xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/Analysis.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 using namespace llvm;
29 
30 /// Compute the linearized index of a member in a nested aggregate/struct/array
31 /// by recursing and accumulating CurIndex as long as there are indices in the
32 /// index list.
33 unsigned llvm::ComputeLinearIndex(Type *Ty,
34                                   const unsigned *Indices,
35                                   const unsigned *IndicesEnd,
36                                   unsigned CurIndex) {
37   // Base case: We're done.
38   if (Indices && Indices == IndicesEnd)
39     return CurIndex;
40 
41   // Given a struct type, recursively traverse the elements.
42   if (StructType *STy = dyn_cast<StructType>(Ty)) {
43     for (auto I : llvm::enumerate(STy->elements())) {
44       Type *ET = I.value();
45       if (Indices && *Indices == I.index())
46         return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex);
47       CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex);
48     }
49     assert(!Indices && "Unexpected out of bound");
50     return CurIndex;
51   }
52   // Given an array type, recursively traverse the elements.
53   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
54     Type *EltTy = ATy->getElementType();
55     unsigned NumElts = ATy->getNumElements();
56     // Compute the Linear offset when jumping one element of the array
57     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
58     if (Indices) {
59       assert(*Indices < NumElts && "Unexpected out of bound");
60       // If the indice is inside the array, compute the index to the requested
61       // elt and recurse inside the element with the end of the indices list
62       CurIndex += EltLinearOffset* *Indices;
63       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
64     }
65     CurIndex += EltLinearOffset*NumElts;
66     return CurIndex;
67   }
68   // We haven't found the type we're looking for, so keep searching.
69   return CurIndex + 1;
70 }
71 
72 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
73 /// EVTs that represent all the individual underlying
74 /// non-aggregate types that comprise it.
75 ///
76 /// If Offsets is non-null, it points to a vector to be filled in
77 /// with the in-memory offsets of each of the individual values.
78 ///
79 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
80                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
81                            SmallVectorImpl<EVT> *MemVTs,
82                            SmallVectorImpl<TypeSize> *Offsets,
83                            TypeSize StartingOffset) {
84   // Given a struct type, recursively traverse the elements.
85   if (StructType *STy = dyn_cast<StructType>(Ty)) {
86     // If the Offsets aren't needed, don't query the struct layout. This allows
87     // us to support structs with scalable vectors for operations that don't
88     // need offsets.
89     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
90     for (StructType::element_iterator EB = STy->element_begin(),
91                                       EI = EB,
92                                       EE = STy->element_end();
93          EI != EE; ++EI) {
94       // Don't compute the element offset if we didn't get a StructLayout above.
95       TypeSize EltOffset = SL ? SL->getElementOffset(EI - EB)
96                               : TypeSize::get(0, StartingOffset.isScalable());
97       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
98                       StartingOffset + EltOffset);
99     }
100     return;
101   }
102   // Given an array type, recursively traverse the elements.
103   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
104     Type *EltTy = ATy->getElementType();
105     TypeSize EltSize = DL.getTypeAllocSize(EltTy);
106     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
107       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
108                       StartingOffset + i * EltSize);
109     return;
110   }
111   // Interpret void as zero return values.
112   if (Ty->isVoidTy())
113     return;
114   // Base case: we can get an EVT for this LLVM IR type.
115   ValueVTs.push_back(TLI.getValueType(DL, Ty));
116   if (MemVTs)
117     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
118   if (Offsets)
119     Offsets->push_back(StartingOffset);
120 }
121 
122 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
123                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
124                            SmallVectorImpl<TypeSize> *Offsets,
125                            TypeSize StartingOffset) {
126   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
127                          StartingOffset);
128 }
129 
130 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
131                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
132                            SmallVectorImpl<TypeSize> *Offsets,
133                            uint64_t StartingOffset) {
134   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
135   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, Offsets, Offset);
136 }
137 
138 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
139                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
140                            SmallVectorImpl<uint64_t> *FixedOffsets,
141                            uint64_t StartingOffset) {
142   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
143   if (FixedOffsets) {
144     SmallVector<TypeSize, 4> Offsets;
145     ComputeValueVTs(TLI, DL, Ty, ValueVTs, &Offsets, Offset);
146     for (TypeSize Offset : Offsets)
147       FixedOffsets->push_back(Offset.getFixedValue());
148   } else {
149     ComputeValueVTs(TLI, DL, Ty, ValueVTs, nullptr, Offset);
150   }
151 }
152 
153 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
154                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
155                            SmallVectorImpl<EVT> *MemVTs,
156                            SmallVectorImpl<TypeSize> *Offsets,
157                            uint64_t StartingOffset) {
158   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
159   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, Offsets, Offset);
160 }
161 
162 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
163                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
164                            SmallVectorImpl<EVT> *MemVTs,
165                            SmallVectorImpl<uint64_t> *FixedOffsets,
166                            uint64_t StartingOffset) {
167   TypeSize Offset = TypeSize::get(StartingOffset, Ty->isScalableTy());
168   if (FixedOffsets) {
169     SmallVector<TypeSize, 4> Offsets;
170     ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, &Offsets, Offset);
171     for (TypeSize Offset : Offsets)
172       FixedOffsets->push_back(Offset.getFixedValue());
173   } else {
174     ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, nullptr, Offset);
175   }
176 }
177 
178 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
179                             SmallVectorImpl<LLT> &ValueTys,
180                             SmallVectorImpl<uint64_t> *Offsets,
181                             uint64_t StartingOffset) {
182   // Given a struct type, recursively traverse the elements.
183   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
184     // If the Offsets aren't needed, don't query the struct layout. This allows
185     // us to support structs with scalable vectors for operations that don't
186     // need offsets.
187     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
188     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
189       uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
190       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
191                        StartingOffset + EltOffset);
192     }
193     return;
194   }
195   // Given an array type, recursively traverse the elements.
196   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
197     Type *EltTy = ATy->getElementType();
198     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
199     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
200       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
201                        StartingOffset + i * EltSize);
202     return;
203   }
204   // Interpret void as zero return values.
205   if (Ty.isVoidTy())
206     return;
207   // Base case: we can get an LLT for this LLVM IR type.
208   ValueTys.push_back(getLLTForType(Ty, DL));
209   if (Offsets != nullptr)
210     Offsets->push_back(StartingOffset * 8);
211 }
212 
213 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
214 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
215   V = V->stripPointerCasts();
216   GlobalValue *GV = dyn_cast<GlobalValue>(V);
217   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
218 
219   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
220     assert(Var->hasInitializer() &&
221            "The EH catch-all value must have an initializer");
222     Value *Init = Var->getInitializer();
223     GV = dyn_cast<GlobalValue>(Init);
224     if (!GV) V = cast<ConstantPointerNull>(Init);
225   }
226 
227   assert((GV || isa<ConstantPointerNull>(V)) &&
228          "TypeInfo must be a global variable or NULL");
229   return GV;
230 }
231 
232 /// getFCmpCondCode - Return the ISD condition code corresponding to
233 /// the given LLVM IR floating-point condition code.  This includes
234 /// consideration of global floating-point math flags.
235 ///
236 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
237   switch (Pred) {
238   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
239   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
240   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
241   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
242   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
243   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
244   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
245   case FCmpInst::FCMP_ORD:   return ISD::SETO;
246   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
247   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
248   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
249   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
250   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
251   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
252   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
253   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
254   default: llvm_unreachable("Invalid FCmp predicate opcode!");
255   }
256 }
257 
258 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
259   switch (CC) {
260     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
261     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
262     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
263     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
264     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
265     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
266     default: return CC;
267   }
268 }
269 
270 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
271   switch (Pred) {
272   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
273   case ICmpInst::ICMP_NE:  return ISD::SETNE;
274   case ICmpInst::ICMP_SLE: return ISD::SETLE;
275   case ICmpInst::ICMP_ULE: return ISD::SETULE;
276   case ICmpInst::ICMP_SGE: return ISD::SETGE;
277   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
278   case ICmpInst::ICMP_SLT: return ISD::SETLT;
279   case ICmpInst::ICMP_ULT: return ISD::SETULT;
280   case ICmpInst::ICMP_SGT: return ISD::SETGT;
281   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
282   default:
283     llvm_unreachable("Invalid ICmp predicate opcode!");
284   }
285 }
286 
287 ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) {
288   switch (Pred) {
289   case ISD::SETEQ:
290     return ICmpInst::ICMP_EQ;
291   case ISD::SETNE:
292     return ICmpInst::ICMP_NE;
293   case ISD::SETLE:
294     return ICmpInst::ICMP_SLE;
295   case ISD::SETULE:
296     return ICmpInst::ICMP_ULE;
297   case ISD::SETGE:
298     return ICmpInst::ICMP_SGE;
299   case ISD::SETUGE:
300     return ICmpInst::ICMP_UGE;
301   case ISD::SETLT:
302     return ICmpInst::ICMP_SLT;
303   case ISD::SETULT:
304     return ICmpInst::ICMP_ULT;
305   case ISD::SETGT:
306     return ICmpInst::ICMP_SGT;
307   case ISD::SETUGT:
308     return ICmpInst::ICMP_UGT;
309   default:
310     llvm_unreachable("Invalid ISD integer condition code!");
311   }
312 }
313 
314 static bool isNoopBitcast(Type *T1, Type *T2,
315                           const TargetLoweringBase& TLI) {
316   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
317          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
318           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
319 }
320 
321 /// Look through operations that will be free to find the earliest source of
322 /// this value.
323 ///
324 /// @param ValLoc If V has aggregate type, we will be interested in a particular
325 /// scalar component. This records its address; the reverse of this list gives a
326 /// sequence of indices appropriate for an extractvalue to locate the important
327 /// value. This value is updated during the function and on exit will indicate
328 /// similar information for the Value returned.
329 ///
330 /// @param DataBits If this function looks through truncate instructions, this
331 /// will record the smallest size attained.
332 static const Value *getNoopInput(const Value *V,
333                                  SmallVectorImpl<unsigned> &ValLoc,
334                                  unsigned &DataBits,
335                                  const TargetLoweringBase &TLI,
336                                  const DataLayout &DL) {
337   while (true) {
338     // Try to look through V1; if V1 is not an instruction, it can't be looked
339     // through.
340     const Instruction *I = dyn_cast<Instruction>(V);
341     if (!I || I->getNumOperands() == 0) return V;
342     const Value *NoopInput = nullptr;
343 
344     Value *Op = I->getOperand(0);
345     if (isa<BitCastInst>(I)) {
346       // Look through truly no-op bitcasts.
347       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
348         NoopInput = Op;
349     } else if (isa<GetElementPtrInst>(I)) {
350       // Look through getelementptr
351       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
352         NoopInput = Op;
353     } else if (isa<IntToPtrInst>(I)) {
354       // Look through inttoptr.
355       // Make sure this isn't a truncating or extending cast.  We could
356       // support this eventually, but don't bother for now.
357       if (!isa<VectorType>(I->getType()) &&
358           DL.getPointerSizeInBits() ==
359               cast<IntegerType>(Op->getType())->getBitWidth())
360         NoopInput = Op;
361     } else if (isa<PtrToIntInst>(I)) {
362       // Look through ptrtoint.
363       // Make sure this isn't a truncating or extending cast.  We could
364       // support this eventually, but don't bother for now.
365       if (!isa<VectorType>(I->getType()) &&
366           DL.getPointerSizeInBits() ==
367               cast<IntegerType>(I->getType())->getBitWidth())
368         NoopInput = Op;
369     } else if (isa<TruncInst>(I) &&
370                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
371       DataBits =
372           std::min((uint64_t)DataBits,
373                    I->getType()->getPrimitiveSizeInBits().getFixedValue());
374       NoopInput = Op;
375     } else if (auto *CB = dyn_cast<CallBase>(I)) {
376       const Value *ReturnedOp = CB->getReturnedArgOperand();
377       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
378         NoopInput = ReturnedOp;
379     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
380       // Value may come from either the aggregate or the scalar
381       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
382       if (ValLoc.size() >= InsertLoc.size() &&
383           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
384         // The type being inserted is a nested sub-type of the aggregate; we
385         // have to remove those initial indices to get the location we're
386         // interested in for the operand.
387         ValLoc.resize(ValLoc.size() - InsertLoc.size());
388         NoopInput = IVI->getInsertedValueOperand();
389       } else {
390         // The struct we're inserting into has the value we're interested in, no
391         // change of address.
392         NoopInput = Op;
393       }
394     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
395       // The part we're interested in will inevitably be some sub-section of the
396       // previous aggregate. Combine the two paths to obtain the true address of
397       // our element.
398       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
399       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
400       NoopInput = Op;
401     }
402     // Terminate if we couldn't find anything to look through.
403     if (!NoopInput)
404       return V;
405 
406     V = NoopInput;
407   }
408 }
409 
410 /// Return true if this scalar return value only has bits discarded on its path
411 /// from the "tail call" to the "ret". This includes the obvious noop
412 /// instructions handled by getNoopInput above as well as free truncations (or
413 /// extensions prior to the call).
414 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
415                                  SmallVectorImpl<unsigned> &RetIndices,
416                                  SmallVectorImpl<unsigned> &CallIndices,
417                                  bool AllowDifferingSizes,
418                                  const TargetLoweringBase &TLI,
419                                  const DataLayout &DL) {
420 
421   // Trace the sub-value needed by the return value as far back up the graph as
422   // possible, in the hope that it will intersect with the value produced by the
423   // call. In the simple case with no "returned" attribute, the hope is actually
424   // that we end up back at the tail call instruction itself.
425   unsigned BitsRequired = UINT_MAX;
426   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
427 
428   // If this slot in the value returned is undef, it doesn't matter what the
429   // call puts there, it'll be fine.
430   if (isa<UndefValue>(RetVal))
431     return true;
432 
433   // Now do a similar search up through the graph to find where the value
434   // actually returned by the "tail call" comes from. In the simple case without
435   // a "returned" attribute, the search will be blocked immediately and the loop
436   // a Noop.
437   unsigned BitsProvided = UINT_MAX;
438   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
439 
440   // There's no hope if we can't actually trace them to (the same part of!) the
441   // same value.
442   if (CallVal != RetVal || CallIndices != RetIndices)
443     return false;
444 
445   // However, intervening truncates may have made the call non-tail. Make sure
446   // all the bits that are needed by the "ret" have been provided by the "tail
447   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
448   // extensions too.
449   if (BitsProvided < BitsRequired ||
450       (!AllowDifferingSizes && BitsProvided != BitsRequired))
451     return false;
452 
453   return true;
454 }
455 
456 /// For an aggregate type, determine whether a given index is within bounds or
457 /// not.
458 static bool indexReallyValid(Type *T, unsigned Idx) {
459   if (ArrayType *AT = dyn_cast<ArrayType>(T))
460     return Idx < AT->getNumElements();
461 
462   return Idx < cast<StructType>(T)->getNumElements();
463 }
464 
465 /// Move the given iterators to the next leaf type in depth first traversal.
466 ///
467 /// Performs a depth-first traversal of the type as specified by its arguments,
468 /// stopping at the next leaf node (which may be a legitimate scalar type or an
469 /// empty struct or array).
470 ///
471 /// @param SubTypes List of the partial components making up the type from
472 /// outermost to innermost non-empty aggregate. The element currently
473 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
474 ///
475 /// @param Path Set of extractvalue indices leading from the outermost type
476 /// (SubTypes[0]) to the leaf node currently represented.
477 ///
478 /// @returns true if a new type was found, false otherwise. Calling this
479 /// function again on a finished iterator will repeatedly return
480 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
481 /// aggregate or a non-aggregate
482 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
483                                   SmallVectorImpl<unsigned> &Path) {
484   // First march back up the tree until we can successfully increment one of the
485   // coordinates in Path.
486   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
487     Path.pop_back();
488     SubTypes.pop_back();
489   }
490 
491   // If we reached the top, then the iterator is done.
492   if (Path.empty())
493     return false;
494 
495   // We know there's *some* valid leaf now, so march back down the tree picking
496   // out the left-most element at each node.
497   ++Path.back();
498   Type *DeeperType =
499       ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
500   while (DeeperType->isAggregateType()) {
501     if (!indexReallyValid(DeeperType, 0))
502       return true;
503 
504     SubTypes.push_back(DeeperType);
505     Path.push_back(0);
506 
507     DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
508   }
509 
510   return true;
511 }
512 
513 /// Find the first non-empty, scalar-like type in Next and setup the iterator
514 /// components.
515 ///
516 /// Assuming Next is an aggregate of some kind, this function will traverse the
517 /// tree from left to right (i.e. depth-first) looking for the first
518 /// non-aggregate type which will play a role in function return.
519 ///
520 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
521 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
522 /// i32 in that type.
523 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
524                           SmallVectorImpl<unsigned> &Path) {
525   // First initialise the iterator components to the first "leaf" node
526   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
527   // despite nominally being an aggregate).
528   while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
529     SubTypes.push_back(Next);
530     Path.push_back(0);
531     Next = FirstInner;
532   }
533 
534   // If there's no Path now, Next was originally scalar already (or empty
535   // leaf). We're done.
536   if (Path.empty())
537     return true;
538 
539   // Otherwise, use normal iteration to keep looking through the tree until we
540   // find a non-aggregate type.
541   while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
542              ->isAggregateType()) {
543     if (!advanceToNextLeafType(SubTypes, Path))
544       return false;
545   }
546 
547   return true;
548 }
549 
550 /// Set the iterator data-structures to the next non-empty, non-aggregate
551 /// subtype.
552 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
553                          SmallVectorImpl<unsigned> &Path) {
554   do {
555     if (!advanceToNextLeafType(SubTypes, Path))
556       return false;
557 
558     assert(!Path.empty() && "found a leaf but didn't set the path?");
559   } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
560                ->isAggregateType());
561 
562   return true;
563 }
564 
565 
566 /// Test if the given instruction is in a position to be optimized
567 /// with a tail-call. This roughly means that it's in a block with
568 /// a return and there's nothing that needs to be scheduled
569 /// between it and the return.
570 ///
571 /// This function only tests target-independent requirements.
572 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) {
573   const BasicBlock *ExitBB = Call.getParent();
574   const Instruction *Term = ExitBB->getTerminator();
575   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
576 
577   // The block must end in a return statement or unreachable.
578   //
579   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
580   // an unreachable, for now. The way tailcall optimization is currently
581   // implemented means it will add an epilogue followed by a jump. That is
582   // not profitable. Also, if the callee is a special function (e.g.
583   // longjmp on x86), it can end up causing miscompilation that has not
584   // been fully understood.
585   if (!Ret && ((!TM.Options.GuaranteedTailCallOpt &&
586                 Call.getCallingConv() != CallingConv::Tail &&
587                 Call.getCallingConv() != CallingConv::SwiftTail) ||
588                !isa<UnreachableInst>(Term)))
589     return false;
590 
591   // If I will have a chain, make sure no other instruction that will have a
592   // chain interposes between I and the return.
593   // Check for all calls including speculatable functions.
594   for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
595     if (&*BBI == &Call)
596       break;
597     // Debug info intrinsics do not get in the way of tail call optimization.
598     // Pseudo probe intrinsics do not block tail call optimization either.
599     if (BBI->isDebugOrPseudoInst())
600       continue;
601     // A lifetime end, assume or noalias.decl intrinsic should not stop tail
602     // call optimization.
603     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
604       if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
605           II->getIntrinsicID() == Intrinsic::assume ||
606           II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
607         continue;
608     if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
609         !isSafeToSpeculativelyExecute(&*BBI))
610       return false;
611   }
612 
613   const Function *F = ExitBB->getParent();
614   return returnTypeIsEligibleForTailCall(
615       F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
616 }
617 
618 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
619                                     const ReturnInst *Ret,
620                                     const TargetLoweringBase &TLI,
621                                     bool *AllowDifferingSizes) {
622   // ADS may be null, so don't write to it directly.
623   bool DummyADS;
624   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
625   ADS = true;
626 
627   AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs());
628   AttrBuilder CalleeAttrs(F->getContext(),
629                           cast<CallInst>(I)->getAttributes().getRetAttrs());
630 
631   // Following attributes are completely benign as far as calling convention
632   // goes, they shouldn't affect whether the call is a tail call.
633   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
634                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
635                            Attribute::NonNull, Attribute::NoUndef}) {
636     CallerAttrs.removeAttribute(Attr);
637     CalleeAttrs.removeAttribute(Attr);
638   }
639 
640   if (CallerAttrs.contains(Attribute::ZExt)) {
641     if (!CalleeAttrs.contains(Attribute::ZExt))
642       return false;
643 
644     ADS = false;
645     CallerAttrs.removeAttribute(Attribute::ZExt);
646     CalleeAttrs.removeAttribute(Attribute::ZExt);
647   } else if (CallerAttrs.contains(Attribute::SExt)) {
648     if (!CalleeAttrs.contains(Attribute::SExt))
649       return false;
650 
651     ADS = false;
652     CallerAttrs.removeAttribute(Attribute::SExt);
653     CalleeAttrs.removeAttribute(Attribute::SExt);
654   }
655 
656   // Drop sext and zext return attributes if the result is not used.
657   // This enables tail calls for code like:
658   //
659   // define void @caller() {
660   // entry:
661   //   %unused_result = tail call zeroext i1 @callee()
662   //   br label %retlabel
663   // retlabel:
664   //   ret void
665   // }
666   if (I->use_empty()) {
667     CalleeAttrs.removeAttribute(Attribute::SExt);
668     CalleeAttrs.removeAttribute(Attribute::ZExt);
669   }
670 
671   // If they're still different, there's some facet we don't understand
672   // (currently only "inreg", but in future who knows). It may be OK but the
673   // only safe option is to reject the tail call.
674   return CallerAttrs == CalleeAttrs;
675 }
676 
677 /// Check whether B is a bitcast of a pointer type to another pointer type,
678 /// which is equal to A.
679 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
680   assert(A && B && "Expected non-null inputs!");
681 
682   auto *BitCastIn = dyn_cast<BitCastInst>(B);
683 
684   if (!BitCastIn)
685     return false;
686 
687   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
688     return false;
689 
690   return A == BitCastIn->getOperand(0);
691 }
692 
693 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
694                                            const Instruction *I,
695                                            const ReturnInst *Ret,
696                                            const TargetLoweringBase &TLI) {
697   // If the block ends with a void return or unreachable, it doesn't matter
698   // what the call's return type is.
699   if (!Ret || Ret->getNumOperands() == 0) return true;
700 
701   // If the return value is undef, it doesn't matter what the call's
702   // return type is.
703   if (isa<UndefValue>(Ret->getOperand(0))) return true;
704 
705   // Make sure the attributes attached to each return are compatible.
706   bool AllowDifferingSizes;
707   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
708     return false;
709 
710   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
711   // Intrinsic like llvm.memcpy has no return value, but the expanded
712   // libcall may or may not have return value. On most platforms, it
713   // will be expanded as memcpy in libc, which returns the first
714   // argument. On other platforms like arm-none-eabi, memcpy may be
715   // expanded as library call without return value, like __aeabi_memcpy.
716   const CallInst *Call = cast<CallInst>(I);
717   if (Function *F = Call->getCalledFunction()) {
718     Intrinsic::ID IID = F->getIntrinsicID();
719     if (((IID == Intrinsic::memcpy &&
720           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
721          (IID == Intrinsic::memmove &&
722           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
723          (IID == Intrinsic::memset &&
724           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
725         (RetVal == Call->getArgOperand(0) ||
726          isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
727       return true;
728   }
729 
730   SmallVector<unsigned, 4> RetPath, CallPath;
731   SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
732 
733   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
734   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
735 
736   // Nothing's actually returned, it doesn't matter what the callee put there
737   // it's a valid tail call.
738   if (RetEmpty)
739     return true;
740 
741   // Iterate pairwise through each of the value types making up the tail call
742   // and the corresponding return. For each one we want to know whether it's
743   // essentially going directly from the tail call to the ret, via operations
744   // that end up not generating any code.
745   //
746   // We allow a certain amount of covariance here. For example it's permitted
747   // for the tail call to define more bits than the ret actually cares about
748   // (e.g. via a truncate).
749   do {
750     if (CallEmpty) {
751       // We've exhausted the values produced by the tail call instruction, the
752       // rest are essentially undef. The type doesn't really matter, but we need
753       // *something*.
754       Type *SlotType =
755           ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
756       CallVal = UndefValue::get(SlotType);
757     }
758 
759     // The manipulations performed when we're looking through an insertvalue or
760     // an extractvalue would happen at the front of the RetPath list, so since
761     // we have to copy it anyway it's more efficient to create a reversed copy.
762     SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath));
763     SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath));
764 
765     // Finally, we can check whether the value produced by the tail call at this
766     // index is compatible with the value we return.
767     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
768                               AllowDifferingSizes, TLI,
769                               F->getParent()->getDataLayout()))
770       return false;
771 
772     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
773   } while(nextRealType(RetSubTypes, RetPath));
774 
775   return true;
776 }
777 
778 static void collectEHScopeMembers(
779     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
780     const MachineBasicBlock *MBB) {
781   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
782   while (!Worklist.empty()) {
783     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
784     // Don't follow blocks which start new scopes.
785     if (Visiting->isEHPad() && Visiting != MBB)
786       continue;
787 
788     // Add this MBB to our scope.
789     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
790 
791     // Don't revisit blocks.
792     if (!P.second) {
793       assert(P.first->second == EHScope && "MBB is part of two scopes!");
794       continue;
795     }
796 
797     // Returns are boundaries where scope transfer can occur, don't follow
798     // successors.
799     if (Visiting->isEHScopeReturnBlock())
800       continue;
801 
802     append_range(Worklist, Visiting->successors());
803   }
804 }
805 
806 DenseMap<const MachineBasicBlock *, int>
807 llvm::getEHScopeMembership(const MachineFunction &MF) {
808   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
809 
810   // We don't have anything to do if there aren't any EH pads.
811   if (!MF.hasEHScopes())
812     return EHScopeMembership;
813 
814   int EntryBBNumber = MF.front().getNumber();
815   bool IsSEH = isAsynchronousEHPersonality(
816       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
817 
818   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
819   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
820   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
821   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
822   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
823   for (const MachineBasicBlock &MBB : MF) {
824     if (MBB.isEHScopeEntry()) {
825       EHScopeBlocks.push_back(&MBB);
826     } else if (IsSEH && MBB.isEHPad()) {
827       SEHCatchPads.push_back(&MBB);
828     } else if (MBB.pred_empty()) {
829       UnreachableBlocks.push_back(&MBB);
830     }
831 
832     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
833 
834     // CatchPads are not scopes for SEH so do not consider CatchRet to
835     // transfer control to another scope.
836     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
837       continue;
838 
839     // FIXME: SEH CatchPads are not necessarily in the parent function:
840     // they could be inside a finally block.
841     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
842     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
843     CatchRetSuccessors.push_back(
844         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
845   }
846 
847   // We don't have anything to do if there aren't any EH pads.
848   if (EHScopeBlocks.empty())
849     return EHScopeMembership;
850 
851   // Identify all the basic blocks reachable from the function entry.
852   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
853   // All blocks not part of a scope are in the parent function.
854   for (const MachineBasicBlock *MBB : UnreachableBlocks)
855     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
856   // Next, identify all the blocks inside the scopes.
857   for (const MachineBasicBlock *MBB : EHScopeBlocks)
858     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
859   // SEH CatchPads aren't really scopes, handle them separately.
860   for (const MachineBasicBlock *MBB : SEHCatchPads)
861     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
862   // Finally, identify all the targets of a catchret.
863   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
864        CatchRetSuccessors)
865     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
866                           CatchRetPair.first);
867   return EHScopeMembership;
868 }
869