 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1921 break; 1922 } 1923 } 1924 1925 assert(Value && "Unknown entry kind!"); 1926 1927 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1928 OutStreamer->EmitValue(Value, EntrySize); 1929 } 1930 1931 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1932 /// special global used by LLVM. If so, emit it and return true, otherwise 1933 /// do nothing and return false. 1934 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1935 if (GV->getName() == "llvm.used") { 1936 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1937 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1938 return true; 1939 } 1940 1941 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1942 if (GV->getSection() == "llvm.metadata" || 1943 GV->hasAvailableExternallyLinkage()) 1944 return true; 1945 1946 if (!GV->hasAppendingLinkage()) return false; 1947 1948 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1949 1950 if (GV->getName() == "llvm.global_ctors") { 1951 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1952 /* isCtor */ true); 1953 1954 return true; 1955 } 1956 1957 if (GV->getName() == "llvm.global_dtors") { 1958 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1959 /* isCtor */ false); 1960 1961 return true; 1962 } 1963 1964 report_fatal_error("unknown special variable"); 1965 } 1966 1967 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1968 /// global in the specified llvm.used list. 1969 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1970 // Should be an array of 'i8*'. 1971 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1972 const GlobalValue *GV = 1973 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1974 if (GV) 1975 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1976 } 1977 } 1978 1979 namespace { 1980 1981 struct Structor { 1982 int Priority = 0; 1983 Constant *Func = nullptr; 1984 GlobalValue *ComdatKey = nullptr; 1985 1986 Structor() = default; 1987 }; 1988 1989 } // end anonymous namespace 1990 1991 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1992 /// priority. 1993 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1994 bool isCtor) { 1995 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 1996 // init priority. 1997 if (!isa<ConstantArray>(List)) return; 1998 1999 // Sanity check the structors list. 2000 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2001 if (!InitList) return; // Not an array! 2002 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2003 if (!ETy || ETy->getNumElements() != 3 || 2004 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2005 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2006 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2007 return; // Not (int, ptr, ptr). 2008 2009 // Gather the structors in a form that's convenient for sorting by priority. 2010 SmallVector<Structor, 8> Structors; 2011 for (Value *O : InitList->operands()) { 2012 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2013 if (!CS) continue; // Malformed. 2014 if (CS->getOperand(1)->isNullValue()) 2015 break; // Found a null terminator, skip the rest. 2016 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2017 if (!Priority) continue; // Malformed. 2018 Structors.push_back(Structor()); 2019 Structor &S = Structors.back(); 2020 S.Priority = Priority->getLimitedValue(65535); 2021 S.Func = CS->getOperand(1); 2022 if (!CS->getOperand(2)->isNullValue()) 2023 S.ComdatKey = 2024 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2025 } 2026 2027 // Emit the function pointers in the target-specific order 2028 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 2029 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2030 return L.Priority < R.Priority; 2031 }); 2032 for (Structor &S : Structors) { 2033 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2034 const MCSymbol *KeySym = nullptr; 2035 if (GlobalValue *GV = S.ComdatKey) { 2036 if (GV->isDeclarationForLinker()) 2037 // If the associated variable is not defined in this module 2038 // (it might be available_externally, or have been an 2039 // available_externally definition that was dropped by the 2040 // EliminateAvailableExternally pass), some other TU 2041 // will provide its dynamic initializer. 2042 continue; 2043 2044 KeySym = getSymbol(GV); 2045 } 2046 MCSection *OutputSection = 2047 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2048 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2049 OutStreamer->SwitchSection(OutputSection); 2050 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2051 EmitAlignment(Align); 2052 EmitXXStructor(DL, S.Func); 2053 } 2054 } 2055 2056 void AsmPrinter::EmitModuleIdents(Module &M) { 2057 if (!MAI->hasIdentDirective()) 2058 return; 2059 2060 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2061 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2062 const MDNode *N = NMD->getOperand(i); 2063 assert(N->getNumOperands() == 1 && 2064 "llvm.ident metadata entry can have only one operand"); 2065 const MDString *S = cast<MDString>(N->getOperand(0)); 2066 OutStreamer->EmitIdent(S->getString()); 2067 } 2068 } 2069 } 2070 2071 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2072 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2073 if (!CommandLine) 2074 return; 2075 2076 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2077 if (!NMD || !NMD->getNumOperands()) 2078 return; 2079 2080 OutStreamer->PushSection(); 2081 OutStreamer->SwitchSection(CommandLine); 2082 OutStreamer->EmitZeros(1); 2083 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2084 const MDNode *N = NMD->getOperand(i); 2085 assert(N->getNumOperands() == 1 && 2086 "llvm.commandline metadata entry can have only one operand"); 2087 const MDString *S = cast<MDString>(N->getOperand(0)); 2088 OutStreamer->EmitBytes(S->getString()); 2089 OutStreamer->EmitZeros(1); 2090 } 2091 OutStreamer->PopSection(); 2092 } 2093 2094 //===--------------------------------------------------------------------===// 2095 // Emission and print routines 2096 // 2097 2098 /// Emit a byte directive and value. 2099 /// 2100 void AsmPrinter::emitInt8(int Value) const { 2101 OutStreamer->EmitIntValue(Value, 1); 2102 } 2103 2104 /// Emit a short directive and value. 2105 void AsmPrinter::emitInt16(int Value) const { 2106 OutStreamer->EmitIntValue(Value, 2); 2107 } 2108 2109 /// Emit a long directive and value. 2110 void AsmPrinter::emitInt32(int Value) const { 2111 OutStreamer->EmitIntValue(Value, 4); 2112 } 2113 2114 /// Emit a long long directive and value. 2115 void AsmPrinter::emitInt64(uint64_t Value) const { 2116 OutStreamer->EmitIntValue(Value, 8); 2117 } 2118 2119 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2120 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2121 /// .set if it avoids relocations. 2122 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2123 unsigned Size) const { 2124 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2125 } 2126 2127 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2128 /// where the size in bytes of the directive is specified by Size and Label 2129 /// specifies the label. This implicitly uses .set if it is available. 2130 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2131 unsigned Size, 2132 bool IsSectionRelative) const { 2133 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2134 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2135 if (Size > 4) 2136 OutStreamer->EmitZeros(Size - 4); 2137 return; 2138 } 2139 2140 // Emit Label+Offset (or just Label if Offset is zero) 2141 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2142 if (Offset) 2143 Expr = MCBinaryExpr::createAdd( 2144 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2145 2146 OutStreamer->EmitValue(Expr, Size); 2147 } 2148 2149 //===----------------------------------------------------------------------===// 2150 2151 // EmitAlignment - Emit an alignment directive to the specified power of 2152 // two boundary. For example, if you pass in 3 here, you will get an 8 2153 // byte alignment. If a global value is specified, and if that global has 2154 // an explicit alignment requested, it will override the alignment request 2155 // if required for correctness. 2156 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2157 if (GV) 2158 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2159 2160 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2161 2162 assert(NumBits < 2163 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2164 "undefined behavior"); 2165 if (getCurrentSection()->getKind().isText()) 2166 OutStreamer->EmitCodeAlignment(1u << NumBits); 2167 else 2168 OutStreamer->EmitValueToAlignment(1u << NumBits); 2169 } 2170 2171 //===----------------------------------------------------------------------===// 2172 // Constant emission. 2173 //===----------------------------------------------------------------------===// 2174 2175 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2176 MCContext &Ctx = OutContext; 2177 2178 if (CV->isNullValue() || isa<UndefValue>(CV)) 2179 return MCConstantExpr::create(0, Ctx); 2180 2181 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2182 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2183 2184 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2185 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2186 2187 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2188 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2189 2190 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2191 if (!CE) { 2192 llvm_unreachable("Unknown constant value to lower!"); 2193 } 2194 2195 switch (CE->getOpcode()) { 2196 default: 2197 // If the code isn't optimized, there may be outstanding folding 2198 // opportunities. Attempt to fold the expression using DataLayout as a 2199 // last resort before giving up. 2200 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2201 if (C != CE) 2202 return lowerConstant(C); 2203 2204 // Otherwise report the problem to the user. 2205 { 2206 std::string S; 2207 raw_string_ostream OS(S); 2208 OS << "Unsupported expression in static initializer: "; 2209 CE->printAsOperand(OS, /*PrintType=*/false, 2210 !MF ? nullptr : MF->getFunction().getParent()); 2211 report_fatal_error(OS.str()); 2212 } 2213 case Instruction::GetElementPtr: { 2214 // Generate a symbolic expression for the byte address 2215 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2216 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2217 2218 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2219 if (!OffsetAI) 2220 return Base; 2221 2222 int64_t Offset = OffsetAI.getSExtValue(); 2223 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2224 Ctx); 2225 } 2226 2227 case Instruction::Trunc: 2228 // We emit the value and depend on the assembler to truncate the generated 2229 // expression properly. This is important for differences between 2230 // blockaddress labels. Since the two labels are in the same function, it 2231 // is reasonable to treat their delta as a 32-bit value. 2232 LLVM_FALLTHROUGH; 2233 case Instruction::BitCast: 2234 return lowerConstant(CE->getOperand(0)); 2235 2236 case Instruction::IntToPtr: { 2237 const DataLayout &DL = getDataLayout(); 2238 2239 // Handle casts to pointers by changing them into casts to the appropriate 2240 // integer type. This promotes constant folding and simplifies this code. 2241 Constant *Op = CE->getOperand(0); 2242 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2243 false/*ZExt*/); 2244 return lowerConstant(Op); 2245 } 2246 2247 case Instruction::PtrToInt: { 2248 const DataLayout &DL = getDataLayout(); 2249 2250 // Support only foldable casts to/from pointers that can be eliminated by 2251 // changing the pointer to the appropriately sized integer type. 2252 Constant *Op = CE->getOperand(0); 2253 Type *Ty = CE->getType(); 2254 2255 const MCExpr *OpExpr = lowerConstant(Op); 2256 2257 // We can emit the pointer value into this slot if the slot is an 2258 // integer slot equal to the size of the pointer. 2259 // 2260 // If the pointer is larger than the resultant integer, then 2261 // as with Trunc just depend on the assembler to truncate it. 2262 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2263 return OpExpr; 2264 2265 // Otherwise the pointer is smaller than the resultant integer, mask off 2266 // the high bits so we are sure to get a proper truncation if the input is 2267 // a constant expr. 2268 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2269 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2270 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2271 } 2272 2273 case Instruction::Sub: { 2274 GlobalValue *LHSGV; 2275 APInt LHSOffset; 2276 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2277 getDataLayout())) { 2278 GlobalValue *RHSGV; 2279 APInt RHSOffset; 2280 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2281 getDataLayout())) { 2282 const MCExpr *RelocExpr = 2283 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2284 if (!RelocExpr) 2285 RelocExpr = MCBinaryExpr::createSub( 2286 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2287 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2288 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2289 if (Addend != 0) 2290 RelocExpr = MCBinaryExpr::createAdd( 2291 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2292 return RelocExpr; 2293 } 2294 } 2295 } 2296 // else fallthrough 2297 LLVM_FALLTHROUGH; 2298 2299 // The MC library also has a right-shift operator, but it isn't consistently 2300 // signed or unsigned between different targets. 2301 case Instruction::Add: 2302 case Instruction::Mul: 2303 case Instruction::SDiv: 2304 case Instruction::SRem: 2305 case Instruction::Shl: 2306 case Instruction::And: 2307 case Instruction::Or: 2308 case Instruction::Xor: { 2309 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2310 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2311 switch (CE->getOpcode()) { 2312 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2313 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2314 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2315 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2316 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2317 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2318 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2319 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2320 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2321 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2322 } 2323 } 2324 } 2325 } 2326 2327 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2328 AsmPrinter &AP, 2329 const Constant *BaseCV = nullptr, 2330 uint64_t Offset = 0); 2331 2332 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2333 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2334 2335 /// isRepeatedByteSequence - Determine whether the given value is 2336 /// composed of a repeated sequence of identical bytes and return the 2337 /// byte value. If it is not a repeated sequence, return -1. 2338 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2339 StringRef Data = V->getRawDataValues(); 2340 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2341 char C = Data[0]; 2342 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2343 if (Data[i] != C) return -1; 2344 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2345 } 2346 2347 /// isRepeatedByteSequence - Determine whether the given value is 2348 /// composed of a repeated sequence of identical bytes and return the 2349 /// byte value. If it is not a repeated sequence, return -1. 2350 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2351 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2352 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2353 assert(Size % 8 == 0); 2354 2355 // Extend the element to take zero padding into account. 2356 APInt Value = CI->getValue().zextOrSelf(Size); 2357 if (!Value.isSplat(8)) 2358 return -1; 2359 2360 return Value.zextOrTrunc(8).getZExtValue(); 2361 } 2362 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2363 // Make sure all array elements are sequences of the same repeated 2364 // byte. 2365 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2366 Constant *Op0 = CA->getOperand(0); 2367 int Byte = isRepeatedByteSequence(Op0, DL); 2368 if (Byte == -1) 2369 return -1; 2370 2371 // All array elements must be equal. 2372 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2373 if (CA->getOperand(i) != Op0) 2374 return -1; 2375 return Byte; 2376 } 2377 2378 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2379 return isRepeatedByteSequence(CDS); 2380 2381 return -1; 2382 } 2383 2384 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2385 const ConstantDataSequential *CDS, 2386 AsmPrinter &AP) { 2387 // See if we can aggregate this into a .fill, if so, emit it as such. 2388 int Value = isRepeatedByteSequence(CDS, DL); 2389 if (Value != -1) { 2390 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2391 // Don't emit a 1-byte object as a .fill. 2392 if (Bytes > 1) 2393 return AP.OutStreamer->emitFill(Bytes, Value); 2394 } 2395 2396 // If this can be emitted with .ascii/.asciz, emit it as such. 2397 if (CDS->isString()) 2398 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2399 2400 // Otherwise, emit the values in successive locations. 2401 unsigned ElementByteSize = CDS->getElementByteSize(); 2402 if (isa<IntegerType>(CDS->getElementType())) { 2403 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2404 if (AP.isVerbose()) 2405 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2406 CDS->getElementAsInteger(i)); 2407 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2408 ElementByteSize); 2409 } 2410 } else { 2411 Type *ET = CDS->getElementType(); 2412 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2413 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2414 } 2415 2416 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2417 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2418 CDS->getNumElements(); 2419 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2420 if (unsigned Padding = Size - EmittedSize) 2421 AP.OutStreamer->EmitZeros(Padding); 2422 } 2423 2424 static void emitGlobalConstantArray(const DataLayout &DL, 2425 const ConstantArray *CA, AsmPrinter &AP, 2426 const Constant *BaseCV, uint64_t Offset) { 2427 // See if we can aggregate some values. Make sure it can be 2428 // represented as a series of bytes of the constant value. 2429 int Value = isRepeatedByteSequence(CA, DL); 2430 2431 if (Value != -1) { 2432 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2433 AP.OutStreamer->emitFill(Bytes, Value); 2434 } 2435 else { 2436 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2437 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2438 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2439 } 2440 } 2441 } 2442 2443 static void emitGlobalConstantVector(const DataLayout &DL, 2444 const ConstantVector *CV, AsmPrinter &AP) { 2445 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2446 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2447 2448 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2449 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2450 CV->getType()->getNumElements(); 2451 if (unsigned Padding = Size - EmittedSize) 2452 AP.OutStreamer->EmitZeros(Padding); 2453 } 2454 2455 static void emitGlobalConstantStruct(const DataLayout &DL, 2456 const ConstantStruct *CS, AsmPrinter &AP, 2457 const Constant *BaseCV, uint64_t Offset) { 2458 // Print the fields in successive locations. Pad to align if needed! 2459 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2460 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2461 uint64_t SizeSoFar = 0; 2462 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2463 const Constant *Field = CS->getOperand(i); 2464 2465 // Print the actual field value. 2466 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2467 2468 // Check if padding is needed and insert one or more 0s. 2469 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2470 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2471 - Layout->getElementOffset(i)) - FieldSize; 2472 SizeSoFar += FieldSize + PadSize; 2473 2474 // Insert padding - this may include padding to increase the size of the 2475 // current field up to the ABI size (if the struct is not packed) as well 2476 // as padding to ensure that the next field starts at the right offset. 2477 AP.OutStreamer->EmitZeros(PadSize); 2478 } 2479 assert(SizeSoFar == Layout->getSizeInBytes() && 2480 "Layout of constant struct may be incorrect!"); 2481 } 2482 2483 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2484 APInt API = APF.bitcastToAPInt(); 2485 2486 // First print a comment with what we think the original floating-point value 2487 // should have been. 2488 if (AP.isVerbose()) { 2489 SmallString<8> StrVal; 2490 APF.toString(StrVal); 2491 2492 if (ET) 2493 ET->print(AP.OutStreamer->GetCommentOS()); 2494 else 2495 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2496 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2497 } 2498 2499 // Now iterate through the APInt chunks, emitting them in endian-correct 2500 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2501 // floats). 2502 unsigned NumBytes = API.getBitWidth() / 8; 2503 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2504 const uint64_t *p = API.getRawData(); 2505 2506 // PPC's long double has odd notions of endianness compared to how LLVM 2507 // handles it: p[0] goes first for *big* endian on PPC. 2508 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2509 int Chunk = API.getNumWords() - 1; 2510 2511 if (TrailingBytes) 2512 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2513 2514 for (; Chunk >= 0; --Chunk) 2515 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2516 } else { 2517 unsigned Chunk; 2518 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2519 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2520 2521 if (TrailingBytes) 2522 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2523 } 2524 2525 // Emit the tail padding for the long double. 2526 const DataLayout &DL = AP.getDataLayout(); 2527 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2528 } 2529 2530 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2531 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2532 } 2533 2534 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2535 const DataLayout &DL = AP.getDataLayout(); 2536 unsigned BitWidth = CI->getBitWidth(); 2537 2538 // Copy the value as we may massage the layout for constants whose bit width 2539 // is not a multiple of 64-bits. 2540 APInt Realigned(CI->getValue()); 2541 uint64_t ExtraBits = 0; 2542 unsigned ExtraBitsSize = BitWidth & 63; 2543 2544 if (ExtraBitsSize) { 2545 // The bit width of the data is not a multiple of 64-bits. 2546 // The extra bits are expected to be at the end of the chunk of the memory. 2547 // Little endian: 2548 // * Nothing to be done, just record the extra bits to emit. 2549 // Big endian: 2550 // * Record the extra bits to emit. 2551 // * Realign the raw data to emit the chunks of 64-bits. 2552 if (DL.isBigEndian()) { 2553 // Basically the structure of the raw data is a chunk of 64-bits cells: 2554 // 0 1 BitWidth / 64 2555 // [chunk1][chunk2] ... [chunkN]. 2556 // The most significant chunk is chunkN and it should be emitted first. 2557 // However, due to the alignment issue chunkN contains useless bits. 2558 // Realign the chunks so that they contain only useless information: 2559 // ExtraBits 0 1 (BitWidth / 64) - 1 2560 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2561 ExtraBits = Realigned.getRawData()[0] & 2562 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2563 Realigned.lshrInPlace(ExtraBitsSize); 2564 } else 2565 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2566 } 2567 2568 // We don't expect assemblers to support integer data directives 2569 // for more than 64 bits, so we emit the data in at most 64-bit 2570 // quantities at a time. 2571 const uint64_t *RawData = Realigned.getRawData(); 2572 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2573 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2574 AP.OutStreamer->EmitIntValue(Val, 8); 2575 } 2576 2577 if (ExtraBitsSize) { 2578 // Emit the extra bits after the 64-bits chunks. 2579 2580 // Emit a directive that fills the expected size. 2581 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2582 Size -= (BitWidth / 64) * 8; 2583 assert(Size && Size * 8 >= ExtraBitsSize && 2584 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2585 == ExtraBits && "Directive too small for extra bits."); 2586 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2587 } 2588 } 2589 2590 /// Transform a not absolute MCExpr containing a reference to a GOT 2591 /// equivalent global, by a target specific GOT pc relative access to the 2592 /// final symbol. 2593 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2594 const Constant *BaseCst, 2595 uint64_t Offset) { 2596 // The global @foo below illustrates a global that uses a got equivalent. 2597 // 2598 // @bar = global i32 42 2599 // @gotequiv = private unnamed_addr constant i32* @bar 2600 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2601 // i64 ptrtoint (i32* @foo to i64)) 2602 // to i32) 2603 // 2604 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2605 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2606 // form: 2607 // 2608 // foo = cstexpr, where 2609 // cstexpr := <gotequiv> - "." + <cst> 2610 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2611 // 2612 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2613 // 2614 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2615 // gotpcrelcst := <offset from @foo base> + <cst> 2616 MCValue MV; 2617 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2618 return; 2619 const MCSymbolRefExpr *SymA = MV.getSymA(); 2620 if (!SymA) 2621 return; 2622 2623 // Check that GOT equivalent symbol is cached. 2624 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2625 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2626 return; 2627 2628 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2629 if (!BaseGV) 2630 return; 2631 2632 // Check for a valid base symbol 2633 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2634 const MCSymbolRefExpr *SymB = MV.getSymB(); 2635 2636 if (!SymB || BaseSym != &SymB->getSymbol()) 2637 return; 2638 2639 // Make sure to match: 2640 // 2641 // gotpcrelcst := <offset from @foo base> + <cst> 2642 // 2643 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2644 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2645 // if the target knows how to encode it. 2646 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2647 if (GOTPCRelCst < 0) 2648 return; 2649 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2650 return; 2651 2652 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2653 // 2654 // bar: 2655 // .long 42 2656 // gotequiv: 2657 // .quad bar 2658 // foo: 2659 // .long gotequiv - "." + <cst> 2660 // 2661 // is replaced by the target specific equivalent to: 2662 // 2663 // bar: 2664 // .long 42 2665 // foo: 2666 // .long bar@GOTPCREL+<gotpcrelcst> 2667 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2668 const GlobalVariable *GV = Result.first; 2669 int NumUses = (int)Result.second; 2670 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2671 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2672 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2673 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2674 2675 // Update GOT equivalent usage information 2676 --NumUses; 2677 if (NumUses >= 0) 2678 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2679 } 2680 2681 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2682 AsmPrinter &AP, const Constant *BaseCV, 2683 uint64_t Offset) { 2684 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2685 2686 // Globals with sub-elements such as combinations of arrays and structs 2687 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2688 // constant symbol base and the current position with BaseCV and Offset. 2689 if (!BaseCV && CV->hasOneUse()) 2690 BaseCV = dyn_cast<Constant>(CV->user_back()); 2691 2692 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2693 return AP.OutStreamer->EmitZeros(Size); 2694 2695 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2696 switch (Size) { 2697 case 1: 2698 case 2: 2699 case 4: 2700 case 8: 2701 if (AP.isVerbose()) 2702 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2703 CI->getZExtValue()); 2704 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2705 return; 2706 default: 2707 emitGlobalConstantLargeInt(CI, AP); 2708 return; 2709 } 2710 } 2711 2712 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2713 return emitGlobalConstantFP(CFP, AP); 2714 2715 if (isa<ConstantPointerNull>(CV)) { 2716 AP.OutStreamer->EmitIntValue(0, Size); 2717 return; 2718 } 2719 2720 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2721 return emitGlobalConstantDataSequential(DL, CDS, AP); 2722 2723 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2724 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2725 2726 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2727 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2728 2729 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2730 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2731 // vectors). 2732 if (CE->getOpcode() == Instruction::BitCast) 2733 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2734 2735 if (Size > 8) { 2736 // If the constant expression's size is greater than 64-bits, then we have 2737 // to emit the value in chunks. Try to constant fold the value and emit it 2738 // that way. 2739 Constant *New = ConstantFoldConstant(CE, DL); 2740 if (New && New != CE) 2741 return emitGlobalConstantImpl(DL, New, AP); 2742 } 2743 } 2744 2745 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2746 return emitGlobalConstantVector(DL, V, AP); 2747 2748 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2749 // thread the streamer with EmitValue. 2750 const MCExpr *ME = AP.lowerConstant(CV); 2751 2752 // Since lowerConstant already folded and got rid of all IR pointer and 2753 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2754 // directly. 2755 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2756 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2757 2758 AP.OutStreamer->EmitValue(ME, Size); 2759 } 2760 2761 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2762 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2763 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2764 if (Size) 2765 emitGlobalConstantImpl(DL, CV, *this); 2766 else if (MAI->hasSubsectionsViaSymbols()) { 2767 // If the global has zero size, emit a single byte so that two labels don't 2768 // look like they are at the same location. 2769 OutStreamer->EmitIntValue(0, 1); 2770 } 2771 } 2772 2773 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2774 // Target doesn't support this yet! 2775 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2776 } 2777 2778 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2779 if (Offset > 0) 2780 OS << '+' << Offset; 2781 else if (Offset < 0) 2782 OS << Offset; 2783 } 2784 2785 //===----------------------------------------------------------------------===// 2786 // Symbol Lowering Routines. 2787 //===----------------------------------------------------------------------===// 2788 2789 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2790 return OutContext.createTempSymbol(Name, true); 2791 } 2792 2793 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2794 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2795 } 2796 2797 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2798 return MMI->getAddrLabelSymbol(BB); 2799 } 2800 2801 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2802 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2803 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2804 const MachineConstantPoolEntry &CPE = 2805 MF->getConstantPool()->getConstants()[CPID]; 2806 if (!CPE.isMachineConstantPoolEntry()) { 2807 const DataLayout &DL = MF->getDataLayout(); 2808 SectionKind Kind = CPE.getSectionKind(&DL); 2809 const Constant *C = CPE.Val.ConstVal; 2810 unsigned Align = CPE.Alignment; 2811 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2812 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2813 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2814 if (Sym->isUndefined()) 2815 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2816 return Sym; 2817 } 2818 } 2819 } 2820 } 2821 2822 const DataLayout &DL = getDataLayout(); 2823 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2824 "CPI" + Twine(getFunctionNumber()) + "_" + 2825 Twine(CPID)); 2826 } 2827 2828 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2829 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2830 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2831 } 2832 2833 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2834 /// FIXME: privatize to AsmPrinter. 2835 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2836 const DataLayout &DL = getDataLayout(); 2837 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2838 Twine(getFunctionNumber()) + "_" + 2839 Twine(UID) + "_set_" + Twine(MBBID)); 2840 } 2841 2842 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2843 StringRef Suffix) const { 2844 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2845 } 2846 2847 /// Return the MCSymbol for the specified ExternalSymbol. 2848 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2849 SmallString<60> NameStr; 2850 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2851 return OutContext.getOrCreateSymbol(NameStr); 2852 } 2853 2854 /// PrintParentLoopComment - Print comments about parent loops of this one. 2855 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2856 unsigned FunctionNumber) { 2857 if (!Loop) return; 2858 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2859 OS.indent(Loop->getLoopDepth()*2) 2860 << "Parent Loop BB" << FunctionNumber << "_" 2861 << Loop->getHeader()->getNumber() 2862 << " Depth=" << Loop->getLoopDepth() << '\n'; 2863 } 2864 2865 /// PrintChildLoopComment - Print comments about child loops within 2866 /// the loop for this basic block, with nesting. 2867 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2868 unsigned FunctionNumber) { 2869 // Add child loop information 2870 for (const MachineLoop *CL : *Loop) { 2871 OS.indent(CL->getLoopDepth()*2) 2872 << "Child Loop BB" << FunctionNumber << "_" 2873 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2874 << '\n'; 2875 PrintChildLoopComment(OS, CL, FunctionNumber); 2876 } 2877 } 2878 2879 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2880 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2881 const MachineLoopInfo *LI, 2882 const AsmPrinter &AP) { 2883 // Add loop depth information 2884 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2885 if (!Loop) return; 2886 2887 MachineBasicBlock *Header = Loop->getHeader(); 2888 assert(Header && "No header for loop"); 2889 2890 // If this block is not a loop header, just print out what is the loop header 2891 // and return. 2892 if (Header != &MBB) { 2893 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2894 Twine(AP.getFunctionNumber())+"_" + 2895 Twine(Loop->getHeader()->getNumber())+ 2896 " Depth="+Twine(Loop->getLoopDepth())); 2897 return; 2898 } 2899 2900 // Otherwise, it is a loop header. Print out information about child and 2901 // parent loops. 2902 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2903 2904 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2905 2906 OS << "=>"; 2907 OS.indent(Loop->getLoopDepth()*2-2); 2908 2909 OS << "This "; 2910 if (Loop->empty()) 2911 OS << "Inner "; 2912 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2913 2914 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2915 } 2916 2917 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2918 MCCodePaddingContext &Context) const { 2919 assert(MF != nullptr && "Machine function must be valid"); 2920 Context.IsPaddingActive = !MF->hasInlineAsm() && 2921 !MF->getFunction().hasOptSize() && 2922 TM.getOptLevel() != CodeGenOpt::None; 2923 Context.IsBasicBlockReachableViaFallthrough = 2924 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2925 MBB.pred_end(); 2926 Context.IsBasicBlockReachableViaBranch = 2927 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2928 } 2929 2930 /// EmitBasicBlockStart - This method prints the label for the specified 2931 /// MachineBasicBlock, an alignment (if present) and a comment describing 2932 /// it if appropriate. 2933 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2934 // End the previous funclet and start a new one. 2935 if (MBB.isEHFuncletEntry()) { 2936 for (const HandlerInfo &HI : Handlers) { 2937 HI.Handler->endFunclet(); 2938 HI.Handler->beginFunclet(MBB); 2939 } 2940 } 2941 2942 // Emit an alignment directive for this block, if needed. 2943 if (unsigned Align = MBB.getAlignment()) 2944 EmitAlignment(Align); 2945 MCCodePaddingContext Context; 2946 setupCodePaddingContext(MBB, Context); 2947 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2948 2949 // If the block has its address taken, emit any labels that were used to 2950 // reference the block. It is possible that there is more than one label 2951 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2952 // the references were generated. 2953 if (MBB.hasAddressTaken()) { 2954 const BasicBlock *BB = MBB.getBasicBlock(); 2955 if (isVerbose()) 2956 OutStreamer->AddComment("Block address taken"); 2957 2958 // MBBs can have their address taken as part of CodeGen without having 2959 // their corresponding BB's address taken in IR 2960 if (BB->hasAddressTaken()) 2961 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2962 OutStreamer->EmitLabel(Sym); 2963 } 2964 2965 // Print some verbose block comments. 2966 if (isVerbose()) { 2967 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2968 if (BB->hasName()) { 2969 BB->printAsOperand(OutStreamer->GetCommentOS(), 2970 /*PrintType=*/false, BB->getModule()); 2971 OutStreamer->GetCommentOS() << '\n'; 2972 } 2973 } 2974 2975 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2976 emitBasicBlockLoopComments(MBB, MLI, *this); 2977 } 2978 2979 // Print the main label for the block. 2980 if (MBB.pred_empty() || 2981 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2982 !MBB.hasLabelMustBeEmitted())) { 2983 if (isVerbose()) { 2984 // NOTE: Want this comment at start of line, don't emit with AddComment. 2985 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2986 false); 2987 } 2988 } else { 2989 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2990 OutStreamer->AddComment("Label of block must be emitted"); 2991 OutStreamer->EmitLabel(MBB.getSymbol()); 2992 } 2993 } 2994 2995 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2996 MCCodePaddingContext Context; 2997 setupCodePaddingContext(MBB, Context); 2998 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2999 } 3000 3001 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 3002 bool IsDefinition) const { 3003 MCSymbolAttr Attr = MCSA_Invalid; 3004 3005 switch (Visibility) { 3006 default: break; 3007 case GlobalValue::HiddenVisibility: 3008 if (IsDefinition) 3009 Attr = MAI->getHiddenVisibilityAttr(); 3010 else 3011 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3012 break; 3013 case GlobalValue::ProtectedVisibility: 3014 Attr = MAI->getProtectedVisibilityAttr(); 3015 break; 3016 } 3017 3018 if (Attr != MCSA_Invalid) 3019 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3020 } 3021 3022 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3023 /// exactly one predecessor and the control transfer mechanism between 3024 /// the predecessor and this block is a fall-through. 3025 bool AsmPrinter:: 3026 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3027 // If this is a landing pad, it isn't a fall through. If it has no preds, 3028 // then nothing falls through to it. 3029 if (MBB->isEHPad() || MBB->pred_empty()) 3030 return false; 3031 3032 // If there isn't exactly one predecessor, it can't be a fall through. 3033 if (MBB->pred_size() > 1) 3034 return false; 3035 3036 // The predecessor has to be immediately before this block. 3037 MachineBasicBlock *Pred = *MBB->pred_begin(); 3038 if (!Pred->isLayoutSuccessor(MBB)) 3039 return false; 3040 3041 // If the block is completely empty, then it definitely does fall through. 3042 if (Pred->empty()) 3043 return true; 3044 3045 // Check the terminators in the previous blocks 3046 for (const auto &MI : Pred->terminators()) { 3047 // If it is not a simple branch, we are in a table somewhere. 3048 if (!MI.isBranch() || MI.isIndirectBranch()) 3049 return false; 3050 3051 // If we are the operands of one of the branches, this is not a fall 3052 // through. Note that targets with delay slots will usually bundle 3053 // terminators with the delay slot instruction. 3054 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3055 if (OP->isJTI()) 3056 return false; 3057 if (OP->isMBB() && OP->getMBB() == MBB) 3058 return false; 3059 } 3060 } 3061 3062 return true; 3063 } 3064 3065 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3066 if (!S.usesMetadata()) 3067 return nullptr; 3068 3069 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3070 gcp_map_type::iterator GCPI = GCMap.find(&S); 3071 if (GCPI != GCMap.end()) 3072 return GCPI->second.get(); 3073 3074 auto Name = S.getName(); 3075 3076 for (GCMetadataPrinterRegistry::iterator 3077 I = GCMetadataPrinterRegistry::begin(), 3078 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3079 if (Name == I->getName()) { 3080 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3081 GMP->S = &S; 3082 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3083 return IterBool.first->second.get(); 3084 } 3085 3086 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3087 } 3088 3089 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3090 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3091 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3092 bool NeedsDefault = false; 3093 if (MI->begin() == MI->end()) 3094 // No GC strategy, use the default format. 3095 NeedsDefault = true; 3096 else 3097 for (auto &I : *MI) { 3098 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3099 if (MP->emitStackMaps(SM, *this)) 3100 continue; 3101 // The strategy doesn't have printer or doesn't emit custom stack maps. 3102 // Use the default format. 3103 NeedsDefault = true; 3104 } 3105 3106 if (NeedsDefault) 3107 SM.serializeToStackMapSection(); 3108 } 3109 3110 /// Pin vtable to this file. 3111 AsmPrinterHandler::~AsmPrinterHandler() = default; 3112 3113 void AsmPrinterHandler::markFunctionEnd() {} 3114 3115 // In the binary's "xray_instr_map" section, an array of these function entries 3116 // describes each instrumentation point. When XRay patches your code, the index 3117 // into this table will be given to your handler as a patch point identifier. 3118 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3119 const MCSymbol *CurrentFnSym) const { 3120 Out->EmitSymbolValue(Sled, Bytes); 3121 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3122 auto Kind8 = static_cast<uint8_t>(Kind); 3123 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3124 Out->EmitBinaryData( 3125 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3126 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3127 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3128 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3129 Out->EmitZeros(Padding); 3130 } 3131 3132 void AsmPrinter::emitXRayTable() { 3133 if (Sleds.empty()) 3134 return; 3135 3136 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3137 const Function &F = MF->getFunction(); 3138 MCSection *InstMap = nullptr; 3139 MCSection *FnSledIndex = nullptr; 3140 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3141 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3142 assert(Associated != nullptr); 3143 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3144 std::string GroupName; 3145 if (F.hasComdat()) { 3146 Flags |= ELF::SHF_GROUP; 3147 GroupName = F.getComdat()->getName(); 3148 } 3149 3150 auto UniqueID = ++XRayFnUniqueID; 3151 InstMap = 3152 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3153 GroupName, UniqueID, Associated); 3154 FnSledIndex = 3155 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3156 GroupName, UniqueID, Associated); 3157 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3158 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3159 SectionKind::getReadOnlyWithRel()); 3160 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3161 SectionKind::getReadOnlyWithRel()); 3162 } else { 3163 llvm_unreachable("Unsupported target"); 3164 } 3165 3166 auto WordSizeBytes = MAI->getCodePointerSize(); 3167 3168 // Now we switch to the instrumentation map section. Because this is done 3169 // per-function, we are able to create an index entry that will represent the 3170 // range of sleds associated with a function. 3171 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3172 OutStreamer->SwitchSection(InstMap); 3173 OutStreamer->EmitLabel(SledsStart); 3174 for (const auto &Sled : Sleds) 3175 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3176 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3177 OutStreamer->EmitLabel(SledsEnd); 3178 3179 // We then emit a single entry in the index per function. We use the symbols 3180 // that bound the instrumentation map as the range for a specific function. 3181 // Each entry here will be 2 * word size aligned, as we're writing down two 3182 // pointers. This should work for both 32-bit and 64-bit platforms. 3183 OutStreamer->SwitchSection(FnSledIndex); 3184 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3185 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3186 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3187 OutStreamer->SwitchSection(PrevSection); 3188 Sleds.clear(); 3189 } 3190 3191 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3192 SledKind Kind, uint8_t Version) { 3193 const Function &F = MI.getMF()->getFunction(); 3194 auto Attr = F.getFnAttribute("function-instrument"); 3195 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3196 bool AlwaysInstrument = 3197 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3198 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3199 Kind = SledKind::LOG_ARGS_ENTER; 3200 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3201 AlwaysInstrument, &F, Version}); 3202 } 3203 3204 uint16_t AsmPrinter::getDwarfVersion() const { 3205 return OutStreamer->getContext().getDwarfVersion(); 3206 } 3207 3208 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3209 OutStreamer->getContext().setDwarfVersion(Version); 3210 } 3211