1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AggressiveAntiDepBreaker class, which 10 // implements register anti-dependence breaking during post-RA 11 // scheduling. It attempts to break all anti-dependencies within a 12 // block. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AggressiveAntiDepBreaker.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/MachineValueType.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "post-RA-sched" 42 43 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 44 static cl::opt<int> 45 DebugDiv("agg-antidep-debugdiv", 46 cl::desc("Debug control for aggressive anti-dep breaker"), 47 cl::init(0), cl::Hidden); 48 49 static cl::opt<int> 50 DebugMod("agg-antidep-debugmod", 51 cl::desc("Debug control for aggressive anti-dep breaker"), 52 cl::init(0), cl::Hidden); 53 54 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 55 MachineBasicBlock *BB) 56 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 57 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 58 DefIndices(TargetRegs, 0) { 59 const unsigned BBSize = BB->size(); 60 for (unsigned i = 0; i < NumTargetRegs; ++i) { 61 // Initialize all registers to be in their own group. Initially we 62 // assign the register to the same-indexed GroupNode. 63 GroupNodeIndices[i] = i; 64 // Initialize the indices to indicate that no registers are live. 65 KillIndices[i] = ~0u; 66 DefIndices[i] = BBSize; 67 } 68 } 69 70 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 71 unsigned Node = GroupNodeIndices[Reg]; 72 while (GroupNodes[Node] != Node) 73 Node = GroupNodes[Node]; 74 75 return Node; 76 } 77 78 void AggressiveAntiDepState::GetGroupRegs( 79 unsigned Group, 80 std::vector<unsigned> &Regs, 81 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 82 { 83 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 84 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 85 Regs.push_back(Reg); 86 } 87 } 88 89 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 90 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 91 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 92 93 // find group for each register 94 unsigned Group1 = GetGroup(Reg1); 95 unsigned Group2 = GetGroup(Reg2); 96 97 // if either group is 0, then that must become the parent 98 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 99 unsigned Other = (Parent == Group1) ? Group2 : Group1; 100 GroupNodes.at(Other) = Parent; 101 return Parent; 102 } 103 104 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 105 // Create a new GroupNode for Reg. Reg's existing GroupNode must 106 // stay as is because there could be other GroupNodes referring to 107 // it. 108 unsigned idx = GroupNodes.size(); 109 GroupNodes.push_back(idx); 110 GroupNodeIndices[Reg] = idx; 111 return idx; 112 } 113 114 bool AggressiveAntiDepState::IsLive(unsigned Reg) { 115 // KillIndex must be defined and DefIndex not defined for a register 116 // to be live. 117 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 118 } 119 120 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 121 MachineFunction &MFi, const RegisterClassInfo &RCI, 122 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 123 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 124 TII(MF.getSubtarget().getInstrInfo()), 125 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 126 /* Collect a bitset of all registers that are only broken if they 127 are on the critical path. */ 128 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 129 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 130 if (CriticalPathSet.none()) 131 CriticalPathSet = CPSet; 132 else 133 CriticalPathSet |= CPSet; 134 } 135 136 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 137 LLVM_DEBUG(for (unsigned r 138 : CriticalPathSet.set_bits()) dbgs() 139 << " " << printReg(r, TRI)); 140 LLVM_DEBUG(dbgs() << '\n'); 141 } 142 143 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 144 delete State; 145 } 146 147 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 148 assert(!State); 149 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 150 151 bool IsReturnBlock = BB->isReturnBlock(); 152 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 153 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 154 155 // Examine the live-in regs of all successors. 156 for (MachineBasicBlock *Succ : BB->successors()) 157 for (const auto &LI : Succ->liveins()) { 158 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 159 unsigned Reg = *AI; 160 State->UnionGroups(Reg, 0); 161 KillIndices[Reg] = BB->size(); 162 DefIndices[Reg] = ~0u; 163 } 164 } 165 166 // Mark live-out callee-saved registers. In a return block this is 167 // all callee-saved registers. In non-return this is any 168 // callee-saved register that is not saved in the prolog. 169 const MachineFrameInfo &MFI = MF.getFrameInfo(); 170 BitVector Pristine = MFI.getPristineRegs(MF); 171 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 172 ++I) { 173 unsigned Reg = *I; 174 if (!IsReturnBlock && !Pristine.test(Reg)) 175 continue; 176 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 177 unsigned AliasReg = *AI; 178 State->UnionGroups(AliasReg, 0); 179 KillIndices[AliasReg] = BB->size(); 180 DefIndices[AliasReg] = ~0u; 181 } 182 } 183 } 184 185 void AggressiveAntiDepBreaker::FinishBlock() { 186 delete State; 187 State = nullptr; 188 } 189 190 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 191 unsigned InsertPosIndex) { 192 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 193 194 std::set<unsigned> PassthruRegs; 195 GetPassthruRegs(MI, PassthruRegs); 196 PrescanInstruction(MI, Count, PassthruRegs); 197 ScanInstruction(MI, Count); 198 199 LLVM_DEBUG(dbgs() << "Observe: "); 200 LLVM_DEBUG(MI.dump()); 201 LLVM_DEBUG(dbgs() << "\tRegs:"); 202 203 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 204 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 205 // If Reg is current live, then mark that it can't be renamed as 206 // we don't know the extent of its live-range anymore (now that it 207 // has been scheduled). If it is not live but was defined in the 208 // previous schedule region, then set its def index to the most 209 // conservative location (i.e. the beginning of the previous 210 // schedule region). 211 if (State->IsLive(Reg)) { 212 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() 213 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) 214 << "->g0(region live-out)"); 215 State->UnionGroups(Reg, 0); 216 } else if ((DefIndices[Reg] < InsertPosIndex) 217 && (DefIndices[Reg] >= Count)) { 218 DefIndices[Reg] = Count; 219 } 220 } 221 LLVM_DEBUG(dbgs() << '\n'); 222 } 223 224 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 225 MachineOperand &MO) { 226 if (!MO.isReg() || !MO.isImplicit()) 227 return false; 228 229 Register Reg = MO.getReg(); 230 if (Reg == 0) 231 return false; 232 233 MachineOperand *Op = nullptr; 234 if (MO.isDef()) 235 Op = MI.findRegisterUseOperand(Reg, true); 236 else 237 Op = MI.findRegisterDefOperand(Reg); 238 239 return(Op && Op->isImplicit()); 240 } 241 242 void AggressiveAntiDepBreaker::GetPassthruRegs( 243 MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 244 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 245 MachineOperand &MO = MI.getOperand(i); 246 if (!MO.isReg()) continue; 247 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 248 IsImplicitDefUse(MI, MO)) { 249 const Register Reg = MO.getReg(); 250 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 251 SubRegs.isValid(); ++SubRegs) 252 PassthruRegs.insert(*SubRegs); 253 } 254 } 255 } 256 257 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 258 /// in SU that we want to consider for breaking. 259 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 260 SmallSet<unsigned, 4> RegSet; 261 for (const SDep &Pred : SU->Preds) { 262 if ((Pred.getKind() == SDep::Anti) || (Pred.getKind() == SDep::Output)) { 263 if (RegSet.insert(Pred.getReg()).second) 264 Edges.push_back(&Pred); 265 } 266 } 267 } 268 269 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 270 /// critical path. 271 static const SUnit *CriticalPathStep(const SUnit *SU) { 272 const SDep *Next = nullptr; 273 unsigned NextDepth = 0; 274 // Find the predecessor edge with the greatest depth. 275 if (SU) { 276 for (const SDep &Pred : SU->Preds) { 277 const SUnit *PredSU = Pred.getSUnit(); 278 unsigned PredLatency = Pred.getLatency(); 279 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 280 // In the case of a latency tie, prefer an anti-dependency edge over 281 // other types of edges. 282 if (NextDepth < PredTotalLatency || 283 (NextDepth == PredTotalLatency && Pred.getKind() == SDep::Anti)) { 284 NextDepth = PredTotalLatency; 285 Next = &Pred; 286 } 287 } 288 } 289 290 return (Next) ? Next->getSUnit() : nullptr; 291 } 292 293 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 294 const char *tag, 295 const char *header, 296 const char *footer) { 297 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 298 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 299 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 300 RegRefs = State->GetRegRefs(); 301 302 // FIXME: We must leave subregisters of live super registers as live, so that 303 // we don't clear out the register tracking information for subregisters of 304 // super registers we're still tracking (and with which we're unioning 305 // subregister definitions). 306 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 307 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 308 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 309 return; 310 } 311 312 if (!State->IsLive(Reg)) { 313 KillIndices[Reg] = KillIdx; 314 DefIndices[Reg] = ~0u; 315 RegRefs.erase(Reg); 316 State->LeaveGroup(Reg); 317 LLVM_DEBUG(if (header) { 318 dbgs() << header << printReg(Reg, TRI); 319 header = nullptr; 320 }); 321 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 322 // Repeat for subregisters. Note that we only do this if the superregister 323 // was not live because otherwise, regardless whether we have an explicit 324 // use of the subregister, the subregister's contents are needed for the 325 // uses of the superregister. 326 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 327 unsigned SubregReg = *SubRegs; 328 if (!State->IsLive(SubregReg)) { 329 KillIndices[SubregReg] = KillIdx; 330 DefIndices[SubregReg] = ~0u; 331 RegRefs.erase(SubregReg); 332 State->LeaveGroup(SubregReg); 333 LLVM_DEBUG(if (header) { 334 dbgs() << header << printReg(Reg, TRI); 335 header = nullptr; 336 }); 337 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" 338 << State->GetGroup(SubregReg) << tag); 339 } 340 } 341 } 342 343 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 344 } 345 346 void AggressiveAntiDepBreaker::PrescanInstruction( 347 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 348 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 349 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 350 RegRefs = State->GetRegRefs(); 351 352 // Handle dead defs by simulating a last-use of the register just 353 // after the def. A dead def can occur because the def is truly 354 // dead, or because only a subregister is live at the def. If we 355 // don't do this the dead def will be incorrectly merged into the 356 // previous def. 357 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 358 MachineOperand &MO = MI.getOperand(i); 359 if (!MO.isReg() || !MO.isDef()) continue; 360 Register Reg = MO.getReg(); 361 if (Reg == 0) continue; 362 363 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 364 } 365 366 LLVM_DEBUG(dbgs() << "\tDef Groups:"); 367 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 368 MachineOperand &MO = MI.getOperand(i); 369 if (!MO.isReg() || !MO.isDef()) continue; 370 Register Reg = MO.getReg(); 371 if (Reg == 0) continue; 372 373 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 374 << State->GetGroup(Reg)); 375 376 // If MI's defs have a special allocation requirement, don't allow 377 // any def registers to be changed. Also assume all registers 378 // defined in a call must not be changed (ABI). Inline assembly may 379 // reference either system calls or the register directly. Skip it until we 380 // can tell user specified registers from compiler-specified. 381 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 382 MI.isInlineAsm()) { 383 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 384 State->UnionGroups(Reg, 0); 385 } 386 387 // Any aliased that are live at this point are completely or 388 // partially defined here, so group those aliases with Reg. 389 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 390 unsigned AliasReg = *AI; 391 if (State->IsLive(AliasReg)) { 392 State->UnionGroups(Reg, AliasReg); 393 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 394 << printReg(AliasReg, TRI) << ")"); 395 } 396 } 397 398 // Note register reference... 399 const TargetRegisterClass *RC = nullptr; 400 if (i < MI.getDesc().getNumOperands()) 401 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 402 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 403 RegRefs.insert(std::make_pair(Reg, RR)); 404 } 405 406 LLVM_DEBUG(dbgs() << '\n'); 407 408 // Scan the register defs for this instruction and update 409 // live-ranges. 410 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 411 MachineOperand &MO = MI.getOperand(i); 412 if (!MO.isReg() || !MO.isDef()) continue; 413 Register Reg = MO.getReg(); 414 if (Reg == 0) continue; 415 // Ignore KILLs and passthru registers for liveness... 416 if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 417 continue; 418 419 // Update def for Reg and aliases. 420 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 421 // We need to be careful here not to define already-live super registers. 422 // If the super register is already live, then this definition is not 423 // a definition of the whole super register (just a partial insertion 424 // into it). Earlier subregister definitions (which we've not yet visited 425 // because we're iterating bottom-up) need to be linked to the same group 426 // as this definition. 427 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 428 continue; 429 430 DefIndices[*AI] = Count; 431 } 432 } 433 } 434 435 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 436 unsigned Count) { 437 LLVM_DEBUG(dbgs() << "\tUse Groups:"); 438 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 439 RegRefs = State->GetRegRefs(); 440 441 // If MI's uses have special allocation requirement, don't allow 442 // any use registers to be changed. Also assume all registers 443 // used in a call must not be changed (ABI). 444 // Inline Assembly register uses also cannot be safely changed. 445 // FIXME: The issue with predicated instruction is more complex. We are being 446 // conservatively here because the kill markers cannot be trusted after 447 // if-conversion: 448 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 449 // ... 450 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 451 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 452 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 453 // 454 // The first R6 kill is not really a kill since it's killed by a predicated 455 // instruction which may not be executed. The second R6 def may or may not 456 // re-define R6 so it's not safe to change it since the last R6 use cannot be 457 // changed. 458 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 459 TII->isPredicated(MI) || MI.isInlineAsm(); 460 461 // Scan the register uses for this instruction and update 462 // live-ranges, groups and RegRefs. 463 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 464 MachineOperand &MO = MI.getOperand(i); 465 if (!MO.isReg() || !MO.isUse()) continue; 466 Register Reg = MO.getReg(); 467 if (Reg == 0) continue; 468 469 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 470 << State->GetGroup(Reg)); 471 472 // It wasn't previously live but now it is, this is a kill. Forget 473 // the previous live-range information and start a new live-range 474 // for the register. 475 HandleLastUse(Reg, Count, "(last-use)"); 476 477 if (Special) { 478 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 479 State->UnionGroups(Reg, 0); 480 } 481 482 // Note register reference... 483 const TargetRegisterClass *RC = nullptr; 484 if (i < MI.getDesc().getNumOperands()) 485 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 486 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 487 RegRefs.insert(std::make_pair(Reg, RR)); 488 } 489 490 LLVM_DEBUG(dbgs() << '\n'); 491 492 // Form a group of all defs and uses of a KILL instruction to ensure 493 // that all registers are renamed as a group. 494 if (MI.isKill()) { 495 LLVM_DEBUG(dbgs() << "\tKill Group:"); 496 497 unsigned FirstReg = 0; 498 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 499 MachineOperand &MO = MI.getOperand(i); 500 if (!MO.isReg()) continue; 501 Register Reg = MO.getReg(); 502 if (Reg == 0) continue; 503 504 if (FirstReg != 0) { 505 LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 506 State->UnionGroups(FirstReg, Reg); 507 } else { 508 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 509 FirstReg = Reg; 510 } 511 } 512 513 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 514 } 515 } 516 517 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 518 BitVector BV(TRI->getNumRegs(), false); 519 bool first = true; 520 521 // Check all references that need rewriting for Reg. For each, use 522 // the corresponding register class to narrow the set of registers 523 // that are appropriate for renaming. 524 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 525 const TargetRegisterClass *RC = Q.second.RC; 526 if (!RC) continue; 527 528 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 529 if (first) { 530 BV |= RCBV; 531 first = false; 532 } else { 533 BV &= RCBV; 534 } 535 536 LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 537 } 538 539 return BV; 540 } 541 542 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 543 unsigned AntiDepGroupIndex, 544 RenameOrderType& RenameOrder, 545 std::map<unsigned, unsigned> &RenameMap) { 546 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 547 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 548 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 549 RegRefs = State->GetRegRefs(); 550 551 // Collect all referenced registers in the same group as 552 // AntiDepReg. These all need to be renamed together if we are to 553 // break the anti-dependence. 554 std::vector<unsigned> Regs; 555 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 556 assert(!Regs.empty() && "Empty register group!"); 557 if (Regs.empty()) 558 return false; 559 560 // Find the "superest" register in the group. At the same time, 561 // collect the BitVector of registers that can be used to rename 562 // each register. 563 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 564 << ":\n"); 565 std::map<unsigned, BitVector> RenameRegisterMap; 566 unsigned SuperReg = 0; 567 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 568 unsigned Reg = Regs[i]; 569 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 570 SuperReg = Reg; 571 572 // If Reg has any references, then collect possible rename regs 573 if (RegRefs.count(Reg) > 0) { 574 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 575 576 BitVector &BV = RenameRegisterMap[Reg]; 577 assert(BV.empty()); 578 BV = GetRenameRegisters(Reg); 579 580 LLVM_DEBUG({ 581 dbgs() << " ::"; 582 for (unsigned r : BV.set_bits()) 583 dbgs() << " " << printReg(r, TRI); 584 dbgs() << "\n"; 585 }); 586 } 587 } 588 589 // All group registers should be a subreg of SuperReg. 590 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 591 unsigned Reg = Regs[i]; 592 if (Reg == SuperReg) continue; 593 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 594 // FIXME: remove this once PR18663 has been properly fixed. For now, 595 // return a conservative answer: 596 // assert(IsSub && "Expecting group subregister"); 597 if (!IsSub) 598 return false; 599 } 600 601 #ifndef NDEBUG 602 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 603 if (DebugDiv > 0) { 604 static int renamecnt = 0; 605 if (renamecnt++ % DebugDiv != DebugMod) 606 return false; 607 608 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 609 << " for debug ***\n"; 610 } 611 #endif 612 613 // Check each possible rename register for SuperReg in round-robin 614 // order. If that register is available, and the corresponding 615 // registers are available for the other group subregisters, then we 616 // can use those registers to rename. 617 618 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 619 // check every use of the register and find the largest register class 620 // that can be used in all of them. 621 const TargetRegisterClass *SuperRC = 622 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 623 624 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 625 if (Order.empty()) { 626 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 627 return false; 628 } 629 630 LLVM_DEBUG(dbgs() << "\tFind Registers:"); 631 632 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 633 634 unsigned OrigR = RenameOrder[SuperRC]; 635 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 636 unsigned R = OrigR; 637 do { 638 if (R == 0) R = Order.size(); 639 --R; 640 const unsigned NewSuperReg = Order[R]; 641 // Don't consider non-allocatable registers 642 if (!MRI.isAllocatable(NewSuperReg)) continue; 643 // Don't replace a register with itself. 644 if (NewSuperReg == SuperReg) continue; 645 646 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 647 RenameMap.clear(); 648 649 // For each referenced group register (which must be a SuperReg or 650 // a subregister of SuperReg), find the corresponding subregister 651 // of NewSuperReg and make sure it is free to be renamed. 652 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 653 unsigned Reg = Regs[i]; 654 unsigned NewReg = 0; 655 if (Reg == SuperReg) { 656 NewReg = NewSuperReg; 657 } else { 658 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 659 if (NewSubRegIdx != 0) 660 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 661 } 662 663 LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 664 665 // Check if Reg can be renamed to NewReg. 666 if (!RenameRegisterMap[Reg].test(NewReg)) { 667 LLVM_DEBUG(dbgs() << "(no rename)"); 668 goto next_super_reg; 669 } 670 671 // If NewReg is dead and NewReg's most recent def is not before 672 // Regs's kill, it's safe to replace Reg with NewReg. We 673 // must also check all aliases of NewReg, because we can't define a 674 // register when any sub or super is already live. 675 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 676 LLVM_DEBUG(dbgs() << "(live)"); 677 goto next_super_reg; 678 } else { 679 bool found = false; 680 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 681 unsigned AliasReg = *AI; 682 if (State->IsLive(AliasReg) || 683 (KillIndices[Reg] > DefIndices[AliasReg])) { 684 LLVM_DEBUG(dbgs() 685 << "(alias " << printReg(AliasReg, TRI) << " live)"); 686 found = true; 687 break; 688 } 689 } 690 if (found) 691 goto next_super_reg; 692 } 693 694 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 695 // defines 'NewReg' via an early-clobber operand. 696 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 697 MachineInstr *UseMI = Q.second.Operand->getParent(); 698 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 699 if (Idx == -1) 700 continue; 701 702 if (UseMI->getOperand(Idx).isEarlyClobber()) { 703 LLVM_DEBUG(dbgs() << "(ec)"); 704 goto next_super_reg; 705 } 706 } 707 708 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 709 // 'Reg' is an early-clobber define and that instruction also uses 710 // 'NewReg'. 711 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 712 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 713 continue; 714 715 MachineInstr *DefMI = Q.second.Operand->getParent(); 716 if (DefMI->readsRegister(NewReg, TRI)) { 717 LLVM_DEBUG(dbgs() << "(ec)"); 718 goto next_super_reg; 719 } 720 } 721 722 // Record that 'Reg' can be renamed to 'NewReg'. 723 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 724 } 725 726 // If we fall-out here, then every register in the group can be 727 // renamed, as recorded in RenameMap. 728 RenameOrder.erase(SuperRC); 729 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 730 LLVM_DEBUG(dbgs() << "]\n"); 731 return true; 732 733 next_super_reg: 734 LLVM_DEBUG(dbgs() << ']'); 735 } while (R != EndR); 736 737 LLVM_DEBUG(dbgs() << '\n'); 738 739 // No registers are free and available! 740 return false; 741 } 742 743 /// BreakAntiDependencies - Identifiy anti-dependencies within the 744 /// ScheduleDAG and break them by renaming registers. 745 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 746 const std::vector<SUnit> &SUnits, 747 MachineBasicBlock::iterator Begin, 748 MachineBasicBlock::iterator End, 749 unsigned InsertPosIndex, 750 DbgValueVector &DbgValues) { 751 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 752 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 753 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 754 RegRefs = State->GetRegRefs(); 755 756 // The code below assumes that there is at least one instruction, 757 // so just duck out immediately if the block is empty. 758 if (SUnits.empty()) return 0; 759 760 // For each regclass the next register to use for renaming. 761 RenameOrderType RenameOrder; 762 763 // ...need a map from MI to SUnit. 764 std::map<MachineInstr *, const SUnit *> MISUnitMap; 765 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 766 const SUnit *SU = &SUnits[i]; 767 MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(), 768 SU)); 769 } 770 771 // Track progress along the critical path through the SUnit graph as 772 // we walk the instructions. This is needed for regclasses that only 773 // break critical-path anti-dependencies. 774 const SUnit *CriticalPathSU = nullptr; 775 MachineInstr *CriticalPathMI = nullptr; 776 if (CriticalPathSet.any()) { 777 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 778 const SUnit *SU = &SUnits[i]; 779 if (!CriticalPathSU || 780 ((SU->getDepth() + SU->Latency) > 781 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 782 CriticalPathSU = SU; 783 } 784 } 785 assert(CriticalPathSU && "Failed to find SUnit critical path"); 786 CriticalPathMI = CriticalPathSU->getInstr(); 787 } 788 789 #ifndef NDEBUG 790 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 791 LLVM_DEBUG(dbgs() << "Available regs:"); 792 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 793 if (!State->IsLive(Reg)) 794 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 795 } 796 LLVM_DEBUG(dbgs() << '\n'); 797 #endif 798 799 BitVector RegAliases(TRI->getNumRegs()); 800 801 // Attempt to break anti-dependence edges. Walk the instructions 802 // from the bottom up, tracking information about liveness as we go 803 // to help determine which registers are available. 804 unsigned Broken = 0; 805 unsigned Count = InsertPosIndex - 1; 806 for (MachineBasicBlock::iterator I = End, E = Begin; 807 I != E; --Count) { 808 MachineInstr &MI = *--I; 809 810 if (MI.isDebugInstr()) 811 continue; 812 813 LLVM_DEBUG(dbgs() << "Anti: "); 814 LLVM_DEBUG(MI.dump()); 815 816 std::set<unsigned> PassthruRegs; 817 GetPassthruRegs(MI, PassthruRegs); 818 819 // Process the defs in MI... 820 PrescanInstruction(MI, Count, PassthruRegs); 821 822 // The dependence edges that represent anti- and output- 823 // dependencies that are candidates for breaking. 824 std::vector<const SDep *> Edges; 825 const SUnit *PathSU = MISUnitMap[&MI]; 826 AntiDepEdges(PathSU, Edges); 827 828 // If MI is not on the critical path, then we don't rename 829 // registers in the CriticalPathSet. 830 BitVector *ExcludeRegs = nullptr; 831 if (&MI == CriticalPathMI) { 832 CriticalPathSU = CriticalPathStep(CriticalPathSU); 833 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 834 } else if (CriticalPathSet.any()) { 835 ExcludeRegs = &CriticalPathSet; 836 } 837 838 // Ignore KILL instructions (they form a group in ScanInstruction 839 // but don't cause any anti-dependence breaking themselves) 840 if (!MI.isKill()) { 841 // Attempt to break each anti-dependency... 842 for (unsigned i = 0, e = Edges.size(); i != e; ++i) { 843 const SDep *Edge = Edges[i]; 844 SUnit *NextSU = Edge->getSUnit(); 845 846 if ((Edge->getKind() != SDep::Anti) && 847 (Edge->getKind() != SDep::Output)) continue; 848 849 unsigned AntiDepReg = Edge->getReg(); 850 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 851 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 852 853 if (!MRI.isAllocatable(AntiDepReg)) { 854 // Don't break anti-dependencies on non-allocatable registers. 855 LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); 856 continue; 857 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 858 // Don't break anti-dependencies for critical path registers 859 // if not on the critical path 860 LLVM_DEBUG(dbgs() << " (not critical-path)\n"); 861 continue; 862 } else if (PassthruRegs.count(AntiDepReg) != 0) { 863 // If the anti-dep register liveness "passes-thru", then 864 // don't try to change it. It will be changed along with 865 // the use if required to break an earlier antidep. 866 LLVM_DEBUG(dbgs() << " (passthru)\n"); 867 continue; 868 } else { 869 // No anti-dep breaking for implicit deps 870 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 871 assert(AntiDepOp && "Can't find index for defined register operand"); 872 if (!AntiDepOp || AntiDepOp->isImplicit()) { 873 LLVM_DEBUG(dbgs() << " (implicit)\n"); 874 continue; 875 } 876 877 // If the SUnit has other dependencies on the SUnit that 878 // it anti-depends on, don't bother breaking the 879 // anti-dependency since those edges would prevent such 880 // units from being scheduled past each other 881 // regardless. 882 // 883 // Also, if there are dependencies on other SUnits with the 884 // same register as the anti-dependency, don't attempt to 885 // break it. 886 for (const SDep &Pred : PathSU->Preds) { 887 if (Pred.getSUnit() == NextSU ? (Pred.getKind() != SDep::Anti || 888 Pred.getReg() != AntiDepReg) 889 : (Pred.getKind() == SDep::Data && 890 Pred.getReg() == AntiDepReg)) { 891 AntiDepReg = 0; 892 break; 893 } 894 } 895 for (const SDep &Pred : PathSU->Preds) { 896 if ((Pred.getSUnit() == NextSU) && (Pred.getKind() != SDep::Anti) && 897 (Pred.getKind() != SDep::Output)) { 898 LLVM_DEBUG(dbgs() << " (real dependency)\n"); 899 AntiDepReg = 0; 900 break; 901 } else if ((Pred.getSUnit() != NextSU) && 902 (Pred.getKind() == SDep::Data) && 903 (Pred.getReg() == AntiDepReg)) { 904 LLVM_DEBUG(dbgs() << " (other dependency)\n"); 905 AntiDepReg = 0; 906 break; 907 } 908 } 909 910 if (AntiDepReg == 0) continue; 911 912 // If the definition of the anti-dependency register does not start 913 // a new live range, bail out. This can happen if the anti-dep 914 // register is a sub-register of another register whose live range 915 // spans over PathSU. In such case, PathSU defines only a part of 916 // the larger register. 917 RegAliases.reset(); 918 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 919 RegAliases.set(*AI); 920 for (SDep S : PathSU->Succs) { 921 SDep::Kind K = S.getKind(); 922 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 923 continue; 924 unsigned R = S.getReg(); 925 if (!RegAliases[R]) 926 continue; 927 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 928 continue; 929 AntiDepReg = 0; 930 break; 931 } 932 933 if (AntiDepReg == 0) continue; 934 } 935 936 assert(AntiDepReg != 0); 937 if (AntiDepReg == 0) continue; 938 939 // Determine AntiDepReg's register group. 940 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 941 if (GroupIndex == 0) { 942 LLVM_DEBUG(dbgs() << " (zero group)\n"); 943 continue; 944 } 945 946 LLVM_DEBUG(dbgs() << '\n'); 947 948 // Look for a suitable register to use to break the anti-dependence. 949 std::map<unsigned, unsigned> RenameMap; 950 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 951 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 952 << printReg(AntiDepReg, TRI) << ":"); 953 954 // Handle each group register... 955 for (const auto &P : RenameMap) { 956 unsigned CurrReg = P.first; 957 unsigned NewReg = P.second; 958 959 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 960 << printReg(NewReg, TRI) << "(" 961 << RegRefs.count(CurrReg) << " refs)"); 962 963 // Update the references to the old register CurrReg to 964 // refer to the new register NewReg. 965 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 966 Q.second.Operand->setReg(NewReg); 967 // If the SU for the instruction being updated has debug 968 // information related to the anti-dependency register, make 969 // sure to update that as well. 970 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 971 if (!SU) continue; 972 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 973 AntiDepReg, NewReg); 974 } 975 976 // We just went back in time and modified history; the 977 // liveness information for CurrReg is now inconsistent. Set 978 // the state as if it were dead. 979 State->UnionGroups(NewReg, 0); 980 RegRefs.erase(NewReg); 981 DefIndices[NewReg] = DefIndices[CurrReg]; 982 KillIndices[NewReg] = KillIndices[CurrReg]; 983 984 State->UnionGroups(CurrReg, 0); 985 RegRefs.erase(CurrReg); 986 DefIndices[CurrReg] = KillIndices[CurrReg]; 987 KillIndices[CurrReg] = ~0u; 988 assert(((KillIndices[CurrReg] == ~0u) != 989 (DefIndices[CurrReg] == ~0u)) && 990 "Kill and Def maps aren't consistent for AntiDepReg!"); 991 } 992 993 ++Broken; 994 LLVM_DEBUG(dbgs() << '\n'); 995 } 996 } 997 } 998 999 ScanInstruction(MI, Count); 1000 } 1001 1002 return Broken; 1003 } 1004 1005 AntiDepBreaker *llvm::createAggressiveAntiDepBreaker( 1006 MachineFunction &MFi, const RegisterClassInfo &RCI, 1007 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) { 1008 return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs); 1009 } 1010