xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/Analysis.cpp (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
30 
31 using namespace llvm;
32 
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
35 /// index list.
36 unsigned llvm::ComputeLinearIndex(Type *Ty,
37                                   const unsigned *Indices,
38                                   const unsigned *IndicesEnd,
39                                   unsigned CurIndex) {
40   // Base case: We're done.
41   if (Indices && Indices == IndicesEnd)
42     return CurIndex;
43 
44   // Given a struct type, recursively traverse the elements.
45   if (StructType *STy = dyn_cast<StructType>(Ty)) {
46     for (StructType::element_iterator EB = STy->element_begin(),
47                                       EI = EB,
48                                       EE = STy->element_end();
49         EI != EE; ++EI) {
50       if (Indices && *Indices == unsigned(EI - EB))
51         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
52       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
53     }
54     assert(!Indices && "Unexpected out of bound");
55     return CurIndex;
56   }
57   // Given an array type, recursively traverse the elements.
58   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
59     Type *EltTy = ATy->getElementType();
60     unsigned NumElts = ATy->getNumElements();
61     // Compute the Linear offset when jumping one element of the array
62     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
63     if (Indices) {
64       assert(*Indices < NumElts && "Unexpected out of bound");
65       // If the indice is inside the array, compute the index to the requested
66       // elt and recurse inside the element with the end of the indices list
67       CurIndex += EltLinearOffset* *Indices;
68       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
69     }
70     CurIndex += EltLinearOffset*NumElts;
71     return CurIndex;
72   }
73   // We haven't found the type we're looking for, so keep searching.
74   return CurIndex + 1;
75 }
76 
77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
78 /// EVTs that represent all the individual underlying
79 /// non-aggregate types that comprise it.
80 ///
81 /// If Offsets is non-null, it points to a vector to be filled in
82 /// with the in-memory offsets of each of the individual values.
83 ///
84 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
85                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
86                            SmallVectorImpl<EVT> *MemVTs,
87                            SmallVectorImpl<uint64_t> *Offsets,
88                            uint64_t StartingOffset) {
89   // Given a struct type, recursively traverse the elements.
90   if (StructType *STy = dyn_cast<StructType>(Ty)) {
91     // If the Offsets aren't needed, don't query the struct layout. This allows
92     // us to support structs with scalable vectors for operations that don't
93     // need offsets.
94     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
95     for (StructType::element_iterator EB = STy->element_begin(),
96                                       EI = EB,
97                                       EE = STy->element_end();
98          EI != EE; ++EI) {
99       // Don't compute the element offset if we didn't get a StructLayout above.
100       uint64_t EltOffset = SL ? SL->getElementOffset(EI - EB) : 0;
101       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
102                       StartingOffset + EltOffset);
103     }
104     return;
105   }
106   // Given an array type, recursively traverse the elements.
107   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
108     Type *EltTy = ATy->getElementType();
109     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
110     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
111       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
112                       StartingOffset + i * EltSize);
113     return;
114   }
115   // Interpret void as zero return values.
116   if (Ty->isVoidTy())
117     return;
118   // Base case: we can get an EVT for this LLVM IR type.
119   ValueVTs.push_back(TLI.getValueType(DL, Ty));
120   if (MemVTs)
121     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
122   if (Offsets)
123     Offsets->push_back(StartingOffset);
124 }
125 
126 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
127                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
128                            SmallVectorImpl<uint64_t> *Offsets,
129                            uint64_t StartingOffset) {
130   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
131                          StartingOffset);
132 }
133 
134 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
135                             SmallVectorImpl<LLT> &ValueTys,
136                             SmallVectorImpl<uint64_t> *Offsets,
137                             uint64_t StartingOffset) {
138   // Given a struct type, recursively traverse the elements.
139   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
140     // If the Offsets aren't needed, don't query the struct layout. This allows
141     // us to support structs with scalable vectors for operations that don't
142     // need offsets.
143     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
144     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
145       uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
146       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
147                        StartingOffset + EltOffset);
148     }
149     return;
150   }
151   // Given an array type, recursively traverse the elements.
152   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
153     Type *EltTy = ATy->getElementType();
154     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
155     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
156       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
157                        StartingOffset + i * EltSize);
158     return;
159   }
160   // Interpret void as zero return values.
161   if (Ty.isVoidTy())
162     return;
163   // Base case: we can get an LLT for this LLVM IR type.
164   ValueTys.push_back(getLLTForType(Ty, DL));
165   if (Offsets != nullptr)
166     Offsets->push_back(StartingOffset * 8);
167 }
168 
169 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
170 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
171   V = V->stripPointerCasts();
172   GlobalValue *GV = dyn_cast<GlobalValue>(V);
173   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
174 
175   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
176     assert(Var->hasInitializer() &&
177            "The EH catch-all value must have an initializer");
178     Value *Init = Var->getInitializer();
179     GV = dyn_cast<GlobalValue>(Init);
180     if (!GV) V = cast<ConstantPointerNull>(Init);
181   }
182 
183   assert((GV || isa<ConstantPointerNull>(V)) &&
184          "TypeInfo must be a global variable or NULL");
185   return GV;
186 }
187 
188 /// getFCmpCondCode - Return the ISD condition code corresponding to
189 /// the given LLVM IR floating-point condition code.  This includes
190 /// consideration of global floating-point math flags.
191 ///
192 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
193   switch (Pred) {
194   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
195   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
196   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
197   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
198   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
199   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
200   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
201   case FCmpInst::FCMP_ORD:   return ISD::SETO;
202   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
203   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
204   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
205   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
206   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
207   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
208   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
209   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
210   default: llvm_unreachable("Invalid FCmp predicate opcode!");
211   }
212 }
213 
214 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
215   switch (CC) {
216     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
217     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
218     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
219     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
220     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
221     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
222     default: return CC;
223   }
224 }
225 
226 /// getICmpCondCode - Return the ISD condition code corresponding to
227 /// the given LLVM IR integer condition code.
228 ///
229 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
230   switch (Pred) {
231   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
232   case ICmpInst::ICMP_NE:  return ISD::SETNE;
233   case ICmpInst::ICMP_SLE: return ISD::SETLE;
234   case ICmpInst::ICMP_ULE: return ISD::SETULE;
235   case ICmpInst::ICMP_SGE: return ISD::SETGE;
236   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
237   case ICmpInst::ICMP_SLT: return ISD::SETLT;
238   case ICmpInst::ICMP_ULT: return ISD::SETULT;
239   case ICmpInst::ICMP_SGT: return ISD::SETGT;
240   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
241   default:
242     llvm_unreachable("Invalid ICmp predicate opcode!");
243   }
244 }
245 
246 static bool isNoopBitcast(Type *T1, Type *T2,
247                           const TargetLoweringBase& TLI) {
248   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
249          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
250           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
251 }
252 
253 /// Look through operations that will be free to find the earliest source of
254 /// this value.
255 ///
256 /// @param ValLoc If V has aggregate type, we will be interested in a particular
257 /// scalar component. This records its address; the reverse of this list gives a
258 /// sequence of indices appropriate for an extractvalue to locate the important
259 /// value. This value is updated during the function and on exit will indicate
260 /// similar information for the Value returned.
261 ///
262 /// @param DataBits If this function looks through truncate instructions, this
263 /// will record the smallest size attained.
264 static const Value *getNoopInput(const Value *V,
265                                  SmallVectorImpl<unsigned> &ValLoc,
266                                  unsigned &DataBits,
267                                  const TargetLoweringBase &TLI,
268                                  const DataLayout &DL) {
269   while (true) {
270     // Try to look through V1; if V1 is not an instruction, it can't be looked
271     // through.
272     const Instruction *I = dyn_cast<Instruction>(V);
273     if (!I || I->getNumOperands() == 0) return V;
274     const Value *NoopInput = nullptr;
275 
276     Value *Op = I->getOperand(0);
277     if (isa<BitCastInst>(I)) {
278       // Look through truly no-op bitcasts.
279       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
280         NoopInput = Op;
281     } else if (isa<GetElementPtrInst>(I)) {
282       // Look through getelementptr
283       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
284         NoopInput = Op;
285     } else if (isa<IntToPtrInst>(I)) {
286       // Look through inttoptr.
287       // Make sure this isn't a truncating or extending cast.  We could
288       // support this eventually, but don't bother for now.
289       if (!isa<VectorType>(I->getType()) &&
290           DL.getPointerSizeInBits() ==
291               cast<IntegerType>(Op->getType())->getBitWidth())
292         NoopInput = Op;
293     } else if (isa<PtrToIntInst>(I)) {
294       // Look through ptrtoint.
295       // Make sure this isn't a truncating or extending cast.  We could
296       // support this eventually, but don't bother for now.
297       if (!isa<VectorType>(I->getType()) &&
298           DL.getPointerSizeInBits() ==
299               cast<IntegerType>(I->getType())->getBitWidth())
300         NoopInput = Op;
301     } else if (isa<TruncInst>(I) &&
302                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
303       DataBits = std::min((uint64_t)DataBits,
304                          I->getType()->getPrimitiveSizeInBits().getFixedSize());
305       NoopInput = Op;
306     } else if (auto *CB = dyn_cast<CallBase>(I)) {
307       const Value *ReturnedOp = CB->getReturnedArgOperand();
308       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
309         NoopInput = ReturnedOp;
310     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
311       // Value may come from either the aggregate or the scalar
312       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
313       if (ValLoc.size() >= InsertLoc.size() &&
314           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
315         // The type being inserted is a nested sub-type of the aggregate; we
316         // have to remove those initial indices to get the location we're
317         // interested in for the operand.
318         ValLoc.resize(ValLoc.size() - InsertLoc.size());
319         NoopInput = IVI->getInsertedValueOperand();
320       } else {
321         // The struct we're inserting into has the value we're interested in, no
322         // change of address.
323         NoopInput = Op;
324       }
325     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
326       // The part we're interested in will inevitably be some sub-section of the
327       // previous aggregate. Combine the two paths to obtain the true address of
328       // our element.
329       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
330       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
331       NoopInput = Op;
332     }
333     // Terminate if we couldn't find anything to look through.
334     if (!NoopInput)
335       return V;
336 
337     V = NoopInput;
338   }
339 }
340 
341 /// Return true if this scalar return value only has bits discarded on its path
342 /// from the "tail call" to the "ret". This includes the obvious noop
343 /// instructions handled by getNoopInput above as well as free truncations (or
344 /// extensions prior to the call).
345 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
346                                  SmallVectorImpl<unsigned> &RetIndices,
347                                  SmallVectorImpl<unsigned> &CallIndices,
348                                  bool AllowDifferingSizes,
349                                  const TargetLoweringBase &TLI,
350                                  const DataLayout &DL) {
351 
352   // Trace the sub-value needed by the return value as far back up the graph as
353   // possible, in the hope that it will intersect with the value produced by the
354   // call. In the simple case with no "returned" attribute, the hope is actually
355   // that we end up back at the tail call instruction itself.
356   unsigned BitsRequired = UINT_MAX;
357   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
358 
359   // If this slot in the value returned is undef, it doesn't matter what the
360   // call puts there, it'll be fine.
361   if (isa<UndefValue>(RetVal))
362     return true;
363 
364   // Now do a similar search up through the graph to find where the value
365   // actually returned by the "tail call" comes from. In the simple case without
366   // a "returned" attribute, the search will be blocked immediately and the loop
367   // a Noop.
368   unsigned BitsProvided = UINT_MAX;
369   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
370 
371   // There's no hope if we can't actually trace them to (the same part of!) the
372   // same value.
373   if (CallVal != RetVal || CallIndices != RetIndices)
374     return false;
375 
376   // However, intervening truncates may have made the call non-tail. Make sure
377   // all the bits that are needed by the "ret" have been provided by the "tail
378   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
379   // extensions too.
380   if (BitsProvided < BitsRequired ||
381       (!AllowDifferingSizes && BitsProvided != BitsRequired))
382     return false;
383 
384   return true;
385 }
386 
387 /// For an aggregate type, determine whether a given index is within bounds or
388 /// not.
389 static bool indexReallyValid(Type *T, unsigned Idx) {
390   if (ArrayType *AT = dyn_cast<ArrayType>(T))
391     return Idx < AT->getNumElements();
392 
393   return Idx < cast<StructType>(T)->getNumElements();
394 }
395 
396 /// Move the given iterators to the next leaf type in depth first traversal.
397 ///
398 /// Performs a depth-first traversal of the type as specified by its arguments,
399 /// stopping at the next leaf node (which may be a legitimate scalar type or an
400 /// empty struct or array).
401 ///
402 /// @param SubTypes List of the partial components making up the type from
403 /// outermost to innermost non-empty aggregate. The element currently
404 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
405 ///
406 /// @param Path Set of extractvalue indices leading from the outermost type
407 /// (SubTypes[0]) to the leaf node currently represented.
408 ///
409 /// @returns true if a new type was found, false otherwise. Calling this
410 /// function again on a finished iterator will repeatedly return
411 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
412 /// aggregate or a non-aggregate
413 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
414                                   SmallVectorImpl<unsigned> &Path) {
415   // First march back up the tree until we can successfully increment one of the
416   // coordinates in Path.
417   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
418     Path.pop_back();
419     SubTypes.pop_back();
420   }
421 
422   // If we reached the top, then the iterator is done.
423   if (Path.empty())
424     return false;
425 
426   // We know there's *some* valid leaf now, so march back down the tree picking
427   // out the left-most element at each node.
428   ++Path.back();
429   Type *DeeperType =
430       ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
431   while (DeeperType->isAggregateType()) {
432     if (!indexReallyValid(DeeperType, 0))
433       return true;
434 
435     SubTypes.push_back(DeeperType);
436     Path.push_back(0);
437 
438     DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
439   }
440 
441   return true;
442 }
443 
444 /// Find the first non-empty, scalar-like type in Next and setup the iterator
445 /// components.
446 ///
447 /// Assuming Next is an aggregate of some kind, this function will traverse the
448 /// tree from left to right (i.e. depth-first) looking for the first
449 /// non-aggregate type which will play a role in function return.
450 ///
451 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
452 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
453 /// i32 in that type.
454 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
455                           SmallVectorImpl<unsigned> &Path) {
456   // First initialise the iterator components to the first "leaf" node
457   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
458   // despite nominally being an aggregate).
459   while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
460     SubTypes.push_back(Next);
461     Path.push_back(0);
462     Next = FirstInner;
463   }
464 
465   // If there's no Path now, Next was originally scalar already (or empty
466   // leaf). We're done.
467   if (Path.empty())
468     return true;
469 
470   // Otherwise, use normal iteration to keep looking through the tree until we
471   // find a non-aggregate type.
472   while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
473              ->isAggregateType()) {
474     if (!advanceToNextLeafType(SubTypes, Path))
475       return false;
476   }
477 
478   return true;
479 }
480 
481 /// Set the iterator data-structures to the next non-empty, non-aggregate
482 /// subtype.
483 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
484                          SmallVectorImpl<unsigned> &Path) {
485   do {
486     if (!advanceToNextLeafType(SubTypes, Path))
487       return false;
488 
489     assert(!Path.empty() && "found a leaf but didn't set the path?");
490   } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
491                ->isAggregateType());
492 
493   return true;
494 }
495 
496 
497 /// Test if the given instruction is in a position to be optimized
498 /// with a tail-call. This roughly means that it's in a block with
499 /// a return and there's nothing that needs to be scheduled
500 /// between it and the return.
501 ///
502 /// This function only tests target-independent requirements.
503 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) {
504   const BasicBlock *ExitBB = Call.getParent();
505   const Instruction *Term = ExitBB->getTerminator();
506   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
507 
508   // The block must end in a return statement or unreachable.
509   //
510   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
511   // an unreachable, for now. The way tailcall optimization is currently
512   // implemented means it will add an epilogue followed by a jump. That is
513   // not profitable. Also, if the callee is a special function (e.g.
514   // longjmp on x86), it can end up causing miscompilation that has not
515   // been fully understood.
516   if (!Ret &&
517       ((!TM.Options.GuaranteedTailCallOpt &&
518         Call.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term)))
519     return false;
520 
521   // If I will have a chain, make sure no other instruction that will have a
522   // chain interposes between I and the return.
523   // Check for all calls including speculatable functions.
524   for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
525     if (&*BBI == &Call)
526       break;
527     // Debug info intrinsics do not get in the way of tail call optimization.
528     if (isa<DbgInfoIntrinsic>(BBI))
529       continue;
530     // Pseudo probe intrinsics do not block tail call optimization either.
531     if (isa<PseudoProbeInst>(BBI))
532       continue;
533     // A lifetime end, assume or noalias.decl intrinsic should not stop tail
534     // call optimization.
535     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
536       if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
537           II->getIntrinsicID() == Intrinsic::assume ||
538           II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
539         continue;
540     if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
541         !isSafeToSpeculativelyExecute(&*BBI))
542       return false;
543   }
544 
545   const Function *F = ExitBB->getParent();
546   return returnTypeIsEligibleForTailCall(
547       F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
548 }
549 
550 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
551                                     const ReturnInst *Ret,
552                                     const TargetLoweringBase &TLI,
553                                     bool *AllowDifferingSizes) {
554   // ADS may be null, so don't write to it directly.
555   bool DummyADS;
556   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
557   ADS = true;
558 
559   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
560   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
561                           AttributeList::ReturnIndex);
562 
563   // Following attributes are completely benign as far as calling convention
564   // goes, they shouldn't affect whether the call is a tail call.
565   CallerAttrs.removeAttribute(Attribute::NoAlias);
566   CalleeAttrs.removeAttribute(Attribute::NoAlias);
567   CallerAttrs.removeAttribute(Attribute::NonNull);
568   CalleeAttrs.removeAttribute(Attribute::NonNull);
569   CallerAttrs.removeAttribute(Attribute::Dereferenceable);
570   CalleeAttrs.removeAttribute(Attribute::Dereferenceable);
571   CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull);
572   CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull);
573 
574   if (CallerAttrs.contains(Attribute::ZExt)) {
575     if (!CalleeAttrs.contains(Attribute::ZExt))
576       return false;
577 
578     ADS = false;
579     CallerAttrs.removeAttribute(Attribute::ZExt);
580     CalleeAttrs.removeAttribute(Attribute::ZExt);
581   } else if (CallerAttrs.contains(Attribute::SExt)) {
582     if (!CalleeAttrs.contains(Attribute::SExt))
583       return false;
584 
585     ADS = false;
586     CallerAttrs.removeAttribute(Attribute::SExt);
587     CalleeAttrs.removeAttribute(Attribute::SExt);
588   }
589 
590   // Drop sext and zext return attributes if the result is not used.
591   // This enables tail calls for code like:
592   //
593   // define void @caller() {
594   // entry:
595   //   %unused_result = tail call zeroext i1 @callee()
596   //   br label %retlabel
597   // retlabel:
598   //   ret void
599   // }
600   if (I->use_empty()) {
601     CalleeAttrs.removeAttribute(Attribute::SExt);
602     CalleeAttrs.removeAttribute(Attribute::ZExt);
603   }
604 
605   // If they're still different, there's some facet we don't understand
606   // (currently only "inreg", but in future who knows). It may be OK but the
607   // only safe option is to reject the tail call.
608   return CallerAttrs == CalleeAttrs;
609 }
610 
611 /// Check whether B is a bitcast of a pointer type to another pointer type,
612 /// which is equal to A.
613 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
614   assert(A && B && "Expected non-null inputs!");
615 
616   auto *BitCastIn = dyn_cast<BitCastInst>(B);
617 
618   if (!BitCastIn)
619     return false;
620 
621   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
622     return false;
623 
624   return A == BitCastIn->getOperand(0);
625 }
626 
627 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
628                                            const Instruction *I,
629                                            const ReturnInst *Ret,
630                                            const TargetLoweringBase &TLI) {
631   // If the block ends with a void return or unreachable, it doesn't matter
632   // what the call's return type is.
633   if (!Ret || Ret->getNumOperands() == 0) return true;
634 
635   // If the return value is undef, it doesn't matter what the call's
636   // return type is.
637   if (isa<UndefValue>(Ret->getOperand(0))) return true;
638 
639   // Make sure the attributes attached to each return are compatible.
640   bool AllowDifferingSizes;
641   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
642     return false;
643 
644   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
645   // Intrinsic like llvm.memcpy has no return value, but the expanded
646   // libcall may or may not have return value. On most platforms, it
647   // will be expanded as memcpy in libc, which returns the first
648   // argument. On other platforms like arm-none-eabi, memcpy may be
649   // expanded as library call without return value, like __aeabi_memcpy.
650   const CallInst *Call = cast<CallInst>(I);
651   if (Function *F = Call->getCalledFunction()) {
652     Intrinsic::ID IID = F->getIntrinsicID();
653     if (((IID == Intrinsic::memcpy &&
654           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
655          (IID == Intrinsic::memmove &&
656           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
657          (IID == Intrinsic::memset &&
658           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
659         (RetVal == Call->getArgOperand(0) ||
660          isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
661       return true;
662   }
663 
664   SmallVector<unsigned, 4> RetPath, CallPath;
665   SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
666 
667   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
668   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
669 
670   // Nothing's actually returned, it doesn't matter what the callee put there
671   // it's a valid tail call.
672   if (RetEmpty)
673     return true;
674 
675   // Iterate pairwise through each of the value types making up the tail call
676   // and the corresponding return. For each one we want to know whether it's
677   // essentially going directly from the tail call to the ret, via operations
678   // that end up not generating any code.
679   //
680   // We allow a certain amount of covariance here. For example it's permitted
681   // for the tail call to define more bits than the ret actually cares about
682   // (e.g. via a truncate).
683   do {
684     if (CallEmpty) {
685       // We've exhausted the values produced by the tail call instruction, the
686       // rest are essentially undef. The type doesn't really matter, but we need
687       // *something*.
688       Type *SlotType =
689           ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
690       CallVal = UndefValue::get(SlotType);
691     }
692 
693     // The manipulations performed when we're looking through an insertvalue or
694     // an extractvalue would happen at the front of the RetPath list, so since
695     // we have to copy it anyway it's more efficient to create a reversed copy.
696     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
697     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
698 
699     // Finally, we can check whether the value produced by the tail call at this
700     // index is compatible with the value we return.
701     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
702                               AllowDifferingSizes, TLI,
703                               F->getParent()->getDataLayout()))
704       return false;
705 
706     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
707   } while(nextRealType(RetSubTypes, RetPath));
708 
709   return true;
710 }
711 
712 static void collectEHScopeMembers(
713     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
714     const MachineBasicBlock *MBB) {
715   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
716   while (!Worklist.empty()) {
717     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
718     // Don't follow blocks which start new scopes.
719     if (Visiting->isEHPad() && Visiting != MBB)
720       continue;
721 
722     // Add this MBB to our scope.
723     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
724 
725     // Don't revisit blocks.
726     if (!P.second) {
727       assert(P.first->second == EHScope && "MBB is part of two scopes!");
728       continue;
729     }
730 
731     // Returns are boundaries where scope transfer can occur, don't follow
732     // successors.
733     if (Visiting->isEHScopeReturnBlock())
734       continue;
735 
736     append_range(Worklist, Visiting->successors());
737   }
738 }
739 
740 DenseMap<const MachineBasicBlock *, int>
741 llvm::getEHScopeMembership(const MachineFunction &MF) {
742   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
743 
744   // We don't have anything to do if there aren't any EH pads.
745   if (!MF.hasEHScopes())
746     return EHScopeMembership;
747 
748   int EntryBBNumber = MF.front().getNumber();
749   bool IsSEH = isAsynchronousEHPersonality(
750       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
751 
752   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
753   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
754   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
755   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
756   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
757   for (const MachineBasicBlock &MBB : MF) {
758     if (MBB.isEHScopeEntry()) {
759       EHScopeBlocks.push_back(&MBB);
760     } else if (IsSEH && MBB.isEHPad()) {
761       SEHCatchPads.push_back(&MBB);
762     } else if (MBB.pred_empty()) {
763       UnreachableBlocks.push_back(&MBB);
764     }
765 
766     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
767 
768     // CatchPads are not scopes for SEH so do not consider CatchRet to
769     // transfer control to another scope.
770     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
771       continue;
772 
773     // FIXME: SEH CatchPads are not necessarily in the parent function:
774     // they could be inside a finally block.
775     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
776     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
777     CatchRetSuccessors.push_back(
778         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
779   }
780 
781   // We don't have anything to do if there aren't any EH pads.
782   if (EHScopeBlocks.empty())
783     return EHScopeMembership;
784 
785   // Identify all the basic blocks reachable from the function entry.
786   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
787   // All blocks not part of a scope are in the parent function.
788   for (const MachineBasicBlock *MBB : UnreachableBlocks)
789     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
790   // Next, identify all the blocks inside the scopes.
791   for (const MachineBasicBlock *MBB : EHScopeBlocks)
792     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
793   // SEH CatchPads aren't really scopes, handle them separately.
794   for (const MachineBasicBlock *MBB : SEHCatchPads)
795     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
796   // Finally, identify all the targets of a catchret.
797   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
798        CatchRetSuccessors)
799     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
800                           CatchRetPair.first);
801   return EHScopeMembership;
802 }
803