xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp (revision 3eaa9deb198a754efe38226024efe9b96e31e281)
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBundle.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineModuleInfo.h"
55 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/StackMaps.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Comdat.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalIFunc.h"
75 #include "llvm/IR/GlobalIndirectSymbol.h"
76 #include "llvm/IR/GlobalObject.h"
77 #include "llvm/IR/GlobalValue.h"
78 #include "llvm/IR/GlobalVariable.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Mangler.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/RemarkStreamer.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCAsmInfo.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCDirectives.h"
90 #include "llvm/MC/MCDwarf.h"
91 #include "llvm/MC/MCExpr.h"
92 #include "llvm/MC/MCInst.h"
93 #include "llvm/MC/MCSection.h"
94 #include "llvm/MC/MCSectionCOFF.h"
95 #include "llvm/MC/MCSectionELF.h"
96 #include "llvm/MC/MCSectionMachO.h"
97 #include "llvm/MC/MCSectionXCOFF.h"
98 #include "llvm/MC/MCStreamer.h"
99 #include "llvm/MC/MCSubtargetInfo.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/MC/MCSymbolELF.h"
102 #include "llvm/MC/MCSymbolXCOFF.h"
103 #include "llvm/MC/MCTargetOptions.h"
104 #include "llvm/MC/MCValue.h"
105 #include "llvm/MC/SectionKind.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Remarks/Remark.h"
108 #include "llvm/Remarks/RemarkFormat.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 static const char *const DWARFGroupName = "dwarf";
139 static const char *const DWARFGroupDescription = "DWARF Emission";
140 static const char *const DbgTimerName = "emit";
141 static const char *const DbgTimerDescription = "Debug Info Emission";
142 static const char *const EHTimerName = "write_exception";
143 static const char *const EHTimerDescription = "DWARF Exception Writer";
144 static const char *const CFGuardName = "Control Flow Guard";
145 static const char *const CFGuardDescription = "Control Flow Guard";
146 static const char *const CodeViewLineTablesGroupName = "linetables";
147 static const char *const CodeViewLineTablesGroupDescription =
148   "CodeView Line Tables";
149 
150 STATISTIC(EmittedInsts, "Number of machine instrs printed");
151 
152 char AsmPrinter::ID = 0;
153 
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155 
156 static gcp_map_type &getGCMap(void *&P) {
157   if (!P)
158     P = new gcp_map_type();
159   return *(gcp_map_type*)P;
160 }
161 
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value.  This rounds up to the preferred alignment if possible and legal.
164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
165                                  Align InAlign) {
166   Align Alignment;
167   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168     Alignment = Align(DL.getPreferredAlignment(GVar));
169 
170   // If InAlign is specified, round it to it.
171   if (InAlign > Alignment)
172     Alignment = InAlign;
173 
174   // If the GV has a specified alignment, take it into account.
175   const MaybeAlign GVAlign(GV->getAlignment());
176   if (!GVAlign)
177     return Alignment;
178 
179   assert(GVAlign && "GVAlign must be set");
180 
181   // If the GVAlign is larger than NumBits, or if we are required to obey
182   // NumBits because the GV has an assigned section, obey it.
183   if (*GVAlign > Alignment || GV->hasSection())
184     Alignment = *GVAlign;
185   return Alignment;
186 }
187 
188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191   VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193 
194 AsmPrinter::~AsmPrinter() {
195   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196 
197   if (GCMetadataPrinters) {
198     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199 
200     delete &GCMap;
201     GCMetadataPrinters = nullptr;
202   }
203 }
204 
205 bool AsmPrinter::isPositionIndependent() const {
206   return TM.isPositionIndependent();
207 }
208 
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211   return MF->getFunctionNumber();
212 }
213 
214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215   return *TM.getObjFileLowering();
216 }
217 
218 const DataLayout &AsmPrinter::getDataLayout() const {
219   return MMI->getModule()->getDataLayout();
220 }
221 
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225   return TM.getPointerSize(0); // FIXME: Default address space
226 }
227 
228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230   return MF->getSubtarget<MCSubtargetInfo>();
231 }
232 
233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234   S.EmitInstruction(Inst, getSubtargetInfo());
235 }
236 
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238   assert(DD && "Dwarf debug file is not defined.");
239   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241 }
242 
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection *AsmPrinter::getCurrentSection() const {
245   return OutStreamer->getCurrentSectionOnly();
246 }
247 
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249   AU.setPreservesAll();
250   MachineFunctionPass::getAnalysisUsage(AU);
251   AU.addRequired<MachineModuleInfoWrapperPass>();
252   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253   AU.addRequired<GCModuleInfo>();
254   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255   AU.addRequired<ProfileSummaryInfoWrapperPass>();
256 }
257 
258 bool AsmPrinter::doInitialization(Module &M) {
259   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261 
262   // Initialize TargetLoweringObjectFile.
263   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264     .Initialize(OutContext, TM);
265 
266   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267       .getModuleMetadata(M);
268 
269   OutStreamer->InitSections(false);
270 
271   // Emit the version-min deployment target directive if needed.
272   //
273   // FIXME: If we end up with a collection of these sorts of Darwin-specific
274   // or ELF-specific things, it may make sense to have a platform helper class
275   // that will work with the target helper class. For now keep it here, as the
276   // alternative is duplicated code in each of the target asm printers that
277   // use the directive, where it would need the same conditionalization
278   // anyway.
279   const Triple &Target = TM.getTargetTriple();
280   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
281 
282   // Allow the target to emit any magic that it wants at the start of the file.
283   EmitStartOfAsmFile(M);
284 
285   // Very minimal debug info. It is ignored if we emit actual debug info. If we
286   // don't, this at least helps the user find where a global came from.
287   if (MAI->hasSingleParameterDotFile()) {
288     // .file "foo.c"
289     OutStreamer->EmitFileDirective(
290         llvm::sys::path::filename(M.getSourceFileName()));
291   }
292 
293   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295   for (auto &I : *MI)
296     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297       MP->beginAssembly(M, *MI, *this);
298 
299   // Emit module-level inline asm if it exists.
300   if (!M.getModuleInlineAsm().empty()) {
301     // We're at the module level. Construct MCSubtarget from the default CPU
302     // and target triple.
303     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304         TM.getTargetTriple().str(), TM.getTargetCPU(),
305         TM.getTargetFeatureString()));
306     OutStreamer->AddComment("Start of file scope inline assembly");
307     OutStreamer->AddBlankLine();
308     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310     OutStreamer->AddComment("End of file scope inline assembly");
311     OutStreamer->AddBlankLine();
312   }
313 
314   if (MAI->doesSupportDebugInformation()) {
315     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318                             DbgTimerName, DbgTimerDescription,
319                             CodeViewLineTablesGroupName,
320                             CodeViewLineTablesGroupDescription);
321     }
322     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323       DD = new DwarfDebug(this, &M);
324       DD->beginModule();
325       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326                             DbgTimerDescription, DWARFGroupName,
327                             DWARFGroupDescription);
328     }
329   }
330 
331   switch (MAI->getExceptionHandlingType()) {
332   case ExceptionHandling::SjLj:
333   case ExceptionHandling::DwarfCFI:
334   case ExceptionHandling::ARM:
335     isCFIMoveForDebugging = true;
336     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337       break;
338     for (auto &F: M.getFunctionList()) {
339       // If the module contains any function with unwind data,
340       // .eh_frame has to be emitted.
341       // Ignore functions that won't get emitted.
342       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343         isCFIMoveForDebugging = false;
344         break;
345       }
346     }
347     break;
348   default:
349     isCFIMoveForDebugging = false;
350     break;
351   }
352 
353   EHStreamer *ES = nullptr;
354   switch (MAI->getExceptionHandlingType()) {
355   case ExceptionHandling::None:
356     break;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359     ES = new DwarfCFIException(this);
360     break;
361   case ExceptionHandling::ARM:
362     ES = new ARMException(this);
363     break;
364   case ExceptionHandling::WinEH:
365     switch (MAI->getWinEHEncodingType()) {
366     default: llvm_unreachable("unsupported unwinding information encoding");
367     case WinEH::EncodingType::Invalid:
368       break;
369     case WinEH::EncodingType::X86:
370     case WinEH::EncodingType::Itanium:
371       ES = new WinException(this);
372       break;
373     }
374     break;
375   case ExceptionHandling::Wasm:
376     ES = new WasmException(this);
377     break;
378   }
379   if (ES)
380     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381                           EHTimerDescription, DWARFGroupName,
382                           DWARFGroupDescription);
383 
384   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
385   if (mdconst::extract_or_null<ConstantInt>(
386           MMI->getModule()->getModuleFlag("cfguard")))
387     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
388                           CFGuardDescription, DWARFGroupName,
389                           DWARFGroupDescription);
390   return false;
391 }
392 
393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394   if (!MAI.hasWeakDefCanBeHiddenDirective())
395     return false;
396 
397   return GV->canBeOmittedFromSymbolTable();
398 }
399 
400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402   switch (Linkage) {
403   case GlobalValue::CommonLinkage:
404   case GlobalValue::LinkOnceAnyLinkage:
405   case GlobalValue::LinkOnceODRLinkage:
406   case GlobalValue::WeakAnyLinkage:
407   case GlobalValue::WeakODRLinkage:
408     if (MAI->hasWeakDefDirective()) {
409       // .globl _foo
410       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411 
412       if (!canBeHidden(GV, *MAI))
413         // .weak_definition _foo
414         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415       else
416         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417     } else if (MAI->hasLinkOnceDirective()) {
418       // .globl _foo
419       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420       //NOTE: linkonce is handled by the section the symbol was assigned to.
421     } else {
422       // .weak _foo
423       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
424     }
425     return;
426   case GlobalValue::ExternalLinkage:
427     // If external, declare as a global symbol: .globl _foo
428     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429     return;
430   case GlobalValue::PrivateLinkage:
431     return;
432   case GlobalValue::InternalLinkage:
433     if (MAI->hasDotLGloblDirective())
434       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435     return;
436   case GlobalValue::AppendingLinkage:
437   case GlobalValue::AvailableExternallyLinkage:
438   case GlobalValue::ExternalWeakLinkage:
439     llvm_unreachable("Should never emit this");
440   }
441   llvm_unreachable("Unknown linkage type!");
442 }
443 
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445                                    const GlobalValue *GV) const {
446   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447 }
448 
449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450   return TM.getSymbol(GV);
451 }
452 
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457          "No emulated TLS variables in the common section");
458 
459   // Never emit TLS variable xyz in emulated TLS model.
460   // The initialization value is in __emutls_t.xyz instead of xyz.
461   if (IsEmuTLSVar)
462     return;
463 
464   if (GV->hasInitializer()) {
465     // Check to see if this is a special global used by LLVM, if so, emit it.
466     if (EmitSpecialLLVMGlobal(GV))
467       return;
468 
469     // Skip the emission of global equivalents. The symbol can be emitted later
470     // on by emitGlobalGOTEquivs in case it turns out to be needed.
471     if (GlobalGOTEquivs.count(getSymbol(GV)))
472       return;
473 
474     if (isVerbose()) {
475       // When printing the control variable __emutls_v.*,
476       // we don't need to print the original TLS variable name.
477       GV->printAsOperand(OutStreamer->GetCommentOS(),
478                      /*PrintType=*/false, GV->getParent());
479       OutStreamer->GetCommentOS() << '\n';
480     }
481   }
482 
483   MCSymbol *GVSym = getSymbol(GV);
484   MCSymbol *EmittedSym = GVSym;
485 
486   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487   // attributes.
488   // GV's or GVSym's attributes will be used for the EmittedSym.
489   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
490 
491   if (!GV->hasInitializer())   // External globals require no extra code.
492     return;
493 
494   GVSym->redefineIfPossible();
495   if (GVSym->isDefined() || GVSym->isVariable())
496     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497                        "' is already defined");
498 
499   if (MAI->hasDotTypeDotSizeDirective())
500     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
501 
502   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
503 
504   const DataLayout &DL = GV->getParent()->getDataLayout();
505   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
506 
507   // If the alignment is specified, we *must* obey it.  Overaligning a global
508   // with a specified alignment is a prompt way to break globals emitted to
509   // sections and expected to be contiguous (e.g. ObjC metadata).
510   const Align Alignment = getGVAlignment(GV, DL);
511 
512   for (const HandlerInfo &HI : Handlers) {
513     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514                        HI.TimerGroupName, HI.TimerGroupDescription,
515                        TimePassesIsEnabled);
516     HI.Handler->setSymbolSize(GVSym, Size);
517   }
518 
519   // Handle common symbols
520   if (GVKind.isCommon()) {
521     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
522     // .comm _foo, 42, 4
523     const bool SupportsAlignment =
524         getObjFileLowering().getCommDirectiveSupportsAlignment();
525     OutStreamer->EmitCommonSymbol(GVSym, Size,
526                                   SupportsAlignment ? Alignment.value() : 0);
527     return;
528   }
529 
530   // Determine to which section this global should be emitted.
531   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
532 
533   // If we have a bss global going to a section that supports the
534   // zerofill directive, do so here.
535   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536       TheSection->isVirtualSection()) {
537     if (Size == 0)
538       Size = 1; // zerofill of 0 bytes is undefined.
539     EmitLinkage(GV, GVSym);
540     // .zerofill __DATA, __bss, _foo, 400, 5
541     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542     return;
543   }
544 
545   // If this is a BSS local symbol and we are emitting in the BSS
546   // section use .lcomm/.comm directive.
547   if (GVKind.isBSSLocal() &&
548       getObjFileLowering().getBSSSection() == TheSection) {
549     if (Size == 0)
550       Size = 1; // .comm Foo, 0 is undefined, avoid it.
551 
552     // Use .lcomm only if it supports user-specified alignment.
553     // Otherwise, while it would still be correct to use .lcomm in some
554     // cases (e.g. when Align == 1), the external assembler might enfore
555     // some -unknown- default alignment behavior, which could cause
556     // spurious differences between external and integrated assembler.
557     // Prefer to simply fall back to .local / .comm in this case.
558     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559       // .lcomm _foo, 42
560       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561       return;
562     }
563 
564     // .local _foo
565     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566     // .comm _foo, 42, 4
567     const bool SupportsAlignment =
568         getObjFileLowering().getCommDirectiveSupportsAlignment();
569     OutStreamer->EmitCommonSymbol(GVSym, Size,
570                                   SupportsAlignment ? Alignment.value() : 0);
571     return;
572   }
573 
574   // Handle thread local data for mach-o which requires us to output an
575   // additional structure of data and mangle the original symbol so that we
576   // can reference it later.
577   //
578   // TODO: This should become an "emit thread local global" method on TLOF.
579   // All of this macho specific stuff should be sunk down into TLOFMachO and
580   // stuff like "TLSExtraDataSection" should no longer be part of the parent
581   // TLOF class.  This will also make it more obvious that stuff like
582   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583   // specific code.
584   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585     // Emit the .tbss symbol
586     MCSymbol *MangSym =
587         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
588 
589     if (GVKind.isThreadBSS()) {
590       TheSection = getObjFileLowering().getTLSBSSSection();
591       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592     } else if (GVKind.isThreadData()) {
593       OutStreamer->SwitchSection(TheSection);
594 
595       EmitAlignment(Alignment, GV);
596       OutStreamer->EmitLabel(MangSym);
597 
598       EmitGlobalConstant(GV->getParent()->getDataLayout(),
599                          GV->getInitializer());
600     }
601 
602     OutStreamer->AddBlankLine();
603 
604     // Emit the variable struct for the runtime.
605     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
606 
607     OutStreamer->SwitchSection(TLVSect);
608     // Emit the linkage here.
609     EmitLinkage(GV, GVSym);
610     OutStreamer->EmitLabel(GVSym);
611 
612     // Three pointers in size:
613     //   - __tlv_bootstrap - used to make sure support exists
614     //   - spare pointer, used when mapped by the runtime
615     //   - pointer to mangled symbol above with initializer
616     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618                                 PtrSize);
619     OutStreamer->EmitIntValue(0, PtrSize);
620     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
621 
622     OutStreamer->AddBlankLine();
623     return;
624   }
625 
626   MCSymbol *EmittedInitSym = GVSym;
627 
628   OutStreamer->SwitchSection(TheSection);
629 
630   EmitLinkage(GV, EmittedInitSym);
631   EmitAlignment(Alignment, GV);
632 
633   OutStreamer->EmitLabel(EmittedInitSym);
634 
635   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
636 
637   if (MAI->hasDotTypeDotSizeDirective())
638     // .size foo, 42
639     OutStreamer->emitELFSize(EmittedInitSym,
640                              MCConstantExpr::create(Size, OutContext));
641 
642   OutStreamer->AddBlankLine();
643 }
644 
645 /// Emit the directive and value for debug thread local expression
646 ///
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650   OutStreamer->EmitValue(Value, Size);
651 }
652 
653 /// EmitFunctionHeader - This method emits the header for the current
654 /// function.
655 void AsmPrinter::EmitFunctionHeader() {
656   const Function &F = MF->getFunction();
657 
658   if (isVerbose())
659     OutStreamer->GetCommentOS()
660         << "-- Begin function "
661         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
662 
663   // Print out constants referenced by the function
664   EmitConstantPool();
665 
666   // Print the 'header' of function.
667   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668   EmitVisibility(CurrentFnSym, F.getVisibility());
669 
670   if (MAI->needsFunctionDescriptors() &&
671       F.getLinkage() != GlobalValue::InternalLinkage)
672     EmitLinkage(&F, CurrentFnDescSym);
673 
674   EmitLinkage(&F, CurrentFnSym);
675   if (MAI->hasFunctionAlignment())
676     EmitAlignment(MF->getAlignment(), &F);
677 
678   if (MAI->hasDotTypeDotSizeDirective())
679     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
680 
681   if (F.hasFnAttribute(Attribute::Cold))
682     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
683 
684   if (isVerbose()) {
685     F.printAsOperand(OutStreamer->GetCommentOS(),
686                    /*PrintType=*/false, F.getParent());
687     OutStreamer->GetCommentOS() << '\n';
688   }
689 
690   // Emit the prefix data.
691   if (F.hasPrefixData()) {
692     if (MAI->hasSubsectionsViaSymbols()) {
693       // Preserving prefix data on platforms which use subsections-via-symbols
694       // is a bit tricky. Here we introduce a symbol for the prefix data
695       // and use the .alt_entry attribute to mark the function's real entry point
696       // as an alternative entry point to the prefix-data symbol.
697       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698       OutStreamer->EmitLabel(PrefixSym);
699 
700       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
701 
702       // Emit an .alt_entry directive for the actual function symbol.
703       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704     } else {
705       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
706     }
707   }
708 
709   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
710   // place prefix data before NOPs.
711   unsigned PatchableFunctionPrefix = 0;
712   (void)F.getFnAttribute("patchable-function-prefix")
713       .getValueAsString()
714       .getAsInteger(10, PatchableFunctionPrefix);
715   if (PatchableFunctionPrefix) {
716     CurrentPatchableFunctionEntrySym =
717         OutContext.createLinkerPrivateTempSymbol();
718     OutStreamer->EmitLabel(CurrentPatchableFunctionEntrySym);
719     emitNops(PatchableFunctionPrefix);
720   } else {
721     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
722   }
723 
724   // Emit the function descriptor. This is a virtual function to allow targets
725   // to emit their specific function descriptor.
726   if (MAI->needsFunctionDescriptors())
727     EmitFunctionDescriptor();
728 
729   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
730   // their wild and crazy things as required.
731   EmitFunctionEntryLabel();
732 
733   // If the function had address-taken blocks that got deleted, then we have
734   // references to the dangling symbols.  Emit them at the start of the function
735   // so that we don't get references to undefined symbols.
736   std::vector<MCSymbol*> DeadBlockSyms;
737   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
738   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
739     OutStreamer->AddComment("Address taken block that was later removed");
740     OutStreamer->EmitLabel(DeadBlockSyms[i]);
741   }
742 
743   if (CurrentFnBegin) {
744     if (MAI->useAssignmentForEHBegin()) {
745       MCSymbol *CurPos = OutContext.createTempSymbol();
746       OutStreamer->EmitLabel(CurPos);
747       OutStreamer->EmitAssignment(CurrentFnBegin,
748                                  MCSymbolRefExpr::create(CurPos, OutContext));
749     } else {
750       OutStreamer->EmitLabel(CurrentFnBegin);
751     }
752   }
753 
754   // Emit pre-function debug and/or EH information.
755   for (const HandlerInfo &HI : Handlers) {
756     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
757                        HI.TimerGroupDescription, TimePassesIsEnabled);
758     HI.Handler->beginFunction(MF);
759   }
760 
761   // Emit the prologue data.
762   if (F.hasPrologueData())
763     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
764 }
765 
766 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
767 /// function.  This can be overridden by targets as required to do custom stuff.
768 void AsmPrinter::EmitFunctionEntryLabel() {
769   CurrentFnSym->redefineIfPossible();
770 
771   // The function label could have already been emitted if two symbols end up
772   // conflicting due to asm renaming.  Detect this and emit an error.
773   if (CurrentFnSym->isVariable())
774     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
775                        "' is a protected alias");
776   if (CurrentFnSym->isDefined())
777     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
778                        "' label emitted multiple times to assembly file");
779 
780   return OutStreamer->EmitLabel(CurrentFnSym);
781 }
782 
783 /// emitComments - Pretty-print comments for instructions.
784 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
785   const MachineFunction *MF = MI.getMF();
786   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
787 
788   // Check for spills and reloads
789 
790   // We assume a single instruction only has a spill or reload, not
791   // both.
792   Optional<unsigned> Size;
793   if ((Size = MI.getRestoreSize(TII))) {
794     CommentOS << *Size << "-byte Reload\n";
795   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
796     if (*Size)
797       CommentOS << *Size << "-byte Folded Reload\n";
798   } else if ((Size = MI.getSpillSize(TII))) {
799     CommentOS << *Size << "-byte Spill\n";
800   } else if ((Size = MI.getFoldedSpillSize(TII))) {
801     if (*Size)
802       CommentOS << *Size << "-byte Folded Spill\n";
803   }
804 
805   // Check for spill-induced copies
806   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
807     CommentOS << " Reload Reuse\n";
808 }
809 
810 /// emitImplicitDef - This method emits the specified machine instruction
811 /// that is an implicit def.
812 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
813   Register RegNo = MI->getOperand(0).getReg();
814 
815   SmallString<128> Str;
816   raw_svector_ostream OS(Str);
817   OS << "implicit-def: "
818      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
819 
820   OutStreamer->AddComment(OS.str());
821   OutStreamer->AddBlankLine();
822 }
823 
824 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
825   std::string Str;
826   raw_string_ostream OS(Str);
827   OS << "kill:";
828   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
829     const MachineOperand &Op = MI->getOperand(i);
830     assert(Op.isReg() && "KILL instruction must have only register operands");
831     OS << ' ' << (Op.isDef() ? "def " : "killed ")
832        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
833   }
834   AP.OutStreamer->AddComment(OS.str());
835   AP.OutStreamer->AddBlankLine();
836 }
837 
838 /// emitDebugValueComment - This method handles the target-independent form
839 /// of DBG_VALUE, returning true if it was able to do so.  A false return
840 /// means the target will need to handle MI in EmitInstruction.
841 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
842   // This code handles only the 4-operand target-independent form.
843   if (MI->getNumOperands() != 4)
844     return false;
845 
846   SmallString<128> Str;
847   raw_svector_ostream OS(Str);
848   OS << "DEBUG_VALUE: ";
849 
850   const DILocalVariable *V = MI->getDebugVariable();
851   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
852     StringRef Name = SP->getName();
853     if (!Name.empty())
854       OS << Name << ":";
855   }
856   OS << V->getName();
857   OS << " <- ";
858 
859   // The second operand is only an offset if it's an immediate.
860   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
861   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
862   const DIExpression *Expr = MI->getDebugExpression();
863   if (Expr->getNumElements()) {
864     OS << '[';
865     bool NeedSep = false;
866     for (auto Op : Expr->expr_ops()) {
867       if (NeedSep)
868         OS << ", ";
869       else
870         NeedSep = true;
871       OS << dwarf::OperationEncodingString(Op.getOp());
872       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
873         OS << ' ' << Op.getArg(I);
874     }
875     OS << "] ";
876   }
877 
878   // Register or immediate value. Register 0 means undef.
879   if (MI->getOperand(0).isFPImm()) {
880     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
881     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
882       OS << (double)APF.convertToFloat();
883     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
884       OS << APF.convertToDouble();
885     } else {
886       // There is no good way to print long double.  Convert a copy to
887       // double.  Ah well, it's only a comment.
888       bool ignored;
889       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
890                   &ignored);
891       OS << "(long double) " << APF.convertToDouble();
892     }
893   } else if (MI->getOperand(0).isImm()) {
894     OS << MI->getOperand(0).getImm();
895   } else if (MI->getOperand(0).isCImm()) {
896     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
897   } else if (MI->getOperand(0).isTargetIndex()) {
898     auto Op = MI->getOperand(0);
899     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
900     return true;
901   } else {
902     unsigned Reg;
903     if (MI->getOperand(0).isReg()) {
904       Reg = MI->getOperand(0).getReg();
905     } else {
906       assert(MI->getOperand(0).isFI() && "Unknown operand type");
907       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
908       Offset += TFI->getFrameIndexReference(*AP.MF,
909                                             MI->getOperand(0).getIndex(), Reg);
910       MemLoc = true;
911     }
912     if (Reg == 0) {
913       // Suppress offset, it is not meaningful here.
914       OS << "undef";
915       // NOTE: Want this comment at start of line, don't emit with AddComment.
916       AP.OutStreamer->emitRawComment(OS.str());
917       return true;
918     }
919     if (MemLoc)
920       OS << '[';
921     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
922   }
923 
924   if (MemLoc)
925     OS << '+' << Offset << ']';
926 
927   // NOTE: Want this comment at start of line, don't emit with AddComment.
928   AP.OutStreamer->emitRawComment(OS.str());
929   return true;
930 }
931 
932 /// This method handles the target-independent form of DBG_LABEL, returning
933 /// true if it was able to do so.  A false return means the target will need
934 /// to handle MI in EmitInstruction.
935 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
936   if (MI->getNumOperands() != 1)
937     return false;
938 
939   SmallString<128> Str;
940   raw_svector_ostream OS(Str);
941   OS << "DEBUG_LABEL: ";
942 
943   const DILabel *V = MI->getDebugLabel();
944   if (auto *SP = dyn_cast<DISubprogram>(
945           V->getScope()->getNonLexicalBlockFileScope())) {
946     StringRef Name = SP->getName();
947     if (!Name.empty())
948       OS << Name << ":";
949   }
950   OS << V->getName();
951 
952   // NOTE: Want this comment at start of line, don't emit with AddComment.
953   AP.OutStreamer->emitRawComment(OS.str());
954   return true;
955 }
956 
957 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
958   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
959       MF->getFunction().needsUnwindTableEntry())
960     return CFI_M_EH;
961 
962   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
963     return CFI_M_Debug;
964 
965   return CFI_M_None;
966 }
967 
968 bool AsmPrinter::needsSEHMoves() {
969   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
970 }
971 
972 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
973   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
974   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
975       ExceptionHandlingType != ExceptionHandling::ARM)
976     return;
977 
978   if (needsCFIMoves() == CFI_M_None)
979     return;
980 
981   // If there is no "real" instruction following this CFI instruction, skip
982   // emitting it; it would be beyond the end of the function's FDE range.
983   auto *MBB = MI.getParent();
984   auto I = std::next(MI.getIterator());
985   while (I != MBB->end() && I->isTransient())
986     ++I;
987   if (I == MBB->instr_end() &&
988       MBB->getReverseIterator() == MBB->getParent()->rbegin())
989     return;
990 
991   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
992   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
993   const MCCFIInstruction &CFI = Instrs[CFIIndex];
994   emitCFIInstruction(CFI);
995 }
996 
997 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
998   // The operands are the MCSymbol and the frame offset of the allocation.
999   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1000   int FrameOffset = MI.getOperand(1).getImm();
1001 
1002   // Emit a symbol assignment.
1003   OutStreamer->EmitAssignment(FrameAllocSym,
1004                              MCConstantExpr::create(FrameOffset, OutContext));
1005 }
1006 
1007 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1008   if (!MF.getTarget().Options.EmitStackSizeSection)
1009     return;
1010 
1011   MCSection *StackSizeSection =
1012       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1013   if (!StackSizeSection)
1014     return;
1015 
1016   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1017   // Don't emit functions with dynamic stack allocations.
1018   if (FrameInfo.hasVarSizedObjects())
1019     return;
1020 
1021   OutStreamer->PushSection();
1022   OutStreamer->SwitchSection(StackSizeSection);
1023 
1024   const MCSymbol *FunctionSymbol = getFunctionBegin();
1025   uint64_t StackSize = FrameInfo.getStackSize();
1026   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1027   OutStreamer->EmitULEB128IntValue(StackSize);
1028 
1029   OutStreamer->PopSection();
1030 }
1031 
1032 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1033                                            MachineModuleInfo *MMI) {
1034   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1035     return true;
1036 
1037   // We might emit an EH table that uses function begin and end labels even if
1038   // we don't have any landingpads.
1039   if (!MF.getFunction().hasPersonalityFn())
1040     return false;
1041   return !isNoOpWithoutInvoke(
1042       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1043 }
1044 
1045 /// EmitFunctionBody - This method emits the body and trailer for a
1046 /// function.
1047 void AsmPrinter::EmitFunctionBody() {
1048   EmitFunctionHeader();
1049 
1050   // Emit target-specific gunk before the function body.
1051   EmitFunctionBodyStart();
1052 
1053   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1054 
1055   if (isVerbose()) {
1056     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1057     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1058     if (!MDT) {
1059       OwnedMDT = std::make_unique<MachineDominatorTree>();
1060       OwnedMDT->getBase().recalculate(*MF);
1061       MDT = OwnedMDT.get();
1062     }
1063 
1064     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1065     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1066     if (!MLI) {
1067       OwnedMLI = std::make_unique<MachineLoopInfo>();
1068       OwnedMLI->getBase().analyze(MDT->getBase());
1069       MLI = OwnedMLI.get();
1070     }
1071   }
1072 
1073   // Print out code for the function.
1074   bool HasAnyRealCode = false;
1075   int NumInstsInFunction = 0;
1076   for (auto &MBB : *MF) {
1077     // Print a label for the basic block.
1078     EmitBasicBlockStart(MBB);
1079     for (auto &MI : MBB) {
1080       // Print the assembly for the instruction.
1081       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1082           !MI.isDebugInstr()) {
1083         HasAnyRealCode = true;
1084         ++NumInstsInFunction;
1085       }
1086 
1087       // If there is a pre-instruction symbol, emit a label for it here.
1088       if (MCSymbol *S = MI.getPreInstrSymbol())
1089         OutStreamer->EmitLabel(S);
1090 
1091       if (ShouldPrintDebugScopes) {
1092         for (const HandlerInfo &HI : Handlers) {
1093           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1094                              HI.TimerGroupName, HI.TimerGroupDescription,
1095                              TimePassesIsEnabled);
1096           HI.Handler->beginInstruction(&MI);
1097         }
1098       }
1099 
1100       if (isVerbose())
1101         emitComments(MI, OutStreamer->GetCommentOS());
1102 
1103       switch (MI.getOpcode()) {
1104       case TargetOpcode::CFI_INSTRUCTION:
1105         emitCFIInstruction(MI);
1106         break;
1107       case TargetOpcode::LOCAL_ESCAPE:
1108         emitFrameAlloc(MI);
1109         break;
1110       case TargetOpcode::ANNOTATION_LABEL:
1111       case TargetOpcode::EH_LABEL:
1112       case TargetOpcode::GC_LABEL:
1113         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1114         break;
1115       case TargetOpcode::INLINEASM:
1116       case TargetOpcode::INLINEASM_BR:
1117         EmitInlineAsm(&MI);
1118         break;
1119       case TargetOpcode::DBG_VALUE:
1120         if (isVerbose()) {
1121           if (!emitDebugValueComment(&MI, *this))
1122             EmitInstruction(&MI);
1123         }
1124         break;
1125       case TargetOpcode::DBG_LABEL:
1126         if (isVerbose()) {
1127           if (!emitDebugLabelComment(&MI, *this))
1128             EmitInstruction(&MI);
1129         }
1130         break;
1131       case TargetOpcode::IMPLICIT_DEF:
1132         if (isVerbose()) emitImplicitDef(&MI);
1133         break;
1134       case TargetOpcode::KILL:
1135         if (isVerbose()) emitKill(&MI, *this);
1136         break;
1137       default:
1138         EmitInstruction(&MI);
1139         break;
1140       }
1141 
1142       // If there is a post-instruction symbol, emit a label for it here.
1143       if (MCSymbol *S = MI.getPostInstrSymbol())
1144         OutStreamer->EmitLabel(S);
1145 
1146       if (ShouldPrintDebugScopes) {
1147         for (const HandlerInfo &HI : Handlers) {
1148           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1149                              HI.TimerGroupName, HI.TimerGroupDescription,
1150                              TimePassesIsEnabled);
1151           HI.Handler->endInstruction();
1152         }
1153       }
1154     }
1155 
1156     EmitBasicBlockEnd(MBB);
1157   }
1158 
1159   EmittedInsts += NumInstsInFunction;
1160   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1161                                       MF->getFunction().getSubprogram(),
1162                                       &MF->front());
1163   R << ore::NV("NumInstructions", NumInstsInFunction)
1164     << " instructions in function";
1165   ORE->emit(R);
1166 
1167   // If the function is empty and the object file uses .subsections_via_symbols,
1168   // then we need to emit *something* to the function body to prevent the
1169   // labels from collapsing together.  Just emit a noop.
1170   // Similarly, don't emit empty functions on Windows either. It can lead to
1171   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1172   // after linking, causing the kernel not to load the binary:
1173   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1174   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1175   const Triple &TT = TM.getTargetTriple();
1176   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1177                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1178     MCInst Noop;
1179     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1180 
1181     // Targets can opt-out of emitting the noop here by leaving the opcode
1182     // unspecified.
1183     if (Noop.getOpcode()) {
1184       OutStreamer->AddComment("avoids zero-length function");
1185       emitNops(1);
1186     }
1187   }
1188 
1189   const Function &F = MF->getFunction();
1190   for (const auto &BB : F) {
1191     if (!BB.hasAddressTaken())
1192       continue;
1193     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1194     if (Sym->isDefined())
1195       continue;
1196     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1197     OutStreamer->EmitLabel(Sym);
1198   }
1199 
1200   // Emit target-specific gunk after the function body.
1201   EmitFunctionBodyEnd();
1202 
1203   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1204       MAI->hasDotTypeDotSizeDirective()) {
1205     // Create a symbol for the end of function.
1206     CurrentFnEnd = createTempSymbol("func_end");
1207     OutStreamer->EmitLabel(CurrentFnEnd);
1208   }
1209 
1210   // If the target wants a .size directive for the size of the function, emit
1211   // it.
1212   if (MAI->hasDotTypeDotSizeDirective()) {
1213     // We can get the size as difference between the function label and the
1214     // temp label.
1215     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1216         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1217         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1218     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1219   }
1220 
1221   for (const HandlerInfo &HI : Handlers) {
1222     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1223                        HI.TimerGroupDescription, TimePassesIsEnabled);
1224     HI.Handler->markFunctionEnd();
1225   }
1226 
1227   // Print out jump tables referenced by the function.
1228   EmitJumpTableInfo();
1229 
1230   // Emit post-function debug and/or EH information.
1231   for (const HandlerInfo &HI : Handlers) {
1232     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1233                        HI.TimerGroupDescription, TimePassesIsEnabled);
1234     HI.Handler->endFunction(MF);
1235   }
1236 
1237   // Emit section containing stack size metadata.
1238   emitStackSizeSection(*MF);
1239 
1240   emitPatchableFunctionEntries();
1241 
1242   if (isVerbose())
1243     OutStreamer->GetCommentOS() << "-- End function\n";
1244 
1245   OutStreamer->AddBlankLine();
1246 }
1247 
1248 /// Compute the number of Global Variables that uses a Constant.
1249 static unsigned getNumGlobalVariableUses(const Constant *C) {
1250   if (!C)
1251     return 0;
1252 
1253   if (isa<GlobalVariable>(C))
1254     return 1;
1255 
1256   unsigned NumUses = 0;
1257   for (auto *CU : C->users())
1258     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1259 
1260   return NumUses;
1261 }
1262 
1263 /// Only consider global GOT equivalents if at least one user is a
1264 /// cstexpr inside an initializer of another global variables. Also, don't
1265 /// handle cstexpr inside instructions. During global variable emission,
1266 /// candidates are skipped and are emitted later in case at least one cstexpr
1267 /// isn't replaced by a PC relative GOT entry access.
1268 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1269                                      unsigned &NumGOTEquivUsers) {
1270   // Global GOT equivalents are unnamed private globals with a constant
1271   // pointer initializer to another global symbol. They must point to a
1272   // GlobalVariable or Function, i.e., as GlobalValue.
1273   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1274       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1275       !isa<GlobalValue>(GV->getOperand(0)))
1276     return false;
1277 
1278   // To be a got equivalent, at least one of its users need to be a constant
1279   // expression used by another global variable.
1280   for (auto *U : GV->users())
1281     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1282 
1283   return NumGOTEquivUsers > 0;
1284 }
1285 
1286 /// Unnamed constant global variables solely contaning a pointer to
1287 /// another globals variable is equivalent to a GOT table entry; it contains the
1288 /// the address of another symbol. Optimize it and replace accesses to these
1289 /// "GOT equivalents" by using the GOT entry for the final global instead.
1290 /// Compute GOT equivalent candidates among all global variables to avoid
1291 /// emitting them if possible later on, after it use is replaced by a GOT entry
1292 /// access.
1293 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1294   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1295     return;
1296 
1297   for (const auto &G : M.globals()) {
1298     unsigned NumGOTEquivUsers = 0;
1299     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1300       continue;
1301 
1302     const MCSymbol *GOTEquivSym = getSymbol(&G);
1303     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1304   }
1305 }
1306 
1307 /// Constant expressions using GOT equivalent globals may not be eligible
1308 /// for PC relative GOT entry conversion, in such cases we need to emit such
1309 /// globals we previously omitted in EmitGlobalVariable.
1310 void AsmPrinter::emitGlobalGOTEquivs() {
1311   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1312     return;
1313 
1314   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1315   for (auto &I : GlobalGOTEquivs) {
1316     const GlobalVariable *GV = I.second.first;
1317     unsigned Cnt = I.second.second;
1318     if (Cnt)
1319       FailedCandidates.push_back(GV);
1320   }
1321   GlobalGOTEquivs.clear();
1322 
1323   for (auto *GV : FailedCandidates)
1324     EmitGlobalVariable(GV);
1325 }
1326 
1327 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1328                                           const GlobalIndirectSymbol& GIS) {
1329   MCSymbol *Name = getSymbol(&GIS);
1330 
1331   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1332     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1333   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1334     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1335   else
1336     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1337 
1338   bool IsFunction = GIS.getValueType()->isFunctionTy();
1339 
1340   // Treat bitcasts of functions as functions also. This is important at least
1341   // on WebAssembly where object and function addresses can't alias each other.
1342   if (!IsFunction)
1343     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1344       if (CE->getOpcode() == Instruction::BitCast)
1345         IsFunction =
1346           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1347 
1348   // Set the symbol type to function if the alias has a function type.
1349   // This affects codegen when the aliasee is not a function.
1350   if (IsFunction)
1351     OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1352                                                ? MCSA_ELF_TypeIndFunction
1353                                                : MCSA_ELF_TypeFunction);
1354 
1355   EmitVisibility(Name, GIS.getVisibility());
1356 
1357   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1358 
1359   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1360     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1361 
1362   // Emit the directives as assignments aka .set:
1363   OutStreamer->EmitAssignment(Name, Expr);
1364 
1365   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1366     // If the aliasee does not correspond to a symbol in the output, i.e. the
1367     // alias is not of an object or the aliased object is private, then set the
1368     // size of the alias symbol from the type of the alias. We don't do this in
1369     // other situations as the alias and aliasee having differing types but same
1370     // size may be intentional.
1371     const GlobalObject *BaseObject = GA->getBaseObject();
1372     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1373         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1374       const DataLayout &DL = M.getDataLayout();
1375       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1376       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1377     }
1378   }
1379 }
1380 
1381 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) {
1382   if (!RS.needsSection())
1383     return;
1384 
1385   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1386 
1387   Optional<SmallString<128>> Filename;
1388   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1389     Filename = *FilenameRef;
1390     sys::fs::make_absolute(*Filename);
1391     assert(!Filename->empty() && "The filename can't be empty.");
1392   }
1393 
1394   std::string Buf;
1395   raw_string_ostream OS(Buf);
1396   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1397       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1398                : RemarkSerializer.metaSerializer(OS);
1399   MetaSerializer->emit();
1400 
1401   // Switch to the remarks section.
1402   MCSection *RemarksSection =
1403       OutContext.getObjectFileInfo()->getRemarksSection();
1404   OutStreamer->SwitchSection(RemarksSection);
1405 
1406   OutStreamer->EmitBinaryData(OS.str());
1407 }
1408 
1409 bool AsmPrinter::doFinalization(Module &M) {
1410   // Set the MachineFunction to nullptr so that we can catch attempted
1411   // accesses to MF specific features at the module level and so that
1412   // we can conditionalize accesses based on whether or not it is nullptr.
1413   MF = nullptr;
1414 
1415   // Gather all GOT equivalent globals in the module. We really need two
1416   // passes over the globals: one to compute and another to avoid its emission
1417   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1418   // where the got equivalent shows up before its use.
1419   computeGlobalGOTEquivs(M);
1420 
1421   // Emit global variables.
1422   for (const auto &G : M.globals())
1423     EmitGlobalVariable(&G);
1424 
1425   // Emit remaining GOT equivalent globals.
1426   emitGlobalGOTEquivs();
1427 
1428   // Emit visibility info for declarations
1429   for (const Function &F : M) {
1430     if (!F.isDeclarationForLinker())
1431       continue;
1432     GlobalValue::VisibilityTypes V = F.getVisibility();
1433     if (V == GlobalValue::DefaultVisibility)
1434       continue;
1435 
1436     MCSymbol *Name = getSymbol(&F);
1437     EmitVisibility(Name, V, false);
1438   }
1439 
1440   // Emit the remarks section contents.
1441   // FIXME: Figure out when is the safest time to emit this section. It should
1442   // not come after debug info.
1443   if (RemarkStreamer *RS = M.getContext().getRemarkStreamer())
1444     emitRemarksSection(*RS);
1445 
1446   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1447 
1448   TLOF.emitModuleMetadata(*OutStreamer, M);
1449 
1450   if (TM.getTargetTriple().isOSBinFormatELF()) {
1451     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1452 
1453     // Output stubs for external and common global variables.
1454     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1455     if (!Stubs.empty()) {
1456       OutStreamer->SwitchSection(TLOF.getDataSection());
1457       const DataLayout &DL = M.getDataLayout();
1458 
1459       EmitAlignment(Align(DL.getPointerSize()));
1460       for (const auto &Stub : Stubs) {
1461         OutStreamer->EmitLabel(Stub.first);
1462         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1463                                      DL.getPointerSize());
1464       }
1465     }
1466   }
1467 
1468   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1469     MachineModuleInfoCOFF &MMICOFF =
1470         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1471 
1472     // Output stubs for external and common global variables.
1473     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1474     if (!Stubs.empty()) {
1475       const DataLayout &DL = M.getDataLayout();
1476 
1477       for (const auto &Stub : Stubs) {
1478         SmallString<256> SectionName = StringRef(".rdata$");
1479         SectionName += Stub.first->getName();
1480         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1481             SectionName,
1482             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1483                 COFF::IMAGE_SCN_LNK_COMDAT,
1484             SectionKind::getReadOnly(), Stub.first->getName(),
1485             COFF::IMAGE_COMDAT_SELECT_ANY));
1486         EmitAlignment(Align(DL.getPointerSize()));
1487         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1488         OutStreamer->EmitLabel(Stub.first);
1489         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1490                                      DL.getPointerSize());
1491       }
1492     }
1493   }
1494 
1495   // Finalize debug and EH information.
1496   for (const HandlerInfo &HI : Handlers) {
1497     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1498                        HI.TimerGroupDescription, TimePassesIsEnabled);
1499     HI.Handler->endModule();
1500   }
1501   Handlers.clear();
1502   DD = nullptr;
1503 
1504   // If the target wants to know about weak references, print them all.
1505   if (MAI->getWeakRefDirective()) {
1506     // FIXME: This is not lazy, it would be nice to only print weak references
1507     // to stuff that is actually used.  Note that doing so would require targets
1508     // to notice uses in operands (due to constant exprs etc).  This should
1509     // happen with the MC stuff eventually.
1510 
1511     // Print out module-level global objects here.
1512     for (const auto &GO : M.global_objects()) {
1513       if (!GO.hasExternalWeakLinkage())
1514         continue;
1515       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1516     }
1517   }
1518 
1519   // Print aliases in topological order, that is, for each alias a = b,
1520   // b must be printed before a.
1521   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1522   // such an order to generate correct TOC information.
1523   SmallVector<const GlobalAlias *, 16> AliasStack;
1524   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1525   for (const auto &Alias : M.aliases()) {
1526     for (const GlobalAlias *Cur = &Alias; Cur;
1527          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1528       if (!AliasVisited.insert(Cur).second)
1529         break;
1530       AliasStack.push_back(Cur);
1531     }
1532     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1533       emitGlobalIndirectSymbol(M, *AncestorAlias);
1534     AliasStack.clear();
1535   }
1536   for (const auto &IFunc : M.ifuncs())
1537     emitGlobalIndirectSymbol(M, IFunc);
1538 
1539   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1540   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1541   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1542     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1543       MP->finishAssembly(M, *MI, *this);
1544 
1545   // Emit llvm.ident metadata in an '.ident' directive.
1546   EmitModuleIdents(M);
1547 
1548   // Emit bytes for llvm.commandline metadata.
1549   EmitModuleCommandLines(M);
1550 
1551   // Emit __morestack address if needed for indirect calls.
1552   if (MMI->usesMorestackAddr()) {
1553     unsigned Align = 1;
1554     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1555         getDataLayout(), SectionKind::getReadOnly(),
1556         /*C=*/nullptr, Align);
1557     OutStreamer->SwitchSection(ReadOnlySection);
1558 
1559     MCSymbol *AddrSymbol =
1560         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1561     OutStreamer->EmitLabel(AddrSymbol);
1562 
1563     unsigned PtrSize = MAI->getCodePointerSize();
1564     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1565                                  PtrSize);
1566   }
1567 
1568   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1569   // split-stack is used.
1570   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1571     OutStreamer->SwitchSection(
1572         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1573     if (MMI->hasNosplitStack())
1574       OutStreamer->SwitchSection(
1575           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1576   }
1577 
1578   // If we don't have any trampolines, then we don't require stack memory
1579   // to be executable. Some targets have a directive to declare this.
1580   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1581   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1582     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1583       OutStreamer->SwitchSection(S);
1584 
1585   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1586     // Emit /EXPORT: flags for each exported global as necessary.
1587     const auto &TLOF = getObjFileLowering();
1588     std::string Flags;
1589 
1590     for (const GlobalValue &GV : M.global_values()) {
1591       raw_string_ostream OS(Flags);
1592       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1593       OS.flush();
1594       if (!Flags.empty()) {
1595         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1596         OutStreamer->EmitBytes(Flags);
1597       }
1598       Flags.clear();
1599     }
1600 
1601     // Emit /INCLUDE: flags for each used global as necessary.
1602     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1603       assert(LU->hasInitializer() &&
1604              "expected llvm.used to have an initializer");
1605       assert(isa<ArrayType>(LU->getValueType()) &&
1606              "expected llvm.used to be an array type");
1607       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1608         for (const Value *Op : A->operands()) {
1609           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1610           // Global symbols with internal or private linkage are not visible to
1611           // the linker, and thus would cause an error when the linker tried to
1612           // preserve the symbol due to the `/include:` directive.
1613           if (GV->hasLocalLinkage())
1614             continue;
1615 
1616           raw_string_ostream OS(Flags);
1617           TLOF.emitLinkerFlagsForUsed(OS, GV);
1618           OS.flush();
1619 
1620           if (!Flags.empty()) {
1621             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1622             OutStreamer->EmitBytes(Flags);
1623           }
1624           Flags.clear();
1625         }
1626       }
1627     }
1628   }
1629 
1630   if (TM.Options.EmitAddrsig) {
1631     // Emit address-significance attributes for all globals.
1632     OutStreamer->EmitAddrsig();
1633     for (const GlobalValue &GV : M.global_values())
1634       if (!GV.use_empty() && !GV.isThreadLocal() &&
1635           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1636           !GV.hasAtLeastLocalUnnamedAddr())
1637         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1638   }
1639 
1640   // Emit symbol partition specifications (ELF only).
1641   if (TM.getTargetTriple().isOSBinFormatELF()) {
1642     unsigned UniqueID = 0;
1643     for (const GlobalValue &GV : M.global_values()) {
1644       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1645           GV.getVisibility() != GlobalValue::DefaultVisibility)
1646         continue;
1647 
1648       OutStreamer->SwitchSection(OutContext.getELFSection(
1649           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1650       OutStreamer->EmitBytes(GV.getPartition());
1651       OutStreamer->EmitZeros(1);
1652       OutStreamer->EmitValue(
1653           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1654           MAI->getCodePointerSize());
1655     }
1656   }
1657 
1658   // Allow the target to emit any magic that it wants at the end of the file,
1659   // after everything else has gone out.
1660   EmitEndOfAsmFile(M);
1661 
1662   MMI = nullptr;
1663 
1664   OutStreamer->Finish();
1665   OutStreamer->reset();
1666   OwnedMLI.reset();
1667   OwnedMDT.reset();
1668 
1669   return false;
1670 }
1671 
1672 MCSymbol *AsmPrinter::getCurExceptionSym() {
1673   if (!CurExceptionSym)
1674     CurExceptionSym = createTempSymbol("exception");
1675   return CurExceptionSym;
1676 }
1677 
1678 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1679   this->MF = &MF;
1680   const Function &F = MF.getFunction();
1681 
1682   // Get the function symbol.
1683   if (MAI->needsFunctionDescriptors()) {
1684     assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1685                                              " supported on AIX.");
1686     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1687 		                           " initalized first.");
1688 
1689     // Get the function entry point symbol.
1690     CurrentFnSym =
1691         OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1692 
1693     MCSectionXCOFF *FnEntryPointSec =
1694         cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1695     // Set the containing csect.
1696     cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1697   } else {
1698     CurrentFnSym = getSymbol(&MF.getFunction());
1699   }
1700 
1701   CurrentFnSymForSize = CurrentFnSym;
1702   CurrentFnBegin = nullptr;
1703   CurExceptionSym = nullptr;
1704   bool NeedsLocalForSize = MAI->needsLocalForSize();
1705   if (F.hasFnAttribute("patchable-function-entry") ||
1706       needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1707       MF.getTarget().Options.EmitStackSizeSection) {
1708     CurrentFnBegin = createTempSymbol("func_begin");
1709     if (NeedsLocalForSize)
1710       CurrentFnSymForSize = CurrentFnBegin;
1711   }
1712 
1713   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1714   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1715   MBFI = (PSI && PSI->hasProfileSummary()) ?
1716          // ORE conditionally computes MBFI. If available, use it, otherwise
1717          // request it.
1718          (ORE->getBFI() ? ORE->getBFI() :
1719           &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) :
1720          nullptr;
1721 }
1722 
1723 namespace {
1724 
1725 // Keep track the alignment, constpool entries per Section.
1726   struct SectionCPs {
1727     MCSection *S;
1728     unsigned Alignment;
1729     SmallVector<unsigned, 4> CPEs;
1730 
1731     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1732   };
1733 
1734 } // end anonymous namespace
1735 
1736 /// EmitConstantPool - Print to the current output stream assembly
1737 /// representations of the constants in the constant pool MCP. This is
1738 /// used to print out constants which have been "spilled to memory" by
1739 /// the code generator.
1740 void AsmPrinter::EmitConstantPool() {
1741   const MachineConstantPool *MCP = MF->getConstantPool();
1742   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1743   if (CP.empty()) return;
1744 
1745   // Calculate sections for constant pool entries. We collect entries to go into
1746   // the same section together to reduce amount of section switch statements.
1747   SmallVector<SectionCPs, 4> CPSections;
1748   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1749     const MachineConstantPoolEntry &CPE = CP[i];
1750     unsigned Align = CPE.getAlignment();
1751 
1752     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1753 
1754     const Constant *C = nullptr;
1755     if (!CPE.isMachineConstantPoolEntry())
1756       C = CPE.Val.ConstVal;
1757 
1758     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1759                                                               Kind, C, Align);
1760 
1761     // The number of sections are small, just do a linear search from the
1762     // last section to the first.
1763     bool Found = false;
1764     unsigned SecIdx = CPSections.size();
1765     while (SecIdx != 0) {
1766       if (CPSections[--SecIdx].S == S) {
1767         Found = true;
1768         break;
1769       }
1770     }
1771     if (!Found) {
1772       SecIdx = CPSections.size();
1773       CPSections.push_back(SectionCPs(S, Align));
1774     }
1775 
1776     if (Align > CPSections[SecIdx].Alignment)
1777       CPSections[SecIdx].Alignment = Align;
1778     CPSections[SecIdx].CPEs.push_back(i);
1779   }
1780 
1781   // Now print stuff into the calculated sections.
1782   const MCSection *CurSection = nullptr;
1783   unsigned Offset = 0;
1784   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1785     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1786       unsigned CPI = CPSections[i].CPEs[j];
1787       MCSymbol *Sym = GetCPISymbol(CPI);
1788       if (!Sym->isUndefined())
1789         continue;
1790 
1791       if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1792         cast<MCSymbolXCOFF>(Sym)->setContainingCsect(
1793             cast<MCSectionXCOFF>(CPSections[i].S));
1794       }
1795 
1796       if (CurSection != CPSections[i].S) {
1797         OutStreamer->SwitchSection(CPSections[i].S);
1798         EmitAlignment(Align(CPSections[i].Alignment));
1799         CurSection = CPSections[i].S;
1800         Offset = 0;
1801       }
1802 
1803       MachineConstantPoolEntry CPE = CP[CPI];
1804 
1805       // Emit inter-object padding for alignment.
1806       unsigned AlignMask = CPE.getAlignment() - 1;
1807       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1808       OutStreamer->EmitZeros(NewOffset - Offset);
1809 
1810       Type *Ty = CPE.getType();
1811       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1812 
1813       OutStreamer->EmitLabel(Sym);
1814       if (CPE.isMachineConstantPoolEntry())
1815         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1816       else
1817         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1818     }
1819   }
1820 }
1821 
1822 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1823 /// by the current function to the current output stream.
1824 void AsmPrinter::EmitJumpTableInfo() {
1825   const DataLayout &DL = MF->getDataLayout();
1826   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1827   if (!MJTI) return;
1828   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1829   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1830   if (JT.empty()) return;
1831 
1832   // Pick the directive to use to print the jump table entries, and switch to
1833   // the appropriate section.
1834   const Function &F = MF->getFunction();
1835   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1836   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1837       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1838       F);
1839   if (JTInDiffSection) {
1840     // Drop it in the readonly section.
1841     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1842     OutStreamer->SwitchSection(ReadOnlySection);
1843   }
1844 
1845   EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1846 
1847   // Jump tables in code sections are marked with a data_region directive
1848   // where that's supported.
1849   if (!JTInDiffSection)
1850     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1851 
1852   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1853     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1854 
1855     // If this jump table was deleted, ignore it.
1856     if (JTBBs.empty()) continue;
1857 
1858     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1859     /// emit a .set directive for each unique entry.
1860     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1861         MAI->doesSetDirectiveSuppressReloc()) {
1862       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1863       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1864       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1865       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1866         const MachineBasicBlock *MBB = JTBBs[ii];
1867         if (!EmittedSets.insert(MBB).second)
1868           continue;
1869 
1870         // .set LJTSet, LBB32-base
1871         const MCExpr *LHS =
1872           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1873         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1874                                     MCBinaryExpr::createSub(LHS, Base,
1875                                                             OutContext));
1876       }
1877     }
1878 
1879     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1880     // before each jump table.  The first label is never referenced, but tells
1881     // the assembler and linker the extents of the jump table object.  The
1882     // second label is actually referenced by the code.
1883     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1884       // FIXME: This doesn't have to have any specific name, just any randomly
1885       // named and numbered local label started with 'l' would work.  Simplify
1886       // GetJTISymbol.
1887       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1888 
1889     MCSymbol* JTISymbol = GetJTISymbol(JTI);
1890     if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1891       cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect(
1892           cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM)));
1893     }
1894     OutStreamer->EmitLabel(JTISymbol);
1895 
1896     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1897       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1898   }
1899   if (!JTInDiffSection)
1900     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1901 }
1902 
1903 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1904 /// current stream.
1905 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1906                                     const MachineBasicBlock *MBB,
1907                                     unsigned UID) const {
1908   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1909   const MCExpr *Value = nullptr;
1910   switch (MJTI->getEntryKind()) {
1911   case MachineJumpTableInfo::EK_Inline:
1912     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1913   case MachineJumpTableInfo::EK_Custom32:
1914     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1915         MJTI, MBB, UID, OutContext);
1916     break;
1917   case MachineJumpTableInfo::EK_BlockAddress:
1918     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1919     //     .word LBB123
1920     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1921     break;
1922   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1923     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1924     // with a relocation as gp-relative, e.g.:
1925     //     .gprel32 LBB123
1926     MCSymbol *MBBSym = MBB->getSymbol();
1927     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1928     return;
1929   }
1930 
1931   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1932     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1933     // with a relocation as gp-relative, e.g.:
1934     //     .gpdword LBB123
1935     MCSymbol *MBBSym = MBB->getSymbol();
1936     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1937     return;
1938   }
1939 
1940   case MachineJumpTableInfo::EK_LabelDifference32: {
1941     // Each entry is the address of the block minus the address of the jump
1942     // table. This is used for PIC jump tables where gprel32 is not supported.
1943     // e.g.:
1944     //      .word LBB123 - LJTI1_2
1945     // If the .set directive avoids relocations, this is emitted as:
1946     //      .set L4_5_set_123, LBB123 - LJTI1_2
1947     //      .word L4_5_set_123
1948     if (MAI->doesSetDirectiveSuppressReloc()) {
1949       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1950                                       OutContext);
1951       break;
1952     }
1953     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1954     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1955     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1956     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1957     break;
1958   }
1959   }
1960 
1961   assert(Value && "Unknown entry kind!");
1962 
1963   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1964   OutStreamer->EmitValue(Value, EntrySize);
1965 }
1966 
1967 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1968 /// special global used by LLVM.  If so, emit it and return true, otherwise
1969 /// do nothing and return false.
1970 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1971   if (GV->getName() == "llvm.used") {
1972     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1973       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1974     return true;
1975   }
1976 
1977   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1978   if (GV->getSection() == "llvm.metadata" ||
1979       GV->hasAvailableExternallyLinkage())
1980     return true;
1981 
1982   if (!GV->hasAppendingLinkage()) return false;
1983 
1984   assert(GV->hasInitializer() && "Not a special LLVM global!");
1985 
1986   if (GV->getName() == "llvm.global_ctors") {
1987     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1988                        /* isCtor */ true);
1989 
1990     return true;
1991   }
1992 
1993   if (GV->getName() == "llvm.global_dtors") {
1994     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1995                        /* isCtor */ false);
1996 
1997     return true;
1998   }
1999 
2000   report_fatal_error("unknown special variable");
2001 }
2002 
2003 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2004 /// global in the specified llvm.used list.
2005 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
2006   // Should be an array of 'i8*'.
2007   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2008     const GlobalValue *GV =
2009       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2010     if (GV)
2011       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2012   }
2013 }
2014 
2015 namespace {
2016 
2017 struct Structor {
2018   int Priority = 0;
2019   Constant *Func = nullptr;
2020   GlobalValue *ComdatKey = nullptr;
2021 
2022   Structor() = default;
2023 };
2024 
2025 } // end anonymous namespace
2026 
2027 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2028 /// priority.
2029 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2030                                     bool isCtor) {
2031   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2032   // init priority.
2033   if (!isa<ConstantArray>(List)) return;
2034 
2035   // Sanity check the structors list.
2036   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2037   if (!InitList) return; // Not an array!
2038   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2039   if (!ETy || ETy->getNumElements() != 3 ||
2040       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2041       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2042       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2043     return; // Not (int, ptr, ptr).
2044 
2045   // Gather the structors in a form that's convenient for sorting by priority.
2046   SmallVector<Structor, 8> Structors;
2047   for (Value *O : InitList->operands()) {
2048     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2049     if (!CS) continue; // Malformed.
2050     if (CS->getOperand(1)->isNullValue())
2051       break;  // Found a null terminator, skip the rest.
2052     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2053     if (!Priority) continue; // Malformed.
2054     Structors.push_back(Structor());
2055     Structor &S = Structors.back();
2056     S.Priority = Priority->getLimitedValue(65535);
2057     S.Func = CS->getOperand(1);
2058     if (!CS->getOperand(2)->isNullValue())
2059       S.ComdatKey =
2060           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2061   }
2062 
2063   // Emit the function pointers in the target-specific order
2064   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2065     return L.Priority < R.Priority;
2066   });
2067   const Align Align = DL.getPointerPrefAlignment();
2068   for (Structor &S : Structors) {
2069     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2070     const MCSymbol *KeySym = nullptr;
2071     if (GlobalValue *GV = S.ComdatKey) {
2072       if (GV->isDeclarationForLinker())
2073         // If the associated variable is not defined in this module
2074         // (it might be available_externally, or have been an
2075         // available_externally definition that was dropped by the
2076         // EliminateAvailableExternally pass), some other TU
2077         // will provide its dynamic initializer.
2078         continue;
2079 
2080       KeySym = getSymbol(GV);
2081     }
2082     MCSection *OutputSection =
2083         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2084                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2085     OutStreamer->SwitchSection(OutputSection);
2086     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2087       EmitAlignment(Align);
2088     EmitXXStructor(DL, S.Func);
2089   }
2090 }
2091 
2092 void AsmPrinter::EmitModuleIdents(Module &M) {
2093   if (!MAI->hasIdentDirective())
2094     return;
2095 
2096   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2097     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2098       const MDNode *N = NMD->getOperand(i);
2099       assert(N->getNumOperands() == 1 &&
2100              "llvm.ident metadata entry can have only one operand");
2101       const MDString *S = cast<MDString>(N->getOperand(0));
2102       OutStreamer->EmitIdent(S->getString());
2103     }
2104   }
2105 }
2106 
2107 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2108   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2109   if (!CommandLine)
2110     return;
2111 
2112   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2113   if (!NMD || !NMD->getNumOperands())
2114     return;
2115 
2116   OutStreamer->PushSection();
2117   OutStreamer->SwitchSection(CommandLine);
2118   OutStreamer->EmitZeros(1);
2119   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2120     const MDNode *N = NMD->getOperand(i);
2121     assert(N->getNumOperands() == 1 &&
2122            "llvm.commandline metadata entry can have only one operand");
2123     const MDString *S = cast<MDString>(N->getOperand(0));
2124     OutStreamer->EmitBytes(S->getString());
2125     OutStreamer->EmitZeros(1);
2126   }
2127   OutStreamer->PopSection();
2128 }
2129 
2130 //===--------------------------------------------------------------------===//
2131 // Emission and print routines
2132 //
2133 
2134 /// Emit a byte directive and value.
2135 ///
2136 void AsmPrinter::emitInt8(int Value) const {
2137   OutStreamer->EmitIntValue(Value, 1);
2138 }
2139 
2140 /// Emit a short directive and value.
2141 void AsmPrinter::emitInt16(int Value) const {
2142   OutStreamer->EmitIntValue(Value, 2);
2143 }
2144 
2145 /// Emit a long directive and value.
2146 void AsmPrinter::emitInt32(int Value) const {
2147   OutStreamer->EmitIntValue(Value, 4);
2148 }
2149 
2150 /// Emit a long long directive and value.
2151 void AsmPrinter::emitInt64(uint64_t Value) const {
2152   OutStreamer->EmitIntValue(Value, 8);
2153 }
2154 
2155 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2156 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2157 /// .set if it avoids relocations.
2158 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2159                                      unsigned Size) const {
2160   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2161 }
2162 
2163 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2164 /// where the size in bytes of the directive is specified by Size and Label
2165 /// specifies the label.  This implicitly uses .set if it is available.
2166 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2167                                      unsigned Size,
2168                                      bool IsSectionRelative) const {
2169   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2170     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2171     if (Size > 4)
2172       OutStreamer->EmitZeros(Size - 4);
2173     return;
2174   }
2175 
2176   // Emit Label+Offset (or just Label if Offset is zero)
2177   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2178   if (Offset)
2179     Expr = MCBinaryExpr::createAdd(
2180         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2181 
2182   OutStreamer->EmitValue(Expr, Size);
2183 }
2184 
2185 //===----------------------------------------------------------------------===//
2186 
2187 // EmitAlignment - Emit an alignment directive to the specified power of
2188 // two boundary.  If a global value is specified, and if that global has
2189 // an explicit alignment requested, it will override the alignment request
2190 // if required for correctness.
2191 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2192   if (GV)
2193     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2194 
2195   if (Alignment == Align::None())
2196     return; // 1-byte aligned: no need to emit alignment.
2197 
2198   if (getCurrentSection()->getKind().isText())
2199     OutStreamer->EmitCodeAlignment(Alignment.value());
2200   else
2201     OutStreamer->EmitValueToAlignment(Alignment.value());
2202 }
2203 
2204 //===----------------------------------------------------------------------===//
2205 // Constant emission.
2206 //===----------------------------------------------------------------------===//
2207 
2208 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2209   MCContext &Ctx = OutContext;
2210 
2211   if (CV->isNullValue() || isa<UndefValue>(CV))
2212     return MCConstantExpr::create(0, Ctx);
2213 
2214   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2215     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2216 
2217   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2218     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2219 
2220   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2221     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2222 
2223   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2224   if (!CE) {
2225     llvm_unreachable("Unknown constant value to lower!");
2226   }
2227 
2228   switch (CE->getOpcode()) {
2229   default:
2230     // If the code isn't optimized, there may be outstanding folding
2231     // opportunities. Attempt to fold the expression using DataLayout as a
2232     // last resort before giving up.
2233     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2234       if (C != CE)
2235         return lowerConstant(C);
2236 
2237     // Otherwise report the problem to the user.
2238     {
2239       std::string S;
2240       raw_string_ostream OS(S);
2241       OS << "Unsupported expression in static initializer: ";
2242       CE->printAsOperand(OS, /*PrintType=*/false,
2243                      !MF ? nullptr : MF->getFunction().getParent());
2244       report_fatal_error(OS.str());
2245     }
2246   case Instruction::GetElementPtr: {
2247     // Generate a symbolic expression for the byte address
2248     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2249     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2250 
2251     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2252     if (!OffsetAI)
2253       return Base;
2254 
2255     int64_t Offset = OffsetAI.getSExtValue();
2256     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2257                                    Ctx);
2258   }
2259 
2260   case Instruction::Trunc:
2261     // We emit the value and depend on the assembler to truncate the generated
2262     // expression properly.  This is important for differences between
2263     // blockaddress labels.  Since the two labels are in the same function, it
2264     // is reasonable to treat their delta as a 32-bit value.
2265     LLVM_FALLTHROUGH;
2266   case Instruction::BitCast:
2267     return lowerConstant(CE->getOperand(0));
2268 
2269   case Instruction::IntToPtr: {
2270     const DataLayout &DL = getDataLayout();
2271 
2272     // Handle casts to pointers by changing them into casts to the appropriate
2273     // integer type.  This promotes constant folding and simplifies this code.
2274     Constant *Op = CE->getOperand(0);
2275     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2276                                       false/*ZExt*/);
2277     return lowerConstant(Op);
2278   }
2279 
2280   case Instruction::PtrToInt: {
2281     const DataLayout &DL = getDataLayout();
2282 
2283     // Support only foldable casts to/from pointers that can be eliminated by
2284     // changing the pointer to the appropriately sized integer type.
2285     Constant *Op = CE->getOperand(0);
2286     Type *Ty = CE->getType();
2287 
2288     const MCExpr *OpExpr = lowerConstant(Op);
2289 
2290     // We can emit the pointer value into this slot if the slot is an
2291     // integer slot equal to the size of the pointer.
2292     //
2293     // If the pointer is larger than the resultant integer, then
2294     // as with Trunc just depend on the assembler to truncate it.
2295     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2296       return OpExpr;
2297 
2298     // Otherwise the pointer is smaller than the resultant integer, mask off
2299     // the high bits so we are sure to get a proper truncation if the input is
2300     // a constant expr.
2301     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2302     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2303     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2304   }
2305 
2306   case Instruction::Sub: {
2307     GlobalValue *LHSGV;
2308     APInt LHSOffset;
2309     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2310                                    getDataLayout())) {
2311       GlobalValue *RHSGV;
2312       APInt RHSOffset;
2313       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2314                                      getDataLayout())) {
2315         const MCExpr *RelocExpr =
2316             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2317         if (!RelocExpr)
2318           RelocExpr = MCBinaryExpr::createSub(
2319               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2320               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2321         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2322         if (Addend != 0)
2323           RelocExpr = MCBinaryExpr::createAdd(
2324               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2325         return RelocExpr;
2326       }
2327     }
2328   }
2329   // else fallthrough
2330   LLVM_FALLTHROUGH;
2331 
2332   // The MC library also has a right-shift operator, but it isn't consistently
2333   // signed or unsigned between different targets.
2334   case Instruction::Add:
2335   case Instruction::Mul:
2336   case Instruction::SDiv:
2337   case Instruction::SRem:
2338   case Instruction::Shl:
2339   case Instruction::And:
2340   case Instruction::Or:
2341   case Instruction::Xor: {
2342     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2343     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2344     switch (CE->getOpcode()) {
2345     default: llvm_unreachable("Unknown binary operator constant cast expr");
2346     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2347     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2348     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2349     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2350     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2351     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2352     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2353     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2354     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2355     }
2356   }
2357   }
2358 }
2359 
2360 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2361                                    AsmPrinter &AP,
2362                                    const Constant *BaseCV = nullptr,
2363                                    uint64_t Offset = 0);
2364 
2365 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2366 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2367 
2368 /// isRepeatedByteSequence - Determine whether the given value is
2369 /// composed of a repeated sequence of identical bytes and return the
2370 /// byte value.  If it is not a repeated sequence, return -1.
2371 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2372   StringRef Data = V->getRawDataValues();
2373   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2374   char C = Data[0];
2375   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2376     if (Data[i] != C) return -1;
2377   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2378 }
2379 
2380 /// isRepeatedByteSequence - Determine whether the given value is
2381 /// composed of a repeated sequence of identical bytes and return the
2382 /// byte value.  If it is not a repeated sequence, return -1.
2383 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2384   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2385     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2386     assert(Size % 8 == 0);
2387 
2388     // Extend the element to take zero padding into account.
2389     APInt Value = CI->getValue().zextOrSelf(Size);
2390     if (!Value.isSplat(8))
2391       return -1;
2392 
2393     return Value.zextOrTrunc(8).getZExtValue();
2394   }
2395   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2396     // Make sure all array elements are sequences of the same repeated
2397     // byte.
2398     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2399     Constant *Op0 = CA->getOperand(0);
2400     int Byte = isRepeatedByteSequence(Op0, DL);
2401     if (Byte == -1)
2402       return -1;
2403 
2404     // All array elements must be equal.
2405     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2406       if (CA->getOperand(i) != Op0)
2407         return -1;
2408     return Byte;
2409   }
2410 
2411   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2412     return isRepeatedByteSequence(CDS);
2413 
2414   return -1;
2415 }
2416 
2417 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2418                                              const ConstantDataSequential *CDS,
2419                                              AsmPrinter &AP) {
2420   // See if we can aggregate this into a .fill, if so, emit it as such.
2421   int Value = isRepeatedByteSequence(CDS, DL);
2422   if (Value != -1) {
2423     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2424     // Don't emit a 1-byte object as a .fill.
2425     if (Bytes > 1)
2426       return AP.OutStreamer->emitFill(Bytes, Value);
2427   }
2428 
2429   // If this can be emitted with .ascii/.asciz, emit it as such.
2430   if (CDS->isString())
2431     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2432 
2433   // Otherwise, emit the values in successive locations.
2434   unsigned ElementByteSize = CDS->getElementByteSize();
2435   if (isa<IntegerType>(CDS->getElementType())) {
2436     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2437       if (AP.isVerbose())
2438         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2439                                                  CDS->getElementAsInteger(i));
2440       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2441                                    ElementByteSize);
2442     }
2443   } else {
2444     Type *ET = CDS->getElementType();
2445     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2446       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2447   }
2448 
2449   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2450   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2451                         CDS->getNumElements();
2452   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2453   if (unsigned Padding = Size - EmittedSize)
2454     AP.OutStreamer->EmitZeros(Padding);
2455 }
2456 
2457 static void emitGlobalConstantArray(const DataLayout &DL,
2458                                     const ConstantArray *CA, AsmPrinter &AP,
2459                                     const Constant *BaseCV, uint64_t Offset) {
2460   // See if we can aggregate some values.  Make sure it can be
2461   // represented as a series of bytes of the constant value.
2462   int Value = isRepeatedByteSequence(CA, DL);
2463 
2464   if (Value != -1) {
2465     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2466     AP.OutStreamer->emitFill(Bytes, Value);
2467   }
2468   else {
2469     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2470       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2471       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2472     }
2473   }
2474 }
2475 
2476 static void emitGlobalConstantVector(const DataLayout &DL,
2477                                      const ConstantVector *CV, AsmPrinter &AP) {
2478   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2479     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2480 
2481   unsigned Size = DL.getTypeAllocSize(CV->getType());
2482   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2483                          CV->getType()->getNumElements();
2484   if (unsigned Padding = Size - EmittedSize)
2485     AP.OutStreamer->EmitZeros(Padding);
2486 }
2487 
2488 static void emitGlobalConstantStruct(const DataLayout &DL,
2489                                      const ConstantStruct *CS, AsmPrinter &AP,
2490                                      const Constant *BaseCV, uint64_t Offset) {
2491   // Print the fields in successive locations. Pad to align if needed!
2492   unsigned Size = DL.getTypeAllocSize(CS->getType());
2493   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2494   uint64_t SizeSoFar = 0;
2495   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2496     const Constant *Field = CS->getOperand(i);
2497 
2498     // Print the actual field value.
2499     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2500 
2501     // Check if padding is needed and insert one or more 0s.
2502     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2503     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2504                         - Layout->getElementOffset(i)) - FieldSize;
2505     SizeSoFar += FieldSize + PadSize;
2506 
2507     // Insert padding - this may include padding to increase the size of the
2508     // current field up to the ABI size (if the struct is not packed) as well
2509     // as padding to ensure that the next field starts at the right offset.
2510     AP.OutStreamer->EmitZeros(PadSize);
2511   }
2512   assert(SizeSoFar == Layout->getSizeInBytes() &&
2513          "Layout of constant struct may be incorrect!");
2514 }
2515 
2516 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2517   assert(ET && "Unknown float type");
2518   APInt API = APF.bitcastToAPInt();
2519 
2520   // First print a comment with what we think the original floating-point value
2521   // should have been.
2522   if (AP.isVerbose()) {
2523     SmallString<8> StrVal;
2524     APF.toString(StrVal);
2525     ET->print(AP.OutStreamer->GetCommentOS());
2526     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2527   }
2528 
2529   // Now iterate through the APInt chunks, emitting them in endian-correct
2530   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2531   // floats).
2532   unsigned NumBytes = API.getBitWidth() / 8;
2533   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2534   const uint64_t *p = API.getRawData();
2535 
2536   // PPC's long double has odd notions of endianness compared to how LLVM
2537   // handles it: p[0] goes first for *big* endian on PPC.
2538   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2539     int Chunk = API.getNumWords() - 1;
2540 
2541     if (TrailingBytes)
2542       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2543 
2544     for (; Chunk >= 0; --Chunk)
2545       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2546   } else {
2547     unsigned Chunk;
2548     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2549       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2550 
2551     if (TrailingBytes)
2552       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2553   }
2554 
2555   // Emit the tail padding for the long double.
2556   const DataLayout &DL = AP.getDataLayout();
2557   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2558 }
2559 
2560 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2561   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2562 }
2563 
2564 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2565   const DataLayout &DL = AP.getDataLayout();
2566   unsigned BitWidth = CI->getBitWidth();
2567 
2568   // Copy the value as we may massage the layout for constants whose bit width
2569   // is not a multiple of 64-bits.
2570   APInt Realigned(CI->getValue());
2571   uint64_t ExtraBits = 0;
2572   unsigned ExtraBitsSize = BitWidth & 63;
2573 
2574   if (ExtraBitsSize) {
2575     // The bit width of the data is not a multiple of 64-bits.
2576     // The extra bits are expected to be at the end of the chunk of the memory.
2577     // Little endian:
2578     // * Nothing to be done, just record the extra bits to emit.
2579     // Big endian:
2580     // * Record the extra bits to emit.
2581     // * Realign the raw data to emit the chunks of 64-bits.
2582     if (DL.isBigEndian()) {
2583       // Basically the structure of the raw data is a chunk of 64-bits cells:
2584       //    0        1         BitWidth / 64
2585       // [chunk1][chunk2] ... [chunkN].
2586       // The most significant chunk is chunkN and it should be emitted first.
2587       // However, due to the alignment issue chunkN contains useless bits.
2588       // Realign the chunks so that they contain only useless information:
2589       // ExtraBits     0       1       (BitWidth / 64) - 1
2590       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2591       ExtraBits = Realigned.getRawData()[0] &
2592         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2593       Realigned.lshrInPlace(ExtraBitsSize);
2594     } else
2595       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2596   }
2597 
2598   // We don't expect assemblers to support integer data directives
2599   // for more than 64 bits, so we emit the data in at most 64-bit
2600   // quantities at a time.
2601   const uint64_t *RawData = Realigned.getRawData();
2602   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2603     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2604     AP.OutStreamer->EmitIntValue(Val, 8);
2605   }
2606 
2607   if (ExtraBitsSize) {
2608     // Emit the extra bits after the 64-bits chunks.
2609 
2610     // Emit a directive that fills the expected size.
2611     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2612     Size -= (BitWidth / 64) * 8;
2613     assert(Size && Size * 8 >= ExtraBitsSize &&
2614            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2615            == ExtraBits && "Directive too small for extra bits.");
2616     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2617   }
2618 }
2619 
2620 /// Transform a not absolute MCExpr containing a reference to a GOT
2621 /// equivalent global, by a target specific GOT pc relative access to the
2622 /// final symbol.
2623 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2624                                          const Constant *BaseCst,
2625                                          uint64_t Offset) {
2626   // The global @foo below illustrates a global that uses a got equivalent.
2627   //
2628   //  @bar = global i32 42
2629   //  @gotequiv = private unnamed_addr constant i32* @bar
2630   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2631   //                             i64 ptrtoint (i32* @foo to i64))
2632   //                        to i32)
2633   //
2634   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2635   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2636   // form:
2637   //
2638   //  foo = cstexpr, where
2639   //    cstexpr := <gotequiv> - "." + <cst>
2640   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2641   //
2642   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2643   //
2644   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2645   //    gotpcrelcst := <offset from @foo base> + <cst>
2646   MCValue MV;
2647   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2648     return;
2649   const MCSymbolRefExpr *SymA = MV.getSymA();
2650   if (!SymA)
2651     return;
2652 
2653   // Check that GOT equivalent symbol is cached.
2654   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2655   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2656     return;
2657 
2658   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2659   if (!BaseGV)
2660     return;
2661 
2662   // Check for a valid base symbol
2663   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2664   const MCSymbolRefExpr *SymB = MV.getSymB();
2665 
2666   if (!SymB || BaseSym != &SymB->getSymbol())
2667     return;
2668 
2669   // Make sure to match:
2670   //
2671   //    gotpcrelcst := <offset from @foo base> + <cst>
2672   //
2673   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2674   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2675   // if the target knows how to encode it.
2676   int64_t GOTPCRelCst = Offset + MV.getConstant();
2677   if (GOTPCRelCst < 0)
2678     return;
2679   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2680     return;
2681 
2682   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2683   //
2684   //  bar:
2685   //    .long 42
2686   //  gotequiv:
2687   //    .quad bar
2688   //  foo:
2689   //    .long gotequiv - "." + <cst>
2690   //
2691   // is replaced by the target specific equivalent to:
2692   //
2693   //  bar:
2694   //    .long 42
2695   //  foo:
2696   //    .long bar@GOTPCREL+<gotpcrelcst>
2697   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2698   const GlobalVariable *GV = Result.first;
2699   int NumUses = (int)Result.second;
2700   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2701   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2702   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2703       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2704 
2705   // Update GOT equivalent usage information
2706   --NumUses;
2707   if (NumUses >= 0)
2708     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2709 }
2710 
2711 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2712                                    AsmPrinter &AP, const Constant *BaseCV,
2713                                    uint64_t Offset) {
2714   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2715 
2716   // Globals with sub-elements such as combinations of arrays and structs
2717   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2718   // constant symbol base and the current position with BaseCV and Offset.
2719   if (!BaseCV && CV->hasOneUse())
2720     BaseCV = dyn_cast<Constant>(CV->user_back());
2721 
2722   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2723     return AP.OutStreamer->EmitZeros(Size);
2724 
2725   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2726     switch (Size) {
2727     case 1:
2728     case 2:
2729     case 4:
2730     case 8:
2731       if (AP.isVerbose())
2732         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2733                                                  CI->getZExtValue());
2734       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2735       return;
2736     default:
2737       emitGlobalConstantLargeInt(CI, AP);
2738       return;
2739     }
2740   }
2741 
2742   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2743     return emitGlobalConstantFP(CFP, AP);
2744 
2745   if (isa<ConstantPointerNull>(CV)) {
2746     AP.OutStreamer->EmitIntValue(0, Size);
2747     return;
2748   }
2749 
2750   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2751     return emitGlobalConstantDataSequential(DL, CDS, AP);
2752 
2753   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2754     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2755 
2756   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2757     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2758 
2759   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2760     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2761     // vectors).
2762     if (CE->getOpcode() == Instruction::BitCast)
2763       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2764 
2765     if (Size > 8) {
2766       // If the constant expression's size is greater than 64-bits, then we have
2767       // to emit the value in chunks. Try to constant fold the value and emit it
2768       // that way.
2769       Constant *New = ConstantFoldConstant(CE, DL);
2770       if (New && New != CE)
2771         return emitGlobalConstantImpl(DL, New, AP);
2772     }
2773   }
2774 
2775   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2776     return emitGlobalConstantVector(DL, V, AP);
2777 
2778   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2779   // thread the streamer with EmitValue.
2780   const MCExpr *ME = AP.lowerConstant(CV);
2781 
2782   // Since lowerConstant already folded and got rid of all IR pointer and
2783   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2784   // directly.
2785   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2786     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2787 
2788   AP.OutStreamer->EmitValue(ME, Size);
2789 }
2790 
2791 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2792 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2793   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2794   if (Size)
2795     emitGlobalConstantImpl(DL, CV, *this);
2796   else if (MAI->hasSubsectionsViaSymbols()) {
2797     // If the global has zero size, emit a single byte so that two labels don't
2798     // look like they are at the same location.
2799     OutStreamer->EmitIntValue(0, 1);
2800   }
2801 }
2802 
2803 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2804   // Target doesn't support this yet!
2805   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2806 }
2807 
2808 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2809   if (Offset > 0)
2810     OS << '+' << Offset;
2811   else if (Offset < 0)
2812     OS << Offset;
2813 }
2814 
2815 void AsmPrinter::emitNops(unsigned N) {
2816   MCInst Nop;
2817   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2818   for (; N; --N)
2819     EmitToStreamer(*OutStreamer, Nop);
2820 }
2821 
2822 //===----------------------------------------------------------------------===//
2823 // Symbol Lowering Routines.
2824 //===----------------------------------------------------------------------===//
2825 
2826 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2827   return OutContext.createTempSymbol(Name, true);
2828 }
2829 
2830 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2831   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2832 }
2833 
2834 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2835   return MMI->getAddrLabelSymbol(BB);
2836 }
2837 
2838 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2839 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2840   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2841     const MachineConstantPoolEntry &CPE =
2842         MF->getConstantPool()->getConstants()[CPID];
2843     if (!CPE.isMachineConstantPoolEntry()) {
2844       const DataLayout &DL = MF->getDataLayout();
2845       SectionKind Kind = CPE.getSectionKind(&DL);
2846       const Constant *C = CPE.Val.ConstVal;
2847       unsigned Align = CPE.Alignment;
2848       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2849               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2850         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2851           if (Sym->isUndefined())
2852             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2853           return Sym;
2854         }
2855       }
2856     }
2857   }
2858 
2859   const DataLayout &DL = getDataLayout();
2860   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2861                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2862                                       Twine(CPID));
2863 }
2864 
2865 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2866 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2867   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2868 }
2869 
2870 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2871 /// FIXME: privatize to AsmPrinter.
2872 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2873   const DataLayout &DL = getDataLayout();
2874   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2875                                       Twine(getFunctionNumber()) + "_" +
2876                                       Twine(UID) + "_set_" + Twine(MBBID));
2877 }
2878 
2879 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2880                                                    StringRef Suffix) const {
2881   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2882 }
2883 
2884 /// Return the MCSymbol for the specified ExternalSymbol.
2885 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2886   SmallString<60> NameStr;
2887   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2888   return OutContext.getOrCreateSymbol(NameStr);
2889 }
2890 
2891 /// PrintParentLoopComment - Print comments about parent loops of this one.
2892 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2893                                    unsigned FunctionNumber) {
2894   if (!Loop) return;
2895   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2896   OS.indent(Loop->getLoopDepth()*2)
2897     << "Parent Loop BB" << FunctionNumber << "_"
2898     << Loop->getHeader()->getNumber()
2899     << " Depth=" << Loop->getLoopDepth() << '\n';
2900 }
2901 
2902 /// PrintChildLoopComment - Print comments about child loops within
2903 /// the loop for this basic block, with nesting.
2904 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2905                                   unsigned FunctionNumber) {
2906   // Add child loop information
2907   for (const MachineLoop *CL : *Loop) {
2908     OS.indent(CL->getLoopDepth()*2)
2909       << "Child Loop BB" << FunctionNumber << "_"
2910       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2911       << '\n';
2912     PrintChildLoopComment(OS, CL, FunctionNumber);
2913   }
2914 }
2915 
2916 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2917 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2918                                        const MachineLoopInfo *LI,
2919                                        const AsmPrinter &AP) {
2920   // Add loop depth information
2921   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2922   if (!Loop) return;
2923 
2924   MachineBasicBlock *Header = Loop->getHeader();
2925   assert(Header && "No header for loop");
2926 
2927   // If this block is not a loop header, just print out what is the loop header
2928   // and return.
2929   if (Header != &MBB) {
2930     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2931                                Twine(AP.getFunctionNumber())+"_" +
2932                                Twine(Loop->getHeader()->getNumber())+
2933                                " Depth="+Twine(Loop->getLoopDepth()));
2934     return;
2935   }
2936 
2937   // Otherwise, it is a loop header.  Print out information about child and
2938   // parent loops.
2939   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2940 
2941   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2942 
2943   OS << "=>";
2944   OS.indent(Loop->getLoopDepth()*2-2);
2945 
2946   OS << "This ";
2947   if (Loop->empty())
2948     OS << "Inner ";
2949   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2950 
2951   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2952 }
2953 
2954 /// EmitBasicBlockStart - This method prints the label for the specified
2955 /// MachineBasicBlock, an alignment (if present) and a comment describing
2956 /// it if appropriate.
2957 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2958   // End the previous funclet and start a new one.
2959   if (MBB.isEHFuncletEntry()) {
2960     for (const HandlerInfo &HI : Handlers) {
2961       HI.Handler->endFunclet();
2962       HI.Handler->beginFunclet(MBB);
2963     }
2964   }
2965 
2966   // Emit an alignment directive for this block, if needed.
2967   const Align Alignment = MBB.getAlignment();
2968   if (Alignment != Align::None())
2969     EmitAlignment(Alignment);
2970 
2971   // If the block has its address taken, emit any labels that were used to
2972   // reference the block.  It is possible that there is more than one label
2973   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2974   // the references were generated.
2975   if (MBB.hasAddressTaken()) {
2976     const BasicBlock *BB = MBB.getBasicBlock();
2977     if (isVerbose())
2978       OutStreamer->AddComment("Block address taken");
2979 
2980     // MBBs can have their address taken as part of CodeGen without having
2981     // their corresponding BB's address taken in IR
2982     if (BB->hasAddressTaken())
2983       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2984         OutStreamer->EmitLabel(Sym);
2985   }
2986 
2987   // Print some verbose block comments.
2988   if (isVerbose()) {
2989     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2990       if (BB->hasName()) {
2991         BB->printAsOperand(OutStreamer->GetCommentOS(),
2992                            /*PrintType=*/false, BB->getModule());
2993         OutStreamer->GetCommentOS() << '\n';
2994       }
2995     }
2996 
2997     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2998     emitBasicBlockLoopComments(MBB, MLI, *this);
2999   }
3000 
3001   // Print the main label for the block.
3002   if (MBB.pred_empty() ||
3003       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
3004        !MBB.hasLabelMustBeEmitted())) {
3005     if (isVerbose()) {
3006       // NOTE: Want this comment at start of line, don't emit with AddComment.
3007       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3008                                   false);
3009     }
3010   } else {
3011     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3012       OutStreamer->AddComment("Label of block must be emitted");
3013     OutStreamer->EmitLabel(MBB.getSymbol());
3014   }
3015 }
3016 
3017 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {}
3018 
3019 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
3020                                 bool IsDefinition) const {
3021   MCSymbolAttr Attr = MCSA_Invalid;
3022 
3023   switch (Visibility) {
3024   default: break;
3025   case GlobalValue::HiddenVisibility:
3026     if (IsDefinition)
3027       Attr = MAI->getHiddenVisibilityAttr();
3028     else
3029       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3030     break;
3031   case GlobalValue::ProtectedVisibility:
3032     Attr = MAI->getProtectedVisibilityAttr();
3033     break;
3034   }
3035 
3036   if (Attr != MCSA_Invalid)
3037     OutStreamer->EmitSymbolAttribute(Sym, Attr);
3038 }
3039 
3040 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3041 /// exactly one predecessor and the control transfer mechanism between
3042 /// the predecessor and this block is a fall-through.
3043 bool AsmPrinter::
3044 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3045   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3046   // then nothing falls through to it.
3047   if (MBB->isEHPad() || MBB->pred_empty())
3048     return false;
3049 
3050   // If there isn't exactly one predecessor, it can't be a fall through.
3051   if (MBB->pred_size() > 1)
3052     return false;
3053 
3054   // The predecessor has to be immediately before this block.
3055   MachineBasicBlock *Pred = *MBB->pred_begin();
3056   if (!Pred->isLayoutSuccessor(MBB))
3057     return false;
3058 
3059   // If the block is completely empty, then it definitely does fall through.
3060   if (Pred->empty())
3061     return true;
3062 
3063   // Check the terminators in the previous blocks
3064   for (const auto &MI : Pred->terminators()) {
3065     // If it is not a simple branch, we are in a table somewhere.
3066     if (!MI.isBranch() || MI.isIndirectBranch())
3067       return false;
3068 
3069     // If we are the operands of one of the branches, this is not a fall
3070     // through. Note that targets with delay slots will usually bundle
3071     // terminators with the delay slot instruction.
3072     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3073       if (OP->isJTI())
3074         return false;
3075       if (OP->isMBB() && OP->getMBB() == MBB)
3076         return false;
3077     }
3078   }
3079 
3080   return true;
3081 }
3082 
3083 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3084   if (!S.usesMetadata())
3085     return nullptr;
3086 
3087   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3088   gcp_map_type::iterator GCPI = GCMap.find(&S);
3089   if (GCPI != GCMap.end())
3090     return GCPI->second.get();
3091 
3092   auto Name = S.getName();
3093 
3094   for (GCMetadataPrinterRegistry::iterator
3095          I = GCMetadataPrinterRegistry::begin(),
3096          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3097     if (Name == I->getName()) {
3098       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3099       GMP->S = &S;
3100       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3101       return IterBool.first->second.get();
3102     }
3103 
3104   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3105 }
3106 
3107 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3108   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3109   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3110   bool NeedsDefault = false;
3111   if (MI->begin() == MI->end())
3112     // No GC strategy, use the default format.
3113     NeedsDefault = true;
3114   else
3115     for (auto &I : *MI) {
3116       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3117         if (MP->emitStackMaps(SM, *this))
3118           continue;
3119       // The strategy doesn't have printer or doesn't emit custom stack maps.
3120       // Use the default format.
3121       NeedsDefault = true;
3122     }
3123 
3124   if (NeedsDefault)
3125     SM.serializeToStackMapSection();
3126 }
3127 
3128 /// Pin vtable to this file.
3129 AsmPrinterHandler::~AsmPrinterHandler() = default;
3130 
3131 void AsmPrinterHandler::markFunctionEnd() {}
3132 
3133 // In the binary's "xray_instr_map" section, an array of these function entries
3134 // describes each instrumentation point.  When XRay patches your code, the index
3135 // into this table will be given to your handler as a patch point identifier.
3136 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3137                                          const MCSymbol *CurrentFnSym) const {
3138   Out->EmitSymbolValue(Sled, Bytes);
3139   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3140   auto Kind8 = static_cast<uint8_t>(Kind);
3141   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3142   Out->EmitBinaryData(
3143       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3144   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3145   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3146   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3147   Out->EmitZeros(Padding);
3148 }
3149 
3150 void AsmPrinter::emitXRayTable() {
3151   if (Sleds.empty())
3152     return;
3153 
3154   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3155   const Function &F = MF->getFunction();
3156   MCSection *InstMap = nullptr;
3157   MCSection *FnSledIndex = nullptr;
3158   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3159     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3160     assert(Associated != nullptr);
3161     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3162     std::string GroupName;
3163     if (F.hasComdat()) {
3164       Flags |= ELF::SHF_GROUP;
3165       GroupName = F.getComdat()->getName();
3166     }
3167 
3168     auto UniqueID = ++XRayFnUniqueID;
3169     InstMap =
3170         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3171                                  GroupName, UniqueID, Associated);
3172     FnSledIndex =
3173         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3174                                  GroupName, UniqueID, Associated);
3175   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3176     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3177                                          SectionKind::getReadOnlyWithRel());
3178     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3179                                              SectionKind::getReadOnlyWithRel());
3180   } else {
3181     llvm_unreachable("Unsupported target");
3182   }
3183 
3184   auto WordSizeBytes = MAI->getCodePointerSize();
3185 
3186   // Now we switch to the instrumentation map section. Because this is done
3187   // per-function, we are able to create an index entry that will represent the
3188   // range of sleds associated with a function.
3189   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3190   OutStreamer->SwitchSection(InstMap);
3191   OutStreamer->EmitLabel(SledsStart);
3192   for (const auto &Sled : Sleds)
3193     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3194   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3195   OutStreamer->EmitLabel(SledsEnd);
3196 
3197   // We then emit a single entry in the index per function. We use the symbols
3198   // that bound the instrumentation map as the range for a specific function.
3199   // Each entry here will be 2 * word size aligned, as we're writing down two
3200   // pointers. This should work for both 32-bit and 64-bit platforms.
3201   OutStreamer->SwitchSection(FnSledIndex);
3202   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3203   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3204   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3205   OutStreamer->SwitchSection(PrevSection);
3206   Sleds.clear();
3207 }
3208 
3209 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3210                             SledKind Kind, uint8_t Version) {
3211   const Function &F = MI.getMF()->getFunction();
3212   auto Attr = F.getFnAttribute("function-instrument");
3213   bool LogArgs = F.hasFnAttribute("xray-log-args");
3214   bool AlwaysInstrument =
3215     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3216   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3217     Kind = SledKind::LOG_ARGS_ENTER;
3218   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3219                                        AlwaysInstrument, &F, Version});
3220 }
3221 
3222 void AsmPrinter::emitPatchableFunctionEntries() {
3223   const Function &F = MF->getFunction();
3224   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3225   (void)F.getFnAttribute("patchable-function-prefix")
3226       .getValueAsString()
3227       .getAsInteger(10, PatchableFunctionPrefix);
3228   (void)F.getFnAttribute("patchable-function-entry")
3229       .getValueAsString()
3230       .getAsInteger(10, PatchableFunctionEntry);
3231   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3232     return;
3233   const unsigned PointerSize = getPointerSize();
3234   if (TM.getTargetTriple().isOSBinFormatELF()) {
3235     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3236 
3237     // As of binutils 2.33, GNU as does not support section flag "o" or linkage
3238     // field "unique". Use SHF_LINK_ORDER if we are using the integrated
3239     // assembler.
3240     if (MAI->useIntegratedAssembler()) {
3241       Flags |= ELF::SHF_LINK_ORDER;
3242       std::string GroupName;
3243       if (F.hasComdat()) {
3244         Flags |= ELF::SHF_GROUP;
3245         GroupName = F.getComdat()->getName();
3246       }
3247       MCSection *Section = getObjFileLowering().SectionForGlobal(&F, TM);
3248       unsigned UniqueID =
3249           PatchableFunctionEntryID
3250               .try_emplace(Section, PatchableFunctionEntryID.size())
3251               .first->second;
3252       OutStreamer->SwitchSection(OutContext.getELFSection(
3253           "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0,
3254           GroupName, UniqueID, cast<MCSymbolELF>(CurrentFnSym)));
3255     } else {
3256       OutStreamer->SwitchSection(OutContext.getELFSection(
3257           "__patchable_function_entries", ELF::SHT_PROGBITS, Flags));
3258     }
3259     EmitAlignment(Align(PointerSize));
3260     OutStreamer->EmitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3261   }
3262 }
3263 
3264 uint16_t AsmPrinter::getDwarfVersion() const {
3265   return OutStreamer->getContext().getDwarfVersion();
3266 }
3267 
3268 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3269   OutStreamer->getContext().setDwarfVersion(Version);
3270 }
3271