1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 static const char *const DWARFGroupName = "dwarf"; 135 static const char *const DWARFGroupDescription = "DWARF Emission"; 136 static const char *const DbgTimerName = "emit"; 137 static const char *const DbgTimerDescription = "Debug Info Emission"; 138 static const char *const EHTimerName = "write_exception"; 139 static const char *const EHTimerDescription = "DWARF Exception Writer"; 140 static const char *const CFGuardName = "Control Flow Guard"; 141 static const char *const CFGuardDescription = "Control Flow Guard"; 142 static const char *const CodeViewLineTablesGroupName = "linetables"; 143 static const char *const CodeViewLineTablesGroupDescription = 144 "CodeView Line Tables"; 145 146 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignment - Return the alignment to use for the specified global 159 /// value. This rounds up to the preferred alignment if possible and legal. 160 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 161 Align InAlign) { 162 Align Alignment; 163 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 164 Alignment = DL.getPreferredAlign(GVar); 165 166 // If InAlign is specified, round it to it. 167 if (InAlign > Alignment) 168 Alignment = InAlign; 169 170 // If the GV has a specified alignment, take it into account. 171 const MaybeAlign GVAlign(GV->getAlignment()); 172 if (!GVAlign) 173 return Alignment; 174 175 assert(GVAlign && "GVAlign must be set"); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (*GVAlign > Alignment || GV->hasSection()) 180 Alignment = *GVAlign; 181 return Alignment; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.emitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 234 assert(DD && "Dwarf debug file is not defined."); 235 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 236 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 237 } 238 239 /// getCurrentSection() - Return the current section we are emitting to. 240 const MCSection *AsmPrinter::getCurrentSection() const { 241 return OutStreamer->getCurrentSectionOnly(); 242 } 243 244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 248 AU.addRequired<GCModuleInfo>(); 249 } 250 251 bool AsmPrinter::doInitialization(Module &M) { 252 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 253 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 254 255 // Initialize TargetLoweringObjectFile. 256 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 257 .Initialize(OutContext, TM); 258 259 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 260 .getModuleMetadata(M); 261 262 OutStreamer->InitSections(false); 263 264 // Emit the version-min deployment target directive if needed. 265 // 266 // FIXME: If we end up with a collection of these sorts of Darwin-specific 267 // or ELF-specific things, it may make sense to have a platform helper class 268 // that will work with the target helper class. For now keep it here, as the 269 // alternative is duplicated code in each of the target asm printers that 270 // use the directive, where it would need the same conditionalization 271 // anyway. 272 const Triple &Target = TM.getTargetTriple(); 273 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 274 275 // Allow the target to emit any magic that it wants at the start of the file. 276 emitStartOfAsmFile(M); 277 278 // Very minimal debug info. It is ignored if we emit actual debug info. If we 279 // don't, this at least helps the user find where a global came from. 280 if (MAI->hasSingleParameterDotFile()) { 281 // .file "foo.c" 282 OutStreamer->emitFileDirective( 283 llvm::sys::path::filename(M.getSourceFileName())); 284 } 285 286 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 287 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 288 for (auto &I : *MI) 289 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 290 MP->beginAssembly(M, *MI, *this); 291 292 // Emit module-level inline asm if it exists. 293 if (!M.getModuleInlineAsm().empty()) { 294 // We're at the module level. Construct MCSubtarget from the default CPU 295 // and target triple. 296 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 297 TM.getTargetTriple().str(), TM.getTargetCPU(), 298 TM.getTargetFeatureString())); 299 OutStreamer->AddComment("Start of file scope inline assembly"); 300 OutStreamer->AddBlankLine(); 301 emitInlineAsm(M.getModuleInlineAsm() + "\n", 302 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 303 OutStreamer->AddComment("End of file scope inline assembly"); 304 OutStreamer->AddBlankLine(); 305 } 306 307 if (MAI->doesSupportDebugInformation()) { 308 bool EmitCodeView = M.getCodeViewFlag(); 309 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 310 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 311 DbgTimerName, DbgTimerDescription, 312 CodeViewLineTablesGroupName, 313 CodeViewLineTablesGroupDescription); 314 } 315 if (!EmitCodeView || M.getDwarfVersion()) { 316 DD = new DwarfDebug(this, &M); 317 DD->beginModule(); 318 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 319 DbgTimerDescription, DWARFGroupName, 320 DWARFGroupDescription); 321 } 322 } 323 324 switch (MAI->getExceptionHandlingType()) { 325 case ExceptionHandling::SjLj: 326 case ExceptionHandling::DwarfCFI: 327 case ExceptionHandling::ARM: 328 isCFIMoveForDebugging = true; 329 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 330 break; 331 for (auto &F: M.getFunctionList()) { 332 // If the module contains any function with unwind data, 333 // .eh_frame has to be emitted. 334 // Ignore functions that won't get emitted. 335 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 336 isCFIMoveForDebugging = false; 337 break; 338 } 339 } 340 break; 341 default: 342 isCFIMoveForDebugging = false; 343 break; 344 } 345 346 EHStreamer *ES = nullptr; 347 switch (MAI->getExceptionHandlingType()) { 348 case ExceptionHandling::None: 349 break; 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 ES = new DwarfCFIException(this); 353 break; 354 case ExceptionHandling::ARM: 355 ES = new ARMException(this); 356 break; 357 case ExceptionHandling::WinEH: 358 switch (MAI->getWinEHEncodingType()) { 359 default: llvm_unreachable("unsupported unwinding information encoding"); 360 case WinEH::EncodingType::Invalid: 361 break; 362 case WinEH::EncodingType::X86: 363 case WinEH::EncodingType::Itanium: 364 ES = new WinException(this); 365 break; 366 } 367 break; 368 case ExceptionHandling::Wasm: 369 ES = new WasmException(this); 370 break; 371 } 372 if (ES) 373 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 374 EHTimerDescription, DWARFGroupName, 375 DWARFGroupDescription); 376 377 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 378 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 379 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 380 CFGuardDescription, DWARFGroupName, 381 DWARFGroupDescription); 382 return false; 383 } 384 385 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 386 if (!MAI.hasWeakDefCanBeHiddenDirective()) 387 return false; 388 389 return GV->canBeOmittedFromSymbolTable(); 390 } 391 392 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 393 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 394 switch (Linkage) { 395 case GlobalValue::CommonLinkage: 396 case GlobalValue::LinkOnceAnyLinkage: 397 case GlobalValue::LinkOnceODRLinkage: 398 case GlobalValue::WeakAnyLinkage: 399 case GlobalValue::WeakODRLinkage: 400 if (MAI->hasWeakDefDirective()) { 401 // .globl _foo 402 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 403 404 if (!canBeHidden(GV, *MAI)) 405 // .weak_definition _foo 406 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 407 else 408 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 409 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 410 // .globl _foo 411 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 412 //NOTE: linkonce is handled by the section the symbol was assigned to. 413 } else { 414 // .weak _foo 415 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 416 } 417 return; 418 case GlobalValue::ExternalLinkage: 419 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 420 return; 421 case GlobalValue::PrivateLinkage: 422 case GlobalValue::InternalLinkage: 423 return; 424 case GlobalValue::ExternalWeakLinkage: 425 case GlobalValue::AvailableExternallyLinkage: 426 case GlobalValue::AppendingLinkage: 427 llvm_unreachable("Should never emit this"); 428 } 429 llvm_unreachable("Unknown linkage type!"); 430 } 431 432 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 433 const GlobalValue *GV) const { 434 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 435 } 436 437 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 438 return TM.getSymbol(GV); 439 } 440 441 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 442 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 443 // exact definion (intersection of GlobalValue::hasExactDefinition() and 444 // !isInterposable()). These linkages include: external, appending, internal, 445 // private. It may be profitable to use a local alias for external. The 446 // assembler would otherwise be conservative and assume a global default 447 // visibility symbol can be interposable, even if the code generator already 448 // assumed it. 449 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 450 const Module &M = *GV.getParent(); 451 if (TM.getRelocationModel() != Reloc::Static && 452 M.getPIELevel() == PIELevel::Default) 453 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 454 GV.getParent()->noSemanticInterposition())) 455 return getSymbolWithGlobalValueBase(&GV, "$local"); 456 } 457 return TM.getSymbol(&GV); 458 } 459 460 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 461 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 462 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 463 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 464 "No emulated TLS variables in the common section"); 465 466 // Never emit TLS variable xyz in emulated TLS model. 467 // The initialization value is in __emutls_t.xyz instead of xyz. 468 if (IsEmuTLSVar) 469 return; 470 471 if (GV->hasInitializer()) { 472 // Check to see if this is a special global used by LLVM, if so, emit it. 473 if (emitSpecialLLVMGlobal(GV)) 474 return; 475 476 // Skip the emission of global equivalents. The symbol can be emitted later 477 // on by emitGlobalGOTEquivs in case it turns out to be needed. 478 if (GlobalGOTEquivs.count(getSymbol(GV))) 479 return; 480 481 if (isVerbose()) { 482 // When printing the control variable __emutls_v.*, 483 // we don't need to print the original TLS variable name. 484 GV->printAsOperand(OutStreamer->GetCommentOS(), 485 /*PrintType=*/false, GV->getParent()); 486 OutStreamer->GetCommentOS() << '\n'; 487 } 488 } 489 490 MCSymbol *GVSym = getSymbol(GV); 491 MCSymbol *EmittedSym = GVSym; 492 493 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 494 // attributes. 495 // GV's or GVSym's attributes will be used for the EmittedSym. 496 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 497 498 if (!GV->hasInitializer()) // External globals require no extra code. 499 return; 500 501 GVSym->redefineIfPossible(); 502 if (GVSym->isDefined() || GVSym->isVariable()) 503 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 504 "' is already defined"); 505 506 if (MAI->hasDotTypeDotSizeDirective()) 507 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 508 509 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 510 511 const DataLayout &DL = GV->getParent()->getDataLayout(); 512 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 513 514 // If the alignment is specified, we *must* obey it. Overaligning a global 515 // with a specified alignment is a prompt way to break globals emitted to 516 // sections and expected to be contiguous (e.g. ObjC metadata). 517 const Align Alignment = getGVAlignment(GV, DL); 518 519 for (const HandlerInfo &HI : Handlers) { 520 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 521 HI.TimerGroupName, HI.TimerGroupDescription, 522 TimePassesIsEnabled); 523 HI.Handler->setSymbolSize(GVSym, Size); 524 } 525 526 // Handle common symbols 527 if (GVKind.isCommon()) { 528 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 529 // .comm _foo, 42, 4 530 const bool SupportsAlignment = 531 getObjFileLowering().getCommDirectiveSupportsAlignment(); 532 OutStreamer->emitCommonSymbol(GVSym, Size, 533 SupportsAlignment ? Alignment.value() : 0); 534 return; 535 } 536 537 // Determine to which section this global should be emitted. 538 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 539 540 // If we have a bss global going to a section that supports the 541 // zerofill directive, do so here. 542 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 543 TheSection->isVirtualSection()) { 544 if (Size == 0) 545 Size = 1; // zerofill of 0 bytes is undefined. 546 emitLinkage(GV, GVSym); 547 // .zerofill __DATA, __bss, _foo, 400, 5 548 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 549 return; 550 } 551 552 // If this is a BSS local symbol and we are emitting in the BSS 553 // section use .lcomm/.comm directive. 554 if (GVKind.isBSSLocal() && 555 getObjFileLowering().getBSSSection() == TheSection) { 556 if (Size == 0) 557 Size = 1; // .comm Foo, 0 is undefined, avoid it. 558 559 // Use .lcomm only if it supports user-specified alignment. 560 // Otherwise, while it would still be correct to use .lcomm in some 561 // cases (e.g. when Align == 1), the external assembler might enfore 562 // some -unknown- default alignment behavior, which could cause 563 // spurious differences between external and integrated assembler. 564 // Prefer to simply fall back to .local / .comm in this case. 565 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 566 // .lcomm _foo, 42 567 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 568 return; 569 } 570 571 // .local _foo 572 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 573 // .comm _foo, 42, 4 574 const bool SupportsAlignment = 575 getObjFileLowering().getCommDirectiveSupportsAlignment(); 576 OutStreamer->emitCommonSymbol(GVSym, Size, 577 SupportsAlignment ? Alignment.value() : 0); 578 return; 579 } 580 581 // Handle thread local data for mach-o which requires us to output an 582 // additional structure of data and mangle the original symbol so that we 583 // can reference it later. 584 // 585 // TODO: This should become an "emit thread local global" method on TLOF. 586 // All of this macho specific stuff should be sunk down into TLOFMachO and 587 // stuff like "TLSExtraDataSection" should no longer be part of the parent 588 // TLOF class. This will also make it more obvious that stuff like 589 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 590 // specific code. 591 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 592 // Emit the .tbss symbol 593 MCSymbol *MangSym = 594 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 595 596 if (GVKind.isThreadBSS()) { 597 TheSection = getObjFileLowering().getTLSBSSSection(); 598 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 599 } else if (GVKind.isThreadData()) { 600 OutStreamer->SwitchSection(TheSection); 601 602 emitAlignment(Alignment, GV); 603 OutStreamer->emitLabel(MangSym); 604 605 emitGlobalConstant(GV->getParent()->getDataLayout(), 606 GV->getInitializer()); 607 } 608 609 OutStreamer->AddBlankLine(); 610 611 // Emit the variable struct for the runtime. 612 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 613 614 OutStreamer->SwitchSection(TLVSect); 615 // Emit the linkage here. 616 emitLinkage(GV, GVSym); 617 OutStreamer->emitLabel(GVSym); 618 619 // Three pointers in size: 620 // - __tlv_bootstrap - used to make sure support exists 621 // - spare pointer, used when mapped by the runtime 622 // - pointer to mangled symbol above with initializer 623 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 624 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 625 PtrSize); 626 OutStreamer->emitIntValue(0, PtrSize); 627 OutStreamer->emitSymbolValue(MangSym, PtrSize); 628 629 OutStreamer->AddBlankLine(); 630 return; 631 } 632 633 MCSymbol *EmittedInitSym = GVSym; 634 635 OutStreamer->SwitchSection(TheSection); 636 637 emitLinkage(GV, EmittedInitSym); 638 emitAlignment(Alignment, GV); 639 640 OutStreamer->emitLabel(EmittedInitSym); 641 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 642 if (LocalAlias != EmittedInitSym) 643 OutStreamer->emitLabel(LocalAlias); 644 645 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 646 647 if (MAI->hasDotTypeDotSizeDirective()) 648 // .size foo, 42 649 OutStreamer->emitELFSize(EmittedInitSym, 650 MCConstantExpr::create(Size, OutContext)); 651 652 OutStreamer->AddBlankLine(); 653 } 654 655 /// Emit the directive and value for debug thread local expression 656 /// 657 /// \p Value - The value to emit. 658 /// \p Size - The size of the integer (in bytes) to emit. 659 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 660 OutStreamer->emitValue(Value, Size); 661 } 662 663 void AsmPrinter::emitFunctionHeaderComment() {} 664 665 /// EmitFunctionHeader - This method emits the header for the current 666 /// function. 667 void AsmPrinter::emitFunctionHeader() { 668 const Function &F = MF->getFunction(); 669 670 if (isVerbose()) 671 OutStreamer->GetCommentOS() 672 << "-- Begin function " 673 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 674 675 // Print out constants referenced by the function 676 emitConstantPool(); 677 678 // Print the 'header' of function. 679 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 680 OutStreamer->SwitchSection(MF->getSection()); 681 682 if (!MAI->hasVisibilityOnlyWithLinkage()) 683 emitVisibility(CurrentFnSym, F.getVisibility()); 684 685 if (MAI->needsFunctionDescriptors()) 686 emitLinkage(&F, CurrentFnDescSym); 687 688 emitLinkage(&F, CurrentFnSym); 689 if (MAI->hasFunctionAlignment()) 690 emitAlignment(MF->getAlignment(), &F); 691 692 if (MAI->hasDotTypeDotSizeDirective()) 693 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 694 695 if (F.hasFnAttribute(Attribute::Cold)) 696 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 697 698 if (isVerbose()) { 699 F.printAsOperand(OutStreamer->GetCommentOS(), 700 /*PrintType=*/false, F.getParent()); 701 emitFunctionHeaderComment(); 702 OutStreamer->GetCommentOS() << '\n'; 703 } 704 705 // Emit the prefix data. 706 if (F.hasPrefixData()) { 707 if (MAI->hasSubsectionsViaSymbols()) { 708 // Preserving prefix data on platforms which use subsections-via-symbols 709 // is a bit tricky. Here we introduce a symbol for the prefix data 710 // and use the .alt_entry attribute to mark the function's real entry point 711 // as an alternative entry point to the prefix-data symbol. 712 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 713 OutStreamer->emitLabel(PrefixSym); 714 715 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 716 717 // Emit an .alt_entry directive for the actual function symbol. 718 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 719 } else { 720 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 721 } 722 } 723 724 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 725 // place prefix data before NOPs. 726 unsigned PatchableFunctionPrefix = 0; 727 unsigned PatchableFunctionEntry = 0; 728 (void)F.getFnAttribute("patchable-function-prefix") 729 .getValueAsString() 730 .getAsInteger(10, PatchableFunctionPrefix); 731 (void)F.getFnAttribute("patchable-function-entry") 732 .getValueAsString() 733 .getAsInteger(10, PatchableFunctionEntry); 734 if (PatchableFunctionPrefix) { 735 CurrentPatchableFunctionEntrySym = 736 OutContext.createLinkerPrivateTempSymbol(); 737 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 738 emitNops(PatchableFunctionPrefix); 739 } else if (PatchableFunctionEntry) { 740 // May be reassigned when emitting the body, to reference the label after 741 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 742 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 743 } 744 745 // Emit the function descriptor. This is a virtual function to allow targets 746 // to emit their specific function descriptor. Right now it is only used by 747 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 748 // descriptors and should be converted to use this hook as well. 749 if (MAI->needsFunctionDescriptors()) 750 emitFunctionDescriptor(); 751 752 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 753 // their wild and crazy things as required. 754 emitFunctionEntryLabel(); 755 756 if (CurrentFnBegin) { 757 if (MAI->useAssignmentForEHBegin()) { 758 MCSymbol *CurPos = OutContext.createTempSymbol(); 759 OutStreamer->emitLabel(CurPos); 760 OutStreamer->emitAssignment(CurrentFnBegin, 761 MCSymbolRefExpr::create(CurPos, OutContext)); 762 } else { 763 OutStreamer->emitLabel(CurrentFnBegin); 764 } 765 } 766 767 // Emit pre-function debug and/or EH information. 768 for (const HandlerInfo &HI : Handlers) { 769 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 770 HI.TimerGroupDescription, TimePassesIsEnabled); 771 HI.Handler->beginFunction(MF); 772 } 773 774 // Emit the prologue data. 775 if (F.hasPrologueData()) 776 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 777 } 778 779 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 780 /// function. This can be overridden by targets as required to do custom stuff. 781 void AsmPrinter::emitFunctionEntryLabel() { 782 CurrentFnSym->redefineIfPossible(); 783 784 // The function label could have already been emitted if two symbols end up 785 // conflicting due to asm renaming. Detect this and emit an error. 786 if (CurrentFnSym->isVariable()) 787 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 788 "' is a protected alias"); 789 if (CurrentFnSym->isDefined()) 790 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 791 "' label emitted multiple times to assembly file"); 792 793 OutStreamer->emitLabel(CurrentFnSym); 794 795 if (TM.getTargetTriple().isOSBinFormatELF()) { 796 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 797 if (Sym != CurrentFnSym) 798 OutStreamer->emitLabel(Sym); 799 } 800 } 801 802 /// emitComments - Pretty-print comments for instructions. 803 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 804 const MachineFunction *MF = MI.getMF(); 805 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 806 807 // Check for spills and reloads 808 809 // We assume a single instruction only has a spill or reload, not 810 // both. 811 Optional<unsigned> Size; 812 if ((Size = MI.getRestoreSize(TII))) { 813 CommentOS << *Size << "-byte Reload\n"; 814 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 815 if (*Size) 816 CommentOS << *Size << "-byte Folded Reload\n"; 817 } else if ((Size = MI.getSpillSize(TII))) { 818 CommentOS << *Size << "-byte Spill\n"; 819 } else if ((Size = MI.getFoldedSpillSize(TII))) { 820 if (*Size) 821 CommentOS << *Size << "-byte Folded Spill\n"; 822 } 823 824 // Check for spill-induced copies 825 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 826 CommentOS << " Reload Reuse\n"; 827 } 828 829 /// emitImplicitDef - This method emits the specified machine instruction 830 /// that is an implicit def. 831 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 832 Register RegNo = MI->getOperand(0).getReg(); 833 834 SmallString<128> Str; 835 raw_svector_ostream OS(Str); 836 OS << "implicit-def: " 837 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 838 839 OutStreamer->AddComment(OS.str()); 840 OutStreamer->AddBlankLine(); 841 } 842 843 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 844 std::string Str; 845 raw_string_ostream OS(Str); 846 OS << "kill:"; 847 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 848 const MachineOperand &Op = MI->getOperand(i); 849 assert(Op.isReg() && "KILL instruction must have only register operands"); 850 OS << ' ' << (Op.isDef() ? "def " : "killed ") 851 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 852 } 853 AP.OutStreamer->AddComment(OS.str()); 854 AP.OutStreamer->AddBlankLine(); 855 } 856 857 /// emitDebugValueComment - This method handles the target-independent form 858 /// of DBG_VALUE, returning true if it was able to do so. A false return 859 /// means the target will need to handle MI in EmitInstruction. 860 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 861 // This code handles only the 4-operand target-independent form. 862 if (MI->getNumOperands() != 4) 863 return false; 864 865 SmallString<128> Str; 866 raw_svector_ostream OS(Str); 867 OS << "DEBUG_VALUE: "; 868 869 const DILocalVariable *V = MI->getDebugVariable(); 870 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 871 StringRef Name = SP->getName(); 872 if (!Name.empty()) 873 OS << Name << ":"; 874 } 875 OS << V->getName(); 876 OS << " <- "; 877 878 // The second operand is only an offset if it's an immediate. 879 bool MemLoc = MI->isIndirectDebugValue(); 880 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 881 const DIExpression *Expr = MI->getDebugExpression(); 882 if (Expr->getNumElements()) { 883 OS << '['; 884 bool NeedSep = false; 885 for (auto Op : Expr->expr_ops()) { 886 if (NeedSep) 887 OS << ", "; 888 else 889 NeedSep = true; 890 OS << dwarf::OperationEncodingString(Op.getOp()); 891 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 892 OS << ' ' << Op.getArg(I); 893 } 894 OS << "] "; 895 } 896 897 // Register or immediate value. Register 0 means undef. 898 if (MI->getDebugOperand(0).isFPImm()) { 899 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 900 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 901 OS << (double)APF.convertToFloat(); 902 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 903 OS << APF.convertToDouble(); 904 } else { 905 // There is no good way to print long double. Convert a copy to 906 // double. Ah well, it's only a comment. 907 bool ignored; 908 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 909 &ignored); 910 OS << "(long double) " << APF.convertToDouble(); 911 } 912 } else if (MI->getDebugOperand(0).isImm()) { 913 OS << MI->getDebugOperand(0).getImm(); 914 } else if (MI->getDebugOperand(0).isCImm()) { 915 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 916 } else if (MI->getDebugOperand(0).isTargetIndex()) { 917 auto Op = MI->getDebugOperand(0); 918 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 919 return true; 920 } else { 921 Register Reg; 922 if (MI->getDebugOperand(0).isReg()) { 923 Reg = MI->getDebugOperand(0).getReg(); 924 } else { 925 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 926 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 927 Offset += TFI->getFrameIndexReference( 928 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 929 MemLoc = true; 930 } 931 if (Reg == 0) { 932 // Suppress offset, it is not meaningful here. 933 OS << "undef"; 934 // NOTE: Want this comment at start of line, don't emit with AddComment. 935 AP.OutStreamer->emitRawComment(OS.str()); 936 return true; 937 } 938 if (MemLoc) 939 OS << '['; 940 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 941 } 942 943 if (MemLoc) 944 OS << '+' << Offset << ']'; 945 946 // NOTE: Want this comment at start of line, don't emit with AddComment. 947 AP.OutStreamer->emitRawComment(OS.str()); 948 return true; 949 } 950 951 /// This method handles the target-independent form of DBG_LABEL, returning 952 /// true if it was able to do so. A false return means the target will need 953 /// to handle MI in EmitInstruction. 954 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 955 if (MI->getNumOperands() != 1) 956 return false; 957 958 SmallString<128> Str; 959 raw_svector_ostream OS(Str); 960 OS << "DEBUG_LABEL: "; 961 962 const DILabel *V = MI->getDebugLabel(); 963 if (auto *SP = dyn_cast<DISubprogram>( 964 V->getScope()->getNonLexicalBlockFileScope())) { 965 StringRef Name = SP->getName(); 966 if (!Name.empty()) 967 OS << Name << ":"; 968 } 969 OS << V->getName(); 970 971 // NOTE: Want this comment at start of line, don't emit with AddComment. 972 AP.OutStreamer->emitRawComment(OS.str()); 973 return true; 974 } 975 976 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 977 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 978 MF->getFunction().needsUnwindTableEntry()) 979 return CFI_M_EH; 980 981 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 982 return CFI_M_Debug; 983 984 return CFI_M_None; 985 } 986 987 bool AsmPrinter::needsSEHMoves() { 988 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 989 } 990 991 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 992 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 993 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 994 ExceptionHandlingType != ExceptionHandling::ARM) 995 return; 996 997 if (needsCFIMoves() == CFI_M_None) 998 return; 999 1000 // If there is no "real" instruction following this CFI instruction, skip 1001 // emitting it; it would be beyond the end of the function's FDE range. 1002 auto *MBB = MI.getParent(); 1003 auto I = std::next(MI.getIterator()); 1004 while (I != MBB->end() && I->isTransient()) 1005 ++I; 1006 if (I == MBB->instr_end() && 1007 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1008 return; 1009 1010 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1011 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1012 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1013 emitCFIInstruction(CFI); 1014 } 1015 1016 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1017 // The operands are the MCSymbol and the frame offset of the allocation. 1018 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1019 int FrameOffset = MI.getOperand(1).getImm(); 1020 1021 // Emit a symbol assignment. 1022 OutStreamer->emitAssignment(FrameAllocSym, 1023 MCConstantExpr::create(FrameOffset, OutContext)); 1024 } 1025 1026 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1027 if (!MF.getTarget().Options.EmitStackSizeSection) 1028 return; 1029 1030 MCSection *StackSizeSection = 1031 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1032 if (!StackSizeSection) 1033 return; 1034 1035 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1036 // Don't emit functions with dynamic stack allocations. 1037 if (FrameInfo.hasVarSizedObjects()) 1038 return; 1039 1040 OutStreamer->PushSection(); 1041 OutStreamer->SwitchSection(StackSizeSection); 1042 1043 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1044 uint64_t StackSize = FrameInfo.getStackSize(); 1045 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1046 OutStreamer->emitULEB128IntValue(StackSize); 1047 1048 OutStreamer->PopSection(); 1049 } 1050 1051 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1052 MachineModuleInfo &MMI = MF.getMMI(); 1053 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1054 return true; 1055 1056 // We might emit an EH table that uses function begin and end labels even if 1057 // we don't have any landingpads. 1058 if (!MF.getFunction().hasPersonalityFn()) 1059 return false; 1060 return !isNoOpWithoutInvoke( 1061 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1062 } 1063 1064 /// EmitFunctionBody - This method emits the body and trailer for a 1065 /// function. 1066 void AsmPrinter::emitFunctionBody() { 1067 emitFunctionHeader(); 1068 1069 // Emit target-specific gunk before the function body. 1070 emitFunctionBodyStart(); 1071 1072 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1073 1074 if (isVerbose()) { 1075 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1076 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1077 if (!MDT) { 1078 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1079 OwnedMDT->getBase().recalculate(*MF); 1080 MDT = OwnedMDT.get(); 1081 } 1082 1083 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1084 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1085 if (!MLI) { 1086 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1087 OwnedMLI->getBase().analyze(MDT->getBase()); 1088 MLI = OwnedMLI.get(); 1089 } 1090 } 1091 1092 // Print out code for the function. 1093 bool HasAnyRealCode = false; 1094 int NumInstsInFunction = 0; 1095 1096 for (auto &MBB : *MF) { 1097 // Print a label for the basic block. 1098 emitBasicBlockStart(MBB); 1099 for (auto &MI : MBB) { 1100 // Print the assembly for the instruction. 1101 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1102 !MI.isDebugInstr()) { 1103 HasAnyRealCode = true; 1104 ++NumInstsInFunction; 1105 } 1106 1107 // If there is a pre-instruction symbol, emit a label for it here. 1108 if (MCSymbol *S = MI.getPreInstrSymbol()) 1109 OutStreamer->emitLabel(S); 1110 1111 if (ShouldPrintDebugScopes) { 1112 for (const HandlerInfo &HI : Handlers) { 1113 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1114 HI.TimerGroupName, HI.TimerGroupDescription, 1115 TimePassesIsEnabled); 1116 HI.Handler->beginInstruction(&MI); 1117 } 1118 } 1119 1120 if (isVerbose()) 1121 emitComments(MI, OutStreamer->GetCommentOS()); 1122 1123 switch (MI.getOpcode()) { 1124 case TargetOpcode::CFI_INSTRUCTION: 1125 emitCFIInstruction(MI); 1126 break; 1127 case TargetOpcode::LOCAL_ESCAPE: 1128 emitFrameAlloc(MI); 1129 break; 1130 case TargetOpcode::ANNOTATION_LABEL: 1131 case TargetOpcode::EH_LABEL: 1132 case TargetOpcode::GC_LABEL: 1133 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1134 break; 1135 case TargetOpcode::INLINEASM: 1136 case TargetOpcode::INLINEASM_BR: 1137 emitInlineAsm(&MI); 1138 break; 1139 case TargetOpcode::DBG_VALUE: 1140 if (isVerbose()) { 1141 if (!emitDebugValueComment(&MI, *this)) 1142 emitInstruction(&MI); 1143 } 1144 break; 1145 case TargetOpcode::DBG_LABEL: 1146 if (isVerbose()) { 1147 if (!emitDebugLabelComment(&MI, *this)) 1148 emitInstruction(&MI); 1149 } 1150 break; 1151 case TargetOpcode::IMPLICIT_DEF: 1152 if (isVerbose()) emitImplicitDef(&MI); 1153 break; 1154 case TargetOpcode::KILL: 1155 if (isVerbose()) emitKill(&MI, *this); 1156 break; 1157 default: 1158 emitInstruction(&MI); 1159 break; 1160 } 1161 1162 // If there is a post-instruction symbol, emit a label for it here. 1163 if (MCSymbol *S = MI.getPostInstrSymbol()) 1164 OutStreamer->emitLabel(S); 1165 1166 if (ShouldPrintDebugScopes) { 1167 for (const HandlerInfo &HI : Handlers) { 1168 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1169 HI.TimerGroupName, HI.TimerGroupDescription, 1170 TimePassesIsEnabled); 1171 HI.Handler->endInstruction(); 1172 } 1173 } 1174 } 1175 1176 // We need a temporary symbol for the end of this basic block, if either we 1177 // have BBLabels enabled and we want to emit size directive for the BBs, or 1178 // if this basic blocks marks the end of a section (except the section 1179 // containing the entry basic block as the end symbol for that section is 1180 // CurrentFnEnd). 1181 MCSymbol *CurrentBBEnd = nullptr; 1182 if ((MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) || 1183 (MBB.isEndSection() && !MBB.sameSection(&MF->front()))) { 1184 CurrentBBEnd = OutContext.createTempSymbol(); 1185 OutStreamer->emitLabel(CurrentBBEnd); 1186 } 1187 1188 // Helper for emitting the size directive associated with a basic block 1189 // symbol. 1190 auto emitELFSizeDirective = [&](MCSymbol *SymForSize) { 1191 assert(CurrentBBEnd && "Basicblock end symbol not set!"); 1192 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1193 MCSymbolRefExpr::create(CurrentBBEnd, OutContext), 1194 MCSymbolRefExpr::create(SymForSize, OutContext), OutContext); 1195 OutStreamer->emitELFSize(SymForSize, SizeExp); 1196 }; 1197 1198 // Emit size directive for the size of each basic block, if BBLabels is 1199 // enabled. 1200 if (MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) 1201 emitELFSizeDirective(MBB.getSymbol()); 1202 1203 // Emit size directive for the size of each basic block section once we 1204 // get to the end of that section. 1205 if (MBB.isEndSection()) { 1206 if (!MBB.sameSection(&MF->front())) { 1207 if (MAI->hasDotTypeDotSizeDirective()) 1208 emitELFSizeDirective(CurrentSectionBeginSym); 1209 MBBSectionRanges[MBB.getSectionIDNum()] = 1210 MBBSectionRange{CurrentSectionBeginSym, CurrentBBEnd}; 1211 } 1212 } 1213 emitBasicBlockEnd(MBB); 1214 } 1215 1216 EmittedInsts += NumInstsInFunction; 1217 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1218 MF->getFunction().getSubprogram(), 1219 &MF->front()); 1220 R << ore::NV("NumInstructions", NumInstsInFunction) 1221 << " instructions in function"; 1222 ORE->emit(R); 1223 1224 // If the function is empty and the object file uses .subsections_via_symbols, 1225 // then we need to emit *something* to the function body to prevent the 1226 // labels from collapsing together. Just emit a noop. 1227 // Similarly, don't emit empty functions on Windows either. It can lead to 1228 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1229 // after linking, causing the kernel not to load the binary: 1230 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1231 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1232 const Triple &TT = TM.getTargetTriple(); 1233 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1234 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1235 MCInst Noop; 1236 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1237 1238 // Targets can opt-out of emitting the noop here by leaving the opcode 1239 // unspecified. 1240 if (Noop.getOpcode()) { 1241 OutStreamer->AddComment("avoids zero-length function"); 1242 emitNops(1); 1243 } 1244 } 1245 1246 // Switch to the original section in case basic block sections was used. 1247 OutStreamer->SwitchSection(MF->getSection()); 1248 1249 const Function &F = MF->getFunction(); 1250 for (const auto &BB : F) { 1251 if (!BB.hasAddressTaken()) 1252 continue; 1253 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1254 if (Sym->isDefined()) 1255 continue; 1256 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1257 OutStreamer->emitLabel(Sym); 1258 } 1259 1260 // Emit target-specific gunk after the function body. 1261 emitFunctionBodyEnd(); 1262 1263 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1264 MAI->hasDotTypeDotSizeDirective()) { 1265 // Create a symbol for the end of function. 1266 CurrentFnEnd = createTempSymbol("func_end"); 1267 OutStreamer->emitLabel(CurrentFnEnd); 1268 } 1269 1270 // If the target wants a .size directive for the size of the function, emit 1271 // it. 1272 if (MAI->hasDotTypeDotSizeDirective()) { 1273 // We can get the size as difference between the function label and the 1274 // temp label. 1275 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1276 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1277 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1278 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1279 } 1280 1281 for (const HandlerInfo &HI : Handlers) { 1282 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1283 HI.TimerGroupDescription, TimePassesIsEnabled); 1284 HI.Handler->markFunctionEnd(); 1285 } 1286 1287 MBBSectionRanges[MF->front().getSectionIDNum()] = 1288 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1289 1290 // Print out jump tables referenced by the function. 1291 emitJumpTableInfo(); 1292 1293 // Emit post-function debug and/or EH information. 1294 for (const HandlerInfo &HI : Handlers) { 1295 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1296 HI.TimerGroupDescription, TimePassesIsEnabled); 1297 HI.Handler->endFunction(MF); 1298 } 1299 1300 // Emit section containing stack size metadata. 1301 emitStackSizeSection(*MF); 1302 1303 emitPatchableFunctionEntries(); 1304 1305 if (isVerbose()) 1306 OutStreamer->GetCommentOS() << "-- End function\n"; 1307 1308 OutStreamer->AddBlankLine(); 1309 } 1310 1311 /// Compute the number of Global Variables that uses a Constant. 1312 static unsigned getNumGlobalVariableUses(const Constant *C) { 1313 if (!C) 1314 return 0; 1315 1316 if (isa<GlobalVariable>(C)) 1317 return 1; 1318 1319 unsigned NumUses = 0; 1320 for (auto *CU : C->users()) 1321 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1322 1323 return NumUses; 1324 } 1325 1326 /// Only consider global GOT equivalents if at least one user is a 1327 /// cstexpr inside an initializer of another global variables. Also, don't 1328 /// handle cstexpr inside instructions. During global variable emission, 1329 /// candidates are skipped and are emitted later in case at least one cstexpr 1330 /// isn't replaced by a PC relative GOT entry access. 1331 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1332 unsigned &NumGOTEquivUsers) { 1333 // Global GOT equivalents are unnamed private globals with a constant 1334 // pointer initializer to another global symbol. They must point to a 1335 // GlobalVariable or Function, i.e., as GlobalValue. 1336 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1337 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1338 !isa<GlobalValue>(GV->getOperand(0))) 1339 return false; 1340 1341 // To be a got equivalent, at least one of its users need to be a constant 1342 // expression used by another global variable. 1343 for (auto *U : GV->users()) 1344 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1345 1346 return NumGOTEquivUsers > 0; 1347 } 1348 1349 /// Unnamed constant global variables solely contaning a pointer to 1350 /// another globals variable is equivalent to a GOT table entry; it contains the 1351 /// the address of another symbol. Optimize it and replace accesses to these 1352 /// "GOT equivalents" by using the GOT entry for the final global instead. 1353 /// Compute GOT equivalent candidates among all global variables to avoid 1354 /// emitting them if possible later on, after it use is replaced by a GOT entry 1355 /// access. 1356 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1357 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1358 return; 1359 1360 for (const auto &G : M.globals()) { 1361 unsigned NumGOTEquivUsers = 0; 1362 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1363 continue; 1364 1365 const MCSymbol *GOTEquivSym = getSymbol(&G); 1366 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1367 } 1368 } 1369 1370 /// Constant expressions using GOT equivalent globals may not be eligible 1371 /// for PC relative GOT entry conversion, in such cases we need to emit such 1372 /// globals we previously omitted in EmitGlobalVariable. 1373 void AsmPrinter::emitGlobalGOTEquivs() { 1374 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1375 return; 1376 1377 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1378 for (auto &I : GlobalGOTEquivs) { 1379 const GlobalVariable *GV = I.second.first; 1380 unsigned Cnt = I.second.second; 1381 if (Cnt) 1382 FailedCandidates.push_back(GV); 1383 } 1384 GlobalGOTEquivs.clear(); 1385 1386 for (auto *GV : FailedCandidates) 1387 emitGlobalVariable(GV); 1388 } 1389 1390 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1391 const GlobalIndirectSymbol& GIS) { 1392 MCSymbol *Name = getSymbol(&GIS); 1393 1394 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1395 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1396 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1397 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1398 else 1399 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1400 1401 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1402 1403 // Treat bitcasts of functions as functions also. This is important at least 1404 // on WebAssembly where object and function addresses can't alias each other. 1405 if (!IsFunction) 1406 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1407 if (CE->getOpcode() == Instruction::BitCast) 1408 IsFunction = 1409 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1410 1411 // Set the symbol type to function if the alias has a function type. 1412 // This affects codegen when the aliasee is not a function. 1413 if (IsFunction) 1414 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1415 ? MCSA_ELF_TypeIndFunction 1416 : MCSA_ELF_TypeFunction); 1417 1418 emitVisibility(Name, GIS.getVisibility()); 1419 1420 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1421 1422 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1423 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1424 1425 // Emit the directives as assignments aka .set: 1426 OutStreamer->emitAssignment(Name, Expr); 1427 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1428 if (LocalAlias != Name) 1429 OutStreamer->emitAssignment(LocalAlias, Expr); 1430 1431 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1432 // If the aliasee does not correspond to a symbol in the output, i.e. the 1433 // alias is not of an object or the aliased object is private, then set the 1434 // size of the alias symbol from the type of the alias. We don't do this in 1435 // other situations as the alias and aliasee having differing types but same 1436 // size may be intentional. 1437 const GlobalObject *BaseObject = GA->getBaseObject(); 1438 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1439 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1440 const DataLayout &DL = M.getDataLayout(); 1441 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1442 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1443 } 1444 } 1445 } 1446 1447 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1448 if (!RS.needsSection()) 1449 return; 1450 1451 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1452 1453 Optional<SmallString<128>> Filename; 1454 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1455 Filename = *FilenameRef; 1456 sys::fs::make_absolute(*Filename); 1457 assert(!Filename->empty() && "The filename can't be empty."); 1458 } 1459 1460 std::string Buf; 1461 raw_string_ostream OS(Buf); 1462 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1463 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1464 : RemarkSerializer.metaSerializer(OS); 1465 MetaSerializer->emit(); 1466 1467 // Switch to the remarks section. 1468 MCSection *RemarksSection = 1469 OutContext.getObjectFileInfo()->getRemarksSection(); 1470 OutStreamer->SwitchSection(RemarksSection); 1471 1472 OutStreamer->emitBinaryData(OS.str()); 1473 } 1474 1475 bool AsmPrinter::doFinalization(Module &M) { 1476 // Set the MachineFunction to nullptr so that we can catch attempted 1477 // accesses to MF specific features at the module level and so that 1478 // we can conditionalize accesses based on whether or not it is nullptr. 1479 MF = nullptr; 1480 1481 // Gather all GOT equivalent globals in the module. We really need two 1482 // passes over the globals: one to compute and another to avoid its emission 1483 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1484 // where the got equivalent shows up before its use. 1485 computeGlobalGOTEquivs(M); 1486 1487 // Emit global variables. 1488 for (const auto &G : M.globals()) 1489 emitGlobalVariable(&G); 1490 1491 // Emit remaining GOT equivalent globals. 1492 emitGlobalGOTEquivs(); 1493 1494 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1495 1496 // Emit linkage(XCOFF) and visibility info for declarations 1497 for (const Function &F : M) { 1498 if (!F.isDeclarationForLinker()) 1499 continue; 1500 1501 MCSymbol *Name = getSymbol(&F); 1502 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1503 1504 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1505 GlobalValue::VisibilityTypes V = F.getVisibility(); 1506 if (V == GlobalValue::DefaultVisibility) 1507 continue; 1508 1509 emitVisibility(Name, V, false); 1510 continue; 1511 } 1512 1513 if (F.isIntrinsic()) 1514 continue; 1515 1516 // Handle the XCOFF case. 1517 // Variable `Name` is the function descriptor symbol (see above). Get the 1518 // function entry point symbol. 1519 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1520 if (cast<MCSymbolXCOFF>(FnEntryPointSym)->hasRepresentedCsectSet()) 1521 // Emit linkage for the function entry point. 1522 emitLinkage(&F, FnEntryPointSym); 1523 1524 // Emit linkage for the function descriptor. 1525 emitLinkage(&F, Name); 1526 } 1527 1528 // Emit the remarks section contents. 1529 // FIXME: Figure out when is the safest time to emit this section. It should 1530 // not come after debug info. 1531 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1532 emitRemarksSection(*RS); 1533 1534 TLOF.emitModuleMetadata(*OutStreamer, M); 1535 1536 if (TM.getTargetTriple().isOSBinFormatELF()) { 1537 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1538 1539 // Output stubs for external and common global variables. 1540 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1541 if (!Stubs.empty()) { 1542 OutStreamer->SwitchSection(TLOF.getDataSection()); 1543 const DataLayout &DL = M.getDataLayout(); 1544 1545 emitAlignment(Align(DL.getPointerSize())); 1546 for (const auto &Stub : Stubs) { 1547 OutStreamer->emitLabel(Stub.first); 1548 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1549 DL.getPointerSize()); 1550 } 1551 } 1552 } 1553 1554 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1555 MachineModuleInfoCOFF &MMICOFF = 1556 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1557 1558 // Output stubs for external and common global variables. 1559 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1560 if (!Stubs.empty()) { 1561 const DataLayout &DL = M.getDataLayout(); 1562 1563 for (const auto &Stub : Stubs) { 1564 SmallString<256> SectionName = StringRef(".rdata$"); 1565 SectionName += Stub.first->getName(); 1566 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1567 SectionName, 1568 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1569 COFF::IMAGE_SCN_LNK_COMDAT, 1570 SectionKind::getReadOnly(), Stub.first->getName(), 1571 COFF::IMAGE_COMDAT_SELECT_ANY)); 1572 emitAlignment(Align(DL.getPointerSize())); 1573 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1574 OutStreamer->emitLabel(Stub.first); 1575 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1576 DL.getPointerSize()); 1577 } 1578 } 1579 } 1580 1581 // Finalize debug and EH information. 1582 for (const HandlerInfo &HI : Handlers) { 1583 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1584 HI.TimerGroupDescription, TimePassesIsEnabled); 1585 HI.Handler->endModule(); 1586 } 1587 Handlers.clear(); 1588 DD = nullptr; 1589 1590 // If the target wants to know about weak references, print them all. 1591 if (MAI->getWeakRefDirective()) { 1592 // FIXME: This is not lazy, it would be nice to only print weak references 1593 // to stuff that is actually used. Note that doing so would require targets 1594 // to notice uses in operands (due to constant exprs etc). This should 1595 // happen with the MC stuff eventually. 1596 1597 // Print out module-level global objects here. 1598 for (const auto &GO : M.global_objects()) { 1599 if (!GO.hasExternalWeakLinkage()) 1600 continue; 1601 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1602 } 1603 } 1604 1605 // Print aliases in topological order, that is, for each alias a = b, 1606 // b must be printed before a. 1607 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1608 // such an order to generate correct TOC information. 1609 SmallVector<const GlobalAlias *, 16> AliasStack; 1610 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1611 for (const auto &Alias : M.aliases()) { 1612 for (const GlobalAlias *Cur = &Alias; Cur; 1613 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1614 if (!AliasVisited.insert(Cur).second) 1615 break; 1616 AliasStack.push_back(Cur); 1617 } 1618 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1619 emitGlobalIndirectSymbol(M, *AncestorAlias); 1620 AliasStack.clear(); 1621 } 1622 for (const auto &IFunc : M.ifuncs()) 1623 emitGlobalIndirectSymbol(M, IFunc); 1624 1625 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1626 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1627 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1628 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1629 MP->finishAssembly(M, *MI, *this); 1630 1631 // Emit llvm.ident metadata in an '.ident' directive. 1632 emitModuleIdents(M); 1633 1634 // Emit bytes for llvm.commandline metadata. 1635 emitModuleCommandLines(M); 1636 1637 // Emit __morestack address if needed for indirect calls. 1638 if (MMI->usesMorestackAddr()) { 1639 Align Alignment(1); 1640 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1641 getDataLayout(), SectionKind::getReadOnly(), 1642 /*C=*/nullptr, Alignment); 1643 OutStreamer->SwitchSection(ReadOnlySection); 1644 1645 MCSymbol *AddrSymbol = 1646 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1647 OutStreamer->emitLabel(AddrSymbol); 1648 1649 unsigned PtrSize = MAI->getCodePointerSize(); 1650 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1651 PtrSize); 1652 } 1653 1654 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1655 // split-stack is used. 1656 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1657 OutStreamer->SwitchSection( 1658 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1659 if (MMI->hasNosplitStack()) 1660 OutStreamer->SwitchSection( 1661 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1662 } 1663 1664 // If we don't have any trampolines, then we don't require stack memory 1665 // to be executable. Some targets have a directive to declare this. 1666 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1667 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1668 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1669 OutStreamer->SwitchSection(S); 1670 1671 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1672 // Emit /EXPORT: flags for each exported global as necessary. 1673 const auto &TLOF = getObjFileLowering(); 1674 std::string Flags; 1675 1676 for (const GlobalValue &GV : M.global_values()) { 1677 raw_string_ostream OS(Flags); 1678 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1679 OS.flush(); 1680 if (!Flags.empty()) { 1681 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1682 OutStreamer->emitBytes(Flags); 1683 } 1684 Flags.clear(); 1685 } 1686 1687 // Emit /INCLUDE: flags for each used global as necessary. 1688 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1689 assert(LU->hasInitializer() && 1690 "expected llvm.used to have an initializer"); 1691 assert(isa<ArrayType>(LU->getValueType()) && 1692 "expected llvm.used to be an array type"); 1693 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1694 for (const Value *Op : A->operands()) { 1695 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1696 // Global symbols with internal or private linkage are not visible to 1697 // the linker, and thus would cause an error when the linker tried to 1698 // preserve the symbol due to the `/include:` directive. 1699 if (GV->hasLocalLinkage()) 1700 continue; 1701 1702 raw_string_ostream OS(Flags); 1703 TLOF.emitLinkerFlagsForUsed(OS, GV); 1704 OS.flush(); 1705 1706 if (!Flags.empty()) { 1707 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1708 OutStreamer->emitBytes(Flags); 1709 } 1710 Flags.clear(); 1711 } 1712 } 1713 } 1714 } 1715 1716 if (TM.Options.EmitAddrsig) { 1717 // Emit address-significance attributes for all globals. 1718 OutStreamer->emitAddrsig(); 1719 for (const GlobalValue &GV : M.global_values()) 1720 if (!GV.use_empty() && !GV.isThreadLocal() && 1721 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1722 !GV.hasAtLeastLocalUnnamedAddr()) 1723 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1724 } 1725 1726 // Emit symbol partition specifications (ELF only). 1727 if (TM.getTargetTriple().isOSBinFormatELF()) { 1728 unsigned UniqueID = 0; 1729 for (const GlobalValue &GV : M.global_values()) { 1730 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1731 GV.getVisibility() != GlobalValue::DefaultVisibility) 1732 continue; 1733 1734 OutStreamer->SwitchSection( 1735 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1736 "", ++UniqueID, nullptr)); 1737 OutStreamer->emitBytes(GV.getPartition()); 1738 OutStreamer->emitZeros(1); 1739 OutStreamer->emitValue( 1740 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1741 MAI->getCodePointerSize()); 1742 } 1743 } 1744 1745 // Allow the target to emit any magic that it wants at the end of the file, 1746 // after everything else has gone out. 1747 emitEndOfAsmFile(M); 1748 1749 MMI = nullptr; 1750 1751 OutStreamer->Finish(); 1752 OutStreamer->reset(); 1753 OwnedMLI.reset(); 1754 OwnedMDT.reset(); 1755 1756 return false; 1757 } 1758 1759 MCSymbol *AsmPrinter::getCurExceptionSym() { 1760 if (!CurExceptionSym) 1761 CurExceptionSym = createTempSymbol("exception"); 1762 return CurExceptionSym; 1763 } 1764 1765 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1766 this->MF = &MF; 1767 const Function &F = MF.getFunction(); 1768 1769 // Get the function symbol. 1770 if (!MAI->needsFunctionDescriptors()) { 1771 CurrentFnSym = getSymbol(&MF.getFunction()); 1772 } else { 1773 assert(TM.getTargetTriple().isOSAIX() && 1774 "Only AIX uses the function descriptor hooks."); 1775 // AIX is unique here in that the name of the symbol emitted for the 1776 // function body does not have the same name as the source function's 1777 // C-linkage name. 1778 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1779 " initalized first."); 1780 1781 // Get the function entry point symbol. 1782 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1783 } 1784 1785 CurrentFnSymForSize = CurrentFnSym; 1786 CurrentFnBegin = nullptr; 1787 CurrentSectionBeginSym = nullptr; 1788 MBBSectionRanges.clear(); 1789 CurExceptionSym = nullptr; 1790 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1791 if (F.hasFnAttribute("patchable-function-entry") || 1792 F.hasFnAttribute("function-instrument") || 1793 F.hasFnAttribute("xray-instruction-threshold") || 1794 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1795 MF.getTarget().Options.EmitStackSizeSection) { 1796 CurrentFnBegin = createTempSymbol("func_begin"); 1797 if (NeedsLocalForSize) 1798 CurrentFnSymForSize = CurrentFnBegin; 1799 } 1800 1801 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1802 } 1803 1804 namespace { 1805 1806 // Keep track the alignment, constpool entries per Section. 1807 struct SectionCPs { 1808 MCSection *S; 1809 Align Alignment; 1810 SmallVector<unsigned, 4> CPEs; 1811 1812 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1813 }; 1814 1815 } // end anonymous namespace 1816 1817 /// EmitConstantPool - Print to the current output stream assembly 1818 /// representations of the constants in the constant pool MCP. This is 1819 /// used to print out constants which have been "spilled to memory" by 1820 /// the code generator. 1821 void AsmPrinter::emitConstantPool() { 1822 const MachineConstantPool *MCP = MF->getConstantPool(); 1823 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1824 if (CP.empty()) return; 1825 1826 // Calculate sections for constant pool entries. We collect entries to go into 1827 // the same section together to reduce amount of section switch statements. 1828 SmallVector<SectionCPs, 4> CPSections; 1829 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1830 const MachineConstantPoolEntry &CPE = CP[i]; 1831 Align Alignment = CPE.getAlign(); 1832 1833 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1834 1835 const Constant *C = nullptr; 1836 if (!CPE.isMachineConstantPoolEntry()) 1837 C = CPE.Val.ConstVal; 1838 1839 MCSection *S = getObjFileLowering().getSectionForConstant( 1840 getDataLayout(), Kind, C, Alignment); 1841 1842 // The number of sections are small, just do a linear search from the 1843 // last section to the first. 1844 bool Found = false; 1845 unsigned SecIdx = CPSections.size(); 1846 while (SecIdx != 0) { 1847 if (CPSections[--SecIdx].S == S) { 1848 Found = true; 1849 break; 1850 } 1851 } 1852 if (!Found) { 1853 SecIdx = CPSections.size(); 1854 CPSections.push_back(SectionCPs(S, Alignment)); 1855 } 1856 1857 if (Alignment > CPSections[SecIdx].Alignment) 1858 CPSections[SecIdx].Alignment = Alignment; 1859 CPSections[SecIdx].CPEs.push_back(i); 1860 } 1861 1862 // Now print stuff into the calculated sections. 1863 const MCSection *CurSection = nullptr; 1864 unsigned Offset = 0; 1865 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1866 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1867 unsigned CPI = CPSections[i].CPEs[j]; 1868 MCSymbol *Sym = GetCPISymbol(CPI); 1869 if (!Sym->isUndefined()) 1870 continue; 1871 1872 if (CurSection != CPSections[i].S) { 1873 OutStreamer->SwitchSection(CPSections[i].S); 1874 emitAlignment(Align(CPSections[i].Alignment)); 1875 CurSection = CPSections[i].S; 1876 Offset = 0; 1877 } 1878 1879 MachineConstantPoolEntry CPE = CP[CPI]; 1880 1881 // Emit inter-object padding for alignment. 1882 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1883 OutStreamer->emitZeros(NewOffset - Offset); 1884 1885 Type *Ty = CPE.getType(); 1886 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1887 1888 OutStreamer->emitLabel(Sym); 1889 if (CPE.isMachineConstantPoolEntry()) 1890 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1891 else 1892 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1893 } 1894 } 1895 } 1896 1897 // Print assembly representations of the jump tables used by the current 1898 // function. 1899 void AsmPrinter::emitJumpTableInfo() { 1900 const DataLayout &DL = MF->getDataLayout(); 1901 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1902 if (!MJTI) return; 1903 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1904 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1905 if (JT.empty()) return; 1906 1907 // Pick the directive to use to print the jump table entries, and switch to 1908 // the appropriate section. 1909 const Function &F = MF->getFunction(); 1910 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1911 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1912 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1913 F); 1914 if (JTInDiffSection) { 1915 // Drop it in the readonly section. 1916 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1917 OutStreamer->SwitchSection(ReadOnlySection); 1918 } 1919 1920 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1921 1922 // Jump tables in code sections are marked with a data_region directive 1923 // where that's supported. 1924 if (!JTInDiffSection) 1925 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1926 1927 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1928 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1929 1930 // If this jump table was deleted, ignore it. 1931 if (JTBBs.empty()) continue; 1932 1933 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1934 /// emit a .set directive for each unique entry. 1935 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1936 MAI->doesSetDirectiveSuppressReloc()) { 1937 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1938 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1939 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1940 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1941 const MachineBasicBlock *MBB = JTBBs[ii]; 1942 if (!EmittedSets.insert(MBB).second) 1943 continue; 1944 1945 // .set LJTSet, LBB32-base 1946 const MCExpr *LHS = 1947 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1948 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1949 MCBinaryExpr::createSub(LHS, Base, 1950 OutContext)); 1951 } 1952 } 1953 1954 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1955 // before each jump table. The first label is never referenced, but tells 1956 // the assembler and linker the extents of the jump table object. The 1957 // second label is actually referenced by the code. 1958 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1959 // FIXME: This doesn't have to have any specific name, just any randomly 1960 // named and numbered local label started with 'l' would work. Simplify 1961 // GetJTISymbol. 1962 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1963 1964 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1965 OutStreamer->emitLabel(JTISymbol); 1966 1967 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1968 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1969 } 1970 if (!JTInDiffSection) 1971 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1972 } 1973 1974 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1975 /// current stream. 1976 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1977 const MachineBasicBlock *MBB, 1978 unsigned UID) const { 1979 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1980 const MCExpr *Value = nullptr; 1981 switch (MJTI->getEntryKind()) { 1982 case MachineJumpTableInfo::EK_Inline: 1983 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1984 case MachineJumpTableInfo::EK_Custom32: 1985 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1986 MJTI, MBB, UID, OutContext); 1987 break; 1988 case MachineJumpTableInfo::EK_BlockAddress: 1989 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1990 // .word LBB123 1991 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1992 break; 1993 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1994 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1995 // with a relocation as gp-relative, e.g.: 1996 // .gprel32 LBB123 1997 MCSymbol *MBBSym = MBB->getSymbol(); 1998 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1999 return; 2000 } 2001 2002 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2003 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2004 // with a relocation as gp-relative, e.g.: 2005 // .gpdword LBB123 2006 MCSymbol *MBBSym = MBB->getSymbol(); 2007 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2008 return; 2009 } 2010 2011 case MachineJumpTableInfo::EK_LabelDifference32: { 2012 // Each entry is the address of the block minus the address of the jump 2013 // table. This is used for PIC jump tables where gprel32 is not supported. 2014 // e.g.: 2015 // .word LBB123 - LJTI1_2 2016 // If the .set directive avoids relocations, this is emitted as: 2017 // .set L4_5_set_123, LBB123 - LJTI1_2 2018 // .word L4_5_set_123 2019 if (MAI->doesSetDirectiveSuppressReloc()) { 2020 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2021 OutContext); 2022 break; 2023 } 2024 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2025 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2026 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2027 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2028 break; 2029 } 2030 } 2031 2032 assert(Value && "Unknown entry kind!"); 2033 2034 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2035 OutStreamer->emitValue(Value, EntrySize); 2036 } 2037 2038 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2039 /// special global used by LLVM. If so, emit it and return true, otherwise 2040 /// do nothing and return false. 2041 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2042 if (GV->getName() == "llvm.used") { 2043 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2044 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2045 return true; 2046 } 2047 2048 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2049 if (GV->getSection() == "llvm.metadata" || 2050 GV->hasAvailableExternallyLinkage()) 2051 return true; 2052 2053 if (!GV->hasAppendingLinkage()) return false; 2054 2055 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2056 2057 if (GV->getName() == "llvm.global_ctors") { 2058 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2059 /* isCtor */ true); 2060 2061 return true; 2062 } 2063 2064 if (GV->getName() == "llvm.global_dtors") { 2065 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2066 /* isCtor */ false); 2067 2068 return true; 2069 } 2070 2071 report_fatal_error("unknown special variable"); 2072 } 2073 2074 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2075 /// global in the specified llvm.used list. 2076 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2077 // Should be an array of 'i8*'. 2078 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2079 const GlobalValue *GV = 2080 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2081 if (GV) 2082 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2083 } 2084 } 2085 2086 namespace { 2087 2088 struct Structor { 2089 int Priority = 0; 2090 Constant *Func = nullptr; 2091 GlobalValue *ComdatKey = nullptr; 2092 2093 Structor() = default; 2094 }; 2095 2096 } // end anonymous namespace 2097 2098 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2099 /// priority. 2100 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2101 bool isCtor) { 2102 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2103 // init priority. 2104 if (!isa<ConstantArray>(List)) return; 2105 2106 // Gather the structors in a form that's convenient for sorting by priority. 2107 SmallVector<Structor, 8> Structors; 2108 for (Value *O : cast<ConstantArray>(List)->operands()) { 2109 auto *CS = cast<ConstantStruct>(O); 2110 if (CS->getOperand(1)->isNullValue()) 2111 break; // Found a null terminator, skip the rest. 2112 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2113 if (!Priority) continue; // Malformed. 2114 Structors.push_back(Structor()); 2115 Structor &S = Structors.back(); 2116 S.Priority = Priority->getLimitedValue(65535); 2117 S.Func = CS->getOperand(1); 2118 if (!CS->getOperand(2)->isNullValue()) 2119 S.ComdatKey = 2120 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2121 } 2122 2123 // Emit the function pointers in the target-specific order 2124 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2125 return L.Priority < R.Priority; 2126 }); 2127 const Align Align = DL.getPointerPrefAlignment(); 2128 for (Structor &S : Structors) { 2129 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2130 const MCSymbol *KeySym = nullptr; 2131 if (GlobalValue *GV = S.ComdatKey) { 2132 if (GV->isDeclarationForLinker()) 2133 // If the associated variable is not defined in this module 2134 // (it might be available_externally, or have been an 2135 // available_externally definition that was dropped by the 2136 // EliminateAvailableExternally pass), some other TU 2137 // will provide its dynamic initializer. 2138 continue; 2139 2140 KeySym = getSymbol(GV); 2141 } 2142 MCSection *OutputSection = 2143 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2144 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2145 OutStreamer->SwitchSection(OutputSection); 2146 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2147 emitAlignment(Align); 2148 emitXXStructor(DL, S.Func); 2149 } 2150 } 2151 2152 void AsmPrinter::emitModuleIdents(Module &M) { 2153 if (!MAI->hasIdentDirective()) 2154 return; 2155 2156 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2157 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2158 const MDNode *N = NMD->getOperand(i); 2159 assert(N->getNumOperands() == 1 && 2160 "llvm.ident metadata entry can have only one operand"); 2161 const MDString *S = cast<MDString>(N->getOperand(0)); 2162 OutStreamer->emitIdent(S->getString()); 2163 } 2164 } 2165 } 2166 2167 void AsmPrinter::emitModuleCommandLines(Module &M) { 2168 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2169 if (!CommandLine) 2170 return; 2171 2172 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2173 if (!NMD || !NMD->getNumOperands()) 2174 return; 2175 2176 OutStreamer->PushSection(); 2177 OutStreamer->SwitchSection(CommandLine); 2178 OutStreamer->emitZeros(1); 2179 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2180 const MDNode *N = NMD->getOperand(i); 2181 assert(N->getNumOperands() == 1 && 2182 "llvm.commandline metadata entry can have only one operand"); 2183 const MDString *S = cast<MDString>(N->getOperand(0)); 2184 OutStreamer->emitBytes(S->getString()); 2185 OutStreamer->emitZeros(1); 2186 } 2187 OutStreamer->PopSection(); 2188 } 2189 2190 //===--------------------------------------------------------------------===// 2191 // Emission and print routines 2192 // 2193 2194 /// Emit a byte directive and value. 2195 /// 2196 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2197 2198 /// Emit a short directive and value. 2199 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2200 2201 /// Emit a long directive and value. 2202 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2203 2204 /// Emit a long long directive and value. 2205 void AsmPrinter::emitInt64(uint64_t Value) const { 2206 OutStreamer->emitInt64(Value); 2207 } 2208 2209 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2210 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2211 /// .set if it avoids relocations. 2212 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2213 unsigned Size) const { 2214 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2215 } 2216 2217 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2218 /// where the size in bytes of the directive is specified by Size and Label 2219 /// specifies the label. This implicitly uses .set if it is available. 2220 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2221 unsigned Size, 2222 bool IsSectionRelative) const { 2223 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2224 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2225 if (Size > 4) 2226 OutStreamer->emitZeros(Size - 4); 2227 return; 2228 } 2229 2230 // Emit Label+Offset (or just Label if Offset is zero) 2231 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2232 if (Offset) 2233 Expr = MCBinaryExpr::createAdd( 2234 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2235 2236 OutStreamer->emitValue(Expr, Size); 2237 } 2238 2239 //===----------------------------------------------------------------------===// 2240 2241 // EmitAlignment - Emit an alignment directive to the specified power of 2242 // two boundary. If a global value is specified, and if that global has 2243 // an explicit alignment requested, it will override the alignment request 2244 // if required for correctness. 2245 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2246 if (GV) 2247 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2248 2249 if (Alignment == Align(1)) 2250 return; // 1-byte aligned: no need to emit alignment. 2251 2252 if (getCurrentSection()->getKind().isText()) 2253 OutStreamer->emitCodeAlignment(Alignment.value()); 2254 else 2255 OutStreamer->emitValueToAlignment(Alignment.value()); 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // Constant emission. 2260 //===----------------------------------------------------------------------===// 2261 2262 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2263 MCContext &Ctx = OutContext; 2264 2265 if (CV->isNullValue() || isa<UndefValue>(CV)) 2266 return MCConstantExpr::create(0, Ctx); 2267 2268 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2269 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2270 2271 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2272 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2273 2274 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2275 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2276 2277 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2278 if (!CE) { 2279 llvm_unreachable("Unknown constant value to lower!"); 2280 } 2281 2282 switch (CE->getOpcode()) { 2283 default: { 2284 // If the code isn't optimized, there may be outstanding folding 2285 // opportunities. Attempt to fold the expression using DataLayout as a 2286 // last resort before giving up. 2287 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2288 if (C != CE) 2289 return lowerConstant(C); 2290 2291 // Otherwise report the problem to the user. 2292 std::string S; 2293 raw_string_ostream OS(S); 2294 OS << "Unsupported expression in static initializer: "; 2295 CE->printAsOperand(OS, /*PrintType=*/false, 2296 !MF ? nullptr : MF->getFunction().getParent()); 2297 report_fatal_error(OS.str()); 2298 } 2299 case Instruction::GetElementPtr: { 2300 // Generate a symbolic expression for the byte address 2301 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2302 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2303 2304 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2305 if (!OffsetAI) 2306 return Base; 2307 2308 int64_t Offset = OffsetAI.getSExtValue(); 2309 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2310 Ctx); 2311 } 2312 2313 case Instruction::Trunc: 2314 // We emit the value and depend on the assembler to truncate the generated 2315 // expression properly. This is important for differences between 2316 // blockaddress labels. Since the two labels are in the same function, it 2317 // is reasonable to treat their delta as a 32-bit value. 2318 LLVM_FALLTHROUGH; 2319 case Instruction::BitCast: 2320 return lowerConstant(CE->getOperand(0)); 2321 2322 case Instruction::IntToPtr: { 2323 const DataLayout &DL = getDataLayout(); 2324 2325 // Handle casts to pointers by changing them into casts to the appropriate 2326 // integer type. This promotes constant folding and simplifies this code. 2327 Constant *Op = CE->getOperand(0); 2328 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2329 false/*ZExt*/); 2330 return lowerConstant(Op); 2331 } 2332 2333 case Instruction::PtrToInt: { 2334 const DataLayout &DL = getDataLayout(); 2335 2336 // Support only foldable casts to/from pointers that can be eliminated by 2337 // changing the pointer to the appropriately sized integer type. 2338 Constant *Op = CE->getOperand(0); 2339 Type *Ty = CE->getType(); 2340 2341 const MCExpr *OpExpr = lowerConstant(Op); 2342 2343 // We can emit the pointer value into this slot if the slot is an 2344 // integer slot equal to the size of the pointer. 2345 // 2346 // If the pointer is larger than the resultant integer, then 2347 // as with Trunc just depend on the assembler to truncate it. 2348 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2349 return OpExpr; 2350 2351 // Otherwise the pointer is smaller than the resultant integer, mask off 2352 // the high bits so we are sure to get a proper truncation if the input is 2353 // a constant expr. 2354 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2355 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2356 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2357 } 2358 2359 case Instruction::Sub: { 2360 GlobalValue *LHSGV; 2361 APInt LHSOffset; 2362 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2363 getDataLayout())) { 2364 GlobalValue *RHSGV; 2365 APInt RHSOffset; 2366 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2367 getDataLayout())) { 2368 const MCExpr *RelocExpr = 2369 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2370 if (!RelocExpr) 2371 RelocExpr = MCBinaryExpr::createSub( 2372 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2373 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2374 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2375 if (Addend != 0) 2376 RelocExpr = MCBinaryExpr::createAdd( 2377 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2378 return RelocExpr; 2379 } 2380 } 2381 } 2382 // else fallthrough 2383 LLVM_FALLTHROUGH; 2384 2385 // The MC library also has a right-shift operator, but it isn't consistently 2386 // signed or unsigned between different targets. 2387 case Instruction::Add: 2388 case Instruction::Mul: 2389 case Instruction::SDiv: 2390 case Instruction::SRem: 2391 case Instruction::Shl: 2392 case Instruction::And: 2393 case Instruction::Or: 2394 case Instruction::Xor: { 2395 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2396 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2397 switch (CE->getOpcode()) { 2398 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2399 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2400 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2401 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2402 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2403 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2404 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2405 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2406 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2407 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2408 } 2409 } 2410 } 2411 } 2412 2413 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2414 AsmPrinter &AP, 2415 const Constant *BaseCV = nullptr, 2416 uint64_t Offset = 0); 2417 2418 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2419 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2420 2421 /// isRepeatedByteSequence - Determine whether the given value is 2422 /// composed of a repeated sequence of identical bytes and return the 2423 /// byte value. If it is not a repeated sequence, return -1. 2424 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2425 StringRef Data = V->getRawDataValues(); 2426 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2427 char C = Data[0]; 2428 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2429 if (Data[i] != C) return -1; 2430 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2431 } 2432 2433 /// isRepeatedByteSequence - Determine whether the given value is 2434 /// composed of a repeated sequence of identical bytes and return the 2435 /// byte value. If it is not a repeated sequence, return -1. 2436 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2437 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2438 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2439 assert(Size % 8 == 0); 2440 2441 // Extend the element to take zero padding into account. 2442 APInt Value = CI->getValue().zextOrSelf(Size); 2443 if (!Value.isSplat(8)) 2444 return -1; 2445 2446 return Value.zextOrTrunc(8).getZExtValue(); 2447 } 2448 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2449 // Make sure all array elements are sequences of the same repeated 2450 // byte. 2451 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2452 Constant *Op0 = CA->getOperand(0); 2453 int Byte = isRepeatedByteSequence(Op0, DL); 2454 if (Byte == -1) 2455 return -1; 2456 2457 // All array elements must be equal. 2458 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2459 if (CA->getOperand(i) != Op0) 2460 return -1; 2461 return Byte; 2462 } 2463 2464 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2465 return isRepeatedByteSequence(CDS); 2466 2467 return -1; 2468 } 2469 2470 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2471 const ConstantDataSequential *CDS, 2472 AsmPrinter &AP) { 2473 // See if we can aggregate this into a .fill, if so, emit it as such. 2474 int Value = isRepeatedByteSequence(CDS, DL); 2475 if (Value != -1) { 2476 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2477 // Don't emit a 1-byte object as a .fill. 2478 if (Bytes > 1) 2479 return AP.OutStreamer->emitFill(Bytes, Value); 2480 } 2481 2482 // If this can be emitted with .ascii/.asciz, emit it as such. 2483 if (CDS->isString()) 2484 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2485 2486 // Otherwise, emit the values in successive locations. 2487 unsigned ElementByteSize = CDS->getElementByteSize(); 2488 if (isa<IntegerType>(CDS->getElementType())) { 2489 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2490 if (AP.isVerbose()) 2491 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2492 CDS->getElementAsInteger(i)); 2493 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2494 ElementByteSize); 2495 } 2496 } else { 2497 Type *ET = CDS->getElementType(); 2498 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2499 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2500 } 2501 2502 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2503 unsigned EmittedSize = 2504 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2505 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2506 if (unsigned Padding = Size - EmittedSize) 2507 AP.OutStreamer->emitZeros(Padding); 2508 } 2509 2510 static void emitGlobalConstantArray(const DataLayout &DL, 2511 const ConstantArray *CA, AsmPrinter &AP, 2512 const Constant *BaseCV, uint64_t Offset) { 2513 // See if we can aggregate some values. Make sure it can be 2514 // represented as a series of bytes of the constant value. 2515 int Value = isRepeatedByteSequence(CA, DL); 2516 2517 if (Value != -1) { 2518 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2519 AP.OutStreamer->emitFill(Bytes, Value); 2520 } 2521 else { 2522 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2523 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2524 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2525 } 2526 } 2527 } 2528 2529 static void emitGlobalConstantVector(const DataLayout &DL, 2530 const ConstantVector *CV, AsmPrinter &AP) { 2531 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2532 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2533 2534 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2535 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2536 CV->getType()->getNumElements(); 2537 if (unsigned Padding = Size - EmittedSize) 2538 AP.OutStreamer->emitZeros(Padding); 2539 } 2540 2541 static void emitGlobalConstantStruct(const DataLayout &DL, 2542 const ConstantStruct *CS, AsmPrinter &AP, 2543 const Constant *BaseCV, uint64_t Offset) { 2544 // Print the fields in successive locations. Pad to align if needed! 2545 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2546 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2547 uint64_t SizeSoFar = 0; 2548 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2549 const Constant *Field = CS->getOperand(i); 2550 2551 // Print the actual field value. 2552 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2553 2554 // Check if padding is needed and insert one or more 0s. 2555 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2556 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2557 - Layout->getElementOffset(i)) - FieldSize; 2558 SizeSoFar += FieldSize + PadSize; 2559 2560 // Insert padding - this may include padding to increase the size of the 2561 // current field up to the ABI size (if the struct is not packed) as well 2562 // as padding to ensure that the next field starts at the right offset. 2563 AP.OutStreamer->emitZeros(PadSize); 2564 } 2565 assert(SizeSoFar == Layout->getSizeInBytes() && 2566 "Layout of constant struct may be incorrect!"); 2567 } 2568 2569 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2570 assert(ET && "Unknown float type"); 2571 APInt API = APF.bitcastToAPInt(); 2572 2573 // First print a comment with what we think the original floating-point value 2574 // should have been. 2575 if (AP.isVerbose()) { 2576 SmallString<8> StrVal; 2577 APF.toString(StrVal); 2578 ET->print(AP.OutStreamer->GetCommentOS()); 2579 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2580 } 2581 2582 // Now iterate through the APInt chunks, emitting them in endian-correct 2583 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2584 // floats). 2585 unsigned NumBytes = API.getBitWidth() / 8; 2586 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2587 const uint64_t *p = API.getRawData(); 2588 2589 // PPC's long double has odd notions of endianness compared to how LLVM 2590 // handles it: p[0] goes first for *big* endian on PPC. 2591 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2592 int Chunk = API.getNumWords() - 1; 2593 2594 if (TrailingBytes) 2595 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2596 2597 for (; Chunk >= 0; --Chunk) 2598 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2599 } else { 2600 unsigned Chunk; 2601 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2602 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2603 2604 if (TrailingBytes) 2605 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2606 } 2607 2608 // Emit the tail padding for the long double. 2609 const DataLayout &DL = AP.getDataLayout(); 2610 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2611 } 2612 2613 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2614 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2615 } 2616 2617 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2618 const DataLayout &DL = AP.getDataLayout(); 2619 unsigned BitWidth = CI->getBitWidth(); 2620 2621 // Copy the value as we may massage the layout for constants whose bit width 2622 // is not a multiple of 64-bits. 2623 APInt Realigned(CI->getValue()); 2624 uint64_t ExtraBits = 0; 2625 unsigned ExtraBitsSize = BitWidth & 63; 2626 2627 if (ExtraBitsSize) { 2628 // The bit width of the data is not a multiple of 64-bits. 2629 // The extra bits are expected to be at the end of the chunk of the memory. 2630 // Little endian: 2631 // * Nothing to be done, just record the extra bits to emit. 2632 // Big endian: 2633 // * Record the extra bits to emit. 2634 // * Realign the raw data to emit the chunks of 64-bits. 2635 if (DL.isBigEndian()) { 2636 // Basically the structure of the raw data is a chunk of 64-bits cells: 2637 // 0 1 BitWidth / 64 2638 // [chunk1][chunk2] ... [chunkN]. 2639 // The most significant chunk is chunkN and it should be emitted first. 2640 // However, due to the alignment issue chunkN contains useless bits. 2641 // Realign the chunks so that they contain only useful information: 2642 // ExtraBits 0 1 (BitWidth / 64) - 1 2643 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2644 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2645 ExtraBits = Realigned.getRawData()[0] & 2646 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2647 Realigned.lshrInPlace(ExtraBitsSize); 2648 } else 2649 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2650 } 2651 2652 // We don't expect assemblers to support integer data directives 2653 // for more than 64 bits, so we emit the data in at most 64-bit 2654 // quantities at a time. 2655 const uint64_t *RawData = Realigned.getRawData(); 2656 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2657 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2658 AP.OutStreamer->emitIntValue(Val, 8); 2659 } 2660 2661 if (ExtraBitsSize) { 2662 // Emit the extra bits after the 64-bits chunks. 2663 2664 // Emit a directive that fills the expected size. 2665 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2666 Size -= (BitWidth / 64) * 8; 2667 assert(Size && Size * 8 >= ExtraBitsSize && 2668 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2669 == ExtraBits && "Directive too small for extra bits."); 2670 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2671 } 2672 } 2673 2674 /// Transform a not absolute MCExpr containing a reference to a GOT 2675 /// equivalent global, by a target specific GOT pc relative access to the 2676 /// final symbol. 2677 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2678 const Constant *BaseCst, 2679 uint64_t Offset) { 2680 // The global @foo below illustrates a global that uses a got equivalent. 2681 // 2682 // @bar = global i32 42 2683 // @gotequiv = private unnamed_addr constant i32* @bar 2684 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2685 // i64 ptrtoint (i32* @foo to i64)) 2686 // to i32) 2687 // 2688 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2689 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2690 // form: 2691 // 2692 // foo = cstexpr, where 2693 // cstexpr := <gotequiv> - "." + <cst> 2694 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2695 // 2696 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2697 // 2698 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2699 // gotpcrelcst := <offset from @foo base> + <cst> 2700 MCValue MV; 2701 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2702 return; 2703 const MCSymbolRefExpr *SymA = MV.getSymA(); 2704 if (!SymA) 2705 return; 2706 2707 // Check that GOT equivalent symbol is cached. 2708 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2709 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2710 return; 2711 2712 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2713 if (!BaseGV) 2714 return; 2715 2716 // Check for a valid base symbol 2717 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2718 const MCSymbolRefExpr *SymB = MV.getSymB(); 2719 2720 if (!SymB || BaseSym != &SymB->getSymbol()) 2721 return; 2722 2723 // Make sure to match: 2724 // 2725 // gotpcrelcst := <offset from @foo base> + <cst> 2726 // 2727 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2728 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2729 // if the target knows how to encode it. 2730 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2731 if (GOTPCRelCst < 0) 2732 return; 2733 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2734 return; 2735 2736 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2737 // 2738 // bar: 2739 // .long 42 2740 // gotequiv: 2741 // .quad bar 2742 // foo: 2743 // .long gotequiv - "." + <cst> 2744 // 2745 // is replaced by the target specific equivalent to: 2746 // 2747 // bar: 2748 // .long 42 2749 // foo: 2750 // .long bar@GOTPCREL+<gotpcrelcst> 2751 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2752 const GlobalVariable *GV = Result.first; 2753 int NumUses = (int)Result.second; 2754 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2755 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2756 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2757 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2758 2759 // Update GOT equivalent usage information 2760 --NumUses; 2761 if (NumUses >= 0) 2762 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2763 } 2764 2765 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2766 AsmPrinter &AP, const Constant *BaseCV, 2767 uint64_t Offset) { 2768 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2769 2770 // Globals with sub-elements such as combinations of arrays and structs 2771 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2772 // constant symbol base and the current position with BaseCV and Offset. 2773 if (!BaseCV && CV->hasOneUse()) 2774 BaseCV = dyn_cast<Constant>(CV->user_back()); 2775 2776 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2777 return AP.OutStreamer->emitZeros(Size); 2778 2779 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2780 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2781 2782 if (StoreSize <= 8) { 2783 if (AP.isVerbose()) 2784 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2785 CI->getZExtValue()); 2786 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2787 } else { 2788 emitGlobalConstantLargeInt(CI, AP); 2789 } 2790 2791 // Emit tail padding if needed 2792 if (Size != StoreSize) 2793 AP.OutStreamer->emitZeros(Size - StoreSize); 2794 2795 return; 2796 } 2797 2798 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2799 return emitGlobalConstantFP(CFP, AP); 2800 2801 if (isa<ConstantPointerNull>(CV)) { 2802 AP.OutStreamer->emitIntValue(0, Size); 2803 return; 2804 } 2805 2806 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2807 return emitGlobalConstantDataSequential(DL, CDS, AP); 2808 2809 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2810 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2811 2812 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2813 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2814 2815 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2816 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2817 // vectors). 2818 if (CE->getOpcode() == Instruction::BitCast) 2819 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2820 2821 if (Size > 8) { 2822 // If the constant expression's size is greater than 64-bits, then we have 2823 // to emit the value in chunks. Try to constant fold the value and emit it 2824 // that way. 2825 Constant *New = ConstantFoldConstant(CE, DL); 2826 if (New != CE) 2827 return emitGlobalConstantImpl(DL, New, AP); 2828 } 2829 } 2830 2831 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2832 return emitGlobalConstantVector(DL, V, AP); 2833 2834 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2835 // thread the streamer with EmitValue. 2836 const MCExpr *ME = AP.lowerConstant(CV); 2837 2838 // Since lowerConstant already folded and got rid of all IR pointer and 2839 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2840 // directly. 2841 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2842 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2843 2844 AP.OutStreamer->emitValue(ME, Size); 2845 } 2846 2847 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2848 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2849 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2850 if (Size) 2851 emitGlobalConstantImpl(DL, CV, *this); 2852 else if (MAI->hasSubsectionsViaSymbols()) { 2853 // If the global has zero size, emit a single byte so that two labels don't 2854 // look like they are at the same location. 2855 OutStreamer->emitIntValue(0, 1); 2856 } 2857 } 2858 2859 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2860 // Target doesn't support this yet! 2861 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2862 } 2863 2864 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2865 if (Offset > 0) 2866 OS << '+' << Offset; 2867 else if (Offset < 0) 2868 OS << Offset; 2869 } 2870 2871 void AsmPrinter::emitNops(unsigned N) { 2872 MCInst Nop; 2873 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2874 for (; N; --N) 2875 EmitToStreamer(*OutStreamer, Nop); 2876 } 2877 2878 //===----------------------------------------------------------------------===// 2879 // Symbol Lowering Routines. 2880 //===----------------------------------------------------------------------===// 2881 2882 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2883 return OutContext.createTempSymbol(Name, true); 2884 } 2885 2886 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2887 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2888 } 2889 2890 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2891 return MMI->getAddrLabelSymbol(BB); 2892 } 2893 2894 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2895 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2896 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2897 const MachineConstantPoolEntry &CPE = 2898 MF->getConstantPool()->getConstants()[CPID]; 2899 if (!CPE.isMachineConstantPoolEntry()) { 2900 const DataLayout &DL = MF->getDataLayout(); 2901 SectionKind Kind = CPE.getSectionKind(&DL); 2902 const Constant *C = CPE.Val.ConstVal; 2903 Align Alignment = CPE.Alignment; 2904 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2905 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2906 Alignment))) { 2907 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2908 if (Sym->isUndefined()) 2909 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2910 return Sym; 2911 } 2912 } 2913 } 2914 } 2915 2916 const DataLayout &DL = getDataLayout(); 2917 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2918 "CPI" + Twine(getFunctionNumber()) + "_" + 2919 Twine(CPID)); 2920 } 2921 2922 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2923 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2924 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2925 } 2926 2927 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2928 /// FIXME: privatize to AsmPrinter. 2929 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2930 const DataLayout &DL = getDataLayout(); 2931 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2932 Twine(getFunctionNumber()) + "_" + 2933 Twine(UID) + "_set_" + Twine(MBBID)); 2934 } 2935 2936 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2937 StringRef Suffix) const { 2938 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2939 } 2940 2941 /// Return the MCSymbol for the specified ExternalSymbol. 2942 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2943 SmallString<60> NameStr; 2944 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2945 return OutContext.getOrCreateSymbol(NameStr); 2946 } 2947 2948 /// PrintParentLoopComment - Print comments about parent loops of this one. 2949 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2950 unsigned FunctionNumber) { 2951 if (!Loop) return; 2952 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2953 OS.indent(Loop->getLoopDepth()*2) 2954 << "Parent Loop BB" << FunctionNumber << "_" 2955 << Loop->getHeader()->getNumber() 2956 << " Depth=" << Loop->getLoopDepth() << '\n'; 2957 } 2958 2959 /// PrintChildLoopComment - Print comments about child loops within 2960 /// the loop for this basic block, with nesting. 2961 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2962 unsigned FunctionNumber) { 2963 // Add child loop information 2964 for (const MachineLoop *CL : *Loop) { 2965 OS.indent(CL->getLoopDepth()*2) 2966 << "Child Loop BB" << FunctionNumber << "_" 2967 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2968 << '\n'; 2969 PrintChildLoopComment(OS, CL, FunctionNumber); 2970 } 2971 } 2972 2973 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2974 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2975 const MachineLoopInfo *LI, 2976 const AsmPrinter &AP) { 2977 // Add loop depth information 2978 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2979 if (!Loop) return; 2980 2981 MachineBasicBlock *Header = Loop->getHeader(); 2982 assert(Header && "No header for loop"); 2983 2984 // If this block is not a loop header, just print out what is the loop header 2985 // and return. 2986 if (Header != &MBB) { 2987 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2988 Twine(AP.getFunctionNumber())+"_" + 2989 Twine(Loop->getHeader()->getNumber())+ 2990 " Depth="+Twine(Loop->getLoopDepth())); 2991 return; 2992 } 2993 2994 // Otherwise, it is a loop header. Print out information about child and 2995 // parent loops. 2996 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2997 2998 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2999 3000 OS << "=>"; 3001 OS.indent(Loop->getLoopDepth()*2-2); 3002 3003 OS << "This "; 3004 if (Loop->empty()) 3005 OS << "Inner "; 3006 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3007 3008 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3009 } 3010 3011 /// emitBasicBlockStart - This method prints the label for the specified 3012 /// MachineBasicBlock, an alignment (if present) and a comment describing 3013 /// it if appropriate. 3014 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3015 // End the previous funclet and start a new one. 3016 if (MBB.isEHFuncletEntry()) { 3017 for (const HandlerInfo &HI : Handlers) { 3018 HI.Handler->endFunclet(); 3019 HI.Handler->beginFunclet(MBB); 3020 } 3021 } 3022 3023 // Emit an alignment directive for this block, if needed. 3024 const Align Alignment = MBB.getAlignment(); 3025 if (Alignment != Align(1)) 3026 emitAlignment(Alignment); 3027 3028 // If the block has its address taken, emit any labels that were used to 3029 // reference the block. It is possible that there is more than one label 3030 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3031 // the references were generated. 3032 if (MBB.hasAddressTaken()) { 3033 const BasicBlock *BB = MBB.getBasicBlock(); 3034 if (isVerbose()) 3035 OutStreamer->AddComment("Block address taken"); 3036 3037 // MBBs can have their address taken as part of CodeGen without having 3038 // their corresponding BB's address taken in IR 3039 if (BB->hasAddressTaken()) 3040 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3041 OutStreamer->emitLabel(Sym); 3042 } 3043 3044 // Print some verbose block comments. 3045 if (isVerbose()) { 3046 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3047 if (BB->hasName()) { 3048 BB->printAsOperand(OutStreamer->GetCommentOS(), 3049 /*PrintType=*/false, BB->getModule()); 3050 OutStreamer->GetCommentOS() << '\n'; 3051 } 3052 } 3053 3054 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3055 emitBasicBlockLoopComments(MBB, MLI, *this); 3056 } 3057 3058 if (MBB.pred_empty() || 3059 (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) && 3060 !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) { 3061 if (isVerbose()) { 3062 // NOTE: Want this comment at start of line, don't emit with AddComment. 3063 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3064 false); 3065 } 3066 } else { 3067 if (isVerbose() && MBB.hasLabelMustBeEmitted()) { 3068 OutStreamer->AddComment("Label of block must be emitted"); 3069 } 3070 auto *BBSymbol = MBB.getSymbol(); 3071 // Switch to a new section if this basic block must begin a section. 3072 if (MBB.isBeginSection()) { 3073 OutStreamer->SwitchSection( 3074 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3075 MBB, TM)); 3076 CurrentSectionBeginSym = BBSymbol; 3077 } 3078 OutStreamer->emitLabel(BBSymbol); 3079 // With BB sections, each basic block must handle CFI information on its own 3080 // if it begins a section. 3081 if (MBB.isBeginSection()) 3082 for (const HandlerInfo &HI : Handlers) 3083 HI.Handler->beginBasicBlock(MBB); 3084 } 3085 } 3086 3087 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3088 // Check if CFI information needs to be updated for this MBB with basic block 3089 // sections. 3090 if (MBB.isEndSection()) 3091 for (const HandlerInfo &HI : Handlers) 3092 HI.Handler->endBasicBlock(MBB); 3093 } 3094 3095 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3096 bool IsDefinition) const { 3097 MCSymbolAttr Attr = MCSA_Invalid; 3098 3099 switch (Visibility) { 3100 default: break; 3101 case GlobalValue::HiddenVisibility: 3102 if (IsDefinition) 3103 Attr = MAI->getHiddenVisibilityAttr(); 3104 else 3105 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3106 break; 3107 case GlobalValue::ProtectedVisibility: 3108 Attr = MAI->getProtectedVisibilityAttr(); 3109 break; 3110 } 3111 3112 if (Attr != MCSA_Invalid) 3113 OutStreamer->emitSymbolAttribute(Sym, Attr); 3114 } 3115 3116 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3117 /// exactly one predecessor and the control transfer mechanism between 3118 /// the predecessor and this block is a fall-through. 3119 bool AsmPrinter:: 3120 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3121 // With BasicBlock Sections, beginning of the section is not a fallthrough. 3122 if (MBB->isBeginSection()) 3123 return false; 3124 3125 // If this is a landing pad, it isn't a fall through. If it has no preds, 3126 // then nothing falls through to it. 3127 if (MBB->isEHPad() || MBB->pred_empty()) 3128 return false; 3129 3130 // If there isn't exactly one predecessor, it can't be a fall through. 3131 if (MBB->pred_size() > 1) 3132 return false; 3133 3134 // The predecessor has to be immediately before this block. 3135 MachineBasicBlock *Pred = *MBB->pred_begin(); 3136 if (!Pred->isLayoutSuccessor(MBB)) 3137 return false; 3138 3139 // If the block is completely empty, then it definitely does fall through. 3140 if (Pred->empty()) 3141 return true; 3142 3143 // Check the terminators in the previous blocks 3144 for (const auto &MI : Pred->terminators()) { 3145 // If it is not a simple branch, we are in a table somewhere. 3146 if (!MI.isBranch() || MI.isIndirectBranch()) 3147 return false; 3148 3149 // If we are the operands of one of the branches, this is not a fall 3150 // through. Note that targets with delay slots will usually bundle 3151 // terminators with the delay slot instruction. 3152 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3153 if (OP->isJTI()) 3154 return false; 3155 if (OP->isMBB() && OP->getMBB() == MBB) 3156 return false; 3157 } 3158 } 3159 3160 return true; 3161 } 3162 3163 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3164 if (!S.usesMetadata()) 3165 return nullptr; 3166 3167 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3168 gcp_map_type::iterator GCPI = GCMap.find(&S); 3169 if (GCPI != GCMap.end()) 3170 return GCPI->second.get(); 3171 3172 auto Name = S.getName(); 3173 3174 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3175 GCMetadataPrinterRegistry::entries()) 3176 if (Name == GCMetaPrinter.getName()) { 3177 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3178 GMP->S = &S; 3179 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3180 return IterBool.first->second.get(); 3181 } 3182 3183 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3184 } 3185 3186 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3187 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3188 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3189 bool NeedsDefault = false; 3190 if (MI->begin() == MI->end()) 3191 // No GC strategy, use the default format. 3192 NeedsDefault = true; 3193 else 3194 for (auto &I : *MI) { 3195 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3196 if (MP->emitStackMaps(SM, *this)) 3197 continue; 3198 // The strategy doesn't have printer or doesn't emit custom stack maps. 3199 // Use the default format. 3200 NeedsDefault = true; 3201 } 3202 3203 if (NeedsDefault) 3204 SM.serializeToStackMapSection(); 3205 } 3206 3207 /// Pin vtable to this file. 3208 AsmPrinterHandler::~AsmPrinterHandler() = default; 3209 3210 void AsmPrinterHandler::markFunctionEnd() {} 3211 3212 // In the binary's "xray_instr_map" section, an array of these function entries 3213 // describes each instrumentation point. When XRay patches your code, the index 3214 // into this table will be given to your handler as a patch point identifier. 3215 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3216 auto Kind8 = static_cast<uint8_t>(Kind); 3217 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3218 Out->emitBinaryData( 3219 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3220 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3221 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3222 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3223 Out->emitZeros(Padding); 3224 } 3225 3226 void AsmPrinter::emitXRayTable() { 3227 if (Sleds.empty()) 3228 return; 3229 3230 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3231 const Function &F = MF->getFunction(); 3232 MCSection *InstMap = nullptr; 3233 MCSection *FnSledIndex = nullptr; 3234 const Triple &TT = TM.getTargetTriple(); 3235 // Use PC-relative addresses on all targets except MIPS (MIPS64 cannot use 3236 // PC-relative addresses because R_MIPS_PC64 does not exist). 3237 bool PCRel = !TT.isMIPS(); 3238 if (TT.isOSBinFormatELF()) { 3239 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3240 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3241 if (!PCRel) 3242 Flags |= ELF::SHF_WRITE; 3243 StringRef GroupName; 3244 if (F.hasComdat()) { 3245 Flags |= ELF::SHF_GROUP; 3246 GroupName = F.getComdat()->getName(); 3247 } 3248 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3249 Flags, 0, GroupName, 3250 MCSection::NonUniqueID, LinkedToSym); 3251 3252 if (!TM.Options.XRayOmitFunctionIndex) 3253 FnSledIndex = OutContext.getELFSection( 3254 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3255 GroupName, MCSection::NonUniqueID, LinkedToSym); 3256 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3257 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3258 SectionKind::getReadOnlyWithRel()); 3259 if (!TM.Options.XRayOmitFunctionIndex) 3260 FnSledIndex = OutContext.getMachOSection( 3261 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3262 } else { 3263 llvm_unreachable("Unsupported target"); 3264 } 3265 3266 auto WordSizeBytes = MAI->getCodePointerSize(); 3267 3268 // Now we switch to the instrumentation map section. Because this is done 3269 // per-function, we are able to create an index entry that will represent the 3270 // range of sleds associated with a function. 3271 auto &Ctx = OutContext; 3272 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3273 OutStreamer->SwitchSection(InstMap); 3274 OutStreamer->emitLabel(SledsStart); 3275 for (const auto &Sled : Sleds) { 3276 if (PCRel) { 3277 MCSymbol *Dot = Ctx.createTempSymbol(); 3278 OutStreamer->emitLabel(Dot); 3279 OutStreamer->emitValueImpl( 3280 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3281 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3282 WordSizeBytes); 3283 OutStreamer->emitValueImpl( 3284 MCBinaryExpr::createSub( 3285 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3286 MCBinaryExpr::createAdd( 3287 MCSymbolRefExpr::create(Dot, Ctx), 3288 MCConstantExpr::create(WordSizeBytes, Ctx), Ctx), 3289 Ctx), 3290 WordSizeBytes); 3291 } else { 3292 OutStreamer->emitSymbolValue(Sled.Sled, WordSizeBytes); 3293 OutStreamer->emitSymbolValue(CurrentFnSym, WordSizeBytes); 3294 } 3295 Sled.emit(WordSizeBytes, OutStreamer.get()); 3296 } 3297 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3298 OutStreamer->emitLabel(SledsEnd); 3299 3300 // We then emit a single entry in the index per function. We use the symbols 3301 // that bound the instrumentation map as the range for a specific function. 3302 // Each entry here will be 2 * word size aligned, as we're writing down two 3303 // pointers. This should work for both 32-bit and 64-bit platforms. 3304 if (FnSledIndex) { 3305 OutStreamer->SwitchSection(FnSledIndex); 3306 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3307 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3308 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3309 OutStreamer->SwitchSection(PrevSection); 3310 } 3311 Sleds.clear(); 3312 } 3313 3314 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3315 SledKind Kind, uint8_t Version) { 3316 const Function &F = MI.getMF()->getFunction(); 3317 auto Attr = F.getFnAttribute("function-instrument"); 3318 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3319 bool AlwaysInstrument = 3320 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3321 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3322 Kind = SledKind::LOG_ARGS_ENTER; 3323 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3324 AlwaysInstrument, &F, Version}); 3325 } 3326 3327 void AsmPrinter::emitPatchableFunctionEntries() { 3328 const Function &F = MF->getFunction(); 3329 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3330 (void)F.getFnAttribute("patchable-function-prefix") 3331 .getValueAsString() 3332 .getAsInteger(10, PatchableFunctionPrefix); 3333 (void)F.getFnAttribute("patchable-function-entry") 3334 .getValueAsString() 3335 .getAsInteger(10, PatchableFunctionEntry); 3336 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3337 return; 3338 const unsigned PointerSize = getPointerSize(); 3339 if (TM.getTargetTriple().isOSBinFormatELF()) { 3340 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3341 const MCSymbolELF *LinkedToSym = nullptr; 3342 StringRef GroupName; 3343 3344 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3345 // if we are using the integrated assembler. 3346 if (MAI->useIntegratedAssembler()) { 3347 Flags |= ELF::SHF_LINK_ORDER; 3348 if (F.hasComdat()) { 3349 Flags |= ELF::SHF_GROUP; 3350 GroupName = F.getComdat()->getName(); 3351 } 3352 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3353 } 3354 OutStreamer->SwitchSection(OutContext.getELFSection( 3355 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3356 MCSection::NonUniqueID, LinkedToSym)); 3357 emitAlignment(Align(PointerSize)); 3358 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3359 } 3360 } 3361 3362 uint16_t AsmPrinter::getDwarfVersion() const { 3363 return OutStreamer->getContext().getDwarfVersion(); 3364 } 3365 3366 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3367 OutStreamer->getContext().setDwarfVersion(Version); 3368 } 3369