xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Argument.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalAlias.h"
25 #include "llvm/IR/GlobalIFunc.h"
26 #include "llvm/IR/GlobalObject.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/UseListOrder.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstddef>
47 #include <iterator>
48 #include <tuple>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 namespace {
55 
56 struct OrderMap {
57   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
58   unsigned LastGlobalConstantID = 0;
59   unsigned LastGlobalValueID = 0;
60 
61   OrderMap() = default;
62 
63   bool isGlobalConstant(unsigned ID) const {
64     return ID <= LastGlobalConstantID;
65   }
66 
67   bool isGlobalValue(unsigned ID) const {
68     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
69   }
70 
71   unsigned size() const { return IDs.size(); }
72   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
73 
74   std::pair<unsigned, bool> lookup(const Value *V) const {
75     return IDs.lookup(V);
76   }
77 
78   void index(const Value *V) {
79     // Explicitly sequence get-size and insert-value operations to avoid UB.
80     unsigned ID = IDs.size() + 1;
81     IDs[V].first = ID;
82   }
83 };
84 
85 } // end anonymous namespace
86 
87 static void orderValue(const Value *V, OrderMap &OM) {
88   if (OM.lookup(V).first)
89     return;
90 
91   if (const Constant *C = dyn_cast<Constant>(V)) {
92     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
93       for (const Value *Op : C->operands())
94         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
95           orderValue(Op, OM);
96       if (auto *CE = dyn_cast<ConstantExpr>(C))
97         if (CE->getOpcode() == Instruction::ShuffleVector)
98           orderValue(CE->getShuffleMaskForBitcode(), OM);
99     }
100   }
101 
102   // Note: we cannot cache this lookup above, since inserting into the map
103   // changes the map's size, and thus affects the other IDs.
104   OM.index(V);
105 }
106 
107 static OrderMap orderModule(const Module &M) {
108   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
109   // and ValueEnumerator::incorporateFunction().
110   OrderMap OM;
111 
112   // In the reader, initializers of GlobalValues are set *after* all the
113   // globals have been read.  Rather than awkwardly modeling this behaviour
114   // directly in predictValueUseListOrderImpl(), just assign IDs to
115   // initializers of GlobalValues before GlobalValues themselves to model this
116   // implicitly.
117   for (const GlobalVariable &G : M.globals())
118     if (G.hasInitializer())
119       if (!isa<GlobalValue>(G.getInitializer()))
120         orderValue(G.getInitializer(), OM);
121   for (const GlobalAlias &A : M.aliases())
122     if (!isa<GlobalValue>(A.getAliasee()))
123       orderValue(A.getAliasee(), OM);
124   for (const GlobalIFunc &I : M.ifuncs())
125     if (!isa<GlobalValue>(I.getResolver()))
126       orderValue(I.getResolver(), OM);
127   for (const Function &F : M) {
128     for (const Use &U : F.operands())
129       if (!isa<GlobalValue>(U.get()))
130         orderValue(U.get(), OM);
131   }
132   OM.LastGlobalConstantID = OM.size();
133 
134   // Initializers of GlobalValues are processed in
135   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
136   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
137   // by giving IDs in reverse order.
138   //
139   // Since GlobalValues never reference each other directly (just through
140   // initializers), their relative IDs only matter for determining order of
141   // uses in their initializers.
142   for (const Function &F : M)
143     orderValue(&F, OM);
144   for (const GlobalAlias &A : M.aliases())
145     orderValue(&A, OM);
146   for (const GlobalIFunc &I : M.ifuncs())
147     orderValue(&I, OM);
148   for (const GlobalVariable &G : M.globals())
149     orderValue(&G, OM);
150   OM.LastGlobalValueID = OM.size();
151 
152   for (const Function &F : M) {
153     if (F.isDeclaration())
154       continue;
155     // Here we need to match the union of ValueEnumerator::incorporateFunction()
156     // and WriteFunction().  Basic blocks are implicitly declared before
157     // anything else (by declaring their size).
158     for (const BasicBlock &BB : F)
159       orderValue(&BB, OM);
160     for (const Argument &A : F.args())
161       orderValue(&A, OM);
162     for (const BasicBlock &BB : F)
163       for (const Instruction &I : BB) {
164         for (const Value *Op : I.operands())
165           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
166               isa<InlineAsm>(*Op))
167             orderValue(Op, OM);
168         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
169           orderValue(SVI->getShuffleMaskForBitcode(), OM);
170       }
171     for (const BasicBlock &BB : F)
172       for (const Instruction &I : BB)
173         orderValue(&I, OM);
174   }
175   return OM;
176 }
177 
178 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
179                                          unsigned ID, const OrderMap &OM,
180                                          UseListOrderStack &Stack) {
181   // Predict use-list order for this one.
182   using Entry = std::pair<const Use *, unsigned>;
183   SmallVector<Entry, 64> List;
184   for (const Use &U : V->uses())
185     // Check if this user will be serialized.
186     if (OM.lookup(U.getUser()).first)
187       List.push_back(std::make_pair(&U, List.size()));
188 
189   if (List.size() < 2)
190     // We may have lost some users.
191     return;
192 
193   bool IsGlobalValue = OM.isGlobalValue(ID);
194   llvm::sort(List, [&](const Entry &L, const Entry &R) {
195     const Use *LU = L.first;
196     const Use *RU = R.first;
197     if (LU == RU)
198       return false;
199 
200     auto LID = OM.lookup(LU->getUser()).first;
201     auto RID = OM.lookup(RU->getUser()).first;
202 
203     // Global values are processed in reverse order.
204     //
205     // Moreover, initializers of GlobalValues are set *after* all the globals
206     // have been read (despite having earlier IDs).  Rather than awkwardly
207     // modeling this behaviour here, orderModule() has assigned IDs to
208     // initializers of GlobalValues before GlobalValues themselves.
209     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
210       return LID < RID;
211 
212     // If ID is 4, then expect: 7 6 5 1 2 3.
213     if (LID < RID) {
214       if (RID <= ID)
215         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
216           return true;
217       return false;
218     }
219     if (RID < LID) {
220       if (LID <= ID)
221         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
222           return false;
223       return true;
224     }
225 
226     // LID and RID are equal, so we have different operands of the same user.
227     // Assume operands are added in order for all instructions.
228     if (LID <= ID)
229       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
230         return LU->getOperandNo() < RU->getOperandNo();
231     return LU->getOperandNo() > RU->getOperandNo();
232   });
233 
234   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
235         return L.second < R.second;
236       }))
237     // Order is already correct.
238     return;
239 
240   // Store the shuffle.
241   Stack.emplace_back(V, F, List.size());
242   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
243   for (size_t I = 0, E = List.size(); I != E; ++I)
244     Stack.back().Shuffle[I] = List[I].second;
245 }
246 
247 static void predictValueUseListOrder(const Value *V, const Function *F,
248                                      OrderMap &OM, UseListOrderStack &Stack) {
249   auto &IDPair = OM[V];
250   assert(IDPair.first && "Unmapped value");
251   if (IDPair.second)
252     // Already predicted.
253     return;
254 
255   // Do the actual prediction.
256   IDPair.second = true;
257   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
258     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
259 
260   // Recursive descent into constants.
261   if (const Constant *C = dyn_cast<Constant>(V)) {
262     if (C->getNumOperands()) { // Visit GlobalValues.
263       for (const Value *Op : C->operands())
264         if (isa<Constant>(Op)) // Visit GlobalValues.
265           predictValueUseListOrder(Op, F, OM, Stack);
266       if (auto *CE = dyn_cast<ConstantExpr>(C))
267         if (CE->getOpcode() == Instruction::ShuffleVector)
268           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
269                                    Stack);
270     }
271   }
272 }
273 
274 static UseListOrderStack predictUseListOrder(const Module &M) {
275   OrderMap OM = orderModule(M);
276 
277   // Use-list orders need to be serialized after all the users have been added
278   // to a value, or else the shuffles will be incomplete.  Store them per
279   // function in a stack.
280   //
281   // Aside from function order, the order of values doesn't matter much here.
282   UseListOrderStack Stack;
283 
284   // We want to visit the functions backward now so we can list function-local
285   // constants in the last Function they're used in.  Module-level constants
286   // have already been visited above.
287   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
288     const Function &F = *I;
289     if (F.isDeclaration())
290       continue;
291     for (const BasicBlock &BB : F)
292       predictValueUseListOrder(&BB, &F, OM, Stack);
293     for (const Argument &A : F.args())
294       predictValueUseListOrder(&A, &F, OM, Stack);
295     for (const BasicBlock &BB : F)
296       for (const Instruction &I : BB) {
297         for (const Value *Op : I.operands())
298           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
299             predictValueUseListOrder(Op, &F, OM, Stack);
300         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
301           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
302                                    Stack);
303       }
304     for (const BasicBlock &BB : F)
305       for (const Instruction &I : BB)
306         predictValueUseListOrder(&I, &F, OM, Stack);
307   }
308 
309   // Visit globals last, since the module-level use-list block will be seen
310   // before the function bodies are processed.
311   for (const GlobalVariable &G : M.globals())
312     predictValueUseListOrder(&G, nullptr, OM, Stack);
313   for (const Function &F : M)
314     predictValueUseListOrder(&F, nullptr, OM, Stack);
315   for (const GlobalAlias &A : M.aliases())
316     predictValueUseListOrder(&A, nullptr, OM, Stack);
317   for (const GlobalIFunc &I : M.ifuncs())
318     predictValueUseListOrder(&I, nullptr, OM, Stack);
319   for (const GlobalVariable &G : M.globals())
320     if (G.hasInitializer())
321       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
322   for (const GlobalAlias &A : M.aliases())
323     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
324   for (const GlobalIFunc &I : M.ifuncs())
325     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
326   for (const Function &F : M) {
327     for (const Use &U : F.operands())
328       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
329   }
330 
331   return Stack;
332 }
333 
334 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
335   return V.first->getType()->isIntOrIntVectorTy();
336 }
337 
338 ValueEnumerator::ValueEnumerator(const Module &M,
339                                  bool ShouldPreserveUseListOrder)
340     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
341   if (ShouldPreserveUseListOrder)
342     UseListOrders = predictUseListOrder(M);
343 
344   // Enumerate the global variables.
345   for (const GlobalVariable &GV : M.globals())
346     EnumerateValue(&GV);
347 
348   // Enumerate the functions.
349   for (const Function & F : M) {
350     EnumerateValue(&F);
351     EnumerateAttributes(F.getAttributes());
352   }
353 
354   // Enumerate the aliases.
355   for (const GlobalAlias &GA : M.aliases())
356     EnumerateValue(&GA);
357 
358   // Enumerate the ifuncs.
359   for (const GlobalIFunc &GIF : M.ifuncs())
360     EnumerateValue(&GIF);
361 
362   // Remember what is the cutoff between globalvalue's and other constants.
363   unsigned FirstConstant = Values.size();
364 
365   // Enumerate the global variable initializers and attributes.
366   for (const GlobalVariable &GV : M.globals()) {
367     if (GV.hasInitializer())
368       EnumerateValue(GV.getInitializer());
369     if (GV.hasAttributes())
370       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
371   }
372 
373   // Enumerate the aliasees.
374   for (const GlobalAlias &GA : M.aliases())
375     EnumerateValue(GA.getAliasee());
376 
377   // Enumerate the ifunc resolvers.
378   for (const GlobalIFunc &GIF : M.ifuncs())
379     EnumerateValue(GIF.getResolver());
380 
381   // Enumerate any optional Function data.
382   for (const Function &F : M)
383     for (const Use &U : F.operands())
384       EnumerateValue(U.get());
385 
386   // Enumerate the metadata type.
387   //
388   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
389   // only encodes the metadata type when it's used as a value.
390   EnumerateType(Type::getMetadataTy(M.getContext()));
391 
392   // Insert constants and metadata that are named at module level into the slot
393   // pool so that the module symbol table can refer to them...
394   EnumerateValueSymbolTable(M.getValueSymbolTable());
395   EnumerateNamedMetadata(M);
396 
397   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
398   for (const GlobalVariable &GV : M.globals()) {
399     MDs.clear();
400     GV.getAllMetadata(MDs);
401     for (const auto &I : MDs)
402       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
403       // to write metadata to the global variable's own metadata block
404       // (PR28134).
405       EnumerateMetadata(nullptr, I.second);
406   }
407 
408   // Enumerate types used by function bodies and argument lists.
409   for (const Function &F : M) {
410     for (const Argument &A : F.args())
411       EnumerateType(A.getType());
412 
413     // Enumerate metadata attached to this function.
414     MDs.clear();
415     F.getAllMetadata(MDs);
416     for (const auto &I : MDs)
417       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
418 
419     for (const BasicBlock &BB : F)
420       for (const Instruction &I : BB) {
421         for (const Use &Op : I.operands()) {
422           auto *MD = dyn_cast<MetadataAsValue>(&Op);
423           if (!MD) {
424             EnumerateOperandType(Op);
425             continue;
426           }
427 
428           // Local metadata is enumerated during function-incorporation.
429           if (isa<LocalAsMetadata>(MD->getMetadata()))
430             continue;
431 
432           EnumerateMetadata(&F, MD->getMetadata());
433         }
434         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
435           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
436         EnumerateType(I.getType());
437         if (const auto *Call = dyn_cast<CallBase>(&I))
438           EnumerateAttributes(Call->getAttributes());
439 
440         // Enumerate metadata attached with this instruction.
441         MDs.clear();
442         I.getAllMetadataOtherThanDebugLoc(MDs);
443         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
444           EnumerateMetadata(&F, MDs[i].second);
445 
446         // Don't enumerate the location directly -- it has a special record
447         // type -- but enumerate its operands.
448         if (DILocation *L = I.getDebugLoc())
449           for (const Metadata *Op : L->operands())
450             EnumerateMetadata(&F, Op);
451       }
452   }
453 
454   // Optimize constant ordering.
455   OptimizeConstants(FirstConstant, Values.size());
456 
457   // Organize metadata ordering.
458   organizeMetadata();
459 }
460 
461 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
462   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
463   assert(I != InstructionMap.end() && "Instruction is not mapped!");
464   return I->second;
465 }
466 
467 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
468   unsigned ComdatID = Comdats.idFor(C);
469   assert(ComdatID && "Comdat not found!");
470   return ComdatID;
471 }
472 
473 void ValueEnumerator::setInstructionID(const Instruction *I) {
474   InstructionMap[I] = InstructionCount++;
475 }
476 
477 unsigned ValueEnumerator::getValueID(const Value *V) const {
478   if (auto *MD = dyn_cast<MetadataAsValue>(V))
479     return getMetadataID(MD->getMetadata());
480 
481   ValueMapType::const_iterator I = ValueMap.find(V);
482   assert(I != ValueMap.end() && "Value not in slotcalculator!");
483   return I->second-1;
484 }
485 
486 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
487 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
488   print(dbgs(), ValueMap, "Default");
489   dbgs() << '\n';
490   print(dbgs(), MetadataMap, "MetaData");
491   dbgs() << '\n';
492 }
493 #endif
494 
495 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
496                             const char *Name) const {
497   OS << "Map Name: " << Name << "\n";
498   OS << "Size: " << Map.size() << "\n";
499   for (ValueMapType::const_iterator I = Map.begin(),
500          E = Map.end(); I != E; ++I) {
501     const Value *V = I->first;
502     if (V->hasName())
503       OS << "Value: " << V->getName();
504     else
505       OS << "Value: [null]\n";
506     V->print(errs());
507     errs() << '\n';
508 
509     OS << " Uses(" << V->getNumUses() << "):";
510     for (const Use &U : V->uses()) {
511       if (&U != &*V->use_begin())
512         OS << ",";
513       if(U->hasName())
514         OS << " " << U->getName();
515       else
516         OS << " [null]";
517 
518     }
519     OS <<  "\n\n";
520   }
521 }
522 
523 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
524                             const char *Name) const {
525   OS << "Map Name: " << Name << "\n";
526   OS << "Size: " << Map.size() << "\n";
527   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
528     const Metadata *MD = I->first;
529     OS << "Metadata: slot = " << I->second.ID << "\n";
530     OS << "Metadata: function = " << I->second.F << "\n";
531     MD->print(OS);
532     OS << "\n";
533   }
534 }
535 
536 /// OptimizeConstants - Reorder constant pool for denser encoding.
537 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
538   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
539 
540   if (ShouldPreserveUseListOrder)
541     // Optimizing constants makes the use-list order difficult to predict.
542     // Disable it for now when trying to preserve the order.
543     return;
544 
545   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
546                    [this](const std::pair<const Value *, unsigned> &LHS,
547                           const std::pair<const Value *, unsigned> &RHS) {
548     // Sort by plane.
549     if (LHS.first->getType() != RHS.first->getType())
550       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
551     // Then by frequency.
552     return LHS.second > RHS.second;
553   });
554 
555   // Ensure that integer and vector of integer constants are at the start of the
556   // constant pool.  This is important so that GEP structure indices come before
557   // gep constant exprs.
558   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
559                         isIntOrIntVectorValue);
560 
561   // Rebuild the modified portion of ValueMap.
562   for (; CstStart != CstEnd; ++CstStart)
563     ValueMap[Values[CstStart].first] = CstStart+1;
564 }
565 
566 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
567 /// table into the values table.
568 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
569   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
570        VI != VE; ++VI)
571     EnumerateValue(VI->getValue());
572 }
573 
574 /// Insert all of the values referenced by named metadata in the specified
575 /// module.
576 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
577   for (const auto &I : M.named_metadata())
578     EnumerateNamedMDNode(&I);
579 }
580 
581 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
582   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
583     EnumerateMetadata(nullptr, MD->getOperand(i));
584 }
585 
586 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
587   return F ? getValueID(F) + 1 : 0;
588 }
589 
590 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
591   EnumerateMetadata(getMetadataFunctionID(F), MD);
592 }
593 
594 void ValueEnumerator::EnumerateFunctionLocalMetadata(
595     const Function &F, const LocalAsMetadata *Local) {
596   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
597 }
598 
599 void ValueEnumerator::dropFunctionFromMetadata(
600     MetadataMapType::value_type &FirstMD) {
601   SmallVector<const MDNode *, 64> Worklist;
602   auto push = [&Worklist](MetadataMapType::value_type &MD) {
603     auto &Entry = MD.second;
604 
605     // Nothing to do if this metadata isn't tagged.
606     if (!Entry.F)
607       return;
608 
609     // Drop the function tag.
610     Entry.F = 0;
611 
612     // If this is has an ID and is an MDNode, then its operands have entries as
613     // well.  We need to drop the function from them too.
614     if (Entry.ID)
615       if (auto *N = dyn_cast<MDNode>(MD.first))
616         Worklist.push_back(N);
617   };
618   push(FirstMD);
619   while (!Worklist.empty())
620     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
621       if (!Op)
622         continue;
623       auto MD = MetadataMap.find(Op);
624       if (MD != MetadataMap.end())
625         push(*MD);
626     }
627 }
628 
629 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
630   // It's vital for reader efficiency that uniqued subgraphs are done in
631   // post-order; it's expensive when their operands have forward references.
632   // If a distinct node is referenced from a uniqued node, it'll be delayed
633   // until the uniqued subgraph has been completely traversed.
634   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
635 
636   // Start by enumerating MD, and then work through its transitive operands in
637   // post-order.  This requires a depth-first search.
638   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
639   if (const MDNode *N = enumerateMetadataImpl(F, MD))
640     Worklist.push_back(std::make_pair(N, N->op_begin()));
641 
642   while (!Worklist.empty()) {
643     const MDNode *N = Worklist.back().first;
644 
645     // Enumerate operands until we hit a new node.  We need to traverse these
646     // nodes' operands before visiting the rest of N's operands.
647     MDNode::op_iterator I = std::find_if(
648         Worklist.back().second, N->op_end(),
649         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
650     if (I != N->op_end()) {
651       auto *Op = cast<MDNode>(*I);
652       Worklist.back().second = ++I;
653 
654       // Delay traversing Op if it's a distinct node and N is uniqued.
655       if (Op->isDistinct() && !N->isDistinct())
656         DelayedDistinctNodes.push_back(Op);
657       else
658         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
659       continue;
660     }
661 
662     // All the operands have been visited.  Now assign an ID.
663     Worklist.pop_back();
664     MDs.push_back(N);
665     MetadataMap[N].ID = MDs.size();
666 
667     // Flush out any delayed distinct nodes; these are all the distinct nodes
668     // that are leaves in last uniqued subgraph.
669     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
670       for (const MDNode *N : DelayedDistinctNodes)
671         Worklist.push_back(std::make_pair(N, N->op_begin()));
672       DelayedDistinctNodes.clear();
673     }
674   }
675 }
676 
677 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
678   if (!MD)
679     return nullptr;
680 
681   assert(
682       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
683       "Invalid metadata kind");
684 
685   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
686   MDIndex &Entry = Insertion.first->second;
687   if (!Insertion.second) {
688     // Already mapped.  If F doesn't match the function tag, drop it.
689     if (Entry.hasDifferentFunction(F))
690       dropFunctionFromMetadata(*Insertion.first);
691     return nullptr;
692   }
693 
694   // Don't assign IDs to metadata nodes.
695   if (auto *N = dyn_cast<MDNode>(MD))
696     return N;
697 
698   // Save the metadata.
699   MDs.push_back(MD);
700   Entry.ID = MDs.size();
701 
702   // Enumerate the constant, if any.
703   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
704     EnumerateValue(C->getValue());
705 
706   return nullptr;
707 }
708 
709 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
710 /// information reachable from the metadata.
711 void ValueEnumerator::EnumerateFunctionLocalMetadata(
712     unsigned F, const LocalAsMetadata *Local) {
713   assert(F && "Expected a function");
714 
715   // Check to see if it's already in!
716   MDIndex &Index = MetadataMap[Local];
717   if (Index.ID) {
718     assert(Index.F == F && "Expected the same function");
719     return;
720   }
721 
722   MDs.push_back(Local);
723   Index.F = F;
724   Index.ID = MDs.size();
725 
726   EnumerateValue(Local->getValue());
727 }
728 
729 static unsigned getMetadataTypeOrder(const Metadata *MD) {
730   // Strings are emitted in bulk and must come first.
731   if (isa<MDString>(MD))
732     return 0;
733 
734   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
735   // to the front since we can detect it.
736   auto *N = dyn_cast<MDNode>(MD);
737   if (!N)
738     return 1;
739 
740   // The reader is fast forward references for distinct node operands, but slow
741   // when uniqued operands are unresolved.
742   return N->isDistinct() ? 2 : 3;
743 }
744 
745 void ValueEnumerator::organizeMetadata() {
746   assert(MetadataMap.size() == MDs.size() &&
747          "Metadata map and vector out of sync");
748 
749   if (MDs.empty())
750     return;
751 
752   // Copy out the index information from MetadataMap in order to choose a new
753   // order.
754   SmallVector<MDIndex, 64> Order;
755   Order.reserve(MetadataMap.size());
756   for (const Metadata *MD : MDs)
757     Order.push_back(MetadataMap.lookup(MD));
758 
759   // Partition:
760   //   - by function, then
761   //   - by isa<MDString>
762   // and then sort by the original/current ID.  Since the IDs are guaranteed to
763   // be unique, the result of std::sort will be deterministic.  There's no need
764   // for std::stable_sort.
765   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
766     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
767            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
768   });
769 
770   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
771   // and fix up MetadataMap.
772   std::vector<const Metadata *> OldMDs;
773   MDs.swap(OldMDs);
774   MDs.reserve(OldMDs.size());
775   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
776     auto *MD = Order[I].get(OldMDs);
777     MDs.push_back(MD);
778     MetadataMap[MD].ID = I + 1;
779     if (isa<MDString>(MD))
780       ++NumMDStrings;
781   }
782 
783   // Return early if there's nothing for the functions.
784   if (MDs.size() == Order.size())
785     return;
786 
787   // Build the function metadata ranges.
788   MDRange R;
789   FunctionMDs.reserve(OldMDs.size());
790   unsigned PrevF = 0;
791   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
792        ++I) {
793     unsigned F = Order[I].F;
794     if (!PrevF) {
795       PrevF = F;
796     } else if (PrevF != F) {
797       R.Last = FunctionMDs.size();
798       std::swap(R, FunctionMDInfo[PrevF]);
799       R.First = FunctionMDs.size();
800 
801       ID = MDs.size();
802       PrevF = F;
803     }
804 
805     auto *MD = Order[I].get(OldMDs);
806     FunctionMDs.push_back(MD);
807     MetadataMap[MD].ID = ++ID;
808     if (isa<MDString>(MD))
809       ++R.NumStrings;
810   }
811   R.Last = FunctionMDs.size();
812   FunctionMDInfo[PrevF] = R;
813 }
814 
815 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
816   NumModuleMDs = MDs.size();
817 
818   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
819   NumMDStrings = R.NumStrings;
820   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
821              FunctionMDs.begin() + R.Last);
822 }
823 
824 void ValueEnumerator::EnumerateValue(const Value *V) {
825   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
826   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
827 
828   // Check to see if it's already in!
829   unsigned &ValueID = ValueMap[V];
830   if (ValueID) {
831     // Increment use count.
832     Values[ValueID-1].second++;
833     return;
834   }
835 
836   if (auto *GO = dyn_cast<GlobalObject>(V))
837     if (const Comdat *C = GO->getComdat())
838       Comdats.insert(C);
839 
840   // Enumerate the type of this value.
841   EnumerateType(V->getType());
842 
843   if (const Constant *C = dyn_cast<Constant>(V)) {
844     if (isa<GlobalValue>(C)) {
845       // Initializers for globals are handled explicitly elsewhere.
846     } else if (C->getNumOperands()) {
847       // If a constant has operands, enumerate them.  This makes sure that if a
848       // constant has uses (for example an array of const ints), that they are
849       // inserted also.
850 
851       // We prefer to enumerate them with values before we enumerate the user
852       // itself.  This makes it more likely that we can avoid forward references
853       // in the reader.  We know that there can be no cycles in the constants
854       // graph that don't go through a global variable.
855       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
856            I != E; ++I)
857         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
858           EnumerateValue(*I);
859       if (auto *CE = dyn_cast<ConstantExpr>(C))
860         if (CE->getOpcode() == Instruction::ShuffleVector)
861           EnumerateValue(CE->getShuffleMaskForBitcode());
862 
863       // Finally, add the value.  Doing this could make the ValueID reference be
864       // dangling, don't reuse it.
865       Values.push_back(std::make_pair(V, 1U));
866       ValueMap[V] = Values.size();
867       return;
868     }
869   }
870 
871   // Add the value.
872   Values.push_back(std::make_pair(V, 1U));
873   ValueID = Values.size();
874 }
875 
876 
877 void ValueEnumerator::EnumerateType(Type *Ty) {
878   unsigned *TypeID = &TypeMap[Ty];
879 
880   // We've already seen this type.
881   if (*TypeID)
882     return;
883 
884   // If it is a non-anonymous struct, mark the type as being visited so that we
885   // don't recursively visit it.  This is safe because we allow forward
886   // references of these in the bitcode reader.
887   if (StructType *STy = dyn_cast<StructType>(Ty))
888     if (!STy->isLiteral())
889       *TypeID = ~0U;
890 
891   // Enumerate all of the subtypes before we enumerate this type.  This ensures
892   // that the type will be enumerated in an order that can be directly built.
893   for (Type *SubTy : Ty->subtypes())
894     EnumerateType(SubTy);
895 
896   // Refresh the TypeID pointer in case the table rehashed.
897   TypeID = &TypeMap[Ty];
898 
899   // Check to see if we got the pointer another way.  This can happen when
900   // enumerating recursive types that hit the base case deeper than they start.
901   //
902   // If this is actually a struct that we are treating as forward ref'able,
903   // then emit the definition now that all of its contents are available.
904   if (*TypeID && *TypeID != ~0U)
905     return;
906 
907   // Add this type now that its contents are all happily enumerated.
908   Types.push_back(Ty);
909 
910   *TypeID = Types.size();
911 }
912 
913 // Enumerate the types for the specified value.  If the value is a constant,
914 // walk through it, enumerating the types of the constant.
915 void ValueEnumerator::EnumerateOperandType(const Value *V) {
916   EnumerateType(V->getType());
917 
918   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
919 
920   const Constant *C = dyn_cast<Constant>(V);
921   if (!C)
922     return;
923 
924   // If this constant is already enumerated, ignore it, we know its type must
925   // be enumerated.
926   if (ValueMap.count(C))
927     return;
928 
929   // This constant may have operands, make sure to enumerate the types in
930   // them.
931   for (const Value *Op : C->operands()) {
932     // Don't enumerate basic blocks here, this happens as operands to
933     // blockaddress.
934     if (isa<BasicBlock>(Op))
935       continue;
936 
937     EnumerateOperandType(Op);
938   }
939   if (auto *CE = dyn_cast<ConstantExpr>(C))
940     if (CE->getOpcode() == Instruction::ShuffleVector)
941       EnumerateOperandType(CE->getShuffleMaskForBitcode());
942 }
943 
944 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
945   if (PAL.isEmpty()) return;  // null is always 0.
946 
947   // Do a lookup.
948   unsigned &Entry = AttributeListMap[PAL];
949   if (Entry == 0) {
950     // Never saw this before, add it.
951     AttributeLists.push_back(PAL);
952     Entry = AttributeLists.size();
953   }
954 
955   // Do lookups for all attribute groups.
956   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
957     AttributeSet AS = PAL.getAttributes(i);
958     if (!AS.hasAttributes())
959       continue;
960     IndexAndAttrSet Pair = {i, AS};
961     unsigned &Entry = AttributeGroupMap[Pair];
962     if (Entry == 0) {
963       AttributeGroups.push_back(Pair);
964       Entry = AttributeGroups.size();
965     }
966   }
967 }
968 
969 void ValueEnumerator::incorporateFunction(const Function &F) {
970   InstructionCount = 0;
971   NumModuleValues = Values.size();
972 
973   // Add global metadata to the function block.  This doesn't include
974   // LocalAsMetadata.
975   incorporateFunctionMetadata(F);
976 
977   // Adding function arguments to the value table.
978   for (const auto &I : F.args()) {
979     EnumerateValue(&I);
980     if (I.hasAttribute(Attribute::ByVal))
981       EnumerateType(I.getParamByValType());
982   }
983   FirstFuncConstantID = Values.size();
984 
985   // Add all function-level constants to the value table.
986   for (const BasicBlock &BB : F) {
987     for (const Instruction &I : BB) {
988       for (const Use &OI : I.operands()) {
989         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
990           EnumerateValue(OI);
991       }
992       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
993         EnumerateValue(SVI->getShuffleMaskForBitcode());
994     }
995     BasicBlocks.push_back(&BB);
996     ValueMap[&BB] = BasicBlocks.size();
997   }
998 
999   // Optimize the constant layout.
1000   OptimizeConstants(FirstFuncConstantID, Values.size());
1001 
1002   // Add the function's parameter attributes so they are available for use in
1003   // the function's instruction.
1004   EnumerateAttributes(F.getAttributes());
1005 
1006   FirstInstID = Values.size();
1007 
1008   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1009   // Add all of the instructions.
1010   for (const BasicBlock &BB : F) {
1011     for (const Instruction &I : BB) {
1012       for (const Use &OI : I.operands()) {
1013         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
1014           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
1015             // Enumerate metadata after the instructions they might refer to.
1016             FnLocalMDVector.push_back(Local);
1017       }
1018 
1019       if (!I.getType()->isVoidTy())
1020         EnumerateValue(&I);
1021     }
1022   }
1023 
1024   // Add all of the function-local metadata.
1025   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1026     // At this point, every local values have been incorporated, we shouldn't
1027     // have a metadata operand that references a value that hasn't been seen.
1028     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1029            "Missing value for metadata operand");
1030     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1031   }
1032 }
1033 
1034 void ValueEnumerator::purgeFunction() {
1035   /// Remove purged values from the ValueMap.
1036   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1037     ValueMap.erase(Values[i].first);
1038   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1039     MetadataMap.erase(MDs[i]);
1040   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1041     ValueMap.erase(BasicBlocks[i]);
1042 
1043   Values.resize(NumModuleValues);
1044   MDs.resize(NumModuleMDs);
1045   BasicBlocks.clear();
1046   NumMDStrings = 0;
1047 }
1048 
1049 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1050                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1051   unsigned Counter = 0;
1052   for (const BasicBlock &BB : *F)
1053     IDMap[&BB] = ++Counter;
1054 }
1055 
1056 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1057 /// specified basic block.  This is relatively expensive information, so it
1058 /// should only be used by rare constructs such as address-of-label.
1059 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1060   unsigned &Idx = GlobalBasicBlockIDs[BB];
1061   if (Idx != 0)
1062     return Idx-1;
1063 
1064   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1065   return getGlobalBasicBlockID(BB);
1066 }
1067 
1068 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1069   return Log2_32_Ceil(getTypes().size() + 1);
1070 }
1071