1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Transforms/Utils/GlobalStatus.h" 30 31 using namespace llvm; 32 33 /// Compute the linearized index of a member in a nested aggregate/struct/array 34 /// by recursing and accumulating CurIndex as long as there are indices in the 35 /// index list. 36 unsigned llvm::ComputeLinearIndex(Type *Ty, 37 const unsigned *Indices, 38 const unsigned *IndicesEnd, 39 unsigned CurIndex) { 40 // Base case: We're done. 41 if (Indices && Indices == IndicesEnd) 42 return CurIndex; 43 44 // Given a struct type, recursively traverse the elements. 45 if (StructType *STy = dyn_cast<StructType>(Ty)) { 46 for (StructType::element_iterator EB = STy->element_begin(), 47 EI = EB, 48 EE = STy->element_end(); 49 EI != EE; ++EI) { 50 if (Indices && *Indices == unsigned(EI - EB)) 51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53 } 54 assert(!Indices && "Unexpected out of bound"); 55 return CurIndex; 56 } 57 // Given an array type, recursively traverse the elements. 58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59 Type *EltTy = ATy->getElementType(); 60 unsigned NumElts = ATy->getNumElements(); 61 // Compute the Linear offset when jumping one element of the array 62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 63 if (Indices) { 64 assert(*Indices < NumElts && "Unexpected out of bound"); 65 // If the indice is inside the array, compute the index to the requested 66 // elt and recurse inside the element with the end of the indices list 67 CurIndex += EltLinearOffset* *Indices; 68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69 } 70 CurIndex += EltLinearOffset*NumElts; 71 return CurIndex; 72 } 73 // We haven't found the type we're looking for, so keep searching. 74 return CurIndex + 1; 75 } 76 77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78 /// EVTs that represent all the individual underlying 79 /// non-aggregate types that comprise it. 80 /// 81 /// If Offsets is non-null, it points to a vector to be filled in 82 /// with the in-memory offsets of each of the individual values. 83 /// 84 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 85 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 86 SmallVectorImpl<EVT> *MemVTs, 87 SmallVectorImpl<uint64_t> *Offsets, 88 uint64_t StartingOffset) { 89 // Given a struct type, recursively traverse the elements. 90 if (StructType *STy = dyn_cast<StructType>(Ty)) { 91 const StructLayout *SL = DL.getStructLayout(STy); 92 for (StructType::element_iterator EB = STy->element_begin(), 93 EI = EB, 94 EE = STy->element_end(); 95 EI != EE; ++EI) 96 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 97 StartingOffset + SL->getElementOffset(EI - EB)); 98 return; 99 } 100 // Given an array type, recursively traverse the elements. 101 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 102 Type *EltTy = ATy->getElementType(); 103 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 104 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 105 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 106 StartingOffset + i * EltSize); 107 return; 108 } 109 // Interpret void as zero return values. 110 if (Ty->isVoidTy()) 111 return; 112 // Base case: we can get an EVT for this LLVM IR type. 113 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 114 if (MemVTs) 115 MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 116 if (Offsets) 117 Offsets->push_back(StartingOffset); 118 } 119 120 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 121 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 122 SmallVectorImpl<uint64_t> *Offsets, 123 uint64_t StartingOffset) { 124 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 125 StartingOffset); 126 } 127 128 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 129 SmallVectorImpl<LLT> &ValueTys, 130 SmallVectorImpl<uint64_t> *Offsets, 131 uint64_t StartingOffset) { 132 // Given a struct type, recursively traverse the elements. 133 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 134 const StructLayout *SL = DL.getStructLayout(STy); 135 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 136 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 137 StartingOffset + SL->getElementOffset(I)); 138 return; 139 } 140 // Given an array type, recursively traverse the elements. 141 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 142 Type *EltTy = ATy->getElementType(); 143 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 144 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 145 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 146 StartingOffset + i * EltSize); 147 return; 148 } 149 // Interpret void as zero return values. 150 if (Ty.isVoidTy()) 151 return; 152 // Base case: we can get an LLT for this LLVM IR type. 153 ValueTys.push_back(getLLTForType(Ty, DL)); 154 if (Offsets != nullptr) 155 Offsets->push_back(StartingOffset * 8); 156 } 157 158 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 159 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 160 V = V->stripPointerCasts(); 161 GlobalValue *GV = dyn_cast<GlobalValue>(V); 162 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 163 164 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 165 assert(Var->hasInitializer() && 166 "The EH catch-all value must have an initializer"); 167 Value *Init = Var->getInitializer(); 168 GV = dyn_cast<GlobalValue>(Init); 169 if (!GV) V = cast<ConstantPointerNull>(Init); 170 } 171 172 assert((GV || isa<ConstantPointerNull>(V)) && 173 "TypeInfo must be a global variable or NULL"); 174 return GV; 175 } 176 177 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 178 /// processed uses a memory 'm' constraint. 179 bool 180 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 181 const TargetLowering &TLI) { 182 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 183 InlineAsm::ConstraintInfo &CI = CInfos[i]; 184 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 185 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 186 if (CType == TargetLowering::C_Memory) 187 return true; 188 } 189 190 // Indirect operand accesses access memory. 191 if (CI.isIndirect) 192 return true; 193 } 194 195 return false; 196 } 197 198 /// getFCmpCondCode - Return the ISD condition code corresponding to 199 /// the given LLVM IR floating-point condition code. This includes 200 /// consideration of global floating-point math flags. 201 /// 202 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 203 switch (Pred) { 204 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 205 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 206 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 207 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 208 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 209 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 210 case FCmpInst::FCMP_ONE: return ISD::SETONE; 211 case FCmpInst::FCMP_ORD: return ISD::SETO; 212 case FCmpInst::FCMP_UNO: return ISD::SETUO; 213 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 214 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 215 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 216 case FCmpInst::FCMP_ULT: return ISD::SETULT; 217 case FCmpInst::FCMP_ULE: return ISD::SETULE; 218 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 219 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 220 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 221 } 222 } 223 224 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 225 switch (CC) { 226 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 227 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 228 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 229 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 230 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 231 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 232 default: return CC; 233 } 234 } 235 236 /// getICmpCondCode - Return the ISD condition code corresponding to 237 /// the given LLVM IR integer condition code. 238 /// 239 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 240 switch (Pred) { 241 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 242 case ICmpInst::ICMP_NE: return ISD::SETNE; 243 case ICmpInst::ICMP_SLE: return ISD::SETLE; 244 case ICmpInst::ICMP_ULE: return ISD::SETULE; 245 case ICmpInst::ICMP_SGE: return ISD::SETGE; 246 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 247 case ICmpInst::ICMP_SLT: return ISD::SETLT; 248 case ICmpInst::ICMP_ULT: return ISD::SETULT; 249 case ICmpInst::ICMP_SGT: return ISD::SETGT; 250 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 251 default: 252 llvm_unreachable("Invalid ICmp predicate opcode!"); 253 } 254 } 255 256 static bool isNoopBitcast(Type *T1, Type *T2, 257 const TargetLoweringBase& TLI) { 258 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 259 (isa<VectorType>(T1) && isa<VectorType>(T2) && 260 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 261 } 262 263 /// Look through operations that will be free to find the earliest source of 264 /// this value. 265 /// 266 /// @param ValLoc If V has aggregate type, we will be interested in a particular 267 /// scalar component. This records its address; the reverse of this list gives a 268 /// sequence of indices appropriate for an extractvalue to locate the important 269 /// value. This value is updated during the function and on exit will indicate 270 /// similar information for the Value returned. 271 /// 272 /// @param DataBits If this function looks through truncate instructions, this 273 /// will record the smallest size attained. 274 static const Value *getNoopInput(const Value *V, 275 SmallVectorImpl<unsigned> &ValLoc, 276 unsigned &DataBits, 277 const TargetLoweringBase &TLI, 278 const DataLayout &DL) { 279 while (true) { 280 // Try to look through V1; if V1 is not an instruction, it can't be looked 281 // through. 282 const Instruction *I = dyn_cast<Instruction>(V); 283 if (!I || I->getNumOperands() == 0) return V; 284 const Value *NoopInput = nullptr; 285 286 Value *Op = I->getOperand(0); 287 if (isa<BitCastInst>(I)) { 288 // Look through truly no-op bitcasts. 289 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 290 NoopInput = Op; 291 } else if (isa<GetElementPtrInst>(I)) { 292 // Look through getelementptr 293 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 294 NoopInput = Op; 295 } else if (isa<IntToPtrInst>(I)) { 296 // Look through inttoptr. 297 // Make sure this isn't a truncating or extending cast. We could 298 // support this eventually, but don't bother for now. 299 if (!isa<VectorType>(I->getType()) && 300 DL.getPointerSizeInBits() == 301 cast<IntegerType>(Op->getType())->getBitWidth()) 302 NoopInput = Op; 303 } else if (isa<PtrToIntInst>(I)) { 304 // Look through ptrtoint. 305 // Make sure this isn't a truncating or extending cast. We could 306 // support this eventually, but don't bother for now. 307 if (!isa<VectorType>(I->getType()) && 308 DL.getPointerSizeInBits() == 309 cast<IntegerType>(I->getType())->getBitWidth()) 310 NoopInput = Op; 311 } else if (isa<TruncInst>(I) && 312 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 313 DataBits = std::min((uint64_t)DataBits, 314 I->getType()->getPrimitiveSizeInBits().getFixedSize()); 315 NoopInput = Op; 316 } else if (auto *CB = dyn_cast<CallBase>(I)) { 317 const Value *ReturnedOp = CB->getReturnedArgOperand(); 318 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 319 NoopInput = ReturnedOp; 320 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 321 // Value may come from either the aggregate or the scalar 322 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 323 if (ValLoc.size() >= InsertLoc.size() && 324 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 325 // The type being inserted is a nested sub-type of the aggregate; we 326 // have to remove those initial indices to get the location we're 327 // interested in for the operand. 328 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 329 NoopInput = IVI->getInsertedValueOperand(); 330 } else { 331 // The struct we're inserting into has the value we're interested in, no 332 // change of address. 333 NoopInput = Op; 334 } 335 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 336 // The part we're interested in will inevitably be some sub-section of the 337 // previous aggregate. Combine the two paths to obtain the true address of 338 // our element. 339 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 340 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 341 NoopInput = Op; 342 } 343 // Terminate if we couldn't find anything to look through. 344 if (!NoopInput) 345 return V; 346 347 V = NoopInput; 348 } 349 } 350 351 /// Return true if this scalar return value only has bits discarded on its path 352 /// from the "tail call" to the "ret". This includes the obvious noop 353 /// instructions handled by getNoopInput above as well as free truncations (or 354 /// extensions prior to the call). 355 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 356 SmallVectorImpl<unsigned> &RetIndices, 357 SmallVectorImpl<unsigned> &CallIndices, 358 bool AllowDifferingSizes, 359 const TargetLoweringBase &TLI, 360 const DataLayout &DL) { 361 362 // Trace the sub-value needed by the return value as far back up the graph as 363 // possible, in the hope that it will intersect with the value produced by the 364 // call. In the simple case with no "returned" attribute, the hope is actually 365 // that we end up back at the tail call instruction itself. 366 unsigned BitsRequired = UINT_MAX; 367 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 368 369 // If this slot in the value returned is undef, it doesn't matter what the 370 // call puts there, it'll be fine. 371 if (isa<UndefValue>(RetVal)) 372 return true; 373 374 // Now do a similar search up through the graph to find where the value 375 // actually returned by the "tail call" comes from. In the simple case without 376 // a "returned" attribute, the search will be blocked immediately and the loop 377 // a Noop. 378 unsigned BitsProvided = UINT_MAX; 379 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 380 381 // There's no hope if we can't actually trace them to (the same part of!) the 382 // same value. 383 if (CallVal != RetVal || CallIndices != RetIndices) 384 return false; 385 386 // However, intervening truncates may have made the call non-tail. Make sure 387 // all the bits that are needed by the "ret" have been provided by the "tail 388 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 389 // extensions too. 390 if (BitsProvided < BitsRequired || 391 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 392 return false; 393 394 return true; 395 } 396 397 /// For an aggregate type, determine whether a given index is within bounds or 398 /// not. 399 static bool indexReallyValid(Type *T, unsigned Idx) { 400 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 401 return Idx < AT->getNumElements(); 402 403 return Idx < cast<StructType>(T)->getNumElements(); 404 } 405 406 /// Move the given iterators to the next leaf type in depth first traversal. 407 /// 408 /// Performs a depth-first traversal of the type as specified by its arguments, 409 /// stopping at the next leaf node (which may be a legitimate scalar type or an 410 /// empty struct or array). 411 /// 412 /// @param SubTypes List of the partial components making up the type from 413 /// outermost to innermost non-empty aggregate. The element currently 414 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 415 /// 416 /// @param Path Set of extractvalue indices leading from the outermost type 417 /// (SubTypes[0]) to the leaf node currently represented. 418 /// 419 /// @returns true if a new type was found, false otherwise. Calling this 420 /// function again on a finished iterator will repeatedly return 421 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 422 /// aggregate or a non-aggregate 423 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, 424 SmallVectorImpl<unsigned> &Path) { 425 // First march back up the tree until we can successfully increment one of the 426 // coordinates in Path. 427 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 428 Path.pop_back(); 429 SubTypes.pop_back(); 430 } 431 432 // If we reached the top, then the iterator is done. 433 if (Path.empty()) 434 return false; 435 436 // We know there's *some* valid leaf now, so march back down the tree picking 437 // out the left-most element at each node. 438 ++Path.back(); 439 Type *DeeperType = 440 ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()); 441 while (DeeperType->isAggregateType()) { 442 if (!indexReallyValid(DeeperType, 0)) 443 return true; 444 445 SubTypes.push_back(DeeperType); 446 Path.push_back(0); 447 448 DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0); 449 } 450 451 return true; 452 } 453 454 /// Find the first non-empty, scalar-like type in Next and setup the iterator 455 /// components. 456 /// 457 /// Assuming Next is an aggregate of some kind, this function will traverse the 458 /// tree from left to right (i.e. depth-first) looking for the first 459 /// non-aggregate type which will play a role in function return. 460 /// 461 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 462 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 463 /// i32 in that type. 464 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, 465 SmallVectorImpl<unsigned> &Path) { 466 // First initialise the iterator components to the first "leaf" node 467 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 468 // despite nominally being an aggregate). 469 while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) { 470 SubTypes.push_back(Next); 471 Path.push_back(0); 472 Next = FirstInner; 473 } 474 475 // If there's no Path now, Next was originally scalar already (or empty 476 // leaf). We're done. 477 if (Path.empty()) 478 return true; 479 480 // Otherwise, use normal iteration to keep looking through the tree until we 481 // find a non-aggregate type. 482 while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 483 ->isAggregateType()) { 484 if (!advanceToNextLeafType(SubTypes, Path)) 485 return false; 486 } 487 488 return true; 489 } 490 491 /// Set the iterator data-structures to the next non-empty, non-aggregate 492 /// subtype. 493 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, 494 SmallVectorImpl<unsigned> &Path) { 495 do { 496 if (!advanceToNextLeafType(SubTypes, Path)) 497 return false; 498 499 assert(!Path.empty() && "found a leaf but didn't set the path?"); 500 } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 501 ->isAggregateType()); 502 503 return true; 504 } 505 506 507 /// Test if the given instruction is in a position to be optimized 508 /// with a tail-call. This roughly means that it's in a block with 509 /// a return and there's nothing that needs to be scheduled 510 /// between it and the return. 511 /// 512 /// This function only tests target-independent requirements. 513 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) { 514 const BasicBlock *ExitBB = Call.getParent(); 515 const Instruction *Term = ExitBB->getTerminator(); 516 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 517 518 // The block must end in a return statement or unreachable. 519 // 520 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 521 // an unreachable, for now. The way tailcall optimization is currently 522 // implemented means it will add an epilogue followed by a jump. That is 523 // not profitable. Also, if the callee is a special function (e.g. 524 // longjmp on x86), it can end up causing miscompilation that has not 525 // been fully understood. 526 if (!Ret && 527 ((!TM.Options.GuaranteedTailCallOpt && 528 Call.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) 529 return false; 530 531 // If I will have a chain, make sure no other instruction that will have a 532 // chain interposes between I and the return. 533 // Check for all calls including speculatable functions. 534 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 535 if (&*BBI == &Call) 536 break; 537 // Debug info intrinsics do not get in the way of tail call optimization. 538 if (isa<DbgInfoIntrinsic>(BBI)) 539 continue; 540 // A lifetime end or assume intrinsic should not stop tail call 541 // optimization. 542 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 543 if (II->getIntrinsicID() == Intrinsic::lifetime_end || 544 II->getIntrinsicID() == Intrinsic::assume) 545 continue; 546 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 547 !isSafeToSpeculativelyExecute(&*BBI)) 548 return false; 549 } 550 551 const Function *F = ExitBB->getParent(); 552 return returnTypeIsEligibleForTailCall( 553 F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 554 } 555 556 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 557 const ReturnInst *Ret, 558 const TargetLoweringBase &TLI, 559 bool *AllowDifferingSizes) { 560 // ADS may be null, so don't write to it directly. 561 bool DummyADS; 562 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 563 ADS = true; 564 565 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 566 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 567 AttributeList::ReturnIndex); 568 569 // Following attributes are completely benign as far as calling convention 570 // goes, they shouldn't affect whether the call is a tail call. 571 CallerAttrs.removeAttribute(Attribute::NoAlias); 572 CalleeAttrs.removeAttribute(Attribute::NoAlias); 573 CallerAttrs.removeAttribute(Attribute::NonNull); 574 CalleeAttrs.removeAttribute(Attribute::NonNull); 575 CallerAttrs.removeAttribute(Attribute::Dereferenceable); 576 CalleeAttrs.removeAttribute(Attribute::Dereferenceable); 577 CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull); 578 CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull); 579 580 if (CallerAttrs.contains(Attribute::ZExt)) { 581 if (!CalleeAttrs.contains(Attribute::ZExt)) 582 return false; 583 584 ADS = false; 585 CallerAttrs.removeAttribute(Attribute::ZExt); 586 CalleeAttrs.removeAttribute(Attribute::ZExt); 587 } else if (CallerAttrs.contains(Attribute::SExt)) { 588 if (!CalleeAttrs.contains(Attribute::SExt)) 589 return false; 590 591 ADS = false; 592 CallerAttrs.removeAttribute(Attribute::SExt); 593 CalleeAttrs.removeAttribute(Attribute::SExt); 594 } 595 596 // Drop sext and zext return attributes if the result is not used. 597 // This enables tail calls for code like: 598 // 599 // define void @caller() { 600 // entry: 601 // %unused_result = tail call zeroext i1 @callee() 602 // br label %retlabel 603 // retlabel: 604 // ret void 605 // } 606 if (I->use_empty()) { 607 CalleeAttrs.removeAttribute(Attribute::SExt); 608 CalleeAttrs.removeAttribute(Attribute::ZExt); 609 } 610 611 // If they're still different, there's some facet we don't understand 612 // (currently only "inreg", but in future who knows). It may be OK but the 613 // only safe option is to reject the tail call. 614 return CallerAttrs == CalleeAttrs; 615 } 616 617 /// Check whether B is a bitcast of a pointer type to another pointer type, 618 /// which is equal to A. 619 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) { 620 assert(A && B && "Expected non-null inputs!"); 621 622 auto *BitCastIn = dyn_cast<BitCastInst>(B); 623 624 if (!BitCastIn) 625 return false; 626 627 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 628 return false; 629 630 return A == BitCastIn->getOperand(0); 631 } 632 633 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 634 const Instruction *I, 635 const ReturnInst *Ret, 636 const TargetLoweringBase &TLI) { 637 // If the block ends with a void return or unreachable, it doesn't matter 638 // what the call's return type is. 639 if (!Ret || Ret->getNumOperands() == 0) return true; 640 641 // If the return value is undef, it doesn't matter what the call's 642 // return type is. 643 if (isa<UndefValue>(Ret->getOperand(0))) return true; 644 645 // Make sure the attributes attached to each return are compatible. 646 bool AllowDifferingSizes; 647 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 648 return false; 649 650 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 651 // Intrinsic like llvm.memcpy has no return value, but the expanded 652 // libcall may or may not have return value. On most platforms, it 653 // will be expanded as memcpy in libc, which returns the first 654 // argument. On other platforms like arm-none-eabi, memcpy may be 655 // expanded as library call without return value, like __aeabi_memcpy. 656 const CallInst *Call = cast<CallInst>(I); 657 if (Function *F = Call->getCalledFunction()) { 658 Intrinsic::ID IID = F->getIntrinsicID(); 659 if (((IID == Intrinsic::memcpy && 660 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 661 (IID == Intrinsic::memmove && 662 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 663 (IID == Intrinsic::memset && 664 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 665 (RetVal == Call->getArgOperand(0) || 666 isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0)))) 667 return true; 668 } 669 670 SmallVector<unsigned, 4> RetPath, CallPath; 671 SmallVector<Type *, 4> RetSubTypes, CallSubTypes; 672 673 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 674 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 675 676 // Nothing's actually returned, it doesn't matter what the callee put there 677 // it's a valid tail call. 678 if (RetEmpty) 679 return true; 680 681 // Iterate pairwise through each of the value types making up the tail call 682 // and the corresponding return. For each one we want to know whether it's 683 // essentially going directly from the tail call to the ret, via operations 684 // that end up not generating any code. 685 // 686 // We allow a certain amount of covariance here. For example it's permitted 687 // for the tail call to define more bits than the ret actually cares about 688 // (e.g. via a truncate). 689 do { 690 if (CallEmpty) { 691 // We've exhausted the values produced by the tail call instruction, the 692 // rest are essentially undef. The type doesn't really matter, but we need 693 // *something*. 694 Type *SlotType = 695 ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back()); 696 CallVal = UndefValue::get(SlotType); 697 } 698 699 // The manipulations performed when we're looking through an insertvalue or 700 // an extractvalue would happen at the front of the RetPath list, so since 701 // we have to copy it anyway it's more efficient to create a reversed copy. 702 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 703 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 704 705 // Finally, we can check whether the value produced by the tail call at this 706 // index is compatible with the value we return. 707 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 708 AllowDifferingSizes, TLI, 709 F->getParent()->getDataLayout())) 710 return false; 711 712 CallEmpty = !nextRealType(CallSubTypes, CallPath); 713 } while(nextRealType(RetSubTypes, RetPath)); 714 715 return true; 716 } 717 718 static void collectEHScopeMembers( 719 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 720 const MachineBasicBlock *MBB) { 721 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 722 while (!Worklist.empty()) { 723 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 724 // Don't follow blocks which start new scopes. 725 if (Visiting->isEHPad() && Visiting != MBB) 726 continue; 727 728 // Add this MBB to our scope. 729 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 730 731 // Don't revisit blocks. 732 if (!P.second) { 733 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 734 continue; 735 } 736 737 // Returns are boundaries where scope transfer can occur, don't follow 738 // successors. 739 if (Visiting->isEHScopeReturnBlock()) 740 continue; 741 742 for (const MachineBasicBlock *Succ : Visiting->successors()) 743 Worklist.push_back(Succ); 744 } 745 } 746 747 DenseMap<const MachineBasicBlock *, int> 748 llvm::getEHScopeMembership(const MachineFunction &MF) { 749 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 750 751 // We don't have anything to do if there aren't any EH pads. 752 if (!MF.hasEHScopes()) 753 return EHScopeMembership; 754 755 int EntryBBNumber = MF.front().getNumber(); 756 bool IsSEH = isAsynchronousEHPersonality( 757 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 758 759 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 760 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 761 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 762 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 763 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 764 for (const MachineBasicBlock &MBB : MF) { 765 if (MBB.isEHScopeEntry()) { 766 EHScopeBlocks.push_back(&MBB); 767 } else if (IsSEH && MBB.isEHPad()) { 768 SEHCatchPads.push_back(&MBB); 769 } else if (MBB.pred_empty()) { 770 UnreachableBlocks.push_back(&MBB); 771 } 772 773 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 774 775 // CatchPads are not scopes for SEH so do not consider CatchRet to 776 // transfer control to another scope. 777 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 778 continue; 779 780 // FIXME: SEH CatchPads are not necessarily in the parent function: 781 // they could be inside a finally block. 782 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 783 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 784 CatchRetSuccessors.push_back( 785 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 786 } 787 788 // We don't have anything to do if there aren't any EH pads. 789 if (EHScopeBlocks.empty()) 790 return EHScopeMembership; 791 792 // Identify all the basic blocks reachable from the function entry. 793 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 794 // All blocks not part of a scope are in the parent function. 795 for (const MachineBasicBlock *MBB : UnreachableBlocks) 796 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 797 // Next, identify all the blocks inside the scopes. 798 for (const MachineBasicBlock *MBB : EHScopeBlocks) 799 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 800 // SEH CatchPads aren't really scopes, handle them separately. 801 for (const MachineBasicBlock *MBB : SEHCatchPads) 802 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 803 // Finally, identify all the targets of a catchret. 804 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 805 CatchRetSuccessors) 806 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 807 CatchRetPair.first); 808 return EHScopeMembership; 809 } 810