1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Config/llvm-config.h" 16 #include "llvm/IR/Argument.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalAlias.h" 23 #include "llvm/IR/GlobalIFunc.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Use.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cstddef> 44 #include <iterator> 45 #include <tuple> 46 47 using namespace llvm; 48 49 namespace { 50 51 struct OrderMap { 52 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 53 unsigned LastGlobalValueID = 0; 54 55 OrderMap() = default; 56 57 bool isGlobalValue(unsigned ID) const { 58 return ID <= LastGlobalValueID; 59 } 60 61 unsigned size() const { return IDs.size(); } 62 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 63 64 std::pair<unsigned, bool> lookup(const Value *V) const { 65 return IDs.lookup(V); 66 } 67 68 void index(const Value *V) { 69 // Explicitly sequence get-size and insert-value operations to avoid UB. 70 unsigned ID = IDs.size() + 1; 71 IDs[V].first = ID; 72 } 73 }; 74 75 } // end anonymous namespace 76 77 static void orderValue(const Value *V, OrderMap &OM) { 78 if (OM.lookup(V).first) 79 return; 80 81 if (const Constant *C = dyn_cast<Constant>(V)) { 82 if (C->getNumOperands()) { 83 for (const Value *Op : C->operands()) 84 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 85 orderValue(Op, OM); 86 if (auto *CE = dyn_cast<ConstantExpr>(C)) 87 if (CE->getOpcode() == Instruction::ShuffleVector) 88 orderValue(CE->getShuffleMaskForBitcode(), OM); 89 } 90 } 91 92 // Note: we cannot cache this lookup above, since inserting into the map 93 // changes the map's size, and thus affects the other IDs. 94 OM.index(V); 95 } 96 97 static OrderMap orderModule(const Module &M) { 98 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 99 // and ValueEnumerator::incorporateFunction(). 100 OrderMap OM; 101 102 // Initializers of GlobalValues are processed in 103 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 104 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 105 // by giving IDs in reverse order. 106 // 107 // Since GlobalValues never reference each other directly (just through 108 // initializers), their relative IDs only matter for determining order of 109 // uses in their initializers. 110 for (const GlobalVariable &G : reverse(M.globals())) 111 orderValue(&G, OM); 112 for (const GlobalAlias &A : reverse(M.aliases())) 113 orderValue(&A, OM); 114 for (const GlobalIFunc &I : reverse(M.ifuncs())) 115 orderValue(&I, OM); 116 for (const Function &F : reverse(M)) 117 orderValue(&F, OM); 118 OM.LastGlobalValueID = OM.size(); 119 120 auto orderConstantValue = [&OM](const Value *V) { 121 if (isa<Constant>(V) || isa<InlineAsm>(V)) 122 orderValue(V, OM); 123 }; 124 125 for (const Function &F : M) { 126 if (F.isDeclaration()) 127 continue; 128 // Here we need to match the union of ValueEnumerator::incorporateFunction() 129 // and WriteFunction(). Basic blocks are implicitly declared before 130 // anything else (by declaring their size). 131 for (const BasicBlock &BB : F) 132 orderValue(&BB, OM); 133 134 // Metadata used by instructions is decoded before the actual instructions, 135 // so visit any constants used by it beforehand. 136 for (const BasicBlock &BB : F) 137 for (const Instruction &I : BB) { 138 auto OrderConstantFromMetadata = [&](Metadata *MD) { 139 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MD)) { 140 orderConstantValue(VAM->getValue()); 141 } else if (const auto *AL = dyn_cast<DIArgList>(MD)) { 142 for (const auto *VAM : AL->getArgs()) 143 orderConstantValue(VAM->getValue()); 144 } 145 }; 146 147 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 148 OrderConstantFromMetadata(DVR.getRawLocation()); 149 if (DVR.isDbgAssign()) 150 OrderConstantFromMetadata(DVR.getRawAddress()); 151 } 152 153 for (const Value *V : I.operands()) { 154 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) 155 OrderConstantFromMetadata(MAV->getMetadata()); 156 } 157 } 158 159 for (const Argument &A : F.args()) 160 orderValue(&A, OM); 161 for (const BasicBlock &BB : F) 162 for (const Instruction &I : BB) { 163 for (const Value *Op : I.operands()) 164 orderConstantValue(Op); 165 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 166 orderValue(SVI->getShuffleMaskForBitcode(), OM); 167 orderValue(&I, OM); 168 } 169 } 170 return OM; 171 } 172 173 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 174 unsigned ID, const OrderMap &OM, 175 UseListOrderStack &Stack) { 176 // Predict use-list order for this one. 177 using Entry = std::pair<const Use *, unsigned>; 178 SmallVector<Entry, 64> List; 179 for (const Use &U : V->uses()) 180 // Check if this user will be serialized. 181 if (OM.lookup(U.getUser()).first) 182 List.push_back(std::make_pair(&U, List.size())); 183 184 if (List.size() < 2) 185 // We may have lost some users. 186 return; 187 188 bool IsGlobalValue = OM.isGlobalValue(ID); 189 llvm::sort(List, [&](const Entry &L, const Entry &R) { 190 const Use *LU = L.first; 191 const Use *RU = R.first; 192 if (LU == RU) 193 return false; 194 195 auto LID = OM.lookup(LU->getUser()).first; 196 auto RID = OM.lookup(RU->getUser()).first; 197 198 // If ID is 4, then expect: 7 6 5 1 2 3. 199 if (LID < RID) { 200 if (RID <= ID) 201 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 202 return true; 203 return false; 204 } 205 if (RID < LID) { 206 if (LID <= ID) 207 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 208 return false; 209 return true; 210 } 211 212 // LID and RID are equal, so we have different operands of the same user. 213 // Assume operands are added in order for all instructions. 214 if (LID <= ID) 215 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 216 return LU->getOperandNo() < RU->getOperandNo(); 217 return LU->getOperandNo() > RU->getOperandNo(); 218 }); 219 220 if (llvm::is_sorted(List, llvm::less_second())) 221 // Order is already correct. 222 return; 223 224 // Store the shuffle. 225 Stack.emplace_back(V, F, List.size()); 226 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 227 for (size_t I = 0, E = List.size(); I != E; ++I) 228 Stack.back().Shuffle[I] = List[I].second; 229 } 230 231 static void predictValueUseListOrder(const Value *V, const Function *F, 232 OrderMap &OM, UseListOrderStack &Stack) { 233 auto &IDPair = OM[V]; 234 assert(IDPair.first && "Unmapped value"); 235 if (IDPair.second) 236 // Already predicted. 237 return; 238 239 // Do the actual prediction. 240 IDPair.second = true; 241 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 242 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 243 244 // Recursive descent into constants. 245 if (const Constant *C = dyn_cast<Constant>(V)) { 246 if (C->getNumOperands()) { // Visit GlobalValues. 247 for (const Value *Op : C->operands()) 248 if (isa<Constant>(Op)) // Visit GlobalValues. 249 predictValueUseListOrder(Op, F, OM, Stack); 250 if (auto *CE = dyn_cast<ConstantExpr>(C)) 251 if (CE->getOpcode() == Instruction::ShuffleVector) 252 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 253 Stack); 254 } 255 } 256 } 257 258 static UseListOrderStack predictUseListOrder(const Module &M) { 259 OrderMap OM = orderModule(M); 260 261 // Use-list orders need to be serialized after all the users have been added 262 // to a value, or else the shuffles will be incomplete. Store them per 263 // function in a stack. 264 // 265 // Aside from function order, the order of values doesn't matter much here. 266 UseListOrderStack Stack; 267 268 // We want to visit the functions backward now so we can list function-local 269 // constants in the last Function they're used in. Module-level constants 270 // have already been visited above. 271 for (const Function &F : llvm::reverse(M)) { 272 auto PredictValueOrderFromMetadata = [&](Metadata *MD) { 273 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MD)) { 274 predictValueUseListOrder(VAM->getValue(), &F, OM, Stack); 275 } else if (const auto *AL = dyn_cast<DIArgList>(MD)) { 276 for (const auto *VAM : AL->getArgs()) 277 predictValueUseListOrder(VAM->getValue(), &F, OM, Stack); 278 } 279 }; 280 if (F.isDeclaration()) 281 continue; 282 for (const BasicBlock &BB : F) 283 predictValueUseListOrder(&BB, &F, OM, Stack); 284 for (const Argument &A : F.args()) 285 predictValueUseListOrder(&A, &F, OM, Stack); 286 for (const BasicBlock &BB : F) { 287 for (const Instruction &I : BB) { 288 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 289 PredictValueOrderFromMetadata(DVR.getRawLocation()); 290 if (DVR.isDbgAssign()) 291 PredictValueOrderFromMetadata(DVR.getRawAddress()); 292 } 293 for (const Value *Op : I.operands()) { 294 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 295 predictValueUseListOrder(Op, &F, OM, Stack); 296 if (const auto *MAV = dyn_cast<MetadataAsValue>(Op)) 297 PredictValueOrderFromMetadata(MAV->getMetadata()); 298 } 299 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 300 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 301 Stack); 302 predictValueUseListOrder(&I, &F, OM, Stack); 303 } 304 } 305 } 306 307 // Visit globals last, since the module-level use-list block will be seen 308 // before the function bodies are processed. 309 for (const GlobalVariable &G : M.globals()) 310 predictValueUseListOrder(&G, nullptr, OM, Stack); 311 for (const Function &F : M) 312 predictValueUseListOrder(&F, nullptr, OM, Stack); 313 for (const GlobalAlias &A : M.aliases()) 314 predictValueUseListOrder(&A, nullptr, OM, Stack); 315 for (const GlobalIFunc &I : M.ifuncs()) 316 predictValueUseListOrder(&I, nullptr, OM, Stack); 317 for (const GlobalVariable &G : M.globals()) 318 if (G.hasInitializer()) 319 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 320 for (const GlobalAlias &A : M.aliases()) 321 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 322 for (const GlobalIFunc &I : M.ifuncs()) 323 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 324 for (const Function &F : M) { 325 for (const Use &U : F.operands()) 326 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 327 } 328 329 return Stack; 330 } 331 332 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 333 return V.first->getType()->isIntOrIntVectorTy(); 334 } 335 336 ValueEnumerator::ValueEnumerator(const Module &M, 337 bool ShouldPreserveUseListOrder) 338 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 339 if (ShouldPreserveUseListOrder) 340 UseListOrders = predictUseListOrder(M); 341 342 // Enumerate the global variables. 343 for (const GlobalVariable &GV : M.globals()) { 344 EnumerateValue(&GV); 345 EnumerateType(GV.getValueType()); 346 } 347 348 // Enumerate the functions. 349 for (const Function & F : M) { 350 EnumerateValue(&F); 351 EnumerateType(F.getValueType()); 352 EnumerateAttributes(F.getAttributes()); 353 } 354 355 // Enumerate the aliases. 356 for (const GlobalAlias &GA : M.aliases()) { 357 EnumerateValue(&GA); 358 EnumerateType(GA.getValueType()); 359 } 360 361 // Enumerate the ifuncs. 362 for (const GlobalIFunc &GIF : M.ifuncs()) { 363 EnumerateValue(&GIF); 364 EnumerateType(GIF.getValueType()); 365 } 366 367 // Remember what is the cutoff between globalvalue's and other constants. 368 unsigned FirstConstant = Values.size(); 369 370 // Enumerate the global variable initializers and attributes. 371 for (const GlobalVariable &GV : M.globals()) { 372 if (GV.hasInitializer()) 373 EnumerateValue(GV.getInitializer()); 374 if (GV.hasAttributes()) 375 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 376 } 377 378 // Enumerate the aliasees. 379 for (const GlobalAlias &GA : M.aliases()) 380 EnumerateValue(GA.getAliasee()); 381 382 // Enumerate the ifunc resolvers. 383 for (const GlobalIFunc &GIF : M.ifuncs()) 384 EnumerateValue(GIF.getResolver()); 385 386 // Enumerate any optional Function data. 387 for (const Function &F : M) 388 for (const Use &U : F.operands()) 389 EnumerateValue(U.get()); 390 391 // Enumerate the metadata type. 392 // 393 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 394 // only encodes the metadata type when it's used as a value. 395 EnumerateType(Type::getMetadataTy(M.getContext())); 396 397 // Insert constants and metadata that are named at module level into the slot 398 // pool so that the module symbol table can refer to them... 399 EnumerateValueSymbolTable(M.getValueSymbolTable()); 400 EnumerateNamedMetadata(M); 401 402 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 403 for (const GlobalVariable &GV : M.globals()) { 404 MDs.clear(); 405 GV.getAllMetadata(MDs); 406 for (const auto &I : MDs) 407 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 408 // to write metadata to the global variable's own metadata block 409 // (PR28134). 410 EnumerateMetadata(nullptr, I.second); 411 } 412 413 // Enumerate types used by function bodies and argument lists. 414 for (const Function &F : M) { 415 for (const Argument &A : F.args()) 416 EnumerateType(A.getType()); 417 418 // Enumerate metadata attached to this function. 419 MDs.clear(); 420 F.getAllMetadata(MDs); 421 for (const auto &I : MDs) 422 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 423 424 for (const BasicBlock &BB : F) 425 for (const Instruction &I : BB) { 426 // Local metadata is enumerated during function-incorporation, but 427 // any ConstantAsMetadata arguments in a DIArgList should be examined 428 // now. 429 auto EnumerateNonLocalValuesFromMetadata = [&](Metadata *MD) { 430 assert(MD && "Metadata unexpectedly null"); 431 if (const auto *AL = dyn_cast<DIArgList>(MD)) { 432 for (const auto *VAM : AL->getArgs()) { 433 if (isa<ConstantAsMetadata>(VAM)) 434 EnumerateMetadata(&F, VAM); 435 } 436 return; 437 } 438 439 if (!isa<LocalAsMetadata>(MD)) 440 EnumerateMetadata(&F, MD); 441 }; 442 443 for (DbgRecord &DR : I.getDbgRecordRange()) { 444 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 445 EnumerateMetadata(&F, DLR->getLabel()); 446 EnumerateMetadata(&F, &*DLR->getDebugLoc()); 447 continue; 448 } 449 // Enumerate non-local location metadata. 450 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 451 EnumerateNonLocalValuesFromMetadata(DVR.getRawLocation()); 452 EnumerateMetadata(&F, DVR.getExpression()); 453 EnumerateMetadata(&F, DVR.getVariable()); 454 EnumerateMetadata(&F, &*DVR.getDebugLoc()); 455 if (DVR.isDbgAssign()) { 456 EnumerateNonLocalValuesFromMetadata(DVR.getRawAddress()); 457 EnumerateMetadata(&F, DVR.getAssignID()); 458 EnumerateMetadata(&F, DVR.getAddressExpression()); 459 } 460 } 461 for (const Use &Op : I.operands()) { 462 auto *MD = dyn_cast<MetadataAsValue>(&Op); 463 if (!MD) { 464 EnumerateOperandType(Op); 465 continue; 466 } 467 468 EnumerateNonLocalValuesFromMetadata(MD->getMetadata()); 469 } 470 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 471 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 472 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 473 EnumerateType(GEP->getSourceElementType()); 474 if (auto *AI = dyn_cast<AllocaInst>(&I)) 475 EnumerateType(AI->getAllocatedType()); 476 EnumerateType(I.getType()); 477 if (const auto *Call = dyn_cast<CallBase>(&I)) { 478 EnumerateAttributes(Call->getAttributes()); 479 EnumerateType(Call->getFunctionType()); 480 } 481 482 // Enumerate metadata attached with this instruction. 483 MDs.clear(); 484 I.getAllMetadataOtherThanDebugLoc(MDs); 485 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 486 EnumerateMetadata(&F, MDs[i].second); 487 488 // Don't enumerate the location directly -- it has a special record 489 // type -- but enumerate its operands. 490 if (DILocation *L = I.getDebugLoc()) 491 for (const Metadata *Op : L->operands()) 492 EnumerateMetadata(&F, Op); 493 } 494 } 495 496 // Optimize constant ordering. 497 OptimizeConstants(FirstConstant, Values.size()); 498 499 // Organize metadata ordering. 500 organizeMetadata(); 501 } 502 503 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 504 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 505 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 506 return I->second; 507 } 508 509 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 510 unsigned ComdatID = Comdats.idFor(C); 511 assert(ComdatID && "Comdat not found!"); 512 return ComdatID; 513 } 514 515 void ValueEnumerator::setInstructionID(const Instruction *I) { 516 InstructionMap[I] = InstructionCount++; 517 } 518 519 unsigned ValueEnumerator::getValueID(const Value *V) const { 520 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 521 return getMetadataID(MD->getMetadata()); 522 523 ValueMapType::const_iterator I = ValueMap.find(V); 524 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 525 return I->second-1; 526 } 527 528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 529 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 530 print(dbgs(), ValueMap, "Default"); 531 dbgs() << '\n'; 532 print(dbgs(), MetadataMap, "MetaData"); 533 dbgs() << '\n'; 534 } 535 #endif 536 537 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 538 const char *Name) const { 539 OS << "Map Name: " << Name << "\n"; 540 OS << "Size: " << Map.size() << "\n"; 541 for (const auto &I : Map) { 542 const Value *V = I.first; 543 if (V->hasName()) 544 OS << "Value: " << V->getName(); 545 else 546 OS << "Value: [null]\n"; 547 V->print(errs()); 548 errs() << '\n'; 549 550 OS << " Uses(" << V->getNumUses() << "):"; 551 for (const Use &U : V->uses()) { 552 if (&U != &*V->use_begin()) 553 OS << ","; 554 if(U->hasName()) 555 OS << " " << U->getName(); 556 else 557 OS << " [null]"; 558 559 } 560 OS << "\n\n"; 561 } 562 } 563 564 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 565 const char *Name) const { 566 OS << "Map Name: " << Name << "\n"; 567 OS << "Size: " << Map.size() << "\n"; 568 for (const auto &I : Map) { 569 const Metadata *MD = I.first; 570 OS << "Metadata: slot = " << I.second.ID << "\n"; 571 OS << "Metadata: function = " << I.second.F << "\n"; 572 MD->print(OS); 573 OS << "\n"; 574 } 575 } 576 577 /// OptimizeConstants - Reorder constant pool for denser encoding. 578 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 579 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 580 581 if (ShouldPreserveUseListOrder) 582 // Optimizing constants makes the use-list order difficult to predict. 583 // Disable it for now when trying to preserve the order. 584 return; 585 586 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 587 [this](const std::pair<const Value *, unsigned> &LHS, 588 const std::pair<const Value *, unsigned> &RHS) { 589 // Sort by plane. 590 if (LHS.first->getType() != RHS.first->getType()) 591 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 592 // Then by frequency. 593 return LHS.second > RHS.second; 594 }); 595 596 // Ensure that integer and vector of integer constants are at the start of the 597 // constant pool. This is important so that GEP structure indices come before 598 // gep constant exprs. 599 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 600 isIntOrIntVectorValue); 601 602 // Rebuild the modified portion of ValueMap. 603 for (; CstStart != CstEnd; ++CstStart) 604 ValueMap[Values[CstStart].first] = CstStart+1; 605 } 606 607 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 608 /// table into the values table. 609 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 610 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 611 VI != VE; ++VI) 612 EnumerateValue(VI->getValue()); 613 } 614 615 /// Insert all of the values referenced by named metadata in the specified 616 /// module. 617 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 618 for (const auto &I : M.named_metadata()) 619 EnumerateNamedMDNode(&I); 620 } 621 622 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 623 for (const MDNode *N : MD->operands()) 624 EnumerateMetadata(nullptr, N); 625 } 626 627 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 628 return F ? getValueID(F) + 1 : 0; 629 } 630 631 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 632 EnumerateMetadata(getMetadataFunctionID(F), MD); 633 } 634 635 void ValueEnumerator::EnumerateFunctionLocalMetadata( 636 const Function &F, const LocalAsMetadata *Local) { 637 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 638 } 639 640 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 641 const Function &F, const DIArgList *ArgList) { 642 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList); 643 } 644 645 void ValueEnumerator::dropFunctionFromMetadata( 646 MetadataMapType::value_type &FirstMD) { 647 SmallVector<const MDNode *, 64> Worklist; 648 auto push = [&Worklist](MetadataMapType::value_type &MD) { 649 auto &Entry = MD.second; 650 651 // Nothing to do if this metadata isn't tagged. 652 if (!Entry.F) 653 return; 654 655 // Drop the function tag. 656 Entry.F = 0; 657 658 // If this is has an ID and is an MDNode, then its operands have entries as 659 // well. We need to drop the function from them too. 660 if (Entry.ID) 661 if (auto *N = dyn_cast<MDNode>(MD.first)) 662 Worklist.push_back(N); 663 }; 664 push(FirstMD); 665 while (!Worklist.empty()) 666 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 667 if (!Op) 668 continue; 669 auto MD = MetadataMap.find(Op); 670 if (MD != MetadataMap.end()) 671 push(*MD); 672 } 673 } 674 675 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 676 // It's vital for reader efficiency that uniqued subgraphs are done in 677 // post-order; it's expensive when their operands have forward references. 678 // If a distinct node is referenced from a uniqued node, it'll be delayed 679 // until the uniqued subgraph has been completely traversed. 680 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 681 682 // Start by enumerating MD, and then work through its transitive operands in 683 // post-order. This requires a depth-first search. 684 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 685 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 686 Worklist.push_back(std::make_pair(N, N->op_begin())); 687 688 while (!Worklist.empty()) { 689 const MDNode *N = Worklist.back().first; 690 691 // Enumerate operands until we hit a new node. We need to traverse these 692 // nodes' operands before visiting the rest of N's operands. 693 MDNode::op_iterator I = std::find_if( 694 Worklist.back().second, N->op_end(), 695 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 696 if (I != N->op_end()) { 697 auto *Op = cast<MDNode>(*I); 698 Worklist.back().second = ++I; 699 700 // Delay traversing Op if it's a distinct node and N is uniqued. 701 if (Op->isDistinct() && !N->isDistinct()) 702 DelayedDistinctNodes.push_back(Op); 703 else 704 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 705 continue; 706 } 707 708 // All the operands have been visited. Now assign an ID. 709 Worklist.pop_back(); 710 MDs.push_back(N); 711 MetadataMap[N].ID = MDs.size(); 712 713 // Flush out any delayed distinct nodes; these are all the distinct nodes 714 // that are leaves in last uniqued subgraph. 715 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 716 for (const MDNode *N : DelayedDistinctNodes) 717 Worklist.push_back(std::make_pair(N, N->op_begin())); 718 DelayedDistinctNodes.clear(); 719 } 720 } 721 } 722 723 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 724 if (!MD) 725 return nullptr; 726 727 assert( 728 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 729 "Invalid metadata kind"); 730 731 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 732 MDIndex &Entry = Insertion.first->second; 733 if (!Insertion.second) { 734 // Already mapped. If F doesn't match the function tag, drop it. 735 if (Entry.hasDifferentFunction(F)) 736 dropFunctionFromMetadata(*Insertion.first); 737 return nullptr; 738 } 739 740 // Don't assign IDs to metadata nodes. 741 if (auto *N = dyn_cast<MDNode>(MD)) 742 return N; 743 744 // Save the metadata. 745 MDs.push_back(MD); 746 Entry.ID = MDs.size(); 747 748 // Enumerate the constant, if any. 749 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 750 EnumerateValue(C->getValue()); 751 752 return nullptr; 753 } 754 755 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata 756 /// information reachable from the metadata. 757 void ValueEnumerator::EnumerateFunctionLocalMetadata( 758 unsigned F, const LocalAsMetadata *Local) { 759 assert(F && "Expected a function"); 760 761 // Check to see if it's already in! 762 MDIndex &Index = MetadataMap[Local]; 763 if (Index.ID) { 764 assert(Index.F == F && "Expected the same function"); 765 return; 766 } 767 768 MDs.push_back(Local); 769 Index.F = F; 770 Index.ID = MDs.size(); 771 772 EnumerateValue(Local->getValue()); 773 } 774 775 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata 776 /// information reachable from the metadata. 777 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 778 unsigned F, const DIArgList *ArgList) { 779 assert(F && "Expected a function"); 780 781 // Check to see if it's already in! 782 MDIndex &Index = MetadataMap[ArgList]; 783 if (Index.ID) { 784 assert(Index.F == F && "Expected the same function"); 785 return; 786 } 787 788 for (ValueAsMetadata *VAM : ArgList->getArgs()) { 789 if (isa<LocalAsMetadata>(VAM)) { 790 assert(MetadataMap.count(VAM) && 791 "LocalAsMetadata should be enumerated before DIArgList"); 792 assert(MetadataMap[VAM].F == F && 793 "Expected LocalAsMetadata in the same function"); 794 } else { 795 assert(isa<ConstantAsMetadata>(VAM) && 796 "Expected LocalAsMetadata or ConstantAsMetadata"); 797 assert(ValueMap.count(VAM->getValue()) && 798 "Constant should be enumerated beforeDIArgList"); 799 EnumerateMetadata(F, VAM); 800 } 801 } 802 803 MDs.push_back(ArgList); 804 Index.F = F; 805 Index.ID = MDs.size(); 806 } 807 808 static unsigned getMetadataTypeOrder(const Metadata *MD) { 809 // Strings are emitted in bulk and must come first. 810 if (isa<MDString>(MD)) 811 return 0; 812 813 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 814 // to the front since we can detect it. 815 auto *N = dyn_cast<MDNode>(MD); 816 if (!N) 817 return 1; 818 819 // The reader is fast forward references for distinct node operands, but slow 820 // when uniqued operands are unresolved. 821 return N->isDistinct() ? 2 : 3; 822 } 823 824 void ValueEnumerator::organizeMetadata() { 825 assert(MetadataMap.size() == MDs.size() && 826 "Metadata map and vector out of sync"); 827 828 if (MDs.empty()) 829 return; 830 831 // Copy out the index information from MetadataMap in order to choose a new 832 // order. 833 SmallVector<MDIndex, 64> Order; 834 Order.reserve(MetadataMap.size()); 835 for (const Metadata *MD : MDs) 836 Order.push_back(MetadataMap.lookup(MD)); 837 838 // Partition: 839 // - by function, then 840 // - by isa<MDString> 841 // and then sort by the original/current ID. Since the IDs are guaranteed to 842 // be unique, the result of llvm::sort will be deterministic. There's no need 843 // for std::stable_sort. 844 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 845 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 846 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 847 }); 848 849 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 850 // and fix up MetadataMap. 851 std::vector<const Metadata *> OldMDs; 852 MDs.swap(OldMDs); 853 MDs.reserve(OldMDs.size()); 854 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 855 auto *MD = Order[I].get(OldMDs); 856 MDs.push_back(MD); 857 MetadataMap[MD].ID = I + 1; 858 if (isa<MDString>(MD)) 859 ++NumMDStrings; 860 } 861 862 // Return early if there's nothing for the functions. 863 if (MDs.size() == Order.size()) 864 return; 865 866 // Build the function metadata ranges. 867 MDRange R; 868 FunctionMDs.reserve(OldMDs.size()); 869 unsigned PrevF = 0; 870 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 871 ++I) { 872 unsigned F = Order[I].F; 873 if (!PrevF) { 874 PrevF = F; 875 } else if (PrevF != F) { 876 R.Last = FunctionMDs.size(); 877 std::swap(R, FunctionMDInfo[PrevF]); 878 R.First = FunctionMDs.size(); 879 880 ID = MDs.size(); 881 PrevF = F; 882 } 883 884 auto *MD = Order[I].get(OldMDs); 885 FunctionMDs.push_back(MD); 886 MetadataMap[MD].ID = ++ID; 887 if (isa<MDString>(MD)) 888 ++R.NumStrings; 889 } 890 R.Last = FunctionMDs.size(); 891 FunctionMDInfo[PrevF] = R; 892 } 893 894 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 895 NumModuleMDs = MDs.size(); 896 897 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 898 NumMDStrings = R.NumStrings; 899 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 900 FunctionMDs.begin() + R.Last); 901 } 902 903 void ValueEnumerator::EnumerateValue(const Value *V) { 904 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 905 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 906 907 // Check to see if it's already in! 908 unsigned &ValueID = ValueMap[V]; 909 if (ValueID) { 910 // Increment use count. 911 Values[ValueID-1].second++; 912 return; 913 } 914 915 if (auto *GO = dyn_cast<GlobalObject>(V)) 916 if (const Comdat *C = GO->getComdat()) 917 Comdats.insert(C); 918 919 // Enumerate the type of this value. 920 EnumerateType(V->getType()); 921 922 if (const Constant *C = dyn_cast<Constant>(V)) { 923 if (isa<GlobalValue>(C)) { 924 // Initializers for globals are handled explicitly elsewhere. 925 } else if (C->getNumOperands()) { 926 // If a constant has operands, enumerate them. This makes sure that if a 927 // constant has uses (for example an array of const ints), that they are 928 // inserted also. 929 930 // We prefer to enumerate them with values before we enumerate the user 931 // itself. This makes it more likely that we can avoid forward references 932 // in the reader. We know that there can be no cycles in the constants 933 // graph that don't go through a global variable. 934 for (const Use &U : C->operands()) 935 if (!isa<BasicBlock>(U)) // Don't enumerate BB operand to BlockAddress. 936 EnumerateValue(U); 937 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 938 if (CE->getOpcode() == Instruction::ShuffleVector) 939 EnumerateValue(CE->getShuffleMaskForBitcode()); 940 if (auto *GEP = dyn_cast<GEPOperator>(CE)) 941 EnumerateType(GEP->getSourceElementType()); 942 } 943 944 // Finally, add the value. Doing this could make the ValueID reference be 945 // dangling, don't reuse it. 946 Values.push_back(std::make_pair(V, 1U)); 947 ValueMap[V] = Values.size(); 948 return; 949 } 950 } 951 952 // Add the value. 953 Values.push_back(std::make_pair(V, 1U)); 954 ValueID = Values.size(); 955 } 956 957 958 void ValueEnumerator::EnumerateType(Type *Ty) { 959 unsigned *TypeID = &TypeMap[Ty]; 960 961 // We've already seen this type. 962 if (*TypeID) 963 return; 964 965 // If it is a non-anonymous struct, mark the type as being visited so that we 966 // don't recursively visit it. This is safe because we allow forward 967 // references of these in the bitcode reader. 968 if (StructType *STy = dyn_cast<StructType>(Ty)) 969 if (!STy->isLiteral()) 970 *TypeID = ~0U; 971 972 // Enumerate all of the subtypes before we enumerate this type. This ensures 973 // that the type will be enumerated in an order that can be directly built. 974 for (Type *SubTy : Ty->subtypes()) 975 EnumerateType(SubTy); 976 977 // Refresh the TypeID pointer in case the table rehashed. 978 TypeID = &TypeMap[Ty]; 979 980 // Check to see if we got the pointer another way. This can happen when 981 // enumerating recursive types that hit the base case deeper than they start. 982 // 983 // If this is actually a struct that we are treating as forward ref'able, 984 // then emit the definition now that all of its contents are available. 985 if (*TypeID && *TypeID != ~0U) 986 return; 987 988 // Add this type now that its contents are all happily enumerated. 989 Types.push_back(Ty); 990 991 *TypeID = Types.size(); 992 } 993 994 // Enumerate the types for the specified value. If the value is a constant, 995 // walk through it, enumerating the types of the constant. 996 void ValueEnumerator::EnumerateOperandType(const Value *V) { 997 EnumerateType(V->getType()); 998 999 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 1000 1001 const Constant *C = dyn_cast<Constant>(V); 1002 if (!C) 1003 return; 1004 1005 // If this constant is already enumerated, ignore it, we know its type must 1006 // be enumerated. 1007 if (ValueMap.count(C)) 1008 return; 1009 1010 // This constant may have operands, make sure to enumerate the types in 1011 // them. 1012 for (const Value *Op : C->operands()) { 1013 // Don't enumerate basic blocks here, this happens as operands to 1014 // blockaddress. 1015 if (isa<BasicBlock>(Op)) 1016 continue; 1017 1018 EnumerateOperandType(Op); 1019 } 1020 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1021 if (CE->getOpcode() == Instruction::ShuffleVector) 1022 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 1023 if (CE->getOpcode() == Instruction::GetElementPtr) 1024 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType()); 1025 } 1026 } 1027 1028 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 1029 if (PAL.isEmpty()) return; // null is always 0. 1030 1031 // Do a lookup. 1032 unsigned &Entry = AttributeListMap[PAL]; 1033 if (Entry == 0) { 1034 // Never saw this before, add it. 1035 AttributeLists.push_back(PAL); 1036 Entry = AttributeLists.size(); 1037 } 1038 1039 // Do lookups for all attribute groups. 1040 for (unsigned i : PAL.indexes()) { 1041 AttributeSet AS = PAL.getAttributes(i); 1042 if (!AS.hasAttributes()) 1043 continue; 1044 IndexAndAttrSet Pair = {i, AS}; 1045 unsigned &Entry = AttributeGroupMap[Pair]; 1046 if (Entry == 0) { 1047 AttributeGroups.push_back(Pair); 1048 Entry = AttributeGroups.size(); 1049 1050 for (Attribute Attr : AS) { 1051 if (Attr.isTypeAttribute()) 1052 EnumerateType(Attr.getValueAsType()); 1053 } 1054 } 1055 } 1056 } 1057 1058 void ValueEnumerator::incorporateFunction(const Function &F) { 1059 InstructionCount = 0; 1060 NumModuleValues = Values.size(); 1061 1062 // Add global metadata to the function block. This doesn't include 1063 // LocalAsMetadata. 1064 incorporateFunctionMetadata(F); 1065 1066 // Adding function arguments to the value table. 1067 for (const auto &I : F.args()) { 1068 EnumerateValue(&I); 1069 if (I.hasAttribute(Attribute::ByVal)) 1070 EnumerateType(I.getParamByValType()); 1071 else if (I.hasAttribute(Attribute::StructRet)) 1072 EnumerateType(I.getParamStructRetType()); 1073 else if (I.hasAttribute(Attribute::ByRef)) 1074 EnumerateType(I.getParamByRefType()); 1075 } 1076 FirstFuncConstantID = Values.size(); 1077 1078 // Add all function-level constants to the value table. 1079 for (const BasicBlock &BB : F) { 1080 for (const Instruction &I : BB) { 1081 for (const Use &OI : I.operands()) { 1082 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1083 EnumerateValue(OI); 1084 } 1085 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1086 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1087 } 1088 BasicBlocks.push_back(&BB); 1089 ValueMap[&BB] = BasicBlocks.size(); 1090 } 1091 1092 // Optimize the constant layout. 1093 OptimizeConstants(FirstFuncConstantID, Values.size()); 1094 1095 // Add the function's parameter attributes so they are available for use in 1096 // the function's instruction. 1097 EnumerateAttributes(F.getAttributes()); 1098 1099 FirstInstID = Values.size(); 1100 1101 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1102 SmallVector<DIArgList *, 8> ArgListMDVector; 1103 1104 auto AddFnLocalMetadata = [&](Metadata *MD) { 1105 if (!MD) 1106 return; 1107 if (auto *Local = dyn_cast<LocalAsMetadata>(MD)) { 1108 // Enumerate metadata after the instructions they might refer to. 1109 FnLocalMDVector.push_back(Local); 1110 } else if (auto *ArgList = dyn_cast<DIArgList>(MD)) { 1111 ArgListMDVector.push_back(ArgList); 1112 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1113 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1114 // Enumerate metadata after the instructions they might refer 1115 // to. 1116 FnLocalMDVector.push_back(Local); 1117 } 1118 } 1119 } 1120 }; 1121 1122 // Add all of the instructions. 1123 for (const BasicBlock &BB : F) { 1124 for (const Instruction &I : BB) { 1125 for (const Use &OI : I.operands()) { 1126 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 1127 AddFnLocalMetadata(MD->getMetadata()); 1128 } 1129 /// RemoveDIs: Add non-instruction function-local metadata uses. 1130 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 1131 assert(DVR.getRawLocation() && 1132 "DbgVariableRecord location unexpectedly null"); 1133 AddFnLocalMetadata(DVR.getRawLocation()); 1134 if (DVR.isDbgAssign()) { 1135 assert(DVR.getRawAddress() && 1136 "DbgVariableRecord location unexpectedly null"); 1137 AddFnLocalMetadata(DVR.getRawAddress()); 1138 } 1139 } 1140 if (!I.getType()->isVoidTy()) 1141 EnumerateValue(&I); 1142 } 1143 } 1144 1145 // Add all of the function-local metadata. 1146 for (const LocalAsMetadata *Local : FnLocalMDVector) { 1147 // At this point, every local values have been incorporated, we shouldn't 1148 // have a metadata operand that references a value that hasn't been seen. 1149 assert(ValueMap.count(Local->getValue()) && 1150 "Missing value for metadata operand"); 1151 EnumerateFunctionLocalMetadata(F, Local); 1152 } 1153 // DIArgList entries must come after function-local metadata, as it is not 1154 // possible to forward-reference them. 1155 for (const DIArgList *ArgList : ArgListMDVector) 1156 EnumerateFunctionLocalListMetadata(F, ArgList); 1157 } 1158 1159 void ValueEnumerator::purgeFunction() { 1160 /// Remove purged values from the ValueMap. 1161 for (const auto &V : llvm::drop_begin(Values, NumModuleValues)) 1162 ValueMap.erase(V.first); 1163 for (const Metadata *MD : llvm::drop_begin(MDs, NumModuleMDs)) 1164 MetadataMap.erase(MD); 1165 for (const BasicBlock *BB : BasicBlocks) 1166 ValueMap.erase(BB); 1167 1168 Values.resize(NumModuleValues); 1169 MDs.resize(NumModuleMDs); 1170 BasicBlocks.clear(); 1171 NumMDStrings = 0; 1172 } 1173 1174 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1175 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1176 unsigned Counter = 0; 1177 for (const BasicBlock &BB : *F) 1178 IDMap[&BB] = ++Counter; 1179 } 1180 1181 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1182 /// specified basic block. This is relatively expensive information, so it 1183 /// should only be used by rare constructs such as address-of-label. 1184 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1185 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1186 if (Idx != 0) 1187 return Idx-1; 1188 1189 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1190 return getGlobalBasicBlockID(BB); 1191 } 1192 1193 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndices() const { 1194 return Log2_32_Ceil(getTypes().size() + 1); 1195 } 1196