1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Transforms/Utils/GlobalStatus.h" 29 30 using namespace llvm; 31 32 /// Compute the linearized index of a member in a nested aggregate/struct/array 33 /// by recursing and accumulating CurIndex as long as there are indices in the 34 /// index list. 35 unsigned llvm::ComputeLinearIndex(Type *Ty, 36 const unsigned *Indices, 37 const unsigned *IndicesEnd, 38 unsigned CurIndex) { 39 // Base case: We're done. 40 if (Indices && Indices == IndicesEnd) 41 return CurIndex; 42 43 // Given a struct type, recursively traverse the elements. 44 if (StructType *STy = dyn_cast<StructType>(Ty)) { 45 for (StructType::element_iterator EB = STy->element_begin(), 46 EI = EB, 47 EE = STy->element_end(); 48 EI != EE; ++EI) { 49 if (Indices && *Indices == unsigned(EI - EB)) 50 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 51 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 52 } 53 assert(!Indices && "Unexpected out of bound"); 54 return CurIndex; 55 } 56 // Given an array type, recursively traverse the elements. 57 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 58 Type *EltTy = ATy->getElementType(); 59 unsigned NumElts = ATy->getNumElements(); 60 // Compute the Linear offset when jumping one element of the array 61 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 62 if (Indices) { 63 assert(*Indices < NumElts && "Unexpected out of bound"); 64 // If the indice is inside the array, compute the index to the requested 65 // elt and recurse inside the element with the end of the indices list 66 CurIndex += EltLinearOffset* *Indices; 67 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 68 } 69 CurIndex += EltLinearOffset*NumElts; 70 return CurIndex; 71 } 72 // We haven't found the type we're looking for, so keep searching. 73 return CurIndex + 1; 74 } 75 76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 77 /// EVTs that represent all the individual underlying 78 /// non-aggregate types that comprise it. 79 /// 80 /// If Offsets is non-null, it points to a vector to be filled in 81 /// with the in-memory offsets of each of the individual values. 82 /// 83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 84 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 85 SmallVectorImpl<EVT> *MemVTs, 86 SmallVectorImpl<uint64_t> *Offsets, 87 uint64_t StartingOffset) { 88 // Given a struct type, recursively traverse the elements. 89 if (StructType *STy = dyn_cast<StructType>(Ty)) { 90 const StructLayout *SL = DL.getStructLayout(STy); 91 for (StructType::element_iterator EB = STy->element_begin(), 92 EI = EB, 93 EE = STy->element_end(); 94 EI != EE; ++EI) 95 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 96 StartingOffset + SL->getElementOffset(EI - EB)); 97 return; 98 } 99 // Given an array type, recursively traverse the elements. 100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 101 Type *EltTy = ATy->getElementType(); 102 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 104 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 105 StartingOffset + i * EltSize); 106 return; 107 } 108 // Interpret void as zero return values. 109 if (Ty->isVoidTy()) 110 return; 111 // Base case: we can get an EVT for this LLVM IR type. 112 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 113 if (MemVTs) 114 MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 115 if (Offsets) 116 Offsets->push_back(StartingOffset); 117 } 118 119 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 120 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 121 SmallVectorImpl<uint64_t> *Offsets, 122 uint64_t StartingOffset) { 123 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 124 StartingOffset); 125 } 126 127 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 128 SmallVectorImpl<LLT> &ValueTys, 129 SmallVectorImpl<uint64_t> *Offsets, 130 uint64_t StartingOffset) { 131 // Given a struct type, recursively traverse the elements. 132 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 133 const StructLayout *SL = DL.getStructLayout(STy); 134 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 135 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 136 StartingOffset + SL->getElementOffset(I)); 137 return; 138 } 139 // Given an array type, recursively traverse the elements. 140 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 141 Type *EltTy = ATy->getElementType(); 142 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 143 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 144 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 145 StartingOffset + i * EltSize); 146 return; 147 } 148 // Interpret void as zero return values. 149 if (Ty.isVoidTy()) 150 return; 151 // Base case: we can get an LLT for this LLVM IR type. 152 ValueTys.push_back(getLLTForType(Ty, DL)); 153 if (Offsets != nullptr) 154 Offsets->push_back(StartingOffset * 8); 155 } 156 157 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 158 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 159 V = V->stripPointerCasts(); 160 GlobalValue *GV = dyn_cast<GlobalValue>(V); 161 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 162 163 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 164 assert(Var->hasInitializer() && 165 "The EH catch-all value must have an initializer"); 166 Value *Init = Var->getInitializer(); 167 GV = dyn_cast<GlobalValue>(Init); 168 if (!GV) V = cast<ConstantPointerNull>(Init); 169 } 170 171 assert((GV || isa<ConstantPointerNull>(V)) && 172 "TypeInfo must be a global variable or NULL"); 173 return GV; 174 } 175 176 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 177 /// processed uses a memory 'm' constraint. 178 bool 179 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 180 const TargetLowering &TLI) { 181 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 182 InlineAsm::ConstraintInfo &CI = CInfos[i]; 183 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 184 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 185 if (CType == TargetLowering::C_Memory) 186 return true; 187 } 188 189 // Indirect operand accesses access memory. 190 if (CI.isIndirect) 191 return true; 192 } 193 194 return false; 195 } 196 197 /// getFCmpCondCode - Return the ISD condition code corresponding to 198 /// the given LLVM IR floating-point condition code. This includes 199 /// consideration of global floating-point math flags. 200 /// 201 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 202 switch (Pred) { 203 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 204 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 205 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 206 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 207 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 208 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 209 case FCmpInst::FCMP_ONE: return ISD::SETONE; 210 case FCmpInst::FCMP_ORD: return ISD::SETO; 211 case FCmpInst::FCMP_UNO: return ISD::SETUO; 212 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 213 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 214 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 215 case FCmpInst::FCMP_ULT: return ISD::SETULT; 216 case FCmpInst::FCMP_ULE: return ISD::SETULE; 217 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 218 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 219 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 220 } 221 } 222 223 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 224 switch (CC) { 225 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 226 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 227 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 228 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 229 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 230 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 231 default: return CC; 232 } 233 } 234 235 /// getICmpCondCode - Return the ISD condition code corresponding to 236 /// the given LLVM IR integer condition code. 237 /// 238 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 239 switch (Pred) { 240 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 241 case ICmpInst::ICMP_NE: return ISD::SETNE; 242 case ICmpInst::ICMP_SLE: return ISD::SETLE; 243 case ICmpInst::ICMP_ULE: return ISD::SETULE; 244 case ICmpInst::ICMP_SGE: return ISD::SETGE; 245 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 246 case ICmpInst::ICMP_SLT: return ISD::SETLT; 247 case ICmpInst::ICMP_ULT: return ISD::SETULT; 248 case ICmpInst::ICMP_SGT: return ISD::SETGT; 249 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 250 default: 251 llvm_unreachable("Invalid ICmp predicate opcode!"); 252 } 253 } 254 255 static bool isNoopBitcast(Type *T1, Type *T2, 256 const TargetLoweringBase& TLI) { 257 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 258 (isa<VectorType>(T1) && isa<VectorType>(T2) && 259 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 260 } 261 262 /// Look through operations that will be free to find the earliest source of 263 /// this value. 264 /// 265 /// @param ValLoc If V has aggegate type, we will be interested in a particular 266 /// scalar component. This records its address; the reverse of this list gives a 267 /// sequence of indices appropriate for an extractvalue to locate the important 268 /// value. This value is updated during the function and on exit will indicate 269 /// similar information for the Value returned. 270 /// 271 /// @param DataBits If this function looks through truncate instructions, this 272 /// will record the smallest size attained. 273 static const Value *getNoopInput(const Value *V, 274 SmallVectorImpl<unsigned> &ValLoc, 275 unsigned &DataBits, 276 const TargetLoweringBase &TLI, 277 const DataLayout &DL) { 278 while (true) { 279 // Try to look through V1; if V1 is not an instruction, it can't be looked 280 // through. 281 const Instruction *I = dyn_cast<Instruction>(V); 282 if (!I || I->getNumOperands() == 0) return V; 283 const Value *NoopInput = nullptr; 284 285 Value *Op = I->getOperand(0); 286 if (isa<BitCastInst>(I)) { 287 // Look through truly no-op bitcasts. 288 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 289 NoopInput = Op; 290 } else if (isa<GetElementPtrInst>(I)) { 291 // Look through getelementptr 292 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 293 NoopInput = Op; 294 } else if (isa<IntToPtrInst>(I)) { 295 // Look through inttoptr. 296 // Make sure this isn't a truncating or extending cast. We could 297 // support this eventually, but don't bother for now. 298 if (!isa<VectorType>(I->getType()) && 299 DL.getPointerSizeInBits() == 300 cast<IntegerType>(Op->getType())->getBitWidth()) 301 NoopInput = Op; 302 } else if (isa<PtrToIntInst>(I)) { 303 // Look through ptrtoint. 304 // Make sure this isn't a truncating or extending cast. We could 305 // support this eventually, but don't bother for now. 306 if (!isa<VectorType>(I->getType()) && 307 DL.getPointerSizeInBits() == 308 cast<IntegerType>(I->getType())->getBitWidth()) 309 NoopInput = Op; 310 } else if (isa<TruncInst>(I) && 311 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 312 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 313 NoopInput = Op; 314 } else if (auto CS = ImmutableCallSite(I)) { 315 const Value *ReturnedOp = CS.getReturnedArgOperand(); 316 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 317 NoopInput = ReturnedOp; 318 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 319 // Value may come from either the aggregate or the scalar 320 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 321 if (ValLoc.size() >= InsertLoc.size() && 322 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 323 // The type being inserted is a nested sub-type of the aggregate; we 324 // have to remove those initial indices to get the location we're 325 // interested in for the operand. 326 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 327 NoopInput = IVI->getInsertedValueOperand(); 328 } else { 329 // The struct we're inserting into has the value we're interested in, no 330 // change of address. 331 NoopInput = Op; 332 } 333 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 334 // The part we're interested in will inevitably be some sub-section of the 335 // previous aggregate. Combine the two paths to obtain the true address of 336 // our element. 337 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 338 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 339 NoopInput = Op; 340 } 341 // Terminate if we couldn't find anything to look through. 342 if (!NoopInput) 343 return V; 344 345 V = NoopInput; 346 } 347 } 348 349 /// Return true if this scalar return value only has bits discarded on its path 350 /// from the "tail call" to the "ret". This includes the obvious noop 351 /// instructions handled by getNoopInput above as well as free truncations (or 352 /// extensions prior to the call). 353 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 354 SmallVectorImpl<unsigned> &RetIndices, 355 SmallVectorImpl<unsigned> &CallIndices, 356 bool AllowDifferingSizes, 357 const TargetLoweringBase &TLI, 358 const DataLayout &DL) { 359 360 // Trace the sub-value needed by the return value as far back up the graph as 361 // possible, in the hope that it will intersect with the value produced by the 362 // call. In the simple case with no "returned" attribute, the hope is actually 363 // that we end up back at the tail call instruction itself. 364 unsigned BitsRequired = UINT_MAX; 365 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 366 367 // If this slot in the value returned is undef, it doesn't matter what the 368 // call puts there, it'll be fine. 369 if (isa<UndefValue>(RetVal)) 370 return true; 371 372 // Now do a similar search up through the graph to find where the value 373 // actually returned by the "tail call" comes from. In the simple case without 374 // a "returned" attribute, the search will be blocked immediately and the loop 375 // a Noop. 376 unsigned BitsProvided = UINT_MAX; 377 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 378 379 // There's no hope if we can't actually trace them to (the same part of!) the 380 // same value. 381 if (CallVal != RetVal || CallIndices != RetIndices) 382 return false; 383 384 // However, intervening truncates may have made the call non-tail. Make sure 385 // all the bits that are needed by the "ret" have been provided by the "tail 386 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 387 // extensions too. 388 if (BitsProvided < BitsRequired || 389 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 390 return false; 391 392 return true; 393 } 394 395 /// For an aggregate type, determine whether a given index is within bounds or 396 /// not. 397 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 398 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 399 return Idx < AT->getNumElements(); 400 401 return Idx < cast<StructType>(T)->getNumElements(); 402 } 403 404 /// Move the given iterators to the next leaf type in depth first traversal. 405 /// 406 /// Performs a depth-first traversal of the type as specified by its arguments, 407 /// stopping at the next leaf node (which may be a legitimate scalar type or an 408 /// empty struct or array). 409 /// 410 /// @param SubTypes List of the partial components making up the type from 411 /// outermost to innermost non-empty aggregate. The element currently 412 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 413 /// 414 /// @param Path Set of extractvalue indices leading from the outermost type 415 /// (SubTypes[0]) to the leaf node currently represented. 416 /// 417 /// @returns true if a new type was found, false otherwise. Calling this 418 /// function again on a finished iterator will repeatedly return 419 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 420 /// aggregate or a non-aggregate 421 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 422 SmallVectorImpl<unsigned> &Path) { 423 // First march back up the tree until we can successfully increment one of the 424 // coordinates in Path. 425 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 426 Path.pop_back(); 427 SubTypes.pop_back(); 428 } 429 430 // If we reached the top, then the iterator is done. 431 if (Path.empty()) 432 return false; 433 434 // We know there's *some* valid leaf now, so march back down the tree picking 435 // out the left-most element at each node. 436 ++Path.back(); 437 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 438 while (DeeperType->isAggregateType()) { 439 CompositeType *CT = cast<CompositeType>(DeeperType); 440 if (!indexReallyValid(CT, 0)) 441 return true; 442 443 SubTypes.push_back(CT); 444 Path.push_back(0); 445 446 DeeperType = CT->getTypeAtIndex(0U); 447 } 448 449 return true; 450 } 451 452 /// Find the first non-empty, scalar-like type in Next and setup the iterator 453 /// components. 454 /// 455 /// Assuming Next is an aggregate of some kind, this function will traverse the 456 /// tree from left to right (i.e. depth-first) looking for the first 457 /// non-aggregate type which will play a role in function return. 458 /// 459 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 460 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 461 /// i32 in that type. 462 static bool firstRealType(Type *Next, 463 SmallVectorImpl<CompositeType *> &SubTypes, 464 SmallVectorImpl<unsigned> &Path) { 465 // First initialise the iterator components to the first "leaf" node 466 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 467 // despite nominally being an aggregate). 468 while (Next->isAggregateType() && 469 indexReallyValid(cast<CompositeType>(Next), 0)) { 470 SubTypes.push_back(cast<CompositeType>(Next)); 471 Path.push_back(0); 472 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 473 } 474 475 // If there's no Path now, Next was originally scalar already (or empty 476 // leaf). We're done. 477 if (Path.empty()) 478 return true; 479 480 // Otherwise, use normal iteration to keep looking through the tree until we 481 // find a non-aggregate type. 482 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 483 if (!advanceToNextLeafType(SubTypes, Path)) 484 return false; 485 } 486 487 return true; 488 } 489 490 /// Set the iterator data-structures to the next non-empty, non-aggregate 491 /// subtype. 492 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 493 SmallVectorImpl<unsigned> &Path) { 494 do { 495 if (!advanceToNextLeafType(SubTypes, Path)) 496 return false; 497 498 assert(!Path.empty() && "found a leaf but didn't set the path?"); 499 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 500 501 return true; 502 } 503 504 505 /// Test if the given instruction is in a position to be optimized 506 /// with a tail-call. This roughly means that it's in a block with 507 /// a return and there's nothing that needs to be scheduled 508 /// between it and the return. 509 /// 510 /// This function only tests target-independent requirements. 511 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 512 const Instruction *I = CS.getInstruction(); 513 const BasicBlock *ExitBB = I->getParent(); 514 const Instruction *Term = ExitBB->getTerminator(); 515 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 516 517 // The block must end in a return statement or unreachable. 518 // 519 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 520 // an unreachable, for now. The way tailcall optimization is currently 521 // implemented means it will add an epilogue followed by a jump. That is 522 // not profitable. Also, if the callee is a special function (e.g. 523 // longjmp on x86), it can end up causing miscompilation that has not 524 // been fully understood. 525 if (!Ret && 526 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 527 return false; 528 529 // If I will have a chain, make sure no other instruction that will have a 530 // chain interposes between I and the return. 531 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 532 !isSafeToSpeculativelyExecute(I)) 533 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 534 if (&*BBI == I) 535 break; 536 // Debug info intrinsics do not get in the way of tail call optimization. 537 if (isa<DbgInfoIntrinsic>(BBI)) 538 continue; 539 // A lifetime end intrinsic should not stop tail call optimization. 540 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 541 if (II->getIntrinsicID() == Intrinsic::lifetime_end) 542 continue; 543 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 544 !isSafeToSpeculativelyExecute(&*BBI)) 545 return false; 546 } 547 548 const Function *F = ExitBB->getParent(); 549 return returnTypeIsEligibleForTailCall( 550 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 551 } 552 553 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 554 const ReturnInst *Ret, 555 const TargetLoweringBase &TLI, 556 bool *AllowDifferingSizes) { 557 // ADS may be null, so don't write to it directly. 558 bool DummyADS; 559 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 560 ADS = true; 561 562 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 563 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 564 AttributeList::ReturnIndex); 565 566 // NoAlias and NonNull are completely benign as far as calling convention 567 // goes, they shouldn't affect whether the call is a tail call. 568 CallerAttrs.removeAttribute(Attribute::NoAlias); 569 CalleeAttrs.removeAttribute(Attribute::NoAlias); 570 CallerAttrs.removeAttribute(Attribute::NonNull); 571 CalleeAttrs.removeAttribute(Attribute::NonNull); 572 573 if (CallerAttrs.contains(Attribute::ZExt)) { 574 if (!CalleeAttrs.contains(Attribute::ZExt)) 575 return false; 576 577 ADS = false; 578 CallerAttrs.removeAttribute(Attribute::ZExt); 579 CalleeAttrs.removeAttribute(Attribute::ZExt); 580 } else if (CallerAttrs.contains(Attribute::SExt)) { 581 if (!CalleeAttrs.contains(Attribute::SExt)) 582 return false; 583 584 ADS = false; 585 CallerAttrs.removeAttribute(Attribute::SExt); 586 CalleeAttrs.removeAttribute(Attribute::SExt); 587 } 588 589 // Drop sext and zext return attributes if the result is not used. 590 // This enables tail calls for code like: 591 // 592 // define void @caller() { 593 // entry: 594 // %unused_result = tail call zeroext i1 @callee() 595 // br label %retlabel 596 // retlabel: 597 // ret void 598 // } 599 if (I->use_empty()) { 600 CalleeAttrs.removeAttribute(Attribute::SExt); 601 CalleeAttrs.removeAttribute(Attribute::ZExt); 602 } 603 604 // If they're still different, there's some facet we don't understand 605 // (currently only "inreg", but in future who knows). It may be OK but the 606 // only safe option is to reject the tail call. 607 return CallerAttrs == CalleeAttrs; 608 } 609 610 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 611 const Instruction *I, 612 const ReturnInst *Ret, 613 const TargetLoweringBase &TLI) { 614 // If the block ends with a void return or unreachable, it doesn't matter 615 // what the call's return type is. 616 if (!Ret || Ret->getNumOperands() == 0) return true; 617 618 // If the return value is undef, it doesn't matter what the call's 619 // return type is. 620 if (isa<UndefValue>(Ret->getOperand(0))) return true; 621 622 // Make sure the attributes attached to each return are compatible. 623 bool AllowDifferingSizes; 624 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 625 return false; 626 627 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 628 // Intrinsic like llvm.memcpy has no return value, but the expanded 629 // libcall may or may not have return value. On most platforms, it 630 // will be expanded as memcpy in libc, which returns the first 631 // argument. On other platforms like arm-none-eabi, memcpy may be 632 // expanded as library call without return value, like __aeabi_memcpy. 633 const CallInst *Call = cast<CallInst>(I); 634 if (Function *F = Call->getCalledFunction()) { 635 Intrinsic::ID IID = F->getIntrinsicID(); 636 if (((IID == Intrinsic::memcpy && 637 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 638 (IID == Intrinsic::memmove && 639 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 640 (IID == Intrinsic::memset && 641 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 642 RetVal == Call->getArgOperand(0)) 643 return true; 644 } 645 646 SmallVector<unsigned, 4> RetPath, CallPath; 647 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 648 649 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 650 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 651 652 // Nothing's actually returned, it doesn't matter what the callee put there 653 // it's a valid tail call. 654 if (RetEmpty) 655 return true; 656 657 // Iterate pairwise through each of the value types making up the tail call 658 // and the corresponding return. For each one we want to know whether it's 659 // essentially going directly from the tail call to the ret, via operations 660 // that end up not generating any code. 661 // 662 // We allow a certain amount of covariance here. For example it's permitted 663 // for the tail call to define more bits than the ret actually cares about 664 // (e.g. via a truncate). 665 do { 666 if (CallEmpty) { 667 // We've exhausted the values produced by the tail call instruction, the 668 // rest are essentially undef. The type doesn't really matter, but we need 669 // *something*. 670 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 671 CallVal = UndefValue::get(SlotType); 672 } 673 674 // The manipulations performed when we're looking through an insertvalue or 675 // an extractvalue would happen at the front of the RetPath list, so since 676 // we have to copy it anyway it's more efficient to create a reversed copy. 677 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 678 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 679 680 // Finally, we can check whether the value produced by the tail call at this 681 // index is compatible with the value we return. 682 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 683 AllowDifferingSizes, TLI, 684 F->getParent()->getDataLayout())) 685 return false; 686 687 CallEmpty = !nextRealType(CallSubTypes, CallPath); 688 } while(nextRealType(RetSubTypes, RetPath)); 689 690 return true; 691 } 692 693 static void collectEHScopeMembers( 694 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 695 const MachineBasicBlock *MBB) { 696 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 697 while (!Worklist.empty()) { 698 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 699 // Don't follow blocks which start new scopes. 700 if (Visiting->isEHPad() && Visiting != MBB) 701 continue; 702 703 // Add this MBB to our scope. 704 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 705 706 // Don't revisit blocks. 707 if (!P.second) { 708 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 709 continue; 710 } 711 712 // Returns are boundaries where scope transfer can occur, don't follow 713 // successors. 714 if (Visiting->isEHScopeReturnBlock()) 715 continue; 716 717 for (const MachineBasicBlock *Succ : Visiting->successors()) 718 Worklist.push_back(Succ); 719 } 720 } 721 722 DenseMap<const MachineBasicBlock *, int> 723 llvm::getEHScopeMembership(const MachineFunction &MF) { 724 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 725 726 // We don't have anything to do if there aren't any EH pads. 727 if (!MF.hasEHScopes()) 728 return EHScopeMembership; 729 730 int EntryBBNumber = MF.front().getNumber(); 731 bool IsSEH = isAsynchronousEHPersonality( 732 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 733 734 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 735 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 736 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 737 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 738 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 739 for (const MachineBasicBlock &MBB : MF) { 740 if (MBB.isEHScopeEntry()) { 741 EHScopeBlocks.push_back(&MBB); 742 } else if (IsSEH && MBB.isEHPad()) { 743 SEHCatchPads.push_back(&MBB); 744 } else if (MBB.pred_empty()) { 745 UnreachableBlocks.push_back(&MBB); 746 } 747 748 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 749 750 // CatchPads are not scopes for SEH so do not consider CatchRet to 751 // transfer control to another scope. 752 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 753 continue; 754 755 // FIXME: SEH CatchPads are not necessarily in the parent function: 756 // they could be inside a finally block. 757 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 758 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 759 CatchRetSuccessors.push_back( 760 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 761 } 762 763 // We don't have anything to do if there aren't any EH pads. 764 if (EHScopeBlocks.empty()) 765 return EHScopeMembership; 766 767 // Identify all the basic blocks reachable from the function entry. 768 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 769 // All blocks not part of a scope are in the parent function. 770 for (const MachineBasicBlock *MBB : UnreachableBlocks) 771 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 772 // Next, identify all the blocks inside the scopes. 773 for (const MachineBasicBlock *MBB : EHScopeBlocks) 774 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 775 // SEH CatchPads aren't really scopes, handle them separately. 776 for (const MachineBasicBlock *MBB : SEHCatchPads) 777 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 778 // Finally, identify all the targets of a catchret. 779 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 780 CatchRetSuccessors) 781 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 782 CatchRetPair.first); 783 return EHScopeMembership; 784 } 785