xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/Analysis.cpp (revision f59662030254e1bc4f7f135e7617e94b46385893)
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 using namespace llvm;
29 
30 /// Compute the linearized index of a member in a nested aggregate/struct/array
31 /// by recursing and accumulating CurIndex as long as there are indices in the
32 /// index list.
33 unsigned llvm::ComputeLinearIndex(Type *Ty,
34                                   const unsigned *Indices,
35                                   const unsigned *IndicesEnd,
36                                   unsigned CurIndex) {
37   // Base case: We're done.
38   if (Indices && Indices == IndicesEnd)
39     return CurIndex;
40 
41   // Given a struct type, recursively traverse the elements.
42   if (StructType *STy = dyn_cast<StructType>(Ty)) {
43     for (auto I : llvm::enumerate(STy->elements())) {
44       Type *ET = I.value();
45       if (Indices && *Indices == I.index())
46         return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex);
47       CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex);
48     }
49     assert(!Indices && "Unexpected out of bound");
50     return CurIndex;
51   }
52   // Given an array type, recursively traverse the elements.
53   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
54     Type *EltTy = ATy->getElementType();
55     unsigned NumElts = ATy->getNumElements();
56     // Compute the Linear offset when jumping one element of the array
57     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
58     if (Indices) {
59       assert(*Indices < NumElts && "Unexpected out of bound");
60       // If the indice is inside the array, compute the index to the requested
61       // elt and recurse inside the element with the end of the indices list
62       CurIndex += EltLinearOffset* *Indices;
63       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
64     }
65     CurIndex += EltLinearOffset*NumElts;
66     return CurIndex;
67   }
68   // We haven't found the type we're looking for, so keep searching.
69   return CurIndex + 1;
70 }
71 
72 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
73 /// EVTs that represent all the individual underlying
74 /// non-aggregate types that comprise it.
75 ///
76 /// If Offsets is non-null, it points to a vector to be filled in
77 /// with the in-memory offsets of each of the individual values.
78 ///
79 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
80                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
81                            SmallVectorImpl<EVT> *MemVTs,
82                            SmallVectorImpl<TypeSize> *Offsets,
83                            TypeSize StartingOffset) {
84   // Given a struct type, recursively traverse the elements.
85   if (StructType *STy = dyn_cast<StructType>(Ty)) {
86     // If the Offsets aren't needed, don't query the struct layout. This allows
87     // us to support structs with scalable vectors for operations that don't
88     // need offsets.
89     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
90     for (StructType::element_iterator EB = STy->element_begin(),
91                                       EI = EB,
92                                       EE = STy->element_end();
93          EI != EE; ++EI) {
94       // Don't compute the element offset if we didn't get a StructLayout above.
95       TypeSize EltOffset = SL ? SL->getElementOffset(EI - EB)
96                               : TypeSize::get(0, StartingOffset.isScalable());
97       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
98                       StartingOffset + EltOffset);
99     }
100     return;
101   }
102   // Given an array type, recursively traverse the elements.
103   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
104     Type *EltTy = ATy->getElementType();
105     TypeSize EltSize = DL.getTypeAllocSize(EltTy);
106     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
107       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
108                       StartingOffset + i * EltSize);
109     return;
110   }
111   // Interpret void as zero return values.
112   if (Ty->isVoidTy())
113     return;
114   // Base case: we can get an EVT for this LLVM IR type.
115   ValueVTs.push_back(TLI.getValueType(DL, Ty));
116   if (MemVTs)
117     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
118   if (Offsets)
119     Offsets->push_back(StartingOffset);
120 }
121 
122 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
123                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
124                            SmallVectorImpl<TypeSize> *Offsets,
125                            TypeSize StartingOffset) {
126   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
127                          StartingOffset);
128 }
129 
130 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
131                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
132                            SmallVectorImpl<TypeSize> *Offsets,
133                            uint64_t StartingOffset) {
134   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
135   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, Offsets, Offset);
136 }
137 
138 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
139                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
140                            SmallVectorImpl<uint64_t> *FixedOffsets,
141                            uint64_t StartingOffset) {
142   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
143   SmallVector<TypeSize, 4> Offsets;
144   if (FixedOffsets)
145     ComputeValueVTs(TLI, DL, Ty, ValueVTs, &Offsets, Offset);
146   else
147     ComputeValueVTs(TLI, DL, Ty, ValueVTs, nullptr, Offset);
148 
149   if (FixedOffsets)
150     for (TypeSize Offset : Offsets)
151       FixedOffsets->push_back(Offset.getKnownMinValue());
152 }
153 
154 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
155                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
156                            SmallVectorImpl<EVT> *MemVTs,
157                            SmallVectorImpl<TypeSize> *Offsets,
158                            uint64_t StartingOffset) {
159   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
160   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, Offsets, Offset);
161 }
162 
163 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
164                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
165                            SmallVectorImpl<EVT> *MemVTs,
166                            SmallVectorImpl<uint64_t> *FixedOffsets,
167                            uint64_t StartingOffset) {
168   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
169   SmallVector<TypeSize, 4> Offsets;
170   if (FixedOffsets)
171     ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, &Offsets, Offset);
172   else
173     ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, nullptr, Offset);
174 
175   if (FixedOffsets)
176     for (TypeSize Offset : Offsets)
177       FixedOffsets->push_back(Offset.getKnownMinValue());
178 }
179 
180 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
181                             SmallVectorImpl<LLT> &ValueTys,
182                             SmallVectorImpl<uint64_t> *Offsets,
183                             uint64_t StartingOffset) {
184   // Given a struct type, recursively traverse the elements.
185   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
186     // If the Offsets aren't needed, don't query the struct layout. This allows
187     // us to support structs with scalable vectors for operations that don't
188     // need offsets.
189     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
190     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
191       uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
192       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
193                        StartingOffset + EltOffset);
194     }
195     return;
196   }
197   // Given an array type, recursively traverse the elements.
198   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
199     Type *EltTy = ATy->getElementType();
200     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
201     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
202       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
203                        StartingOffset + i * EltSize);
204     return;
205   }
206   // Interpret void as zero return values.
207   if (Ty.isVoidTy())
208     return;
209   // Base case: we can get an LLT for this LLVM IR type.
210   ValueTys.push_back(getLLTForType(Ty, DL));
211   if (Offsets != nullptr)
212     Offsets->push_back(StartingOffset * 8);
213 }
214 
215 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
216 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
217   V = V->stripPointerCasts();
218   GlobalValue *GV = dyn_cast<GlobalValue>(V);
219   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
220 
221   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
222     assert(Var->hasInitializer() &&
223            "The EH catch-all value must have an initializer");
224     Value *Init = Var->getInitializer();
225     GV = dyn_cast<GlobalValue>(Init);
226     if (!GV) V = cast<ConstantPointerNull>(Init);
227   }
228 
229   assert((GV || isa<ConstantPointerNull>(V)) &&
230          "TypeInfo must be a global variable or NULL");
231   return GV;
232 }
233 
234 /// getFCmpCondCode - Return the ISD condition code corresponding to
235 /// the given LLVM IR floating-point condition code.  This includes
236 /// consideration of global floating-point math flags.
237 ///
238 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
239   switch (Pred) {
240   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
241   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
242   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
243   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
244   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
245   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
246   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
247   case FCmpInst::FCMP_ORD:   return ISD::SETO;
248   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
249   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
250   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
251   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
252   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
253   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
254   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
255   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
256   default: llvm_unreachable("Invalid FCmp predicate opcode!");
257   }
258 }
259 
260 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
261   switch (CC) {
262     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
263     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
264     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
265     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
266     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
267     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
268     default: return CC;
269   }
270 }
271 
272 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
273   switch (Pred) {
274   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
275   case ICmpInst::ICMP_NE:  return ISD::SETNE;
276   case ICmpInst::ICMP_SLE: return ISD::SETLE;
277   case ICmpInst::ICMP_ULE: return ISD::SETULE;
278   case ICmpInst::ICMP_SGE: return ISD::SETGE;
279   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
280   case ICmpInst::ICMP_SLT: return ISD::SETLT;
281   case ICmpInst::ICMP_ULT: return ISD::SETULT;
282   case ICmpInst::ICMP_SGT: return ISD::SETGT;
283   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
284   default:
285     llvm_unreachable("Invalid ICmp predicate opcode!");
286   }
287 }
288 
289 ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) {
290   switch (Pred) {
291   case ISD::SETEQ:
292     return ICmpInst::ICMP_EQ;
293   case ISD::SETNE:
294     return ICmpInst::ICMP_NE;
295   case ISD::SETLE:
296     return ICmpInst::ICMP_SLE;
297   case ISD::SETULE:
298     return ICmpInst::ICMP_ULE;
299   case ISD::SETGE:
300     return ICmpInst::ICMP_SGE;
301   case ISD::SETUGE:
302     return ICmpInst::ICMP_UGE;
303   case ISD::SETLT:
304     return ICmpInst::ICMP_SLT;
305   case ISD::SETULT:
306     return ICmpInst::ICMP_ULT;
307   case ISD::SETGT:
308     return ICmpInst::ICMP_SGT;
309   case ISD::SETUGT:
310     return ICmpInst::ICMP_UGT;
311   default:
312     llvm_unreachable("Invalid ISD integer condition code!");
313   }
314 }
315 
316 static bool isNoopBitcast(Type *T1, Type *T2,
317                           const TargetLoweringBase& TLI) {
318   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
319          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
320           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
321 }
322 
323 /// Look through operations that will be free to find the earliest source of
324 /// this value.
325 ///
326 /// @param ValLoc If V has aggregate type, we will be interested in a particular
327 /// scalar component. This records its address; the reverse of this list gives a
328 /// sequence of indices appropriate for an extractvalue to locate the important
329 /// value. This value is updated during the function and on exit will indicate
330 /// similar information for the Value returned.
331 ///
332 /// @param DataBits If this function looks through truncate instructions, this
333 /// will record the smallest size attained.
334 static const Value *getNoopInput(const Value *V,
335                                  SmallVectorImpl<unsigned> &ValLoc,
336                                  unsigned &DataBits,
337                                  const TargetLoweringBase &TLI,
338                                  const DataLayout &DL) {
339   while (true) {
340     // Try to look through V1; if V1 is not an instruction, it can't be looked
341     // through.
342     const Instruction *I = dyn_cast<Instruction>(V);
343     if (!I || I->getNumOperands() == 0) return V;
344     const Value *NoopInput = nullptr;
345 
346     Value *Op = I->getOperand(0);
347     if (isa<BitCastInst>(I)) {
348       // Look through truly no-op bitcasts.
349       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
350         NoopInput = Op;
351     } else if (isa<GetElementPtrInst>(I)) {
352       // Look through getelementptr
353       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
354         NoopInput = Op;
355     } else if (isa<IntToPtrInst>(I)) {
356       // Look through inttoptr.
357       // Make sure this isn't a truncating or extending cast.  We could
358       // support this eventually, but don't bother for now.
359       if (!isa<VectorType>(I->getType()) &&
360           DL.getPointerSizeInBits() ==
361               cast<IntegerType>(Op->getType())->getBitWidth())
362         NoopInput = Op;
363     } else if (isa<PtrToIntInst>(I)) {
364       // Look through ptrtoint.
365       // Make sure this isn't a truncating or extending cast.  We could
366       // support this eventually, but don't bother for now.
367       if (!isa<VectorType>(I->getType()) &&
368           DL.getPointerSizeInBits() ==
369               cast<IntegerType>(I->getType())->getBitWidth())
370         NoopInput = Op;
371     } else if (isa<TruncInst>(I) &&
372                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
373       DataBits =
374           std::min((uint64_t)DataBits,
375                    I->getType()->getPrimitiveSizeInBits().getFixedValue());
376       NoopInput = Op;
377     } else if (auto *CB = dyn_cast<CallBase>(I)) {
378       const Value *ReturnedOp = CB->getReturnedArgOperand();
379       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
380         NoopInput = ReturnedOp;
381     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
382       // Value may come from either the aggregate or the scalar
383       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
384       if (ValLoc.size() >= InsertLoc.size() &&
385           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
386         // The type being inserted is a nested sub-type of the aggregate; we
387         // have to remove those initial indices to get the location we're
388         // interested in for the operand.
389         ValLoc.resize(ValLoc.size() - InsertLoc.size());
390         NoopInput = IVI->getInsertedValueOperand();
391       } else {
392         // The struct we're inserting into has the value we're interested in, no
393         // change of address.
394         NoopInput = Op;
395       }
396     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
397       // The part we're interested in will inevitably be some sub-section of the
398       // previous aggregate. Combine the two paths to obtain the true address of
399       // our element.
400       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
401       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
402       NoopInput = Op;
403     }
404     // Terminate if we couldn't find anything to look through.
405     if (!NoopInput)
406       return V;
407 
408     V = NoopInput;
409   }
410 }
411 
412 /// Return true if this scalar return value only has bits discarded on its path
413 /// from the "tail call" to the "ret". This includes the obvious noop
414 /// instructions handled by getNoopInput above as well as free truncations (or
415 /// extensions prior to the call).
416 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
417                                  SmallVectorImpl<unsigned> &RetIndices,
418                                  SmallVectorImpl<unsigned> &CallIndices,
419                                  bool AllowDifferingSizes,
420                                  const TargetLoweringBase &TLI,
421                                  const DataLayout &DL) {
422 
423   // Trace the sub-value needed by the return value as far back up the graph as
424   // possible, in the hope that it will intersect with the value produced by the
425   // call. In the simple case with no "returned" attribute, the hope is actually
426   // that we end up back at the tail call instruction itself.
427   unsigned BitsRequired = UINT_MAX;
428   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
429 
430   // If this slot in the value returned is undef, it doesn't matter what the
431   // call puts there, it'll be fine.
432   if (isa<UndefValue>(RetVal))
433     return true;
434 
435   // Now do a similar search up through the graph to find where the value
436   // actually returned by the "tail call" comes from. In the simple case without
437   // a "returned" attribute, the search will be blocked immediately and the loop
438   // a Noop.
439   unsigned BitsProvided = UINT_MAX;
440   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
441 
442   // There's no hope if we can't actually trace them to (the same part of!) the
443   // same value.
444   if (CallVal != RetVal || CallIndices != RetIndices)
445     return false;
446 
447   // However, intervening truncates may have made the call non-tail. Make sure
448   // all the bits that are needed by the "ret" have been provided by the "tail
449   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
450   // extensions too.
451   if (BitsProvided < BitsRequired ||
452       (!AllowDifferingSizes && BitsProvided != BitsRequired))
453     return false;
454 
455   return true;
456 }
457 
458 /// For an aggregate type, determine whether a given index is within bounds or
459 /// not.
460 static bool indexReallyValid(Type *T, unsigned Idx) {
461   if (ArrayType *AT = dyn_cast<ArrayType>(T))
462     return Idx < AT->getNumElements();
463 
464   return Idx < cast<StructType>(T)->getNumElements();
465 }
466 
467 /// Move the given iterators to the next leaf type in depth first traversal.
468 ///
469 /// Performs a depth-first traversal of the type as specified by its arguments,
470 /// stopping at the next leaf node (which may be a legitimate scalar type or an
471 /// empty struct or array).
472 ///
473 /// @param SubTypes List of the partial components making up the type from
474 /// outermost to innermost non-empty aggregate. The element currently
475 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
476 ///
477 /// @param Path Set of extractvalue indices leading from the outermost type
478 /// (SubTypes[0]) to the leaf node currently represented.
479 ///
480 /// @returns true if a new type was found, false otherwise. Calling this
481 /// function again on a finished iterator will repeatedly return
482 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
483 /// aggregate or a non-aggregate
484 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
485                                   SmallVectorImpl<unsigned> &Path) {
486   // First march back up the tree until we can successfully increment one of the
487   // coordinates in Path.
488   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
489     Path.pop_back();
490     SubTypes.pop_back();
491   }
492 
493   // If we reached the top, then the iterator is done.
494   if (Path.empty())
495     return false;
496 
497   // We know there's *some* valid leaf now, so march back down the tree picking
498   // out the left-most element at each node.
499   ++Path.back();
500   Type *DeeperType =
501       ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
502   while (DeeperType->isAggregateType()) {
503     if (!indexReallyValid(DeeperType, 0))
504       return true;
505 
506     SubTypes.push_back(DeeperType);
507     Path.push_back(0);
508 
509     DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
510   }
511 
512   return true;
513 }
514 
515 /// Find the first non-empty, scalar-like type in Next and setup the iterator
516 /// components.
517 ///
518 /// Assuming Next is an aggregate of some kind, this function will traverse the
519 /// tree from left to right (i.e. depth-first) looking for the first
520 /// non-aggregate type which will play a role in function return.
521 ///
522 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
523 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
524 /// i32 in that type.
525 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
526                           SmallVectorImpl<unsigned> &Path) {
527   // First initialise the iterator components to the first "leaf" node
528   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
529   // despite nominally being an aggregate).
530   while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
531     SubTypes.push_back(Next);
532     Path.push_back(0);
533     Next = FirstInner;
534   }
535 
536   // If there's no Path now, Next was originally scalar already (or empty
537   // leaf). We're done.
538   if (Path.empty())
539     return true;
540 
541   // Otherwise, use normal iteration to keep looking through the tree until we
542   // find a non-aggregate type.
543   while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
544              ->isAggregateType()) {
545     if (!advanceToNextLeafType(SubTypes, Path))
546       return false;
547   }
548 
549   return true;
550 }
551 
552 /// Set the iterator data-structures to the next non-empty, non-aggregate
553 /// subtype.
554 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
555                          SmallVectorImpl<unsigned> &Path) {
556   do {
557     if (!advanceToNextLeafType(SubTypes, Path))
558       return false;
559 
560     assert(!Path.empty() && "found a leaf but didn't set the path?");
561   } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
562                ->isAggregateType());
563 
564   return true;
565 }
566 
567 
568 /// Test if the given instruction is in a position to be optimized
569 /// with a tail-call. This roughly means that it's in a block with
570 /// a return and there's nothing that needs to be scheduled
571 /// between it and the return.
572 ///
573 /// This function only tests target-independent requirements.
574 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) {
575   const BasicBlock *ExitBB = Call.getParent();
576   const Instruction *Term = ExitBB->getTerminator();
577   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
578 
579   // The block must end in a return statement or unreachable.
580   //
581   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
582   // an unreachable, for now. The way tailcall optimization is currently
583   // implemented means it will add an epilogue followed by a jump. That is
584   // not profitable. Also, if the callee is a special function (e.g.
585   // longjmp on x86), it can end up causing miscompilation that has not
586   // been fully understood.
587   if (!Ret && ((!TM.Options.GuaranteedTailCallOpt &&
588                 Call.getCallingConv() != CallingConv::Tail &&
589                 Call.getCallingConv() != CallingConv::SwiftTail) ||
590                !isa<UnreachableInst>(Term)))
591     return false;
592 
593   // If I will have a chain, make sure no other instruction that will have a
594   // chain interposes between I and the return.
595   // Check for all calls including speculatable functions.
596   for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
597     if (&*BBI == &Call)
598       break;
599     // Debug info intrinsics do not get in the way of tail call optimization.
600     // Pseudo probe intrinsics do not block tail call optimization either.
601     if (BBI->isDebugOrPseudoInst())
602       continue;
603     // A lifetime end, assume or noalias.decl intrinsic should not stop tail
604     // call optimization.
605     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
606       if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
607           II->getIntrinsicID() == Intrinsic::assume ||
608           II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
609         continue;
610     if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
611         !isSafeToSpeculativelyExecute(&*BBI))
612       return false;
613   }
614 
615   const Function *F = ExitBB->getParent();
616   return returnTypeIsEligibleForTailCall(
617       F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
618 }
619 
620 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
621                                     const ReturnInst *Ret,
622                                     const TargetLoweringBase &TLI,
623                                     bool *AllowDifferingSizes) {
624   // ADS may be null, so don't write to it directly.
625   bool DummyADS;
626   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
627   ADS = true;
628 
629   AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs());
630   AttrBuilder CalleeAttrs(F->getContext(),
631                           cast<CallInst>(I)->getAttributes().getRetAttrs());
632 
633   // Following attributes are completely benign as far as calling convention
634   // goes, they shouldn't affect whether the call is a tail call.
635   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
636                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
637                            Attribute::NonNull, Attribute::NoUndef}) {
638     CallerAttrs.removeAttribute(Attr);
639     CalleeAttrs.removeAttribute(Attr);
640   }
641 
642   if (CallerAttrs.contains(Attribute::ZExt)) {
643     if (!CalleeAttrs.contains(Attribute::ZExt))
644       return false;
645 
646     ADS = false;
647     CallerAttrs.removeAttribute(Attribute::ZExt);
648     CalleeAttrs.removeAttribute(Attribute::ZExt);
649   } else if (CallerAttrs.contains(Attribute::SExt)) {
650     if (!CalleeAttrs.contains(Attribute::SExt))
651       return false;
652 
653     ADS = false;
654     CallerAttrs.removeAttribute(Attribute::SExt);
655     CalleeAttrs.removeAttribute(Attribute::SExt);
656   }
657 
658   // Drop sext and zext return attributes if the result is not used.
659   // This enables tail calls for code like:
660   //
661   // define void @caller() {
662   // entry:
663   //   %unused_result = tail call zeroext i1 @callee()
664   //   br label %retlabel
665   // retlabel:
666   //   ret void
667   // }
668   if (I->use_empty()) {
669     CalleeAttrs.removeAttribute(Attribute::SExt);
670     CalleeAttrs.removeAttribute(Attribute::ZExt);
671   }
672 
673   // If they're still different, there's some facet we don't understand
674   // (currently only "inreg", but in future who knows). It may be OK but the
675   // only safe option is to reject the tail call.
676   return CallerAttrs == CalleeAttrs;
677 }
678 
679 /// Check whether B is a bitcast of a pointer type to another pointer type,
680 /// which is equal to A.
681 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
682   assert(A && B && "Expected non-null inputs!");
683 
684   auto *BitCastIn = dyn_cast<BitCastInst>(B);
685 
686   if (!BitCastIn)
687     return false;
688 
689   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
690     return false;
691 
692   return A == BitCastIn->getOperand(0);
693 }
694 
695 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
696                                            const Instruction *I,
697                                            const ReturnInst *Ret,
698                                            const TargetLoweringBase &TLI) {
699   // If the block ends with a void return or unreachable, it doesn't matter
700   // what the call's return type is.
701   if (!Ret || Ret->getNumOperands() == 0) return true;
702 
703   // If the return value is undef, it doesn't matter what the call's
704   // return type is.
705   if (isa<UndefValue>(Ret->getOperand(0))) return true;
706 
707   // Make sure the attributes attached to each return are compatible.
708   bool AllowDifferingSizes;
709   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
710     return false;
711 
712   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
713   // Intrinsic like llvm.memcpy has no return value, but the expanded
714   // libcall may or may not have return value. On most platforms, it
715   // will be expanded as memcpy in libc, which returns the first
716   // argument. On other platforms like arm-none-eabi, memcpy may be
717   // expanded as library call without return value, like __aeabi_memcpy.
718   const CallInst *Call = cast<CallInst>(I);
719   if (Function *F = Call->getCalledFunction()) {
720     Intrinsic::ID IID = F->getIntrinsicID();
721     if (((IID == Intrinsic::memcpy &&
722           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
723          (IID == Intrinsic::memmove &&
724           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
725          (IID == Intrinsic::memset &&
726           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
727         (RetVal == Call->getArgOperand(0) ||
728          isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
729       return true;
730   }
731 
732   SmallVector<unsigned, 4> RetPath, CallPath;
733   SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
734 
735   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
736   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
737 
738   // Nothing's actually returned, it doesn't matter what the callee put there
739   // it's a valid tail call.
740   if (RetEmpty)
741     return true;
742 
743   // Iterate pairwise through each of the value types making up the tail call
744   // and the corresponding return. For each one we want to know whether it's
745   // essentially going directly from the tail call to the ret, via operations
746   // that end up not generating any code.
747   //
748   // We allow a certain amount of covariance here. For example it's permitted
749   // for the tail call to define more bits than the ret actually cares about
750   // (e.g. via a truncate).
751   do {
752     if (CallEmpty) {
753       // We've exhausted the values produced by the tail call instruction, the
754       // rest are essentially undef. The type doesn't really matter, but we need
755       // *something*.
756       Type *SlotType =
757           ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
758       CallVal = UndefValue::get(SlotType);
759     }
760 
761     // The manipulations performed when we're looking through an insertvalue or
762     // an extractvalue would happen at the front of the RetPath list, so since
763     // we have to copy it anyway it's more efficient to create a reversed copy.
764     SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath));
765     SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath));
766 
767     // Finally, we can check whether the value produced by the tail call at this
768     // index is compatible with the value we return.
769     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
770                               AllowDifferingSizes, TLI,
771                               F->getParent()->getDataLayout()))
772       return false;
773 
774     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
775   } while(nextRealType(RetSubTypes, RetPath));
776 
777   return true;
778 }
779 
780 static void collectEHScopeMembers(
781     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
782     const MachineBasicBlock *MBB) {
783   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
784   while (!Worklist.empty()) {
785     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
786     // Don't follow blocks which start new scopes.
787     if (Visiting->isEHPad() && Visiting != MBB)
788       continue;
789 
790     // Add this MBB to our scope.
791     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
792 
793     // Don't revisit blocks.
794     if (!P.second) {
795       assert(P.first->second == EHScope && "MBB is part of two scopes!");
796       continue;
797     }
798 
799     // Returns are boundaries where scope transfer can occur, don't follow
800     // successors.
801     if (Visiting->isEHScopeReturnBlock())
802       continue;
803 
804     append_range(Worklist, Visiting->successors());
805   }
806 }
807 
808 DenseMap<const MachineBasicBlock *, int>
809 llvm::getEHScopeMembership(const MachineFunction &MF) {
810   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
811 
812   // We don't have anything to do if there aren't any EH pads.
813   if (!MF.hasEHScopes())
814     return EHScopeMembership;
815 
816   int EntryBBNumber = MF.front().getNumber();
817   bool IsSEH = isAsynchronousEHPersonality(
818       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
819 
820   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
821   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
822   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
823   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
824   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
825   for (const MachineBasicBlock &MBB : MF) {
826     if (MBB.isEHScopeEntry()) {
827       EHScopeBlocks.push_back(&MBB);
828     } else if (IsSEH && MBB.isEHPad()) {
829       SEHCatchPads.push_back(&MBB);
830     } else if (MBB.pred_empty()) {
831       UnreachableBlocks.push_back(&MBB);
832     }
833 
834     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
835 
836     // CatchPads are not scopes for SEH so do not consider CatchRet to
837     // transfer control to another scope.
838     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
839       continue;
840 
841     // FIXME: SEH CatchPads are not necessarily in the parent function:
842     // they could be inside a finally block.
843     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
844     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
845     CatchRetSuccessors.push_back(
846         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
847   }
848 
849   // We don't have anything to do if there aren't any EH pads.
850   if (EHScopeBlocks.empty())
851     return EHScopeMembership;
852 
853   // Identify all the basic blocks reachable from the function entry.
854   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
855   // All blocks not part of a scope are in the parent function.
856   for (const MachineBasicBlock *MBB : UnreachableBlocks)
857     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
858   // Next, identify all the blocks inside the scopes.
859   for (const MachineBasicBlock *MBB : EHScopeBlocks)
860     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
861   // SEH CatchPads aren't really scopes, handle them separately.
862   for (const MachineBasicBlock *MBB : SEHCatchPads)
863     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
864   // Finally, identify all the targets of a catchret.
865   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
866        CatchRetSuccessors)
867     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
868                           CatchRetPair.first);
869   return EHScopeMembership;
870 }
871