1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineMemOperand.h" 54 #include "llvm/CodeGen/MachineModuleInfo.h" 55 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/StackMaps.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalAlias.h" 74 #include "llvm/IR/GlobalIFunc.h" 75 #include "llvm/IR/GlobalIndirectSymbol.h" 76 #include "llvm/IR/GlobalObject.h" 77 #include "llvm/IR/GlobalValue.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Mangler.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/RemarkStreamer.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCAsmInfo.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/MC/MCDirectives.h" 90 #include "llvm/MC/MCDwarf.h" 91 #include "llvm/MC/MCExpr.h" 92 #include "llvm/MC/MCInst.h" 93 #include "llvm/MC/MCSection.h" 94 #include "llvm/MC/MCSectionCOFF.h" 95 #include "llvm/MC/MCSectionELF.h" 96 #include "llvm/MC/MCSectionMachO.h" 97 #include "llvm/MC/MCSectionXCOFF.h" 98 #include "llvm/MC/MCStreamer.h" 99 #include "llvm/MC/MCSubtargetInfo.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/MC/MCSymbolELF.h" 102 #include "llvm/MC/MCSymbolXCOFF.h" 103 #include "llvm/MC/MCTargetOptions.h" 104 #include "llvm/MC/MCValue.h" 105 #include "llvm/MC/SectionKind.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Remarks/Remark.h" 108 #include "llvm/Remarks/RemarkFormat.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 static const char *const DWARFGroupName = "dwarf"; 139 static const char *const DWARFGroupDescription = "DWARF Emission"; 140 static const char *const DbgTimerName = "emit"; 141 static const char *const DbgTimerDescription = "Debug Info Emission"; 142 static const char *const EHTimerName = "write_exception"; 143 static const char *const EHTimerDescription = "DWARF Exception Writer"; 144 static const char *const CFGuardName = "Control Flow Guard"; 145 static const char *const CFGuardDescription = "Control Flow Guard"; 146 static const char *const CodeViewLineTablesGroupName = "linetables"; 147 static const char *const CodeViewLineTablesGroupDescription = 148 "CodeView Line Tables"; 149 150 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignment - Return the alignment to use for the specified global 163 /// value. This rounds up to the preferred alignment if possible and legal. 164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 165 Align InAlign) { 166 Align Alignment; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 Alignment = Align(DL.getPreferredAlignment(GVar)); 169 170 // If InAlign is specified, round it to it. 171 if (InAlign > Alignment) 172 Alignment = InAlign; 173 174 // If the GV has a specified alignment, take it into account. 175 const MaybeAlign GVAlign(GV->getAlignment()); 176 if (!GVAlign) 177 return Alignment; 178 179 assert(GVAlign && "GVAlign must be set"); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (*GVAlign > Alignment || GV->hasSection()) 184 Alignment = *GVAlign; 185 return Alignment; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 196 197 if (GCMetadataPrinters) { 198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 199 200 delete &GCMap; 201 GCMetadataPrinters = nullptr; 202 } 203 } 204 205 bool AsmPrinter::isPositionIndependent() const { 206 return TM.isPositionIndependent(); 207 } 208 209 /// getFunctionNumber - Return a unique ID for the current function. 210 unsigned AsmPrinter::getFunctionNumber() const { 211 return MF->getFunctionNumber(); 212 } 213 214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 215 return *TM.getObjFileLowering(); 216 } 217 218 const DataLayout &AsmPrinter::getDataLayout() const { 219 return MMI->getModule()->getDataLayout(); 220 } 221 222 // Do not use the cached DataLayout because some client use it without a Module 223 // (dsymutil, llvm-dwarfdump). 224 unsigned AsmPrinter::getPointerSize() const { 225 return TM.getPointerSize(0); // FIXME: Default address space 226 } 227 228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 230 return MF->getSubtarget<MCSubtargetInfo>(); 231 } 232 233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 234 S.EmitInstruction(Inst, getSubtargetInfo()); 235 } 236 237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 238 assert(DD && "Dwarf debug file is not defined."); 239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 241 } 242 243 /// getCurrentSection() - Return the current section we are emitting to. 244 const MCSection *AsmPrinter::getCurrentSection() const { 245 return OutStreamer->getCurrentSectionOnly(); 246 } 247 248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 249 AU.setPreservesAll(); 250 MachineFunctionPass::getAnalysisUsage(AU); 251 AU.addRequired<MachineModuleInfoWrapperPass>(); 252 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 253 AU.addRequired<GCModuleInfo>(); 254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 255 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 261 262 // Initialize TargetLoweringObjectFile. 263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 264 .Initialize(OutContext, TM); 265 266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 267 .getModuleMetadata(M); 268 269 OutStreamer->InitSections(false); 270 271 // Emit the version-min deployment target directive if needed. 272 // 273 // FIXME: If we end up with a collection of these sorts of Darwin-specific 274 // or ELF-specific things, it may make sense to have a platform helper class 275 // that will work with the target helper class. For now keep it here, as the 276 // alternative is duplicated code in each of the target asm printers that 277 // use the directive, where it would need the same conditionalization 278 // anyway. 279 const Triple &Target = TM.getTargetTriple(); 280 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 281 282 // Allow the target to emit any magic that it wants at the start of the file. 283 EmitStartOfAsmFile(M); 284 285 // Very minimal debug info. It is ignored if we emit actual debug info. If we 286 // don't, this at least helps the user find where a global came from. 287 if (MAI->hasSingleParameterDotFile()) { 288 // .file "foo.c" 289 OutStreamer->EmitFileDirective( 290 llvm::sys::path::filename(M.getSourceFileName())); 291 } 292 293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 294 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 295 for (auto &I : *MI) 296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 297 MP->beginAssembly(M, *MI, *this); 298 299 // Emit module-level inline asm if it exists. 300 if (!M.getModuleInlineAsm().empty()) { 301 // We're at the module level. Construct MCSubtarget from the default CPU 302 // and target triple. 303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 304 TM.getTargetTriple().str(), TM.getTargetCPU(), 305 TM.getTargetFeatureString())); 306 OutStreamer->AddComment("Start of file scope inline assembly"); 307 OutStreamer->AddBlankLine(); 308 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 310 OutStreamer->AddComment("End of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 } 313 314 if (MAI->doesSupportDebugInformation()) { 315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 318 DbgTimerName, DbgTimerDescription, 319 CodeViewLineTablesGroupName, 320 CodeViewLineTablesGroupDescription); 321 } 322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 323 DD = new DwarfDebug(this, &M); 324 DD->beginModule(); 325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 326 DbgTimerDescription, DWARFGroupName, 327 DWARFGroupDescription); 328 } 329 } 330 331 switch (MAI->getExceptionHandlingType()) { 332 case ExceptionHandling::SjLj: 333 case ExceptionHandling::DwarfCFI: 334 case ExceptionHandling::ARM: 335 isCFIMoveForDebugging = true; 336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 337 break; 338 for (auto &F: M.getFunctionList()) { 339 // If the module contains any function with unwind data, 340 // .eh_frame has to be emitted. 341 // Ignore functions that won't get emitted. 342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 } 347 break; 348 default: 349 isCFIMoveForDebugging = false; 350 break; 351 } 352 353 EHStreamer *ES = nullptr; 354 switch (MAI->getExceptionHandlingType()) { 355 case ExceptionHandling::None: 356 break; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 ES = new DwarfCFIException(this); 360 break; 361 case ExceptionHandling::ARM: 362 ES = new ARMException(this); 363 break; 364 case ExceptionHandling::WinEH: 365 switch (MAI->getWinEHEncodingType()) { 366 default: llvm_unreachable("unsupported unwinding information encoding"); 367 case WinEH::EncodingType::Invalid: 368 break; 369 case WinEH::EncodingType::X86: 370 case WinEH::EncodingType::Itanium: 371 ES = new WinException(this); 372 break; 373 } 374 break; 375 case ExceptionHandling::Wasm: 376 ES = new WasmException(this); 377 break; 378 } 379 if (ES) 380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 381 EHTimerDescription, DWARFGroupName, 382 DWARFGroupDescription); 383 384 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 385 if (mdconst::extract_or_null<ConstantInt>( 386 MMI->getModule()->getModuleFlag("cfguard"))) 387 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 388 CFGuardDescription, DWARFGroupName, 389 DWARFGroupDescription); 390 return false; 391 } 392 393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 394 if (!MAI.hasWeakDefCanBeHiddenDirective()) 395 return false; 396 397 return GV->canBeOmittedFromSymbolTable(); 398 } 399 400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 401 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 402 switch (Linkage) { 403 case GlobalValue::CommonLinkage: 404 case GlobalValue::LinkOnceAnyLinkage: 405 case GlobalValue::LinkOnceODRLinkage: 406 case GlobalValue::WeakAnyLinkage: 407 case GlobalValue::WeakODRLinkage: 408 if (MAI->hasWeakDefDirective()) { 409 // .globl _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 411 412 if (!canBeHidden(GV, *MAI)) 413 // .weak_definition _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 415 else 416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 417 } else if (MAI->hasLinkOnceDirective()) { 418 // .globl _foo 419 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 420 //NOTE: linkonce is handled by the section the symbol was assigned to. 421 } else { 422 // .weak _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 424 } 425 return; 426 case GlobalValue::ExternalLinkage: 427 // If external, declare as a global symbol: .globl _foo 428 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 429 return; 430 case GlobalValue::PrivateLinkage: 431 return; 432 case GlobalValue::InternalLinkage: 433 if (MAI->hasDotLGloblDirective()) 434 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); 435 return; 436 case GlobalValue::AppendingLinkage: 437 case GlobalValue::AvailableExternallyLinkage: 438 case GlobalValue::ExternalWeakLinkage: 439 llvm_unreachable("Should never emit this"); 440 } 441 llvm_unreachable("Unknown linkage type!"); 442 } 443 444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 445 const GlobalValue *GV) const { 446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 447 } 448 449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 450 return TM.getSymbol(GV); 451 } 452 453 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 455 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 456 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 457 "No emulated TLS variables in the common section"); 458 459 // Never emit TLS variable xyz in emulated TLS model. 460 // The initialization value is in __emutls_t.xyz instead of xyz. 461 if (IsEmuTLSVar) 462 return; 463 464 if (GV->hasInitializer()) { 465 // Check to see if this is a special global used by LLVM, if so, emit it. 466 if (EmitSpecialLLVMGlobal(GV)) 467 return; 468 469 // Skip the emission of global equivalents. The symbol can be emitted later 470 // on by emitGlobalGOTEquivs in case it turns out to be needed. 471 if (GlobalGOTEquivs.count(getSymbol(GV))) 472 return; 473 474 if (isVerbose()) { 475 // When printing the control variable __emutls_v.*, 476 // we don't need to print the original TLS variable name. 477 GV->printAsOperand(OutStreamer->GetCommentOS(), 478 /*PrintType=*/false, GV->getParent()); 479 OutStreamer->GetCommentOS() << '\n'; 480 } 481 } 482 483 MCSymbol *GVSym = getSymbol(GV); 484 MCSymbol *EmittedSym = GVSym; 485 486 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 487 // attributes. 488 // GV's or GVSym's attributes will be used for the EmittedSym. 489 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 490 491 if (!GV->hasInitializer()) // External globals require no extra code. 492 return; 493 494 GVSym->redefineIfPossible(); 495 if (GVSym->isDefined() || GVSym->isVariable()) 496 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 497 "' is already defined"); 498 499 if (MAI->hasDotTypeDotSizeDirective()) 500 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 501 502 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 503 504 const DataLayout &DL = GV->getParent()->getDataLayout(); 505 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 506 507 // If the alignment is specified, we *must* obey it. Overaligning a global 508 // with a specified alignment is a prompt way to break globals emitted to 509 // sections and expected to be contiguous (e.g. ObjC metadata). 510 const Align Alignment = getGVAlignment(GV, DL); 511 512 for (const HandlerInfo &HI : Handlers) { 513 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 514 HI.TimerGroupName, HI.TimerGroupDescription, 515 TimePassesIsEnabled); 516 HI.Handler->setSymbolSize(GVSym, Size); 517 } 518 519 // Handle common symbols 520 if (GVKind.isCommon()) { 521 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 522 // .comm _foo, 42, 4 523 const bool SupportsAlignment = 524 getObjFileLowering().getCommDirectiveSupportsAlignment(); 525 OutStreamer->EmitCommonSymbol(GVSym, Size, 526 SupportsAlignment ? Alignment.value() : 0); 527 return; 528 } 529 530 // Determine to which section this global should be emitted. 531 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 532 533 // If we have a bss global going to a section that supports the 534 // zerofill directive, do so here. 535 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 536 TheSection->isVirtualSection()) { 537 if (Size == 0) 538 Size = 1; // zerofill of 0 bytes is undefined. 539 EmitLinkage(GV, GVSym); 540 // .zerofill __DATA, __bss, _foo, 400, 5 541 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); 542 return; 543 } 544 545 // If this is a BSS local symbol and we are emitting in the BSS 546 // section use .lcomm/.comm directive. 547 if (GVKind.isBSSLocal() && 548 getObjFileLowering().getBSSSection() == TheSection) { 549 if (Size == 0) 550 Size = 1; // .comm Foo, 0 is undefined, avoid it. 551 552 // Use .lcomm only if it supports user-specified alignment. 553 // Otherwise, while it would still be correct to use .lcomm in some 554 // cases (e.g. when Align == 1), the external assembler might enfore 555 // some -unknown- default alignment behavior, which could cause 556 // spurious differences between external and integrated assembler. 557 // Prefer to simply fall back to .local / .comm in this case. 558 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 559 // .lcomm _foo, 42 560 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); 561 return; 562 } 563 564 // .local _foo 565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 566 // .comm _foo, 42, 4 567 const bool SupportsAlignment = 568 getObjFileLowering().getCommDirectiveSupportsAlignment(); 569 OutStreamer->EmitCommonSymbol(GVSym, Size, 570 SupportsAlignment ? Alignment.value() : 0); 571 return; 572 } 573 574 // Handle thread local data for mach-o which requires us to output an 575 // additional structure of data and mangle the original symbol so that we 576 // can reference it later. 577 // 578 // TODO: This should become an "emit thread local global" method on TLOF. 579 // All of this macho specific stuff should be sunk down into TLOFMachO and 580 // stuff like "TLSExtraDataSection" should no longer be part of the parent 581 // TLOF class. This will also make it more obvious that stuff like 582 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 583 // specific code. 584 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 585 // Emit the .tbss symbol 586 MCSymbol *MangSym = 587 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 588 589 if (GVKind.isThreadBSS()) { 590 TheSection = getObjFileLowering().getTLSBSSSection(); 591 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 592 } else if (GVKind.isThreadData()) { 593 OutStreamer->SwitchSection(TheSection); 594 595 EmitAlignment(Alignment, GV); 596 OutStreamer->EmitLabel(MangSym); 597 598 EmitGlobalConstant(GV->getParent()->getDataLayout(), 599 GV->getInitializer()); 600 } 601 602 OutStreamer->AddBlankLine(); 603 604 // Emit the variable struct for the runtime. 605 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 606 607 OutStreamer->SwitchSection(TLVSect); 608 // Emit the linkage here. 609 EmitLinkage(GV, GVSym); 610 OutStreamer->EmitLabel(GVSym); 611 612 // Three pointers in size: 613 // - __tlv_bootstrap - used to make sure support exists 614 // - spare pointer, used when mapped by the runtime 615 // - pointer to mangled symbol above with initializer 616 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 617 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 618 PtrSize); 619 OutStreamer->EmitIntValue(0, PtrSize); 620 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 621 622 OutStreamer->AddBlankLine(); 623 return; 624 } 625 626 MCSymbol *EmittedInitSym = GVSym; 627 628 OutStreamer->SwitchSection(TheSection); 629 630 EmitLinkage(GV, EmittedInitSym); 631 EmitAlignment(Alignment, GV); 632 633 OutStreamer->EmitLabel(EmittedInitSym); 634 635 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 636 637 if (MAI->hasDotTypeDotSizeDirective()) 638 // .size foo, 42 639 OutStreamer->emitELFSize(EmittedInitSym, 640 MCConstantExpr::create(Size, OutContext)); 641 642 OutStreamer->AddBlankLine(); 643 } 644 645 /// Emit the directive and value for debug thread local expression 646 /// 647 /// \p Value - The value to emit. 648 /// \p Size - The size of the integer (in bytes) to emit. 649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 650 OutStreamer->EmitValue(Value, Size); 651 } 652 653 /// EmitFunctionHeader - This method emits the header for the current 654 /// function. 655 void AsmPrinter::EmitFunctionHeader() { 656 const Function &F = MF->getFunction(); 657 658 if (isVerbose()) 659 OutStreamer->GetCommentOS() 660 << "-- Begin function " 661 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 662 663 // Print out constants referenced by the function 664 EmitConstantPool(); 665 666 // Print the 'header' of function. 667 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 668 EmitVisibility(CurrentFnSym, F.getVisibility()); 669 670 if (MAI->needsFunctionDescriptors() && 671 F.getLinkage() != GlobalValue::InternalLinkage) 672 EmitLinkage(&F, CurrentFnDescSym); 673 674 EmitLinkage(&F, CurrentFnSym); 675 if (MAI->hasFunctionAlignment()) 676 EmitAlignment(MF->getAlignment(), &F); 677 678 if (MAI->hasDotTypeDotSizeDirective()) 679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 680 681 if (F.hasFnAttribute(Attribute::Cold)) 682 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 683 684 if (isVerbose()) { 685 F.printAsOperand(OutStreamer->GetCommentOS(), 686 /*PrintType=*/false, F.getParent()); 687 OutStreamer->GetCommentOS() << '\n'; 688 } 689 690 // Emit the prefix data. 691 if (F.hasPrefixData()) { 692 if (MAI->hasSubsectionsViaSymbols()) { 693 // Preserving prefix data on platforms which use subsections-via-symbols 694 // is a bit tricky. Here we introduce a symbol for the prefix data 695 // and use the .alt_entry attribute to mark the function's real entry point 696 // as an alternative entry point to the prefix-data symbol. 697 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 698 OutStreamer->EmitLabel(PrefixSym); 699 700 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 701 702 // Emit an .alt_entry directive for the actual function symbol. 703 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 704 } else { 705 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 706 } 707 } 708 709 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 710 // place prefix data before NOPs. 711 unsigned PatchableFunctionPrefix = 0; 712 unsigned PatchableFunctionEntry = 0; 713 (void)F.getFnAttribute("patchable-function-prefix") 714 .getValueAsString() 715 .getAsInteger(10, PatchableFunctionPrefix); 716 (void)F.getFnAttribute("patchable-function-entry") 717 .getValueAsString() 718 .getAsInteger(10, PatchableFunctionEntry); 719 if (PatchableFunctionPrefix) { 720 CurrentPatchableFunctionEntrySym = 721 OutContext.createLinkerPrivateTempSymbol(); 722 OutStreamer->EmitLabel(CurrentPatchableFunctionEntrySym); 723 emitNops(PatchableFunctionPrefix); 724 } else if (PatchableFunctionEntry) { 725 // May be reassigned when emitting the body, to reference the label after 726 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 727 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 728 } 729 730 // Emit the function descriptor. This is a virtual function to allow targets 731 // to emit their specific function descriptor. 732 if (MAI->needsFunctionDescriptors()) 733 EmitFunctionDescriptor(); 734 735 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 736 // their wild and crazy things as required. 737 EmitFunctionEntryLabel(); 738 739 // If the function had address-taken blocks that got deleted, then we have 740 // references to the dangling symbols. Emit them at the start of the function 741 // so that we don't get references to undefined symbols. 742 std::vector<MCSymbol*> DeadBlockSyms; 743 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 744 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 745 OutStreamer->AddComment("Address taken block that was later removed"); 746 OutStreamer->EmitLabel(DeadBlockSyms[i]); 747 } 748 749 if (CurrentFnBegin) { 750 if (MAI->useAssignmentForEHBegin()) { 751 MCSymbol *CurPos = OutContext.createTempSymbol(); 752 OutStreamer->EmitLabel(CurPos); 753 OutStreamer->EmitAssignment(CurrentFnBegin, 754 MCSymbolRefExpr::create(CurPos, OutContext)); 755 } else { 756 OutStreamer->EmitLabel(CurrentFnBegin); 757 } 758 } 759 760 // Emit pre-function debug and/or EH information. 761 for (const HandlerInfo &HI : Handlers) { 762 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 763 HI.TimerGroupDescription, TimePassesIsEnabled); 764 HI.Handler->beginFunction(MF); 765 } 766 767 // Emit the prologue data. 768 if (F.hasPrologueData()) 769 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 770 } 771 772 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 773 /// function. This can be overridden by targets as required to do custom stuff. 774 void AsmPrinter::EmitFunctionEntryLabel() { 775 CurrentFnSym->redefineIfPossible(); 776 777 // The function label could have already been emitted if two symbols end up 778 // conflicting due to asm renaming. Detect this and emit an error. 779 if (CurrentFnSym->isVariable()) 780 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 781 "' is a protected alias"); 782 if (CurrentFnSym->isDefined()) 783 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 784 "' label emitted multiple times to assembly file"); 785 786 return OutStreamer->EmitLabel(CurrentFnSym); 787 } 788 789 /// emitComments - Pretty-print comments for instructions. 790 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 791 const MachineFunction *MF = MI.getMF(); 792 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 793 794 // Check for spills and reloads 795 796 // We assume a single instruction only has a spill or reload, not 797 // both. 798 Optional<unsigned> Size; 799 if ((Size = MI.getRestoreSize(TII))) { 800 CommentOS << *Size << "-byte Reload\n"; 801 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 802 if (*Size) 803 CommentOS << *Size << "-byte Folded Reload\n"; 804 } else if ((Size = MI.getSpillSize(TII))) { 805 CommentOS << *Size << "-byte Spill\n"; 806 } else if ((Size = MI.getFoldedSpillSize(TII))) { 807 if (*Size) 808 CommentOS << *Size << "-byte Folded Spill\n"; 809 } 810 811 // Check for spill-induced copies 812 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 813 CommentOS << " Reload Reuse\n"; 814 } 815 816 /// emitImplicitDef - This method emits the specified machine instruction 817 /// that is an implicit def. 818 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 819 Register RegNo = MI->getOperand(0).getReg(); 820 821 SmallString<128> Str; 822 raw_svector_ostream OS(Str); 823 OS << "implicit-def: " 824 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 825 826 OutStreamer->AddComment(OS.str()); 827 OutStreamer->AddBlankLine(); 828 } 829 830 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 831 std::string Str; 832 raw_string_ostream OS(Str); 833 OS << "kill:"; 834 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 835 const MachineOperand &Op = MI->getOperand(i); 836 assert(Op.isReg() && "KILL instruction must have only register operands"); 837 OS << ' ' << (Op.isDef() ? "def " : "killed ") 838 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 839 } 840 AP.OutStreamer->AddComment(OS.str()); 841 AP.OutStreamer->AddBlankLine(); 842 } 843 844 /// emitDebugValueComment - This method handles the target-independent form 845 /// of DBG_VALUE, returning true if it was able to do so. A false return 846 /// means the target will need to handle MI in EmitInstruction. 847 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 848 // This code handles only the 4-operand target-independent form. 849 if (MI->getNumOperands() != 4) 850 return false; 851 852 SmallString<128> Str; 853 raw_svector_ostream OS(Str); 854 OS << "DEBUG_VALUE: "; 855 856 const DILocalVariable *V = MI->getDebugVariable(); 857 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 858 StringRef Name = SP->getName(); 859 if (!Name.empty()) 860 OS << Name << ":"; 861 } 862 OS << V->getName(); 863 OS << " <- "; 864 865 // The second operand is only an offset if it's an immediate. 866 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 867 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 868 const DIExpression *Expr = MI->getDebugExpression(); 869 if (Expr->getNumElements()) { 870 OS << '['; 871 bool NeedSep = false; 872 for (auto Op : Expr->expr_ops()) { 873 if (NeedSep) 874 OS << ", "; 875 else 876 NeedSep = true; 877 OS << dwarf::OperationEncodingString(Op.getOp()); 878 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 879 OS << ' ' << Op.getArg(I); 880 } 881 OS << "] "; 882 } 883 884 // Register or immediate value. Register 0 means undef. 885 if (MI->getOperand(0).isFPImm()) { 886 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 887 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 888 OS << (double)APF.convertToFloat(); 889 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 890 OS << APF.convertToDouble(); 891 } else { 892 // There is no good way to print long double. Convert a copy to 893 // double. Ah well, it's only a comment. 894 bool ignored; 895 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 896 &ignored); 897 OS << "(long double) " << APF.convertToDouble(); 898 } 899 } else if (MI->getOperand(0).isImm()) { 900 OS << MI->getOperand(0).getImm(); 901 } else if (MI->getOperand(0).isCImm()) { 902 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 903 } else if (MI->getOperand(0).isTargetIndex()) { 904 auto Op = MI->getOperand(0); 905 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 906 return true; 907 } else { 908 unsigned Reg; 909 if (MI->getOperand(0).isReg()) { 910 Reg = MI->getOperand(0).getReg(); 911 } else { 912 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 913 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 914 Offset += TFI->getFrameIndexReference(*AP.MF, 915 MI->getOperand(0).getIndex(), Reg); 916 MemLoc = true; 917 } 918 if (Reg == 0) { 919 // Suppress offset, it is not meaningful here. 920 OS << "undef"; 921 // NOTE: Want this comment at start of line, don't emit with AddComment. 922 AP.OutStreamer->emitRawComment(OS.str()); 923 return true; 924 } 925 if (MemLoc) 926 OS << '['; 927 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 928 } 929 930 if (MemLoc) 931 OS << '+' << Offset << ']'; 932 933 // NOTE: Want this comment at start of line, don't emit with AddComment. 934 AP.OutStreamer->emitRawComment(OS.str()); 935 return true; 936 } 937 938 /// This method handles the target-independent form of DBG_LABEL, returning 939 /// true if it was able to do so. A false return means the target will need 940 /// to handle MI in EmitInstruction. 941 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 942 if (MI->getNumOperands() != 1) 943 return false; 944 945 SmallString<128> Str; 946 raw_svector_ostream OS(Str); 947 OS << "DEBUG_LABEL: "; 948 949 const DILabel *V = MI->getDebugLabel(); 950 if (auto *SP = dyn_cast<DISubprogram>( 951 V->getScope()->getNonLexicalBlockFileScope())) { 952 StringRef Name = SP->getName(); 953 if (!Name.empty()) 954 OS << Name << ":"; 955 } 956 OS << V->getName(); 957 958 // NOTE: Want this comment at start of line, don't emit with AddComment. 959 AP.OutStreamer->emitRawComment(OS.str()); 960 return true; 961 } 962 963 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 964 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 965 MF->getFunction().needsUnwindTableEntry()) 966 return CFI_M_EH; 967 968 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 969 return CFI_M_Debug; 970 971 return CFI_M_None; 972 } 973 974 bool AsmPrinter::needsSEHMoves() { 975 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 976 } 977 978 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 979 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 980 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 981 ExceptionHandlingType != ExceptionHandling::ARM) 982 return; 983 984 if (needsCFIMoves() == CFI_M_None) 985 return; 986 987 // If there is no "real" instruction following this CFI instruction, skip 988 // emitting it; it would be beyond the end of the function's FDE range. 989 auto *MBB = MI.getParent(); 990 auto I = std::next(MI.getIterator()); 991 while (I != MBB->end() && I->isTransient()) 992 ++I; 993 if (I == MBB->instr_end() && 994 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 995 return; 996 997 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 998 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 999 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1000 emitCFIInstruction(CFI); 1001 } 1002 1003 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1004 // The operands are the MCSymbol and the frame offset of the allocation. 1005 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1006 int FrameOffset = MI.getOperand(1).getImm(); 1007 1008 // Emit a symbol assignment. 1009 OutStreamer->EmitAssignment(FrameAllocSym, 1010 MCConstantExpr::create(FrameOffset, OutContext)); 1011 } 1012 1013 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1014 if (!MF.getTarget().Options.EmitStackSizeSection) 1015 return; 1016 1017 MCSection *StackSizeSection = 1018 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1019 if (!StackSizeSection) 1020 return; 1021 1022 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1023 // Don't emit functions with dynamic stack allocations. 1024 if (FrameInfo.hasVarSizedObjects()) 1025 return; 1026 1027 OutStreamer->PushSection(); 1028 OutStreamer->SwitchSection(StackSizeSection); 1029 1030 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1031 uint64_t StackSize = FrameInfo.getStackSize(); 1032 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1033 OutStreamer->EmitULEB128IntValue(StackSize); 1034 1035 OutStreamer->PopSection(); 1036 } 1037 1038 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1039 MachineModuleInfo *MMI) { 1040 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1041 return true; 1042 1043 // We might emit an EH table that uses function begin and end labels even if 1044 // we don't have any landingpads. 1045 if (!MF.getFunction().hasPersonalityFn()) 1046 return false; 1047 return !isNoOpWithoutInvoke( 1048 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1049 } 1050 1051 /// EmitFunctionBody - This method emits the body and trailer for a 1052 /// function. 1053 void AsmPrinter::EmitFunctionBody() { 1054 EmitFunctionHeader(); 1055 1056 // Emit target-specific gunk before the function body. 1057 EmitFunctionBodyStart(); 1058 1059 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1060 1061 if (isVerbose()) { 1062 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1063 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1064 if (!MDT) { 1065 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1066 OwnedMDT->getBase().recalculate(*MF); 1067 MDT = OwnedMDT.get(); 1068 } 1069 1070 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1071 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1072 if (!MLI) { 1073 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1074 OwnedMLI->getBase().analyze(MDT->getBase()); 1075 MLI = OwnedMLI.get(); 1076 } 1077 } 1078 1079 // Print out code for the function. 1080 bool HasAnyRealCode = false; 1081 int NumInstsInFunction = 0; 1082 for (auto &MBB : *MF) { 1083 // Print a label for the basic block. 1084 EmitBasicBlockStart(MBB); 1085 for (auto &MI : MBB) { 1086 // Print the assembly for the instruction. 1087 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1088 !MI.isDebugInstr()) { 1089 HasAnyRealCode = true; 1090 ++NumInstsInFunction; 1091 } 1092 1093 // If there is a pre-instruction symbol, emit a label for it here. 1094 if (MCSymbol *S = MI.getPreInstrSymbol()) 1095 OutStreamer->EmitLabel(S); 1096 1097 if (ShouldPrintDebugScopes) { 1098 for (const HandlerInfo &HI : Handlers) { 1099 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1100 HI.TimerGroupName, HI.TimerGroupDescription, 1101 TimePassesIsEnabled); 1102 HI.Handler->beginInstruction(&MI); 1103 } 1104 } 1105 1106 if (isVerbose()) 1107 emitComments(MI, OutStreamer->GetCommentOS()); 1108 1109 switch (MI.getOpcode()) { 1110 case TargetOpcode::CFI_INSTRUCTION: 1111 emitCFIInstruction(MI); 1112 break; 1113 case TargetOpcode::LOCAL_ESCAPE: 1114 emitFrameAlloc(MI); 1115 break; 1116 case TargetOpcode::ANNOTATION_LABEL: 1117 case TargetOpcode::EH_LABEL: 1118 case TargetOpcode::GC_LABEL: 1119 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1120 break; 1121 case TargetOpcode::INLINEASM: 1122 case TargetOpcode::INLINEASM_BR: 1123 EmitInlineAsm(&MI); 1124 break; 1125 case TargetOpcode::DBG_VALUE: 1126 if (isVerbose()) { 1127 if (!emitDebugValueComment(&MI, *this)) 1128 EmitInstruction(&MI); 1129 } 1130 break; 1131 case TargetOpcode::DBG_LABEL: 1132 if (isVerbose()) { 1133 if (!emitDebugLabelComment(&MI, *this)) 1134 EmitInstruction(&MI); 1135 } 1136 break; 1137 case TargetOpcode::IMPLICIT_DEF: 1138 if (isVerbose()) emitImplicitDef(&MI); 1139 break; 1140 case TargetOpcode::KILL: 1141 if (isVerbose()) emitKill(&MI, *this); 1142 break; 1143 default: 1144 EmitInstruction(&MI); 1145 break; 1146 } 1147 1148 // If there is a post-instruction symbol, emit a label for it here. 1149 if (MCSymbol *S = MI.getPostInstrSymbol()) 1150 OutStreamer->EmitLabel(S); 1151 1152 if (ShouldPrintDebugScopes) { 1153 for (const HandlerInfo &HI : Handlers) { 1154 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1155 HI.TimerGroupName, HI.TimerGroupDescription, 1156 TimePassesIsEnabled); 1157 HI.Handler->endInstruction(); 1158 } 1159 } 1160 } 1161 1162 EmitBasicBlockEnd(MBB); 1163 } 1164 1165 EmittedInsts += NumInstsInFunction; 1166 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1167 MF->getFunction().getSubprogram(), 1168 &MF->front()); 1169 R << ore::NV("NumInstructions", NumInstsInFunction) 1170 << " instructions in function"; 1171 ORE->emit(R); 1172 1173 // If the function is empty and the object file uses .subsections_via_symbols, 1174 // then we need to emit *something* to the function body to prevent the 1175 // labels from collapsing together. Just emit a noop. 1176 // Similarly, don't emit empty functions on Windows either. It can lead to 1177 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1178 // after linking, causing the kernel not to load the binary: 1179 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1180 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1181 const Triple &TT = TM.getTargetTriple(); 1182 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1183 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1184 MCInst Noop; 1185 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1186 1187 // Targets can opt-out of emitting the noop here by leaving the opcode 1188 // unspecified. 1189 if (Noop.getOpcode()) { 1190 OutStreamer->AddComment("avoids zero-length function"); 1191 emitNops(1); 1192 } 1193 } 1194 1195 const Function &F = MF->getFunction(); 1196 for (const auto &BB : F) { 1197 if (!BB.hasAddressTaken()) 1198 continue; 1199 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1200 if (Sym->isDefined()) 1201 continue; 1202 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1203 OutStreamer->EmitLabel(Sym); 1204 } 1205 1206 // Emit target-specific gunk after the function body. 1207 EmitFunctionBodyEnd(); 1208 1209 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1210 MAI->hasDotTypeDotSizeDirective()) { 1211 // Create a symbol for the end of function. 1212 CurrentFnEnd = createTempSymbol("func_end"); 1213 OutStreamer->EmitLabel(CurrentFnEnd); 1214 } 1215 1216 // If the target wants a .size directive for the size of the function, emit 1217 // it. 1218 if (MAI->hasDotTypeDotSizeDirective()) { 1219 // We can get the size as difference between the function label and the 1220 // temp label. 1221 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1222 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1223 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1224 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1225 } 1226 1227 for (const HandlerInfo &HI : Handlers) { 1228 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1229 HI.TimerGroupDescription, TimePassesIsEnabled); 1230 HI.Handler->markFunctionEnd(); 1231 } 1232 1233 // Print out jump tables referenced by the function. 1234 EmitJumpTableInfo(); 1235 1236 // Emit post-function debug and/or EH information. 1237 for (const HandlerInfo &HI : Handlers) { 1238 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1239 HI.TimerGroupDescription, TimePassesIsEnabled); 1240 HI.Handler->endFunction(MF); 1241 } 1242 1243 // Emit section containing stack size metadata. 1244 emitStackSizeSection(*MF); 1245 1246 emitPatchableFunctionEntries(); 1247 1248 if (isVerbose()) 1249 OutStreamer->GetCommentOS() << "-- End function\n"; 1250 1251 OutStreamer->AddBlankLine(); 1252 } 1253 1254 /// Compute the number of Global Variables that uses a Constant. 1255 static unsigned getNumGlobalVariableUses(const Constant *C) { 1256 if (!C) 1257 return 0; 1258 1259 if (isa<GlobalVariable>(C)) 1260 return 1; 1261 1262 unsigned NumUses = 0; 1263 for (auto *CU : C->users()) 1264 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1265 1266 return NumUses; 1267 } 1268 1269 /// Only consider global GOT equivalents if at least one user is a 1270 /// cstexpr inside an initializer of another global variables. Also, don't 1271 /// handle cstexpr inside instructions. During global variable emission, 1272 /// candidates are skipped and are emitted later in case at least one cstexpr 1273 /// isn't replaced by a PC relative GOT entry access. 1274 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1275 unsigned &NumGOTEquivUsers) { 1276 // Global GOT equivalents are unnamed private globals with a constant 1277 // pointer initializer to another global symbol. They must point to a 1278 // GlobalVariable or Function, i.e., as GlobalValue. 1279 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1280 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1281 !isa<GlobalValue>(GV->getOperand(0))) 1282 return false; 1283 1284 // To be a got equivalent, at least one of its users need to be a constant 1285 // expression used by another global variable. 1286 for (auto *U : GV->users()) 1287 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1288 1289 return NumGOTEquivUsers > 0; 1290 } 1291 1292 /// Unnamed constant global variables solely contaning a pointer to 1293 /// another globals variable is equivalent to a GOT table entry; it contains the 1294 /// the address of another symbol. Optimize it and replace accesses to these 1295 /// "GOT equivalents" by using the GOT entry for the final global instead. 1296 /// Compute GOT equivalent candidates among all global variables to avoid 1297 /// emitting them if possible later on, after it use is replaced by a GOT entry 1298 /// access. 1299 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1300 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1301 return; 1302 1303 for (const auto &G : M.globals()) { 1304 unsigned NumGOTEquivUsers = 0; 1305 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1306 continue; 1307 1308 const MCSymbol *GOTEquivSym = getSymbol(&G); 1309 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1310 } 1311 } 1312 1313 /// Constant expressions using GOT equivalent globals may not be eligible 1314 /// for PC relative GOT entry conversion, in such cases we need to emit such 1315 /// globals we previously omitted in EmitGlobalVariable. 1316 void AsmPrinter::emitGlobalGOTEquivs() { 1317 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1318 return; 1319 1320 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1321 for (auto &I : GlobalGOTEquivs) { 1322 const GlobalVariable *GV = I.second.first; 1323 unsigned Cnt = I.second.second; 1324 if (Cnt) 1325 FailedCandidates.push_back(GV); 1326 } 1327 GlobalGOTEquivs.clear(); 1328 1329 for (auto *GV : FailedCandidates) 1330 EmitGlobalVariable(GV); 1331 } 1332 1333 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1334 const GlobalIndirectSymbol& GIS) { 1335 MCSymbol *Name = getSymbol(&GIS); 1336 1337 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1338 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1339 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1340 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1341 else 1342 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1343 1344 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1345 1346 // Treat bitcasts of functions as functions also. This is important at least 1347 // on WebAssembly where object and function addresses can't alias each other. 1348 if (!IsFunction) 1349 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1350 if (CE->getOpcode() == Instruction::BitCast) 1351 IsFunction = 1352 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1353 1354 // Set the symbol type to function if the alias has a function type. 1355 // This affects codegen when the aliasee is not a function. 1356 if (IsFunction) 1357 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1358 ? MCSA_ELF_TypeIndFunction 1359 : MCSA_ELF_TypeFunction); 1360 1361 EmitVisibility(Name, GIS.getVisibility()); 1362 1363 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1364 1365 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1366 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1367 1368 // Emit the directives as assignments aka .set: 1369 OutStreamer->EmitAssignment(Name, Expr); 1370 1371 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1372 // If the aliasee does not correspond to a symbol in the output, i.e. the 1373 // alias is not of an object or the aliased object is private, then set the 1374 // size of the alias symbol from the type of the alias. We don't do this in 1375 // other situations as the alias and aliasee having differing types but same 1376 // size may be intentional. 1377 const GlobalObject *BaseObject = GA->getBaseObject(); 1378 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1379 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1380 const DataLayout &DL = M.getDataLayout(); 1381 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1382 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1383 } 1384 } 1385 } 1386 1387 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) { 1388 if (!RS.needsSection()) 1389 return; 1390 1391 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1392 1393 Optional<SmallString<128>> Filename; 1394 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1395 Filename = *FilenameRef; 1396 sys::fs::make_absolute(*Filename); 1397 assert(!Filename->empty() && "The filename can't be empty."); 1398 } 1399 1400 std::string Buf; 1401 raw_string_ostream OS(Buf); 1402 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1403 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1404 : RemarkSerializer.metaSerializer(OS); 1405 MetaSerializer->emit(); 1406 1407 // Switch to the remarks section. 1408 MCSection *RemarksSection = 1409 OutContext.getObjectFileInfo()->getRemarksSection(); 1410 OutStreamer->SwitchSection(RemarksSection); 1411 1412 OutStreamer->EmitBinaryData(OS.str()); 1413 } 1414 1415 bool AsmPrinter::doFinalization(Module &M) { 1416 // Set the MachineFunction to nullptr so that we can catch attempted 1417 // accesses to MF specific features at the module level and so that 1418 // we can conditionalize accesses based on whether or not it is nullptr. 1419 MF = nullptr; 1420 1421 // Gather all GOT equivalent globals in the module. We really need two 1422 // passes over the globals: one to compute and another to avoid its emission 1423 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1424 // where the got equivalent shows up before its use. 1425 computeGlobalGOTEquivs(M); 1426 1427 // Emit global variables. 1428 for (const auto &G : M.globals()) 1429 EmitGlobalVariable(&G); 1430 1431 // Emit remaining GOT equivalent globals. 1432 emitGlobalGOTEquivs(); 1433 1434 // Emit visibility info for declarations 1435 for (const Function &F : M) { 1436 if (!F.isDeclarationForLinker()) 1437 continue; 1438 GlobalValue::VisibilityTypes V = F.getVisibility(); 1439 if (V == GlobalValue::DefaultVisibility) 1440 continue; 1441 1442 MCSymbol *Name = getSymbol(&F); 1443 EmitVisibility(Name, V, false); 1444 } 1445 1446 // Emit the remarks section contents. 1447 // FIXME: Figure out when is the safest time to emit this section. It should 1448 // not come after debug info. 1449 if (RemarkStreamer *RS = M.getContext().getRemarkStreamer()) 1450 emitRemarksSection(*RS); 1451 1452 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1453 1454 TLOF.emitModuleMetadata(*OutStreamer, M); 1455 1456 if (TM.getTargetTriple().isOSBinFormatELF()) { 1457 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1458 1459 // Output stubs for external and common global variables. 1460 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1461 if (!Stubs.empty()) { 1462 OutStreamer->SwitchSection(TLOF.getDataSection()); 1463 const DataLayout &DL = M.getDataLayout(); 1464 1465 EmitAlignment(Align(DL.getPointerSize())); 1466 for (const auto &Stub : Stubs) { 1467 OutStreamer->EmitLabel(Stub.first); 1468 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1469 DL.getPointerSize()); 1470 } 1471 } 1472 } 1473 1474 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1475 MachineModuleInfoCOFF &MMICOFF = 1476 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1477 1478 // Output stubs for external and common global variables. 1479 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1480 if (!Stubs.empty()) { 1481 const DataLayout &DL = M.getDataLayout(); 1482 1483 for (const auto &Stub : Stubs) { 1484 SmallString<256> SectionName = StringRef(".rdata$"); 1485 SectionName += Stub.first->getName(); 1486 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1487 SectionName, 1488 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1489 COFF::IMAGE_SCN_LNK_COMDAT, 1490 SectionKind::getReadOnly(), Stub.first->getName(), 1491 COFF::IMAGE_COMDAT_SELECT_ANY)); 1492 EmitAlignment(Align(DL.getPointerSize())); 1493 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1494 OutStreamer->EmitLabel(Stub.first); 1495 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1496 DL.getPointerSize()); 1497 } 1498 } 1499 } 1500 1501 // Finalize debug and EH information. 1502 for (const HandlerInfo &HI : Handlers) { 1503 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1504 HI.TimerGroupDescription, TimePassesIsEnabled); 1505 HI.Handler->endModule(); 1506 } 1507 Handlers.clear(); 1508 DD = nullptr; 1509 1510 // If the target wants to know about weak references, print them all. 1511 if (MAI->getWeakRefDirective()) { 1512 // FIXME: This is not lazy, it would be nice to only print weak references 1513 // to stuff that is actually used. Note that doing so would require targets 1514 // to notice uses in operands (due to constant exprs etc). This should 1515 // happen with the MC stuff eventually. 1516 1517 // Print out module-level global objects here. 1518 for (const auto &GO : M.global_objects()) { 1519 if (!GO.hasExternalWeakLinkage()) 1520 continue; 1521 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1522 } 1523 } 1524 1525 // Print aliases in topological order, that is, for each alias a = b, 1526 // b must be printed before a. 1527 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1528 // such an order to generate correct TOC information. 1529 SmallVector<const GlobalAlias *, 16> AliasStack; 1530 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1531 for (const auto &Alias : M.aliases()) { 1532 for (const GlobalAlias *Cur = &Alias; Cur; 1533 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1534 if (!AliasVisited.insert(Cur).second) 1535 break; 1536 AliasStack.push_back(Cur); 1537 } 1538 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1539 emitGlobalIndirectSymbol(M, *AncestorAlias); 1540 AliasStack.clear(); 1541 } 1542 for (const auto &IFunc : M.ifuncs()) 1543 emitGlobalIndirectSymbol(M, IFunc); 1544 1545 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1546 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1547 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1548 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1549 MP->finishAssembly(M, *MI, *this); 1550 1551 // Emit llvm.ident metadata in an '.ident' directive. 1552 EmitModuleIdents(M); 1553 1554 // Emit bytes for llvm.commandline metadata. 1555 EmitModuleCommandLines(M); 1556 1557 // Emit __morestack address if needed for indirect calls. 1558 if (MMI->usesMorestackAddr()) { 1559 unsigned Align = 1; 1560 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1561 getDataLayout(), SectionKind::getReadOnly(), 1562 /*C=*/nullptr, Align); 1563 OutStreamer->SwitchSection(ReadOnlySection); 1564 1565 MCSymbol *AddrSymbol = 1566 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1567 OutStreamer->EmitLabel(AddrSymbol); 1568 1569 unsigned PtrSize = MAI->getCodePointerSize(); 1570 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1571 PtrSize); 1572 } 1573 1574 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1575 // split-stack is used. 1576 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1577 OutStreamer->SwitchSection( 1578 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1579 if (MMI->hasNosplitStack()) 1580 OutStreamer->SwitchSection( 1581 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1582 } 1583 1584 // If we don't have any trampolines, then we don't require stack memory 1585 // to be executable. Some targets have a directive to declare this. 1586 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1587 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1588 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1589 OutStreamer->SwitchSection(S); 1590 1591 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1592 // Emit /EXPORT: flags for each exported global as necessary. 1593 const auto &TLOF = getObjFileLowering(); 1594 std::string Flags; 1595 1596 for (const GlobalValue &GV : M.global_values()) { 1597 raw_string_ostream OS(Flags); 1598 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1599 OS.flush(); 1600 if (!Flags.empty()) { 1601 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1602 OutStreamer->EmitBytes(Flags); 1603 } 1604 Flags.clear(); 1605 } 1606 1607 // Emit /INCLUDE: flags for each used global as necessary. 1608 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1609 assert(LU->hasInitializer() && 1610 "expected llvm.used to have an initializer"); 1611 assert(isa<ArrayType>(LU->getValueType()) && 1612 "expected llvm.used to be an array type"); 1613 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1614 for (const Value *Op : A->operands()) { 1615 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1616 // Global symbols with internal or private linkage are not visible to 1617 // the linker, and thus would cause an error when the linker tried to 1618 // preserve the symbol due to the `/include:` directive. 1619 if (GV->hasLocalLinkage()) 1620 continue; 1621 1622 raw_string_ostream OS(Flags); 1623 TLOF.emitLinkerFlagsForUsed(OS, GV); 1624 OS.flush(); 1625 1626 if (!Flags.empty()) { 1627 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1628 OutStreamer->EmitBytes(Flags); 1629 } 1630 Flags.clear(); 1631 } 1632 } 1633 } 1634 } 1635 1636 if (TM.Options.EmitAddrsig) { 1637 // Emit address-significance attributes for all globals. 1638 OutStreamer->EmitAddrsig(); 1639 for (const GlobalValue &GV : M.global_values()) 1640 if (!GV.use_empty() && !GV.isThreadLocal() && 1641 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1642 !GV.hasAtLeastLocalUnnamedAddr()) 1643 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1644 } 1645 1646 // Emit symbol partition specifications (ELF only). 1647 if (TM.getTargetTriple().isOSBinFormatELF()) { 1648 unsigned UniqueID = 0; 1649 for (const GlobalValue &GV : M.global_values()) { 1650 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1651 GV.getVisibility() != GlobalValue::DefaultVisibility) 1652 continue; 1653 1654 OutStreamer->SwitchSection(OutContext.getELFSection( 1655 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1656 OutStreamer->EmitBytes(GV.getPartition()); 1657 OutStreamer->EmitZeros(1); 1658 OutStreamer->EmitValue( 1659 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1660 MAI->getCodePointerSize()); 1661 } 1662 } 1663 1664 // Allow the target to emit any magic that it wants at the end of the file, 1665 // after everything else has gone out. 1666 EmitEndOfAsmFile(M); 1667 1668 MMI = nullptr; 1669 1670 OutStreamer->Finish(); 1671 OutStreamer->reset(); 1672 OwnedMLI.reset(); 1673 OwnedMDT.reset(); 1674 1675 return false; 1676 } 1677 1678 MCSymbol *AsmPrinter::getCurExceptionSym() { 1679 if (!CurExceptionSym) 1680 CurExceptionSym = createTempSymbol("exception"); 1681 return CurExceptionSym; 1682 } 1683 1684 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1685 this->MF = &MF; 1686 const Function &F = MF.getFunction(); 1687 1688 // Get the function symbol. 1689 if (MAI->needsFunctionDescriptors()) { 1690 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" 1691 " supported on AIX."); 1692 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1693 " initalized first."); 1694 1695 // Get the function entry point symbol. 1696 CurrentFnSym = 1697 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1698 1699 MCSectionXCOFF *FnEntryPointSec = 1700 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1701 // Set the containing csect. 1702 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1703 } else { 1704 CurrentFnSym = getSymbol(&MF.getFunction()); 1705 } 1706 1707 CurrentFnSymForSize = CurrentFnSym; 1708 CurrentFnBegin = nullptr; 1709 CurExceptionSym = nullptr; 1710 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1711 if (F.hasFnAttribute("patchable-function-entry") || 1712 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1713 MF.getTarget().Options.EmitStackSizeSection) { 1714 CurrentFnBegin = createTempSymbol("func_begin"); 1715 if (NeedsLocalForSize) 1716 CurrentFnSymForSize = CurrentFnBegin; 1717 } 1718 1719 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1720 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1721 MBFI = (PSI && PSI->hasProfileSummary()) ? 1722 // ORE conditionally computes MBFI. If available, use it, otherwise 1723 // request it. 1724 (ORE->getBFI() ? ORE->getBFI() : 1725 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) : 1726 nullptr; 1727 } 1728 1729 namespace { 1730 1731 // Keep track the alignment, constpool entries per Section. 1732 struct SectionCPs { 1733 MCSection *S; 1734 unsigned Alignment; 1735 SmallVector<unsigned, 4> CPEs; 1736 1737 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1738 }; 1739 1740 } // end anonymous namespace 1741 1742 /// EmitConstantPool - Print to the current output stream assembly 1743 /// representations of the constants in the constant pool MCP. This is 1744 /// used to print out constants which have been "spilled to memory" by 1745 /// the code generator. 1746 void AsmPrinter::EmitConstantPool() { 1747 const MachineConstantPool *MCP = MF->getConstantPool(); 1748 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1749 if (CP.empty()) return; 1750 1751 // Calculate sections for constant pool entries. We collect entries to go into 1752 // the same section together to reduce amount of section switch statements. 1753 SmallVector<SectionCPs, 4> CPSections; 1754 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1755 const MachineConstantPoolEntry &CPE = CP[i]; 1756 unsigned Align = CPE.getAlignment(); 1757 1758 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1759 1760 const Constant *C = nullptr; 1761 if (!CPE.isMachineConstantPoolEntry()) 1762 C = CPE.Val.ConstVal; 1763 1764 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1765 Kind, C, Align); 1766 1767 // The number of sections are small, just do a linear search from the 1768 // last section to the first. 1769 bool Found = false; 1770 unsigned SecIdx = CPSections.size(); 1771 while (SecIdx != 0) { 1772 if (CPSections[--SecIdx].S == S) { 1773 Found = true; 1774 break; 1775 } 1776 } 1777 if (!Found) { 1778 SecIdx = CPSections.size(); 1779 CPSections.push_back(SectionCPs(S, Align)); 1780 } 1781 1782 if (Align > CPSections[SecIdx].Alignment) 1783 CPSections[SecIdx].Alignment = Align; 1784 CPSections[SecIdx].CPEs.push_back(i); 1785 } 1786 1787 // Now print stuff into the calculated sections. 1788 const MCSection *CurSection = nullptr; 1789 unsigned Offset = 0; 1790 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1791 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1792 unsigned CPI = CPSections[i].CPEs[j]; 1793 MCSymbol *Sym = GetCPISymbol(CPI); 1794 if (!Sym->isUndefined()) 1795 continue; 1796 1797 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1798 cast<MCSymbolXCOFF>(Sym)->setContainingCsect( 1799 cast<MCSectionXCOFF>(CPSections[i].S)); 1800 } 1801 1802 if (CurSection != CPSections[i].S) { 1803 OutStreamer->SwitchSection(CPSections[i].S); 1804 EmitAlignment(Align(CPSections[i].Alignment)); 1805 CurSection = CPSections[i].S; 1806 Offset = 0; 1807 } 1808 1809 MachineConstantPoolEntry CPE = CP[CPI]; 1810 1811 // Emit inter-object padding for alignment. 1812 unsigned AlignMask = CPE.getAlignment() - 1; 1813 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1814 OutStreamer->EmitZeros(NewOffset - Offset); 1815 1816 Type *Ty = CPE.getType(); 1817 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1818 1819 OutStreamer->EmitLabel(Sym); 1820 if (CPE.isMachineConstantPoolEntry()) 1821 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1822 else 1823 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1824 } 1825 } 1826 } 1827 1828 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1829 /// by the current function to the current output stream. 1830 void AsmPrinter::EmitJumpTableInfo() { 1831 const DataLayout &DL = MF->getDataLayout(); 1832 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1833 if (!MJTI) return; 1834 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1835 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1836 if (JT.empty()) return; 1837 1838 // Pick the directive to use to print the jump table entries, and switch to 1839 // the appropriate section. 1840 const Function &F = MF->getFunction(); 1841 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1842 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1843 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1844 F); 1845 if (JTInDiffSection) { 1846 // Drop it in the readonly section. 1847 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1848 OutStreamer->SwitchSection(ReadOnlySection); 1849 } 1850 1851 EmitAlignment(Align(MJTI->getEntryAlignment(DL))); 1852 1853 // Jump tables in code sections are marked with a data_region directive 1854 // where that's supported. 1855 if (!JTInDiffSection) 1856 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1857 1858 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1859 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1860 1861 // If this jump table was deleted, ignore it. 1862 if (JTBBs.empty()) continue; 1863 1864 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1865 /// emit a .set directive for each unique entry. 1866 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1867 MAI->doesSetDirectiveSuppressReloc()) { 1868 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1869 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1870 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1871 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1872 const MachineBasicBlock *MBB = JTBBs[ii]; 1873 if (!EmittedSets.insert(MBB).second) 1874 continue; 1875 1876 // .set LJTSet, LBB32-base 1877 const MCExpr *LHS = 1878 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1879 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1880 MCBinaryExpr::createSub(LHS, Base, 1881 OutContext)); 1882 } 1883 } 1884 1885 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1886 // before each jump table. The first label is never referenced, but tells 1887 // the assembler and linker the extents of the jump table object. The 1888 // second label is actually referenced by the code. 1889 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1890 // FIXME: This doesn't have to have any specific name, just any randomly 1891 // named and numbered local label started with 'l' would work. Simplify 1892 // GetJTISymbol. 1893 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1894 1895 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1896 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1897 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect( 1898 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM))); 1899 } 1900 OutStreamer->EmitLabel(JTISymbol); 1901 1902 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1903 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1904 } 1905 if (!JTInDiffSection) 1906 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1907 } 1908 1909 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1910 /// current stream. 1911 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1912 const MachineBasicBlock *MBB, 1913 unsigned UID) const { 1914 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1915 const MCExpr *Value = nullptr; 1916 switch (MJTI->getEntryKind()) { 1917 case MachineJumpTableInfo::EK_Inline: 1918 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1919 case MachineJumpTableInfo::EK_Custom32: 1920 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1921 MJTI, MBB, UID, OutContext); 1922 break; 1923 case MachineJumpTableInfo::EK_BlockAddress: 1924 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1925 // .word LBB123 1926 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1927 break; 1928 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1929 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1930 // with a relocation as gp-relative, e.g.: 1931 // .gprel32 LBB123 1932 MCSymbol *MBBSym = MBB->getSymbol(); 1933 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1934 return; 1935 } 1936 1937 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1938 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1939 // with a relocation as gp-relative, e.g.: 1940 // .gpdword LBB123 1941 MCSymbol *MBBSym = MBB->getSymbol(); 1942 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1943 return; 1944 } 1945 1946 case MachineJumpTableInfo::EK_LabelDifference32: { 1947 // Each entry is the address of the block minus the address of the jump 1948 // table. This is used for PIC jump tables where gprel32 is not supported. 1949 // e.g.: 1950 // .word LBB123 - LJTI1_2 1951 // If the .set directive avoids relocations, this is emitted as: 1952 // .set L4_5_set_123, LBB123 - LJTI1_2 1953 // .word L4_5_set_123 1954 if (MAI->doesSetDirectiveSuppressReloc()) { 1955 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1956 OutContext); 1957 break; 1958 } 1959 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1960 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1961 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1962 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1963 break; 1964 } 1965 } 1966 1967 assert(Value && "Unknown entry kind!"); 1968 1969 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1970 OutStreamer->EmitValue(Value, EntrySize); 1971 } 1972 1973 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1974 /// special global used by LLVM. If so, emit it and return true, otherwise 1975 /// do nothing and return false. 1976 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1977 if (GV->getName() == "llvm.used") { 1978 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1979 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1980 return true; 1981 } 1982 1983 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1984 if (GV->getSection() == "llvm.metadata" || 1985 GV->hasAvailableExternallyLinkage()) 1986 return true; 1987 1988 if (!GV->hasAppendingLinkage()) return false; 1989 1990 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1991 1992 if (GV->getName() == "llvm.global_ctors") { 1993 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1994 /* isCtor */ true); 1995 1996 return true; 1997 } 1998 1999 if (GV->getName() == "llvm.global_dtors") { 2000 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2001 /* isCtor */ false); 2002 2003 return true; 2004 } 2005 2006 report_fatal_error("unknown special variable"); 2007 } 2008 2009 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2010 /// global in the specified llvm.used list. 2011 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 2012 // Should be an array of 'i8*'. 2013 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2014 const GlobalValue *GV = 2015 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2016 if (GV) 2017 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2018 } 2019 } 2020 2021 namespace { 2022 2023 struct Structor { 2024 int Priority = 0; 2025 Constant *Func = nullptr; 2026 GlobalValue *ComdatKey = nullptr; 2027 2028 Structor() = default; 2029 }; 2030 2031 } // end anonymous namespace 2032 2033 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2034 /// priority. 2035 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 2036 bool isCtor) { 2037 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2038 // init priority. 2039 if (!isa<ConstantArray>(List)) return; 2040 2041 // Sanity check the structors list. 2042 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2043 if (!InitList) return; // Not an array! 2044 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2045 if (!ETy || ETy->getNumElements() != 3 || 2046 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2047 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2048 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2049 return; // Not (int, ptr, ptr). 2050 2051 // Gather the structors in a form that's convenient for sorting by priority. 2052 SmallVector<Structor, 8> Structors; 2053 for (Value *O : InitList->operands()) { 2054 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2055 if (!CS) continue; // Malformed. 2056 if (CS->getOperand(1)->isNullValue()) 2057 break; // Found a null terminator, skip the rest. 2058 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2059 if (!Priority) continue; // Malformed. 2060 Structors.push_back(Structor()); 2061 Structor &S = Structors.back(); 2062 S.Priority = Priority->getLimitedValue(65535); 2063 S.Func = CS->getOperand(1); 2064 if (!CS->getOperand(2)->isNullValue()) 2065 S.ComdatKey = 2066 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2067 } 2068 2069 // Emit the function pointers in the target-specific order 2070 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2071 return L.Priority < R.Priority; 2072 }); 2073 const Align Align = DL.getPointerPrefAlignment(); 2074 for (Structor &S : Structors) { 2075 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2076 const MCSymbol *KeySym = nullptr; 2077 if (GlobalValue *GV = S.ComdatKey) { 2078 if (GV->isDeclarationForLinker()) 2079 // If the associated variable is not defined in this module 2080 // (it might be available_externally, or have been an 2081 // available_externally definition that was dropped by the 2082 // EliminateAvailableExternally pass), some other TU 2083 // will provide its dynamic initializer. 2084 continue; 2085 2086 KeySym = getSymbol(GV); 2087 } 2088 MCSection *OutputSection = 2089 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2090 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2091 OutStreamer->SwitchSection(OutputSection); 2092 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2093 EmitAlignment(Align); 2094 EmitXXStructor(DL, S.Func); 2095 } 2096 } 2097 2098 void AsmPrinter::EmitModuleIdents(Module &M) { 2099 if (!MAI->hasIdentDirective()) 2100 return; 2101 2102 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2103 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2104 const MDNode *N = NMD->getOperand(i); 2105 assert(N->getNumOperands() == 1 && 2106 "llvm.ident metadata entry can have only one operand"); 2107 const MDString *S = cast<MDString>(N->getOperand(0)); 2108 OutStreamer->EmitIdent(S->getString()); 2109 } 2110 } 2111 } 2112 2113 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2114 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2115 if (!CommandLine) 2116 return; 2117 2118 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2119 if (!NMD || !NMD->getNumOperands()) 2120 return; 2121 2122 OutStreamer->PushSection(); 2123 OutStreamer->SwitchSection(CommandLine); 2124 OutStreamer->EmitZeros(1); 2125 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2126 const MDNode *N = NMD->getOperand(i); 2127 assert(N->getNumOperands() == 1 && 2128 "llvm.commandline metadata entry can have only one operand"); 2129 const MDString *S = cast<MDString>(N->getOperand(0)); 2130 OutStreamer->EmitBytes(S->getString()); 2131 OutStreamer->EmitZeros(1); 2132 } 2133 OutStreamer->PopSection(); 2134 } 2135 2136 //===--------------------------------------------------------------------===// 2137 // Emission and print routines 2138 // 2139 2140 /// Emit a byte directive and value. 2141 /// 2142 void AsmPrinter::emitInt8(int Value) const { 2143 OutStreamer->EmitIntValue(Value, 1); 2144 } 2145 2146 /// Emit a short directive and value. 2147 void AsmPrinter::emitInt16(int Value) const { 2148 OutStreamer->EmitIntValue(Value, 2); 2149 } 2150 2151 /// Emit a long directive and value. 2152 void AsmPrinter::emitInt32(int Value) const { 2153 OutStreamer->EmitIntValue(Value, 4); 2154 } 2155 2156 /// Emit a long long directive and value. 2157 void AsmPrinter::emitInt64(uint64_t Value) const { 2158 OutStreamer->EmitIntValue(Value, 8); 2159 } 2160 2161 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2162 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2163 /// .set if it avoids relocations. 2164 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2165 unsigned Size) const { 2166 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2167 } 2168 2169 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2170 /// where the size in bytes of the directive is specified by Size and Label 2171 /// specifies the label. This implicitly uses .set if it is available. 2172 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2173 unsigned Size, 2174 bool IsSectionRelative) const { 2175 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2176 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2177 if (Size > 4) 2178 OutStreamer->EmitZeros(Size - 4); 2179 return; 2180 } 2181 2182 // Emit Label+Offset (or just Label if Offset is zero) 2183 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2184 if (Offset) 2185 Expr = MCBinaryExpr::createAdd( 2186 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2187 2188 OutStreamer->EmitValue(Expr, Size); 2189 } 2190 2191 //===----------------------------------------------------------------------===// 2192 2193 // EmitAlignment - Emit an alignment directive to the specified power of 2194 // two boundary. If a global value is specified, and if that global has 2195 // an explicit alignment requested, it will override the alignment request 2196 // if required for correctness. 2197 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { 2198 if (GV) 2199 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2200 2201 if (Alignment == Align::None()) 2202 return; // 1-byte aligned: no need to emit alignment. 2203 2204 if (getCurrentSection()->getKind().isText()) 2205 OutStreamer->EmitCodeAlignment(Alignment.value()); 2206 else 2207 OutStreamer->EmitValueToAlignment(Alignment.value()); 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Constant emission. 2212 //===----------------------------------------------------------------------===// 2213 2214 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2215 MCContext &Ctx = OutContext; 2216 2217 if (CV->isNullValue() || isa<UndefValue>(CV)) 2218 return MCConstantExpr::create(0, Ctx); 2219 2220 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2221 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2222 2223 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2224 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2225 2226 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2227 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2228 2229 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2230 if (!CE) { 2231 llvm_unreachable("Unknown constant value to lower!"); 2232 } 2233 2234 switch (CE->getOpcode()) { 2235 default: 2236 // If the code isn't optimized, there may be outstanding folding 2237 // opportunities. Attempt to fold the expression using DataLayout as a 2238 // last resort before giving up. 2239 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2240 if (C != CE) 2241 return lowerConstant(C); 2242 2243 // Otherwise report the problem to the user. 2244 { 2245 std::string S; 2246 raw_string_ostream OS(S); 2247 OS << "Unsupported expression in static initializer: "; 2248 CE->printAsOperand(OS, /*PrintType=*/false, 2249 !MF ? nullptr : MF->getFunction().getParent()); 2250 report_fatal_error(OS.str()); 2251 } 2252 case Instruction::GetElementPtr: { 2253 // Generate a symbolic expression for the byte address 2254 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2255 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2256 2257 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2258 if (!OffsetAI) 2259 return Base; 2260 2261 int64_t Offset = OffsetAI.getSExtValue(); 2262 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2263 Ctx); 2264 } 2265 2266 case Instruction::Trunc: 2267 // We emit the value and depend on the assembler to truncate the generated 2268 // expression properly. This is important for differences between 2269 // blockaddress labels. Since the two labels are in the same function, it 2270 // is reasonable to treat their delta as a 32-bit value. 2271 LLVM_FALLTHROUGH; 2272 case Instruction::BitCast: 2273 return lowerConstant(CE->getOperand(0)); 2274 2275 case Instruction::IntToPtr: { 2276 const DataLayout &DL = getDataLayout(); 2277 2278 // Handle casts to pointers by changing them into casts to the appropriate 2279 // integer type. This promotes constant folding and simplifies this code. 2280 Constant *Op = CE->getOperand(0); 2281 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2282 false/*ZExt*/); 2283 return lowerConstant(Op); 2284 } 2285 2286 case Instruction::PtrToInt: { 2287 const DataLayout &DL = getDataLayout(); 2288 2289 // Support only foldable casts to/from pointers that can be eliminated by 2290 // changing the pointer to the appropriately sized integer type. 2291 Constant *Op = CE->getOperand(0); 2292 Type *Ty = CE->getType(); 2293 2294 const MCExpr *OpExpr = lowerConstant(Op); 2295 2296 // We can emit the pointer value into this slot if the slot is an 2297 // integer slot equal to the size of the pointer. 2298 // 2299 // If the pointer is larger than the resultant integer, then 2300 // as with Trunc just depend on the assembler to truncate it. 2301 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2302 return OpExpr; 2303 2304 // Otherwise the pointer is smaller than the resultant integer, mask off 2305 // the high bits so we are sure to get a proper truncation if the input is 2306 // a constant expr. 2307 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2308 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2309 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2310 } 2311 2312 case Instruction::Sub: { 2313 GlobalValue *LHSGV; 2314 APInt LHSOffset; 2315 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2316 getDataLayout())) { 2317 GlobalValue *RHSGV; 2318 APInt RHSOffset; 2319 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2320 getDataLayout())) { 2321 const MCExpr *RelocExpr = 2322 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2323 if (!RelocExpr) 2324 RelocExpr = MCBinaryExpr::createSub( 2325 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2326 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2327 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2328 if (Addend != 0) 2329 RelocExpr = MCBinaryExpr::createAdd( 2330 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2331 return RelocExpr; 2332 } 2333 } 2334 } 2335 // else fallthrough 2336 LLVM_FALLTHROUGH; 2337 2338 // The MC library also has a right-shift operator, but it isn't consistently 2339 // signed or unsigned between different targets. 2340 case Instruction::Add: 2341 case Instruction::Mul: 2342 case Instruction::SDiv: 2343 case Instruction::SRem: 2344 case Instruction::Shl: 2345 case Instruction::And: 2346 case Instruction::Or: 2347 case Instruction::Xor: { 2348 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2349 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2350 switch (CE->getOpcode()) { 2351 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2352 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2353 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2354 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2355 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2356 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2357 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2358 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2359 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2360 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2361 } 2362 } 2363 } 2364 } 2365 2366 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2367 AsmPrinter &AP, 2368 const Constant *BaseCV = nullptr, 2369 uint64_t Offset = 0); 2370 2371 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2372 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2373 2374 /// isRepeatedByteSequence - Determine whether the given value is 2375 /// composed of a repeated sequence of identical bytes and return the 2376 /// byte value. If it is not a repeated sequence, return -1. 2377 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2378 StringRef Data = V->getRawDataValues(); 2379 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2380 char C = Data[0]; 2381 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2382 if (Data[i] != C) return -1; 2383 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2384 } 2385 2386 /// isRepeatedByteSequence - Determine whether the given value is 2387 /// composed of a repeated sequence of identical bytes and return the 2388 /// byte value. If it is not a repeated sequence, return -1. 2389 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2390 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2391 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2392 assert(Size % 8 == 0); 2393 2394 // Extend the element to take zero padding into account. 2395 APInt Value = CI->getValue().zextOrSelf(Size); 2396 if (!Value.isSplat(8)) 2397 return -1; 2398 2399 return Value.zextOrTrunc(8).getZExtValue(); 2400 } 2401 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2402 // Make sure all array elements are sequences of the same repeated 2403 // byte. 2404 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2405 Constant *Op0 = CA->getOperand(0); 2406 int Byte = isRepeatedByteSequence(Op0, DL); 2407 if (Byte == -1) 2408 return -1; 2409 2410 // All array elements must be equal. 2411 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2412 if (CA->getOperand(i) != Op0) 2413 return -1; 2414 return Byte; 2415 } 2416 2417 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2418 return isRepeatedByteSequence(CDS); 2419 2420 return -1; 2421 } 2422 2423 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2424 const ConstantDataSequential *CDS, 2425 AsmPrinter &AP) { 2426 // See if we can aggregate this into a .fill, if so, emit it as such. 2427 int Value = isRepeatedByteSequence(CDS, DL); 2428 if (Value != -1) { 2429 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2430 // Don't emit a 1-byte object as a .fill. 2431 if (Bytes > 1) 2432 return AP.OutStreamer->emitFill(Bytes, Value); 2433 } 2434 2435 // If this can be emitted with .ascii/.asciz, emit it as such. 2436 if (CDS->isString()) 2437 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2438 2439 // Otherwise, emit the values in successive locations. 2440 unsigned ElementByteSize = CDS->getElementByteSize(); 2441 if (isa<IntegerType>(CDS->getElementType())) { 2442 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2443 if (AP.isVerbose()) 2444 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2445 CDS->getElementAsInteger(i)); 2446 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2447 ElementByteSize); 2448 } 2449 } else { 2450 Type *ET = CDS->getElementType(); 2451 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2452 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2453 } 2454 2455 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2456 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2457 CDS->getNumElements(); 2458 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2459 if (unsigned Padding = Size - EmittedSize) 2460 AP.OutStreamer->EmitZeros(Padding); 2461 } 2462 2463 static void emitGlobalConstantArray(const DataLayout &DL, 2464 const ConstantArray *CA, AsmPrinter &AP, 2465 const Constant *BaseCV, uint64_t Offset) { 2466 // See if we can aggregate some values. Make sure it can be 2467 // represented as a series of bytes of the constant value. 2468 int Value = isRepeatedByteSequence(CA, DL); 2469 2470 if (Value != -1) { 2471 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2472 AP.OutStreamer->emitFill(Bytes, Value); 2473 } 2474 else { 2475 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2476 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2477 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2478 } 2479 } 2480 } 2481 2482 static void emitGlobalConstantVector(const DataLayout &DL, 2483 const ConstantVector *CV, AsmPrinter &AP) { 2484 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2485 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2486 2487 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2488 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2489 CV->getType()->getNumElements(); 2490 if (unsigned Padding = Size - EmittedSize) 2491 AP.OutStreamer->EmitZeros(Padding); 2492 } 2493 2494 static void emitGlobalConstantStruct(const DataLayout &DL, 2495 const ConstantStruct *CS, AsmPrinter &AP, 2496 const Constant *BaseCV, uint64_t Offset) { 2497 // Print the fields in successive locations. Pad to align if needed! 2498 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2499 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2500 uint64_t SizeSoFar = 0; 2501 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2502 const Constant *Field = CS->getOperand(i); 2503 2504 // Print the actual field value. 2505 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2506 2507 // Check if padding is needed and insert one or more 0s. 2508 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2509 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2510 - Layout->getElementOffset(i)) - FieldSize; 2511 SizeSoFar += FieldSize + PadSize; 2512 2513 // Insert padding - this may include padding to increase the size of the 2514 // current field up to the ABI size (if the struct is not packed) as well 2515 // as padding to ensure that the next field starts at the right offset. 2516 AP.OutStreamer->EmitZeros(PadSize); 2517 } 2518 assert(SizeSoFar == Layout->getSizeInBytes() && 2519 "Layout of constant struct may be incorrect!"); 2520 } 2521 2522 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2523 assert(ET && "Unknown float type"); 2524 APInt API = APF.bitcastToAPInt(); 2525 2526 // First print a comment with what we think the original floating-point value 2527 // should have been. 2528 if (AP.isVerbose()) { 2529 SmallString<8> StrVal; 2530 APF.toString(StrVal); 2531 ET->print(AP.OutStreamer->GetCommentOS()); 2532 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2533 } 2534 2535 // Now iterate through the APInt chunks, emitting them in endian-correct 2536 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2537 // floats). 2538 unsigned NumBytes = API.getBitWidth() / 8; 2539 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2540 const uint64_t *p = API.getRawData(); 2541 2542 // PPC's long double has odd notions of endianness compared to how LLVM 2543 // handles it: p[0] goes first for *big* endian on PPC. 2544 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2545 int Chunk = API.getNumWords() - 1; 2546 2547 if (TrailingBytes) 2548 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2549 2550 for (; Chunk >= 0; --Chunk) 2551 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2552 } else { 2553 unsigned Chunk; 2554 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2555 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2556 2557 if (TrailingBytes) 2558 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2559 } 2560 2561 // Emit the tail padding for the long double. 2562 const DataLayout &DL = AP.getDataLayout(); 2563 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2564 } 2565 2566 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2567 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2568 } 2569 2570 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2571 const DataLayout &DL = AP.getDataLayout(); 2572 unsigned BitWidth = CI->getBitWidth(); 2573 2574 // Copy the value as we may massage the layout for constants whose bit width 2575 // is not a multiple of 64-bits. 2576 APInt Realigned(CI->getValue()); 2577 uint64_t ExtraBits = 0; 2578 unsigned ExtraBitsSize = BitWidth & 63; 2579 2580 if (ExtraBitsSize) { 2581 // The bit width of the data is not a multiple of 64-bits. 2582 // The extra bits are expected to be at the end of the chunk of the memory. 2583 // Little endian: 2584 // * Nothing to be done, just record the extra bits to emit. 2585 // Big endian: 2586 // * Record the extra bits to emit. 2587 // * Realign the raw data to emit the chunks of 64-bits. 2588 if (DL.isBigEndian()) { 2589 // Basically the structure of the raw data is a chunk of 64-bits cells: 2590 // 0 1 BitWidth / 64 2591 // [chunk1][chunk2] ... [chunkN]. 2592 // The most significant chunk is chunkN and it should be emitted first. 2593 // However, due to the alignment issue chunkN contains useless bits. 2594 // Realign the chunks so that they contain only useless information: 2595 // ExtraBits 0 1 (BitWidth / 64) - 1 2596 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2597 ExtraBits = Realigned.getRawData()[0] & 2598 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2599 Realigned.lshrInPlace(ExtraBitsSize); 2600 } else 2601 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2602 } 2603 2604 // We don't expect assemblers to support integer data directives 2605 // for more than 64 bits, so we emit the data in at most 64-bit 2606 // quantities at a time. 2607 const uint64_t *RawData = Realigned.getRawData(); 2608 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2609 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2610 AP.OutStreamer->EmitIntValue(Val, 8); 2611 } 2612 2613 if (ExtraBitsSize) { 2614 // Emit the extra bits after the 64-bits chunks. 2615 2616 // Emit a directive that fills the expected size. 2617 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2618 Size -= (BitWidth / 64) * 8; 2619 assert(Size && Size * 8 >= ExtraBitsSize && 2620 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2621 == ExtraBits && "Directive too small for extra bits."); 2622 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2623 } 2624 } 2625 2626 /// Transform a not absolute MCExpr containing a reference to a GOT 2627 /// equivalent global, by a target specific GOT pc relative access to the 2628 /// final symbol. 2629 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2630 const Constant *BaseCst, 2631 uint64_t Offset) { 2632 // The global @foo below illustrates a global that uses a got equivalent. 2633 // 2634 // @bar = global i32 42 2635 // @gotequiv = private unnamed_addr constant i32* @bar 2636 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2637 // i64 ptrtoint (i32* @foo to i64)) 2638 // to i32) 2639 // 2640 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2641 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2642 // form: 2643 // 2644 // foo = cstexpr, where 2645 // cstexpr := <gotequiv> - "." + <cst> 2646 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2647 // 2648 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2649 // 2650 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2651 // gotpcrelcst := <offset from @foo base> + <cst> 2652 MCValue MV; 2653 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2654 return; 2655 const MCSymbolRefExpr *SymA = MV.getSymA(); 2656 if (!SymA) 2657 return; 2658 2659 // Check that GOT equivalent symbol is cached. 2660 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2661 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2662 return; 2663 2664 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2665 if (!BaseGV) 2666 return; 2667 2668 // Check for a valid base symbol 2669 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2670 const MCSymbolRefExpr *SymB = MV.getSymB(); 2671 2672 if (!SymB || BaseSym != &SymB->getSymbol()) 2673 return; 2674 2675 // Make sure to match: 2676 // 2677 // gotpcrelcst := <offset from @foo base> + <cst> 2678 // 2679 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2680 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2681 // if the target knows how to encode it. 2682 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2683 if (GOTPCRelCst < 0) 2684 return; 2685 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2686 return; 2687 2688 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2689 // 2690 // bar: 2691 // .long 42 2692 // gotequiv: 2693 // .quad bar 2694 // foo: 2695 // .long gotequiv - "." + <cst> 2696 // 2697 // is replaced by the target specific equivalent to: 2698 // 2699 // bar: 2700 // .long 42 2701 // foo: 2702 // .long bar@GOTPCREL+<gotpcrelcst> 2703 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2704 const GlobalVariable *GV = Result.first; 2705 int NumUses = (int)Result.second; 2706 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2707 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2708 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2709 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2710 2711 // Update GOT equivalent usage information 2712 --NumUses; 2713 if (NumUses >= 0) 2714 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2715 } 2716 2717 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2718 AsmPrinter &AP, const Constant *BaseCV, 2719 uint64_t Offset) { 2720 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2721 2722 // Globals with sub-elements such as combinations of arrays and structs 2723 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2724 // constant symbol base and the current position with BaseCV and Offset. 2725 if (!BaseCV && CV->hasOneUse()) 2726 BaseCV = dyn_cast<Constant>(CV->user_back()); 2727 2728 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2729 return AP.OutStreamer->EmitZeros(Size); 2730 2731 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2732 switch (Size) { 2733 case 1: 2734 case 2: 2735 case 4: 2736 case 8: 2737 if (AP.isVerbose()) 2738 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2739 CI->getZExtValue()); 2740 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2741 return; 2742 default: 2743 emitGlobalConstantLargeInt(CI, AP); 2744 return; 2745 } 2746 } 2747 2748 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2749 return emitGlobalConstantFP(CFP, AP); 2750 2751 if (isa<ConstantPointerNull>(CV)) { 2752 AP.OutStreamer->EmitIntValue(0, Size); 2753 return; 2754 } 2755 2756 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2757 return emitGlobalConstantDataSequential(DL, CDS, AP); 2758 2759 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2760 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2761 2762 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2763 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2764 2765 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2766 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2767 // vectors). 2768 if (CE->getOpcode() == Instruction::BitCast) 2769 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2770 2771 if (Size > 8) { 2772 // If the constant expression's size is greater than 64-bits, then we have 2773 // to emit the value in chunks. Try to constant fold the value and emit it 2774 // that way. 2775 Constant *New = ConstantFoldConstant(CE, DL); 2776 if (New && New != CE) 2777 return emitGlobalConstantImpl(DL, New, AP); 2778 } 2779 } 2780 2781 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2782 return emitGlobalConstantVector(DL, V, AP); 2783 2784 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2785 // thread the streamer with EmitValue. 2786 const MCExpr *ME = AP.lowerConstant(CV); 2787 2788 // Since lowerConstant already folded and got rid of all IR pointer and 2789 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2790 // directly. 2791 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2792 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2793 2794 AP.OutStreamer->EmitValue(ME, Size); 2795 } 2796 2797 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2798 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2799 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2800 if (Size) 2801 emitGlobalConstantImpl(DL, CV, *this); 2802 else if (MAI->hasSubsectionsViaSymbols()) { 2803 // If the global has zero size, emit a single byte so that two labels don't 2804 // look like they are at the same location. 2805 OutStreamer->EmitIntValue(0, 1); 2806 } 2807 } 2808 2809 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2810 // Target doesn't support this yet! 2811 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2812 } 2813 2814 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2815 if (Offset > 0) 2816 OS << '+' << Offset; 2817 else if (Offset < 0) 2818 OS << Offset; 2819 } 2820 2821 void AsmPrinter::emitNops(unsigned N) { 2822 MCInst Nop; 2823 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2824 for (; N; --N) 2825 EmitToStreamer(*OutStreamer, Nop); 2826 } 2827 2828 //===----------------------------------------------------------------------===// 2829 // Symbol Lowering Routines. 2830 //===----------------------------------------------------------------------===// 2831 2832 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2833 return OutContext.createTempSymbol(Name, true); 2834 } 2835 2836 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2837 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2838 } 2839 2840 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2841 return MMI->getAddrLabelSymbol(BB); 2842 } 2843 2844 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2845 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2846 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2847 const MachineConstantPoolEntry &CPE = 2848 MF->getConstantPool()->getConstants()[CPID]; 2849 if (!CPE.isMachineConstantPoolEntry()) { 2850 const DataLayout &DL = MF->getDataLayout(); 2851 SectionKind Kind = CPE.getSectionKind(&DL); 2852 const Constant *C = CPE.Val.ConstVal; 2853 unsigned Align = CPE.Alignment; 2854 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2855 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2856 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2857 if (Sym->isUndefined()) 2858 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2859 return Sym; 2860 } 2861 } 2862 } 2863 } 2864 2865 const DataLayout &DL = getDataLayout(); 2866 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2867 "CPI" + Twine(getFunctionNumber()) + "_" + 2868 Twine(CPID)); 2869 } 2870 2871 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2872 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2873 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2874 } 2875 2876 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2877 /// FIXME: privatize to AsmPrinter. 2878 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2879 const DataLayout &DL = getDataLayout(); 2880 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2881 Twine(getFunctionNumber()) + "_" + 2882 Twine(UID) + "_set_" + Twine(MBBID)); 2883 } 2884 2885 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2886 StringRef Suffix) const { 2887 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2888 } 2889 2890 /// Return the MCSymbol for the specified ExternalSymbol. 2891 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2892 SmallString<60> NameStr; 2893 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2894 return OutContext.getOrCreateSymbol(NameStr); 2895 } 2896 2897 /// PrintParentLoopComment - Print comments about parent loops of this one. 2898 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2899 unsigned FunctionNumber) { 2900 if (!Loop) return; 2901 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2902 OS.indent(Loop->getLoopDepth()*2) 2903 << "Parent Loop BB" << FunctionNumber << "_" 2904 << Loop->getHeader()->getNumber() 2905 << " Depth=" << Loop->getLoopDepth() << '\n'; 2906 } 2907 2908 /// PrintChildLoopComment - Print comments about child loops within 2909 /// the loop for this basic block, with nesting. 2910 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2911 unsigned FunctionNumber) { 2912 // Add child loop information 2913 for (const MachineLoop *CL : *Loop) { 2914 OS.indent(CL->getLoopDepth()*2) 2915 << "Child Loop BB" << FunctionNumber << "_" 2916 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2917 << '\n'; 2918 PrintChildLoopComment(OS, CL, FunctionNumber); 2919 } 2920 } 2921 2922 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2923 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2924 const MachineLoopInfo *LI, 2925 const AsmPrinter &AP) { 2926 // Add loop depth information 2927 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2928 if (!Loop) return; 2929 2930 MachineBasicBlock *Header = Loop->getHeader(); 2931 assert(Header && "No header for loop"); 2932 2933 // If this block is not a loop header, just print out what is the loop header 2934 // and return. 2935 if (Header != &MBB) { 2936 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2937 Twine(AP.getFunctionNumber())+"_" + 2938 Twine(Loop->getHeader()->getNumber())+ 2939 " Depth="+Twine(Loop->getLoopDepth())); 2940 return; 2941 } 2942 2943 // Otherwise, it is a loop header. Print out information about child and 2944 // parent loops. 2945 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2946 2947 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2948 2949 OS << "=>"; 2950 OS.indent(Loop->getLoopDepth()*2-2); 2951 2952 OS << "This "; 2953 if (Loop->empty()) 2954 OS << "Inner "; 2955 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2956 2957 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2958 } 2959 2960 /// EmitBasicBlockStart - This method prints the label for the specified 2961 /// MachineBasicBlock, an alignment (if present) and a comment describing 2962 /// it if appropriate. 2963 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { 2964 // End the previous funclet and start a new one. 2965 if (MBB.isEHFuncletEntry()) { 2966 for (const HandlerInfo &HI : Handlers) { 2967 HI.Handler->endFunclet(); 2968 HI.Handler->beginFunclet(MBB); 2969 } 2970 } 2971 2972 // Emit an alignment directive for this block, if needed. 2973 const Align Alignment = MBB.getAlignment(); 2974 if (Alignment != Align::None()) 2975 EmitAlignment(Alignment); 2976 2977 // If the block has its address taken, emit any labels that were used to 2978 // reference the block. It is possible that there is more than one label 2979 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2980 // the references were generated. 2981 if (MBB.hasAddressTaken()) { 2982 const BasicBlock *BB = MBB.getBasicBlock(); 2983 if (isVerbose()) 2984 OutStreamer->AddComment("Block address taken"); 2985 2986 // MBBs can have their address taken as part of CodeGen without having 2987 // their corresponding BB's address taken in IR 2988 if (BB->hasAddressTaken()) 2989 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2990 OutStreamer->EmitLabel(Sym); 2991 } 2992 2993 // Print some verbose block comments. 2994 if (isVerbose()) { 2995 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2996 if (BB->hasName()) { 2997 BB->printAsOperand(OutStreamer->GetCommentOS(), 2998 /*PrintType=*/false, BB->getModule()); 2999 OutStreamer->GetCommentOS() << '\n'; 3000 } 3001 } 3002 3003 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3004 emitBasicBlockLoopComments(MBB, MLI, *this); 3005 } 3006 3007 // Print the main label for the block. 3008 if (MBB.pred_empty() || 3009 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 3010 !MBB.hasLabelMustBeEmitted())) { 3011 if (isVerbose()) { 3012 // NOTE: Want this comment at start of line, don't emit with AddComment. 3013 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3014 false); 3015 } 3016 } else { 3017 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3018 OutStreamer->AddComment("Label of block must be emitted"); 3019 OutStreamer->EmitLabel(MBB.getSymbol()); 3020 } 3021 } 3022 3023 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {} 3024 3025 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 3026 bool IsDefinition) const { 3027 MCSymbolAttr Attr = MCSA_Invalid; 3028 3029 switch (Visibility) { 3030 default: break; 3031 case GlobalValue::HiddenVisibility: 3032 if (IsDefinition) 3033 Attr = MAI->getHiddenVisibilityAttr(); 3034 else 3035 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3036 break; 3037 case GlobalValue::ProtectedVisibility: 3038 Attr = MAI->getProtectedVisibilityAttr(); 3039 break; 3040 } 3041 3042 if (Attr != MCSA_Invalid) 3043 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3044 } 3045 3046 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3047 /// exactly one predecessor and the control transfer mechanism between 3048 /// the predecessor and this block is a fall-through. 3049 bool AsmPrinter:: 3050 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3051 // If this is a landing pad, it isn't a fall through. If it has no preds, 3052 // then nothing falls through to it. 3053 if (MBB->isEHPad() || MBB->pred_empty()) 3054 return false; 3055 3056 // If there isn't exactly one predecessor, it can't be a fall through. 3057 if (MBB->pred_size() > 1) 3058 return false; 3059 3060 // The predecessor has to be immediately before this block. 3061 MachineBasicBlock *Pred = *MBB->pred_begin(); 3062 if (!Pred->isLayoutSuccessor(MBB)) 3063 return false; 3064 3065 // If the block is completely empty, then it definitely does fall through. 3066 if (Pred->empty()) 3067 return true; 3068 3069 // Check the terminators in the previous blocks 3070 for (const auto &MI : Pred->terminators()) { 3071 // If it is not a simple branch, we are in a table somewhere. 3072 if (!MI.isBranch() || MI.isIndirectBranch()) 3073 return false; 3074 3075 // If we are the operands of one of the branches, this is not a fall 3076 // through. Note that targets with delay slots will usually bundle 3077 // terminators with the delay slot instruction. 3078 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3079 if (OP->isJTI()) 3080 return false; 3081 if (OP->isMBB() && OP->getMBB() == MBB) 3082 return false; 3083 } 3084 } 3085 3086 return true; 3087 } 3088 3089 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3090 if (!S.usesMetadata()) 3091 return nullptr; 3092 3093 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3094 gcp_map_type::iterator GCPI = GCMap.find(&S); 3095 if (GCPI != GCMap.end()) 3096 return GCPI->second.get(); 3097 3098 auto Name = S.getName(); 3099 3100 for (GCMetadataPrinterRegistry::iterator 3101 I = GCMetadataPrinterRegistry::begin(), 3102 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3103 if (Name == I->getName()) { 3104 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3105 GMP->S = &S; 3106 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3107 return IterBool.first->second.get(); 3108 } 3109 3110 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3111 } 3112 3113 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3114 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3115 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3116 bool NeedsDefault = false; 3117 if (MI->begin() == MI->end()) 3118 // No GC strategy, use the default format. 3119 NeedsDefault = true; 3120 else 3121 for (auto &I : *MI) { 3122 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3123 if (MP->emitStackMaps(SM, *this)) 3124 continue; 3125 // The strategy doesn't have printer or doesn't emit custom stack maps. 3126 // Use the default format. 3127 NeedsDefault = true; 3128 } 3129 3130 if (NeedsDefault) 3131 SM.serializeToStackMapSection(); 3132 } 3133 3134 /// Pin vtable to this file. 3135 AsmPrinterHandler::~AsmPrinterHandler() = default; 3136 3137 void AsmPrinterHandler::markFunctionEnd() {} 3138 3139 // In the binary's "xray_instr_map" section, an array of these function entries 3140 // describes each instrumentation point. When XRay patches your code, the index 3141 // into this table will be given to your handler as a patch point identifier. 3142 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3143 const MCSymbol *CurrentFnSym) const { 3144 Out->EmitSymbolValue(Sled, Bytes); 3145 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3146 auto Kind8 = static_cast<uint8_t>(Kind); 3147 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3148 Out->EmitBinaryData( 3149 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3150 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3151 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3152 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3153 Out->EmitZeros(Padding); 3154 } 3155 3156 void AsmPrinter::emitXRayTable() { 3157 if (Sleds.empty()) 3158 return; 3159 3160 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3161 const Function &F = MF->getFunction(); 3162 MCSection *InstMap = nullptr; 3163 MCSection *FnSledIndex = nullptr; 3164 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3165 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3166 assert(Associated != nullptr); 3167 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3168 std::string GroupName; 3169 if (F.hasComdat()) { 3170 Flags |= ELF::SHF_GROUP; 3171 GroupName = F.getComdat()->getName(); 3172 } 3173 3174 auto UniqueID = ++XRayFnUniqueID; 3175 InstMap = 3176 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3177 GroupName, UniqueID, Associated); 3178 FnSledIndex = 3179 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3180 GroupName, UniqueID, Associated); 3181 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3182 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3183 SectionKind::getReadOnlyWithRel()); 3184 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3185 SectionKind::getReadOnlyWithRel()); 3186 } else { 3187 llvm_unreachable("Unsupported target"); 3188 } 3189 3190 auto WordSizeBytes = MAI->getCodePointerSize(); 3191 3192 // Now we switch to the instrumentation map section. Because this is done 3193 // per-function, we are able to create an index entry that will represent the 3194 // range of sleds associated with a function. 3195 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3196 OutStreamer->SwitchSection(InstMap); 3197 OutStreamer->EmitLabel(SledsStart); 3198 for (const auto &Sled : Sleds) 3199 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3200 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3201 OutStreamer->EmitLabel(SledsEnd); 3202 3203 // We then emit a single entry in the index per function. We use the symbols 3204 // that bound the instrumentation map as the range for a specific function. 3205 // Each entry here will be 2 * word size aligned, as we're writing down two 3206 // pointers. This should work for both 32-bit and 64-bit platforms. 3207 OutStreamer->SwitchSection(FnSledIndex); 3208 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3209 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3210 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3211 OutStreamer->SwitchSection(PrevSection); 3212 Sleds.clear(); 3213 } 3214 3215 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3216 SledKind Kind, uint8_t Version) { 3217 const Function &F = MI.getMF()->getFunction(); 3218 auto Attr = F.getFnAttribute("function-instrument"); 3219 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3220 bool AlwaysInstrument = 3221 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3222 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3223 Kind = SledKind::LOG_ARGS_ENTER; 3224 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3225 AlwaysInstrument, &F, Version}); 3226 } 3227 3228 void AsmPrinter::emitPatchableFunctionEntries() { 3229 const Function &F = MF->getFunction(); 3230 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3231 (void)F.getFnAttribute("patchable-function-prefix") 3232 .getValueAsString() 3233 .getAsInteger(10, PatchableFunctionPrefix); 3234 (void)F.getFnAttribute("patchable-function-entry") 3235 .getValueAsString() 3236 .getAsInteger(10, PatchableFunctionEntry); 3237 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3238 return; 3239 const unsigned PointerSize = getPointerSize(); 3240 if (TM.getTargetTriple().isOSBinFormatELF()) { 3241 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3242 3243 // As of binutils 2.33, GNU as does not support section flag "o" or linkage 3244 // field "unique". Use SHF_LINK_ORDER if we are using the integrated 3245 // assembler. 3246 if (MAI->useIntegratedAssembler()) { 3247 Flags |= ELF::SHF_LINK_ORDER; 3248 std::string GroupName; 3249 if (F.hasComdat()) { 3250 Flags |= ELF::SHF_GROUP; 3251 GroupName = F.getComdat()->getName(); 3252 } 3253 MCSection *Section = getObjFileLowering().SectionForGlobal(&F, TM); 3254 unsigned UniqueID = 3255 PatchableFunctionEntryID 3256 .try_emplace(Section, PatchableFunctionEntryID.size()) 3257 .first->second; 3258 OutStreamer->SwitchSection(OutContext.getELFSection( 3259 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, 3260 GroupName, UniqueID, cast<MCSymbolELF>(CurrentFnSym))); 3261 } else { 3262 OutStreamer->SwitchSection(OutContext.getELFSection( 3263 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags)); 3264 } 3265 EmitAlignment(Align(PointerSize)); 3266 OutStreamer->EmitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3267 } 3268 } 3269 3270 uint16_t AsmPrinter::getDwarfVersion() const { 3271 return OutStreamer->getContext().getDwarfVersion(); 3272 } 3273 3274 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3275 OutStreamer->getContext().setDwarfVersion(Version); 3276 } 3277