xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Use.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/ValueSymbolTable.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cstddef>
43 #include <iterator>
44 #include <tuple>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 struct OrderMap {
51   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
52   unsigned LastGlobalConstantID = 0;
53   unsigned LastGlobalValueID = 0;
54 
55   OrderMap() = default;
56 
57   bool isGlobalConstant(unsigned ID) const {
58     return ID <= LastGlobalConstantID;
59   }
60 
61   bool isGlobalValue(unsigned ID) const {
62     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
63   }
64 
65   unsigned size() const { return IDs.size(); }
66   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
67 
68   std::pair<unsigned, bool> lookup(const Value *V) const {
69     return IDs.lookup(V);
70   }
71 
72   void index(const Value *V) {
73     // Explicitly sequence get-size and insert-value operations to avoid UB.
74     unsigned ID = IDs.size() + 1;
75     IDs[V].first = ID;
76   }
77 };
78 
79 } // end anonymous namespace
80 
81 /// Look for a value that might be wrapped as metadata, e.g. a value in a
82 /// metadata operand. Returns nullptr for a non-wrapped input value if
83 /// OnlyWrapped is true, or it returns the input value as-is if false.
84 static const Value *skipMetadataWrapper(const Value *V, bool OnlyWrapped) {
85   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
86     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
87       return VAM->getValue();
88   return OnlyWrapped ? nullptr : V;
89 }
90 
91 static void orderValue(const Value *V, OrderMap &OM) {
92   if (OM.lookup(V).first)
93     return;
94 
95   if (const Constant *C = dyn_cast<Constant>(V)) {
96     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
97       for (const Value *Op : C->operands())
98         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
99           orderValue(Op, OM);
100       if (auto *CE = dyn_cast<ConstantExpr>(C))
101         if (CE->getOpcode() == Instruction::ShuffleVector)
102           orderValue(CE->getShuffleMaskForBitcode(), OM);
103     }
104   }
105 
106   // Note: we cannot cache this lookup above, since inserting into the map
107   // changes the map's size, and thus affects the other IDs.
108   OM.index(V);
109 }
110 
111 static OrderMap orderModule(const Module &M) {
112   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
113   // and ValueEnumerator::incorporateFunction().
114   OrderMap OM;
115 
116   // In the reader, initializers of GlobalValues are set *after* all the
117   // globals have been read.  Rather than awkwardly modeling this behaviour
118   // directly in predictValueUseListOrderImpl(), just assign IDs to
119   // initializers of GlobalValues before GlobalValues themselves to model this
120   // implicitly.
121   for (const GlobalVariable &G : M.globals())
122     if (G.hasInitializer())
123       if (!isa<GlobalValue>(G.getInitializer()))
124         orderValue(G.getInitializer(), OM);
125   for (const GlobalAlias &A : M.aliases())
126     if (!isa<GlobalValue>(A.getAliasee()))
127       orderValue(A.getAliasee(), OM);
128   for (const GlobalIFunc &I : M.ifuncs())
129     if (!isa<GlobalValue>(I.getResolver()))
130       orderValue(I.getResolver(), OM);
131   for (const Function &F : M) {
132     for (const Use &U : F.operands())
133       if (!isa<GlobalValue>(U.get()))
134         orderValue(U.get(), OM);
135   }
136 
137   // As constants used in metadata operands are emitted as module-level
138   // constants, we must order them before other operands. Also, we must order
139   // these before global values, as these will be read before setting the
140   // global values' initializers. The latter matters for constants which have
141   // uses towards other constants that are used as initializers.
142   for (const Function &F : M) {
143     if (F.isDeclaration())
144       continue;
145     for (const BasicBlock &BB : F)
146       for (const Instruction &I : BB)
147         for (const Value *V : I.operands()) {
148           if (const Value *Op = skipMetadataWrapper(V, true)) {
149             if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
150                 isa<InlineAsm>(*Op))
151               orderValue(Op, OM);
152           }
153         }
154   }
155   OM.LastGlobalConstantID = OM.size();
156 
157   // Initializers of GlobalValues are processed in
158   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
159   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
160   // by giving IDs in reverse order.
161   //
162   // Since GlobalValues never reference each other directly (just through
163   // initializers), their relative IDs only matter for determining order of
164   // uses in their initializers.
165   for (const Function &F : M)
166     orderValue(&F, OM);
167   for (const GlobalAlias &A : M.aliases())
168     orderValue(&A, OM);
169   for (const GlobalIFunc &I : M.ifuncs())
170     orderValue(&I, OM);
171   for (const GlobalVariable &G : M.globals())
172     orderValue(&G, OM);
173   OM.LastGlobalValueID = OM.size();
174 
175   for (const Function &F : M) {
176     if (F.isDeclaration())
177       continue;
178     // Here we need to match the union of ValueEnumerator::incorporateFunction()
179     // and WriteFunction().  Basic blocks are implicitly declared before
180     // anything else (by declaring their size).
181     for (const BasicBlock &BB : F)
182       orderValue(&BB, OM);
183     for (const Argument &A : F.args())
184       orderValue(&A, OM);
185     for (const BasicBlock &BB : F)
186       for (const Instruction &I : BB) {
187         for (const Value *Op : I.operands())
188           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
189               isa<InlineAsm>(*Op))
190             orderValue(Op, OM);
191         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
192           orderValue(SVI->getShuffleMaskForBitcode(), OM);
193       }
194     for (const BasicBlock &BB : F)
195       for (const Instruction &I : BB)
196         orderValue(&I, OM);
197   }
198   return OM;
199 }
200 
201 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
202                                          unsigned ID, const OrderMap &OM,
203                                          UseListOrderStack &Stack) {
204   // Predict use-list order for this one.
205   using Entry = std::pair<const Use *, unsigned>;
206   SmallVector<Entry, 64> List;
207   for (const Use &U : V->uses())
208     // Check if this user will be serialized.
209     if (OM.lookup(U.getUser()).first)
210       List.push_back(std::make_pair(&U, List.size()));
211 
212   if (List.size() < 2)
213     // We may have lost some users.
214     return;
215 
216   bool IsGlobalValue = OM.isGlobalValue(ID);
217   llvm::sort(List, [&](const Entry &L, const Entry &R) {
218     const Use *LU = L.first;
219     const Use *RU = R.first;
220     if (LU == RU)
221       return false;
222 
223     auto LID = OM.lookup(LU->getUser()).first;
224     auto RID = OM.lookup(RU->getUser()).first;
225 
226     // Global values are processed in reverse order.
227     //
228     // Moreover, initializers of GlobalValues are set *after* all the globals
229     // have been read (despite having earlier IDs).  Rather than awkwardly
230     // modeling this behaviour here, orderModule() has assigned IDs to
231     // initializers of GlobalValues before GlobalValues themselves.
232     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
233       return LID < RID;
234 
235     // If ID is 4, then expect: 7 6 5 1 2 3.
236     if (LID < RID) {
237       if (RID <= ID)
238         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
239           return true;
240       return false;
241     }
242     if (RID < LID) {
243       if (LID <= ID)
244         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245           return false;
246       return true;
247     }
248 
249     // LID and RID are equal, so we have different operands of the same user.
250     // Assume operands are added in order for all instructions.
251     if (LID <= ID)
252       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
253         return LU->getOperandNo() < RU->getOperandNo();
254     return LU->getOperandNo() > RU->getOperandNo();
255   });
256 
257   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
258         return L.second < R.second;
259       }))
260     // Order is already correct.
261     return;
262 
263   // Store the shuffle.
264   Stack.emplace_back(V, F, List.size());
265   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
266   for (size_t I = 0, E = List.size(); I != E; ++I)
267     Stack.back().Shuffle[I] = List[I].second;
268 }
269 
270 static void predictValueUseListOrder(const Value *V, const Function *F,
271                                      OrderMap &OM, UseListOrderStack &Stack) {
272   auto &IDPair = OM[V];
273   assert(IDPair.first && "Unmapped value");
274   if (IDPair.second)
275     // Already predicted.
276     return;
277 
278   // Do the actual prediction.
279   IDPair.second = true;
280   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
281     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
282 
283   // Recursive descent into constants.
284   if (const Constant *C = dyn_cast<Constant>(V)) {
285     if (C->getNumOperands()) { // Visit GlobalValues.
286       for (const Value *Op : C->operands())
287         if (isa<Constant>(Op)) // Visit GlobalValues.
288           predictValueUseListOrder(Op, F, OM, Stack);
289       if (auto *CE = dyn_cast<ConstantExpr>(C))
290         if (CE->getOpcode() == Instruction::ShuffleVector)
291           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
292                                    Stack);
293     }
294   }
295 }
296 
297 static UseListOrderStack predictUseListOrder(const Module &M) {
298   OrderMap OM = orderModule(M);
299 
300   // Use-list orders need to be serialized after all the users have been added
301   // to a value, or else the shuffles will be incomplete.  Store them per
302   // function in a stack.
303   //
304   // Aside from function order, the order of values doesn't matter much here.
305   UseListOrderStack Stack;
306 
307   // We want to visit the functions backward now so we can list function-local
308   // constants in the last Function they're used in.  Module-level constants
309   // have already been visited above.
310   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
311     const Function &F = *I;
312     if (F.isDeclaration())
313       continue;
314     for (const BasicBlock &BB : F)
315       predictValueUseListOrder(&BB, &F, OM, Stack);
316     for (const Argument &A : F.args())
317       predictValueUseListOrder(&A, &F, OM, Stack);
318     for (const BasicBlock &BB : F)
319       for (const Instruction &I : BB) {
320         for (const Value *Op : I.operands())
321           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
322             predictValueUseListOrder(Op, &F, OM, Stack);
323         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
324           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
325                                    Stack);
326       }
327     for (const BasicBlock &BB : F)
328       for (const Instruction &I : BB)
329         predictValueUseListOrder(&I, &F, OM, Stack);
330   }
331 
332   // Visit globals last, since the module-level use-list block will be seen
333   // before the function bodies are processed.
334   for (const GlobalVariable &G : M.globals())
335     predictValueUseListOrder(&G, nullptr, OM, Stack);
336   for (const Function &F : M)
337     predictValueUseListOrder(&F, nullptr, OM, Stack);
338   for (const GlobalAlias &A : M.aliases())
339     predictValueUseListOrder(&A, nullptr, OM, Stack);
340   for (const GlobalIFunc &I : M.ifuncs())
341     predictValueUseListOrder(&I, nullptr, OM, Stack);
342   for (const GlobalVariable &G : M.globals())
343     if (G.hasInitializer())
344       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
345   for (const GlobalAlias &A : M.aliases())
346     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
347   for (const GlobalIFunc &I : M.ifuncs())
348     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
349   for (const Function &F : M) {
350     for (const Use &U : F.operands())
351       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
352   }
353 
354   return Stack;
355 }
356 
357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
358   return V.first->getType()->isIntOrIntVectorTy();
359 }
360 
361 ValueEnumerator::ValueEnumerator(const Module &M,
362                                  bool ShouldPreserveUseListOrder)
363     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
364   if (ShouldPreserveUseListOrder)
365     UseListOrders = predictUseListOrder(M);
366 
367   // Enumerate the global variables.
368   for (const GlobalVariable &GV : M.globals())
369     EnumerateValue(&GV);
370 
371   // Enumerate the functions.
372   for (const Function & F : M) {
373     EnumerateValue(&F);
374     EnumerateAttributes(F.getAttributes());
375   }
376 
377   // Enumerate the aliases.
378   for (const GlobalAlias &GA : M.aliases())
379     EnumerateValue(&GA);
380 
381   // Enumerate the ifuncs.
382   for (const GlobalIFunc &GIF : M.ifuncs())
383     EnumerateValue(&GIF);
384 
385   // Remember what is the cutoff between globalvalue's and other constants.
386   unsigned FirstConstant = Values.size();
387 
388   // Enumerate the global variable initializers and attributes.
389   for (const GlobalVariable &GV : M.globals()) {
390     if (GV.hasInitializer())
391       EnumerateValue(GV.getInitializer());
392     if (GV.hasAttributes())
393       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
394   }
395 
396   // Enumerate the aliasees.
397   for (const GlobalAlias &GA : M.aliases())
398     EnumerateValue(GA.getAliasee());
399 
400   // Enumerate the ifunc resolvers.
401   for (const GlobalIFunc &GIF : M.ifuncs())
402     EnumerateValue(GIF.getResolver());
403 
404   // Enumerate any optional Function data.
405   for (const Function &F : M)
406     for (const Use &U : F.operands())
407       EnumerateValue(U.get());
408 
409   // Enumerate the metadata type.
410   //
411   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
412   // only encodes the metadata type when it's used as a value.
413   EnumerateType(Type::getMetadataTy(M.getContext()));
414 
415   // Insert constants and metadata that are named at module level into the slot
416   // pool so that the module symbol table can refer to them...
417   EnumerateValueSymbolTable(M.getValueSymbolTable());
418   EnumerateNamedMetadata(M);
419 
420   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
421   for (const GlobalVariable &GV : M.globals()) {
422     MDs.clear();
423     GV.getAllMetadata(MDs);
424     for (const auto &I : MDs)
425       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
426       // to write metadata to the global variable's own metadata block
427       // (PR28134).
428       EnumerateMetadata(nullptr, I.second);
429   }
430 
431   // Enumerate types used by function bodies and argument lists.
432   for (const Function &F : M) {
433     for (const Argument &A : F.args())
434       EnumerateType(A.getType());
435 
436     // Enumerate metadata attached to this function.
437     MDs.clear();
438     F.getAllMetadata(MDs);
439     for (const auto &I : MDs)
440       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
441 
442     for (const BasicBlock &BB : F)
443       for (const Instruction &I : BB) {
444         for (const Use &Op : I.operands()) {
445           auto *MD = dyn_cast<MetadataAsValue>(&Op);
446           if (!MD) {
447             EnumerateOperandType(Op);
448             continue;
449           }
450 
451           // Local metadata is enumerated during function-incorporation.
452           if (isa<LocalAsMetadata>(MD->getMetadata()))
453             continue;
454 
455           EnumerateMetadata(&F, MD->getMetadata());
456         }
457         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
458           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
459         EnumerateType(I.getType());
460         if (const auto *Call = dyn_cast<CallBase>(&I))
461           EnumerateAttributes(Call->getAttributes());
462 
463         // Enumerate metadata attached with this instruction.
464         MDs.clear();
465         I.getAllMetadataOtherThanDebugLoc(MDs);
466         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
467           EnumerateMetadata(&F, MDs[i].second);
468 
469         // Don't enumerate the location directly -- it has a special record
470         // type -- but enumerate its operands.
471         if (DILocation *L = I.getDebugLoc())
472           for (const Metadata *Op : L->operands())
473             EnumerateMetadata(&F, Op);
474       }
475   }
476 
477   // Optimize constant ordering.
478   OptimizeConstants(FirstConstant, Values.size());
479 
480   // Organize metadata ordering.
481   organizeMetadata();
482 }
483 
484 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
485   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
486   assert(I != InstructionMap.end() && "Instruction is not mapped!");
487   return I->second;
488 }
489 
490 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
491   unsigned ComdatID = Comdats.idFor(C);
492   assert(ComdatID && "Comdat not found!");
493   return ComdatID;
494 }
495 
496 void ValueEnumerator::setInstructionID(const Instruction *I) {
497   InstructionMap[I] = InstructionCount++;
498 }
499 
500 unsigned ValueEnumerator::getValueID(const Value *V) const {
501   if (auto *MD = dyn_cast<MetadataAsValue>(V))
502     return getMetadataID(MD->getMetadata());
503 
504   ValueMapType::const_iterator I = ValueMap.find(V);
505   assert(I != ValueMap.end() && "Value not in slotcalculator!");
506   return I->second-1;
507 }
508 
509 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
510 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
511   print(dbgs(), ValueMap, "Default");
512   dbgs() << '\n';
513   print(dbgs(), MetadataMap, "MetaData");
514   dbgs() << '\n';
515 }
516 #endif
517 
518 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
519                             const char *Name) const {
520   OS << "Map Name: " << Name << "\n";
521   OS << "Size: " << Map.size() << "\n";
522   for (ValueMapType::const_iterator I = Map.begin(),
523          E = Map.end(); I != E; ++I) {
524     const Value *V = I->first;
525     if (V->hasName())
526       OS << "Value: " << V->getName();
527     else
528       OS << "Value: [null]\n";
529     V->print(errs());
530     errs() << '\n';
531 
532     OS << " Uses(" << V->getNumUses() << "):";
533     for (const Use &U : V->uses()) {
534       if (&U != &*V->use_begin())
535         OS << ",";
536       if(U->hasName())
537         OS << " " << U->getName();
538       else
539         OS << " [null]";
540 
541     }
542     OS <<  "\n\n";
543   }
544 }
545 
546 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
547                             const char *Name) const {
548   OS << "Map Name: " << Name << "\n";
549   OS << "Size: " << Map.size() << "\n";
550   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
551     const Metadata *MD = I->first;
552     OS << "Metadata: slot = " << I->second.ID << "\n";
553     OS << "Metadata: function = " << I->second.F << "\n";
554     MD->print(OS);
555     OS << "\n";
556   }
557 }
558 
559 /// OptimizeConstants - Reorder constant pool for denser encoding.
560 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
561   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
562 
563   if (ShouldPreserveUseListOrder)
564     // Optimizing constants makes the use-list order difficult to predict.
565     // Disable it for now when trying to preserve the order.
566     return;
567 
568   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
569                    [this](const std::pair<const Value *, unsigned> &LHS,
570                           const std::pair<const Value *, unsigned> &RHS) {
571     // Sort by plane.
572     if (LHS.first->getType() != RHS.first->getType())
573       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
574     // Then by frequency.
575     return LHS.second > RHS.second;
576   });
577 
578   // Ensure that integer and vector of integer constants are at the start of the
579   // constant pool.  This is important so that GEP structure indices come before
580   // gep constant exprs.
581   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
582                         isIntOrIntVectorValue);
583 
584   // Rebuild the modified portion of ValueMap.
585   for (; CstStart != CstEnd; ++CstStart)
586     ValueMap[Values[CstStart].first] = CstStart+1;
587 }
588 
589 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
590 /// table into the values table.
591 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
592   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
593        VI != VE; ++VI)
594     EnumerateValue(VI->getValue());
595 }
596 
597 /// Insert all of the values referenced by named metadata in the specified
598 /// module.
599 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
600   for (const auto &I : M.named_metadata())
601     EnumerateNamedMDNode(&I);
602 }
603 
604 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
605   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
606     EnumerateMetadata(nullptr, MD->getOperand(i));
607 }
608 
609 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
610   return F ? getValueID(F) + 1 : 0;
611 }
612 
613 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
614   EnumerateMetadata(getMetadataFunctionID(F), MD);
615 }
616 
617 void ValueEnumerator::EnumerateFunctionLocalMetadata(
618     const Function &F, const LocalAsMetadata *Local) {
619   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
620 }
621 
622 void ValueEnumerator::dropFunctionFromMetadata(
623     MetadataMapType::value_type &FirstMD) {
624   SmallVector<const MDNode *, 64> Worklist;
625   auto push = [&Worklist](MetadataMapType::value_type &MD) {
626     auto &Entry = MD.second;
627 
628     // Nothing to do if this metadata isn't tagged.
629     if (!Entry.F)
630       return;
631 
632     // Drop the function tag.
633     Entry.F = 0;
634 
635     // If this is has an ID and is an MDNode, then its operands have entries as
636     // well.  We need to drop the function from them too.
637     if (Entry.ID)
638       if (auto *N = dyn_cast<MDNode>(MD.first))
639         Worklist.push_back(N);
640   };
641   push(FirstMD);
642   while (!Worklist.empty())
643     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
644       if (!Op)
645         continue;
646       auto MD = MetadataMap.find(Op);
647       if (MD != MetadataMap.end())
648         push(*MD);
649     }
650 }
651 
652 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
653   // It's vital for reader efficiency that uniqued subgraphs are done in
654   // post-order; it's expensive when their operands have forward references.
655   // If a distinct node is referenced from a uniqued node, it'll be delayed
656   // until the uniqued subgraph has been completely traversed.
657   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
658 
659   // Start by enumerating MD, and then work through its transitive operands in
660   // post-order.  This requires a depth-first search.
661   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
662   if (const MDNode *N = enumerateMetadataImpl(F, MD))
663     Worklist.push_back(std::make_pair(N, N->op_begin()));
664 
665   while (!Worklist.empty()) {
666     const MDNode *N = Worklist.back().first;
667 
668     // Enumerate operands until we hit a new node.  We need to traverse these
669     // nodes' operands before visiting the rest of N's operands.
670     MDNode::op_iterator I = std::find_if(
671         Worklist.back().second, N->op_end(),
672         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
673     if (I != N->op_end()) {
674       auto *Op = cast<MDNode>(*I);
675       Worklist.back().second = ++I;
676 
677       // Delay traversing Op if it's a distinct node and N is uniqued.
678       if (Op->isDistinct() && !N->isDistinct())
679         DelayedDistinctNodes.push_back(Op);
680       else
681         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
682       continue;
683     }
684 
685     // All the operands have been visited.  Now assign an ID.
686     Worklist.pop_back();
687     MDs.push_back(N);
688     MetadataMap[N].ID = MDs.size();
689 
690     // Flush out any delayed distinct nodes; these are all the distinct nodes
691     // that are leaves in last uniqued subgraph.
692     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
693       for (const MDNode *N : DelayedDistinctNodes)
694         Worklist.push_back(std::make_pair(N, N->op_begin()));
695       DelayedDistinctNodes.clear();
696     }
697   }
698 }
699 
700 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
701   if (!MD)
702     return nullptr;
703 
704   assert(
705       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
706       "Invalid metadata kind");
707 
708   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
709   MDIndex &Entry = Insertion.first->second;
710   if (!Insertion.second) {
711     // Already mapped.  If F doesn't match the function tag, drop it.
712     if (Entry.hasDifferentFunction(F))
713       dropFunctionFromMetadata(*Insertion.first);
714     return nullptr;
715   }
716 
717   // Don't assign IDs to metadata nodes.
718   if (auto *N = dyn_cast<MDNode>(MD))
719     return N;
720 
721   // Save the metadata.
722   MDs.push_back(MD);
723   Entry.ID = MDs.size();
724 
725   // Enumerate the constant, if any.
726   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
727     EnumerateValue(C->getValue());
728 
729   return nullptr;
730 }
731 
732 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
733 /// information reachable from the metadata.
734 void ValueEnumerator::EnumerateFunctionLocalMetadata(
735     unsigned F, const LocalAsMetadata *Local) {
736   assert(F && "Expected a function");
737 
738   // Check to see if it's already in!
739   MDIndex &Index = MetadataMap[Local];
740   if (Index.ID) {
741     assert(Index.F == F && "Expected the same function");
742     return;
743   }
744 
745   MDs.push_back(Local);
746   Index.F = F;
747   Index.ID = MDs.size();
748 
749   EnumerateValue(Local->getValue());
750 }
751 
752 static unsigned getMetadataTypeOrder(const Metadata *MD) {
753   // Strings are emitted in bulk and must come first.
754   if (isa<MDString>(MD))
755     return 0;
756 
757   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
758   // to the front since we can detect it.
759   auto *N = dyn_cast<MDNode>(MD);
760   if (!N)
761     return 1;
762 
763   // The reader is fast forward references for distinct node operands, but slow
764   // when uniqued operands are unresolved.
765   return N->isDistinct() ? 2 : 3;
766 }
767 
768 void ValueEnumerator::organizeMetadata() {
769   assert(MetadataMap.size() == MDs.size() &&
770          "Metadata map and vector out of sync");
771 
772   if (MDs.empty())
773     return;
774 
775   // Copy out the index information from MetadataMap in order to choose a new
776   // order.
777   SmallVector<MDIndex, 64> Order;
778   Order.reserve(MetadataMap.size());
779   for (const Metadata *MD : MDs)
780     Order.push_back(MetadataMap.lookup(MD));
781 
782   // Partition:
783   //   - by function, then
784   //   - by isa<MDString>
785   // and then sort by the original/current ID.  Since the IDs are guaranteed to
786   // be unique, the result of std::sort will be deterministic.  There's no need
787   // for std::stable_sort.
788   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
789     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
790            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
791   });
792 
793   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
794   // and fix up MetadataMap.
795   std::vector<const Metadata *> OldMDs;
796   MDs.swap(OldMDs);
797   MDs.reserve(OldMDs.size());
798   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
799     auto *MD = Order[I].get(OldMDs);
800     MDs.push_back(MD);
801     MetadataMap[MD].ID = I + 1;
802     if (isa<MDString>(MD))
803       ++NumMDStrings;
804   }
805 
806   // Return early if there's nothing for the functions.
807   if (MDs.size() == Order.size())
808     return;
809 
810   // Build the function metadata ranges.
811   MDRange R;
812   FunctionMDs.reserve(OldMDs.size());
813   unsigned PrevF = 0;
814   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
815        ++I) {
816     unsigned F = Order[I].F;
817     if (!PrevF) {
818       PrevF = F;
819     } else if (PrevF != F) {
820       R.Last = FunctionMDs.size();
821       std::swap(R, FunctionMDInfo[PrevF]);
822       R.First = FunctionMDs.size();
823 
824       ID = MDs.size();
825       PrevF = F;
826     }
827 
828     auto *MD = Order[I].get(OldMDs);
829     FunctionMDs.push_back(MD);
830     MetadataMap[MD].ID = ++ID;
831     if (isa<MDString>(MD))
832       ++R.NumStrings;
833   }
834   R.Last = FunctionMDs.size();
835   FunctionMDInfo[PrevF] = R;
836 }
837 
838 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
839   NumModuleMDs = MDs.size();
840 
841   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
842   NumMDStrings = R.NumStrings;
843   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
844              FunctionMDs.begin() + R.Last);
845 }
846 
847 void ValueEnumerator::EnumerateValue(const Value *V) {
848   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
849   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
850 
851   // Check to see if it's already in!
852   unsigned &ValueID = ValueMap[V];
853   if (ValueID) {
854     // Increment use count.
855     Values[ValueID-1].second++;
856     return;
857   }
858 
859   if (auto *GO = dyn_cast<GlobalObject>(V))
860     if (const Comdat *C = GO->getComdat())
861       Comdats.insert(C);
862 
863   // Enumerate the type of this value.
864   EnumerateType(V->getType());
865 
866   if (const Constant *C = dyn_cast<Constant>(V)) {
867     if (isa<GlobalValue>(C)) {
868       // Initializers for globals are handled explicitly elsewhere.
869     } else if (C->getNumOperands()) {
870       // If a constant has operands, enumerate them.  This makes sure that if a
871       // constant has uses (for example an array of const ints), that they are
872       // inserted also.
873 
874       // We prefer to enumerate them with values before we enumerate the user
875       // itself.  This makes it more likely that we can avoid forward references
876       // in the reader.  We know that there can be no cycles in the constants
877       // graph that don't go through a global variable.
878       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
879            I != E; ++I)
880         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
881           EnumerateValue(*I);
882       if (auto *CE = dyn_cast<ConstantExpr>(C))
883         if (CE->getOpcode() == Instruction::ShuffleVector)
884           EnumerateValue(CE->getShuffleMaskForBitcode());
885 
886       // Finally, add the value.  Doing this could make the ValueID reference be
887       // dangling, don't reuse it.
888       Values.push_back(std::make_pair(V, 1U));
889       ValueMap[V] = Values.size();
890       return;
891     }
892   }
893 
894   // Add the value.
895   Values.push_back(std::make_pair(V, 1U));
896   ValueID = Values.size();
897 }
898 
899 
900 void ValueEnumerator::EnumerateType(Type *Ty) {
901   unsigned *TypeID = &TypeMap[Ty];
902 
903   // We've already seen this type.
904   if (*TypeID)
905     return;
906 
907   // If it is a non-anonymous struct, mark the type as being visited so that we
908   // don't recursively visit it.  This is safe because we allow forward
909   // references of these in the bitcode reader.
910   if (StructType *STy = dyn_cast<StructType>(Ty))
911     if (!STy->isLiteral())
912       *TypeID = ~0U;
913 
914   // Enumerate all of the subtypes before we enumerate this type.  This ensures
915   // that the type will be enumerated in an order that can be directly built.
916   for (Type *SubTy : Ty->subtypes())
917     EnumerateType(SubTy);
918 
919   // Refresh the TypeID pointer in case the table rehashed.
920   TypeID = &TypeMap[Ty];
921 
922   // Check to see if we got the pointer another way.  This can happen when
923   // enumerating recursive types that hit the base case deeper than they start.
924   //
925   // If this is actually a struct that we are treating as forward ref'able,
926   // then emit the definition now that all of its contents are available.
927   if (*TypeID && *TypeID != ~0U)
928     return;
929 
930   // Add this type now that its contents are all happily enumerated.
931   Types.push_back(Ty);
932 
933   *TypeID = Types.size();
934 }
935 
936 // Enumerate the types for the specified value.  If the value is a constant,
937 // walk through it, enumerating the types of the constant.
938 void ValueEnumerator::EnumerateOperandType(const Value *V) {
939   EnumerateType(V->getType());
940 
941   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
942 
943   const Constant *C = dyn_cast<Constant>(V);
944   if (!C)
945     return;
946 
947   // If this constant is already enumerated, ignore it, we know its type must
948   // be enumerated.
949   if (ValueMap.count(C))
950     return;
951 
952   // This constant may have operands, make sure to enumerate the types in
953   // them.
954   for (const Value *Op : C->operands()) {
955     // Don't enumerate basic blocks here, this happens as operands to
956     // blockaddress.
957     if (isa<BasicBlock>(Op))
958       continue;
959 
960     EnumerateOperandType(Op);
961   }
962   if (auto *CE = dyn_cast<ConstantExpr>(C))
963     if (CE->getOpcode() == Instruction::ShuffleVector)
964       EnumerateOperandType(CE->getShuffleMaskForBitcode());
965 }
966 
967 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
968   if (PAL.isEmpty()) return;  // null is always 0.
969 
970   // Do a lookup.
971   unsigned &Entry = AttributeListMap[PAL];
972   if (Entry == 0) {
973     // Never saw this before, add it.
974     AttributeLists.push_back(PAL);
975     Entry = AttributeLists.size();
976   }
977 
978   // Do lookups for all attribute groups.
979   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
980     AttributeSet AS = PAL.getAttributes(i);
981     if (!AS.hasAttributes())
982       continue;
983     IndexAndAttrSet Pair = {i, AS};
984     unsigned &Entry = AttributeGroupMap[Pair];
985     if (Entry == 0) {
986       AttributeGroups.push_back(Pair);
987       Entry = AttributeGroups.size();
988     }
989   }
990 }
991 
992 void ValueEnumerator::incorporateFunction(const Function &F) {
993   InstructionCount = 0;
994   NumModuleValues = Values.size();
995 
996   // Add global metadata to the function block.  This doesn't include
997   // LocalAsMetadata.
998   incorporateFunctionMetadata(F);
999 
1000   // Adding function arguments to the value table.
1001   for (const auto &I : F.args()) {
1002     EnumerateValue(&I);
1003     if (I.hasAttribute(Attribute::ByVal))
1004       EnumerateType(I.getParamByValType());
1005     else if (I.hasAttribute(Attribute::StructRet))
1006       EnumerateType(I.getParamStructRetType());
1007   }
1008   FirstFuncConstantID = Values.size();
1009 
1010   // Add all function-level constants to the value table.
1011   for (const BasicBlock &BB : F) {
1012     for (const Instruction &I : BB) {
1013       for (const Use &OI : I.operands()) {
1014         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1015           EnumerateValue(OI);
1016       }
1017       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1018         EnumerateValue(SVI->getShuffleMaskForBitcode());
1019     }
1020     BasicBlocks.push_back(&BB);
1021     ValueMap[&BB] = BasicBlocks.size();
1022   }
1023 
1024   // Optimize the constant layout.
1025   OptimizeConstants(FirstFuncConstantID, Values.size());
1026 
1027   // Add the function's parameter attributes so they are available for use in
1028   // the function's instruction.
1029   EnumerateAttributes(F.getAttributes());
1030 
1031   FirstInstID = Values.size();
1032 
1033   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1034   // Add all of the instructions.
1035   for (const BasicBlock &BB : F) {
1036     for (const Instruction &I : BB) {
1037       for (const Use &OI : I.operands()) {
1038         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
1039           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
1040             // Enumerate metadata after the instructions they might refer to.
1041             FnLocalMDVector.push_back(Local);
1042       }
1043 
1044       if (!I.getType()->isVoidTy())
1045         EnumerateValue(&I);
1046     }
1047   }
1048 
1049   // Add all of the function-local metadata.
1050   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1051     // At this point, every local values have been incorporated, we shouldn't
1052     // have a metadata operand that references a value that hasn't been seen.
1053     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1054            "Missing value for metadata operand");
1055     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1056   }
1057 }
1058 
1059 void ValueEnumerator::purgeFunction() {
1060   /// Remove purged values from the ValueMap.
1061   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1062     ValueMap.erase(Values[i].first);
1063   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1064     MetadataMap.erase(MDs[i]);
1065   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1066     ValueMap.erase(BasicBlocks[i]);
1067 
1068   Values.resize(NumModuleValues);
1069   MDs.resize(NumModuleMDs);
1070   BasicBlocks.clear();
1071   NumMDStrings = 0;
1072 }
1073 
1074 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1075                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1076   unsigned Counter = 0;
1077   for (const BasicBlock &BB : *F)
1078     IDMap[&BB] = ++Counter;
1079 }
1080 
1081 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1082 /// specified basic block.  This is relatively expensive information, so it
1083 /// should only be used by rare constructs such as address-of-label.
1084 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1085   unsigned &Idx = GlobalBasicBlockIDs[BB];
1086   if (Idx != 0)
1087     return Idx-1;
1088 
1089   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1090   return getGlobalBasicBlockID(BB);
1091 }
1092 
1093 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1094   return Log2_32_Ceil(getTypes().size() + 1);
1095 }
1096