xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/Analysis.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
30 
31 using namespace llvm;
32 
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
35 /// index list.
36 unsigned llvm::ComputeLinearIndex(Type *Ty,
37                                   const unsigned *Indices,
38                                   const unsigned *IndicesEnd,
39                                   unsigned CurIndex) {
40   // Base case: We're done.
41   if (Indices && Indices == IndicesEnd)
42     return CurIndex;
43 
44   // Given a struct type, recursively traverse the elements.
45   if (StructType *STy = dyn_cast<StructType>(Ty)) {
46     for (auto I : llvm::enumerate(STy->elements())) {
47       Type *ET = I.value();
48       if (Indices && *Indices == I.index())
49         return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex);
50       CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex);
51     }
52     assert(!Indices && "Unexpected out of bound");
53     return CurIndex;
54   }
55   // Given an array type, recursively traverse the elements.
56   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
57     Type *EltTy = ATy->getElementType();
58     unsigned NumElts = ATy->getNumElements();
59     // Compute the Linear offset when jumping one element of the array
60     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
61     if (Indices) {
62       assert(*Indices < NumElts && "Unexpected out of bound");
63       // If the indice is inside the array, compute the index to the requested
64       // elt and recurse inside the element with the end of the indices list
65       CurIndex += EltLinearOffset* *Indices;
66       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
67     }
68     CurIndex += EltLinearOffset*NumElts;
69     return CurIndex;
70   }
71   // We haven't found the type we're looking for, so keep searching.
72   return CurIndex + 1;
73 }
74 
75 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
76 /// EVTs that represent all the individual underlying
77 /// non-aggregate types that comprise it.
78 ///
79 /// If Offsets is non-null, it points to a vector to be filled in
80 /// with the in-memory offsets of each of the individual values.
81 ///
82 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
83                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
84                            SmallVectorImpl<EVT> *MemVTs,
85                            SmallVectorImpl<uint64_t> *Offsets,
86                            uint64_t StartingOffset) {
87   // Given a struct type, recursively traverse the elements.
88   if (StructType *STy = dyn_cast<StructType>(Ty)) {
89     // If the Offsets aren't needed, don't query the struct layout. This allows
90     // us to support structs with scalable vectors for operations that don't
91     // need offsets.
92     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
93     for (StructType::element_iterator EB = STy->element_begin(),
94                                       EI = EB,
95                                       EE = STy->element_end();
96          EI != EE; ++EI) {
97       // Don't compute the element offset if we didn't get a StructLayout above.
98       uint64_t EltOffset = SL ? SL->getElementOffset(EI - EB) : 0;
99       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
100                       StartingOffset + EltOffset);
101     }
102     return;
103   }
104   // Given an array type, recursively traverse the elements.
105   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
106     Type *EltTy = ATy->getElementType();
107     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
108     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
109       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
110                       StartingOffset + i * EltSize);
111     return;
112   }
113   // Interpret void as zero return values.
114   if (Ty->isVoidTy())
115     return;
116   // Base case: we can get an EVT for this LLVM IR type.
117   ValueVTs.push_back(TLI.getValueType(DL, Ty));
118   if (MemVTs)
119     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
120   if (Offsets)
121     Offsets->push_back(StartingOffset);
122 }
123 
124 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
125                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
126                            SmallVectorImpl<uint64_t> *Offsets,
127                            uint64_t StartingOffset) {
128   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
129                          StartingOffset);
130 }
131 
132 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
133                             SmallVectorImpl<LLT> &ValueTys,
134                             SmallVectorImpl<uint64_t> *Offsets,
135                             uint64_t StartingOffset) {
136   // Given a struct type, recursively traverse the elements.
137   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
138     // If the Offsets aren't needed, don't query the struct layout. This allows
139     // us to support structs with scalable vectors for operations that don't
140     // need offsets.
141     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
142     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
143       uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
144       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
145                        StartingOffset + EltOffset);
146     }
147     return;
148   }
149   // Given an array type, recursively traverse the elements.
150   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
151     Type *EltTy = ATy->getElementType();
152     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
153     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
154       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
155                        StartingOffset + i * EltSize);
156     return;
157   }
158   // Interpret void as zero return values.
159   if (Ty.isVoidTy())
160     return;
161   // Base case: we can get an LLT for this LLVM IR type.
162   ValueTys.push_back(getLLTForType(Ty, DL));
163   if (Offsets != nullptr)
164     Offsets->push_back(StartingOffset * 8);
165 }
166 
167 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
168 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
169   V = V->stripPointerCasts();
170   GlobalValue *GV = dyn_cast<GlobalValue>(V);
171   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
172 
173   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
174     assert(Var->hasInitializer() &&
175            "The EH catch-all value must have an initializer");
176     Value *Init = Var->getInitializer();
177     GV = dyn_cast<GlobalValue>(Init);
178     if (!GV) V = cast<ConstantPointerNull>(Init);
179   }
180 
181   assert((GV || isa<ConstantPointerNull>(V)) &&
182          "TypeInfo must be a global variable or NULL");
183   return GV;
184 }
185 
186 /// getFCmpCondCode - Return the ISD condition code corresponding to
187 /// the given LLVM IR floating-point condition code.  This includes
188 /// consideration of global floating-point math flags.
189 ///
190 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
191   switch (Pred) {
192   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
193   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
194   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
195   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
196   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
197   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
198   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
199   case FCmpInst::FCMP_ORD:   return ISD::SETO;
200   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
201   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
202   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
203   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
204   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
205   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
206   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
207   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
208   default: llvm_unreachable("Invalid FCmp predicate opcode!");
209   }
210 }
211 
212 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
213   switch (CC) {
214     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
215     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
216     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
217     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
218     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
219     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
220     default: return CC;
221   }
222 }
223 
224 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
225   switch (Pred) {
226   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
227   case ICmpInst::ICMP_NE:  return ISD::SETNE;
228   case ICmpInst::ICMP_SLE: return ISD::SETLE;
229   case ICmpInst::ICMP_ULE: return ISD::SETULE;
230   case ICmpInst::ICMP_SGE: return ISD::SETGE;
231   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
232   case ICmpInst::ICMP_SLT: return ISD::SETLT;
233   case ICmpInst::ICMP_ULT: return ISD::SETULT;
234   case ICmpInst::ICMP_SGT: return ISD::SETGT;
235   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
236   default:
237     llvm_unreachable("Invalid ICmp predicate opcode!");
238   }
239 }
240 
241 ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) {
242   switch (Pred) {
243   case ISD::SETEQ:
244     return ICmpInst::ICMP_EQ;
245   case ISD::SETNE:
246     return ICmpInst::ICMP_NE;
247   case ISD::SETLE:
248     return ICmpInst::ICMP_SLE;
249   case ISD::SETULE:
250     return ICmpInst::ICMP_ULE;
251   case ISD::SETGE:
252     return ICmpInst::ICMP_SGE;
253   case ISD::SETUGE:
254     return ICmpInst::ICMP_UGE;
255   case ISD::SETLT:
256     return ICmpInst::ICMP_SLT;
257   case ISD::SETULT:
258     return ICmpInst::ICMP_ULT;
259   case ISD::SETGT:
260     return ICmpInst::ICMP_SGT;
261   case ISD::SETUGT:
262     return ICmpInst::ICMP_UGT;
263   default:
264     llvm_unreachable("Invalid ISD integer condition code!");
265   }
266 }
267 
268 static bool isNoopBitcast(Type *T1, Type *T2,
269                           const TargetLoweringBase& TLI) {
270   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
271          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
272           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
273 }
274 
275 /// Look through operations that will be free to find the earliest source of
276 /// this value.
277 ///
278 /// @param ValLoc If V has aggregate type, we will be interested in a particular
279 /// scalar component. This records its address; the reverse of this list gives a
280 /// sequence of indices appropriate for an extractvalue to locate the important
281 /// value. This value is updated during the function and on exit will indicate
282 /// similar information for the Value returned.
283 ///
284 /// @param DataBits If this function looks through truncate instructions, this
285 /// will record the smallest size attained.
286 static const Value *getNoopInput(const Value *V,
287                                  SmallVectorImpl<unsigned> &ValLoc,
288                                  unsigned &DataBits,
289                                  const TargetLoweringBase &TLI,
290                                  const DataLayout &DL) {
291   while (true) {
292     // Try to look through V1; if V1 is not an instruction, it can't be looked
293     // through.
294     const Instruction *I = dyn_cast<Instruction>(V);
295     if (!I || I->getNumOperands() == 0) return V;
296     const Value *NoopInput = nullptr;
297 
298     Value *Op = I->getOperand(0);
299     if (isa<BitCastInst>(I)) {
300       // Look through truly no-op bitcasts.
301       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
302         NoopInput = Op;
303     } else if (isa<GetElementPtrInst>(I)) {
304       // Look through getelementptr
305       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
306         NoopInput = Op;
307     } else if (isa<IntToPtrInst>(I)) {
308       // Look through inttoptr.
309       // Make sure this isn't a truncating or extending cast.  We could
310       // support this eventually, but don't bother for now.
311       if (!isa<VectorType>(I->getType()) &&
312           DL.getPointerSizeInBits() ==
313               cast<IntegerType>(Op->getType())->getBitWidth())
314         NoopInput = Op;
315     } else if (isa<PtrToIntInst>(I)) {
316       // Look through ptrtoint.
317       // Make sure this isn't a truncating or extending cast.  We could
318       // support this eventually, but don't bother for now.
319       if (!isa<VectorType>(I->getType()) &&
320           DL.getPointerSizeInBits() ==
321               cast<IntegerType>(I->getType())->getBitWidth())
322         NoopInput = Op;
323     } else if (isa<TruncInst>(I) &&
324                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
325       DataBits = std::min((uint64_t)DataBits,
326                          I->getType()->getPrimitiveSizeInBits().getFixedSize());
327       NoopInput = Op;
328     } else if (auto *CB = dyn_cast<CallBase>(I)) {
329       const Value *ReturnedOp = CB->getReturnedArgOperand();
330       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
331         NoopInput = ReturnedOp;
332     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
333       // Value may come from either the aggregate or the scalar
334       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
335       if (ValLoc.size() >= InsertLoc.size() &&
336           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
337         // The type being inserted is a nested sub-type of the aggregate; we
338         // have to remove those initial indices to get the location we're
339         // interested in for the operand.
340         ValLoc.resize(ValLoc.size() - InsertLoc.size());
341         NoopInput = IVI->getInsertedValueOperand();
342       } else {
343         // The struct we're inserting into has the value we're interested in, no
344         // change of address.
345         NoopInput = Op;
346       }
347     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
348       // The part we're interested in will inevitably be some sub-section of the
349       // previous aggregate. Combine the two paths to obtain the true address of
350       // our element.
351       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
352       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
353       NoopInput = Op;
354     }
355     // Terminate if we couldn't find anything to look through.
356     if (!NoopInput)
357       return V;
358 
359     V = NoopInput;
360   }
361 }
362 
363 /// Return true if this scalar return value only has bits discarded on its path
364 /// from the "tail call" to the "ret". This includes the obvious noop
365 /// instructions handled by getNoopInput above as well as free truncations (or
366 /// extensions prior to the call).
367 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
368                                  SmallVectorImpl<unsigned> &RetIndices,
369                                  SmallVectorImpl<unsigned> &CallIndices,
370                                  bool AllowDifferingSizes,
371                                  const TargetLoweringBase &TLI,
372                                  const DataLayout &DL) {
373 
374   // Trace the sub-value needed by the return value as far back up the graph as
375   // possible, in the hope that it will intersect with the value produced by the
376   // call. In the simple case with no "returned" attribute, the hope is actually
377   // that we end up back at the tail call instruction itself.
378   unsigned BitsRequired = UINT_MAX;
379   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
380 
381   // If this slot in the value returned is undef, it doesn't matter what the
382   // call puts there, it'll be fine.
383   if (isa<UndefValue>(RetVal))
384     return true;
385 
386   // Now do a similar search up through the graph to find where the value
387   // actually returned by the "tail call" comes from. In the simple case without
388   // a "returned" attribute, the search will be blocked immediately and the loop
389   // a Noop.
390   unsigned BitsProvided = UINT_MAX;
391   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
392 
393   // There's no hope if we can't actually trace them to (the same part of!) the
394   // same value.
395   if (CallVal != RetVal || CallIndices != RetIndices)
396     return false;
397 
398   // However, intervening truncates may have made the call non-tail. Make sure
399   // all the bits that are needed by the "ret" have been provided by the "tail
400   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
401   // extensions too.
402   if (BitsProvided < BitsRequired ||
403       (!AllowDifferingSizes && BitsProvided != BitsRequired))
404     return false;
405 
406   return true;
407 }
408 
409 /// For an aggregate type, determine whether a given index is within bounds or
410 /// not.
411 static bool indexReallyValid(Type *T, unsigned Idx) {
412   if (ArrayType *AT = dyn_cast<ArrayType>(T))
413     return Idx < AT->getNumElements();
414 
415   return Idx < cast<StructType>(T)->getNumElements();
416 }
417 
418 /// Move the given iterators to the next leaf type in depth first traversal.
419 ///
420 /// Performs a depth-first traversal of the type as specified by its arguments,
421 /// stopping at the next leaf node (which may be a legitimate scalar type or an
422 /// empty struct or array).
423 ///
424 /// @param SubTypes List of the partial components making up the type from
425 /// outermost to innermost non-empty aggregate. The element currently
426 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
427 ///
428 /// @param Path Set of extractvalue indices leading from the outermost type
429 /// (SubTypes[0]) to the leaf node currently represented.
430 ///
431 /// @returns true if a new type was found, false otherwise. Calling this
432 /// function again on a finished iterator will repeatedly return
433 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
434 /// aggregate or a non-aggregate
435 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
436                                   SmallVectorImpl<unsigned> &Path) {
437   // First march back up the tree until we can successfully increment one of the
438   // coordinates in Path.
439   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
440     Path.pop_back();
441     SubTypes.pop_back();
442   }
443 
444   // If we reached the top, then the iterator is done.
445   if (Path.empty())
446     return false;
447 
448   // We know there's *some* valid leaf now, so march back down the tree picking
449   // out the left-most element at each node.
450   ++Path.back();
451   Type *DeeperType =
452       ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
453   while (DeeperType->isAggregateType()) {
454     if (!indexReallyValid(DeeperType, 0))
455       return true;
456 
457     SubTypes.push_back(DeeperType);
458     Path.push_back(0);
459 
460     DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
461   }
462 
463   return true;
464 }
465 
466 /// Find the first non-empty, scalar-like type in Next and setup the iterator
467 /// components.
468 ///
469 /// Assuming Next is an aggregate of some kind, this function will traverse the
470 /// tree from left to right (i.e. depth-first) looking for the first
471 /// non-aggregate type which will play a role in function return.
472 ///
473 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
474 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
475 /// i32 in that type.
476 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
477                           SmallVectorImpl<unsigned> &Path) {
478   // First initialise the iterator components to the first "leaf" node
479   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
480   // despite nominally being an aggregate).
481   while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
482     SubTypes.push_back(Next);
483     Path.push_back(0);
484     Next = FirstInner;
485   }
486 
487   // If there's no Path now, Next was originally scalar already (or empty
488   // leaf). We're done.
489   if (Path.empty())
490     return true;
491 
492   // Otherwise, use normal iteration to keep looking through the tree until we
493   // find a non-aggregate type.
494   while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
495              ->isAggregateType()) {
496     if (!advanceToNextLeafType(SubTypes, Path))
497       return false;
498   }
499 
500   return true;
501 }
502 
503 /// Set the iterator data-structures to the next non-empty, non-aggregate
504 /// subtype.
505 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
506                          SmallVectorImpl<unsigned> &Path) {
507   do {
508     if (!advanceToNextLeafType(SubTypes, Path))
509       return false;
510 
511     assert(!Path.empty() && "found a leaf but didn't set the path?");
512   } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
513                ->isAggregateType());
514 
515   return true;
516 }
517 
518 
519 /// Test if the given instruction is in a position to be optimized
520 /// with a tail-call. This roughly means that it's in a block with
521 /// a return and there's nothing that needs to be scheduled
522 /// between it and the return.
523 ///
524 /// This function only tests target-independent requirements.
525 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) {
526   const BasicBlock *ExitBB = Call.getParent();
527   const Instruction *Term = ExitBB->getTerminator();
528   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
529 
530   // The block must end in a return statement or unreachable.
531   //
532   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
533   // an unreachable, for now. The way tailcall optimization is currently
534   // implemented means it will add an epilogue followed by a jump. That is
535   // not profitable. Also, if the callee is a special function (e.g.
536   // longjmp on x86), it can end up causing miscompilation that has not
537   // been fully understood.
538   if (!Ret && ((!TM.Options.GuaranteedTailCallOpt &&
539                 Call.getCallingConv() != CallingConv::Tail &&
540                 Call.getCallingConv() != CallingConv::SwiftTail) ||
541                !isa<UnreachableInst>(Term)))
542     return false;
543 
544   // If I will have a chain, make sure no other instruction that will have a
545   // chain interposes between I and the return.
546   // Check for all calls including speculatable functions.
547   for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
548     if (&*BBI == &Call)
549       break;
550     // Debug info intrinsics do not get in the way of tail call optimization.
551     // Pseudo probe intrinsics do not block tail call optimization either.
552     if (BBI->isDebugOrPseudoInst())
553       continue;
554     // A lifetime end, assume or noalias.decl intrinsic should not stop tail
555     // call optimization.
556     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
557       if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
558           II->getIntrinsicID() == Intrinsic::assume ||
559           II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
560         continue;
561     if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
562         !isSafeToSpeculativelyExecute(&*BBI))
563       return false;
564   }
565 
566   const Function *F = ExitBB->getParent();
567   return returnTypeIsEligibleForTailCall(
568       F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
569 }
570 
571 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
572                                     const ReturnInst *Ret,
573                                     const TargetLoweringBase &TLI,
574                                     bool *AllowDifferingSizes) {
575   // ADS may be null, so don't write to it directly.
576   bool DummyADS;
577   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
578   ADS = true;
579 
580   AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs());
581   AttrBuilder CalleeAttrs(F->getContext(),
582                           cast<CallInst>(I)->getAttributes().getRetAttrs());
583 
584   // Following attributes are completely benign as far as calling convention
585   // goes, they shouldn't affect whether the call is a tail call.
586   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
587                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
588                            Attribute::NonNull, Attribute::NoUndef}) {
589     CallerAttrs.removeAttribute(Attr);
590     CalleeAttrs.removeAttribute(Attr);
591   }
592 
593   if (CallerAttrs.contains(Attribute::ZExt)) {
594     if (!CalleeAttrs.contains(Attribute::ZExt))
595       return false;
596 
597     ADS = false;
598     CallerAttrs.removeAttribute(Attribute::ZExt);
599     CalleeAttrs.removeAttribute(Attribute::ZExt);
600   } else if (CallerAttrs.contains(Attribute::SExt)) {
601     if (!CalleeAttrs.contains(Attribute::SExt))
602       return false;
603 
604     ADS = false;
605     CallerAttrs.removeAttribute(Attribute::SExt);
606     CalleeAttrs.removeAttribute(Attribute::SExt);
607   }
608 
609   // Drop sext and zext return attributes if the result is not used.
610   // This enables tail calls for code like:
611   //
612   // define void @caller() {
613   // entry:
614   //   %unused_result = tail call zeroext i1 @callee()
615   //   br label %retlabel
616   // retlabel:
617   //   ret void
618   // }
619   if (I->use_empty()) {
620     CalleeAttrs.removeAttribute(Attribute::SExt);
621     CalleeAttrs.removeAttribute(Attribute::ZExt);
622   }
623 
624   // If they're still different, there's some facet we don't understand
625   // (currently only "inreg", but in future who knows). It may be OK but the
626   // only safe option is to reject the tail call.
627   return CallerAttrs == CalleeAttrs;
628 }
629 
630 /// Check whether B is a bitcast of a pointer type to another pointer type,
631 /// which is equal to A.
632 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
633   assert(A && B && "Expected non-null inputs!");
634 
635   auto *BitCastIn = dyn_cast<BitCastInst>(B);
636 
637   if (!BitCastIn)
638     return false;
639 
640   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
641     return false;
642 
643   return A == BitCastIn->getOperand(0);
644 }
645 
646 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
647                                            const Instruction *I,
648                                            const ReturnInst *Ret,
649                                            const TargetLoweringBase &TLI) {
650   // If the block ends with a void return or unreachable, it doesn't matter
651   // what the call's return type is.
652   if (!Ret || Ret->getNumOperands() == 0) return true;
653 
654   // If the return value is undef, it doesn't matter what the call's
655   // return type is.
656   if (isa<UndefValue>(Ret->getOperand(0))) return true;
657 
658   // Make sure the attributes attached to each return are compatible.
659   bool AllowDifferingSizes;
660   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
661     return false;
662 
663   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
664   // Intrinsic like llvm.memcpy has no return value, but the expanded
665   // libcall may or may not have return value. On most platforms, it
666   // will be expanded as memcpy in libc, which returns the first
667   // argument. On other platforms like arm-none-eabi, memcpy may be
668   // expanded as library call without return value, like __aeabi_memcpy.
669   const CallInst *Call = cast<CallInst>(I);
670   if (Function *F = Call->getCalledFunction()) {
671     Intrinsic::ID IID = F->getIntrinsicID();
672     if (((IID == Intrinsic::memcpy &&
673           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
674          (IID == Intrinsic::memmove &&
675           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
676          (IID == Intrinsic::memset &&
677           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
678         (RetVal == Call->getArgOperand(0) ||
679          isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
680       return true;
681   }
682 
683   SmallVector<unsigned, 4> RetPath, CallPath;
684   SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
685 
686   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
687   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
688 
689   // Nothing's actually returned, it doesn't matter what the callee put there
690   // it's a valid tail call.
691   if (RetEmpty)
692     return true;
693 
694   // Iterate pairwise through each of the value types making up the tail call
695   // and the corresponding return. For each one we want to know whether it's
696   // essentially going directly from the tail call to the ret, via operations
697   // that end up not generating any code.
698   //
699   // We allow a certain amount of covariance here. For example it's permitted
700   // for the tail call to define more bits than the ret actually cares about
701   // (e.g. via a truncate).
702   do {
703     if (CallEmpty) {
704       // We've exhausted the values produced by the tail call instruction, the
705       // rest are essentially undef. The type doesn't really matter, but we need
706       // *something*.
707       Type *SlotType =
708           ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
709       CallVal = UndefValue::get(SlotType);
710     }
711 
712     // The manipulations performed when we're looking through an insertvalue or
713     // an extractvalue would happen at the front of the RetPath list, so since
714     // we have to copy it anyway it's more efficient to create a reversed copy.
715     SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath));
716     SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath));
717 
718     // Finally, we can check whether the value produced by the tail call at this
719     // index is compatible with the value we return.
720     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
721                               AllowDifferingSizes, TLI,
722                               F->getParent()->getDataLayout()))
723       return false;
724 
725     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
726   } while(nextRealType(RetSubTypes, RetPath));
727 
728   return true;
729 }
730 
731 static void collectEHScopeMembers(
732     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
733     const MachineBasicBlock *MBB) {
734   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
735   while (!Worklist.empty()) {
736     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
737     // Don't follow blocks which start new scopes.
738     if (Visiting->isEHPad() && Visiting != MBB)
739       continue;
740 
741     // Add this MBB to our scope.
742     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
743 
744     // Don't revisit blocks.
745     if (!P.second) {
746       assert(P.first->second == EHScope && "MBB is part of two scopes!");
747       continue;
748     }
749 
750     // Returns are boundaries where scope transfer can occur, don't follow
751     // successors.
752     if (Visiting->isEHScopeReturnBlock())
753       continue;
754 
755     append_range(Worklist, Visiting->successors());
756   }
757 }
758 
759 DenseMap<const MachineBasicBlock *, int>
760 llvm::getEHScopeMembership(const MachineFunction &MF) {
761   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
762 
763   // We don't have anything to do if there aren't any EH pads.
764   if (!MF.hasEHScopes())
765     return EHScopeMembership;
766 
767   int EntryBBNumber = MF.front().getNumber();
768   bool IsSEH = isAsynchronousEHPersonality(
769       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
770 
771   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
772   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
773   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
774   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
775   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
776   for (const MachineBasicBlock &MBB : MF) {
777     if (MBB.isEHScopeEntry()) {
778       EHScopeBlocks.push_back(&MBB);
779     } else if (IsSEH && MBB.isEHPad()) {
780       SEHCatchPads.push_back(&MBB);
781     } else if (MBB.pred_empty()) {
782       UnreachableBlocks.push_back(&MBB);
783     }
784 
785     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
786 
787     // CatchPads are not scopes for SEH so do not consider CatchRet to
788     // transfer control to another scope.
789     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
790       continue;
791 
792     // FIXME: SEH CatchPads are not necessarily in the parent function:
793     // they could be inside a finally block.
794     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
795     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
796     CatchRetSuccessors.push_back(
797         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
798   }
799 
800   // We don't have anything to do if there aren't any EH pads.
801   if (EHScopeBlocks.empty())
802     return EHScopeMembership;
803 
804   // Identify all the basic blocks reachable from the function entry.
805   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
806   // All blocks not part of a scope are in the parent function.
807   for (const MachineBasicBlock *MBB : UnreachableBlocks)
808     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
809   // Next, identify all the blocks inside the scopes.
810   for (const MachineBasicBlock *MBB : EHScopeBlocks)
811     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
812   // SEH CatchPads aren't really scopes, handle them separately.
813   for (const MachineBasicBlock *MBB : SEHCatchPads)
814     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
815   // Finally, identify all the targets of a catchret.
816   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
817        CatchRetSuccessors)
818     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
819                           CatchRetPair.first);
820   return EHScopeMembership;
821 }
822