xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.h (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- Bitcode/Writer/ValueEnumerator.h - Number values ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class gives values and types Unique ID's.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
14 #define LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/UniqueVector.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/Metadata.h"
21 #include "llvm/IR/Type.h"
22 #include "llvm/IR/UseListOrder.h"
23 #include <cassert>
24 #include <cstdint>
25 #include <utility>
26 #include <vector>
27 
28 namespace llvm {
29 
30 class BasicBlock;
31 class Comdat;
32 class Function;
33 class Instruction;
34 class LocalAsMetadata;
35 class MDNode;
36 class Metadata;
37 class Module;
38 class NamedMDNode;
39 class raw_ostream;
40 class Type;
41 class Value;
42 class ValueSymbolTable;
43 
44 class ValueEnumerator {
45 public:
46   using TypeList = std::vector<Type *>;
47 
48   // For each value, we remember its Value* and occurrence frequency.
49   using ValueList = std::vector<std::pair<const Value *, unsigned>>;
50 
51   /// Attribute groups as encoded in bitcode are almost AttributeSets, but they
52   /// include the AttributeList index, so we have to track that in our map.
53   using IndexAndAttrSet = std::pair<unsigned, AttributeSet>;
54 
55   UseListOrderStack UseListOrders;
56 
57 private:
58   using TypeMapType = DenseMap<Type *, unsigned>;
59   TypeMapType TypeMap;
60   TypeList Types;
61 
62   using ValueMapType = DenseMap<const Value *, unsigned>;
63   ValueMapType ValueMap;
64   ValueList Values;
65 
66   using ComdatSetType = UniqueVector<const Comdat *>;
67   ComdatSetType Comdats;
68 
69   std::vector<const Metadata *> MDs;
70   std::vector<const Metadata *> FunctionMDs;
71 
72   /// Index of information about a piece of metadata.
73   struct MDIndex {
74     unsigned F = 0;  ///< The ID of the function for this metadata, if any.
75     unsigned ID = 0; ///< The implicit ID of this metadata in bitcode.
76 
77     MDIndex() = default;
78     explicit MDIndex(unsigned F) : F(F) {}
79 
80     /// Check if this has a function tag, and it's different from NewF.
81     bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; }
82 
83     /// Fetch the MD this references out of the given metadata array.
84     const Metadata *get(ArrayRef<const Metadata *> MDs) const {
85       assert(ID && "Expected non-zero ID");
86       assert(ID <= MDs.size() && "Expected valid ID");
87       return MDs[ID - 1];
88     }
89   };
90 
91   using MetadataMapType = DenseMap<const Metadata *, MDIndex>;
92   MetadataMapType MetadataMap;
93 
94   /// Range of metadata IDs, as a half-open range.
95   struct MDRange {
96     unsigned First = 0;
97     unsigned Last = 0;
98 
99     /// Number of strings in the prefix of the metadata range.
100     unsigned NumStrings = 0;
101 
102     MDRange() = default;
103     explicit MDRange(unsigned First) : First(First) {}
104   };
105   SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo;
106 
107   bool ShouldPreserveUseListOrder;
108 
109   using AttributeGroupMapType = DenseMap<IndexAndAttrSet, unsigned>;
110   AttributeGroupMapType AttributeGroupMap;
111   std::vector<IndexAndAttrSet> AttributeGroups;
112 
113   using AttributeListMapType = DenseMap<AttributeList, unsigned>;
114   AttributeListMapType AttributeListMap;
115   std::vector<AttributeList> AttributeLists;
116 
117   /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by
118   /// the "getGlobalBasicBlockID" method.
119   mutable DenseMap<const BasicBlock*, unsigned> GlobalBasicBlockIDs;
120 
121   using InstructionMapType = DenseMap<const Instruction *, unsigned>;
122   InstructionMapType InstructionMap;
123   unsigned InstructionCount;
124 
125   /// BasicBlocks - This contains all the basic blocks for the currently
126   /// incorporated function.  Their reverse mapping is stored in ValueMap.
127   std::vector<const BasicBlock*> BasicBlocks;
128 
129   /// When a function is incorporated, this is the size of the Values list
130   /// before incorporation.
131   unsigned NumModuleValues;
132 
133   /// When a function is incorporated, this is the size of the Metadatas list
134   /// before incorporation.
135   unsigned NumModuleMDs = 0;
136   unsigned NumMDStrings = 0;
137 
138   unsigned FirstFuncConstantID;
139   unsigned FirstInstID;
140 
141 public:
142   ValueEnumerator(const Module &M, bool ShouldPreserveUseListOrder);
143   ValueEnumerator(const ValueEnumerator &) = delete;
144   ValueEnumerator &operator=(const ValueEnumerator &) = delete;
145 
146   void dump() const;
147   void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const;
148   void print(raw_ostream &OS, const MetadataMapType &Map,
149              const char *Name) const;
150 
151   unsigned getValueID(const Value *V) const;
152 
153   unsigned getMetadataID(const Metadata *MD) const {
154     auto ID = getMetadataOrNullID(MD);
155     assert(ID != 0 && "Metadata not in slotcalculator!");
156     return ID - 1;
157   }
158 
159   unsigned getMetadataOrNullID(const Metadata *MD) const {
160     return MetadataMap.lookup(MD).ID;
161   }
162 
163   unsigned numMDs() const { return MDs.size(); }
164 
165   bool shouldPreserveUseListOrder() const { return ShouldPreserveUseListOrder; }
166 
167   unsigned getTypeID(Type *T) const {
168     TypeMapType::const_iterator I = TypeMap.find(T);
169     assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
170     return I->second-1;
171   }
172 
173   unsigned getInstructionID(const Instruction *I) const;
174   void setInstructionID(const Instruction *I);
175 
176   unsigned getAttributeListID(AttributeList PAL) const {
177     if (PAL.isEmpty()) return 0;  // Null maps to zero.
178     AttributeListMapType::const_iterator I = AttributeListMap.find(PAL);
179     assert(I != AttributeListMap.end() && "Attribute not in ValueEnumerator!");
180     return I->second;
181   }
182 
183   unsigned getAttributeGroupID(IndexAndAttrSet Group) const {
184     if (!Group.second.hasAttributes())
185       return 0; // Null maps to zero.
186     AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(Group);
187     assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!");
188     return I->second;
189   }
190 
191   /// getFunctionConstantRange - Return the range of values that corresponds to
192   /// function-local constants.
193   void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
194     Start = FirstFuncConstantID;
195     End = FirstInstID;
196   }
197 
198   const ValueList &getValues() const { return Values; }
199 
200   /// Check whether the current block has any metadata to emit.
201   bool hasMDs() const { return NumModuleMDs < MDs.size(); }
202 
203   /// Get the MDString metadata for this block.
204   ArrayRef<const Metadata *> getMDStrings() const {
205     return makeArrayRef(MDs).slice(NumModuleMDs, NumMDStrings);
206   }
207 
208   /// Get the non-MDString metadata for this block.
209   ArrayRef<const Metadata *> getNonMDStrings() const {
210     return makeArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings);
211   }
212 
213   const TypeList &getTypes() const { return Types; }
214 
215   const std::vector<const BasicBlock*> &getBasicBlocks() const {
216     return BasicBlocks;
217   }
218 
219   const std::vector<AttributeList> &getAttributeLists() const { return AttributeLists; }
220 
221   const std::vector<IndexAndAttrSet> &getAttributeGroups() const {
222     return AttributeGroups;
223   }
224 
225   const ComdatSetType &getComdats() const { return Comdats; }
226   unsigned getComdatID(const Comdat *C) const;
227 
228   /// getGlobalBasicBlockID - This returns the function-specific ID for the
229   /// specified basic block.  This is relatively expensive information, so it
230   /// should only be used by rare constructs such as address-of-label.
231   unsigned getGlobalBasicBlockID(const BasicBlock *BB) const;
232 
233   /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
234   /// use these two methods to get its data into the ValueEnumerator!
235   void incorporateFunction(const Function &F);
236 
237   void purgeFunction();
238   uint64_t computeBitsRequiredForTypeIndicies() const;
239 
240 private:
241   void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
242 
243   /// Reorder the reachable metadata.
244   ///
245   /// This is not just an optimization, but is mandatory for emitting MDString
246   /// correctly.
247   void organizeMetadata();
248 
249   /// Drop the function tag from the transitive operands of the given node.
250   void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD);
251 
252   /// Incorporate the function metadata.
253   ///
254   /// This should be called before enumerating LocalAsMetadata for the
255   /// function.
256   void incorporateFunctionMetadata(const Function &F);
257 
258   /// Enumerate a single instance of metadata with the given function tag.
259   ///
260   /// If \c MD has already been enumerated, check that \c F matches its
261   /// function tag.  If not, call \a dropFunctionFromMetadata().
262   ///
263   /// Otherwise, mark \c MD as visited.  Assign it an ID, or just return it if
264   /// it's an \a MDNode.
265   const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD);
266 
267   unsigned getMetadataFunctionID(const Function *F) const;
268 
269   /// Enumerate reachable metadata in (almost) post-order.
270   ///
271   /// Enumerate all the metadata reachable from MD.  We want to minimize the
272   /// cost of reading bitcode records, and so the primary consideration is that
273   /// operands of uniqued nodes are resolved before the nodes are read.  This
274   /// avoids re-uniquing them on the context and factors away RAUW support.
275   ///
276   /// This algorithm guarantees that subgraphs of uniqued nodes are in
277   /// post-order.  Distinct subgraphs reachable only from a single uniqued node
278   /// will be in post-order.
279   ///
280   /// \note The relative order of a distinct and uniqued node is irrelevant.
281   /// \a organizeMetadata() will later partition distinct nodes ahead of
282   /// uniqued ones.
283   ///{
284   void EnumerateMetadata(const Function *F, const Metadata *MD);
285   void EnumerateMetadata(unsigned F, const Metadata *MD);
286   ///}
287 
288   void EnumerateFunctionLocalMetadata(const Function &F,
289                                       const LocalAsMetadata *Local);
290   void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local);
291   void EnumerateNamedMDNode(const NamedMDNode *NMD);
292   void EnumerateValue(const Value *V);
293   void EnumerateType(Type *T);
294   void EnumerateOperandType(const Value *V);
295   void EnumerateAttributes(AttributeList PAL);
296 
297   void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
298   void EnumerateNamedMetadata(const Module &M);
299 };
300 
301 } // end namespace llvm
302 
303 #endif // LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
304