1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 /// Compute the linearized index of a member in a nested aggregate/struct/array 31 /// by recursing and accumulating CurIndex as long as there are indices in the 32 /// index list. 33 unsigned llvm::ComputeLinearIndex(Type *Ty, 34 const unsigned *Indices, 35 const unsigned *IndicesEnd, 36 unsigned CurIndex) { 37 // Base case: We're done. 38 if (Indices && Indices == IndicesEnd) 39 return CurIndex; 40 41 // Given a struct type, recursively traverse the elements. 42 if (StructType *STy = dyn_cast<StructType>(Ty)) { 43 for (auto I : llvm::enumerate(STy->elements())) { 44 Type *ET = I.value(); 45 if (Indices && *Indices == I.index()) 46 return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex); 47 CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex); 48 } 49 assert(!Indices && "Unexpected out of bound"); 50 return CurIndex; 51 } 52 // Given an array type, recursively traverse the elements. 53 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 54 Type *EltTy = ATy->getElementType(); 55 unsigned NumElts = ATy->getNumElements(); 56 // Compute the Linear offset when jumping one element of the array 57 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 58 if (Indices) { 59 assert(*Indices < NumElts && "Unexpected out of bound"); 60 // If the indice is inside the array, compute the index to the requested 61 // elt and recurse inside the element with the end of the indices list 62 CurIndex += EltLinearOffset* *Indices; 63 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 64 } 65 CurIndex += EltLinearOffset*NumElts; 66 return CurIndex; 67 } 68 // We haven't found the type we're looking for, so keep searching. 69 return CurIndex + 1; 70 } 71 72 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 73 /// EVTs that represent all the individual underlying 74 /// non-aggregate types that comprise it. 75 /// 76 /// If Offsets is non-null, it points to a vector to be filled in 77 /// with the in-memory offsets of each of the individual values. 78 /// 79 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 80 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 81 SmallVectorImpl<EVT> *MemVTs, 82 SmallVectorImpl<TypeSize> *Offsets, 83 TypeSize StartingOffset) { 84 // Given a struct type, recursively traverse the elements. 85 if (StructType *STy = dyn_cast<StructType>(Ty)) { 86 // If the Offsets aren't needed, don't query the struct layout. This allows 87 // us to support structs with scalable vectors for operations that don't 88 // need offsets. 89 const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 90 for (StructType::element_iterator EB = STy->element_begin(), 91 EI = EB, 92 EE = STy->element_end(); 93 EI != EE; ++EI) { 94 // Don't compute the element offset if we didn't get a StructLayout above. 95 TypeSize EltOffset = SL ? SL->getElementOffset(EI - EB) 96 : TypeSize::get(0, StartingOffset.isScalable()); 97 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 98 StartingOffset + EltOffset); 99 } 100 return; 101 } 102 // Given an array type, recursively traverse the elements. 103 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 104 Type *EltTy = ATy->getElementType(); 105 TypeSize EltSize = DL.getTypeAllocSize(EltTy); 106 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 107 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 108 StartingOffset + i * EltSize); 109 return; 110 } 111 // Interpret void as zero return values. 112 if (Ty->isVoidTy()) 113 return; 114 // Base case: we can get an EVT for this LLVM IR type. 115 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 116 if (MemVTs) 117 MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 118 if (Offsets) 119 Offsets->push_back(StartingOffset); 120 } 121 122 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 123 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 124 SmallVectorImpl<TypeSize> *Offsets, 125 TypeSize StartingOffset) { 126 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 127 StartingOffset); 128 } 129 130 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 131 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 132 SmallVectorImpl<TypeSize> *Offsets, 133 uint64_t StartingOffset) { 134 TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy()); 135 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, Offsets, Offset); 136 } 137 138 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 139 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 140 SmallVectorImpl<uint64_t> *FixedOffsets, 141 uint64_t StartingOffset) { 142 TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy()); 143 if (FixedOffsets) { 144 SmallVector<TypeSize, 4> Offsets; 145 ComputeValueVTs(TLI, DL, Ty, ValueVTs, &Offsets, Offset); 146 for (TypeSize Offset : Offsets) 147 FixedOffsets->push_back(Offset.getFixedValue()); 148 } else { 149 ComputeValueVTs(TLI, DL, Ty, ValueVTs, nullptr, Offset); 150 } 151 } 152 153 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 154 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 155 SmallVectorImpl<EVT> *MemVTs, 156 SmallVectorImpl<TypeSize> *Offsets, 157 uint64_t StartingOffset) { 158 TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy()); 159 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, Offsets, Offset); 160 } 161 162 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 163 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 164 SmallVectorImpl<EVT> *MemVTs, 165 SmallVectorImpl<uint64_t> *FixedOffsets, 166 uint64_t StartingOffset) { 167 TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy()); 168 if (FixedOffsets) { 169 SmallVector<TypeSize, 4> Offsets; 170 ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, &Offsets, Offset); 171 for (TypeSize Offset : Offsets) 172 FixedOffsets->push_back(Offset.getFixedValue()); 173 } else { 174 ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, nullptr, Offset); 175 } 176 } 177 178 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 179 SmallVectorImpl<LLT> &ValueTys, 180 SmallVectorImpl<uint64_t> *Offsets, 181 uint64_t StartingOffset) { 182 // Given a struct type, recursively traverse the elements. 183 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 184 // If the Offsets aren't needed, don't query the struct layout. This allows 185 // us to support structs with scalable vectors for operations that don't 186 // need offsets. 187 const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 188 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 189 uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0; 190 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 191 StartingOffset + EltOffset); 192 } 193 return; 194 } 195 // Given an array type, recursively traverse the elements. 196 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 197 Type *EltTy = ATy->getElementType(); 198 uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 199 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 200 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 201 StartingOffset + i * EltSize); 202 return; 203 } 204 // Interpret void as zero return values. 205 if (Ty.isVoidTy()) 206 return; 207 // Base case: we can get an LLT for this LLVM IR type. 208 ValueTys.push_back(getLLTForType(Ty, DL)); 209 if (Offsets != nullptr) 210 Offsets->push_back(StartingOffset * 8); 211 } 212 213 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 214 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 215 V = V->stripPointerCasts(); 216 GlobalValue *GV = dyn_cast<GlobalValue>(V); 217 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 218 219 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 220 assert(Var->hasInitializer() && 221 "The EH catch-all value must have an initializer"); 222 Value *Init = Var->getInitializer(); 223 GV = dyn_cast<GlobalValue>(Init); 224 if (!GV) V = cast<ConstantPointerNull>(Init); 225 } 226 227 assert((GV || isa<ConstantPointerNull>(V)) && 228 "TypeInfo must be a global variable or NULL"); 229 return GV; 230 } 231 232 /// getFCmpCondCode - Return the ISD condition code corresponding to 233 /// the given LLVM IR floating-point condition code. This includes 234 /// consideration of global floating-point math flags. 235 /// 236 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 237 switch (Pred) { 238 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 239 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 240 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 241 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 242 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 243 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 244 case FCmpInst::FCMP_ONE: return ISD::SETONE; 245 case FCmpInst::FCMP_ORD: return ISD::SETO; 246 case FCmpInst::FCMP_UNO: return ISD::SETUO; 247 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 248 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 249 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 250 case FCmpInst::FCMP_ULT: return ISD::SETULT; 251 case FCmpInst::FCMP_ULE: return ISD::SETULE; 252 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 253 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 254 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 255 } 256 } 257 258 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 259 switch (CC) { 260 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 261 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 262 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 263 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 264 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 265 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 266 default: return CC; 267 } 268 } 269 270 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 271 switch (Pred) { 272 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 273 case ICmpInst::ICMP_NE: return ISD::SETNE; 274 case ICmpInst::ICMP_SLE: return ISD::SETLE; 275 case ICmpInst::ICMP_ULE: return ISD::SETULE; 276 case ICmpInst::ICMP_SGE: return ISD::SETGE; 277 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 278 case ICmpInst::ICMP_SLT: return ISD::SETLT; 279 case ICmpInst::ICMP_ULT: return ISD::SETULT; 280 case ICmpInst::ICMP_SGT: return ISD::SETGT; 281 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 282 default: 283 llvm_unreachable("Invalid ICmp predicate opcode!"); 284 } 285 } 286 287 ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) { 288 switch (Pred) { 289 case ISD::SETEQ: 290 return ICmpInst::ICMP_EQ; 291 case ISD::SETNE: 292 return ICmpInst::ICMP_NE; 293 case ISD::SETLE: 294 return ICmpInst::ICMP_SLE; 295 case ISD::SETULE: 296 return ICmpInst::ICMP_ULE; 297 case ISD::SETGE: 298 return ICmpInst::ICMP_SGE; 299 case ISD::SETUGE: 300 return ICmpInst::ICMP_UGE; 301 case ISD::SETLT: 302 return ICmpInst::ICMP_SLT; 303 case ISD::SETULT: 304 return ICmpInst::ICMP_ULT; 305 case ISD::SETGT: 306 return ICmpInst::ICMP_SGT; 307 case ISD::SETUGT: 308 return ICmpInst::ICMP_UGT; 309 default: 310 llvm_unreachable("Invalid ISD integer condition code!"); 311 } 312 } 313 314 static bool isNoopBitcast(Type *T1, Type *T2, 315 const TargetLoweringBase& TLI) { 316 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 317 (isa<VectorType>(T1) && isa<VectorType>(T2) && 318 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 319 } 320 321 /// Look through operations that will be free to find the earliest source of 322 /// this value. 323 /// 324 /// @param ValLoc If V has aggregate type, we will be interested in a particular 325 /// scalar component. This records its address; the reverse of this list gives a 326 /// sequence of indices appropriate for an extractvalue to locate the important 327 /// value. This value is updated during the function and on exit will indicate 328 /// similar information for the Value returned. 329 /// 330 /// @param DataBits If this function looks through truncate instructions, this 331 /// will record the smallest size attained. 332 static const Value *getNoopInput(const Value *V, 333 SmallVectorImpl<unsigned> &ValLoc, 334 unsigned &DataBits, 335 const TargetLoweringBase &TLI, 336 const DataLayout &DL) { 337 while (true) { 338 // Try to look through V1; if V1 is not an instruction, it can't be looked 339 // through. 340 const Instruction *I = dyn_cast<Instruction>(V); 341 if (!I || I->getNumOperands() == 0) return V; 342 const Value *NoopInput = nullptr; 343 344 Value *Op = I->getOperand(0); 345 if (isa<BitCastInst>(I)) { 346 // Look through truly no-op bitcasts. 347 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 348 NoopInput = Op; 349 } else if (isa<GetElementPtrInst>(I)) { 350 // Look through getelementptr 351 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 352 NoopInput = Op; 353 } else if (isa<IntToPtrInst>(I)) { 354 // Look through inttoptr. 355 // Make sure this isn't a truncating or extending cast. We could 356 // support this eventually, but don't bother for now. 357 if (!isa<VectorType>(I->getType()) && 358 DL.getPointerSizeInBits() == 359 cast<IntegerType>(Op->getType())->getBitWidth()) 360 NoopInput = Op; 361 } else if (isa<PtrToIntInst>(I)) { 362 // Look through ptrtoint. 363 // Make sure this isn't a truncating or extending cast. We could 364 // support this eventually, but don't bother for now. 365 if (!isa<VectorType>(I->getType()) && 366 DL.getPointerSizeInBits() == 367 cast<IntegerType>(I->getType())->getBitWidth()) 368 NoopInput = Op; 369 } else if (isa<TruncInst>(I) && 370 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 371 DataBits = 372 std::min((uint64_t)DataBits, 373 I->getType()->getPrimitiveSizeInBits().getFixedValue()); 374 NoopInput = Op; 375 } else if (auto *CB = dyn_cast<CallBase>(I)) { 376 const Value *ReturnedOp = CB->getReturnedArgOperand(); 377 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 378 NoopInput = ReturnedOp; 379 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 380 // Value may come from either the aggregate or the scalar 381 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 382 if (ValLoc.size() >= InsertLoc.size() && 383 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 384 // The type being inserted is a nested sub-type of the aggregate; we 385 // have to remove those initial indices to get the location we're 386 // interested in for the operand. 387 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 388 NoopInput = IVI->getInsertedValueOperand(); 389 } else { 390 // The struct we're inserting into has the value we're interested in, no 391 // change of address. 392 NoopInput = Op; 393 } 394 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 395 // The part we're interested in will inevitably be some sub-section of the 396 // previous aggregate. Combine the two paths to obtain the true address of 397 // our element. 398 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 399 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 400 NoopInput = Op; 401 } 402 // Terminate if we couldn't find anything to look through. 403 if (!NoopInput) 404 return V; 405 406 V = NoopInput; 407 } 408 } 409 410 /// Return true if this scalar return value only has bits discarded on its path 411 /// from the "tail call" to the "ret". This includes the obvious noop 412 /// instructions handled by getNoopInput above as well as free truncations (or 413 /// extensions prior to the call). 414 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 415 SmallVectorImpl<unsigned> &RetIndices, 416 SmallVectorImpl<unsigned> &CallIndices, 417 bool AllowDifferingSizes, 418 const TargetLoweringBase &TLI, 419 const DataLayout &DL) { 420 421 // Trace the sub-value needed by the return value as far back up the graph as 422 // possible, in the hope that it will intersect with the value produced by the 423 // call. In the simple case with no "returned" attribute, the hope is actually 424 // that we end up back at the tail call instruction itself. 425 unsigned BitsRequired = UINT_MAX; 426 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 427 428 // If this slot in the value returned is undef, it doesn't matter what the 429 // call puts there, it'll be fine. 430 if (isa<UndefValue>(RetVal)) 431 return true; 432 433 // Now do a similar search up through the graph to find where the value 434 // actually returned by the "tail call" comes from. In the simple case without 435 // a "returned" attribute, the search will be blocked immediately and the loop 436 // a Noop. 437 unsigned BitsProvided = UINT_MAX; 438 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 439 440 // There's no hope if we can't actually trace them to (the same part of!) the 441 // same value. 442 if (CallVal != RetVal || CallIndices != RetIndices) 443 return false; 444 445 // However, intervening truncates may have made the call non-tail. Make sure 446 // all the bits that are needed by the "ret" have been provided by the "tail 447 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 448 // extensions too. 449 if (BitsProvided < BitsRequired || 450 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 451 return false; 452 453 return true; 454 } 455 456 /// For an aggregate type, determine whether a given index is within bounds or 457 /// not. 458 static bool indexReallyValid(Type *T, unsigned Idx) { 459 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 460 return Idx < AT->getNumElements(); 461 462 return Idx < cast<StructType>(T)->getNumElements(); 463 } 464 465 /// Move the given iterators to the next leaf type in depth first traversal. 466 /// 467 /// Performs a depth-first traversal of the type as specified by its arguments, 468 /// stopping at the next leaf node (which may be a legitimate scalar type or an 469 /// empty struct or array). 470 /// 471 /// @param SubTypes List of the partial components making up the type from 472 /// outermost to innermost non-empty aggregate. The element currently 473 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 474 /// 475 /// @param Path Set of extractvalue indices leading from the outermost type 476 /// (SubTypes[0]) to the leaf node currently represented. 477 /// 478 /// @returns true if a new type was found, false otherwise. Calling this 479 /// function again on a finished iterator will repeatedly return 480 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 481 /// aggregate or a non-aggregate 482 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, 483 SmallVectorImpl<unsigned> &Path) { 484 // First march back up the tree until we can successfully increment one of the 485 // coordinates in Path. 486 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 487 Path.pop_back(); 488 SubTypes.pop_back(); 489 } 490 491 // If we reached the top, then the iterator is done. 492 if (Path.empty()) 493 return false; 494 495 // We know there's *some* valid leaf now, so march back down the tree picking 496 // out the left-most element at each node. 497 ++Path.back(); 498 Type *DeeperType = 499 ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()); 500 while (DeeperType->isAggregateType()) { 501 if (!indexReallyValid(DeeperType, 0)) 502 return true; 503 504 SubTypes.push_back(DeeperType); 505 Path.push_back(0); 506 507 DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0); 508 } 509 510 return true; 511 } 512 513 /// Find the first non-empty, scalar-like type in Next and setup the iterator 514 /// components. 515 /// 516 /// Assuming Next is an aggregate of some kind, this function will traverse the 517 /// tree from left to right (i.e. depth-first) looking for the first 518 /// non-aggregate type which will play a role in function return. 519 /// 520 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 521 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 522 /// i32 in that type. 523 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, 524 SmallVectorImpl<unsigned> &Path) { 525 // First initialise the iterator components to the first "leaf" node 526 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 527 // despite nominally being an aggregate). 528 while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) { 529 SubTypes.push_back(Next); 530 Path.push_back(0); 531 Next = FirstInner; 532 } 533 534 // If there's no Path now, Next was originally scalar already (or empty 535 // leaf). We're done. 536 if (Path.empty()) 537 return true; 538 539 // Otherwise, use normal iteration to keep looking through the tree until we 540 // find a non-aggregate type. 541 while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 542 ->isAggregateType()) { 543 if (!advanceToNextLeafType(SubTypes, Path)) 544 return false; 545 } 546 547 return true; 548 } 549 550 /// Set the iterator data-structures to the next non-empty, non-aggregate 551 /// subtype. 552 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, 553 SmallVectorImpl<unsigned> &Path) { 554 do { 555 if (!advanceToNextLeafType(SubTypes, Path)) 556 return false; 557 558 assert(!Path.empty() && "found a leaf but didn't set the path?"); 559 } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 560 ->isAggregateType()); 561 562 return true; 563 } 564 565 566 /// Test if the given instruction is in a position to be optimized 567 /// with a tail-call. This roughly means that it's in a block with 568 /// a return and there's nothing that needs to be scheduled 569 /// between it and the return. 570 /// 571 /// This function only tests target-independent requirements. 572 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) { 573 const BasicBlock *ExitBB = Call.getParent(); 574 const Instruction *Term = ExitBB->getTerminator(); 575 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 576 577 // The block must end in a return statement or unreachable. 578 // 579 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 580 // an unreachable, for now. The way tailcall optimization is currently 581 // implemented means it will add an epilogue followed by a jump. That is 582 // not profitable. Also, if the callee is a special function (e.g. 583 // longjmp on x86), it can end up causing miscompilation that has not 584 // been fully understood. 585 if (!Ret && ((!TM.Options.GuaranteedTailCallOpt && 586 Call.getCallingConv() != CallingConv::Tail && 587 Call.getCallingConv() != CallingConv::SwiftTail) || 588 !isa<UnreachableInst>(Term))) 589 return false; 590 591 // If I will have a chain, make sure no other instruction that will have a 592 // chain interposes between I and the return. 593 // Check for all calls including speculatable functions. 594 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 595 if (&*BBI == &Call) 596 break; 597 // Debug info intrinsics do not get in the way of tail call optimization. 598 // Pseudo probe intrinsics do not block tail call optimization either. 599 if (BBI->isDebugOrPseudoInst()) 600 continue; 601 // A lifetime end, assume or noalias.decl intrinsic should not stop tail 602 // call optimization. 603 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 604 if (II->getIntrinsicID() == Intrinsic::lifetime_end || 605 II->getIntrinsicID() == Intrinsic::assume || 606 II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl) 607 continue; 608 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 609 !isSafeToSpeculativelyExecute(&*BBI)) 610 return false; 611 } 612 613 const Function *F = ExitBB->getParent(); 614 return returnTypeIsEligibleForTailCall( 615 F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 616 } 617 618 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 619 const ReturnInst *Ret, 620 const TargetLoweringBase &TLI, 621 bool *AllowDifferingSizes) { 622 // ADS may be null, so don't write to it directly. 623 bool DummyADS; 624 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 625 ADS = true; 626 627 AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs()); 628 AttrBuilder CalleeAttrs(F->getContext(), 629 cast<CallInst>(I)->getAttributes().getRetAttrs()); 630 631 // Following attributes are completely benign as far as calling convention 632 // goes, they shouldn't affect whether the call is a tail call. 633 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 634 Attribute::DereferenceableOrNull, Attribute::NoAlias, 635 Attribute::NonNull, Attribute::NoUndef}) { 636 CallerAttrs.removeAttribute(Attr); 637 CalleeAttrs.removeAttribute(Attr); 638 } 639 640 if (CallerAttrs.contains(Attribute::ZExt)) { 641 if (!CalleeAttrs.contains(Attribute::ZExt)) 642 return false; 643 644 ADS = false; 645 CallerAttrs.removeAttribute(Attribute::ZExt); 646 CalleeAttrs.removeAttribute(Attribute::ZExt); 647 } else if (CallerAttrs.contains(Attribute::SExt)) { 648 if (!CalleeAttrs.contains(Attribute::SExt)) 649 return false; 650 651 ADS = false; 652 CallerAttrs.removeAttribute(Attribute::SExt); 653 CalleeAttrs.removeAttribute(Attribute::SExt); 654 } 655 656 // Drop sext and zext return attributes if the result is not used. 657 // This enables tail calls for code like: 658 // 659 // define void @caller() { 660 // entry: 661 // %unused_result = tail call zeroext i1 @callee() 662 // br label %retlabel 663 // retlabel: 664 // ret void 665 // } 666 if (I->use_empty()) { 667 CalleeAttrs.removeAttribute(Attribute::SExt); 668 CalleeAttrs.removeAttribute(Attribute::ZExt); 669 } 670 671 // If they're still different, there's some facet we don't understand 672 // (currently only "inreg", but in future who knows). It may be OK but the 673 // only safe option is to reject the tail call. 674 return CallerAttrs == CalleeAttrs; 675 } 676 677 /// Check whether B is a bitcast of a pointer type to another pointer type, 678 /// which is equal to A. 679 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) { 680 assert(A && B && "Expected non-null inputs!"); 681 682 auto *BitCastIn = dyn_cast<BitCastInst>(B); 683 684 if (!BitCastIn) 685 return false; 686 687 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 688 return false; 689 690 return A == BitCastIn->getOperand(0); 691 } 692 693 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 694 const Instruction *I, 695 const ReturnInst *Ret, 696 const TargetLoweringBase &TLI) { 697 // If the block ends with a void return or unreachable, it doesn't matter 698 // what the call's return type is. 699 if (!Ret || Ret->getNumOperands() == 0) return true; 700 701 // If the return value is undef, it doesn't matter what the call's 702 // return type is. 703 if (isa<UndefValue>(Ret->getOperand(0))) return true; 704 705 // Make sure the attributes attached to each return are compatible. 706 bool AllowDifferingSizes; 707 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 708 return false; 709 710 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 711 // Intrinsic like llvm.memcpy has no return value, but the expanded 712 // libcall may or may not have return value. On most platforms, it 713 // will be expanded as memcpy in libc, which returns the first 714 // argument. On other platforms like arm-none-eabi, memcpy may be 715 // expanded as library call without return value, like __aeabi_memcpy. 716 const CallInst *Call = cast<CallInst>(I); 717 if (Function *F = Call->getCalledFunction()) { 718 Intrinsic::ID IID = F->getIntrinsicID(); 719 if (((IID == Intrinsic::memcpy && 720 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 721 (IID == Intrinsic::memmove && 722 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 723 (IID == Intrinsic::memset && 724 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 725 (RetVal == Call->getArgOperand(0) || 726 isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0)))) 727 return true; 728 } 729 730 SmallVector<unsigned, 4> RetPath, CallPath; 731 SmallVector<Type *, 4> RetSubTypes, CallSubTypes; 732 733 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 734 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 735 736 // Nothing's actually returned, it doesn't matter what the callee put there 737 // it's a valid tail call. 738 if (RetEmpty) 739 return true; 740 741 // Iterate pairwise through each of the value types making up the tail call 742 // and the corresponding return. For each one we want to know whether it's 743 // essentially going directly from the tail call to the ret, via operations 744 // that end up not generating any code. 745 // 746 // We allow a certain amount of covariance here. For example it's permitted 747 // for the tail call to define more bits than the ret actually cares about 748 // (e.g. via a truncate). 749 do { 750 if (CallEmpty) { 751 // We've exhausted the values produced by the tail call instruction, the 752 // rest are essentially undef. The type doesn't really matter, but we need 753 // *something*. 754 Type *SlotType = 755 ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back()); 756 CallVal = UndefValue::get(SlotType); 757 } 758 759 // The manipulations performed when we're looking through an insertvalue or 760 // an extractvalue would happen at the front of the RetPath list, so since 761 // we have to copy it anyway it's more efficient to create a reversed copy. 762 SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath)); 763 SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath)); 764 765 // Finally, we can check whether the value produced by the tail call at this 766 // index is compatible with the value we return. 767 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 768 AllowDifferingSizes, TLI, 769 F->getParent()->getDataLayout())) 770 return false; 771 772 CallEmpty = !nextRealType(CallSubTypes, CallPath); 773 } while(nextRealType(RetSubTypes, RetPath)); 774 775 return true; 776 } 777 778 static void collectEHScopeMembers( 779 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 780 const MachineBasicBlock *MBB) { 781 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 782 while (!Worklist.empty()) { 783 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 784 // Don't follow blocks which start new scopes. 785 if (Visiting->isEHPad() && Visiting != MBB) 786 continue; 787 788 // Add this MBB to our scope. 789 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 790 791 // Don't revisit blocks. 792 if (!P.second) { 793 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 794 continue; 795 } 796 797 // Returns are boundaries where scope transfer can occur, don't follow 798 // successors. 799 if (Visiting->isEHScopeReturnBlock()) 800 continue; 801 802 append_range(Worklist, Visiting->successors()); 803 } 804 } 805 806 DenseMap<const MachineBasicBlock *, int> 807 llvm::getEHScopeMembership(const MachineFunction &MF) { 808 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 809 810 // We don't have anything to do if there aren't any EH pads. 811 if (!MF.hasEHScopes()) 812 return EHScopeMembership; 813 814 int EntryBBNumber = MF.front().getNumber(); 815 bool IsSEH = isAsynchronousEHPersonality( 816 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 817 818 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 819 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 820 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 821 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 822 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 823 for (const MachineBasicBlock &MBB : MF) { 824 if (MBB.isEHScopeEntry()) { 825 EHScopeBlocks.push_back(&MBB); 826 } else if (IsSEH && MBB.isEHPad()) { 827 SEHCatchPads.push_back(&MBB); 828 } else if (MBB.pred_empty()) { 829 UnreachableBlocks.push_back(&MBB); 830 } 831 832 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 833 834 // CatchPads are not scopes for SEH so do not consider CatchRet to 835 // transfer control to another scope. 836 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 837 continue; 838 839 // FIXME: SEH CatchPads are not necessarily in the parent function: 840 // they could be inside a finally block. 841 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 842 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 843 CatchRetSuccessors.push_back( 844 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 845 } 846 847 // We don't have anything to do if there aren't any EH pads. 848 if (EHScopeBlocks.empty()) 849 return EHScopeMembership; 850 851 // Identify all the basic blocks reachable from the function entry. 852 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 853 // All blocks not part of a scope are in the parent function. 854 for (const MachineBasicBlock *MBB : UnreachableBlocks) 855 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 856 // Next, identify all the blocks inside the scopes. 857 for (const MachineBasicBlock *MBB : EHScopeBlocks) 858 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 859 // SEH CatchPads aren't really scopes, handle them separately. 860 for (const MachineBasicBlock *MBB : SEHCatchPads) 861 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 862 // Finally, identify all the targets of a catchret. 863 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 864 CatchRetSuccessors) 865 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 866 CatchRetPair.first); 867 return EHScopeMembership; 868 } 869