1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Argument.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalIFunc.h" 26 #include "llvm/IR/GlobalObject.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/ValueSymbolTable.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstddef> 47 #include <iterator> 48 #include <tuple> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 namespace { 55 56 struct OrderMap { 57 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 58 unsigned LastGlobalConstantID = 0; 59 unsigned LastGlobalValueID = 0; 60 61 OrderMap() = default; 62 63 bool isGlobalConstant(unsigned ID) const { 64 return ID <= LastGlobalConstantID; 65 } 66 67 bool isGlobalValue(unsigned ID) const { 68 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 69 } 70 71 unsigned size() const { return IDs.size(); } 72 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 73 74 std::pair<unsigned, bool> lookup(const Value *V) const { 75 return IDs.lookup(V); 76 } 77 78 void index(const Value *V) { 79 // Explicitly sequence get-size and insert-value operations to avoid UB. 80 unsigned ID = IDs.size() + 1; 81 IDs[V].first = ID; 82 } 83 }; 84 85 } // end anonymous namespace 86 87 static void orderValue(const Value *V, OrderMap &OM) { 88 if (OM.lookup(V).first) 89 return; 90 91 if (const Constant *C = dyn_cast<Constant>(V)) { 92 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 93 for (const Value *Op : C->operands()) 94 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 95 orderValue(Op, OM); 96 if (auto *CE = dyn_cast<ConstantExpr>(C)) 97 if (CE->getOpcode() == Instruction::ShuffleVector) 98 orderValue(CE->getShuffleMaskForBitcode(), OM); 99 } 100 } 101 102 // Note: we cannot cache this lookup above, since inserting into the map 103 // changes the map's size, and thus affects the other IDs. 104 OM.index(V); 105 } 106 107 static OrderMap orderModule(const Module &M) { 108 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 109 // and ValueEnumerator::incorporateFunction(). 110 OrderMap OM; 111 112 // In the reader, initializers of GlobalValues are set *after* all the 113 // globals have been read. Rather than awkwardly modeling this behaviour 114 // directly in predictValueUseListOrderImpl(), just assign IDs to 115 // initializers of GlobalValues before GlobalValues themselves to model this 116 // implicitly. 117 for (const GlobalVariable &G : M.globals()) 118 if (G.hasInitializer()) 119 if (!isa<GlobalValue>(G.getInitializer())) 120 orderValue(G.getInitializer(), OM); 121 for (const GlobalAlias &A : M.aliases()) 122 if (!isa<GlobalValue>(A.getAliasee())) 123 orderValue(A.getAliasee(), OM); 124 for (const GlobalIFunc &I : M.ifuncs()) 125 if (!isa<GlobalValue>(I.getResolver())) 126 orderValue(I.getResolver(), OM); 127 for (const Function &F : M) { 128 for (const Use &U : F.operands()) 129 if (!isa<GlobalValue>(U.get())) 130 orderValue(U.get(), OM); 131 } 132 OM.LastGlobalConstantID = OM.size(); 133 134 // Initializers of GlobalValues are processed in 135 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 136 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 137 // by giving IDs in reverse order. 138 // 139 // Since GlobalValues never reference each other directly (just through 140 // initializers), their relative IDs only matter for determining order of 141 // uses in their initializers. 142 for (const Function &F : M) 143 orderValue(&F, OM); 144 for (const GlobalAlias &A : M.aliases()) 145 orderValue(&A, OM); 146 for (const GlobalIFunc &I : M.ifuncs()) 147 orderValue(&I, OM); 148 for (const GlobalVariable &G : M.globals()) 149 orderValue(&G, OM); 150 OM.LastGlobalValueID = OM.size(); 151 152 for (const Function &F : M) { 153 if (F.isDeclaration()) 154 continue; 155 // Here we need to match the union of ValueEnumerator::incorporateFunction() 156 // and WriteFunction(). Basic blocks are implicitly declared before 157 // anything else (by declaring their size). 158 for (const BasicBlock &BB : F) 159 orderValue(&BB, OM); 160 for (const Argument &A : F.args()) 161 orderValue(&A, OM); 162 for (const BasicBlock &BB : F) 163 for (const Instruction &I : BB) { 164 for (const Value *Op : I.operands()) 165 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 166 isa<InlineAsm>(*Op)) 167 orderValue(Op, OM); 168 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 169 orderValue(SVI->getShuffleMaskForBitcode(), OM); 170 } 171 for (const BasicBlock &BB : F) 172 for (const Instruction &I : BB) 173 orderValue(&I, OM); 174 } 175 return OM; 176 } 177 178 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 179 unsigned ID, const OrderMap &OM, 180 UseListOrderStack &Stack) { 181 // Predict use-list order for this one. 182 using Entry = std::pair<const Use *, unsigned>; 183 SmallVector<Entry, 64> List; 184 for (const Use &U : V->uses()) 185 // Check if this user will be serialized. 186 if (OM.lookup(U.getUser()).first) 187 List.push_back(std::make_pair(&U, List.size())); 188 189 if (List.size() < 2) 190 // We may have lost some users. 191 return; 192 193 bool IsGlobalValue = OM.isGlobalValue(ID); 194 llvm::sort(List, [&](const Entry &L, const Entry &R) { 195 const Use *LU = L.first; 196 const Use *RU = R.first; 197 if (LU == RU) 198 return false; 199 200 auto LID = OM.lookup(LU->getUser()).first; 201 auto RID = OM.lookup(RU->getUser()).first; 202 203 // Global values are processed in reverse order. 204 // 205 // Moreover, initializers of GlobalValues are set *after* all the globals 206 // have been read (despite having earlier IDs). Rather than awkwardly 207 // modeling this behaviour here, orderModule() has assigned IDs to 208 // initializers of GlobalValues before GlobalValues themselves. 209 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 210 return LID < RID; 211 212 // If ID is 4, then expect: 7 6 5 1 2 3. 213 if (LID < RID) { 214 if (RID <= ID) 215 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 216 return true; 217 return false; 218 } 219 if (RID < LID) { 220 if (LID <= ID) 221 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 222 return false; 223 return true; 224 } 225 226 // LID and RID are equal, so we have different operands of the same user. 227 // Assume operands are added in order for all instructions. 228 if (LID <= ID) 229 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 230 return LU->getOperandNo() < RU->getOperandNo(); 231 return LU->getOperandNo() > RU->getOperandNo(); 232 }); 233 234 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 235 return L.second < R.second; 236 })) 237 // Order is already correct. 238 return; 239 240 // Store the shuffle. 241 Stack.emplace_back(V, F, List.size()); 242 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 243 for (size_t I = 0, E = List.size(); I != E; ++I) 244 Stack.back().Shuffle[I] = List[I].second; 245 } 246 247 static void predictValueUseListOrder(const Value *V, const Function *F, 248 OrderMap &OM, UseListOrderStack &Stack) { 249 auto &IDPair = OM[V]; 250 assert(IDPair.first && "Unmapped value"); 251 if (IDPair.second) 252 // Already predicted. 253 return; 254 255 // Do the actual prediction. 256 IDPair.second = true; 257 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 258 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 259 260 // Recursive descent into constants. 261 if (const Constant *C = dyn_cast<Constant>(V)) { 262 if (C->getNumOperands()) { // Visit GlobalValues. 263 for (const Value *Op : C->operands()) 264 if (isa<Constant>(Op)) // Visit GlobalValues. 265 predictValueUseListOrder(Op, F, OM, Stack); 266 if (auto *CE = dyn_cast<ConstantExpr>(C)) 267 if (CE->getOpcode() == Instruction::ShuffleVector) 268 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 269 Stack); 270 } 271 } 272 } 273 274 static UseListOrderStack predictUseListOrder(const Module &M) { 275 OrderMap OM = orderModule(M); 276 277 // Use-list orders need to be serialized after all the users have been added 278 // to a value, or else the shuffles will be incomplete. Store them per 279 // function in a stack. 280 // 281 // Aside from function order, the order of values doesn't matter much here. 282 UseListOrderStack Stack; 283 284 // We want to visit the functions backward now so we can list function-local 285 // constants in the last Function they're used in. Module-level constants 286 // have already been visited above. 287 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 288 const Function &F = *I; 289 if (F.isDeclaration()) 290 continue; 291 for (const BasicBlock &BB : F) 292 predictValueUseListOrder(&BB, &F, OM, Stack); 293 for (const Argument &A : F.args()) 294 predictValueUseListOrder(&A, &F, OM, Stack); 295 for (const BasicBlock &BB : F) 296 for (const Instruction &I : BB) { 297 for (const Value *Op : I.operands()) 298 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 299 predictValueUseListOrder(Op, &F, OM, Stack); 300 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 301 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 302 Stack); 303 } 304 for (const BasicBlock &BB : F) 305 for (const Instruction &I : BB) 306 predictValueUseListOrder(&I, &F, OM, Stack); 307 } 308 309 // Visit globals last, since the module-level use-list block will be seen 310 // before the function bodies are processed. 311 for (const GlobalVariable &G : M.globals()) 312 predictValueUseListOrder(&G, nullptr, OM, Stack); 313 for (const Function &F : M) 314 predictValueUseListOrder(&F, nullptr, OM, Stack); 315 for (const GlobalAlias &A : M.aliases()) 316 predictValueUseListOrder(&A, nullptr, OM, Stack); 317 for (const GlobalIFunc &I : M.ifuncs()) 318 predictValueUseListOrder(&I, nullptr, OM, Stack); 319 for (const GlobalVariable &G : M.globals()) 320 if (G.hasInitializer()) 321 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 322 for (const GlobalAlias &A : M.aliases()) 323 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 324 for (const GlobalIFunc &I : M.ifuncs()) 325 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 326 for (const Function &F : M) { 327 for (const Use &U : F.operands()) 328 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 329 } 330 331 return Stack; 332 } 333 334 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 335 return V.first->getType()->isIntOrIntVectorTy(); 336 } 337 338 ValueEnumerator::ValueEnumerator(const Module &M, 339 bool ShouldPreserveUseListOrder) 340 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 341 if (ShouldPreserveUseListOrder) 342 UseListOrders = predictUseListOrder(M); 343 344 // Enumerate the global variables. 345 for (const GlobalVariable &GV : M.globals()) 346 EnumerateValue(&GV); 347 348 // Enumerate the functions. 349 for (const Function & F : M) { 350 EnumerateValue(&F); 351 EnumerateAttributes(F.getAttributes()); 352 } 353 354 // Enumerate the aliases. 355 for (const GlobalAlias &GA : M.aliases()) 356 EnumerateValue(&GA); 357 358 // Enumerate the ifuncs. 359 for (const GlobalIFunc &GIF : M.ifuncs()) 360 EnumerateValue(&GIF); 361 362 // Remember what is the cutoff between globalvalue's and other constants. 363 unsigned FirstConstant = Values.size(); 364 365 // Enumerate the global variable initializers and attributes. 366 for (const GlobalVariable &GV : M.globals()) { 367 if (GV.hasInitializer()) 368 EnumerateValue(GV.getInitializer()); 369 if (GV.hasAttributes()) 370 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 371 } 372 373 // Enumerate the aliasees. 374 for (const GlobalAlias &GA : M.aliases()) 375 EnumerateValue(GA.getAliasee()); 376 377 // Enumerate the ifunc resolvers. 378 for (const GlobalIFunc &GIF : M.ifuncs()) 379 EnumerateValue(GIF.getResolver()); 380 381 // Enumerate any optional Function data. 382 for (const Function &F : M) 383 for (const Use &U : F.operands()) 384 EnumerateValue(U.get()); 385 386 // Enumerate the metadata type. 387 // 388 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 389 // only encodes the metadata type when it's used as a value. 390 EnumerateType(Type::getMetadataTy(M.getContext())); 391 392 // Insert constants and metadata that are named at module level into the slot 393 // pool so that the module symbol table can refer to them... 394 EnumerateValueSymbolTable(M.getValueSymbolTable()); 395 EnumerateNamedMetadata(M); 396 397 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 398 for (const GlobalVariable &GV : M.globals()) { 399 MDs.clear(); 400 GV.getAllMetadata(MDs); 401 for (const auto &I : MDs) 402 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 403 // to write metadata to the global variable's own metadata block 404 // (PR28134). 405 EnumerateMetadata(nullptr, I.second); 406 } 407 408 // Enumerate types used by function bodies and argument lists. 409 for (const Function &F : M) { 410 for (const Argument &A : F.args()) 411 EnumerateType(A.getType()); 412 413 // Enumerate metadata attached to this function. 414 MDs.clear(); 415 F.getAllMetadata(MDs); 416 for (const auto &I : MDs) 417 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 418 419 for (const BasicBlock &BB : F) 420 for (const Instruction &I : BB) { 421 for (const Use &Op : I.operands()) { 422 auto *MD = dyn_cast<MetadataAsValue>(&Op); 423 if (!MD) { 424 EnumerateOperandType(Op); 425 continue; 426 } 427 428 // Local metadata is enumerated during function-incorporation. 429 if (isa<LocalAsMetadata>(MD->getMetadata())) 430 continue; 431 432 EnumerateMetadata(&F, MD->getMetadata()); 433 } 434 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 435 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 436 EnumerateType(I.getType()); 437 if (const auto *Call = dyn_cast<CallBase>(&I)) 438 EnumerateAttributes(Call->getAttributes()); 439 440 // Enumerate metadata attached with this instruction. 441 MDs.clear(); 442 I.getAllMetadataOtherThanDebugLoc(MDs); 443 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 444 EnumerateMetadata(&F, MDs[i].second); 445 446 // Don't enumerate the location directly -- it has a special record 447 // type -- but enumerate its operands. 448 if (DILocation *L = I.getDebugLoc()) 449 for (const Metadata *Op : L->operands()) 450 EnumerateMetadata(&F, Op); 451 } 452 } 453 454 // Optimize constant ordering. 455 OptimizeConstants(FirstConstant, Values.size()); 456 457 // Organize metadata ordering. 458 organizeMetadata(); 459 } 460 461 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 462 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 463 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 464 return I->second; 465 } 466 467 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 468 unsigned ComdatID = Comdats.idFor(C); 469 assert(ComdatID && "Comdat not found!"); 470 return ComdatID; 471 } 472 473 void ValueEnumerator::setInstructionID(const Instruction *I) { 474 InstructionMap[I] = InstructionCount++; 475 } 476 477 unsigned ValueEnumerator::getValueID(const Value *V) const { 478 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 479 return getMetadataID(MD->getMetadata()); 480 481 ValueMapType::const_iterator I = ValueMap.find(V); 482 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 483 return I->second-1; 484 } 485 486 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 487 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 488 print(dbgs(), ValueMap, "Default"); 489 dbgs() << '\n'; 490 print(dbgs(), MetadataMap, "MetaData"); 491 dbgs() << '\n'; 492 } 493 #endif 494 495 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 496 const char *Name) const { 497 OS << "Map Name: " << Name << "\n"; 498 OS << "Size: " << Map.size() << "\n"; 499 for (ValueMapType::const_iterator I = Map.begin(), 500 E = Map.end(); I != E; ++I) { 501 const Value *V = I->first; 502 if (V->hasName()) 503 OS << "Value: " << V->getName(); 504 else 505 OS << "Value: [null]\n"; 506 V->print(errs()); 507 errs() << '\n'; 508 509 OS << " Uses(" << V->getNumUses() << "):"; 510 for (const Use &U : V->uses()) { 511 if (&U != &*V->use_begin()) 512 OS << ","; 513 if(U->hasName()) 514 OS << " " << U->getName(); 515 else 516 OS << " [null]"; 517 518 } 519 OS << "\n\n"; 520 } 521 } 522 523 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 524 const char *Name) const { 525 OS << "Map Name: " << Name << "\n"; 526 OS << "Size: " << Map.size() << "\n"; 527 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 528 const Metadata *MD = I->first; 529 OS << "Metadata: slot = " << I->second.ID << "\n"; 530 OS << "Metadata: function = " << I->second.F << "\n"; 531 MD->print(OS); 532 OS << "\n"; 533 } 534 } 535 536 /// OptimizeConstants - Reorder constant pool for denser encoding. 537 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 538 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 539 540 if (ShouldPreserveUseListOrder) 541 // Optimizing constants makes the use-list order difficult to predict. 542 // Disable it for now when trying to preserve the order. 543 return; 544 545 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 546 [this](const std::pair<const Value *, unsigned> &LHS, 547 const std::pair<const Value *, unsigned> &RHS) { 548 // Sort by plane. 549 if (LHS.first->getType() != RHS.first->getType()) 550 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 551 // Then by frequency. 552 return LHS.second > RHS.second; 553 }); 554 555 // Ensure that integer and vector of integer constants are at the start of the 556 // constant pool. This is important so that GEP structure indices come before 557 // gep constant exprs. 558 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 559 isIntOrIntVectorValue); 560 561 // Rebuild the modified portion of ValueMap. 562 for (; CstStart != CstEnd; ++CstStart) 563 ValueMap[Values[CstStart].first] = CstStart+1; 564 } 565 566 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 567 /// table into the values table. 568 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 569 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 570 VI != VE; ++VI) 571 EnumerateValue(VI->getValue()); 572 } 573 574 /// Insert all of the values referenced by named metadata in the specified 575 /// module. 576 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 577 for (const auto &I : M.named_metadata()) 578 EnumerateNamedMDNode(&I); 579 } 580 581 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 582 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 583 EnumerateMetadata(nullptr, MD->getOperand(i)); 584 } 585 586 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 587 return F ? getValueID(F) + 1 : 0; 588 } 589 590 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 591 EnumerateMetadata(getMetadataFunctionID(F), MD); 592 } 593 594 void ValueEnumerator::EnumerateFunctionLocalMetadata( 595 const Function &F, const LocalAsMetadata *Local) { 596 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 597 } 598 599 void ValueEnumerator::dropFunctionFromMetadata( 600 MetadataMapType::value_type &FirstMD) { 601 SmallVector<const MDNode *, 64> Worklist; 602 auto push = [&Worklist](MetadataMapType::value_type &MD) { 603 auto &Entry = MD.second; 604 605 // Nothing to do if this metadata isn't tagged. 606 if (!Entry.F) 607 return; 608 609 // Drop the function tag. 610 Entry.F = 0; 611 612 // If this is has an ID and is an MDNode, then its operands have entries as 613 // well. We need to drop the function from them too. 614 if (Entry.ID) 615 if (auto *N = dyn_cast<MDNode>(MD.first)) 616 Worklist.push_back(N); 617 }; 618 push(FirstMD); 619 while (!Worklist.empty()) 620 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 621 if (!Op) 622 continue; 623 auto MD = MetadataMap.find(Op); 624 if (MD != MetadataMap.end()) 625 push(*MD); 626 } 627 } 628 629 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 630 // It's vital for reader efficiency that uniqued subgraphs are done in 631 // post-order; it's expensive when their operands have forward references. 632 // If a distinct node is referenced from a uniqued node, it'll be delayed 633 // until the uniqued subgraph has been completely traversed. 634 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 635 636 // Start by enumerating MD, and then work through its transitive operands in 637 // post-order. This requires a depth-first search. 638 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 639 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 640 Worklist.push_back(std::make_pair(N, N->op_begin())); 641 642 while (!Worklist.empty()) { 643 const MDNode *N = Worklist.back().first; 644 645 // Enumerate operands until we hit a new node. We need to traverse these 646 // nodes' operands before visiting the rest of N's operands. 647 MDNode::op_iterator I = std::find_if( 648 Worklist.back().second, N->op_end(), 649 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 650 if (I != N->op_end()) { 651 auto *Op = cast<MDNode>(*I); 652 Worklist.back().second = ++I; 653 654 // Delay traversing Op if it's a distinct node and N is uniqued. 655 if (Op->isDistinct() && !N->isDistinct()) 656 DelayedDistinctNodes.push_back(Op); 657 else 658 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 659 continue; 660 } 661 662 // All the operands have been visited. Now assign an ID. 663 Worklist.pop_back(); 664 MDs.push_back(N); 665 MetadataMap[N].ID = MDs.size(); 666 667 // Flush out any delayed distinct nodes; these are all the distinct nodes 668 // that are leaves in last uniqued subgraph. 669 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 670 for (const MDNode *N : DelayedDistinctNodes) 671 Worklist.push_back(std::make_pair(N, N->op_begin())); 672 DelayedDistinctNodes.clear(); 673 } 674 } 675 } 676 677 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 678 if (!MD) 679 return nullptr; 680 681 assert( 682 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 683 "Invalid metadata kind"); 684 685 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 686 MDIndex &Entry = Insertion.first->second; 687 if (!Insertion.second) { 688 // Already mapped. If F doesn't match the function tag, drop it. 689 if (Entry.hasDifferentFunction(F)) 690 dropFunctionFromMetadata(*Insertion.first); 691 return nullptr; 692 } 693 694 // Don't assign IDs to metadata nodes. 695 if (auto *N = dyn_cast<MDNode>(MD)) 696 return N; 697 698 // Save the metadata. 699 MDs.push_back(MD); 700 Entry.ID = MDs.size(); 701 702 // Enumerate the constant, if any. 703 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 704 EnumerateValue(C->getValue()); 705 706 return nullptr; 707 } 708 709 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 710 /// information reachable from the metadata. 711 void ValueEnumerator::EnumerateFunctionLocalMetadata( 712 unsigned F, const LocalAsMetadata *Local) { 713 assert(F && "Expected a function"); 714 715 // Check to see if it's already in! 716 MDIndex &Index = MetadataMap[Local]; 717 if (Index.ID) { 718 assert(Index.F == F && "Expected the same function"); 719 return; 720 } 721 722 MDs.push_back(Local); 723 Index.F = F; 724 Index.ID = MDs.size(); 725 726 EnumerateValue(Local->getValue()); 727 } 728 729 static unsigned getMetadataTypeOrder(const Metadata *MD) { 730 // Strings are emitted in bulk and must come first. 731 if (isa<MDString>(MD)) 732 return 0; 733 734 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 735 // to the front since we can detect it. 736 auto *N = dyn_cast<MDNode>(MD); 737 if (!N) 738 return 1; 739 740 // The reader is fast forward references for distinct node operands, but slow 741 // when uniqued operands are unresolved. 742 return N->isDistinct() ? 2 : 3; 743 } 744 745 void ValueEnumerator::organizeMetadata() { 746 assert(MetadataMap.size() == MDs.size() && 747 "Metadata map and vector out of sync"); 748 749 if (MDs.empty()) 750 return; 751 752 // Copy out the index information from MetadataMap in order to choose a new 753 // order. 754 SmallVector<MDIndex, 64> Order; 755 Order.reserve(MetadataMap.size()); 756 for (const Metadata *MD : MDs) 757 Order.push_back(MetadataMap.lookup(MD)); 758 759 // Partition: 760 // - by function, then 761 // - by isa<MDString> 762 // and then sort by the original/current ID. Since the IDs are guaranteed to 763 // be unique, the result of std::sort will be deterministic. There's no need 764 // for std::stable_sort. 765 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 766 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 767 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 768 }); 769 770 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 771 // and fix up MetadataMap. 772 std::vector<const Metadata *> OldMDs; 773 MDs.swap(OldMDs); 774 MDs.reserve(OldMDs.size()); 775 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 776 auto *MD = Order[I].get(OldMDs); 777 MDs.push_back(MD); 778 MetadataMap[MD].ID = I + 1; 779 if (isa<MDString>(MD)) 780 ++NumMDStrings; 781 } 782 783 // Return early if there's nothing for the functions. 784 if (MDs.size() == Order.size()) 785 return; 786 787 // Build the function metadata ranges. 788 MDRange R; 789 FunctionMDs.reserve(OldMDs.size()); 790 unsigned PrevF = 0; 791 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 792 ++I) { 793 unsigned F = Order[I].F; 794 if (!PrevF) { 795 PrevF = F; 796 } else if (PrevF != F) { 797 R.Last = FunctionMDs.size(); 798 std::swap(R, FunctionMDInfo[PrevF]); 799 R.First = FunctionMDs.size(); 800 801 ID = MDs.size(); 802 PrevF = F; 803 } 804 805 auto *MD = Order[I].get(OldMDs); 806 FunctionMDs.push_back(MD); 807 MetadataMap[MD].ID = ++ID; 808 if (isa<MDString>(MD)) 809 ++R.NumStrings; 810 } 811 R.Last = FunctionMDs.size(); 812 FunctionMDInfo[PrevF] = R; 813 } 814 815 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 816 NumModuleMDs = MDs.size(); 817 818 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 819 NumMDStrings = R.NumStrings; 820 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 821 FunctionMDs.begin() + R.Last); 822 } 823 824 void ValueEnumerator::EnumerateValue(const Value *V) { 825 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 826 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 827 828 // Check to see if it's already in! 829 unsigned &ValueID = ValueMap[V]; 830 if (ValueID) { 831 // Increment use count. 832 Values[ValueID-1].second++; 833 return; 834 } 835 836 if (auto *GO = dyn_cast<GlobalObject>(V)) 837 if (const Comdat *C = GO->getComdat()) 838 Comdats.insert(C); 839 840 // Enumerate the type of this value. 841 EnumerateType(V->getType()); 842 843 if (const Constant *C = dyn_cast<Constant>(V)) { 844 if (isa<GlobalValue>(C)) { 845 // Initializers for globals are handled explicitly elsewhere. 846 } else if (C->getNumOperands()) { 847 // If a constant has operands, enumerate them. This makes sure that if a 848 // constant has uses (for example an array of const ints), that they are 849 // inserted also. 850 851 // We prefer to enumerate them with values before we enumerate the user 852 // itself. This makes it more likely that we can avoid forward references 853 // in the reader. We know that there can be no cycles in the constants 854 // graph that don't go through a global variable. 855 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 856 I != E; ++I) 857 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 858 EnumerateValue(*I); 859 if (auto *CE = dyn_cast<ConstantExpr>(C)) 860 if (CE->getOpcode() == Instruction::ShuffleVector) 861 EnumerateValue(CE->getShuffleMaskForBitcode()); 862 863 // Finally, add the value. Doing this could make the ValueID reference be 864 // dangling, don't reuse it. 865 Values.push_back(std::make_pair(V, 1U)); 866 ValueMap[V] = Values.size(); 867 return; 868 } 869 } 870 871 // Add the value. 872 Values.push_back(std::make_pair(V, 1U)); 873 ValueID = Values.size(); 874 } 875 876 877 void ValueEnumerator::EnumerateType(Type *Ty) { 878 unsigned *TypeID = &TypeMap[Ty]; 879 880 // We've already seen this type. 881 if (*TypeID) 882 return; 883 884 // If it is a non-anonymous struct, mark the type as being visited so that we 885 // don't recursively visit it. This is safe because we allow forward 886 // references of these in the bitcode reader. 887 if (StructType *STy = dyn_cast<StructType>(Ty)) 888 if (!STy->isLiteral()) 889 *TypeID = ~0U; 890 891 // Enumerate all of the subtypes before we enumerate this type. This ensures 892 // that the type will be enumerated in an order that can be directly built. 893 for (Type *SubTy : Ty->subtypes()) 894 EnumerateType(SubTy); 895 896 // Refresh the TypeID pointer in case the table rehashed. 897 TypeID = &TypeMap[Ty]; 898 899 // Check to see if we got the pointer another way. This can happen when 900 // enumerating recursive types that hit the base case deeper than they start. 901 // 902 // If this is actually a struct that we are treating as forward ref'able, 903 // then emit the definition now that all of its contents are available. 904 if (*TypeID && *TypeID != ~0U) 905 return; 906 907 // Add this type now that its contents are all happily enumerated. 908 Types.push_back(Ty); 909 910 *TypeID = Types.size(); 911 } 912 913 // Enumerate the types for the specified value. If the value is a constant, 914 // walk through it, enumerating the types of the constant. 915 void ValueEnumerator::EnumerateOperandType(const Value *V) { 916 EnumerateType(V->getType()); 917 918 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 919 920 const Constant *C = dyn_cast<Constant>(V); 921 if (!C) 922 return; 923 924 // If this constant is already enumerated, ignore it, we know its type must 925 // be enumerated. 926 if (ValueMap.count(C)) 927 return; 928 929 // This constant may have operands, make sure to enumerate the types in 930 // them. 931 for (const Value *Op : C->operands()) { 932 // Don't enumerate basic blocks here, this happens as operands to 933 // blockaddress. 934 if (isa<BasicBlock>(Op)) 935 continue; 936 937 EnumerateOperandType(Op); 938 } 939 if (auto *CE = dyn_cast<ConstantExpr>(C)) 940 if (CE->getOpcode() == Instruction::ShuffleVector) 941 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 942 } 943 944 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 945 if (PAL.isEmpty()) return; // null is always 0. 946 947 // Do a lookup. 948 unsigned &Entry = AttributeListMap[PAL]; 949 if (Entry == 0) { 950 // Never saw this before, add it. 951 AttributeLists.push_back(PAL); 952 Entry = AttributeLists.size(); 953 } 954 955 // Do lookups for all attribute groups. 956 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 957 AttributeSet AS = PAL.getAttributes(i); 958 if (!AS.hasAttributes()) 959 continue; 960 IndexAndAttrSet Pair = {i, AS}; 961 unsigned &Entry = AttributeGroupMap[Pair]; 962 if (Entry == 0) { 963 AttributeGroups.push_back(Pair); 964 Entry = AttributeGroups.size(); 965 } 966 } 967 } 968 969 void ValueEnumerator::incorporateFunction(const Function &F) { 970 InstructionCount = 0; 971 NumModuleValues = Values.size(); 972 973 // Add global metadata to the function block. This doesn't include 974 // LocalAsMetadata. 975 incorporateFunctionMetadata(F); 976 977 // Adding function arguments to the value table. 978 for (const auto &I : F.args()) { 979 EnumerateValue(&I); 980 if (I.hasAttribute(Attribute::ByVal)) 981 EnumerateType(I.getParamByValType()); 982 } 983 FirstFuncConstantID = Values.size(); 984 985 // Add all function-level constants to the value table. 986 for (const BasicBlock &BB : F) { 987 for (const Instruction &I : BB) { 988 for (const Use &OI : I.operands()) { 989 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 990 EnumerateValue(OI); 991 } 992 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 993 EnumerateValue(SVI->getShuffleMaskForBitcode()); 994 } 995 BasicBlocks.push_back(&BB); 996 ValueMap[&BB] = BasicBlocks.size(); 997 } 998 999 // Optimize the constant layout. 1000 OptimizeConstants(FirstFuncConstantID, Values.size()); 1001 1002 // Add the function's parameter attributes so they are available for use in 1003 // the function's instruction. 1004 EnumerateAttributes(F.getAttributes()); 1005 1006 FirstInstID = Values.size(); 1007 1008 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1009 // Add all of the instructions. 1010 for (const BasicBlock &BB : F) { 1011 for (const Instruction &I : BB) { 1012 for (const Use &OI : I.operands()) { 1013 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 1014 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 1015 // Enumerate metadata after the instructions they might refer to. 1016 FnLocalMDVector.push_back(Local); 1017 } 1018 1019 if (!I.getType()->isVoidTy()) 1020 EnumerateValue(&I); 1021 } 1022 } 1023 1024 // Add all of the function-local metadata. 1025 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1026 // At this point, every local values have been incorporated, we shouldn't 1027 // have a metadata operand that references a value that hasn't been seen. 1028 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1029 "Missing value for metadata operand"); 1030 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1031 } 1032 } 1033 1034 void ValueEnumerator::purgeFunction() { 1035 /// Remove purged values from the ValueMap. 1036 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1037 ValueMap.erase(Values[i].first); 1038 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1039 MetadataMap.erase(MDs[i]); 1040 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1041 ValueMap.erase(BasicBlocks[i]); 1042 1043 Values.resize(NumModuleValues); 1044 MDs.resize(NumModuleMDs); 1045 BasicBlocks.clear(); 1046 NumMDStrings = 0; 1047 } 1048 1049 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1050 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1051 unsigned Counter = 0; 1052 for (const BasicBlock &BB : *F) 1053 IDMap[&BB] = ++Counter; 1054 } 1055 1056 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1057 /// specified basic block. This is relatively expensive information, so it 1058 /// should only be used by rare constructs such as address-of-label. 1059 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1060 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1061 if (Idx != 0) 1062 return Idx-1; 1063 1064 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1065 return getGlobalBasicBlockID(BB); 1066 } 1067 1068 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1069 return Log2_32_Ceil(getTypes().size() + 1); 1070 } 1071