1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Transforms/Utils/GlobalStatus.h" 29 30 using namespace llvm; 31 32 /// Compute the linearized index of a member in a nested aggregate/struct/array 33 /// by recursing and accumulating CurIndex as long as there are indices in the 34 /// index list. 35 unsigned llvm::ComputeLinearIndex(Type *Ty, 36 const unsigned *Indices, 37 const unsigned *IndicesEnd, 38 unsigned CurIndex) { 39 // Base case: We're done. 40 if (Indices && Indices == IndicesEnd) 41 return CurIndex; 42 43 // Given a struct type, recursively traverse the elements. 44 if (StructType *STy = dyn_cast<StructType>(Ty)) { 45 for (StructType::element_iterator EB = STy->element_begin(), 46 EI = EB, 47 EE = STy->element_end(); 48 EI != EE; ++EI) { 49 if (Indices && *Indices == unsigned(EI - EB)) 50 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 51 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 52 } 53 assert(!Indices && "Unexpected out of bound"); 54 return CurIndex; 55 } 56 // Given an array type, recursively traverse the elements. 57 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 58 Type *EltTy = ATy->getElementType(); 59 unsigned NumElts = ATy->getNumElements(); 60 // Compute the Linear offset when jumping one element of the array 61 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 62 if (Indices) { 63 assert(*Indices < NumElts && "Unexpected out of bound"); 64 // If the indice is inside the array, compute the index to the requested 65 // elt and recurse inside the element with the end of the indices list 66 CurIndex += EltLinearOffset* *Indices; 67 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 68 } 69 CurIndex += EltLinearOffset*NumElts; 70 return CurIndex; 71 } 72 // We haven't found the type we're looking for, so keep searching. 73 return CurIndex + 1; 74 } 75 76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 77 /// EVTs that represent all the individual underlying 78 /// non-aggregate types that comprise it. 79 /// 80 /// If Offsets is non-null, it points to a vector to be filled in 81 /// with the in-memory offsets of each of the individual values. 82 /// 83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 84 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 85 SmallVectorImpl<EVT> *MemVTs, 86 SmallVectorImpl<uint64_t> *Offsets, 87 uint64_t StartingOffset) { 88 // Given a struct type, recursively traverse the elements. 89 if (StructType *STy = dyn_cast<StructType>(Ty)) { 90 const StructLayout *SL = DL.getStructLayout(STy); 91 for (StructType::element_iterator EB = STy->element_begin(), 92 EI = EB, 93 EE = STy->element_end(); 94 EI != EE; ++EI) 95 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 96 StartingOffset + SL->getElementOffset(EI - EB)); 97 return; 98 } 99 // Given an array type, recursively traverse the elements. 100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 101 Type *EltTy = ATy->getElementType(); 102 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 104 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 105 StartingOffset + i * EltSize); 106 return; 107 } 108 // Interpret void as zero return values. 109 if (Ty->isVoidTy()) 110 return; 111 // Base case: we can get an EVT for this LLVM IR type. 112 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 113 if (MemVTs) 114 MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 115 if (Offsets) 116 Offsets->push_back(StartingOffset); 117 } 118 119 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 120 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 121 SmallVectorImpl<uint64_t> *Offsets, 122 uint64_t StartingOffset) { 123 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 124 StartingOffset); 125 } 126 127 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 128 SmallVectorImpl<LLT> &ValueTys, 129 SmallVectorImpl<uint64_t> *Offsets, 130 uint64_t StartingOffset) { 131 // Given a struct type, recursively traverse the elements. 132 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 133 const StructLayout *SL = DL.getStructLayout(STy); 134 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 135 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 136 StartingOffset + SL->getElementOffset(I)); 137 return; 138 } 139 // Given an array type, recursively traverse the elements. 140 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 141 Type *EltTy = ATy->getElementType(); 142 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 143 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 144 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 145 StartingOffset + i * EltSize); 146 return; 147 } 148 // Interpret void as zero return values. 149 if (Ty.isVoidTy()) 150 return; 151 // Base case: we can get an LLT for this LLVM IR type. 152 ValueTys.push_back(getLLTForType(Ty, DL)); 153 if (Offsets != nullptr) 154 Offsets->push_back(StartingOffset * 8); 155 } 156 157 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 158 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 159 V = V->stripPointerCasts(); 160 GlobalValue *GV = dyn_cast<GlobalValue>(V); 161 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 162 163 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 164 assert(Var->hasInitializer() && 165 "The EH catch-all value must have an initializer"); 166 Value *Init = Var->getInitializer(); 167 GV = dyn_cast<GlobalValue>(Init); 168 if (!GV) V = cast<ConstantPointerNull>(Init); 169 } 170 171 assert((GV || isa<ConstantPointerNull>(V)) && 172 "TypeInfo must be a global variable or NULL"); 173 return GV; 174 } 175 176 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 177 /// processed uses a memory 'm' constraint. 178 bool 179 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 180 const TargetLowering &TLI) { 181 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 182 InlineAsm::ConstraintInfo &CI = CInfos[i]; 183 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 184 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 185 if (CType == TargetLowering::C_Memory) 186 return true; 187 } 188 189 // Indirect operand accesses access memory. 190 if (CI.isIndirect) 191 return true; 192 } 193 194 return false; 195 } 196 197 /// getFCmpCondCode - Return the ISD condition code corresponding to 198 /// the given LLVM IR floating-point condition code. This includes 199 /// consideration of global floating-point math flags. 200 /// 201 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 202 switch (Pred) { 203 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 204 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 205 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 206 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 207 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 208 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 209 case FCmpInst::FCMP_ONE: return ISD::SETONE; 210 case FCmpInst::FCMP_ORD: return ISD::SETO; 211 case FCmpInst::FCMP_UNO: return ISD::SETUO; 212 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 213 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 214 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 215 case FCmpInst::FCMP_ULT: return ISD::SETULT; 216 case FCmpInst::FCMP_ULE: return ISD::SETULE; 217 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 218 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 219 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 220 } 221 } 222 223 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 224 switch (CC) { 225 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 226 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 227 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 228 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 229 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 230 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 231 default: return CC; 232 } 233 } 234 235 /// getICmpCondCode - Return the ISD condition code corresponding to 236 /// the given LLVM IR integer condition code. 237 /// 238 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 239 switch (Pred) { 240 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 241 case ICmpInst::ICMP_NE: return ISD::SETNE; 242 case ICmpInst::ICMP_SLE: return ISD::SETLE; 243 case ICmpInst::ICMP_ULE: return ISD::SETULE; 244 case ICmpInst::ICMP_SGE: return ISD::SETGE; 245 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 246 case ICmpInst::ICMP_SLT: return ISD::SETLT; 247 case ICmpInst::ICMP_ULT: return ISD::SETULT; 248 case ICmpInst::ICMP_SGT: return ISD::SETGT; 249 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 250 default: 251 llvm_unreachable("Invalid ICmp predicate opcode!"); 252 } 253 } 254 255 static bool isNoopBitcast(Type *T1, Type *T2, 256 const TargetLoweringBase& TLI) { 257 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 258 (isa<VectorType>(T1) && isa<VectorType>(T2) && 259 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 260 } 261 262 /// Look through operations that will be free to find the earliest source of 263 /// this value. 264 /// 265 /// @param ValLoc If V has aggegate type, we will be interested in a particular 266 /// scalar component. This records its address; the reverse of this list gives a 267 /// sequence of indices appropriate for an extractvalue to locate the important 268 /// value. This value is updated during the function and on exit will indicate 269 /// similar information for the Value returned. 270 /// 271 /// @param DataBits If this function looks through truncate instructions, this 272 /// will record the smallest size attained. 273 static const Value *getNoopInput(const Value *V, 274 SmallVectorImpl<unsigned> &ValLoc, 275 unsigned &DataBits, 276 const TargetLoweringBase &TLI, 277 const DataLayout &DL) { 278 while (true) { 279 // Try to look through V1; if V1 is not an instruction, it can't be looked 280 // through. 281 const Instruction *I = dyn_cast<Instruction>(V); 282 if (!I || I->getNumOperands() == 0) return V; 283 const Value *NoopInput = nullptr; 284 285 Value *Op = I->getOperand(0); 286 if (isa<BitCastInst>(I)) { 287 // Look through truly no-op bitcasts. 288 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 289 NoopInput = Op; 290 } else if (isa<GetElementPtrInst>(I)) { 291 // Look through getelementptr 292 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 293 NoopInput = Op; 294 } else if (isa<IntToPtrInst>(I)) { 295 // Look through inttoptr. 296 // Make sure this isn't a truncating or extending cast. We could 297 // support this eventually, but don't bother for now. 298 if (!isa<VectorType>(I->getType()) && 299 DL.getPointerSizeInBits() == 300 cast<IntegerType>(Op->getType())->getBitWidth()) 301 NoopInput = Op; 302 } else if (isa<PtrToIntInst>(I)) { 303 // Look through ptrtoint. 304 // Make sure this isn't a truncating or extending cast. We could 305 // support this eventually, but don't bother for now. 306 if (!isa<VectorType>(I->getType()) && 307 DL.getPointerSizeInBits() == 308 cast<IntegerType>(I->getType())->getBitWidth()) 309 NoopInput = Op; 310 } else if (isa<TruncInst>(I) && 311 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 312 DataBits = std::min((uint64_t)DataBits, 313 I->getType()->getPrimitiveSizeInBits().getFixedSize()); 314 NoopInput = Op; 315 } else if (auto CS = ImmutableCallSite(I)) { 316 const Value *ReturnedOp = CS.getReturnedArgOperand(); 317 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 318 NoopInput = ReturnedOp; 319 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 320 // Value may come from either the aggregate or the scalar 321 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 322 if (ValLoc.size() >= InsertLoc.size() && 323 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 324 // The type being inserted is a nested sub-type of the aggregate; we 325 // have to remove those initial indices to get the location we're 326 // interested in for the operand. 327 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 328 NoopInput = IVI->getInsertedValueOperand(); 329 } else { 330 // The struct we're inserting into has the value we're interested in, no 331 // change of address. 332 NoopInput = Op; 333 } 334 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 335 // The part we're interested in will inevitably be some sub-section of the 336 // previous aggregate. Combine the two paths to obtain the true address of 337 // our element. 338 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 339 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 340 NoopInput = Op; 341 } 342 // Terminate if we couldn't find anything to look through. 343 if (!NoopInput) 344 return V; 345 346 V = NoopInput; 347 } 348 } 349 350 /// Return true if this scalar return value only has bits discarded on its path 351 /// from the "tail call" to the "ret". This includes the obvious noop 352 /// instructions handled by getNoopInput above as well as free truncations (or 353 /// extensions prior to the call). 354 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 355 SmallVectorImpl<unsigned> &RetIndices, 356 SmallVectorImpl<unsigned> &CallIndices, 357 bool AllowDifferingSizes, 358 const TargetLoweringBase &TLI, 359 const DataLayout &DL) { 360 361 // Trace the sub-value needed by the return value as far back up the graph as 362 // possible, in the hope that it will intersect with the value produced by the 363 // call. In the simple case with no "returned" attribute, the hope is actually 364 // that we end up back at the tail call instruction itself. 365 unsigned BitsRequired = UINT_MAX; 366 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 367 368 // If this slot in the value returned is undef, it doesn't matter what the 369 // call puts there, it'll be fine. 370 if (isa<UndefValue>(RetVal)) 371 return true; 372 373 // Now do a similar search up through the graph to find where the value 374 // actually returned by the "tail call" comes from. In the simple case without 375 // a "returned" attribute, the search will be blocked immediately and the loop 376 // a Noop. 377 unsigned BitsProvided = UINT_MAX; 378 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 379 380 // There's no hope if we can't actually trace them to (the same part of!) the 381 // same value. 382 if (CallVal != RetVal || CallIndices != RetIndices) 383 return false; 384 385 // However, intervening truncates may have made the call non-tail. Make sure 386 // all the bits that are needed by the "ret" have been provided by the "tail 387 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 388 // extensions too. 389 if (BitsProvided < BitsRequired || 390 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 391 return false; 392 393 return true; 394 } 395 396 /// For an aggregate type, determine whether a given index is within bounds or 397 /// not. 398 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 399 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 400 return Idx < AT->getNumElements(); 401 402 return Idx < cast<StructType>(T)->getNumElements(); 403 } 404 405 /// Move the given iterators to the next leaf type in depth first traversal. 406 /// 407 /// Performs a depth-first traversal of the type as specified by its arguments, 408 /// stopping at the next leaf node (which may be a legitimate scalar type or an 409 /// empty struct or array). 410 /// 411 /// @param SubTypes List of the partial components making up the type from 412 /// outermost to innermost non-empty aggregate. The element currently 413 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 414 /// 415 /// @param Path Set of extractvalue indices leading from the outermost type 416 /// (SubTypes[0]) to the leaf node currently represented. 417 /// 418 /// @returns true if a new type was found, false otherwise. Calling this 419 /// function again on a finished iterator will repeatedly return 420 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 421 /// aggregate or a non-aggregate 422 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 423 SmallVectorImpl<unsigned> &Path) { 424 // First march back up the tree until we can successfully increment one of the 425 // coordinates in Path. 426 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 427 Path.pop_back(); 428 SubTypes.pop_back(); 429 } 430 431 // If we reached the top, then the iterator is done. 432 if (Path.empty()) 433 return false; 434 435 // We know there's *some* valid leaf now, so march back down the tree picking 436 // out the left-most element at each node. 437 ++Path.back(); 438 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 439 while (DeeperType->isAggregateType()) { 440 CompositeType *CT = cast<CompositeType>(DeeperType); 441 if (!indexReallyValid(CT, 0)) 442 return true; 443 444 SubTypes.push_back(CT); 445 Path.push_back(0); 446 447 DeeperType = CT->getTypeAtIndex(0U); 448 } 449 450 return true; 451 } 452 453 /// Find the first non-empty, scalar-like type in Next and setup the iterator 454 /// components. 455 /// 456 /// Assuming Next is an aggregate of some kind, this function will traverse the 457 /// tree from left to right (i.e. depth-first) looking for the first 458 /// non-aggregate type which will play a role in function return. 459 /// 460 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 461 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 462 /// i32 in that type. 463 static bool firstRealType(Type *Next, 464 SmallVectorImpl<CompositeType *> &SubTypes, 465 SmallVectorImpl<unsigned> &Path) { 466 // First initialise the iterator components to the first "leaf" node 467 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 468 // despite nominally being an aggregate). 469 while (Next->isAggregateType() && 470 indexReallyValid(cast<CompositeType>(Next), 0)) { 471 SubTypes.push_back(cast<CompositeType>(Next)); 472 Path.push_back(0); 473 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 474 } 475 476 // If there's no Path now, Next was originally scalar already (or empty 477 // leaf). We're done. 478 if (Path.empty()) 479 return true; 480 481 // Otherwise, use normal iteration to keep looking through the tree until we 482 // find a non-aggregate type. 483 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 484 if (!advanceToNextLeafType(SubTypes, Path)) 485 return false; 486 } 487 488 return true; 489 } 490 491 /// Set the iterator data-structures to the next non-empty, non-aggregate 492 /// subtype. 493 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 494 SmallVectorImpl<unsigned> &Path) { 495 do { 496 if (!advanceToNextLeafType(SubTypes, Path)) 497 return false; 498 499 assert(!Path.empty() && "found a leaf but didn't set the path?"); 500 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 501 502 return true; 503 } 504 505 506 /// Test if the given instruction is in a position to be optimized 507 /// with a tail-call. This roughly means that it's in a block with 508 /// a return and there's nothing that needs to be scheduled 509 /// between it and the return. 510 /// 511 /// This function only tests target-independent requirements. 512 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 513 const Instruction *I = CS.getInstruction(); 514 const BasicBlock *ExitBB = I->getParent(); 515 const Instruction *Term = ExitBB->getTerminator(); 516 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 517 518 // The block must end in a return statement or unreachable. 519 // 520 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 521 // an unreachable, for now. The way tailcall optimization is currently 522 // implemented means it will add an epilogue followed by a jump. That is 523 // not profitable. Also, if the callee is a special function (e.g. 524 // longjmp on x86), it can end up causing miscompilation that has not 525 // been fully understood. 526 if (!Ret && 527 ((!TM.Options.GuaranteedTailCallOpt && 528 CS.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) 529 return false; 530 531 // If I will have a chain, make sure no other instruction that will have a 532 // chain interposes between I and the return. 533 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 534 !isSafeToSpeculativelyExecute(I)) 535 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 536 if (&*BBI == I) 537 break; 538 // Debug info intrinsics do not get in the way of tail call optimization. 539 if (isa<DbgInfoIntrinsic>(BBI)) 540 continue; 541 // A lifetime end or assume intrinsic should not stop tail call 542 // optimization. 543 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 544 if (II->getIntrinsicID() == Intrinsic::lifetime_end || 545 II->getIntrinsicID() == Intrinsic::assume) 546 continue; 547 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 548 !isSafeToSpeculativelyExecute(&*BBI)) 549 return false; 550 } 551 552 const Function *F = ExitBB->getParent(); 553 return returnTypeIsEligibleForTailCall( 554 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 555 } 556 557 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 558 const ReturnInst *Ret, 559 const TargetLoweringBase &TLI, 560 bool *AllowDifferingSizes) { 561 // ADS may be null, so don't write to it directly. 562 bool DummyADS; 563 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 564 ADS = true; 565 566 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 567 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 568 AttributeList::ReturnIndex); 569 570 // NoAlias and NonNull are completely benign as far as calling convention 571 // goes, they shouldn't affect whether the call is a tail call. 572 CallerAttrs.removeAttribute(Attribute::NoAlias); 573 CalleeAttrs.removeAttribute(Attribute::NoAlias); 574 CallerAttrs.removeAttribute(Attribute::NonNull); 575 CalleeAttrs.removeAttribute(Attribute::NonNull); 576 577 if (CallerAttrs.contains(Attribute::ZExt)) { 578 if (!CalleeAttrs.contains(Attribute::ZExt)) 579 return false; 580 581 ADS = false; 582 CallerAttrs.removeAttribute(Attribute::ZExt); 583 CalleeAttrs.removeAttribute(Attribute::ZExt); 584 } else if (CallerAttrs.contains(Attribute::SExt)) { 585 if (!CalleeAttrs.contains(Attribute::SExt)) 586 return false; 587 588 ADS = false; 589 CallerAttrs.removeAttribute(Attribute::SExt); 590 CalleeAttrs.removeAttribute(Attribute::SExt); 591 } 592 593 // Drop sext and zext return attributes if the result is not used. 594 // This enables tail calls for code like: 595 // 596 // define void @caller() { 597 // entry: 598 // %unused_result = tail call zeroext i1 @callee() 599 // br label %retlabel 600 // retlabel: 601 // ret void 602 // } 603 if (I->use_empty()) { 604 CalleeAttrs.removeAttribute(Attribute::SExt); 605 CalleeAttrs.removeAttribute(Attribute::ZExt); 606 } 607 608 // If they're still different, there's some facet we don't understand 609 // (currently only "inreg", but in future who knows). It may be OK but the 610 // only safe option is to reject the tail call. 611 return CallerAttrs == CalleeAttrs; 612 } 613 614 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 615 const Instruction *I, 616 const ReturnInst *Ret, 617 const TargetLoweringBase &TLI) { 618 // If the block ends with a void return or unreachable, it doesn't matter 619 // what the call's return type is. 620 if (!Ret || Ret->getNumOperands() == 0) return true; 621 622 // If the return value is undef, it doesn't matter what the call's 623 // return type is. 624 if (isa<UndefValue>(Ret->getOperand(0))) return true; 625 626 // Make sure the attributes attached to each return are compatible. 627 bool AllowDifferingSizes; 628 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 629 return false; 630 631 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 632 // Intrinsic like llvm.memcpy has no return value, but the expanded 633 // libcall may or may not have return value. On most platforms, it 634 // will be expanded as memcpy in libc, which returns the first 635 // argument. On other platforms like arm-none-eabi, memcpy may be 636 // expanded as library call without return value, like __aeabi_memcpy. 637 const CallInst *Call = cast<CallInst>(I); 638 if (Function *F = Call->getCalledFunction()) { 639 Intrinsic::ID IID = F->getIntrinsicID(); 640 if (((IID == Intrinsic::memcpy && 641 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 642 (IID == Intrinsic::memmove && 643 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 644 (IID == Intrinsic::memset && 645 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 646 RetVal == Call->getArgOperand(0)) 647 return true; 648 } 649 650 SmallVector<unsigned, 4> RetPath, CallPath; 651 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 652 653 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 654 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 655 656 // Nothing's actually returned, it doesn't matter what the callee put there 657 // it's a valid tail call. 658 if (RetEmpty) 659 return true; 660 661 // Iterate pairwise through each of the value types making up the tail call 662 // and the corresponding return. For each one we want to know whether it's 663 // essentially going directly from the tail call to the ret, via operations 664 // that end up not generating any code. 665 // 666 // We allow a certain amount of covariance here. For example it's permitted 667 // for the tail call to define more bits than the ret actually cares about 668 // (e.g. via a truncate). 669 do { 670 if (CallEmpty) { 671 // We've exhausted the values produced by the tail call instruction, the 672 // rest are essentially undef. The type doesn't really matter, but we need 673 // *something*. 674 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 675 CallVal = UndefValue::get(SlotType); 676 } 677 678 // The manipulations performed when we're looking through an insertvalue or 679 // an extractvalue would happen at the front of the RetPath list, so since 680 // we have to copy it anyway it's more efficient to create a reversed copy. 681 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 682 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 683 684 // Finally, we can check whether the value produced by the tail call at this 685 // index is compatible with the value we return. 686 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 687 AllowDifferingSizes, TLI, 688 F->getParent()->getDataLayout())) 689 return false; 690 691 CallEmpty = !nextRealType(CallSubTypes, CallPath); 692 } while(nextRealType(RetSubTypes, RetPath)); 693 694 return true; 695 } 696 697 static void collectEHScopeMembers( 698 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 699 const MachineBasicBlock *MBB) { 700 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 701 while (!Worklist.empty()) { 702 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 703 // Don't follow blocks which start new scopes. 704 if (Visiting->isEHPad() && Visiting != MBB) 705 continue; 706 707 // Add this MBB to our scope. 708 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 709 710 // Don't revisit blocks. 711 if (!P.second) { 712 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 713 continue; 714 } 715 716 // Returns are boundaries where scope transfer can occur, don't follow 717 // successors. 718 if (Visiting->isEHScopeReturnBlock()) 719 continue; 720 721 for (const MachineBasicBlock *Succ : Visiting->successors()) 722 Worklist.push_back(Succ); 723 } 724 } 725 726 DenseMap<const MachineBasicBlock *, int> 727 llvm::getEHScopeMembership(const MachineFunction &MF) { 728 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 729 730 // We don't have anything to do if there aren't any EH pads. 731 if (!MF.hasEHScopes()) 732 return EHScopeMembership; 733 734 int EntryBBNumber = MF.front().getNumber(); 735 bool IsSEH = isAsynchronousEHPersonality( 736 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 737 738 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 739 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 740 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 741 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 742 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 743 for (const MachineBasicBlock &MBB : MF) { 744 if (MBB.isEHScopeEntry()) { 745 EHScopeBlocks.push_back(&MBB); 746 } else if (IsSEH && MBB.isEHPad()) { 747 SEHCatchPads.push_back(&MBB); 748 } else if (MBB.pred_empty()) { 749 UnreachableBlocks.push_back(&MBB); 750 } 751 752 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 753 754 // CatchPads are not scopes for SEH so do not consider CatchRet to 755 // transfer control to another scope. 756 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 757 continue; 758 759 // FIXME: SEH CatchPads are not necessarily in the parent function: 760 // they could be inside a finally block. 761 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 762 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 763 CatchRetSuccessors.push_back( 764 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 765 } 766 767 // We don't have anything to do if there aren't any EH pads. 768 if (EHScopeBlocks.empty()) 769 return EHScopeMembership; 770 771 // Identify all the basic blocks reachable from the function entry. 772 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 773 // All blocks not part of a scope are in the parent function. 774 for (const MachineBasicBlock *MBB : UnreachableBlocks) 775 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 776 // Next, identify all the blocks inside the scopes. 777 for (const MachineBasicBlock *MBB : EHScopeBlocks) 778 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 779 // SEH CatchPads aren't really scopes, handle them separately. 780 for (const MachineBasicBlock *MBB : SEHCatchPads) 781 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 782 // Finally, identify all the targets of a catchret. 783 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 784 CatchRetSuccessors) 785 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 786 CatchRetPair.first); 787 return EHScopeMembership; 788 } 789