1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AggressiveAntiDepBreaker class, which 10 // implements register anti-dependence breaking during post-RA 11 // scheduling. It attempts to break all anti-dependencies within a 12 // block. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AggressiveAntiDepBreaker.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RegisterClassInfo.h" 28 #include "llvm/CodeGen/ScheduleDAG.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/MachineValueType.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <map> 40 #include <set> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "post-RA-sched" 47 48 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 49 static cl::opt<int> 50 DebugDiv("agg-antidep-debugdiv", 51 cl::desc("Debug control for aggressive anti-dep breaker"), 52 cl::init(0), cl::Hidden); 53 54 static cl::opt<int> 55 DebugMod("agg-antidep-debugmod", 56 cl::desc("Debug control for aggressive anti-dep breaker"), 57 cl::init(0), cl::Hidden); 58 59 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 60 MachineBasicBlock *BB) 61 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 62 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 63 DefIndices(TargetRegs, 0) { 64 const unsigned BBSize = BB->size(); 65 for (unsigned i = 0; i < NumTargetRegs; ++i) { 66 // Initialize all registers to be in their own group. Initially we 67 // assign the register to the same-indexed GroupNode. 68 GroupNodeIndices[i] = i; 69 // Initialize the indices to indicate that no registers are live. 70 KillIndices[i] = ~0u; 71 DefIndices[i] = BBSize; 72 } 73 } 74 75 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 76 unsigned Node = GroupNodeIndices[Reg]; 77 while (GroupNodes[Node] != Node) 78 Node = GroupNodes[Node]; 79 80 return Node; 81 } 82 83 void AggressiveAntiDepState::GetGroupRegs( 84 unsigned Group, 85 std::vector<unsigned> &Regs, 86 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 87 { 88 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 89 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 90 Regs.push_back(Reg); 91 } 92 } 93 94 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 95 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 96 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 97 98 // find group for each register 99 unsigned Group1 = GetGroup(Reg1); 100 unsigned Group2 = GetGroup(Reg2); 101 102 // if either group is 0, then that must become the parent 103 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 104 unsigned Other = (Parent == Group1) ? Group2 : Group1; 105 GroupNodes.at(Other) = Parent; 106 return Parent; 107 } 108 109 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 110 // Create a new GroupNode for Reg. Reg's existing GroupNode must 111 // stay as is because there could be other GroupNodes referring to 112 // it. 113 unsigned idx = GroupNodes.size(); 114 GroupNodes.push_back(idx); 115 GroupNodeIndices[Reg] = idx; 116 return idx; 117 } 118 119 bool AggressiveAntiDepState::IsLive(unsigned Reg) { 120 // KillIndex must be defined and DefIndex not defined for a register 121 // to be live. 122 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 123 } 124 125 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 126 MachineFunction &MFi, const RegisterClassInfo &RCI, 127 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 128 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 129 TII(MF.getSubtarget().getInstrInfo()), 130 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 131 /* Collect a bitset of all registers that are only broken if they 132 are on the critical path. */ 133 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 134 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 135 if (CriticalPathSet.none()) 136 CriticalPathSet = CPSet; 137 else 138 CriticalPathSet |= CPSet; 139 } 140 141 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 142 LLVM_DEBUG(for (unsigned r 143 : CriticalPathSet.set_bits()) dbgs() 144 << " " << printReg(r, TRI)); 145 LLVM_DEBUG(dbgs() << '\n'); 146 } 147 148 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 149 delete State; 150 } 151 152 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 153 assert(!State); 154 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 155 156 bool IsReturnBlock = BB->isReturnBlock(); 157 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 158 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 159 160 // Examine the live-in regs of all successors. 161 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 162 SE = BB->succ_end(); SI != SE; ++SI) 163 for (const auto &LI : (*SI)->liveins()) { 164 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 165 unsigned Reg = *AI; 166 State->UnionGroups(Reg, 0); 167 KillIndices[Reg] = BB->size(); 168 DefIndices[Reg] = ~0u; 169 } 170 } 171 172 // Mark live-out callee-saved registers. In a return block this is 173 // all callee-saved registers. In non-return this is any 174 // callee-saved register that is not saved in the prolog. 175 const MachineFrameInfo &MFI = MF.getFrameInfo(); 176 BitVector Pristine = MFI.getPristineRegs(MF); 177 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 178 ++I) { 179 unsigned Reg = *I; 180 if (!IsReturnBlock && !Pristine.test(Reg)) 181 continue; 182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 183 unsigned AliasReg = *AI; 184 State->UnionGroups(AliasReg, 0); 185 KillIndices[AliasReg] = BB->size(); 186 DefIndices[AliasReg] = ~0u; 187 } 188 } 189 } 190 191 void AggressiveAntiDepBreaker::FinishBlock() { 192 delete State; 193 State = nullptr; 194 } 195 196 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 197 unsigned InsertPosIndex) { 198 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 199 200 std::set<unsigned> PassthruRegs; 201 GetPassthruRegs(MI, PassthruRegs); 202 PrescanInstruction(MI, Count, PassthruRegs); 203 ScanInstruction(MI, Count); 204 205 LLVM_DEBUG(dbgs() << "Observe: "); 206 LLVM_DEBUG(MI.dump()); 207 LLVM_DEBUG(dbgs() << "\tRegs:"); 208 209 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 210 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 211 // If Reg is current live, then mark that it can't be renamed as 212 // we don't know the extent of its live-range anymore (now that it 213 // has been scheduled). If it is not live but was defined in the 214 // previous schedule region, then set its def index to the most 215 // conservative location (i.e. the beginning of the previous 216 // schedule region). 217 if (State->IsLive(Reg)) { 218 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() 219 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) 220 << "->g0(region live-out)"); 221 State->UnionGroups(Reg, 0); 222 } else if ((DefIndices[Reg] < InsertPosIndex) 223 && (DefIndices[Reg] >= Count)) { 224 DefIndices[Reg] = Count; 225 } 226 } 227 LLVM_DEBUG(dbgs() << '\n'); 228 } 229 230 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 231 MachineOperand &MO) { 232 if (!MO.isReg() || !MO.isImplicit()) 233 return false; 234 235 Register Reg = MO.getReg(); 236 if (Reg == 0) 237 return false; 238 239 MachineOperand *Op = nullptr; 240 if (MO.isDef()) 241 Op = MI.findRegisterUseOperand(Reg, true); 242 else 243 Op = MI.findRegisterDefOperand(Reg); 244 245 return(Op && Op->isImplicit()); 246 } 247 248 void AggressiveAntiDepBreaker::GetPassthruRegs( 249 MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 250 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 251 MachineOperand &MO = MI.getOperand(i); 252 if (!MO.isReg()) continue; 253 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 254 IsImplicitDefUse(MI, MO)) { 255 const Register Reg = MO.getReg(); 256 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 257 SubRegs.isValid(); ++SubRegs) 258 PassthruRegs.insert(*SubRegs); 259 } 260 } 261 } 262 263 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 264 /// in SU that we want to consider for breaking. 265 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 266 SmallSet<unsigned, 4> RegSet; 267 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 268 P != PE; ++P) { 269 if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { 270 if (RegSet.insert(P->getReg()).second) 271 Edges.push_back(&*P); 272 } 273 } 274 } 275 276 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 277 /// critical path. 278 static const SUnit *CriticalPathStep(const SUnit *SU) { 279 const SDep *Next = nullptr; 280 unsigned NextDepth = 0; 281 // Find the predecessor edge with the greatest depth. 282 if (SU) { 283 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 284 P != PE; ++P) { 285 const SUnit *PredSU = P->getSUnit(); 286 unsigned PredLatency = P->getLatency(); 287 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 288 // In the case of a latency tie, prefer an anti-dependency edge over 289 // other types of edges. 290 if (NextDepth < PredTotalLatency || 291 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 292 NextDepth = PredTotalLatency; 293 Next = &*P; 294 } 295 } 296 } 297 298 return (Next) ? Next->getSUnit() : nullptr; 299 } 300 301 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 302 const char *tag, 303 const char *header, 304 const char *footer) { 305 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 306 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 307 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 308 RegRefs = State->GetRegRefs(); 309 310 // FIXME: We must leave subregisters of live super registers as live, so that 311 // we don't clear out the register tracking information for subregisters of 312 // super registers we're still tracking (and with which we're unioning 313 // subregister definitions). 314 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 315 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 316 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 317 return; 318 } 319 320 if (!State->IsLive(Reg)) { 321 KillIndices[Reg] = KillIdx; 322 DefIndices[Reg] = ~0u; 323 RegRefs.erase(Reg); 324 State->LeaveGroup(Reg); 325 LLVM_DEBUG(if (header) { 326 dbgs() << header << printReg(Reg, TRI); 327 header = nullptr; 328 }); 329 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 330 // Repeat for subregisters. Note that we only do this if the superregister 331 // was not live because otherwise, regardless whether we have an explicit 332 // use of the subregister, the subregister's contents are needed for the 333 // uses of the superregister. 334 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 335 unsigned SubregReg = *SubRegs; 336 if (!State->IsLive(SubregReg)) { 337 KillIndices[SubregReg] = KillIdx; 338 DefIndices[SubregReg] = ~0u; 339 RegRefs.erase(SubregReg); 340 State->LeaveGroup(SubregReg); 341 LLVM_DEBUG(if (header) { 342 dbgs() << header << printReg(Reg, TRI); 343 header = nullptr; 344 }); 345 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" 346 << State->GetGroup(SubregReg) << tag); 347 } 348 } 349 } 350 351 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 352 } 353 354 void AggressiveAntiDepBreaker::PrescanInstruction( 355 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 356 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 357 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 358 RegRefs = State->GetRegRefs(); 359 360 // Handle dead defs by simulating a last-use of the register just 361 // after the def. A dead def can occur because the def is truly 362 // dead, or because only a subregister is live at the def. If we 363 // don't do this the dead def will be incorrectly merged into the 364 // previous def. 365 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 366 MachineOperand &MO = MI.getOperand(i); 367 if (!MO.isReg() || !MO.isDef()) continue; 368 Register Reg = MO.getReg(); 369 if (Reg == 0) continue; 370 371 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 372 } 373 374 LLVM_DEBUG(dbgs() << "\tDef Groups:"); 375 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 376 MachineOperand &MO = MI.getOperand(i); 377 if (!MO.isReg() || !MO.isDef()) continue; 378 Register Reg = MO.getReg(); 379 if (Reg == 0) continue; 380 381 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 382 << State->GetGroup(Reg)); 383 384 // If MI's defs have a special allocation requirement, don't allow 385 // any def registers to be changed. Also assume all registers 386 // defined in a call must not be changed (ABI). Inline assembly may 387 // reference either system calls or the register directly. Skip it until we 388 // can tell user specified registers from compiler-specified. 389 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 390 MI.isInlineAsm()) { 391 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 392 State->UnionGroups(Reg, 0); 393 } 394 395 // Any aliased that are live at this point are completely or 396 // partially defined here, so group those aliases with Reg. 397 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 398 unsigned AliasReg = *AI; 399 if (State->IsLive(AliasReg)) { 400 State->UnionGroups(Reg, AliasReg); 401 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 402 << printReg(AliasReg, TRI) << ")"); 403 } 404 } 405 406 // Note register reference... 407 const TargetRegisterClass *RC = nullptr; 408 if (i < MI.getDesc().getNumOperands()) 409 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 410 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 411 RegRefs.insert(std::make_pair(Reg, RR)); 412 } 413 414 LLVM_DEBUG(dbgs() << '\n'); 415 416 // Scan the register defs for this instruction and update 417 // live-ranges. 418 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 419 MachineOperand &MO = MI.getOperand(i); 420 if (!MO.isReg() || !MO.isDef()) continue; 421 Register Reg = MO.getReg(); 422 if (Reg == 0) continue; 423 // Ignore KILLs and passthru registers for liveness... 424 if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 425 continue; 426 427 // Update def for Reg and aliases. 428 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 429 // We need to be careful here not to define already-live super registers. 430 // If the super register is already live, then this definition is not 431 // a definition of the whole super register (just a partial insertion 432 // into it). Earlier subregister definitions (which we've not yet visited 433 // because we're iterating bottom-up) need to be linked to the same group 434 // as this definition. 435 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 436 continue; 437 438 DefIndices[*AI] = Count; 439 } 440 } 441 } 442 443 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 444 unsigned Count) { 445 LLVM_DEBUG(dbgs() << "\tUse Groups:"); 446 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 447 RegRefs = State->GetRegRefs(); 448 449 // If MI's uses have special allocation requirement, don't allow 450 // any use registers to be changed. Also assume all registers 451 // used in a call must not be changed (ABI). 452 // Inline Assembly register uses also cannot be safely changed. 453 // FIXME: The issue with predicated instruction is more complex. We are being 454 // conservatively here because the kill markers cannot be trusted after 455 // if-conversion: 456 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 457 // ... 458 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 459 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 460 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 461 // 462 // The first R6 kill is not really a kill since it's killed by a predicated 463 // instruction which may not be executed. The second R6 def may or may not 464 // re-define R6 so it's not safe to change it since the last R6 use cannot be 465 // changed. 466 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 467 TII->isPredicated(MI) || MI.isInlineAsm(); 468 469 // Scan the register uses for this instruction and update 470 // live-ranges, groups and RegRefs. 471 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 472 MachineOperand &MO = MI.getOperand(i); 473 if (!MO.isReg() || !MO.isUse()) continue; 474 Register Reg = MO.getReg(); 475 if (Reg == 0) continue; 476 477 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 478 << State->GetGroup(Reg)); 479 480 // It wasn't previously live but now it is, this is a kill. Forget 481 // the previous live-range information and start a new live-range 482 // for the register. 483 HandleLastUse(Reg, Count, "(last-use)"); 484 485 if (Special) { 486 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 487 State->UnionGroups(Reg, 0); 488 } 489 490 // Note register reference... 491 const TargetRegisterClass *RC = nullptr; 492 if (i < MI.getDesc().getNumOperands()) 493 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 494 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 495 RegRefs.insert(std::make_pair(Reg, RR)); 496 } 497 498 LLVM_DEBUG(dbgs() << '\n'); 499 500 // Form a group of all defs and uses of a KILL instruction to ensure 501 // that all registers are renamed as a group. 502 if (MI.isKill()) { 503 LLVM_DEBUG(dbgs() << "\tKill Group:"); 504 505 unsigned FirstReg = 0; 506 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 507 MachineOperand &MO = MI.getOperand(i); 508 if (!MO.isReg()) continue; 509 Register Reg = MO.getReg(); 510 if (Reg == 0) continue; 511 512 if (FirstReg != 0) { 513 LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 514 State->UnionGroups(FirstReg, Reg); 515 } else { 516 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 517 FirstReg = Reg; 518 } 519 } 520 521 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 522 } 523 } 524 525 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 526 BitVector BV(TRI->getNumRegs(), false); 527 bool first = true; 528 529 // Check all references that need rewriting for Reg. For each, use 530 // the corresponding register class to narrow the set of registers 531 // that are appropriate for renaming. 532 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 533 const TargetRegisterClass *RC = Q.second.RC; 534 if (!RC) continue; 535 536 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 537 if (first) { 538 BV |= RCBV; 539 first = false; 540 } else { 541 BV &= RCBV; 542 } 543 544 LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 545 } 546 547 return BV; 548 } 549 550 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 551 unsigned AntiDepGroupIndex, 552 RenameOrderType& RenameOrder, 553 std::map<unsigned, unsigned> &RenameMap) { 554 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 555 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 556 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 557 RegRefs = State->GetRegRefs(); 558 559 // Collect all referenced registers in the same group as 560 // AntiDepReg. These all need to be renamed together if we are to 561 // break the anti-dependence. 562 std::vector<unsigned> Regs; 563 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 564 assert(!Regs.empty() && "Empty register group!"); 565 if (Regs.empty()) 566 return false; 567 568 // Find the "superest" register in the group. At the same time, 569 // collect the BitVector of registers that can be used to rename 570 // each register. 571 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 572 << ":\n"); 573 std::map<unsigned, BitVector> RenameRegisterMap; 574 unsigned SuperReg = 0; 575 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 576 unsigned Reg = Regs[i]; 577 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 578 SuperReg = Reg; 579 580 // If Reg has any references, then collect possible rename regs 581 if (RegRefs.count(Reg) > 0) { 582 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 583 584 BitVector &BV = RenameRegisterMap[Reg]; 585 assert(BV.empty()); 586 BV = GetRenameRegisters(Reg); 587 588 LLVM_DEBUG({ 589 dbgs() << " ::"; 590 for (unsigned r : BV.set_bits()) 591 dbgs() << " " << printReg(r, TRI); 592 dbgs() << "\n"; 593 }); 594 } 595 } 596 597 // All group registers should be a subreg of SuperReg. 598 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 599 unsigned Reg = Regs[i]; 600 if (Reg == SuperReg) continue; 601 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 602 // FIXME: remove this once PR18663 has been properly fixed. For now, 603 // return a conservative answer: 604 // assert(IsSub && "Expecting group subregister"); 605 if (!IsSub) 606 return false; 607 } 608 609 #ifndef NDEBUG 610 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 611 if (DebugDiv > 0) { 612 static int renamecnt = 0; 613 if (renamecnt++ % DebugDiv != DebugMod) 614 return false; 615 616 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 617 << " for debug ***\n"; 618 } 619 #endif 620 621 // Check each possible rename register for SuperReg in round-robin 622 // order. If that register is available, and the corresponding 623 // registers are available for the other group subregisters, then we 624 // can use those registers to rename. 625 626 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 627 // check every use of the register and find the largest register class 628 // that can be used in all of them. 629 const TargetRegisterClass *SuperRC = 630 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 631 632 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 633 if (Order.empty()) { 634 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 635 return false; 636 } 637 638 LLVM_DEBUG(dbgs() << "\tFind Registers:"); 639 640 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 641 642 unsigned OrigR = RenameOrder[SuperRC]; 643 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 644 unsigned R = OrigR; 645 do { 646 if (R == 0) R = Order.size(); 647 --R; 648 const unsigned NewSuperReg = Order[R]; 649 // Don't consider non-allocatable registers 650 if (!MRI.isAllocatable(NewSuperReg)) continue; 651 // Don't replace a register with itself. 652 if (NewSuperReg == SuperReg) continue; 653 654 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 655 RenameMap.clear(); 656 657 // For each referenced group register (which must be a SuperReg or 658 // a subregister of SuperReg), find the corresponding subregister 659 // of NewSuperReg and make sure it is free to be renamed. 660 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 661 unsigned Reg = Regs[i]; 662 unsigned NewReg = 0; 663 if (Reg == SuperReg) { 664 NewReg = NewSuperReg; 665 } else { 666 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 667 if (NewSubRegIdx != 0) 668 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 669 } 670 671 LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 672 673 // Check if Reg can be renamed to NewReg. 674 if (!RenameRegisterMap[Reg].test(NewReg)) { 675 LLVM_DEBUG(dbgs() << "(no rename)"); 676 goto next_super_reg; 677 } 678 679 // If NewReg is dead and NewReg's most recent def is not before 680 // Regs's kill, it's safe to replace Reg with NewReg. We 681 // must also check all aliases of NewReg, because we can't define a 682 // register when any sub or super is already live. 683 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 684 LLVM_DEBUG(dbgs() << "(live)"); 685 goto next_super_reg; 686 } else { 687 bool found = false; 688 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 689 unsigned AliasReg = *AI; 690 if (State->IsLive(AliasReg) || 691 (KillIndices[Reg] > DefIndices[AliasReg])) { 692 LLVM_DEBUG(dbgs() 693 << "(alias " << printReg(AliasReg, TRI) << " live)"); 694 found = true; 695 break; 696 } 697 } 698 if (found) 699 goto next_super_reg; 700 } 701 702 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 703 // defines 'NewReg' via an early-clobber operand. 704 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 705 MachineInstr *UseMI = Q.second.Operand->getParent(); 706 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 707 if (Idx == -1) 708 continue; 709 710 if (UseMI->getOperand(Idx).isEarlyClobber()) { 711 LLVM_DEBUG(dbgs() << "(ec)"); 712 goto next_super_reg; 713 } 714 } 715 716 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 717 // 'Reg' is an early-clobber define and that instruction also uses 718 // 'NewReg'. 719 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 720 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 721 continue; 722 723 MachineInstr *DefMI = Q.second.Operand->getParent(); 724 if (DefMI->readsRegister(NewReg, TRI)) { 725 LLVM_DEBUG(dbgs() << "(ec)"); 726 goto next_super_reg; 727 } 728 } 729 730 // Record that 'Reg' can be renamed to 'NewReg'. 731 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 732 } 733 734 // If we fall-out here, then every register in the group can be 735 // renamed, as recorded in RenameMap. 736 RenameOrder.erase(SuperRC); 737 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 738 LLVM_DEBUG(dbgs() << "]\n"); 739 return true; 740 741 next_super_reg: 742 LLVM_DEBUG(dbgs() << ']'); 743 } while (R != EndR); 744 745 LLVM_DEBUG(dbgs() << '\n'); 746 747 // No registers are free and available! 748 return false; 749 } 750 751 /// BreakAntiDependencies - Identifiy anti-dependencies within the 752 /// ScheduleDAG and break them by renaming registers. 753 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 754 const std::vector<SUnit> &SUnits, 755 MachineBasicBlock::iterator Begin, 756 MachineBasicBlock::iterator End, 757 unsigned InsertPosIndex, 758 DbgValueVector &DbgValues) { 759 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 760 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 761 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 762 RegRefs = State->GetRegRefs(); 763 764 // The code below assumes that there is at least one instruction, 765 // so just duck out immediately if the block is empty. 766 if (SUnits.empty()) return 0; 767 768 // For each regclass the next register to use for renaming. 769 RenameOrderType RenameOrder; 770 771 // ...need a map from MI to SUnit. 772 std::map<MachineInstr *, const SUnit *> MISUnitMap; 773 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 774 const SUnit *SU = &SUnits[i]; 775 MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(), 776 SU)); 777 } 778 779 // Track progress along the critical path through the SUnit graph as 780 // we walk the instructions. This is needed for regclasses that only 781 // break critical-path anti-dependencies. 782 const SUnit *CriticalPathSU = nullptr; 783 MachineInstr *CriticalPathMI = nullptr; 784 if (CriticalPathSet.any()) { 785 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 786 const SUnit *SU = &SUnits[i]; 787 if (!CriticalPathSU || 788 ((SU->getDepth() + SU->Latency) > 789 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 790 CriticalPathSU = SU; 791 } 792 } 793 assert(CriticalPathSU && "Failed to find SUnit critical path"); 794 CriticalPathMI = CriticalPathSU->getInstr(); 795 } 796 797 #ifndef NDEBUG 798 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 799 LLVM_DEBUG(dbgs() << "Available regs:"); 800 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 801 if (!State->IsLive(Reg)) 802 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 803 } 804 LLVM_DEBUG(dbgs() << '\n'); 805 #endif 806 807 BitVector RegAliases(TRI->getNumRegs()); 808 809 // Attempt to break anti-dependence edges. Walk the instructions 810 // from the bottom up, tracking information about liveness as we go 811 // to help determine which registers are available. 812 unsigned Broken = 0; 813 unsigned Count = InsertPosIndex - 1; 814 for (MachineBasicBlock::iterator I = End, E = Begin; 815 I != E; --Count) { 816 MachineInstr &MI = *--I; 817 818 if (MI.isDebugInstr()) 819 continue; 820 821 LLVM_DEBUG(dbgs() << "Anti: "); 822 LLVM_DEBUG(MI.dump()); 823 824 std::set<unsigned> PassthruRegs; 825 GetPassthruRegs(MI, PassthruRegs); 826 827 // Process the defs in MI... 828 PrescanInstruction(MI, Count, PassthruRegs); 829 830 // The dependence edges that represent anti- and output- 831 // dependencies that are candidates for breaking. 832 std::vector<const SDep *> Edges; 833 const SUnit *PathSU = MISUnitMap[&MI]; 834 AntiDepEdges(PathSU, Edges); 835 836 // If MI is not on the critical path, then we don't rename 837 // registers in the CriticalPathSet. 838 BitVector *ExcludeRegs = nullptr; 839 if (&MI == CriticalPathMI) { 840 CriticalPathSU = CriticalPathStep(CriticalPathSU); 841 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 842 } else if (CriticalPathSet.any()) { 843 ExcludeRegs = &CriticalPathSet; 844 } 845 846 // Ignore KILL instructions (they form a group in ScanInstruction 847 // but don't cause any anti-dependence breaking themselves) 848 if (!MI.isKill()) { 849 // Attempt to break each anti-dependency... 850 for (unsigned i = 0, e = Edges.size(); i != e; ++i) { 851 const SDep *Edge = Edges[i]; 852 SUnit *NextSU = Edge->getSUnit(); 853 854 if ((Edge->getKind() != SDep::Anti) && 855 (Edge->getKind() != SDep::Output)) continue; 856 857 unsigned AntiDepReg = Edge->getReg(); 858 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 859 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 860 861 if (!MRI.isAllocatable(AntiDepReg)) { 862 // Don't break anti-dependencies on non-allocatable registers. 863 LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); 864 continue; 865 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 866 // Don't break anti-dependencies for critical path registers 867 // if not on the critical path 868 LLVM_DEBUG(dbgs() << " (not critical-path)\n"); 869 continue; 870 } else if (PassthruRegs.count(AntiDepReg) != 0) { 871 // If the anti-dep register liveness "passes-thru", then 872 // don't try to change it. It will be changed along with 873 // the use if required to break an earlier antidep. 874 LLVM_DEBUG(dbgs() << " (passthru)\n"); 875 continue; 876 } else { 877 // No anti-dep breaking for implicit deps 878 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 879 assert(AntiDepOp && "Can't find index for defined register operand"); 880 if (!AntiDepOp || AntiDepOp->isImplicit()) { 881 LLVM_DEBUG(dbgs() << " (implicit)\n"); 882 continue; 883 } 884 885 // If the SUnit has other dependencies on the SUnit that 886 // it anti-depends on, don't bother breaking the 887 // anti-dependency since those edges would prevent such 888 // units from being scheduled past each other 889 // regardless. 890 // 891 // Also, if there are dependencies on other SUnits with the 892 // same register as the anti-dependency, don't attempt to 893 // break it. 894 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 895 PE = PathSU->Preds.end(); P != PE; ++P) { 896 if (P->getSUnit() == NextSU ? 897 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 898 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 899 AntiDepReg = 0; 900 break; 901 } 902 } 903 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 904 PE = PathSU->Preds.end(); P != PE; ++P) { 905 if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && 906 (P->getKind() != SDep::Output)) { 907 LLVM_DEBUG(dbgs() << " (real dependency)\n"); 908 AntiDepReg = 0; 909 break; 910 } else if ((P->getSUnit() != NextSU) && 911 (P->getKind() == SDep::Data) && 912 (P->getReg() == AntiDepReg)) { 913 LLVM_DEBUG(dbgs() << " (other dependency)\n"); 914 AntiDepReg = 0; 915 break; 916 } 917 } 918 919 if (AntiDepReg == 0) continue; 920 921 // If the definition of the anti-dependency register does not start 922 // a new live range, bail out. This can happen if the anti-dep 923 // register is a sub-register of another register whose live range 924 // spans over PathSU. In such case, PathSU defines only a part of 925 // the larger register. 926 RegAliases.reset(); 927 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 928 RegAliases.set(*AI); 929 for (SDep S : PathSU->Succs) { 930 SDep::Kind K = S.getKind(); 931 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 932 continue; 933 unsigned R = S.getReg(); 934 if (!RegAliases[R]) 935 continue; 936 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 937 continue; 938 AntiDepReg = 0; 939 break; 940 } 941 942 if (AntiDepReg == 0) continue; 943 } 944 945 assert(AntiDepReg != 0); 946 if (AntiDepReg == 0) continue; 947 948 // Determine AntiDepReg's register group. 949 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 950 if (GroupIndex == 0) { 951 LLVM_DEBUG(dbgs() << " (zero group)\n"); 952 continue; 953 } 954 955 LLVM_DEBUG(dbgs() << '\n'); 956 957 // Look for a suitable register to use to break the anti-dependence. 958 std::map<unsigned, unsigned> RenameMap; 959 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 960 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 961 << printReg(AntiDepReg, TRI) << ":"); 962 963 // Handle each group register... 964 for (std::map<unsigned, unsigned>::iterator 965 S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { 966 unsigned CurrReg = S->first; 967 unsigned NewReg = S->second; 968 969 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 970 << printReg(NewReg, TRI) << "(" 971 << RegRefs.count(CurrReg) << " refs)"); 972 973 // Update the references to the old register CurrReg to 974 // refer to the new register NewReg. 975 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 976 Q.second.Operand->setReg(NewReg); 977 // If the SU for the instruction being updated has debug 978 // information related to the anti-dependency register, make 979 // sure to update that as well. 980 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 981 if (!SU) continue; 982 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 983 AntiDepReg, NewReg); 984 } 985 986 // We just went back in time and modified history; the 987 // liveness information for CurrReg is now inconsistent. Set 988 // the state as if it were dead. 989 State->UnionGroups(NewReg, 0); 990 RegRefs.erase(NewReg); 991 DefIndices[NewReg] = DefIndices[CurrReg]; 992 KillIndices[NewReg] = KillIndices[CurrReg]; 993 994 State->UnionGroups(CurrReg, 0); 995 RegRefs.erase(CurrReg); 996 DefIndices[CurrReg] = KillIndices[CurrReg]; 997 KillIndices[CurrReg] = ~0u; 998 assert(((KillIndices[CurrReg] == ~0u) != 999 (DefIndices[CurrReg] == ~0u)) && 1000 "Kill and Def maps aren't consistent for AntiDepReg!"); 1001 } 1002 1003 ++Broken; 1004 LLVM_DEBUG(dbgs() << '\n'); 1005 } 1006 } 1007 } 1008 1009 ScanInstruction(MI, Count); 1010 } 1011 1012 return Broken; 1013 } 1014