1*0b57cec5SDimitry Andric //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2*0b57cec5SDimitry Andric // 3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric // 7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric // 9*0b57cec5SDimitry Andric // This file implements the AggressiveAntiDepBreaker class, which 10*0b57cec5SDimitry Andric // implements register anti-dependence breaking during post-RA 11*0b57cec5SDimitry Andric // scheduling. It attempts to break all anti-dependencies within a 12*0b57cec5SDimitry Andric // block. 13*0b57cec5SDimitry Andric // 14*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 15*0b57cec5SDimitry Andric 16*0b57cec5SDimitry Andric #include "AggressiveAntiDepBreaker.h" 17*0b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 18*0b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h" 19*0b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 20*0b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h" 21*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h" 22*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h" 23*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 24*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h" 25*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h" 26*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 27*0b57cec5SDimitry Andric #include "llvm/CodeGen/RegisterClassInfo.h" 28*0b57cec5SDimitry Andric #include "llvm/CodeGen/ScheduleDAG.h" 29*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h" 30*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h" 31*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h" 32*0b57cec5SDimitry Andric #include "llvm/MC/MCInstrDesc.h" 33*0b57cec5SDimitry Andric #include "llvm/MC/MCRegisterInfo.h" 34*0b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 35*0b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 36*0b57cec5SDimitry Andric #include "llvm/Support/MachineValueType.h" 37*0b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 38*0b57cec5SDimitry Andric #include <cassert> 39*0b57cec5SDimitry Andric #include <map> 40*0b57cec5SDimitry Andric #include <set> 41*0b57cec5SDimitry Andric #include <utility> 42*0b57cec5SDimitry Andric #include <vector> 43*0b57cec5SDimitry Andric 44*0b57cec5SDimitry Andric using namespace llvm; 45*0b57cec5SDimitry Andric 46*0b57cec5SDimitry Andric #define DEBUG_TYPE "post-RA-sched" 47*0b57cec5SDimitry Andric 48*0b57cec5SDimitry Andric // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 49*0b57cec5SDimitry Andric static cl::opt<int> 50*0b57cec5SDimitry Andric DebugDiv("agg-antidep-debugdiv", 51*0b57cec5SDimitry Andric cl::desc("Debug control for aggressive anti-dep breaker"), 52*0b57cec5SDimitry Andric cl::init(0), cl::Hidden); 53*0b57cec5SDimitry Andric 54*0b57cec5SDimitry Andric static cl::opt<int> 55*0b57cec5SDimitry Andric DebugMod("agg-antidep-debugmod", 56*0b57cec5SDimitry Andric cl::desc("Debug control for aggressive anti-dep breaker"), 57*0b57cec5SDimitry Andric cl::init(0), cl::Hidden); 58*0b57cec5SDimitry Andric 59*0b57cec5SDimitry Andric AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 60*0b57cec5SDimitry Andric MachineBasicBlock *BB) 61*0b57cec5SDimitry Andric : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 62*0b57cec5SDimitry Andric GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 63*0b57cec5SDimitry Andric DefIndices(TargetRegs, 0) { 64*0b57cec5SDimitry Andric const unsigned BBSize = BB->size(); 65*0b57cec5SDimitry Andric for (unsigned i = 0; i < NumTargetRegs; ++i) { 66*0b57cec5SDimitry Andric // Initialize all registers to be in their own group. Initially we 67*0b57cec5SDimitry Andric // assign the register to the same-indexed GroupNode. 68*0b57cec5SDimitry Andric GroupNodeIndices[i] = i; 69*0b57cec5SDimitry Andric // Initialize the indices to indicate that no registers are live. 70*0b57cec5SDimitry Andric KillIndices[i] = ~0u; 71*0b57cec5SDimitry Andric DefIndices[i] = BBSize; 72*0b57cec5SDimitry Andric } 73*0b57cec5SDimitry Andric } 74*0b57cec5SDimitry Andric 75*0b57cec5SDimitry Andric unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 76*0b57cec5SDimitry Andric unsigned Node = GroupNodeIndices[Reg]; 77*0b57cec5SDimitry Andric while (GroupNodes[Node] != Node) 78*0b57cec5SDimitry Andric Node = GroupNodes[Node]; 79*0b57cec5SDimitry Andric 80*0b57cec5SDimitry Andric return Node; 81*0b57cec5SDimitry Andric } 82*0b57cec5SDimitry Andric 83*0b57cec5SDimitry Andric void AggressiveAntiDepState::GetGroupRegs( 84*0b57cec5SDimitry Andric unsigned Group, 85*0b57cec5SDimitry Andric std::vector<unsigned> &Regs, 86*0b57cec5SDimitry Andric std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 87*0b57cec5SDimitry Andric { 88*0b57cec5SDimitry Andric for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 89*0b57cec5SDimitry Andric if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 90*0b57cec5SDimitry Andric Regs.push_back(Reg); 91*0b57cec5SDimitry Andric } 92*0b57cec5SDimitry Andric } 93*0b57cec5SDimitry Andric 94*0b57cec5SDimitry Andric unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 95*0b57cec5SDimitry Andric assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 96*0b57cec5SDimitry Andric assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 97*0b57cec5SDimitry Andric 98*0b57cec5SDimitry Andric // find group for each register 99*0b57cec5SDimitry Andric unsigned Group1 = GetGroup(Reg1); 100*0b57cec5SDimitry Andric unsigned Group2 = GetGroup(Reg2); 101*0b57cec5SDimitry Andric 102*0b57cec5SDimitry Andric // if either group is 0, then that must become the parent 103*0b57cec5SDimitry Andric unsigned Parent = (Group1 == 0) ? Group1 : Group2; 104*0b57cec5SDimitry Andric unsigned Other = (Parent == Group1) ? Group2 : Group1; 105*0b57cec5SDimitry Andric GroupNodes.at(Other) = Parent; 106*0b57cec5SDimitry Andric return Parent; 107*0b57cec5SDimitry Andric } 108*0b57cec5SDimitry Andric 109*0b57cec5SDimitry Andric unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 110*0b57cec5SDimitry Andric // Create a new GroupNode for Reg. Reg's existing GroupNode must 111*0b57cec5SDimitry Andric // stay as is because there could be other GroupNodes referring to 112*0b57cec5SDimitry Andric // it. 113*0b57cec5SDimitry Andric unsigned idx = GroupNodes.size(); 114*0b57cec5SDimitry Andric GroupNodes.push_back(idx); 115*0b57cec5SDimitry Andric GroupNodeIndices[Reg] = idx; 116*0b57cec5SDimitry Andric return idx; 117*0b57cec5SDimitry Andric } 118*0b57cec5SDimitry Andric 119*0b57cec5SDimitry Andric bool AggressiveAntiDepState::IsLive(unsigned Reg) { 120*0b57cec5SDimitry Andric // KillIndex must be defined and DefIndex not defined for a register 121*0b57cec5SDimitry Andric // to be live. 122*0b57cec5SDimitry Andric return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 123*0b57cec5SDimitry Andric } 124*0b57cec5SDimitry Andric 125*0b57cec5SDimitry Andric AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 126*0b57cec5SDimitry Andric MachineFunction &MFi, const RegisterClassInfo &RCI, 127*0b57cec5SDimitry Andric TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 128*0b57cec5SDimitry Andric : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 129*0b57cec5SDimitry Andric TII(MF.getSubtarget().getInstrInfo()), 130*0b57cec5SDimitry Andric TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 131*0b57cec5SDimitry Andric /* Collect a bitset of all registers that are only broken if they 132*0b57cec5SDimitry Andric are on the critical path. */ 133*0b57cec5SDimitry Andric for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 134*0b57cec5SDimitry Andric BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 135*0b57cec5SDimitry Andric if (CriticalPathSet.none()) 136*0b57cec5SDimitry Andric CriticalPathSet = CPSet; 137*0b57cec5SDimitry Andric else 138*0b57cec5SDimitry Andric CriticalPathSet |= CPSet; 139*0b57cec5SDimitry Andric } 140*0b57cec5SDimitry Andric 141*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 142*0b57cec5SDimitry Andric LLVM_DEBUG(for (unsigned r 143*0b57cec5SDimitry Andric : CriticalPathSet.set_bits()) dbgs() 144*0b57cec5SDimitry Andric << " " << printReg(r, TRI)); 145*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 146*0b57cec5SDimitry Andric } 147*0b57cec5SDimitry Andric 148*0b57cec5SDimitry Andric AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 149*0b57cec5SDimitry Andric delete State; 150*0b57cec5SDimitry Andric } 151*0b57cec5SDimitry Andric 152*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 153*0b57cec5SDimitry Andric assert(!State); 154*0b57cec5SDimitry Andric State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 155*0b57cec5SDimitry Andric 156*0b57cec5SDimitry Andric bool IsReturnBlock = BB->isReturnBlock(); 157*0b57cec5SDimitry Andric std::vector<unsigned> &KillIndices = State->GetKillIndices(); 158*0b57cec5SDimitry Andric std::vector<unsigned> &DefIndices = State->GetDefIndices(); 159*0b57cec5SDimitry Andric 160*0b57cec5SDimitry Andric // Examine the live-in regs of all successors. 161*0b57cec5SDimitry Andric for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 162*0b57cec5SDimitry Andric SE = BB->succ_end(); SI != SE; ++SI) 163*0b57cec5SDimitry Andric for (const auto &LI : (*SI)->liveins()) { 164*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 165*0b57cec5SDimitry Andric unsigned Reg = *AI; 166*0b57cec5SDimitry Andric State->UnionGroups(Reg, 0); 167*0b57cec5SDimitry Andric KillIndices[Reg] = BB->size(); 168*0b57cec5SDimitry Andric DefIndices[Reg] = ~0u; 169*0b57cec5SDimitry Andric } 170*0b57cec5SDimitry Andric } 171*0b57cec5SDimitry Andric 172*0b57cec5SDimitry Andric // Mark live-out callee-saved registers. In a return block this is 173*0b57cec5SDimitry Andric // all callee-saved registers. In non-return this is any 174*0b57cec5SDimitry Andric // callee-saved register that is not saved in the prolog. 175*0b57cec5SDimitry Andric const MachineFrameInfo &MFI = MF.getFrameInfo(); 176*0b57cec5SDimitry Andric BitVector Pristine = MFI.getPristineRegs(MF); 177*0b57cec5SDimitry Andric for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 178*0b57cec5SDimitry Andric ++I) { 179*0b57cec5SDimitry Andric unsigned Reg = *I; 180*0b57cec5SDimitry Andric if (!IsReturnBlock && !Pristine.test(Reg)) 181*0b57cec5SDimitry Andric continue; 182*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 183*0b57cec5SDimitry Andric unsigned AliasReg = *AI; 184*0b57cec5SDimitry Andric State->UnionGroups(AliasReg, 0); 185*0b57cec5SDimitry Andric KillIndices[AliasReg] = BB->size(); 186*0b57cec5SDimitry Andric DefIndices[AliasReg] = ~0u; 187*0b57cec5SDimitry Andric } 188*0b57cec5SDimitry Andric } 189*0b57cec5SDimitry Andric } 190*0b57cec5SDimitry Andric 191*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::FinishBlock() { 192*0b57cec5SDimitry Andric delete State; 193*0b57cec5SDimitry Andric State = nullptr; 194*0b57cec5SDimitry Andric } 195*0b57cec5SDimitry Andric 196*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 197*0b57cec5SDimitry Andric unsigned InsertPosIndex) { 198*0b57cec5SDimitry Andric assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 199*0b57cec5SDimitry Andric 200*0b57cec5SDimitry Andric std::set<unsigned> PassthruRegs; 201*0b57cec5SDimitry Andric GetPassthruRegs(MI, PassthruRegs); 202*0b57cec5SDimitry Andric PrescanInstruction(MI, Count, PassthruRegs); 203*0b57cec5SDimitry Andric ScanInstruction(MI, Count); 204*0b57cec5SDimitry Andric 205*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Observe: "); 206*0b57cec5SDimitry Andric LLVM_DEBUG(MI.dump()); 207*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tRegs:"); 208*0b57cec5SDimitry Andric 209*0b57cec5SDimitry Andric std::vector<unsigned> &DefIndices = State->GetDefIndices(); 210*0b57cec5SDimitry Andric for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 211*0b57cec5SDimitry Andric // If Reg is current live, then mark that it can't be renamed as 212*0b57cec5SDimitry Andric // we don't know the extent of its live-range anymore (now that it 213*0b57cec5SDimitry Andric // has been scheduled). If it is not live but was defined in the 214*0b57cec5SDimitry Andric // previous schedule region, then set its def index to the most 215*0b57cec5SDimitry Andric // conservative location (i.e. the beginning of the previous 216*0b57cec5SDimitry Andric // schedule region). 217*0b57cec5SDimitry Andric if (State->IsLive(Reg)) { 218*0b57cec5SDimitry Andric LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() 219*0b57cec5SDimitry Andric << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) 220*0b57cec5SDimitry Andric << "->g0(region live-out)"); 221*0b57cec5SDimitry Andric State->UnionGroups(Reg, 0); 222*0b57cec5SDimitry Andric } else if ((DefIndices[Reg] < InsertPosIndex) 223*0b57cec5SDimitry Andric && (DefIndices[Reg] >= Count)) { 224*0b57cec5SDimitry Andric DefIndices[Reg] = Count; 225*0b57cec5SDimitry Andric } 226*0b57cec5SDimitry Andric } 227*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 228*0b57cec5SDimitry Andric } 229*0b57cec5SDimitry Andric 230*0b57cec5SDimitry Andric bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 231*0b57cec5SDimitry Andric MachineOperand &MO) { 232*0b57cec5SDimitry Andric if (!MO.isReg() || !MO.isImplicit()) 233*0b57cec5SDimitry Andric return false; 234*0b57cec5SDimitry Andric 235*0b57cec5SDimitry Andric unsigned Reg = MO.getReg(); 236*0b57cec5SDimitry Andric if (Reg == 0) 237*0b57cec5SDimitry Andric return false; 238*0b57cec5SDimitry Andric 239*0b57cec5SDimitry Andric MachineOperand *Op = nullptr; 240*0b57cec5SDimitry Andric if (MO.isDef()) 241*0b57cec5SDimitry Andric Op = MI.findRegisterUseOperand(Reg, true); 242*0b57cec5SDimitry Andric else 243*0b57cec5SDimitry Andric Op = MI.findRegisterDefOperand(Reg); 244*0b57cec5SDimitry Andric 245*0b57cec5SDimitry Andric return(Op && Op->isImplicit()); 246*0b57cec5SDimitry Andric } 247*0b57cec5SDimitry Andric 248*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::GetPassthruRegs( 249*0b57cec5SDimitry Andric MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 250*0b57cec5SDimitry Andric for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 251*0b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i); 252*0b57cec5SDimitry Andric if (!MO.isReg()) continue; 253*0b57cec5SDimitry Andric if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 254*0b57cec5SDimitry Andric IsImplicitDefUse(MI, MO)) { 255*0b57cec5SDimitry Andric const unsigned Reg = MO.getReg(); 256*0b57cec5SDimitry Andric for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 257*0b57cec5SDimitry Andric SubRegs.isValid(); ++SubRegs) 258*0b57cec5SDimitry Andric PassthruRegs.insert(*SubRegs); 259*0b57cec5SDimitry Andric } 260*0b57cec5SDimitry Andric } 261*0b57cec5SDimitry Andric } 262*0b57cec5SDimitry Andric 263*0b57cec5SDimitry Andric /// AntiDepEdges - Return in Edges the anti- and output- dependencies 264*0b57cec5SDimitry Andric /// in SU that we want to consider for breaking. 265*0b57cec5SDimitry Andric static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 266*0b57cec5SDimitry Andric SmallSet<unsigned, 4> RegSet; 267*0b57cec5SDimitry Andric for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 268*0b57cec5SDimitry Andric P != PE; ++P) { 269*0b57cec5SDimitry Andric if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { 270*0b57cec5SDimitry Andric if (RegSet.insert(P->getReg()).second) 271*0b57cec5SDimitry Andric Edges.push_back(&*P); 272*0b57cec5SDimitry Andric } 273*0b57cec5SDimitry Andric } 274*0b57cec5SDimitry Andric } 275*0b57cec5SDimitry Andric 276*0b57cec5SDimitry Andric /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 277*0b57cec5SDimitry Andric /// critical path. 278*0b57cec5SDimitry Andric static const SUnit *CriticalPathStep(const SUnit *SU) { 279*0b57cec5SDimitry Andric const SDep *Next = nullptr; 280*0b57cec5SDimitry Andric unsigned NextDepth = 0; 281*0b57cec5SDimitry Andric // Find the predecessor edge with the greatest depth. 282*0b57cec5SDimitry Andric if (SU) { 283*0b57cec5SDimitry Andric for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 284*0b57cec5SDimitry Andric P != PE; ++P) { 285*0b57cec5SDimitry Andric const SUnit *PredSU = P->getSUnit(); 286*0b57cec5SDimitry Andric unsigned PredLatency = P->getLatency(); 287*0b57cec5SDimitry Andric unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 288*0b57cec5SDimitry Andric // In the case of a latency tie, prefer an anti-dependency edge over 289*0b57cec5SDimitry Andric // other types of edges. 290*0b57cec5SDimitry Andric if (NextDepth < PredTotalLatency || 291*0b57cec5SDimitry Andric (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 292*0b57cec5SDimitry Andric NextDepth = PredTotalLatency; 293*0b57cec5SDimitry Andric Next = &*P; 294*0b57cec5SDimitry Andric } 295*0b57cec5SDimitry Andric } 296*0b57cec5SDimitry Andric } 297*0b57cec5SDimitry Andric 298*0b57cec5SDimitry Andric return (Next) ? Next->getSUnit() : nullptr; 299*0b57cec5SDimitry Andric } 300*0b57cec5SDimitry Andric 301*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 302*0b57cec5SDimitry Andric const char *tag, 303*0b57cec5SDimitry Andric const char *header, 304*0b57cec5SDimitry Andric const char *footer) { 305*0b57cec5SDimitry Andric std::vector<unsigned> &KillIndices = State->GetKillIndices(); 306*0b57cec5SDimitry Andric std::vector<unsigned> &DefIndices = State->GetDefIndices(); 307*0b57cec5SDimitry Andric std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 308*0b57cec5SDimitry Andric RegRefs = State->GetRegRefs(); 309*0b57cec5SDimitry Andric 310*0b57cec5SDimitry Andric // FIXME: We must leave subregisters of live super registers as live, so that 311*0b57cec5SDimitry Andric // we don't clear out the register tracking information for subregisters of 312*0b57cec5SDimitry Andric // super registers we're still tracking (and with which we're unioning 313*0b57cec5SDimitry Andric // subregister definitions). 314*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 315*0b57cec5SDimitry Andric if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 316*0b57cec5SDimitry Andric LLVM_DEBUG(if (!header && footer) dbgs() << footer); 317*0b57cec5SDimitry Andric return; 318*0b57cec5SDimitry Andric } 319*0b57cec5SDimitry Andric 320*0b57cec5SDimitry Andric if (!State->IsLive(Reg)) { 321*0b57cec5SDimitry Andric KillIndices[Reg] = KillIdx; 322*0b57cec5SDimitry Andric DefIndices[Reg] = ~0u; 323*0b57cec5SDimitry Andric RegRefs.erase(Reg); 324*0b57cec5SDimitry Andric State->LeaveGroup(Reg); 325*0b57cec5SDimitry Andric LLVM_DEBUG(if (header) { 326*0b57cec5SDimitry Andric dbgs() << header << printReg(Reg, TRI); 327*0b57cec5SDimitry Andric header = nullptr; 328*0b57cec5SDimitry Andric }); 329*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 330*0b57cec5SDimitry Andric // Repeat for subregisters. Note that we only do this if the superregister 331*0b57cec5SDimitry Andric // was not live because otherwise, regardless whether we have an explicit 332*0b57cec5SDimitry Andric // use of the subregister, the subregister's contents are needed for the 333*0b57cec5SDimitry Andric // uses of the superregister. 334*0b57cec5SDimitry Andric for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 335*0b57cec5SDimitry Andric unsigned SubregReg = *SubRegs; 336*0b57cec5SDimitry Andric if (!State->IsLive(SubregReg)) { 337*0b57cec5SDimitry Andric KillIndices[SubregReg] = KillIdx; 338*0b57cec5SDimitry Andric DefIndices[SubregReg] = ~0u; 339*0b57cec5SDimitry Andric RegRefs.erase(SubregReg); 340*0b57cec5SDimitry Andric State->LeaveGroup(SubregReg); 341*0b57cec5SDimitry Andric LLVM_DEBUG(if (header) { 342*0b57cec5SDimitry Andric dbgs() << header << printReg(Reg, TRI); 343*0b57cec5SDimitry Andric header = nullptr; 344*0b57cec5SDimitry Andric }); 345*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" 346*0b57cec5SDimitry Andric << State->GetGroup(SubregReg) << tag); 347*0b57cec5SDimitry Andric } 348*0b57cec5SDimitry Andric } 349*0b57cec5SDimitry Andric } 350*0b57cec5SDimitry Andric 351*0b57cec5SDimitry Andric LLVM_DEBUG(if (!header && footer) dbgs() << footer); 352*0b57cec5SDimitry Andric } 353*0b57cec5SDimitry Andric 354*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::PrescanInstruction( 355*0b57cec5SDimitry Andric MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 356*0b57cec5SDimitry Andric std::vector<unsigned> &DefIndices = State->GetDefIndices(); 357*0b57cec5SDimitry Andric std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 358*0b57cec5SDimitry Andric RegRefs = State->GetRegRefs(); 359*0b57cec5SDimitry Andric 360*0b57cec5SDimitry Andric // Handle dead defs by simulating a last-use of the register just 361*0b57cec5SDimitry Andric // after the def. A dead def can occur because the def is truly 362*0b57cec5SDimitry Andric // dead, or because only a subregister is live at the def. If we 363*0b57cec5SDimitry Andric // don't do this the dead def will be incorrectly merged into the 364*0b57cec5SDimitry Andric // previous def. 365*0b57cec5SDimitry Andric for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 366*0b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i); 367*0b57cec5SDimitry Andric if (!MO.isReg() || !MO.isDef()) continue; 368*0b57cec5SDimitry Andric unsigned Reg = MO.getReg(); 369*0b57cec5SDimitry Andric if (Reg == 0) continue; 370*0b57cec5SDimitry Andric 371*0b57cec5SDimitry Andric HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 372*0b57cec5SDimitry Andric } 373*0b57cec5SDimitry Andric 374*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tDef Groups:"); 375*0b57cec5SDimitry Andric for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 376*0b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i); 377*0b57cec5SDimitry Andric if (!MO.isReg() || !MO.isDef()) continue; 378*0b57cec5SDimitry Andric unsigned Reg = MO.getReg(); 379*0b57cec5SDimitry Andric if (Reg == 0) continue; 380*0b57cec5SDimitry Andric 381*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 382*0b57cec5SDimitry Andric << State->GetGroup(Reg)); 383*0b57cec5SDimitry Andric 384*0b57cec5SDimitry Andric // If MI's defs have a special allocation requirement, don't allow 385*0b57cec5SDimitry Andric // any def registers to be changed. Also assume all registers 386*0b57cec5SDimitry Andric // defined in a call must not be changed (ABI). Inline assembly may 387*0b57cec5SDimitry Andric // reference either system calls or the register directly. Skip it until we 388*0b57cec5SDimitry Andric // can tell user specified registers from compiler-specified. 389*0b57cec5SDimitry Andric if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 390*0b57cec5SDimitry Andric MI.isInlineAsm()) { 391*0b57cec5SDimitry Andric LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 392*0b57cec5SDimitry Andric State->UnionGroups(Reg, 0); 393*0b57cec5SDimitry Andric } 394*0b57cec5SDimitry Andric 395*0b57cec5SDimitry Andric // Any aliased that are live at this point are completely or 396*0b57cec5SDimitry Andric // partially defined here, so group those aliases with Reg. 397*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 398*0b57cec5SDimitry Andric unsigned AliasReg = *AI; 399*0b57cec5SDimitry Andric if (State->IsLive(AliasReg)) { 400*0b57cec5SDimitry Andric State->UnionGroups(Reg, AliasReg); 401*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 402*0b57cec5SDimitry Andric << printReg(AliasReg, TRI) << ")"); 403*0b57cec5SDimitry Andric } 404*0b57cec5SDimitry Andric } 405*0b57cec5SDimitry Andric 406*0b57cec5SDimitry Andric // Note register reference... 407*0b57cec5SDimitry Andric const TargetRegisterClass *RC = nullptr; 408*0b57cec5SDimitry Andric if (i < MI.getDesc().getNumOperands()) 409*0b57cec5SDimitry Andric RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 410*0b57cec5SDimitry Andric AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 411*0b57cec5SDimitry Andric RegRefs.insert(std::make_pair(Reg, RR)); 412*0b57cec5SDimitry Andric } 413*0b57cec5SDimitry Andric 414*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 415*0b57cec5SDimitry Andric 416*0b57cec5SDimitry Andric // Scan the register defs for this instruction and update 417*0b57cec5SDimitry Andric // live-ranges. 418*0b57cec5SDimitry Andric for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 419*0b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i); 420*0b57cec5SDimitry Andric if (!MO.isReg() || !MO.isDef()) continue; 421*0b57cec5SDimitry Andric unsigned Reg = MO.getReg(); 422*0b57cec5SDimitry Andric if (Reg == 0) continue; 423*0b57cec5SDimitry Andric // Ignore KILLs and passthru registers for liveness... 424*0b57cec5SDimitry Andric if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 425*0b57cec5SDimitry Andric continue; 426*0b57cec5SDimitry Andric 427*0b57cec5SDimitry Andric // Update def for Reg and aliases. 428*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 429*0b57cec5SDimitry Andric // We need to be careful here not to define already-live super registers. 430*0b57cec5SDimitry Andric // If the super register is already live, then this definition is not 431*0b57cec5SDimitry Andric // a definition of the whole super register (just a partial insertion 432*0b57cec5SDimitry Andric // into it). Earlier subregister definitions (which we've not yet visited 433*0b57cec5SDimitry Andric // because we're iterating bottom-up) need to be linked to the same group 434*0b57cec5SDimitry Andric // as this definition. 435*0b57cec5SDimitry Andric if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 436*0b57cec5SDimitry Andric continue; 437*0b57cec5SDimitry Andric 438*0b57cec5SDimitry Andric DefIndices[*AI] = Count; 439*0b57cec5SDimitry Andric } 440*0b57cec5SDimitry Andric } 441*0b57cec5SDimitry Andric } 442*0b57cec5SDimitry Andric 443*0b57cec5SDimitry Andric void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 444*0b57cec5SDimitry Andric unsigned Count) { 445*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tUse Groups:"); 446*0b57cec5SDimitry Andric std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 447*0b57cec5SDimitry Andric RegRefs = State->GetRegRefs(); 448*0b57cec5SDimitry Andric 449*0b57cec5SDimitry Andric // If MI's uses have special allocation requirement, don't allow 450*0b57cec5SDimitry Andric // any use registers to be changed. Also assume all registers 451*0b57cec5SDimitry Andric // used in a call must not be changed (ABI). 452*0b57cec5SDimitry Andric // Inline Assembly register uses also cannot be safely changed. 453*0b57cec5SDimitry Andric // FIXME: The issue with predicated instruction is more complex. We are being 454*0b57cec5SDimitry Andric // conservatively here because the kill markers cannot be trusted after 455*0b57cec5SDimitry Andric // if-conversion: 456*0b57cec5SDimitry Andric // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 457*0b57cec5SDimitry Andric // ... 458*0b57cec5SDimitry Andric // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 459*0b57cec5SDimitry Andric // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 460*0b57cec5SDimitry Andric // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 461*0b57cec5SDimitry Andric // 462*0b57cec5SDimitry Andric // The first R6 kill is not really a kill since it's killed by a predicated 463*0b57cec5SDimitry Andric // instruction which may not be executed. The second R6 def may or may not 464*0b57cec5SDimitry Andric // re-define R6 so it's not safe to change it since the last R6 use cannot be 465*0b57cec5SDimitry Andric // changed. 466*0b57cec5SDimitry Andric bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 467*0b57cec5SDimitry Andric TII->isPredicated(MI) || MI.isInlineAsm(); 468*0b57cec5SDimitry Andric 469*0b57cec5SDimitry Andric // Scan the register uses for this instruction and update 470*0b57cec5SDimitry Andric // live-ranges, groups and RegRefs. 471*0b57cec5SDimitry Andric for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 472*0b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i); 473*0b57cec5SDimitry Andric if (!MO.isReg() || !MO.isUse()) continue; 474*0b57cec5SDimitry Andric unsigned Reg = MO.getReg(); 475*0b57cec5SDimitry Andric if (Reg == 0) continue; 476*0b57cec5SDimitry Andric 477*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 478*0b57cec5SDimitry Andric << State->GetGroup(Reg)); 479*0b57cec5SDimitry Andric 480*0b57cec5SDimitry Andric // It wasn't previously live but now it is, this is a kill. Forget 481*0b57cec5SDimitry Andric // the previous live-range information and start a new live-range 482*0b57cec5SDimitry Andric // for the register. 483*0b57cec5SDimitry Andric HandleLastUse(Reg, Count, "(last-use)"); 484*0b57cec5SDimitry Andric 485*0b57cec5SDimitry Andric if (Special) { 486*0b57cec5SDimitry Andric LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 487*0b57cec5SDimitry Andric State->UnionGroups(Reg, 0); 488*0b57cec5SDimitry Andric } 489*0b57cec5SDimitry Andric 490*0b57cec5SDimitry Andric // Note register reference... 491*0b57cec5SDimitry Andric const TargetRegisterClass *RC = nullptr; 492*0b57cec5SDimitry Andric if (i < MI.getDesc().getNumOperands()) 493*0b57cec5SDimitry Andric RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 494*0b57cec5SDimitry Andric AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 495*0b57cec5SDimitry Andric RegRefs.insert(std::make_pair(Reg, RR)); 496*0b57cec5SDimitry Andric } 497*0b57cec5SDimitry Andric 498*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 499*0b57cec5SDimitry Andric 500*0b57cec5SDimitry Andric // Form a group of all defs and uses of a KILL instruction to ensure 501*0b57cec5SDimitry Andric // that all registers are renamed as a group. 502*0b57cec5SDimitry Andric if (MI.isKill()) { 503*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tKill Group:"); 504*0b57cec5SDimitry Andric 505*0b57cec5SDimitry Andric unsigned FirstReg = 0; 506*0b57cec5SDimitry Andric for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 507*0b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i); 508*0b57cec5SDimitry Andric if (!MO.isReg()) continue; 509*0b57cec5SDimitry Andric unsigned Reg = MO.getReg(); 510*0b57cec5SDimitry Andric if (Reg == 0) continue; 511*0b57cec5SDimitry Andric 512*0b57cec5SDimitry Andric if (FirstReg != 0) { 513*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 514*0b57cec5SDimitry Andric State->UnionGroups(FirstReg, Reg); 515*0b57cec5SDimitry Andric } else { 516*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 517*0b57cec5SDimitry Andric FirstReg = Reg; 518*0b57cec5SDimitry Andric } 519*0b57cec5SDimitry Andric } 520*0b57cec5SDimitry Andric 521*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 522*0b57cec5SDimitry Andric } 523*0b57cec5SDimitry Andric } 524*0b57cec5SDimitry Andric 525*0b57cec5SDimitry Andric BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 526*0b57cec5SDimitry Andric BitVector BV(TRI->getNumRegs(), false); 527*0b57cec5SDimitry Andric bool first = true; 528*0b57cec5SDimitry Andric 529*0b57cec5SDimitry Andric // Check all references that need rewriting for Reg. For each, use 530*0b57cec5SDimitry Andric // the corresponding register class to narrow the set of registers 531*0b57cec5SDimitry Andric // that are appropriate for renaming. 532*0b57cec5SDimitry Andric for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 533*0b57cec5SDimitry Andric const TargetRegisterClass *RC = Q.second.RC; 534*0b57cec5SDimitry Andric if (!RC) continue; 535*0b57cec5SDimitry Andric 536*0b57cec5SDimitry Andric BitVector RCBV = TRI->getAllocatableSet(MF, RC); 537*0b57cec5SDimitry Andric if (first) { 538*0b57cec5SDimitry Andric BV |= RCBV; 539*0b57cec5SDimitry Andric first = false; 540*0b57cec5SDimitry Andric } else { 541*0b57cec5SDimitry Andric BV &= RCBV; 542*0b57cec5SDimitry Andric } 543*0b57cec5SDimitry Andric 544*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 545*0b57cec5SDimitry Andric } 546*0b57cec5SDimitry Andric 547*0b57cec5SDimitry Andric return BV; 548*0b57cec5SDimitry Andric } 549*0b57cec5SDimitry Andric 550*0b57cec5SDimitry Andric bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 551*0b57cec5SDimitry Andric unsigned AntiDepGroupIndex, 552*0b57cec5SDimitry Andric RenameOrderType& RenameOrder, 553*0b57cec5SDimitry Andric std::map<unsigned, unsigned> &RenameMap) { 554*0b57cec5SDimitry Andric std::vector<unsigned> &KillIndices = State->GetKillIndices(); 555*0b57cec5SDimitry Andric std::vector<unsigned> &DefIndices = State->GetDefIndices(); 556*0b57cec5SDimitry Andric std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 557*0b57cec5SDimitry Andric RegRefs = State->GetRegRefs(); 558*0b57cec5SDimitry Andric 559*0b57cec5SDimitry Andric // Collect all referenced registers in the same group as 560*0b57cec5SDimitry Andric // AntiDepReg. These all need to be renamed together if we are to 561*0b57cec5SDimitry Andric // break the anti-dependence. 562*0b57cec5SDimitry Andric std::vector<unsigned> Regs; 563*0b57cec5SDimitry Andric State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 564*0b57cec5SDimitry Andric assert(!Regs.empty() && "Empty register group!"); 565*0b57cec5SDimitry Andric if (Regs.empty()) 566*0b57cec5SDimitry Andric return false; 567*0b57cec5SDimitry Andric 568*0b57cec5SDimitry Andric // Find the "superest" register in the group. At the same time, 569*0b57cec5SDimitry Andric // collect the BitVector of registers that can be used to rename 570*0b57cec5SDimitry Andric // each register. 571*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 572*0b57cec5SDimitry Andric << ":\n"); 573*0b57cec5SDimitry Andric std::map<unsigned, BitVector> RenameRegisterMap; 574*0b57cec5SDimitry Andric unsigned SuperReg = 0; 575*0b57cec5SDimitry Andric for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 576*0b57cec5SDimitry Andric unsigned Reg = Regs[i]; 577*0b57cec5SDimitry Andric if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 578*0b57cec5SDimitry Andric SuperReg = Reg; 579*0b57cec5SDimitry Andric 580*0b57cec5SDimitry Andric // If Reg has any references, then collect possible rename regs 581*0b57cec5SDimitry Andric if (RegRefs.count(Reg) > 0) { 582*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 583*0b57cec5SDimitry Andric 584*0b57cec5SDimitry Andric BitVector &BV = RenameRegisterMap[Reg]; 585*0b57cec5SDimitry Andric assert(BV.empty()); 586*0b57cec5SDimitry Andric BV = GetRenameRegisters(Reg); 587*0b57cec5SDimitry Andric 588*0b57cec5SDimitry Andric LLVM_DEBUG({ 589*0b57cec5SDimitry Andric dbgs() << " ::"; 590*0b57cec5SDimitry Andric for (unsigned r : BV.set_bits()) 591*0b57cec5SDimitry Andric dbgs() << " " << printReg(r, TRI); 592*0b57cec5SDimitry Andric dbgs() << "\n"; 593*0b57cec5SDimitry Andric }); 594*0b57cec5SDimitry Andric } 595*0b57cec5SDimitry Andric } 596*0b57cec5SDimitry Andric 597*0b57cec5SDimitry Andric // All group registers should be a subreg of SuperReg. 598*0b57cec5SDimitry Andric for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 599*0b57cec5SDimitry Andric unsigned Reg = Regs[i]; 600*0b57cec5SDimitry Andric if (Reg == SuperReg) continue; 601*0b57cec5SDimitry Andric bool IsSub = TRI->isSubRegister(SuperReg, Reg); 602*0b57cec5SDimitry Andric // FIXME: remove this once PR18663 has been properly fixed. For now, 603*0b57cec5SDimitry Andric // return a conservative answer: 604*0b57cec5SDimitry Andric // assert(IsSub && "Expecting group subregister"); 605*0b57cec5SDimitry Andric if (!IsSub) 606*0b57cec5SDimitry Andric return false; 607*0b57cec5SDimitry Andric } 608*0b57cec5SDimitry Andric 609*0b57cec5SDimitry Andric #ifndef NDEBUG 610*0b57cec5SDimitry Andric // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 611*0b57cec5SDimitry Andric if (DebugDiv > 0) { 612*0b57cec5SDimitry Andric static int renamecnt = 0; 613*0b57cec5SDimitry Andric if (renamecnt++ % DebugDiv != DebugMod) 614*0b57cec5SDimitry Andric return false; 615*0b57cec5SDimitry Andric 616*0b57cec5SDimitry Andric dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 617*0b57cec5SDimitry Andric << " for debug ***\n"; 618*0b57cec5SDimitry Andric } 619*0b57cec5SDimitry Andric #endif 620*0b57cec5SDimitry Andric 621*0b57cec5SDimitry Andric // Check each possible rename register for SuperReg in round-robin 622*0b57cec5SDimitry Andric // order. If that register is available, and the corresponding 623*0b57cec5SDimitry Andric // registers are available for the other group subregisters, then we 624*0b57cec5SDimitry Andric // can use those registers to rename. 625*0b57cec5SDimitry Andric 626*0b57cec5SDimitry Andric // FIXME: Using getMinimalPhysRegClass is very conservative. We should 627*0b57cec5SDimitry Andric // check every use of the register and find the largest register class 628*0b57cec5SDimitry Andric // that can be used in all of them. 629*0b57cec5SDimitry Andric const TargetRegisterClass *SuperRC = 630*0b57cec5SDimitry Andric TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 631*0b57cec5SDimitry Andric 632*0b57cec5SDimitry Andric ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 633*0b57cec5SDimitry Andric if (Order.empty()) { 634*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 635*0b57cec5SDimitry Andric return false; 636*0b57cec5SDimitry Andric } 637*0b57cec5SDimitry Andric 638*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tFind Registers:"); 639*0b57cec5SDimitry Andric 640*0b57cec5SDimitry Andric RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 641*0b57cec5SDimitry Andric 642*0b57cec5SDimitry Andric unsigned OrigR = RenameOrder[SuperRC]; 643*0b57cec5SDimitry Andric unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 644*0b57cec5SDimitry Andric unsigned R = OrigR; 645*0b57cec5SDimitry Andric do { 646*0b57cec5SDimitry Andric if (R == 0) R = Order.size(); 647*0b57cec5SDimitry Andric --R; 648*0b57cec5SDimitry Andric const unsigned NewSuperReg = Order[R]; 649*0b57cec5SDimitry Andric // Don't consider non-allocatable registers 650*0b57cec5SDimitry Andric if (!MRI.isAllocatable(NewSuperReg)) continue; 651*0b57cec5SDimitry Andric // Don't replace a register with itself. 652*0b57cec5SDimitry Andric if (NewSuperReg == SuperReg) continue; 653*0b57cec5SDimitry Andric 654*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 655*0b57cec5SDimitry Andric RenameMap.clear(); 656*0b57cec5SDimitry Andric 657*0b57cec5SDimitry Andric // For each referenced group register (which must be a SuperReg or 658*0b57cec5SDimitry Andric // a subregister of SuperReg), find the corresponding subregister 659*0b57cec5SDimitry Andric // of NewSuperReg and make sure it is free to be renamed. 660*0b57cec5SDimitry Andric for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 661*0b57cec5SDimitry Andric unsigned Reg = Regs[i]; 662*0b57cec5SDimitry Andric unsigned NewReg = 0; 663*0b57cec5SDimitry Andric if (Reg == SuperReg) { 664*0b57cec5SDimitry Andric NewReg = NewSuperReg; 665*0b57cec5SDimitry Andric } else { 666*0b57cec5SDimitry Andric unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 667*0b57cec5SDimitry Andric if (NewSubRegIdx != 0) 668*0b57cec5SDimitry Andric NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 669*0b57cec5SDimitry Andric } 670*0b57cec5SDimitry Andric 671*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 672*0b57cec5SDimitry Andric 673*0b57cec5SDimitry Andric // Check if Reg can be renamed to NewReg. 674*0b57cec5SDimitry Andric if (!RenameRegisterMap[Reg].test(NewReg)) { 675*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "(no rename)"); 676*0b57cec5SDimitry Andric goto next_super_reg; 677*0b57cec5SDimitry Andric } 678*0b57cec5SDimitry Andric 679*0b57cec5SDimitry Andric // If NewReg is dead and NewReg's most recent def is not before 680*0b57cec5SDimitry Andric // Regs's kill, it's safe to replace Reg with NewReg. We 681*0b57cec5SDimitry Andric // must also check all aliases of NewReg, because we can't define a 682*0b57cec5SDimitry Andric // register when any sub or super is already live. 683*0b57cec5SDimitry Andric if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 684*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "(live)"); 685*0b57cec5SDimitry Andric goto next_super_reg; 686*0b57cec5SDimitry Andric } else { 687*0b57cec5SDimitry Andric bool found = false; 688*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 689*0b57cec5SDimitry Andric unsigned AliasReg = *AI; 690*0b57cec5SDimitry Andric if (State->IsLive(AliasReg) || 691*0b57cec5SDimitry Andric (KillIndices[Reg] > DefIndices[AliasReg])) { 692*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() 693*0b57cec5SDimitry Andric << "(alias " << printReg(AliasReg, TRI) << " live)"); 694*0b57cec5SDimitry Andric found = true; 695*0b57cec5SDimitry Andric break; 696*0b57cec5SDimitry Andric } 697*0b57cec5SDimitry Andric } 698*0b57cec5SDimitry Andric if (found) 699*0b57cec5SDimitry Andric goto next_super_reg; 700*0b57cec5SDimitry Andric } 701*0b57cec5SDimitry Andric 702*0b57cec5SDimitry Andric // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 703*0b57cec5SDimitry Andric // defines 'NewReg' via an early-clobber operand. 704*0b57cec5SDimitry Andric for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 705*0b57cec5SDimitry Andric MachineInstr *UseMI = Q.second.Operand->getParent(); 706*0b57cec5SDimitry Andric int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 707*0b57cec5SDimitry Andric if (Idx == -1) 708*0b57cec5SDimitry Andric continue; 709*0b57cec5SDimitry Andric 710*0b57cec5SDimitry Andric if (UseMI->getOperand(Idx).isEarlyClobber()) { 711*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "(ec)"); 712*0b57cec5SDimitry Andric goto next_super_reg; 713*0b57cec5SDimitry Andric } 714*0b57cec5SDimitry Andric } 715*0b57cec5SDimitry Andric 716*0b57cec5SDimitry Andric // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 717*0b57cec5SDimitry Andric // 'Reg' is an early-clobber define and that instruction also uses 718*0b57cec5SDimitry Andric // 'NewReg'. 719*0b57cec5SDimitry Andric for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 720*0b57cec5SDimitry Andric if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 721*0b57cec5SDimitry Andric continue; 722*0b57cec5SDimitry Andric 723*0b57cec5SDimitry Andric MachineInstr *DefMI = Q.second.Operand->getParent(); 724*0b57cec5SDimitry Andric if (DefMI->readsRegister(NewReg, TRI)) { 725*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "(ec)"); 726*0b57cec5SDimitry Andric goto next_super_reg; 727*0b57cec5SDimitry Andric } 728*0b57cec5SDimitry Andric } 729*0b57cec5SDimitry Andric 730*0b57cec5SDimitry Andric // Record that 'Reg' can be renamed to 'NewReg'. 731*0b57cec5SDimitry Andric RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 732*0b57cec5SDimitry Andric } 733*0b57cec5SDimitry Andric 734*0b57cec5SDimitry Andric // If we fall-out here, then every register in the group can be 735*0b57cec5SDimitry Andric // renamed, as recorded in RenameMap. 736*0b57cec5SDimitry Andric RenameOrder.erase(SuperRC); 737*0b57cec5SDimitry Andric RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 738*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "]\n"); 739*0b57cec5SDimitry Andric return true; 740*0b57cec5SDimitry Andric 741*0b57cec5SDimitry Andric next_super_reg: 742*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << ']'); 743*0b57cec5SDimitry Andric } while (R != EndR); 744*0b57cec5SDimitry Andric 745*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 746*0b57cec5SDimitry Andric 747*0b57cec5SDimitry Andric // No registers are free and available! 748*0b57cec5SDimitry Andric return false; 749*0b57cec5SDimitry Andric } 750*0b57cec5SDimitry Andric 751*0b57cec5SDimitry Andric /// BreakAntiDependencies - Identifiy anti-dependencies within the 752*0b57cec5SDimitry Andric /// ScheduleDAG and break them by renaming registers. 753*0b57cec5SDimitry Andric unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 754*0b57cec5SDimitry Andric const std::vector<SUnit> &SUnits, 755*0b57cec5SDimitry Andric MachineBasicBlock::iterator Begin, 756*0b57cec5SDimitry Andric MachineBasicBlock::iterator End, 757*0b57cec5SDimitry Andric unsigned InsertPosIndex, 758*0b57cec5SDimitry Andric DbgValueVector &DbgValues) { 759*0b57cec5SDimitry Andric std::vector<unsigned> &KillIndices = State->GetKillIndices(); 760*0b57cec5SDimitry Andric std::vector<unsigned> &DefIndices = State->GetDefIndices(); 761*0b57cec5SDimitry Andric std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 762*0b57cec5SDimitry Andric RegRefs = State->GetRegRefs(); 763*0b57cec5SDimitry Andric 764*0b57cec5SDimitry Andric // The code below assumes that there is at least one instruction, 765*0b57cec5SDimitry Andric // so just duck out immediately if the block is empty. 766*0b57cec5SDimitry Andric if (SUnits.empty()) return 0; 767*0b57cec5SDimitry Andric 768*0b57cec5SDimitry Andric // For each regclass the next register to use for renaming. 769*0b57cec5SDimitry Andric RenameOrderType RenameOrder; 770*0b57cec5SDimitry Andric 771*0b57cec5SDimitry Andric // ...need a map from MI to SUnit. 772*0b57cec5SDimitry Andric std::map<MachineInstr *, const SUnit *> MISUnitMap; 773*0b57cec5SDimitry Andric for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 774*0b57cec5SDimitry Andric const SUnit *SU = &SUnits[i]; 775*0b57cec5SDimitry Andric MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(), 776*0b57cec5SDimitry Andric SU)); 777*0b57cec5SDimitry Andric } 778*0b57cec5SDimitry Andric 779*0b57cec5SDimitry Andric // Track progress along the critical path through the SUnit graph as 780*0b57cec5SDimitry Andric // we walk the instructions. This is needed for regclasses that only 781*0b57cec5SDimitry Andric // break critical-path anti-dependencies. 782*0b57cec5SDimitry Andric const SUnit *CriticalPathSU = nullptr; 783*0b57cec5SDimitry Andric MachineInstr *CriticalPathMI = nullptr; 784*0b57cec5SDimitry Andric if (CriticalPathSet.any()) { 785*0b57cec5SDimitry Andric for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 786*0b57cec5SDimitry Andric const SUnit *SU = &SUnits[i]; 787*0b57cec5SDimitry Andric if (!CriticalPathSU || 788*0b57cec5SDimitry Andric ((SU->getDepth() + SU->Latency) > 789*0b57cec5SDimitry Andric (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 790*0b57cec5SDimitry Andric CriticalPathSU = SU; 791*0b57cec5SDimitry Andric } 792*0b57cec5SDimitry Andric } 793*0b57cec5SDimitry Andric 794*0b57cec5SDimitry Andric CriticalPathMI = CriticalPathSU->getInstr(); 795*0b57cec5SDimitry Andric } 796*0b57cec5SDimitry Andric 797*0b57cec5SDimitry Andric #ifndef NDEBUG 798*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 799*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Available regs:"); 800*0b57cec5SDimitry Andric for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 801*0b57cec5SDimitry Andric if (!State->IsLive(Reg)) 802*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 803*0b57cec5SDimitry Andric } 804*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 805*0b57cec5SDimitry Andric #endif 806*0b57cec5SDimitry Andric 807*0b57cec5SDimitry Andric BitVector RegAliases(TRI->getNumRegs()); 808*0b57cec5SDimitry Andric 809*0b57cec5SDimitry Andric // Attempt to break anti-dependence edges. Walk the instructions 810*0b57cec5SDimitry Andric // from the bottom up, tracking information about liveness as we go 811*0b57cec5SDimitry Andric // to help determine which registers are available. 812*0b57cec5SDimitry Andric unsigned Broken = 0; 813*0b57cec5SDimitry Andric unsigned Count = InsertPosIndex - 1; 814*0b57cec5SDimitry Andric for (MachineBasicBlock::iterator I = End, E = Begin; 815*0b57cec5SDimitry Andric I != E; --Count) { 816*0b57cec5SDimitry Andric MachineInstr &MI = *--I; 817*0b57cec5SDimitry Andric 818*0b57cec5SDimitry Andric if (MI.isDebugInstr()) 819*0b57cec5SDimitry Andric continue; 820*0b57cec5SDimitry Andric 821*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Anti: "); 822*0b57cec5SDimitry Andric LLVM_DEBUG(MI.dump()); 823*0b57cec5SDimitry Andric 824*0b57cec5SDimitry Andric std::set<unsigned> PassthruRegs; 825*0b57cec5SDimitry Andric GetPassthruRegs(MI, PassthruRegs); 826*0b57cec5SDimitry Andric 827*0b57cec5SDimitry Andric // Process the defs in MI... 828*0b57cec5SDimitry Andric PrescanInstruction(MI, Count, PassthruRegs); 829*0b57cec5SDimitry Andric 830*0b57cec5SDimitry Andric // The dependence edges that represent anti- and output- 831*0b57cec5SDimitry Andric // dependencies that are candidates for breaking. 832*0b57cec5SDimitry Andric std::vector<const SDep *> Edges; 833*0b57cec5SDimitry Andric const SUnit *PathSU = MISUnitMap[&MI]; 834*0b57cec5SDimitry Andric AntiDepEdges(PathSU, Edges); 835*0b57cec5SDimitry Andric 836*0b57cec5SDimitry Andric // If MI is not on the critical path, then we don't rename 837*0b57cec5SDimitry Andric // registers in the CriticalPathSet. 838*0b57cec5SDimitry Andric BitVector *ExcludeRegs = nullptr; 839*0b57cec5SDimitry Andric if (&MI == CriticalPathMI) { 840*0b57cec5SDimitry Andric CriticalPathSU = CriticalPathStep(CriticalPathSU); 841*0b57cec5SDimitry Andric CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 842*0b57cec5SDimitry Andric } else if (CriticalPathSet.any()) { 843*0b57cec5SDimitry Andric ExcludeRegs = &CriticalPathSet; 844*0b57cec5SDimitry Andric } 845*0b57cec5SDimitry Andric 846*0b57cec5SDimitry Andric // Ignore KILL instructions (they form a group in ScanInstruction 847*0b57cec5SDimitry Andric // but don't cause any anti-dependence breaking themselves) 848*0b57cec5SDimitry Andric if (!MI.isKill()) { 849*0b57cec5SDimitry Andric // Attempt to break each anti-dependency... 850*0b57cec5SDimitry Andric for (unsigned i = 0, e = Edges.size(); i != e; ++i) { 851*0b57cec5SDimitry Andric const SDep *Edge = Edges[i]; 852*0b57cec5SDimitry Andric SUnit *NextSU = Edge->getSUnit(); 853*0b57cec5SDimitry Andric 854*0b57cec5SDimitry Andric if ((Edge->getKind() != SDep::Anti) && 855*0b57cec5SDimitry Andric (Edge->getKind() != SDep::Output)) continue; 856*0b57cec5SDimitry Andric 857*0b57cec5SDimitry Andric unsigned AntiDepReg = Edge->getReg(); 858*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 859*0b57cec5SDimitry Andric assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 860*0b57cec5SDimitry Andric 861*0b57cec5SDimitry Andric if (!MRI.isAllocatable(AntiDepReg)) { 862*0b57cec5SDimitry Andric // Don't break anti-dependencies on non-allocatable registers. 863*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); 864*0b57cec5SDimitry Andric continue; 865*0b57cec5SDimitry Andric } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 866*0b57cec5SDimitry Andric // Don't break anti-dependencies for critical path registers 867*0b57cec5SDimitry Andric // if not on the critical path 868*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (not critical-path)\n"); 869*0b57cec5SDimitry Andric continue; 870*0b57cec5SDimitry Andric } else if (PassthruRegs.count(AntiDepReg) != 0) { 871*0b57cec5SDimitry Andric // If the anti-dep register liveness "passes-thru", then 872*0b57cec5SDimitry Andric // don't try to change it. It will be changed along with 873*0b57cec5SDimitry Andric // the use if required to break an earlier antidep. 874*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (passthru)\n"); 875*0b57cec5SDimitry Andric continue; 876*0b57cec5SDimitry Andric } else { 877*0b57cec5SDimitry Andric // No anti-dep breaking for implicit deps 878*0b57cec5SDimitry Andric MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 879*0b57cec5SDimitry Andric assert(AntiDepOp && "Can't find index for defined register operand"); 880*0b57cec5SDimitry Andric if (!AntiDepOp || AntiDepOp->isImplicit()) { 881*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (implicit)\n"); 882*0b57cec5SDimitry Andric continue; 883*0b57cec5SDimitry Andric } 884*0b57cec5SDimitry Andric 885*0b57cec5SDimitry Andric // If the SUnit has other dependencies on the SUnit that 886*0b57cec5SDimitry Andric // it anti-depends on, don't bother breaking the 887*0b57cec5SDimitry Andric // anti-dependency since those edges would prevent such 888*0b57cec5SDimitry Andric // units from being scheduled past each other 889*0b57cec5SDimitry Andric // regardless. 890*0b57cec5SDimitry Andric // 891*0b57cec5SDimitry Andric // Also, if there are dependencies on other SUnits with the 892*0b57cec5SDimitry Andric // same register as the anti-dependency, don't attempt to 893*0b57cec5SDimitry Andric // break it. 894*0b57cec5SDimitry Andric for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 895*0b57cec5SDimitry Andric PE = PathSU->Preds.end(); P != PE; ++P) { 896*0b57cec5SDimitry Andric if (P->getSUnit() == NextSU ? 897*0b57cec5SDimitry Andric (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 898*0b57cec5SDimitry Andric (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 899*0b57cec5SDimitry Andric AntiDepReg = 0; 900*0b57cec5SDimitry Andric break; 901*0b57cec5SDimitry Andric } 902*0b57cec5SDimitry Andric } 903*0b57cec5SDimitry Andric for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 904*0b57cec5SDimitry Andric PE = PathSU->Preds.end(); P != PE; ++P) { 905*0b57cec5SDimitry Andric if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && 906*0b57cec5SDimitry Andric (P->getKind() != SDep::Output)) { 907*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (real dependency)\n"); 908*0b57cec5SDimitry Andric AntiDepReg = 0; 909*0b57cec5SDimitry Andric break; 910*0b57cec5SDimitry Andric } else if ((P->getSUnit() != NextSU) && 911*0b57cec5SDimitry Andric (P->getKind() == SDep::Data) && 912*0b57cec5SDimitry Andric (P->getReg() == AntiDepReg)) { 913*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (other dependency)\n"); 914*0b57cec5SDimitry Andric AntiDepReg = 0; 915*0b57cec5SDimitry Andric break; 916*0b57cec5SDimitry Andric } 917*0b57cec5SDimitry Andric } 918*0b57cec5SDimitry Andric 919*0b57cec5SDimitry Andric if (AntiDepReg == 0) continue; 920*0b57cec5SDimitry Andric 921*0b57cec5SDimitry Andric // If the definition of the anti-dependency register does not start 922*0b57cec5SDimitry Andric // a new live range, bail out. This can happen if the anti-dep 923*0b57cec5SDimitry Andric // register is a sub-register of another register whose live range 924*0b57cec5SDimitry Andric // spans over PathSU. In such case, PathSU defines only a part of 925*0b57cec5SDimitry Andric // the larger register. 926*0b57cec5SDimitry Andric RegAliases.reset(); 927*0b57cec5SDimitry Andric for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 928*0b57cec5SDimitry Andric RegAliases.set(*AI); 929*0b57cec5SDimitry Andric for (SDep S : PathSU->Succs) { 930*0b57cec5SDimitry Andric SDep::Kind K = S.getKind(); 931*0b57cec5SDimitry Andric if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 932*0b57cec5SDimitry Andric continue; 933*0b57cec5SDimitry Andric unsigned R = S.getReg(); 934*0b57cec5SDimitry Andric if (!RegAliases[R]) 935*0b57cec5SDimitry Andric continue; 936*0b57cec5SDimitry Andric if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 937*0b57cec5SDimitry Andric continue; 938*0b57cec5SDimitry Andric AntiDepReg = 0; 939*0b57cec5SDimitry Andric break; 940*0b57cec5SDimitry Andric } 941*0b57cec5SDimitry Andric 942*0b57cec5SDimitry Andric if (AntiDepReg == 0) continue; 943*0b57cec5SDimitry Andric } 944*0b57cec5SDimitry Andric 945*0b57cec5SDimitry Andric assert(AntiDepReg != 0); 946*0b57cec5SDimitry Andric if (AntiDepReg == 0) continue; 947*0b57cec5SDimitry Andric 948*0b57cec5SDimitry Andric // Determine AntiDepReg's register group. 949*0b57cec5SDimitry Andric const unsigned GroupIndex = State->GetGroup(AntiDepReg); 950*0b57cec5SDimitry Andric if (GroupIndex == 0) { 951*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " (zero group)\n"); 952*0b57cec5SDimitry Andric continue; 953*0b57cec5SDimitry Andric } 954*0b57cec5SDimitry Andric 955*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 956*0b57cec5SDimitry Andric 957*0b57cec5SDimitry Andric // Look for a suitable register to use to break the anti-dependence. 958*0b57cec5SDimitry Andric std::map<unsigned, unsigned> RenameMap; 959*0b57cec5SDimitry Andric if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 960*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 961*0b57cec5SDimitry Andric << printReg(AntiDepReg, TRI) << ":"); 962*0b57cec5SDimitry Andric 963*0b57cec5SDimitry Andric // Handle each group register... 964*0b57cec5SDimitry Andric for (std::map<unsigned, unsigned>::iterator 965*0b57cec5SDimitry Andric S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { 966*0b57cec5SDimitry Andric unsigned CurrReg = S->first; 967*0b57cec5SDimitry Andric unsigned NewReg = S->second; 968*0b57cec5SDimitry Andric 969*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 970*0b57cec5SDimitry Andric << printReg(NewReg, TRI) << "(" 971*0b57cec5SDimitry Andric << RegRefs.count(CurrReg) << " refs)"); 972*0b57cec5SDimitry Andric 973*0b57cec5SDimitry Andric // Update the references to the old register CurrReg to 974*0b57cec5SDimitry Andric // refer to the new register NewReg. 975*0b57cec5SDimitry Andric for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 976*0b57cec5SDimitry Andric Q.second.Operand->setReg(NewReg); 977*0b57cec5SDimitry Andric // If the SU for the instruction being updated has debug 978*0b57cec5SDimitry Andric // information related to the anti-dependency register, make 979*0b57cec5SDimitry Andric // sure to update that as well. 980*0b57cec5SDimitry Andric const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 981*0b57cec5SDimitry Andric if (!SU) continue; 982*0b57cec5SDimitry Andric UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 983*0b57cec5SDimitry Andric AntiDepReg, NewReg); 984*0b57cec5SDimitry Andric } 985*0b57cec5SDimitry Andric 986*0b57cec5SDimitry Andric // We just went back in time and modified history; the 987*0b57cec5SDimitry Andric // liveness information for CurrReg is now inconsistent. Set 988*0b57cec5SDimitry Andric // the state as if it were dead. 989*0b57cec5SDimitry Andric State->UnionGroups(NewReg, 0); 990*0b57cec5SDimitry Andric RegRefs.erase(NewReg); 991*0b57cec5SDimitry Andric DefIndices[NewReg] = DefIndices[CurrReg]; 992*0b57cec5SDimitry Andric KillIndices[NewReg] = KillIndices[CurrReg]; 993*0b57cec5SDimitry Andric 994*0b57cec5SDimitry Andric State->UnionGroups(CurrReg, 0); 995*0b57cec5SDimitry Andric RegRefs.erase(CurrReg); 996*0b57cec5SDimitry Andric DefIndices[CurrReg] = KillIndices[CurrReg]; 997*0b57cec5SDimitry Andric KillIndices[CurrReg] = ~0u; 998*0b57cec5SDimitry Andric assert(((KillIndices[CurrReg] == ~0u) != 999*0b57cec5SDimitry Andric (DefIndices[CurrReg] == ~0u)) && 1000*0b57cec5SDimitry Andric "Kill and Def maps aren't consistent for AntiDepReg!"); 1001*0b57cec5SDimitry Andric } 1002*0b57cec5SDimitry Andric 1003*0b57cec5SDimitry Andric ++Broken; 1004*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << '\n'); 1005*0b57cec5SDimitry Andric } 1006*0b57cec5SDimitry Andric } 1007*0b57cec5SDimitry Andric } 1008*0b57cec5SDimitry Andric 1009*0b57cec5SDimitry Andric ScanInstruction(MI, Count); 1010*0b57cec5SDimitry Andric } 1011*0b57cec5SDimitry Andric 1012*0b57cec5SDimitry Andric return Broken; 1013*0b57cec5SDimitry Andric } 1014