1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AggressiveAntiDepBreaker class, which 10 // implements register anti-dependence breaking during post-RA 11 // scheduling. It attempts to break all anti-dependencies within a 12 // block. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AggressiveAntiDepBreaker.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/MachineValueType.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "post-RA-sched" 42 43 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 44 static cl::opt<int> 45 DebugDiv("agg-antidep-debugdiv", 46 cl::desc("Debug control for aggressive anti-dep breaker"), 47 cl::init(0), cl::Hidden); 48 49 static cl::opt<int> 50 DebugMod("agg-antidep-debugmod", 51 cl::desc("Debug control for aggressive anti-dep breaker"), 52 cl::init(0), cl::Hidden); 53 54 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 55 MachineBasicBlock *BB) 56 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 57 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 58 DefIndices(TargetRegs, 0) { 59 const unsigned BBSize = BB->size(); 60 for (unsigned i = 0; i < NumTargetRegs; ++i) { 61 // Initialize all registers to be in their own group. Initially we 62 // assign the register to the same-indexed GroupNode. 63 GroupNodeIndices[i] = i; 64 // Initialize the indices to indicate that no registers are live. 65 KillIndices[i] = ~0u; 66 DefIndices[i] = BBSize; 67 } 68 } 69 70 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 71 unsigned Node = GroupNodeIndices[Reg]; 72 while (GroupNodes[Node] != Node) 73 Node = GroupNodes[Node]; 74 75 return Node; 76 } 77 78 void AggressiveAntiDepState::GetGroupRegs( 79 unsigned Group, 80 std::vector<unsigned> &Regs, 81 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 82 { 83 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 84 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 85 Regs.push_back(Reg); 86 } 87 } 88 89 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 90 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 91 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 92 93 // find group for each register 94 unsigned Group1 = GetGroup(Reg1); 95 unsigned Group2 = GetGroup(Reg2); 96 97 // if either group is 0, then that must become the parent 98 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 99 unsigned Other = (Parent == Group1) ? Group2 : Group1; 100 GroupNodes.at(Other) = Parent; 101 return Parent; 102 } 103 104 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 105 // Create a new GroupNode for Reg. Reg's existing GroupNode must 106 // stay as is because there could be other GroupNodes referring to 107 // it. 108 unsigned idx = GroupNodes.size(); 109 GroupNodes.push_back(idx); 110 GroupNodeIndices[Reg] = idx; 111 return idx; 112 } 113 114 bool AggressiveAntiDepState::IsLive(unsigned Reg) { 115 // KillIndex must be defined and DefIndex not defined for a register 116 // to be live. 117 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 118 } 119 120 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 121 MachineFunction &MFi, const RegisterClassInfo &RCI, 122 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 123 : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()), 124 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 125 /* Collect a bitset of all registers that are only broken if they 126 are on the critical path. */ 127 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 128 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 129 if (CriticalPathSet.none()) 130 CriticalPathSet = CPSet; 131 else 132 CriticalPathSet |= CPSet; 133 } 134 135 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 136 LLVM_DEBUG(for (unsigned r 137 : CriticalPathSet.set_bits()) dbgs() 138 << " " << printReg(r, TRI)); 139 LLVM_DEBUG(dbgs() << '\n'); 140 } 141 142 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 143 delete State; 144 } 145 146 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 147 assert(!State); 148 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 149 150 bool IsReturnBlock = BB->isReturnBlock(); 151 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 152 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 153 154 // Examine the live-in regs of all successors. 155 for (MachineBasicBlock *Succ : BB->successors()) 156 for (const auto &LI : Succ->liveins()) { 157 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 158 unsigned Reg = *AI; 159 State->UnionGroups(Reg, 0); 160 KillIndices[Reg] = BB->size(); 161 DefIndices[Reg] = ~0u; 162 } 163 } 164 165 // Mark live-out callee-saved registers. In a return block this is 166 // all callee-saved registers. In non-return this is any 167 // callee-saved register that is not saved in the prolog. 168 const MachineFrameInfo &MFI = MF.getFrameInfo(); 169 BitVector Pristine = MFI.getPristineRegs(MF); 170 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 171 ++I) { 172 unsigned Reg = *I; 173 if (!IsReturnBlock && !Pristine.test(Reg)) 174 continue; 175 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 176 unsigned AliasReg = *AI; 177 State->UnionGroups(AliasReg, 0); 178 KillIndices[AliasReg] = BB->size(); 179 DefIndices[AliasReg] = ~0u; 180 } 181 } 182 } 183 184 void AggressiveAntiDepBreaker::FinishBlock() { 185 delete State; 186 State = nullptr; 187 } 188 189 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 190 unsigned InsertPosIndex) { 191 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 192 193 std::set<unsigned> PassthruRegs; 194 GetPassthruRegs(MI, PassthruRegs); 195 PrescanInstruction(MI, Count, PassthruRegs); 196 ScanInstruction(MI, Count); 197 198 LLVM_DEBUG(dbgs() << "Observe: "); 199 LLVM_DEBUG(MI.dump()); 200 LLVM_DEBUG(dbgs() << "\tRegs:"); 201 202 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 203 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 204 // If Reg is current live, then mark that it can't be renamed as 205 // we don't know the extent of its live-range anymore (now that it 206 // has been scheduled). If it is not live but was defined in the 207 // previous schedule region, then set its def index to the most 208 // conservative location (i.e. the beginning of the previous 209 // schedule region). 210 if (State->IsLive(Reg)) { 211 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() 212 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) 213 << "->g0(region live-out)"); 214 State->UnionGroups(Reg, 0); 215 } else if ((DefIndices[Reg] < InsertPosIndex) 216 && (DefIndices[Reg] >= Count)) { 217 DefIndices[Reg] = Count; 218 } 219 } 220 LLVM_DEBUG(dbgs() << '\n'); 221 } 222 223 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 224 MachineOperand &MO) { 225 if (!MO.isReg() || !MO.isImplicit()) 226 return false; 227 228 Register Reg = MO.getReg(); 229 if (Reg == 0) 230 return false; 231 232 MachineOperand *Op = nullptr; 233 if (MO.isDef()) 234 Op = MI.findRegisterUseOperand(Reg, true); 235 else 236 Op = MI.findRegisterDefOperand(Reg); 237 238 return(Op && Op->isImplicit()); 239 } 240 241 void AggressiveAntiDepBreaker::GetPassthruRegs( 242 MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 243 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 244 MachineOperand &MO = MI.getOperand(i); 245 if (!MO.isReg()) continue; 246 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 247 IsImplicitDefUse(MI, MO)) { 248 const Register Reg = MO.getReg(); 249 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 250 SubRegs.isValid(); ++SubRegs) 251 PassthruRegs.insert(*SubRegs); 252 } 253 } 254 } 255 256 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 257 /// in SU that we want to consider for breaking. 258 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 259 SmallSet<unsigned, 4> RegSet; 260 for (const SDep &Pred : SU->Preds) { 261 if ((Pred.getKind() == SDep::Anti) || (Pred.getKind() == SDep::Output)) { 262 if (RegSet.insert(Pred.getReg()).second) 263 Edges.push_back(&Pred); 264 } 265 } 266 } 267 268 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 269 /// critical path. 270 static const SUnit *CriticalPathStep(const SUnit *SU) { 271 const SDep *Next = nullptr; 272 unsigned NextDepth = 0; 273 // Find the predecessor edge with the greatest depth. 274 if (SU) { 275 for (const SDep &Pred : SU->Preds) { 276 const SUnit *PredSU = Pred.getSUnit(); 277 unsigned PredLatency = Pred.getLatency(); 278 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 279 // In the case of a latency tie, prefer an anti-dependency edge over 280 // other types of edges. 281 if (NextDepth < PredTotalLatency || 282 (NextDepth == PredTotalLatency && Pred.getKind() == SDep::Anti)) { 283 NextDepth = PredTotalLatency; 284 Next = &Pred; 285 } 286 } 287 } 288 289 return (Next) ? Next->getSUnit() : nullptr; 290 } 291 292 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 293 const char *tag, 294 const char *header, 295 const char *footer) { 296 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 297 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 298 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 299 RegRefs = State->GetRegRefs(); 300 301 // FIXME: We must leave subregisters of live super registers as live, so that 302 // we don't clear out the register tracking information for subregisters of 303 // super registers we're still tracking (and with which we're unioning 304 // subregister definitions). 305 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 306 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 307 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 308 return; 309 } 310 311 if (!State->IsLive(Reg)) { 312 KillIndices[Reg] = KillIdx; 313 DefIndices[Reg] = ~0u; 314 RegRefs.erase(Reg); 315 State->LeaveGroup(Reg); 316 LLVM_DEBUG(if (header) { 317 dbgs() << header << printReg(Reg, TRI); 318 header = nullptr; 319 }); 320 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 321 // Repeat for subregisters. Note that we only do this if the superregister 322 // was not live because otherwise, regardless whether we have an explicit 323 // use of the subregister, the subregister's contents are needed for the 324 // uses of the superregister. 325 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 326 unsigned SubregReg = *SubRegs; 327 if (!State->IsLive(SubregReg)) { 328 KillIndices[SubregReg] = KillIdx; 329 DefIndices[SubregReg] = ~0u; 330 RegRefs.erase(SubregReg); 331 State->LeaveGroup(SubregReg); 332 LLVM_DEBUG(if (header) { 333 dbgs() << header << printReg(Reg, TRI); 334 header = nullptr; 335 }); 336 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" 337 << State->GetGroup(SubregReg) << tag); 338 } 339 } 340 } 341 342 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 343 } 344 345 void AggressiveAntiDepBreaker::PrescanInstruction( 346 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 347 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 348 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 349 RegRefs = State->GetRegRefs(); 350 351 // Handle dead defs by simulating a last-use of the register just 352 // after the def. A dead def can occur because the def is truly 353 // dead, or because only a subregister is live at the def. If we 354 // don't do this the dead def will be incorrectly merged into the 355 // previous def. 356 for (const MachineOperand &MO : MI.operands()) { 357 if (!MO.isReg() || !MO.isDef()) continue; 358 Register Reg = MO.getReg(); 359 if (Reg == 0) continue; 360 361 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 362 } 363 364 LLVM_DEBUG(dbgs() << "\tDef Groups:"); 365 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 366 MachineOperand &MO = MI.getOperand(i); 367 if (!MO.isReg() || !MO.isDef()) continue; 368 Register Reg = MO.getReg(); 369 if (Reg == 0) continue; 370 371 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 372 << State->GetGroup(Reg)); 373 374 // If MI's defs have a special allocation requirement, don't allow 375 // any def registers to be changed. Also assume all registers 376 // defined in a call must not be changed (ABI). Inline assembly may 377 // reference either system calls or the register directly. Skip it until we 378 // can tell user specified registers from compiler-specified. 379 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 380 MI.isInlineAsm()) { 381 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 382 State->UnionGroups(Reg, 0); 383 } 384 385 // Any aliased that are live at this point are completely or 386 // partially defined here, so group those aliases with Reg. 387 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 388 unsigned AliasReg = *AI; 389 if (State->IsLive(AliasReg)) { 390 State->UnionGroups(Reg, AliasReg); 391 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 392 << printReg(AliasReg, TRI) << ")"); 393 } 394 } 395 396 // Note register reference... 397 const TargetRegisterClass *RC = nullptr; 398 if (i < MI.getDesc().getNumOperands()) 399 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 400 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 401 RegRefs.insert(std::make_pair(Reg, RR)); 402 } 403 404 LLVM_DEBUG(dbgs() << '\n'); 405 406 // Scan the register defs for this instruction and update 407 // live-ranges. 408 for (const MachineOperand &MO : MI.operands()) { 409 if (!MO.isReg() || !MO.isDef()) continue; 410 Register Reg = MO.getReg(); 411 if (Reg == 0) continue; 412 // Ignore KILLs and passthru registers for liveness... 413 if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 414 continue; 415 416 // Update def for Reg and aliases. 417 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 418 // We need to be careful here not to define already-live super registers. 419 // If the super register is already live, then this definition is not 420 // a definition of the whole super register (just a partial insertion 421 // into it). Earlier subregister definitions (which we've not yet visited 422 // because we're iterating bottom-up) need to be linked to the same group 423 // as this definition. 424 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 425 continue; 426 427 DefIndices[*AI] = Count; 428 } 429 } 430 } 431 432 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 433 unsigned Count) { 434 LLVM_DEBUG(dbgs() << "\tUse Groups:"); 435 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 436 RegRefs = State->GetRegRefs(); 437 438 // If MI's uses have special allocation requirement, don't allow 439 // any use registers to be changed. Also assume all registers 440 // used in a call must not be changed (ABI). 441 // Inline Assembly register uses also cannot be safely changed. 442 // FIXME: The issue with predicated instruction is more complex. We are being 443 // conservatively here because the kill markers cannot be trusted after 444 // if-conversion: 445 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 446 // ... 447 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 448 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 449 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 450 // 451 // The first R6 kill is not really a kill since it's killed by a predicated 452 // instruction which may not be executed. The second R6 def may or may not 453 // re-define R6 so it's not safe to change it since the last R6 use cannot be 454 // changed. 455 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 456 TII->isPredicated(MI) || MI.isInlineAsm(); 457 458 // Scan the register uses for this instruction and update 459 // live-ranges, groups and RegRefs. 460 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 461 MachineOperand &MO = MI.getOperand(i); 462 if (!MO.isReg() || !MO.isUse()) continue; 463 Register Reg = MO.getReg(); 464 if (Reg == 0) continue; 465 466 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 467 << State->GetGroup(Reg)); 468 469 // It wasn't previously live but now it is, this is a kill. Forget 470 // the previous live-range information and start a new live-range 471 // for the register. 472 HandleLastUse(Reg, Count, "(last-use)"); 473 474 if (Special) { 475 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 476 State->UnionGroups(Reg, 0); 477 } 478 479 // Note register reference... 480 const TargetRegisterClass *RC = nullptr; 481 if (i < MI.getDesc().getNumOperands()) 482 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 483 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 484 RegRefs.insert(std::make_pair(Reg, RR)); 485 } 486 487 LLVM_DEBUG(dbgs() << '\n'); 488 489 // Form a group of all defs and uses of a KILL instruction to ensure 490 // that all registers are renamed as a group. 491 if (MI.isKill()) { 492 LLVM_DEBUG(dbgs() << "\tKill Group:"); 493 494 unsigned FirstReg = 0; 495 for (const MachineOperand &MO : MI.operands()) { 496 if (!MO.isReg()) continue; 497 Register Reg = MO.getReg(); 498 if (Reg == 0) continue; 499 500 if (FirstReg != 0) { 501 LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 502 State->UnionGroups(FirstReg, Reg); 503 } else { 504 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 505 FirstReg = Reg; 506 } 507 } 508 509 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 510 } 511 } 512 513 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 514 BitVector BV(TRI->getNumRegs(), false); 515 bool first = true; 516 517 // Check all references that need rewriting for Reg. For each, use 518 // the corresponding register class to narrow the set of registers 519 // that are appropriate for renaming. 520 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 521 const TargetRegisterClass *RC = Q.second.RC; 522 if (!RC) continue; 523 524 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 525 if (first) { 526 BV |= RCBV; 527 first = false; 528 } else { 529 BV &= RCBV; 530 } 531 532 LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 533 } 534 535 return BV; 536 } 537 538 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 539 unsigned AntiDepGroupIndex, 540 RenameOrderType& RenameOrder, 541 std::map<unsigned, unsigned> &RenameMap) { 542 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 543 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 544 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 545 RegRefs = State->GetRegRefs(); 546 547 // Collect all referenced registers in the same group as 548 // AntiDepReg. These all need to be renamed together if we are to 549 // break the anti-dependence. 550 std::vector<unsigned> Regs; 551 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 552 assert(!Regs.empty() && "Empty register group!"); 553 if (Regs.empty()) 554 return false; 555 556 // Find the "superest" register in the group. At the same time, 557 // collect the BitVector of registers that can be used to rename 558 // each register. 559 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 560 << ":\n"); 561 std::map<unsigned, BitVector> RenameRegisterMap; 562 unsigned SuperReg = 0; 563 for (unsigned Reg : Regs) { 564 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 565 SuperReg = Reg; 566 567 // If Reg has any references, then collect possible rename regs 568 if (RegRefs.count(Reg) > 0) { 569 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 570 571 BitVector &BV = RenameRegisterMap[Reg]; 572 assert(BV.empty()); 573 BV = GetRenameRegisters(Reg); 574 575 LLVM_DEBUG({ 576 dbgs() << " ::"; 577 for (unsigned r : BV.set_bits()) 578 dbgs() << " " << printReg(r, TRI); 579 dbgs() << "\n"; 580 }); 581 } 582 } 583 584 // All group registers should be a subreg of SuperReg. 585 for (unsigned Reg : Regs) { 586 if (Reg == SuperReg) continue; 587 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 588 // FIXME: remove this once PR18663 has been properly fixed. For now, 589 // return a conservative answer: 590 // assert(IsSub && "Expecting group subregister"); 591 if (!IsSub) 592 return false; 593 } 594 595 #ifndef NDEBUG 596 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 597 if (DebugDiv > 0) { 598 static int renamecnt = 0; 599 if (renamecnt++ % DebugDiv != DebugMod) 600 return false; 601 602 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 603 << " for debug ***\n"; 604 } 605 #endif 606 607 // Check each possible rename register for SuperReg in round-robin 608 // order. If that register is available, and the corresponding 609 // registers are available for the other group subregisters, then we 610 // can use those registers to rename. 611 612 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 613 // check every use of the register and find the largest register class 614 // that can be used in all of them. 615 const TargetRegisterClass *SuperRC = 616 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 617 618 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 619 if (Order.empty()) { 620 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 621 return false; 622 } 623 624 LLVM_DEBUG(dbgs() << "\tFind Registers:"); 625 626 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 627 628 unsigned OrigR = RenameOrder[SuperRC]; 629 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 630 unsigned R = OrigR; 631 do { 632 if (R == 0) R = Order.size(); 633 --R; 634 const unsigned NewSuperReg = Order[R]; 635 // Don't consider non-allocatable registers 636 if (!MRI.isAllocatable(NewSuperReg)) continue; 637 // Don't replace a register with itself. 638 if (NewSuperReg == SuperReg) continue; 639 640 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 641 RenameMap.clear(); 642 643 // For each referenced group register (which must be a SuperReg or 644 // a subregister of SuperReg), find the corresponding subregister 645 // of NewSuperReg and make sure it is free to be renamed. 646 for (unsigned Reg : Regs) { 647 unsigned NewReg = 0; 648 if (Reg == SuperReg) { 649 NewReg = NewSuperReg; 650 } else { 651 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 652 if (NewSubRegIdx != 0) 653 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 654 } 655 656 LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 657 658 // Check if Reg can be renamed to NewReg. 659 if (!RenameRegisterMap[Reg].test(NewReg)) { 660 LLVM_DEBUG(dbgs() << "(no rename)"); 661 goto next_super_reg; 662 } 663 664 // If NewReg is dead and NewReg's most recent def is not before 665 // Regs's kill, it's safe to replace Reg with NewReg. We 666 // must also check all aliases of NewReg, because we can't define a 667 // register when any sub or super is already live. 668 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 669 LLVM_DEBUG(dbgs() << "(live)"); 670 goto next_super_reg; 671 } else { 672 bool found = false; 673 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 674 unsigned AliasReg = *AI; 675 if (State->IsLive(AliasReg) || 676 (KillIndices[Reg] > DefIndices[AliasReg])) { 677 LLVM_DEBUG(dbgs() 678 << "(alias " << printReg(AliasReg, TRI) << " live)"); 679 found = true; 680 break; 681 } 682 } 683 if (found) 684 goto next_super_reg; 685 } 686 687 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 688 // defines 'NewReg' via an early-clobber operand. 689 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 690 MachineInstr *UseMI = Q.second.Operand->getParent(); 691 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 692 if (Idx == -1) 693 continue; 694 695 if (UseMI->getOperand(Idx).isEarlyClobber()) { 696 LLVM_DEBUG(dbgs() << "(ec)"); 697 goto next_super_reg; 698 } 699 } 700 701 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 702 // 'Reg' is an early-clobber define and that instruction also uses 703 // 'NewReg'. 704 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 705 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 706 continue; 707 708 MachineInstr *DefMI = Q.second.Operand->getParent(); 709 if (DefMI->readsRegister(NewReg, TRI)) { 710 LLVM_DEBUG(dbgs() << "(ec)"); 711 goto next_super_reg; 712 } 713 } 714 715 // Record that 'Reg' can be renamed to 'NewReg'. 716 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 717 } 718 719 // If we fall-out here, then every register in the group can be 720 // renamed, as recorded in RenameMap. 721 RenameOrder.erase(SuperRC); 722 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 723 LLVM_DEBUG(dbgs() << "]\n"); 724 return true; 725 726 next_super_reg: 727 LLVM_DEBUG(dbgs() << ']'); 728 } while (R != EndR); 729 730 LLVM_DEBUG(dbgs() << '\n'); 731 732 // No registers are free and available! 733 return false; 734 } 735 736 /// BreakAntiDependencies - Identifiy anti-dependencies within the 737 /// ScheduleDAG and break them by renaming registers. 738 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 739 const std::vector<SUnit> &SUnits, 740 MachineBasicBlock::iterator Begin, 741 MachineBasicBlock::iterator End, 742 unsigned InsertPosIndex, 743 DbgValueVector &DbgValues) { 744 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 745 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 746 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 747 RegRefs = State->GetRegRefs(); 748 749 // The code below assumes that there is at least one instruction, 750 // so just duck out immediately if the block is empty. 751 if (SUnits.empty()) return 0; 752 753 // For each regclass the next register to use for renaming. 754 RenameOrderType RenameOrder; 755 756 // ...need a map from MI to SUnit. 757 std::map<MachineInstr *, const SUnit *> MISUnitMap; 758 for (const SUnit &SU : SUnits) 759 MISUnitMap.insert(std::make_pair(SU.getInstr(), &SU)); 760 761 // Track progress along the critical path through the SUnit graph as 762 // we walk the instructions. This is needed for regclasses that only 763 // break critical-path anti-dependencies. 764 const SUnit *CriticalPathSU = nullptr; 765 MachineInstr *CriticalPathMI = nullptr; 766 if (CriticalPathSet.any()) { 767 for (const SUnit &SU : SUnits) { 768 if (!CriticalPathSU || 769 ((SU.getDepth() + SU.Latency) > 770 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 771 CriticalPathSU = &SU; 772 } 773 } 774 assert(CriticalPathSU && "Failed to find SUnit critical path"); 775 CriticalPathMI = CriticalPathSU->getInstr(); 776 } 777 778 #ifndef NDEBUG 779 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 780 LLVM_DEBUG(dbgs() << "Available regs:"); 781 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 782 if (!State->IsLive(Reg)) 783 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 784 } 785 LLVM_DEBUG(dbgs() << '\n'); 786 #endif 787 788 BitVector RegAliases(TRI->getNumRegs()); 789 790 // Attempt to break anti-dependence edges. Walk the instructions 791 // from the bottom up, tracking information about liveness as we go 792 // to help determine which registers are available. 793 unsigned Broken = 0; 794 unsigned Count = InsertPosIndex - 1; 795 for (MachineBasicBlock::iterator I = End, E = Begin; 796 I != E; --Count) { 797 MachineInstr &MI = *--I; 798 799 if (MI.isDebugInstr()) 800 continue; 801 802 LLVM_DEBUG(dbgs() << "Anti: "); 803 LLVM_DEBUG(MI.dump()); 804 805 std::set<unsigned> PassthruRegs; 806 GetPassthruRegs(MI, PassthruRegs); 807 808 // Process the defs in MI... 809 PrescanInstruction(MI, Count, PassthruRegs); 810 811 // The dependence edges that represent anti- and output- 812 // dependencies that are candidates for breaking. 813 std::vector<const SDep *> Edges; 814 const SUnit *PathSU = MISUnitMap[&MI]; 815 AntiDepEdges(PathSU, Edges); 816 817 // If MI is not on the critical path, then we don't rename 818 // registers in the CriticalPathSet. 819 BitVector *ExcludeRegs = nullptr; 820 if (&MI == CriticalPathMI) { 821 CriticalPathSU = CriticalPathStep(CriticalPathSU); 822 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 823 } else if (CriticalPathSet.any()) { 824 ExcludeRegs = &CriticalPathSet; 825 } 826 827 // Ignore KILL instructions (they form a group in ScanInstruction 828 // but don't cause any anti-dependence breaking themselves) 829 if (!MI.isKill()) { 830 // Attempt to break each anti-dependency... 831 for (const SDep *Edge : Edges) { 832 SUnit *NextSU = Edge->getSUnit(); 833 834 if ((Edge->getKind() != SDep::Anti) && 835 (Edge->getKind() != SDep::Output)) continue; 836 837 unsigned AntiDepReg = Edge->getReg(); 838 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 839 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 840 841 if (!MRI.isAllocatable(AntiDepReg)) { 842 // Don't break anti-dependencies on non-allocatable registers. 843 LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); 844 continue; 845 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 846 // Don't break anti-dependencies for critical path registers 847 // if not on the critical path 848 LLVM_DEBUG(dbgs() << " (not critical-path)\n"); 849 continue; 850 } else if (PassthruRegs.count(AntiDepReg) != 0) { 851 // If the anti-dep register liveness "passes-thru", then 852 // don't try to change it. It will be changed along with 853 // the use if required to break an earlier antidep. 854 LLVM_DEBUG(dbgs() << " (passthru)\n"); 855 continue; 856 } else { 857 // No anti-dep breaking for implicit deps 858 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 859 assert(AntiDepOp && "Can't find index for defined register operand"); 860 if (!AntiDepOp || AntiDepOp->isImplicit()) { 861 LLVM_DEBUG(dbgs() << " (implicit)\n"); 862 continue; 863 } 864 865 // If the SUnit has other dependencies on the SUnit that 866 // it anti-depends on, don't bother breaking the 867 // anti-dependency since those edges would prevent such 868 // units from being scheduled past each other 869 // regardless. 870 // 871 // Also, if there are dependencies on other SUnits with the 872 // same register as the anti-dependency, don't attempt to 873 // break it. 874 for (const SDep &Pred : PathSU->Preds) { 875 if (Pred.getSUnit() == NextSU ? (Pred.getKind() != SDep::Anti || 876 Pred.getReg() != AntiDepReg) 877 : (Pred.getKind() == SDep::Data && 878 Pred.getReg() == AntiDepReg)) { 879 AntiDepReg = 0; 880 break; 881 } 882 } 883 for (const SDep &Pred : PathSU->Preds) { 884 if ((Pred.getSUnit() == NextSU) && (Pred.getKind() != SDep::Anti) && 885 (Pred.getKind() != SDep::Output)) { 886 LLVM_DEBUG(dbgs() << " (real dependency)\n"); 887 AntiDepReg = 0; 888 break; 889 } else if ((Pred.getSUnit() != NextSU) && 890 (Pred.getKind() == SDep::Data) && 891 (Pred.getReg() == AntiDepReg)) { 892 LLVM_DEBUG(dbgs() << " (other dependency)\n"); 893 AntiDepReg = 0; 894 break; 895 } 896 } 897 898 if (AntiDepReg == 0) continue; 899 900 // If the definition of the anti-dependency register does not start 901 // a new live range, bail out. This can happen if the anti-dep 902 // register is a sub-register of another register whose live range 903 // spans over PathSU. In such case, PathSU defines only a part of 904 // the larger register. 905 RegAliases.reset(); 906 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 907 RegAliases.set(*AI); 908 for (SDep S : PathSU->Succs) { 909 SDep::Kind K = S.getKind(); 910 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 911 continue; 912 unsigned R = S.getReg(); 913 if (!RegAliases[R]) 914 continue; 915 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 916 continue; 917 AntiDepReg = 0; 918 break; 919 } 920 921 if (AntiDepReg == 0) continue; 922 } 923 924 assert(AntiDepReg != 0); 925 if (AntiDepReg == 0) continue; 926 927 // Determine AntiDepReg's register group. 928 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 929 if (GroupIndex == 0) { 930 LLVM_DEBUG(dbgs() << " (zero group)\n"); 931 continue; 932 } 933 934 LLVM_DEBUG(dbgs() << '\n'); 935 936 // Look for a suitable register to use to break the anti-dependence. 937 std::map<unsigned, unsigned> RenameMap; 938 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 939 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 940 << printReg(AntiDepReg, TRI) << ":"); 941 942 // Handle each group register... 943 for (const auto &P : RenameMap) { 944 unsigned CurrReg = P.first; 945 unsigned NewReg = P.second; 946 947 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 948 << printReg(NewReg, TRI) << "(" 949 << RegRefs.count(CurrReg) << " refs)"); 950 951 // Update the references to the old register CurrReg to 952 // refer to the new register NewReg. 953 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 954 Q.second.Operand->setReg(NewReg); 955 // If the SU for the instruction being updated has debug 956 // information related to the anti-dependency register, make 957 // sure to update that as well. 958 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 959 if (!SU) continue; 960 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 961 AntiDepReg, NewReg); 962 } 963 964 // We just went back in time and modified history; the 965 // liveness information for CurrReg is now inconsistent. Set 966 // the state as if it were dead. 967 State->UnionGroups(NewReg, 0); 968 RegRefs.erase(NewReg); 969 DefIndices[NewReg] = DefIndices[CurrReg]; 970 KillIndices[NewReg] = KillIndices[CurrReg]; 971 972 State->UnionGroups(CurrReg, 0); 973 RegRefs.erase(CurrReg); 974 DefIndices[CurrReg] = KillIndices[CurrReg]; 975 KillIndices[CurrReg] = ~0u; 976 assert(((KillIndices[CurrReg] == ~0u) != 977 (DefIndices[CurrReg] == ~0u)) && 978 "Kill and Def maps aren't consistent for AntiDepReg!"); 979 } 980 981 ++Broken; 982 LLVM_DEBUG(dbgs() << '\n'); 983 } 984 } 985 } 986 987 ScanInstruction(MI, Count); 988 } 989 990 return Broken; 991 } 992 993 AntiDepBreaker *llvm::createAggressiveAntiDepBreaker( 994 MachineFunction &MFi, const RegisterClassInfo &RCI, 995 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) { 996 return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs); 997 } 998