1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AggressiveAntiDepBreaker class, which 10 // implements register anti-dependence breaking during post-RA 11 // scheduling. It attempts to break all anti-dependencies within a 12 // block. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AggressiveAntiDepBreaker.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/MachineValueType.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "post-RA-sched" 42 43 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 44 static cl::opt<int> 45 DebugDiv("agg-antidep-debugdiv", 46 cl::desc("Debug control for aggressive anti-dep breaker"), 47 cl::init(0), cl::Hidden); 48 49 static cl::opt<int> 50 DebugMod("agg-antidep-debugmod", 51 cl::desc("Debug control for aggressive anti-dep breaker"), 52 cl::init(0), cl::Hidden); 53 54 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 55 MachineBasicBlock *BB) 56 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 57 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 58 DefIndices(TargetRegs, 0) { 59 const unsigned BBSize = BB->size(); 60 for (unsigned i = 0; i < NumTargetRegs; ++i) { 61 // Initialize all registers to be in their own group. Initially we 62 // assign the register to the same-indexed GroupNode. 63 GroupNodeIndices[i] = i; 64 // Initialize the indices to indicate that no registers are live. 65 KillIndices[i] = ~0u; 66 DefIndices[i] = BBSize; 67 } 68 } 69 70 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 71 unsigned Node = GroupNodeIndices[Reg]; 72 while (GroupNodes[Node] != Node) 73 Node = GroupNodes[Node]; 74 75 return Node; 76 } 77 78 void AggressiveAntiDepState::GetGroupRegs( 79 unsigned Group, 80 std::vector<unsigned> &Regs, 81 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 82 { 83 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 84 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 85 Regs.push_back(Reg); 86 } 87 } 88 89 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 90 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 91 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 92 93 // find group for each register 94 unsigned Group1 = GetGroup(Reg1); 95 unsigned Group2 = GetGroup(Reg2); 96 97 // if either group is 0, then that must become the parent 98 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 99 unsigned Other = (Parent == Group1) ? Group2 : Group1; 100 GroupNodes.at(Other) = Parent; 101 return Parent; 102 } 103 104 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 105 // Create a new GroupNode for Reg. Reg's existing GroupNode must 106 // stay as is because there could be other GroupNodes referring to 107 // it. 108 unsigned idx = GroupNodes.size(); 109 GroupNodes.push_back(idx); 110 GroupNodeIndices[Reg] = idx; 111 return idx; 112 } 113 114 bool AggressiveAntiDepState::IsLive(unsigned Reg) { 115 // KillIndex must be defined and DefIndex not defined for a register 116 // to be live. 117 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 118 } 119 120 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 121 MachineFunction &MFi, const RegisterClassInfo &RCI, 122 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 123 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 124 TII(MF.getSubtarget().getInstrInfo()), 125 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 126 /* Collect a bitset of all registers that are only broken if they 127 are on the critical path. */ 128 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 129 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 130 if (CriticalPathSet.none()) 131 CriticalPathSet = CPSet; 132 else 133 CriticalPathSet |= CPSet; 134 } 135 136 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 137 LLVM_DEBUG(for (unsigned r 138 : CriticalPathSet.set_bits()) dbgs() 139 << " " << printReg(r, TRI)); 140 LLVM_DEBUG(dbgs() << '\n'); 141 } 142 143 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 144 delete State; 145 } 146 147 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 148 assert(!State); 149 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 150 151 bool IsReturnBlock = BB->isReturnBlock(); 152 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 153 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 154 155 // Examine the live-in regs of all successors. 156 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 157 SE = BB->succ_end(); SI != SE; ++SI) 158 for (const auto &LI : (*SI)->liveins()) { 159 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 160 unsigned Reg = *AI; 161 State->UnionGroups(Reg, 0); 162 KillIndices[Reg] = BB->size(); 163 DefIndices[Reg] = ~0u; 164 } 165 } 166 167 // Mark live-out callee-saved registers. In a return block this is 168 // all callee-saved registers. In non-return this is any 169 // callee-saved register that is not saved in the prolog. 170 const MachineFrameInfo &MFI = MF.getFrameInfo(); 171 BitVector Pristine = MFI.getPristineRegs(MF); 172 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 173 ++I) { 174 unsigned Reg = *I; 175 if (!IsReturnBlock && !Pristine.test(Reg)) 176 continue; 177 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 178 unsigned AliasReg = *AI; 179 State->UnionGroups(AliasReg, 0); 180 KillIndices[AliasReg] = BB->size(); 181 DefIndices[AliasReg] = ~0u; 182 } 183 } 184 } 185 186 void AggressiveAntiDepBreaker::FinishBlock() { 187 delete State; 188 State = nullptr; 189 } 190 191 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 192 unsigned InsertPosIndex) { 193 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 194 195 std::set<unsigned> PassthruRegs; 196 GetPassthruRegs(MI, PassthruRegs); 197 PrescanInstruction(MI, Count, PassthruRegs); 198 ScanInstruction(MI, Count); 199 200 LLVM_DEBUG(dbgs() << "Observe: "); 201 LLVM_DEBUG(MI.dump()); 202 LLVM_DEBUG(dbgs() << "\tRegs:"); 203 204 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 205 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 206 // If Reg is current live, then mark that it can't be renamed as 207 // we don't know the extent of its live-range anymore (now that it 208 // has been scheduled). If it is not live but was defined in the 209 // previous schedule region, then set its def index to the most 210 // conservative location (i.e. the beginning of the previous 211 // schedule region). 212 if (State->IsLive(Reg)) { 213 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() 214 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) 215 << "->g0(region live-out)"); 216 State->UnionGroups(Reg, 0); 217 } else if ((DefIndices[Reg] < InsertPosIndex) 218 && (DefIndices[Reg] >= Count)) { 219 DefIndices[Reg] = Count; 220 } 221 } 222 LLVM_DEBUG(dbgs() << '\n'); 223 } 224 225 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 226 MachineOperand &MO) { 227 if (!MO.isReg() || !MO.isImplicit()) 228 return false; 229 230 Register Reg = MO.getReg(); 231 if (Reg == 0) 232 return false; 233 234 MachineOperand *Op = nullptr; 235 if (MO.isDef()) 236 Op = MI.findRegisterUseOperand(Reg, true); 237 else 238 Op = MI.findRegisterDefOperand(Reg); 239 240 return(Op && Op->isImplicit()); 241 } 242 243 void AggressiveAntiDepBreaker::GetPassthruRegs( 244 MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 245 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 246 MachineOperand &MO = MI.getOperand(i); 247 if (!MO.isReg()) continue; 248 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 249 IsImplicitDefUse(MI, MO)) { 250 const Register Reg = MO.getReg(); 251 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 252 SubRegs.isValid(); ++SubRegs) 253 PassthruRegs.insert(*SubRegs); 254 } 255 } 256 } 257 258 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 259 /// in SU that we want to consider for breaking. 260 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 261 SmallSet<unsigned, 4> RegSet; 262 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 263 P != PE; ++P) { 264 if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { 265 if (RegSet.insert(P->getReg()).second) 266 Edges.push_back(&*P); 267 } 268 } 269 } 270 271 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 272 /// critical path. 273 static const SUnit *CriticalPathStep(const SUnit *SU) { 274 const SDep *Next = nullptr; 275 unsigned NextDepth = 0; 276 // Find the predecessor edge with the greatest depth. 277 if (SU) { 278 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 279 P != PE; ++P) { 280 const SUnit *PredSU = P->getSUnit(); 281 unsigned PredLatency = P->getLatency(); 282 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 283 // In the case of a latency tie, prefer an anti-dependency edge over 284 // other types of edges. 285 if (NextDepth < PredTotalLatency || 286 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 287 NextDepth = PredTotalLatency; 288 Next = &*P; 289 } 290 } 291 } 292 293 return (Next) ? Next->getSUnit() : nullptr; 294 } 295 296 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 297 const char *tag, 298 const char *header, 299 const char *footer) { 300 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 301 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 302 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 303 RegRefs = State->GetRegRefs(); 304 305 // FIXME: We must leave subregisters of live super registers as live, so that 306 // we don't clear out the register tracking information for subregisters of 307 // super registers we're still tracking (and with which we're unioning 308 // subregister definitions). 309 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 310 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 311 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 312 return; 313 } 314 315 if (!State->IsLive(Reg)) { 316 KillIndices[Reg] = KillIdx; 317 DefIndices[Reg] = ~0u; 318 RegRefs.erase(Reg); 319 State->LeaveGroup(Reg); 320 LLVM_DEBUG(if (header) { 321 dbgs() << header << printReg(Reg, TRI); 322 header = nullptr; 323 }); 324 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 325 // Repeat for subregisters. Note that we only do this if the superregister 326 // was not live because otherwise, regardless whether we have an explicit 327 // use of the subregister, the subregister's contents are needed for the 328 // uses of the superregister. 329 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 330 unsigned SubregReg = *SubRegs; 331 if (!State->IsLive(SubregReg)) { 332 KillIndices[SubregReg] = KillIdx; 333 DefIndices[SubregReg] = ~0u; 334 RegRefs.erase(SubregReg); 335 State->LeaveGroup(SubregReg); 336 LLVM_DEBUG(if (header) { 337 dbgs() << header << printReg(Reg, TRI); 338 header = nullptr; 339 }); 340 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" 341 << State->GetGroup(SubregReg) << tag); 342 } 343 } 344 } 345 346 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 347 } 348 349 void AggressiveAntiDepBreaker::PrescanInstruction( 350 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 351 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 352 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 353 RegRefs = State->GetRegRefs(); 354 355 // Handle dead defs by simulating a last-use of the register just 356 // after the def. A dead def can occur because the def is truly 357 // dead, or because only a subregister is live at the def. If we 358 // don't do this the dead def will be incorrectly merged into the 359 // previous def. 360 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 361 MachineOperand &MO = MI.getOperand(i); 362 if (!MO.isReg() || !MO.isDef()) continue; 363 Register Reg = MO.getReg(); 364 if (Reg == 0) continue; 365 366 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 367 } 368 369 LLVM_DEBUG(dbgs() << "\tDef Groups:"); 370 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 371 MachineOperand &MO = MI.getOperand(i); 372 if (!MO.isReg() || !MO.isDef()) continue; 373 Register Reg = MO.getReg(); 374 if (Reg == 0) continue; 375 376 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 377 << State->GetGroup(Reg)); 378 379 // If MI's defs have a special allocation requirement, don't allow 380 // any def registers to be changed. Also assume all registers 381 // defined in a call must not be changed (ABI). Inline assembly may 382 // reference either system calls or the register directly. Skip it until we 383 // can tell user specified registers from compiler-specified. 384 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 385 MI.isInlineAsm()) { 386 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 387 State->UnionGroups(Reg, 0); 388 } 389 390 // Any aliased that are live at this point are completely or 391 // partially defined here, so group those aliases with Reg. 392 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 393 unsigned AliasReg = *AI; 394 if (State->IsLive(AliasReg)) { 395 State->UnionGroups(Reg, AliasReg); 396 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 397 << printReg(AliasReg, TRI) << ")"); 398 } 399 } 400 401 // Note register reference... 402 const TargetRegisterClass *RC = nullptr; 403 if (i < MI.getDesc().getNumOperands()) 404 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 405 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 406 RegRefs.insert(std::make_pair(Reg, RR)); 407 } 408 409 LLVM_DEBUG(dbgs() << '\n'); 410 411 // Scan the register defs for this instruction and update 412 // live-ranges. 413 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 414 MachineOperand &MO = MI.getOperand(i); 415 if (!MO.isReg() || !MO.isDef()) continue; 416 Register Reg = MO.getReg(); 417 if (Reg == 0) continue; 418 // Ignore KILLs and passthru registers for liveness... 419 if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 420 continue; 421 422 // Update def for Reg and aliases. 423 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 424 // We need to be careful here not to define already-live super registers. 425 // If the super register is already live, then this definition is not 426 // a definition of the whole super register (just a partial insertion 427 // into it). Earlier subregister definitions (which we've not yet visited 428 // because we're iterating bottom-up) need to be linked to the same group 429 // as this definition. 430 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 431 continue; 432 433 DefIndices[*AI] = Count; 434 } 435 } 436 } 437 438 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 439 unsigned Count) { 440 LLVM_DEBUG(dbgs() << "\tUse Groups:"); 441 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 442 RegRefs = State->GetRegRefs(); 443 444 // If MI's uses have special allocation requirement, don't allow 445 // any use registers to be changed. Also assume all registers 446 // used in a call must not be changed (ABI). 447 // Inline Assembly register uses also cannot be safely changed. 448 // FIXME: The issue with predicated instruction is more complex. We are being 449 // conservatively here because the kill markers cannot be trusted after 450 // if-conversion: 451 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 452 // ... 453 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 454 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 455 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 456 // 457 // The first R6 kill is not really a kill since it's killed by a predicated 458 // instruction which may not be executed. The second R6 def may or may not 459 // re-define R6 so it's not safe to change it since the last R6 use cannot be 460 // changed. 461 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 462 TII->isPredicated(MI) || MI.isInlineAsm(); 463 464 // Scan the register uses for this instruction and update 465 // live-ranges, groups and RegRefs. 466 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 467 MachineOperand &MO = MI.getOperand(i); 468 if (!MO.isReg() || !MO.isUse()) continue; 469 Register Reg = MO.getReg(); 470 if (Reg == 0) continue; 471 472 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 473 << State->GetGroup(Reg)); 474 475 // It wasn't previously live but now it is, this is a kill. Forget 476 // the previous live-range information and start a new live-range 477 // for the register. 478 HandleLastUse(Reg, Count, "(last-use)"); 479 480 if (Special) { 481 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 482 State->UnionGroups(Reg, 0); 483 } 484 485 // Note register reference... 486 const TargetRegisterClass *RC = nullptr; 487 if (i < MI.getDesc().getNumOperands()) 488 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 489 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 490 RegRefs.insert(std::make_pair(Reg, RR)); 491 } 492 493 LLVM_DEBUG(dbgs() << '\n'); 494 495 // Form a group of all defs and uses of a KILL instruction to ensure 496 // that all registers are renamed as a group. 497 if (MI.isKill()) { 498 LLVM_DEBUG(dbgs() << "\tKill Group:"); 499 500 unsigned FirstReg = 0; 501 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 502 MachineOperand &MO = MI.getOperand(i); 503 if (!MO.isReg()) continue; 504 Register Reg = MO.getReg(); 505 if (Reg == 0) continue; 506 507 if (FirstReg != 0) { 508 LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 509 State->UnionGroups(FirstReg, Reg); 510 } else { 511 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 512 FirstReg = Reg; 513 } 514 } 515 516 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 517 } 518 } 519 520 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 521 BitVector BV(TRI->getNumRegs(), false); 522 bool first = true; 523 524 // Check all references that need rewriting for Reg. For each, use 525 // the corresponding register class to narrow the set of registers 526 // that are appropriate for renaming. 527 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 528 const TargetRegisterClass *RC = Q.second.RC; 529 if (!RC) continue; 530 531 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 532 if (first) { 533 BV |= RCBV; 534 first = false; 535 } else { 536 BV &= RCBV; 537 } 538 539 LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 540 } 541 542 return BV; 543 } 544 545 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 546 unsigned AntiDepGroupIndex, 547 RenameOrderType& RenameOrder, 548 std::map<unsigned, unsigned> &RenameMap) { 549 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 550 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 551 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 552 RegRefs = State->GetRegRefs(); 553 554 // Collect all referenced registers in the same group as 555 // AntiDepReg. These all need to be renamed together if we are to 556 // break the anti-dependence. 557 std::vector<unsigned> Regs; 558 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 559 assert(!Regs.empty() && "Empty register group!"); 560 if (Regs.empty()) 561 return false; 562 563 // Find the "superest" register in the group. At the same time, 564 // collect the BitVector of registers that can be used to rename 565 // each register. 566 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 567 << ":\n"); 568 std::map<unsigned, BitVector> RenameRegisterMap; 569 unsigned SuperReg = 0; 570 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 571 unsigned Reg = Regs[i]; 572 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 573 SuperReg = Reg; 574 575 // If Reg has any references, then collect possible rename regs 576 if (RegRefs.count(Reg) > 0) { 577 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 578 579 BitVector &BV = RenameRegisterMap[Reg]; 580 assert(BV.empty()); 581 BV = GetRenameRegisters(Reg); 582 583 LLVM_DEBUG({ 584 dbgs() << " ::"; 585 for (unsigned r : BV.set_bits()) 586 dbgs() << " " << printReg(r, TRI); 587 dbgs() << "\n"; 588 }); 589 } 590 } 591 592 // All group registers should be a subreg of SuperReg. 593 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 594 unsigned Reg = Regs[i]; 595 if (Reg == SuperReg) continue; 596 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 597 // FIXME: remove this once PR18663 has been properly fixed. For now, 598 // return a conservative answer: 599 // assert(IsSub && "Expecting group subregister"); 600 if (!IsSub) 601 return false; 602 } 603 604 #ifndef NDEBUG 605 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 606 if (DebugDiv > 0) { 607 static int renamecnt = 0; 608 if (renamecnt++ % DebugDiv != DebugMod) 609 return false; 610 611 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 612 << " for debug ***\n"; 613 } 614 #endif 615 616 // Check each possible rename register for SuperReg in round-robin 617 // order. If that register is available, and the corresponding 618 // registers are available for the other group subregisters, then we 619 // can use those registers to rename. 620 621 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 622 // check every use of the register and find the largest register class 623 // that can be used in all of them. 624 const TargetRegisterClass *SuperRC = 625 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 626 627 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 628 if (Order.empty()) { 629 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 630 return false; 631 } 632 633 LLVM_DEBUG(dbgs() << "\tFind Registers:"); 634 635 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 636 637 unsigned OrigR = RenameOrder[SuperRC]; 638 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 639 unsigned R = OrigR; 640 do { 641 if (R == 0) R = Order.size(); 642 --R; 643 const unsigned NewSuperReg = Order[R]; 644 // Don't consider non-allocatable registers 645 if (!MRI.isAllocatable(NewSuperReg)) continue; 646 // Don't replace a register with itself. 647 if (NewSuperReg == SuperReg) continue; 648 649 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 650 RenameMap.clear(); 651 652 // For each referenced group register (which must be a SuperReg or 653 // a subregister of SuperReg), find the corresponding subregister 654 // of NewSuperReg and make sure it is free to be renamed. 655 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 656 unsigned Reg = Regs[i]; 657 unsigned NewReg = 0; 658 if (Reg == SuperReg) { 659 NewReg = NewSuperReg; 660 } else { 661 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 662 if (NewSubRegIdx != 0) 663 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 664 } 665 666 LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 667 668 // Check if Reg can be renamed to NewReg. 669 if (!RenameRegisterMap[Reg].test(NewReg)) { 670 LLVM_DEBUG(dbgs() << "(no rename)"); 671 goto next_super_reg; 672 } 673 674 // If NewReg is dead and NewReg's most recent def is not before 675 // Regs's kill, it's safe to replace Reg with NewReg. We 676 // must also check all aliases of NewReg, because we can't define a 677 // register when any sub or super is already live. 678 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 679 LLVM_DEBUG(dbgs() << "(live)"); 680 goto next_super_reg; 681 } else { 682 bool found = false; 683 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 684 unsigned AliasReg = *AI; 685 if (State->IsLive(AliasReg) || 686 (KillIndices[Reg] > DefIndices[AliasReg])) { 687 LLVM_DEBUG(dbgs() 688 << "(alias " << printReg(AliasReg, TRI) << " live)"); 689 found = true; 690 break; 691 } 692 } 693 if (found) 694 goto next_super_reg; 695 } 696 697 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 698 // defines 'NewReg' via an early-clobber operand. 699 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 700 MachineInstr *UseMI = Q.second.Operand->getParent(); 701 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 702 if (Idx == -1) 703 continue; 704 705 if (UseMI->getOperand(Idx).isEarlyClobber()) { 706 LLVM_DEBUG(dbgs() << "(ec)"); 707 goto next_super_reg; 708 } 709 } 710 711 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 712 // 'Reg' is an early-clobber define and that instruction also uses 713 // 'NewReg'. 714 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 715 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 716 continue; 717 718 MachineInstr *DefMI = Q.second.Operand->getParent(); 719 if (DefMI->readsRegister(NewReg, TRI)) { 720 LLVM_DEBUG(dbgs() << "(ec)"); 721 goto next_super_reg; 722 } 723 } 724 725 // Record that 'Reg' can be renamed to 'NewReg'. 726 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 727 } 728 729 // If we fall-out here, then every register in the group can be 730 // renamed, as recorded in RenameMap. 731 RenameOrder.erase(SuperRC); 732 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 733 LLVM_DEBUG(dbgs() << "]\n"); 734 return true; 735 736 next_super_reg: 737 LLVM_DEBUG(dbgs() << ']'); 738 } while (R != EndR); 739 740 LLVM_DEBUG(dbgs() << '\n'); 741 742 // No registers are free and available! 743 return false; 744 } 745 746 /// BreakAntiDependencies - Identifiy anti-dependencies within the 747 /// ScheduleDAG and break them by renaming registers. 748 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 749 const std::vector<SUnit> &SUnits, 750 MachineBasicBlock::iterator Begin, 751 MachineBasicBlock::iterator End, 752 unsigned InsertPosIndex, 753 DbgValueVector &DbgValues) { 754 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 755 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 756 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 757 RegRefs = State->GetRegRefs(); 758 759 // The code below assumes that there is at least one instruction, 760 // so just duck out immediately if the block is empty. 761 if (SUnits.empty()) return 0; 762 763 // For each regclass the next register to use for renaming. 764 RenameOrderType RenameOrder; 765 766 // ...need a map from MI to SUnit. 767 std::map<MachineInstr *, const SUnit *> MISUnitMap; 768 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 769 const SUnit *SU = &SUnits[i]; 770 MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(), 771 SU)); 772 } 773 774 // Track progress along the critical path through the SUnit graph as 775 // we walk the instructions. This is needed for regclasses that only 776 // break critical-path anti-dependencies. 777 const SUnit *CriticalPathSU = nullptr; 778 MachineInstr *CriticalPathMI = nullptr; 779 if (CriticalPathSet.any()) { 780 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 781 const SUnit *SU = &SUnits[i]; 782 if (!CriticalPathSU || 783 ((SU->getDepth() + SU->Latency) > 784 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 785 CriticalPathSU = SU; 786 } 787 } 788 assert(CriticalPathSU && "Failed to find SUnit critical path"); 789 CriticalPathMI = CriticalPathSU->getInstr(); 790 } 791 792 #ifndef NDEBUG 793 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 794 LLVM_DEBUG(dbgs() << "Available regs:"); 795 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 796 if (!State->IsLive(Reg)) 797 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 798 } 799 LLVM_DEBUG(dbgs() << '\n'); 800 #endif 801 802 BitVector RegAliases(TRI->getNumRegs()); 803 804 // Attempt to break anti-dependence edges. Walk the instructions 805 // from the bottom up, tracking information about liveness as we go 806 // to help determine which registers are available. 807 unsigned Broken = 0; 808 unsigned Count = InsertPosIndex - 1; 809 for (MachineBasicBlock::iterator I = End, E = Begin; 810 I != E; --Count) { 811 MachineInstr &MI = *--I; 812 813 if (MI.isDebugInstr()) 814 continue; 815 816 LLVM_DEBUG(dbgs() << "Anti: "); 817 LLVM_DEBUG(MI.dump()); 818 819 std::set<unsigned> PassthruRegs; 820 GetPassthruRegs(MI, PassthruRegs); 821 822 // Process the defs in MI... 823 PrescanInstruction(MI, Count, PassthruRegs); 824 825 // The dependence edges that represent anti- and output- 826 // dependencies that are candidates for breaking. 827 std::vector<const SDep *> Edges; 828 const SUnit *PathSU = MISUnitMap[&MI]; 829 AntiDepEdges(PathSU, Edges); 830 831 // If MI is not on the critical path, then we don't rename 832 // registers in the CriticalPathSet. 833 BitVector *ExcludeRegs = nullptr; 834 if (&MI == CriticalPathMI) { 835 CriticalPathSU = CriticalPathStep(CriticalPathSU); 836 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 837 } else if (CriticalPathSet.any()) { 838 ExcludeRegs = &CriticalPathSet; 839 } 840 841 // Ignore KILL instructions (they form a group in ScanInstruction 842 // but don't cause any anti-dependence breaking themselves) 843 if (!MI.isKill()) { 844 // Attempt to break each anti-dependency... 845 for (unsigned i = 0, e = Edges.size(); i != e; ++i) { 846 const SDep *Edge = Edges[i]; 847 SUnit *NextSU = Edge->getSUnit(); 848 849 if ((Edge->getKind() != SDep::Anti) && 850 (Edge->getKind() != SDep::Output)) continue; 851 852 unsigned AntiDepReg = Edge->getReg(); 853 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 854 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 855 856 if (!MRI.isAllocatable(AntiDepReg)) { 857 // Don't break anti-dependencies on non-allocatable registers. 858 LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); 859 continue; 860 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 861 // Don't break anti-dependencies for critical path registers 862 // if not on the critical path 863 LLVM_DEBUG(dbgs() << " (not critical-path)\n"); 864 continue; 865 } else if (PassthruRegs.count(AntiDepReg) != 0) { 866 // If the anti-dep register liveness "passes-thru", then 867 // don't try to change it. It will be changed along with 868 // the use if required to break an earlier antidep. 869 LLVM_DEBUG(dbgs() << " (passthru)\n"); 870 continue; 871 } else { 872 // No anti-dep breaking for implicit deps 873 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 874 assert(AntiDepOp && "Can't find index for defined register operand"); 875 if (!AntiDepOp || AntiDepOp->isImplicit()) { 876 LLVM_DEBUG(dbgs() << " (implicit)\n"); 877 continue; 878 } 879 880 // If the SUnit has other dependencies on the SUnit that 881 // it anti-depends on, don't bother breaking the 882 // anti-dependency since those edges would prevent such 883 // units from being scheduled past each other 884 // regardless. 885 // 886 // Also, if there are dependencies on other SUnits with the 887 // same register as the anti-dependency, don't attempt to 888 // break it. 889 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 890 PE = PathSU->Preds.end(); P != PE; ++P) { 891 if (P->getSUnit() == NextSU ? 892 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 893 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 894 AntiDepReg = 0; 895 break; 896 } 897 } 898 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 899 PE = PathSU->Preds.end(); P != PE; ++P) { 900 if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && 901 (P->getKind() != SDep::Output)) { 902 LLVM_DEBUG(dbgs() << " (real dependency)\n"); 903 AntiDepReg = 0; 904 break; 905 } else if ((P->getSUnit() != NextSU) && 906 (P->getKind() == SDep::Data) && 907 (P->getReg() == AntiDepReg)) { 908 LLVM_DEBUG(dbgs() << " (other dependency)\n"); 909 AntiDepReg = 0; 910 break; 911 } 912 } 913 914 if (AntiDepReg == 0) continue; 915 916 // If the definition of the anti-dependency register does not start 917 // a new live range, bail out. This can happen if the anti-dep 918 // register is a sub-register of another register whose live range 919 // spans over PathSU. In such case, PathSU defines only a part of 920 // the larger register. 921 RegAliases.reset(); 922 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 923 RegAliases.set(*AI); 924 for (SDep S : PathSU->Succs) { 925 SDep::Kind K = S.getKind(); 926 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 927 continue; 928 unsigned R = S.getReg(); 929 if (!RegAliases[R]) 930 continue; 931 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 932 continue; 933 AntiDepReg = 0; 934 break; 935 } 936 937 if (AntiDepReg == 0) continue; 938 } 939 940 assert(AntiDepReg != 0); 941 if (AntiDepReg == 0) continue; 942 943 // Determine AntiDepReg's register group. 944 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 945 if (GroupIndex == 0) { 946 LLVM_DEBUG(dbgs() << " (zero group)\n"); 947 continue; 948 } 949 950 LLVM_DEBUG(dbgs() << '\n'); 951 952 // Look for a suitable register to use to break the anti-dependence. 953 std::map<unsigned, unsigned> RenameMap; 954 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 955 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 956 << printReg(AntiDepReg, TRI) << ":"); 957 958 // Handle each group register... 959 for (std::map<unsigned, unsigned>::iterator 960 S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { 961 unsigned CurrReg = S->first; 962 unsigned NewReg = S->second; 963 964 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 965 << printReg(NewReg, TRI) << "(" 966 << RegRefs.count(CurrReg) << " refs)"); 967 968 // Update the references to the old register CurrReg to 969 // refer to the new register NewReg. 970 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 971 Q.second.Operand->setReg(NewReg); 972 // If the SU for the instruction being updated has debug 973 // information related to the anti-dependency register, make 974 // sure to update that as well. 975 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 976 if (!SU) continue; 977 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 978 AntiDepReg, NewReg); 979 } 980 981 // We just went back in time and modified history; the 982 // liveness information for CurrReg is now inconsistent. Set 983 // the state as if it were dead. 984 State->UnionGroups(NewReg, 0); 985 RegRefs.erase(NewReg); 986 DefIndices[NewReg] = DefIndices[CurrReg]; 987 KillIndices[NewReg] = KillIndices[CurrReg]; 988 989 State->UnionGroups(CurrReg, 0); 990 RegRefs.erase(CurrReg); 991 DefIndices[CurrReg] = KillIndices[CurrReg]; 992 KillIndices[CurrReg] = ~0u; 993 assert(((KillIndices[CurrReg] == ~0u) != 994 (DefIndices[CurrReg] == ~0u)) && 995 "Kill and Def maps aren't consistent for AntiDepReg!"); 996 } 997 998 ++Broken; 999 LLVM_DEBUG(dbgs() << '\n'); 1000 } 1001 } 1002 } 1003 1004 ScanInstruction(MI, Count); 1005 } 1006 1007 return Broken; 1008 } 1009 1010 AntiDepBreaker *llvm::createAggressiveAntiDepBreaker( 1011 MachineFunction &MFi, const RegisterClassInfo &RCI, 1012 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) { 1013 return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs); 1014 } 1015