1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Config/llvm-config.h" 16 #include "llvm/IR/Argument.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalAlias.h" 23 #include "llvm/IR/GlobalIFunc.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Use.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/IR/ValueSymbolTable.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <algorithm> 42 #include <cstddef> 43 #include <iterator> 44 #include <tuple> 45 46 using namespace llvm; 47 48 namespace { 49 50 struct OrderMap { 51 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 52 unsigned LastGlobalConstantID = 0; 53 unsigned LastGlobalValueID = 0; 54 55 OrderMap() = default; 56 57 bool isGlobalConstant(unsigned ID) const { 58 return ID <= LastGlobalConstantID; 59 } 60 61 bool isGlobalValue(unsigned ID) const { 62 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 63 } 64 65 unsigned size() const { return IDs.size(); } 66 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 67 68 std::pair<unsigned, bool> lookup(const Value *V) const { 69 return IDs.lookup(V); 70 } 71 72 void index(const Value *V) { 73 // Explicitly sequence get-size and insert-value operations to avoid UB. 74 unsigned ID = IDs.size() + 1; 75 IDs[V].first = ID; 76 } 77 }; 78 79 } // end anonymous namespace 80 81 /// Look for a value that might be wrapped as metadata, e.g. a value in a 82 /// metadata operand. Returns nullptr for a non-wrapped input value if 83 /// OnlyWrapped is true, or it returns the input value as-is if false. 84 static const Value *skipMetadataWrapper(const Value *V, bool OnlyWrapped) { 85 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) 86 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata())) 87 return VAM->getValue(); 88 return OnlyWrapped ? nullptr : V; 89 } 90 91 static void orderValue(const Value *V, OrderMap &OM) { 92 if (OM.lookup(V).first) 93 return; 94 95 if (const Constant *C = dyn_cast<Constant>(V)) { 96 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 97 for (const Value *Op : C->operands()) 98 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 99 orderValue(Op, OM); 100 if (auto *CE = dyn_cast<ConstantExpr>(C)) 101 if (CE->getOpcode() == Instruction::ShuffleVector) 102 orderValue(CE->getShuffleMaskForBitcode(), OM); 103 } 104 } 105 106 // Note: we cannot cache this lookup above, since inserting into the map 107 // changes the map's size, and thus affects the other IDs. 108 OM.index(V); 109 } 110 111 static OrderMap orderModule(const Module &M) { 112 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 113 // and ValueEnumerator::incorporateFunction(). 114 OrderMap OM; 115 116 // In the reader, initializers of GlobalValues are set *after* all the 117 // globals have been read. Rather than awkwardly modeling this behaviour 118 // directly in predictValueUseListOrderImpl(), just assign IDs to 119 // initializers of GlobalValues before GlobalValues themselves to model this 120 // implicitly. 121 for (const GlobalVariable &G : M.globals()) 122 if (G.hasInitializer()) 123 if (!isa<GlobalValue>(G.getInitializer())) 124 orderValue(G.getInitializer(), OM); 125 for (const GlobalAlias &A : M.aliases()) 126 if (!isa<GlobalValue>(A.getAliasee())) 127 orderValue(A.getAliasee(), OM); 128 for (const GlobalIFunc &I : M.ifuncs()) 129 if (!isa<GlobalValue>(I.getResolver())) 130 orderValue(I.getResolver(), OM); 131 for (const Function &F : M) { 132 for (const Use &U : F.operands()) 133 if (!isa<GlobalValue>(U.get())) 134 orderValue(U.get(), OM); 135 } 136 137 // As constants used in metadata operands are emitted as module-level 138 // constants, we must order them before other operands. Also, we must order 139 // these before global values, as these will be read before setting the 140 // global values' initializers. The latter matters for constants which have 141 // uses towards other constants that are used as initializers. 142 for (const Function &F : M) { 143 if (F.isDeclaration()) 144 continue; 145 for (const BasicBlock &BB : F) 146 for (const Instruction &I : BB) 147 for (const Value *V : I.operands()) { 148 if (const Value *Op = skipMetadataWrapper(V, true)) { 149 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 150 isa<InlineAsm>(*Op)) 151 orderValue(Op, OM); 152 } 153 } 154 } 155 OM.LastGlobalConstantID = OM.size(); 156 157 // Initializers of GlobalValues are processed in 158 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 159 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 160 // by giving IDs in reverse order. 161 // 162 // Since GlobalValues never reference each other directly (just through 163 // initializers), their relative IDs only matter for determining order of 164 // uses in their initializers. 165 for (const Function &F : M) 166 orderValue(&F, OM); 167 for (const GlobalAlias &A : M.aliases()) 168 orderValue(&A, OM); 169 for (const GlobalIFunc &I : M.ifuncs()) 170 orderValue(&I, OM); 171 for (const GlobalVariable &G : M.globals()) 172 orderValue(&G, OM); 173 OM.LastGlobalValueID = OM.size(); 174 175 for (const Function &F : M) { 176 if (F.isDeclaration()) 177 continue; 178 // Here we need to match the union of ValueEnumerator::incorporateFunction() 179 // and WriteFunction(). Basic blocks are implicitly declared before 180 // anything else (by declaring their size). 181 for (const BasicBlock &BB : F) 182 orderValue(&BB, OM); 183 for (const Argument &A : F.args()) 184 orderValue(&A, OM); 185 for (const BasicBlock &BB : F) 186 for (const Instruction &I : BB) { 187 for (const Value *Op : I.operands()) 188 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 189 isa<InlineAsm>(*Op)) 190 orderValue(Op, OM); 191 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 192 orderValue(SVI->getShuffleMaskForBitcode(), OM); 193 } 194 for (const BasicBlock &BB : F) 195 for (const Instruction &I : BB) 196 orderValue(&I, OM); 197 } 198 return OM; 199 } 200 201 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 202 unsigned ID, const OrderMap &OM, 203 UseListOrderStack &Stack) { 204 // Predict use-list order for this one. 205 using Entry = std::pair<const Use *, unsigned>; 206 SmallVector<Entry, 64> List; 207 for (const Use &U : V->uses()) 208 // Check if this user will be serialized. 209 if (OM.lookup(U.getUser()).first) 210 List.push_back(std::make_pair(&U, List.size())); 211 212 if (List.size() < 2) 213 // We may have lost some users. 214 return; 215 216 bool IsGlobalValue = OM.isGlobalValue(ID); 217 llvm::sort(List, [&](const Entry &L, const Entry &R) { 218 const Use *LU = L.first; 219 const Use *RU = R.first; 220 if (LU == RU) 221 return false; 222 223 auto LID = OM.lookup(LU->getUser()).first; 224 auto RID = OM.lookup(RU->getUser()).first; 225 226 // Global values are processed in reverse order. 227 // 228 // Moreover, initializers of GlobalValues are set *after* all the globals 229 // have been read (despite having earlier IDs). Rather than awkwardly 230 // modeling this behaviour here, orderModule() has assigned IDs to 231 // initializers of GlobalValues before GlobalValues themselves. 232 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 233 return LID < RID; 234 235 // If ID is 4, then expect: 7 6 5 1 2 3. 236 if (LID < RID) { 237 if (RID <= ID) 238 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 239 return true; 240 return false; 241 } 242 if (RID < LID) { 243 if (LID <= ID) 244 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 245 return false; 246 return true; 247 } 248 249 // LID and RID are equal, so we have different operands of the same user. 250 // Assume operands are added in order for all instructions. 251 if (LID <= ID) 252 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 253 return LU->getOperandNo() < RU->getOperandNo(); 254 return LU->getOperandNo() > RU->getOperandNo(); 255 }); 256 257 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 258 return L.second < R.second; 259 })) 260 // Order is already correct. 261 return; 262 263 // Store the shuffle. 264 Stack.emplace_back(V, F, List.size()); 265 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 266 for (size_t I = 0, E = List.size(); I != E; ++I) 267 Stack.back().Shuffle[I] = List[I].second; 268 } 269 270 static void predictValueUseListOrder(const Value *V, const Function *F, 271 OrderMap &OM, UseListOrderStack &Stack) { 272 auto &IDPair = OM[V]; 273 assert(IDPair.first && "Unmapped value"); 274 if (IDPair.second) 275 // Already predicted. 276 return; 277 278 // Do the actual prediction. 279 IDPair.second = true; 280 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 281 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 282 283 // Recursive descent into constants. 284 if (const Constant *C = dyn_cast<Constant>(V)) { 285 if (C->getNumOperands()) { // Visit GlobalValues. 286 for (const Value *Op : C->operands()) 287 if (isa<Constant>(Op)) // Visit GlobalValues. 288 predictValueUseListOrder(Op, F, OM, Stack); 289 if (auto *CE = dyn_cast<ConstantExpr>(C)) 290 if (CE->getOpcode() == Instruction::ShuffleVector) 291 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 292 Stack); 293 } 294 } 295 } 296 297 static UseListOrderStack predictUseListOrder(const Module &M) { 298 OrderMap OM = orderModule(M); 299 300 // Use-list orders need to be serialized after all the users have been added 301 // to a value, or else the shuffles will be incomplete. Store them per 302 // function in a stack. 303 // 304 // Aside from function order, the order of values doesn't matter much here. 305 UseListOrderStack Stack; 306 307 // We want to visit the functions backward now so we can list function-local 308 // constants in the last Function they're used in. Module-level constants 309 // have already been visited above. 310 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 311 const Function &F = *I; 312 if (F.isDeclaration()) 313 continue; 314 for (const BasicBlock &BB : F) 315 predictValueUseListOrder(&BB, &F, OM, Stack); 316 for (const Argument &A : F.args()) 317 predictValueUseListOrder(&A, &F, OM, Stack); 318 for (const BasicBlock &BB : F) 319 for (const Instruction &I : BB) { 320 for (const Value *Op : I.operands()) 321 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 322 predictValueUseListOrder(Op, &F, OM, Stack); 323 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 324 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 325 Stack); 326 } 327 for (const BasicBlock &BB : F) 328 for (const Instruction &I : BB) 329 predictValueUseListOrder(&I, &F, OM, Stack); 330 } 331 332 // Visit globals last, since the module-level use-list block will be seen 333 // before the function bodies are processed. 334 for (const GlobalVariable &G : M.globals()) 335 predictValueUseListOrder(&G, nullptr, OM, Stack); 336 for (const Function &F : M) 337 predictValueUseListOrder(&F, nullptr, OM, Stack); 338 for (const GlobalAlias &A : M.aliases()) 339 predictValueUseListOrder(&A, nullptr, OM, Stack); 340 for (const GlobalIFunc &I : M.ifuncs()) 341 predictValueUseListOrder(&I, nullptr, OM, Stack); 342 for (const GlobalVariable &G : M.globals()) 343 if (G.hasInitializer()) 344 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 345 for (const GlobalAlias &A : M.aliases()) 346 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 347 for (const GlobalIFunc &I : M.ifuncs()) 348 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 349 for (const Function &F : M) { 350 for (const Use &U : F.operands()) 351 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 352 } 353 354 return Stack; 355 } 356 357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 358 return V.first->getType()->isIntOrIntVectorTy(); 359 } 360 361 ValueEnumerator::ValueEnumerator(const Module &M, 362 bool ShouldPreserveUseListOrder) 363 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 364 if (ShouldPreserveUseListOrder) 365 UseListOrders = predictUseListOrder(M); 366 367 // Enumerate the global variables. 368 for (const GlobalVariable &GV : M.globals()) 369 EnumerateValue(&GV); 370 371 // Enumerate the functions. 372 for (const Function & F : M) { 373 EnumerateValue(&F); 374 EnumerateAttributes(F.getAttributes()); 375 } 376 377 // Enumerate the aliases. 378 for (const GlobalAlias &GA : M.aliases()) 379 EnumerateValue(&GA); 380 381 // Enumerate the ifuncs. 382 for (const GlobalIFunc &GIF : M.ifuncs()) 383 EnumerateValue(&GIF); 384 385 // Remember what is the cutoff between globalvalue's and other constants. 386 unsigned FirstConstant = Values.size(); 387 388 // Enumerate the global variable initializers and attributes. 389 for (const GlobalVariable &GV : M.globals()) { 390 if (GV.hasInitializer()) 391 EnumerateValue(GV.getInitializer()); 392 if (GV.hasAttributes()) 393 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 394 } 395 396 // Enumerate the aliasees. 397 for (const GlobalAlias &GA : M.aliases()) 398 EnumerateValue(GA.getAliasee()); 399 400 // Enumerate the ifunc resolvers. 401 for (const GlobalIFunc &GIF : M.ifuncs()) 402 EnumerateValue(GIF.getResolver()); 403 404 // Enumerate any optional Function data. 405 for (const Function &F : M) 406 for (const Use &U : F.operands()) 407 EnumerateValue(U.get()); 408 409 // Enumerate the metadata type. 410 // 411 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 412 // only encodes the metadata type when it's used as a value. 413 EnumerateType(Type::getMetadataTy(M.getContext())); 414 415 // Insert constants and metadata that are named at module level into the slot 416 // pool so that the module symbol table can refer to them... 417 EnumerateValueSymbolTable(M.getValueSymbolTable()); 418 EnumerateNamedMetadata(M); 419 420 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 421 for (const GlobalVariable &GV : M.globals()) { 422 MDs.clear(); 423 GV.getAllMetadata(MDs); 424 for (const auto &I : MDs) 425 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 426 // to write metadata to the global variable's own metadata block 427 // (PR28134). 428 EnumerateMetadata(nullptr, I.second); 429 } 430 431 // Enumerate types used by function bodies and argument lists. 432 for (const Function &F : M) { 433 for (const Argument &A : F.args()) 434 EnumerateType(A.getType()); 435 436 // Enumerate metadata attached to this function. 437 MDs.clear(); 438 F.getAllMetadata(MDs); 439 for (const auto &I : MDs) 440 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 441 442 for (const BasicBlock &BB : F) 443 for (const Instruction &I : BB) { 444 for (const Use &Op : I.operands()) { 445 auto *MD = dyn_cast<MetadataAsValue>(&Op); 446 if (!MD) { 447 EnumerateOperandType(Op); 448 continue; 449 } 450 451 // Local metadata is enumerated during function-incorporation. 452 if (isa<LocalAsMetadata>(MD->getMetadata())) 453 continue; 454 455 EnumerateMetadata(&F, MD->getMetadata()); 456 } 457 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 458 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 459 EnumerateType(I.getType()); 460 if (const auto *Call = dyn_cast<CallBase>(&I)) 461 EnumerateAttributes(Call->getAttributes()); 462 463 // Enumerate metadata attached with this instruction. 464 MDs.clear(); 465 I.getAllMetadataOtherThanDebugLoc(MDs); 466 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 467 EnumerateMetadata(&F, MDs[i].second); 468 469 // Don't enumerate the location directly -- it has a special record 470 // type -- but enumerate its operands. 471 if (DILocation *L = I.getDebugLoc()) 472 for (const Metadata *Op : L->operands()) 473 EnumerateMetadata(&F, Op); 474 } 475 } 476 477 // Optimize constant ordering. 478 OptimizeConstants(FirstConstant, Values.size()); 479 480 // Organize metadata ordering. 481 organizeMetadata(); 482 } 483 484 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 485 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 486 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 487 return I->second; 488 } 489 490 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 491 unsigned ComdatID = Comdats.idFor(C); 492 assert(ComdatID && "Comdat not found!"); 493 return ComdatID; 494 } 495 496 void ValueEnumerator::setInstructionID(const Instruction *I) { 497 InstructionMap[I] = InstructionCount++; 498 } 499 500 unsigned ValueEnumerator::getValueID(const Value *V) const { 501 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 502 return getMetadataID(MD->getMetadata()); 503 504 ValueMapType::const_iterator I = ValueMap.find(V); 505 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 506 return I->second-1; 507 } 508 509 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 510 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 511 print(dbgs(), ValueMap, "Default"); 512 dbgs() << '\n'; 513 print(dbgs(), MetadataMap, "MetaData"); 514 dbgs() << '\n'; 515 } 516 #endif 517 518 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 519 const char *Name) const { 520 OS << "Map Name: " << Name << "\n"; 521 OS << "Size: " << Map.size() << "\n"; 522 for (ValueMapType::const_iterator I = Map.begin(), 523 E = Map.end(); I != E; ++I) { 524 const Value *V = I->first; 525 if (V->hasName()) 526 OS << "Value: " << V->getName(); 527 else 528 OS << "Value: [null]\n"; 529 V->print(errs()); 530 errs() << '\n'; 531 532 OS << " Uses(" << V->getNumUses() << "):"; 533 for (const Use &U : V->uses()) { 534 if (&U != &*V->use_begin()) 535 OS << ","; 536 if(U->hasName()) 537 OS << " " << U->getName(); 538 else 539 OS << " [null]"; 540 541 } 542 OS << "\n\n"; 543 } 544 } 545 546 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 547 const char *Name) const { 548 OS << "Map Name: " << Name << "\n"; 549 OS << "Size: " << Map.size() << "\n"; 550 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 551 const Metadata *MD = I->first; 552 OS << "Metadata: slot = " << I->second.ID << "\n"; 553 OS << "Metadata: function = " << I->second.F << "\n"; 554 MD->print(OS); 555 OS << "\n"; 556 } 557 } 558 559 /// OptimizeConstants - Reorder constant pool for denser encoding. 560 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 561 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 562 563 if (ShouldPreserveUseListOrder) 564 // Optimizing constants makes the use-list order difficult to predict. 565 // Disable it for now when trying to preserve the order. 566 return; 567 568 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 569 [this](const std::pair<const Value *, unsigned> &LHS, 570 const std::pair<const Value *, unsigned> &RHS) { 571 // Sort by plane. 572 if (LHS.first->getType() != RHS.first->getType()) 573 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 574 // Then by frequency. 575 return LHS.second > RHS.second; 576 }); 577 578 // Ensure that integer and vector of integer constants are at the start of the 579 // constant pool. This is important so that GEP structure indices come before 580 // gep constant exprs. 581 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 582 isIntOrIntVectorValue); 583 584 // Rebuild the modified portion of ValueMap. 585 for (; CstStart != CstEnd; ++CstStart) 586 ValueMap[Values[CstStart].first] = CstStart+1; 587 } 588 589 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 590 /// table into the values table. 591 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 592 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 593 VI != VE; ++VI) 594 EnumerateValue(VI->getValue()); 595 } 596 597 /// Insert all of the values referenced by named metadata in the specified 598 /// module. 599 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 600 for (const auto &I : M.named_metadata()) 601 EnumerateNamedMDNode(&I); 602 } 603 604 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 605 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 606 EnumerateMetadata(nullptr, MD->getOperand(i)); 607 } 608 609 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 610 return F ? getValueID(F) + 1 : 0; 611 } 612 613 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 614 EnumerateMetadata(getMetadataFunctionID(F), MD); 615 } 616 617 void ValueEnumerator::EnumerateFunctionLocalMetadata( 618 const Function &F, const LocalAsMetadata *Local) { 619 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 620 } 621 622 void ValueEnumerator::dropFunctionFromMetadata( 623 MetadataMapType::value_type &FirstMD) { 624 SmallVector<const MDNode *, 64> Worklist; 625 auto push = [&Worklist](MetadataMapType::value_type &MD) { 626 auto &Entry = MD.second; 627 628 // Nothing to do if this metadata isn't tagged. 629 if (!Entry.F) 630 return; 631 632 // Drop the function tag. 633 Entry.F = 0; 634 635 // If this is has an ID and is an MDNode, then its operands have entries as 636 // well. We need to drop the function from them too. 637 if (Entry.ID) 638 if (auto *N = dyn_cast<MDNode>(MD.first)) 639 Worklist.push_back(N); 640 }; 641 push(FirstMD); 642 while (!Worklist.empty()) 643 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 644 if (!Op) 645 continue; 646 auto MD = MetadataMap.find(Op); 647 if (MD != MetadataMap.end()) 648 push(*MD); 649 } 650 } 651 652 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 653 // It's vital for reader efficiency that uniqued subgraphs are done in 654 // post-order; it's expensive when their operands have forward references. 655 // If a distinct node is referenced from a uniqued node, it'll be delayed 656 // until the uniqued subgraph has been completely traversed. 657 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 658 659 // Start by enumerating MD, and then work through its transitive operands in 660 // post-order. This requires a depth-first search. 661 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 662 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 663 Worklist.push_back(std::make_pair(N, N->op_begin())); 664 665 while (!Worklist.empty()) { 666 const MDNode *N = Worklist.back().first; 667 668 // Enumerate operands until we hit a new node. We need to traverse these 669 // nodes' operands before visiting the rest of N's operands. 670 MDNode::op_iterator I = std::find_if( 671 Worklist.back().second, N->op_end(), 672 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 673 if (I != N->op_end()) { 674 auto *Op = cast<MDNode>(*I); 675 Worklist.back().second = ++I; 676 677 // Delay traversing Op if it's a distinct node and N is uniqued. 678 if (Op->isDistinct() && !N->isDistinct()) 679 DelayedDistinctNodes.push_back(Op); 680 else 681 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 682 continue; 683 } 684 685 // All the operands have been visited. Now assign an ID. 686 Worklist.pop_back(); 687 MDs.push_back(N); 688 MetadataMap[N].ID = MDs.size(); 689 690 // Flush out any delayed distinct nodes; these are all the distinct nodes 691 // that are leaves in last uniqued subgraph. 692 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 693 for (const MDNode *N : DelayedDistinctNodes) 694 Worklist.push_back(std::make_pair(N, N->op_begin())); 695 DelayedDistinctNodes.clear(); 696 } 697 } 698 } 699 700 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 701 if (!MD) 702 return nullptr; 703 704 assert( 705 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 706 "Invalid metadata kind"); 707 708 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 709 MDIndex &Entry = Insertion.first->second; 710 if (!Insertion.second) { 711 // Already mapped. If F doesn't match the function tag, drop it. 712 if (Entry.hasDifferentFunction(F)) 713 dropFunctionFromMetadata(*Insertion.first); 714 return nullptr; 715 } 716 717 // Don't assign IDs to metadata nodes. 718 if (auto *N = dyn_cast<MDNode>(MD)) 719 return N; 720 721 // Save the metadata. 722 MDs.push_back(MD); 723 Entry.ID = MDs.size(); 724 725 // Enumerate the constant, if any. 726 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 727 EnumerateValue(C->getValue()); 728 729 return nullptr; 730 } 731 732 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 733 /// information reachable from the metadata. 734 void ValueEnumerator::EnumerateFunctionLocalMetadata( 735 unsigned F, const LocalAsMetadata *Local) { 736 assert(F && "Expected a function"); 737 738 // Check to see if it's already in! 739 MDIndex &Index = MetadataMap[Local]; 740 if (Index.ID) { 741 assert(Index.F == F && "Expected the same function"); 742 return; 743 } 744 745 MDs.push_back(Local); 746 Index.F = F; 747 Index.ID = MDs.size(); 748 749 EnumerateValue(Local->getValue()); 750 } 751 752 static unsigned getMetadataTypeOrder(const Metadata *MD) { 753 // Strings are emitted in bulk and must come first. 754 if (isa<MDString>(MD)) 755 return 0; 756 757 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 758 // to the front since we can detect it. 759 auto *N = dyn_cast<MDNode>(MD); 760 if (!N) 761 return 1; 762 763 // The reader is fast forward references for distinct node operands, but slow 764 // when uniqued operands are unresolved. 765 return N->isDistinct() ? 2 : 3; 766 } 767 768 void ValueEnumerator::organizeMetadata() { 769 assert(MetadataMap.size() == MDs.size() && 770 "Metadata map and vector out of sync"); 771 772 if (MDs.empty()) 773 return; 774 775 // Copy out the index information from MetadataMap in order to choose a new 776 // order. 777 SmallVector<MDIndex, 64> Order; 778 Order.reserve(MetadataMap.size()); 779 for (const Metadata *MD : MDs) 780 Order.push_back(MetadataMap.lookup(MD)); 781 782 // Partition: 783 // - by function, then 784 // - by isa<MDString> 785 // and then sort by the original/current ID. Since the IDs are guaranteed to 786 // be unique, the result of std::sort will be deterministic. There's no need 787 // for std::stable_sort. 788 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 789 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 790 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 791 }); 792 793 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 794 // and fix up MetadataMap. 795 std::vector<const Metadata *> OldMDs; 796 MDs.swap(OldMDs); 797 MDs.reserve(OldMDs.size()); 798 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 799 auto *MD = Order[I].get(OldMDs); 800 MDs.push_back(MD); 801 MetadataMap[MD].ID = I + 1; 802 if (isa<MDString>(MD)) 803 ++NumMDStrings; 804 } 805 806 // Return early if there's nothing for the functions. 807 if (MDs.size() == Order.size()) 808 return; 809 810 // Build the function metadata ranges. 811 MDRange R; 812 FunctionMDs.reserve(OldMDs.size()); 813 unsigned PrevF = 0; 814 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 815 ++I) { 816 unsigned F = Order[I].F; 817 if (!PrevF) { 818 PrevF = F; 819 } else if (PrevF != F) { 820 R.Last = FunctionMDs.size(); 821 std::swap(R, FunctionMDInfo[PrevF]); 822 R.First = FunctionMDs.size(); 823 824 ID = MDs.size(); 825 PrevF = F; 826 } 827 828 auto *MD = Order[I].get(OldMDs); 829 FunctionMDs.push_back(MD); 830 MetadataMap[MD].ID = ++ID; 831 if (isa<MDString>(MD)) 832 ++R.NumStrings; 833 } 834 R.Last = FunctionMDs.size(); 835 FunctionMDInfo[PrevF] = R; 836 } 837 838 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 839 NumModuleMDs = MDs.size(); 840 841 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 842 NumMDStrings = R.NumStrings; 843 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 844 FunctionMDs.begin() + R.Last); 845 } 846 847 void ValueEnumerator::EnumerateValue(const Value *V) { 848 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 849 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 850 851 // Check to see if it's already in! 852 unsigned &ValueID = ValueMap[V]; 853 if (ValueID) { 854 // Increment use count. 855 Values[ValueID-1].second++; 856 return; 857 } 858 859 if (auto *GO = dyn_cast<GlobalObject>(V)) 860 if (const Comdat *C = GO->getComdat()) 861 Comdats.insert(C); 862 863 // Enumerate the type of this value. 864 EnumerateType(V->getType()); 865 866 if (const Constant *C = dyn_cast<Constant>(V)) { 867 if (isa<GlobalValue>(C)) { 868 // Initializers for globals are handled explicitly elsewhere. 869 } else if (C->getNumOperands()) { 870 // If a constant has operands, enumerate them. This makes sure that if a 871 // constant has uses (for example an array of const ints), that they are 872 // inserted also. 873 874 // We prefer to enumerate them with values before we enumerate the user 875 // itself. This makes it more likely that we can avoid forward references 876 // in the reader. We know that there can be no cycles in the constants 877 // graph that don't go through a global variable. 878 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 879 I != E; ++I) 880 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 881 EnumerateValue(*I); 882 if (auto *CE = dyn_cast<ConstantExpr>(C)) 883 if (CE->getOpcode() == Instruction::ShuffleVector) 884 EnumerateValue(CE->getShuffleMaskForBitcode()); 885 886 // Finally, add the value. Doing this could make the ValueID reference be 887 // dangling, don't reuse it. 888 Values.push_back(std::make_pair(V, 1U)); 889 ValueMap[V] = Values.size(); 890 return; 891 } 892 } 893 894 // Add the value. 895 Values.push_back(std::make_pair(V, 1U)); 896 ValueID = Values.size(); 897 } 898 899 900 void ValueEnumerator::EnumerateType(Type *Ty) { 901 unsigned *TypeID = &TypeMap[Ty]; 902 903 // We've already seen this type. 904 if (*TypeID) 905 return; 906 907 // If it is a non-anonymous struct, mark the type as being visited so that we 908 // don't recursively visit it. This is safe because we allow forward 909 // references of these in the bitcode reader. 910 if (StructType *STy = dyn_cast<StructType>(Ty)) 911 if (!STy->isLiteral()) 912 *TypeID = ~0U; 913 914 // Enumerate all of the subtypes before we enumerate this type. This ensures 915 // that the type will be enumerated in an order that can be directly built. 916 for (Type *SubTy : Ty->subtypes()) 917 EnumerateType(SubTy); 918 919 // Refresh the TypeID pointer in case the table rehashed. 920 TypeID = &TypeMap[Ty]; 921 922 // Check to see if we got the pointer another way. This can happen when 923 // enumerating recursive types that hit the base case deeper than they start. 924 // 925 // If this is actually a struct that we are treating as forward ref'able, 926 // then emit the definition now that all of its contents are available. 927 if (*TypeID && *TypeID != ~0U) 928 return; 929 930 // Add this type now that its contents are all happily enumerated. 931 Types.push_back(Ty); 932 933 *TypeID = Types.size(); 934 } 935 936 // Enumerate the types for the specified value. If the value is a constant, 937 // walk through it, enumerating the types of the constant. 938 void ValueEnumerator::EnumerateOperandType(const Value *V) { 939 EnumerateType(V->getType()); 940 941 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 942 943 const Constant *C = dyn_cast<Constant>(V); 944 if (!C) 945 return; 946 947 // If this constant is already enumerated, ignore it, we know its type must 948 // be enumerated. 949 if (ValueMap.count(C)) 950 return; 951 952 // This constant may have operands, make sure to enumerate the types in 953 // them. 954 for (const Value *Op : C->operands()) { 955 // Don't enumerate basic blocks here, this happens as operands to 956 // blockaddress. 957 if (isa<BasicBlock>(Op)) 958 continue; 959 960 EnumerateOperandType(Op); 961 } 962 if (auto *CE = dyn_cast<ConstantExpr>(C)) 963 if (CE->getOpcode() == Instruction::ShuffleVector) 964 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 965 } 966 967 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 968 if (PAL.isEmpty()) return; // null is always 0. 969 970 // Do a lookup. 971 unsigned &Entry = AttributeListMap[PAL]; 972 if (Entry == 0) { 973 // Never saw this before, add it. 974 AttributeLists.push_back(PAL); 975 Entry = AttributeLists.size(); 976 } 977 978 // Do lookups for all attribute groups. 979 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 980 AttributeSet AS = PAL.getAttributes(i); 981 if (!AS.hasAttributes()) 982 continue; 983 IndexAndAttrSet Pair = {i, AS}; 984 unsigned &Entry = AttributeGroupMap[Pair]; 985 if (Entry == 0) { 986 AttributeGroups.push_back(Pair); 987 Entry = AttributeGroups.size(); 988 } 989 } 990 } 991 992 void ValueEnumerator::incorporateFunction(const Function &F) { 993 InstructionCount = 0; 994 NumModuleValues = Values.size(); 995 996 // Add global metadata to the function block. This doesn't include 997 // LocalAsMetadata. 998 incorporateFunctionMetadata(F); 999 1000 // Adding function arguments to the value table. 1001 for (const auto &I : F.args()) { 1002 EnumerateValue(&I); 1003 if (I.hasAttribute(Attribute::ByVal)) 1004 EnumerateType(I.getParamByValType()); 1005 else if (I.hasAttribute(Attribute::StructRet)) 1006 EnumerateType(I.getParamStructRetType()); 1007 } 1008 FirstFuncConstantID = Values.size(); 1009 1010 // Add all function-level constants to the value table. 1011 for (const BasicBlock &BB : F) { 1012 for (const Instruction &I : BB) { 1013 for (const Use &OI : I.operands()) { 1014 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1015 EnumerateValue(OI); 1016 } 1017 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1018 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1019 } 1020 BasicBlocks.push_back(&BB); 1021 ValueMap[&BB] = BasicBlocks.size(); 1022 } 1023 1024 // Optimize the constant layout. 1025 OptimizeConstants(FirstFuncConstantID, Values.size()); 1026 1027 // Add the function's parameter attributes so they are available for use in 1028 // the function's instruction. 1029 EnumerateAttributes(F.getAttributes()); 1030 1031 FirstInstID = Values.size(); 1032 1033 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1034 // Add all of the instructions. 1035 for (const BasicBlock &BB : F) { 1036 for (const Instruction &I : BB) { 1037 for (const Use &OI : I.operands()) { 1038 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 1039 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 1040 // Enumerate metadata after the instructions they might refer to. 1041 FnLocalMDVector.push_back(Local); 1042 } 1043 1044 if (!I.getType()->isVoidTy()) 1045 EnumerateValue(&I); 1046 } 1047 } 1048 1049 // Add all of the function-local metadata. 1050 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1051 // At this point, every local values have been incorporated, we shouldn't 1052 // have a metadata operand that references a value that hasn't been seen. 1053 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1054 "Missing value for metadata operand"); 1055 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1056 } 1057 } 1058 1059 void ValueEnumerator::purgeFunction() { 1060 /// Remove purged values from the ValueMap. 1061 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1062 ValueMap.erase(Values[i].first); 1063 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1064 MetadataMap.erase(MDs[i]); 1065 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1066 ValueMap.erase(BasicBlocks[i]); 1067 1068 Values.resize(NumModuleValues); 1069 MDs.resize(NumModuleMDs); 1070 BasicBlocks.clear(); 1071 NumMDStrings = 0; 1072 } 1073 1074 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1075 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1076 unsigned Counter = 0; 1077 for (const BasicBlock &BB : *F) 1078 IDMap[&BB] = ++Counter; 1079 } 1080 1081 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1082 /// specified basic block. This is relatively expensive information, so it 1083 /// should only be used by rare constructs such as address-of-label. 1084 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1085 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1086 if (Idx != 0) 1087 return Idx-1; 1088 1089 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1090 return getGlobalBasicBlockID(BB); 1091 } 1092 1093 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1094 return Log2_32_Ceil(getTypes().size() + 1); 1095 } 1096