1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Transforms/Utils/GlobalStatus.h" 30 31 using namespace llvm; 32 33 /// Compute the linearized index of a member in a nested aggregate/struct/array 34 /// by recursing and accumulating CurIndex as long as there are indices in the 35 /// index list. 36 unsigned llvm::ComputeLinearIndex(Type *Ty, 37 const unsigned *Indices, 38 const unsigned *IndicesEnd, 39 unsigned CurIndex) { 40 // Base case: We're done. 41 if (Indices && Indices == IndicesEnd) 42 return CurIndex; 43 44 // Given a struct type, recursively traverse the elements. 45 if (StructType *STy = dyn_cast<StructType>(Ty)) { 46 for (StructType::element_iterator EB = STy->element_begin(), 47 EI = EB, 48 EE = STy->element_end(); 49 EI != EE; ++EI) { 50 if (Indices && *Indices == unsigned(EI - EB)) 51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53 } 54 assert(!Indices && "Unexpected out of bound"); 55 return CurIndex; 56 } 57 // Given an array type, recursively traverse the elements. 58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59 Type *EltTy = ATy->getElementType(); 60 unsigned NumElts = ATy->getNumElements(); 61 // Compute the Linear offset when jumping one element of the array 62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 63 if (Indices) { 64 assert(*Indices < NumElts && "Unexpected out of bound"); 65 // If the indice is inside the array, compute the index to the requested 66 // elt and recurse inside the element with the end of the indices list 67 CurIndex += EltLinearOffset* *Indices; 68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69 } 70 CurIndex += EltLinearOffset*NumElts; 71 return CurIndex; 72 } 73 // We haven't found the type we're looking for, so keep searching. 74 return CurIndex + 1; 75 } 76 77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78 /// EVTs that represent all the individual underlying 79 /// non-aggregate types that comprise it. 80 /// 81 /// If Offsets is non-null, it points to a vector to be filled in 82 /// with the in-memory offsets of each of the individual values. 83 /// 84 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 85 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 86 SmallVectorImpl<EVT> *MemVTs, 87 SmallVectorImpl<uint64_t> *Offsets, 88 uint64_t StartingOffset) { 89 // Given a struct type, recursively traverse the elements. 90 if (StructType *STy = dyn_cast<StructType>(Ty)) { 91 // If the Offsets aren't needed, don't query the struct layout. This allows 92 // us to support structs with scalable vectors for operations that don't 93 // need offsets. 94 const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 95 for (StructType::element_iterator EB = STy->element_begin(), 96 EI = EB, 97 EE = STy->element_end(); 98 EI != EE; ++EI) { 99 // Don't compute the element offset if we didn't get a StructLayout above. 100 uint64_t EltOffset = SL ? SL->getElementOffset(EI - EB) : 0; 101 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 102 StartingOffset + EltOffset); 103 } 104 return; 105 } 106 // Given an array type, recursively traverse the elements. 107 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 108 Type *EltTy = ATy->getElementType(); 109 uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 110 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 111 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 112 StartingOffset + i * EltSize); 113 return; 114 } 115 // Interpret void as zero return values. 116 if (Ty->isVoidTy()) 117 return; 118 // Base case: we can get an EVT for this LLVM IR type. 119 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 120 if (MemVTs) 121 MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 122 if (Offsets) 123 Offsets->push_back(StartingOffset); 124 } 125 126 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 127 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 128 SmallVectorImpl<uint64_t> *Offsets, 129 uint64_t StartingOffset) { 130 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 131 StartingOffset); 132 } 133 134 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 135 SmallVectorImpl<LLT> &ValueTys, 136 SmallVectorImpl<uint64_t> *Offsets, 137 uint64_t StartingOffset) { 138 // Given a struct type, recursively traverse the elements. 139 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 140 // If the Offsets aren't needed, don't query the struct layout. This allows 141 // us to support structs with scalable vectors for operations that don't 142 // need offsets. 143 const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 144 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 145 uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0; 146 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 147 StartingOffset + EltOffset); 148 } 149 return; 150 } 151 // Given an array type, recursively traverse the elements. 152 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 153 Type *EltTy = ATy->getElementType(); 154 uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 155 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 156 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 157 StartingOffset + i * EltSize); 158 return; 159 } 160 // Interpret void as zero return values. 161 if (Ty.isVoidTy()) 162 return; 163 // Base case: we can get an LLT for this LLVM IR type. 164 ValueTys.push_back(getLLTForType(Ty, DL)); 165 if (Offsets != nullptr) 166 Offsets->push_back(StartingOffset * 8); 167 } 168 169 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 170 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 171 V = V->stripPointerCasts(); 172 GlobalValue *GV = dyn_cast<GlobalValue>(V); 173 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 174 175 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 176 assert(Var->hasInitializer() && 177 "The EH catch-all value must have an initializer"); 178 Value *Init = Var->getInitializer(); 179 GV = dyn_cast<GlobalValue>(Init); 180 if (!GV) V = cast<ConstantPointerNull>(Init); 181 } 182 183 assert((GV || isa<ConstantPointerNull>(V)) && 184 "TypeInfo must be a global variable or NULL"); 185 return GV; 186 } 187 188 /// getFCmpCondCode - Return the ISD condition code corresponding to 189 /// the given LLVM IR floating-point condition code. This includes 190 /// consideration of global floating-point math flags. 191 /// 192 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 193 switch (Pred) { 194 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 195 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 196 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 197 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 198 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 199 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 200 case FCmpInst::FCMP_ONE: return ISD::SETONE; 201 case FCmpInst::FCMP_ORD: return ISD::SETO; 202 case FCmpInst::FCMP_UNO: return ISD::SETUO; 203 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 204 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 205 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 206 case FCmpInst::FCMP_ULT: return ISD::SETULT; 207 case FCmpInst::FCMP_ULE: return ISD::SETULE; 208 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 209 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 210 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 211 } 212 } 213 214 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 215 switch (CC) { 216 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 217 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 218 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 219 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 220 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 221 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 222 default: return CC; 223 } 224 } 225 226 /// getICmpCondCode - Return the ISD condition code corresponding to 227 /// the given LLVM IR integer condition code. 228 /// 229 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 230 switch (Pred) { 231 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 232 case ICmpInst::ICMP_NE: return ISD::SETNE; 233 case ICmpInst::ICMP_SLE: return ISD::SETLE; 234 case ICmpInst::ICMP_ULE: return ISD::SETULE; 235 case ICmpInst::ICMP_SGE: return ISD::SETGE; 236 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 237 case ICmpInst::ICMP_SLT: return ISD::SETLT; 238 case ICmpInst::ICMP_ULT: return ISD::SETULT; 239 case ICmpInst::ICMP_SGT: return ISD::SETGT; 240 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 241 default: 242 llvm_unreachable("Invalid ICmp predicate opcode!"); 243 } 244 } 245 246 static bool isNoopBitcast(Type *T1, Type *T2, 247 const TargetLoweringBase& TLI) { 248 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 249 (isa<VectorType>(T1) && isa<VectorType>(T2) && 250 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 251 } 252 253 /// Look through operations that will be free to find the earliest source of 254 /// this value. 255 /// 256 /// @param ValLoc If V has aggregate type, we will be interested in a particular 257 /// scalar component. This records its address; the reverse of this list gives a 258 /// sequence of indices appropriate for an extractvalue to locate the important 259 /// value. This value is updated during the function and on exit will indicate 260 /// similar information for the Value returned. 261 /// 262 /// @param DataBits If this function looks through truncate instructions, this 263 /// will record the smallest size attained. 264 static const Value *getNoopInput(const Value *V, 265 SmallVectorImpl<unsigned> &ValLoc, 266 unsigned &DataBits, 267 const TargetLoweringBase &TLI, 268 const DataLayout &DL) { 269 while (true) { 270 // Try to look through V1; if V1 is not an instruction, it can't be looked 271 // through. 272 const Instruction *I = dyn_cast<Instruction>(V); 273 if (!I || I->getNumOperands() == 0) return V; 274 const Value *NoopInput = nullptr; 275 276 Value *Op = I->getOperand(0); 277 if (isa<BitCastInst>(I)) { 278 // Look through truly no-op bitcasts. 279 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 280 NoopInput = Op; 281 } else if (isa<GetElementPtrInst>(I)) { 282 // Look through getelementptr 283 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 284 NoopInput = Op; 285 } else if (isa<IntToPtrInst>(I)) { 286 // Look through inttoptr. 287 // Make sure this isn't a truncating or extending cast. We could 288 // support this eventually, but don't bother for now. 289 if (!isa<VectorType>(I->getType()) && 290 DL.getPointerSizeInBits() == 291 cast<IntegerType>(Op->getType())->getBitWidth()) 292 NoopInput = Op; 293 } else if (isa<PtrToIntInst>(I)) { 294 // Look through ptrtoint. 295 // Make sure this isn't a truncating or extending cast. We could 296 // support this eventually, but don't bother for now. 297 if (!isa<VectorType>(I->getType()) && 298 DL.getPointerSizeInBits() == 299 cast<IntegerType>(I->getType())->getBitWidth()) 300 NoopInput = Op; 301 } else if (isa<TruncInst>(I) && 302 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 303 DataBits = std::min((uint64_t)DataBits, 304 I->getType()->getPrimitiveSizeInBits().getFixedSize()); 305 NoopInput = Op; 306 } else if (auto *CB = dyn_cast<CallBase>(I)) { 307 const Value *ReturnedOp = CB->getReturnedArgOperand(); 308 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 309 NoopInput = ReturnedOp; 310 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 311 // Value may come from either the aggregate or the scalar 312 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 313 if (ValLoc.size() >= InsertLoc.size() && 314 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 315 // The type being inserted is a nested sub-type of the aggregate; we 316 // have to remove those initial indices to get the location we're 317 // interested in for the operand. 318 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 319 NoopInput = IVI->getInsertedValueOperand(); 320 } else { 321 // The struct we're inserting into has the value we're interested in, no 322 // change of address. 323 NoopInput = Op; 324 } 325 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 326 // The part we're interested in will inevitably be some sub-section of the 327 // previous aggregate. Combine the two paths to obtain the true address of 328 // our element. 329 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 330 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 331 NoopInput = Op; 332 } 333 // Terminate if we couldn't find anything to look through. 334 if (!NoopInput) 335 return V; 336 337 V = NoopInput; 338 } 339 } 340 341 /// Return true if this scalar return value only has bits discarded on its path 342 /// from the "tail call" to the "ret". This includes the obvious noop 343 /// instructions handled by getNoopInput above as well as free truncations (or 344 /// extensions prior to the call). 345 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 346 SmallVectorImpl<unsigned> &RetIndices, 347 SmallVectorImpl<unsigned> &CallIndices, 348 bool AllowDifferingSizes, 349 const TargetLoweringBase &TLI, 350 const DataLayout &DL) { 351 352 // Trace the sub-value needed by the return value as far back up the graph as 353 // possible, in the hope that it will intersect with the value produced by the 354 // call. In the simple case with no "returned" attribute, the hope is actually 355 // that we end up back at the tail call instruction itself. 356 unsigned BitsRequired = UINT_MAX; 357 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 358 359 // If this slot in the value returned is undef, it doesn't matter what the 360 // call puts there, it'll be fine. 361 if (isa<UndefValue>(RetVal)) 362 return true; 363 364 // Now do a similar search up through the graph to find where the value 365 // actually returned by the "tail call" comes from. In the simple case without 366 // a "returned" attribute, the search will be blocked immediately and the loop 367 // a Noop. 368 unsigned BitsProvided = UINT_MAX; 369 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 370 371 // There's no hope if we can't actually trace them to (the same part of!) the 372 // same value. 373 if (CallVal != RetVal || CallIndices != RetIndices) 374 return false; 375 376 // However, intervening truncates may have made the call non-tail. Make sure 377 // all the bits that are needed by the "ret" have been provided by the "tail 378 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 379 // extensions too. 380 if (BitsProvided < BitsRequired || 381 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 382 return false; 383 384 return true; 385 } 386 387 /// For an aggregate type, determine whether a given index is within bounds or 388 /// not. 389 static bool indexReallyValid(Type *T, unsigned Idx) { 390 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 391 return Idx < AT->getNumElements(); 392 393 return Idx < cast<StructType>(T)->getNumElements(); 394 } 395 396 /// Move the given iterators to the next leaf type in depth first traversal. 397 /// 398 /// Performs a depth-first traversal of the type as specified by its arguments, 399 /// stopping at the next leaf node (which may be a legitimate scalar type or an 400 /// empty struct or array). 401 /// 402 /// @param SubTypes List of the partial components making up the type from 403 /// outermost to innermost non-empty aggregate. The element currently 404 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 405 /// 406 /// @param Path Set of extractvalue indices leading from the outermost type 407 /// (SubTypes[0]) to the leaf node currently represented. 408 /// 409 /// @returns true if a new type was found, false otherwise. Calling this 410 /// function again on a finished iterator will repeatedly return 411 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 412 /// aggregate or a non-aggregate 413 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, 414 SmallVectorImpl<unsigned> &Path) { 415 // First march back up the tree until we can successfully increment one of the 416 // coordinates in Path. 417 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 418 Path.pop_back(); 419 SubTypes.pop_back(); 420 } 421 422 // If we reached the top, then the iterator is done. 423 if (Path.empty()) 424 return false; 425 426 // We know there's *some* valid leaf now, so march back down the tree picking 427 // out the left-most element at each node. 428 ++Path.back(); 429 Type *DeeperType = 430 ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()); 431 while (DeeperType->isAggregateType()) { 432 if (!indexReallyValid(DeeperType, 0)) 433 return true; 434 435 SubTypes.push_back(DeeperType); 436 Path.push_back(0); 437 438 DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0); 439 } 440 441 return true; 442 } 443 444 /// Find the first non-empty, scalar-like type in Next and setup the iterator 445 /// components. 446 /// 447 /// Assuming Next is an aggregate of some kind, this function will traverse the 448 /// tree from left to right (i.e. depth-first) looking for the first 449 /// non-aggregate type which will play a role in function return. 450 /// 451 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 452 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 453 /// i32 in that type. 454 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, 455 SmallVectorImpl<unsigned> &Path) { 456 // First initialise the iterator components to the first "leaf" node 457 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 458 // despite nominally being an aggregate). 459 while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) { 460 SubTypes.push_back(Next); 461 Path.push_back(0); 462 Next = FirstInner; 463 } 464 465 // If there's no Path now, Next was originally scalar already (or empty 466 // leaf). We're done. 467 if (Path.empty()) 468 return true; 469 470 // Otherwise, use normal iteration to keep looking through the tree until we 471 // find a non-aggregate type. 472 while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 473 ->isAggregateType()) { 474 if (!advanceToNextLeafType(SubTypes, Path)) 475 return false; 476 } 477 478 return true; 479 } 480 481 /// Set the iterator data-structures to the next non-empty, non-aggregate 482 /// subtype. 483 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, 484 SmallVectorImpl<unsigned> &Path) { 485 do { 486 if (!advanceToNextLeafType(SubTypes, Path)) 487 return false; 488 489 assert(!Path.empty() && "found a leaf but didn't set the path?"); 490 } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 491 ->isAggregateType()); 492 493 return true; 494 } 495 496 497 /// Test if the given instruction is in a position to be optimized 498 /// with a tail-call. This roughly means that it's in a block with 499 /// a return and there's nothing that needs to be scheduled 500 /// between it and the return. 501 /// 502 /// This function only tests target-independent requirements. 503 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) { 504 const BasicBlock *ExitBB = Call.getParent(); 505 const Instruction *Term = ExitBB->getTerminator(); 506 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 507 508 // The block must end in a return statement or unreachable. 509 // 510 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 511 // an unreachable, for now. The way tailcall optimization is currently 512 // implemented means it will add an epilogue followed by a jump. That is 513 // not profitable. Also, if the callee is a special function (e.g. 514 // longjmp on x86), it can end up causing miscompilation that has not 515 // been fully understood. 516 if (!Ret && 517 ((!TM.Options.GuaranteedTailCallOpt && 518 Call.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) 519 return false; 520 521 // If I will have a chain, make sure no other instruction that will have a 522 // chain interposes between I and the return. 523 // Check for all calls including speculatable functions. 524 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 525 if (&*BBI == &Call) 526 break; 527 // Debug info intrinsics do not get in the way of tail call optimization. 528 if (isa<DbgInfoIntrinsic>(BBI)) 529 continue; 530 // Pseudo probe intrinsics do not block tail call optimization either. 531 if (isa<PseudoProbeInst>(BBI)) 532 continue; 533 // A lifetime end, assume or noalias.decl intrinsic should not stop tail 534 // call optimization. 535 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 536 if (II->getIntrinsicID() == Intrinsic::lifetime_end || 537 II->getIntrinsicID() == Intrinsic::assume || 538 II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl) 539 continue; 540 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 541 !isSafeToSpeculativelyExecute(&*BBI)) 542 return false; 543 } 544 545 const Function *F = ExitBB->getParent(); 546 return returnTypeIsEligibleForTailCall( 547 F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 548 } 549 550 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 551 const ReturnInst *Ret, 552 const TargetLoweringBase &TLI, 553 bool *AllowDifferingSizes) { 554 // ADS may be null, so don't write to it directly. 555 bool DummyADS; 556 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 557 ADS = true; 558 559 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 560 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 561 AttributeList::ReturnIndex); 562 563 // Following attributes are completely benign as far as calling convention 564 // goes, they shouldn't affect whether the call is a tail call. 565 CallerAttrs.removeAttribute(Attribute::NoAlias); 566 CalleeAttrs.removeAttribute(Attribute::NoAlias); 567 CallerAttrs.removeAttribute(Attribute::NonNull); 568 CalleeAttrs.removeAttribute(Attribute::NonNull); 569 CallerAttrs.removeAttribute(Attribute::Dereferenceable); 570 CalleeAttrs.removeAttribute(Attribute::Dereferenceable); 571 CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull); 572 CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull); 573 574 if (CallerAttrs.contains(Attribute::ZExt)) { 575 if (!CalleeAttrs.contains(Attribute::ZExt)) 576 return false; 577 578 ADS = false; 579 CallerAttrs.removeAttribute(Attribute::ZExt); 580 CalleeAttrs.removeAttribute(Attribute::ZExt); 581 } else if (CallerAttrs.contains(Attribute::SExt)) { 582 if (!CalleeAttrs.contains(Attribute::SExt)) 583 return false; 584 585 ADS = false; 586 CallerAttrs.removeAttribute(Attribute::SExt); 587 CalleeAttrs.removeAttribute(Attribute::SExt); 588 } 589 590 // Drop sext and zext return attributes if the result is not used. 591 // This enables tail calls for code like: 592 // 593 // define void @caller() { 594 // entry: 595 // %unused_result = tail call zeroext i1 @callee() 596 // br label %retlabel 597 // retlabel: 598 // ret void 599 // } 600 if (I->use_empty()) { 601 CalleeAttrs.removeAttribute(Attribute::SExt); 602 CalleeAttrs.removeAttribute(Attribute::ZExt); 603 } 604 605 // If they're still different, there's some facet we don't understand 606 // (currently only "inreg", but in future who knows). It may be OK but the 607 // only safe option is to reject the tail call. 608 return CallerAttrs == CalleeAttrs; 609 } 610 611 /// Check whether B is a bitcast of a pointer type to another pointer type, 612 /// which is equal to A. 613 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) { 614 assert(A && B && "Expected non-null inputs!"); 615 616 auto *BitCastIn = dyn_cast<BitCastInst>(B); 617 618 if (!BitCastIn) 619 return false; 620 621 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 622 return false; 623 624 return A == BitCastIn->getOperand(0); 625 } 626 627 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 628 const Instruction *I, 629 const ReturnInst *Ret, 630 const TargetLoweringBase &TLI) { 631 // If the block ends with a void return or unreachable, it doesn't matter 632 // what the call's return type is. 633 if (!Ret || Ret->getNumOperands() == 0) return true; 634 635 // If the return value is undef, it doesn't matter what the call's 636 // return type is. 637 if (isa<UndefValue>(Ret->getOperand(0))) return true; 638 639 // Make sure the attributes attached to each return are compatible. 640 bool AllowDifferingSizes; 641 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 642 return false; 643 644 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 645 // Intrinsic like llvm.memcpy has no return value, but the expanded 646 // libcall may or may not have return value. On most platforms, it 647 // will be expanded as memcpy in libc, which returns the first 648 // argument. On other platforms like arm-none-eabi, memcpy may be 649 // expanded as library call without return value, like __aeabi_memcpy. 650 const CallInst *Call = cast<CallInst>(I); 651 if (Function *F = Call->getCalledFunction()) { 652 Intrinsic::ID IID = F->getIntrinsicID(); 653 if (((IID == Intrinsic::memcpy && 654 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 655 (IID == Intrinsic::memmove && 656 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 657 (IID == Intrinsic::memset && 658 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 659 (RetVal == Call->getArgOperand(0) || 660 isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0)))) 661 return true; 662 } 663 664 SmallVector<unsigned, 4> RetPath, CallPath; 665 SmallVector<Type *, 4> RetSubTypes, CallSubTypes; 666 667 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 668 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 669 670 // Nothing's actually returned, it doesn't matter what the callee put there 671 // it's a valid tail call. 672 if (RetEmpty) 673 return true; 674 675 // Iterate pairwise through each of the value types making up the tail call 676 // and the corresponding return. For each one we want to know whether it's 677 // essentially going directly from the tail call to the ret, via operations 678 // that end up not generating any code. 679 // 680 // We allow a certain amount of covariance here. For example it's permitted 681 // for the tail call to define more bits than the ret actually cares about 682 // (e.g. via a truncate). 683 do { 684 if (CallEmpty) { 685 // We've exhausted the values produced by the tail call instruction, the 686 // rest are essentially undef. The type doesn't really matter, but we need 687 // *something*. 688 Type *SlotType = 689 ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back()); 690 CallVal = UndefValue::get(SlotType); 691 } 692 693 // The manipulations performed when we're looking through an insertvalue or 694 // an extractvalue would happen at the front of the RetPath list, so since 695 // we have to copy it anyway it's more efficient to create a reversed copy. 696 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 697 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 698 699 // Finally, we can check whether the value produced by the tail call at this 700 // index is compatible with the value we return. 701 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 702 AllowDifferingSizes, TLI, 703 F->getParent()->getDataLayout())) 704 return false; 705 706 CallEmpty = !nextRealType(CallSubTypes, CallPath); 707 } while(nextRealType(RetSubTypes, RetPath)); 708 709 return true; 710 } 711 712 static void collectEHScopeMembers( 713 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 714 const MachineBasicBlock *MBB) { 715 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 716 while (!Worklist.empty()) { 717 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 718 // Don't follow blocks which start new scopes. 719 if (Visiting->isEHPad() && Visiting != MBB) 720 continue; 721 722 // Add this MBB to our scope. 723 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 724 725 // Don't revisit blocks. 726 if (!P.second) { 727 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 728 continue; 729 } 730 731 // Returns are boundaries where scope transfer can occur, don't follow 732 // successors. 733 if (Visiting->isEHScopeReturnBlock()) 734 continue; 735 736 append_range(Worklist, Visiting->successors()); 737 } 738 } 739 740 DenseMap<const MachineBasicBlock *, int> 741 llvm::getEHScopeMembership(const MachineFunction &MF) { 742 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 743 744 // We don't have anything to do if there aren't any EH pads. 745 if (!MF.hasEHScopes()) 746 return EHScopeMembership; 747 748 int EntryBBNumber = MF.front().getNumber(); 749 bool IsSEH = isAsynchronousEHPersonality( 750 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 751 752 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 753 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 754 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 755 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 756 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 757 for (const MachineBasicBlock &MBB : MF) { 758 if (MBB.isEHScopeEntry()) { 759 EHScopeBlocks.push_back(&MBB); 760 } else if (IsSEH && MBB.isEHPad()) { 761 SEHCatchPads.push_back(&MBB); 762 } else if (MBB.pred_empty()) { 763 UnreachableBlocks.push_back(&MBB); 764 } 765 766 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 767 768 // CatchPads are not scopes for SEH so do not consider CatchRet to 769 // transfer control to another scope. 770 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 771 continue; 772 773 // FIXME: SEH CatchPads are not necessarily in the parent function: 774 // they could be inside a finally block. 775 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 776 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 777 CatchRetSuccessors.push_back( 778 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 779 } 780 781 // We don't have anything to do if there aren't any EH pads. 782 if (EHScopeBlocks.empty()) 783 return EHScopeMembership; 784 785 // Identify all the basic blocks reachable from the function entry. 786 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 787 // All blocks not part of a scope are in the parent function. 788 for (const MachineBasicBlock *MBB : UnreachableBlocks) 789 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 790 // Next, identify all the blocks inside the scopes. 791 for (const MachineBasicBlock *MBB : EHScopeBlocks) 792 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 793 // SEH CatchPads aren't really scopes, handle them separately. 794 for (const MachineBasicBlock *MBB : SEHCatchPads) 795 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 796 // Finally, identify all the targets of a catchret. 797 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 798 CatchRetSuccessors) 799 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 800 CatchRetPair.first); 801 return EHScopeMembership; 802 } 803