xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cstddef>
44 #include <iterator>
45 #include <tuple>
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 struct OrderMap {
52   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
53   unsigned LastGlobalConstantID = 0;
54   unsigned LastGlobalValueID = 0;
55 
56   OrderMap() = default;
57 
58   bool isGlobalConstant(unsigned ID) const {
59     return ID <= LastGlobalConstantID;
60   }
61 
62   bool isGlobalValue(unsigned ID) const {
63     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
64   }
65 
66   unsigned size() const { return IDs.size(); }
67   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
68 
69   std::pair<unsigned, bool> lookup(const Value *V) const {
70     return IDs.lookup(V);
71   }
72 
73   void index(const Value *V) {
74     // Explicitly sequence get-size and insert-value operations to avoid UB.
75     unsigned ID = IDs.size() + 1;
76     IDs[V].first = ID;
77   }
78 };
79 
80 } // end anonymous namespace
81 
82 static void orderValue(const Value *V, OrderMap &OM) {
83   if (OM.lookup(V).first)
84     return;
85 
86   if (const Constant *C = dyn_cast<Constant>(V)) {
87     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
88       for (const Value *Op : C->operands())
89         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
90           orderValue(Op, OM);
91       if (auto *CE = dyn_cast<ConstantExpr>(C))
92         if (CE->getOpcode() == Instruction::ShuffleVector)
93           orderValue(CE->getShuffleMaskForBitcode(), OM);
94     }
95   }
96 
97   // Note: we cannot cache this lookup above, since inserting into the map
98   // changes the map's size, and thus affects the other IDs.
99   OM.index(V);
100 }
101 
102 static OrderMap orderModule(const Module &M) {
103   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
104   // and ValueEnumerator::incorporateFunction().
105   OrderMap OM;
106 
107   // In the reader, initializers of GlobalValues are set *after* all the
108   // globals have been read.  Rather than awkwardly modeling this behaviour
109   // directly in predictValueUseListOrderImpl(), just assign IDs to
110   // initializers of GlobalValues before GlobalValues themselves to model this
111   // implicitly.
112   for (const GlobalVariable &G : M.globals())
113     if (G.hasInitializer())
114       if (!isa<GlobalValue>(G.getInitializer()))
115         orderValue(G.getInitializer(), OM);
116   for (const GlobalAlias &A : M.aliases())
117     if (!isa<GlobalValue>(A.getAliasee()))
118       orderValue(A.getAliasee(), OM);
119   for (const GlobalIFunc &I : M.ifuncs())
120     if (!isa<GlobalValue>(I.getResolver()))
121       orderValue(I.getResolver(), OM);
122   for (const Function &F : M) {
123     for (const Use &U : F.operands())
124       if (!isa<GlobalValue>(U.get()))
125         orderValue(U.get(), OM);
126   }
127 
128   // As constants used in metadata operands are emitted as module-level
129   // constants, we must order them before other operands. Also, we must order
130   // these before global values, as these will be read before setting the
131   // global values' initializers. The latter matters for constants which have
132   // uses towards other constants that are used as initializers.
133   auto orderConstantValue = [&OM](const Value *V) {
134     if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
135       orderValue(V, OM);
136   };
137   for (const Function &F : M) {
138     if (F.isDeclaration())
139       continue;
140     for (const BasicBlock &BB : F)
141       for (const Instruction &I : BB)
142         for (const Value *V : I.operands()) {
143           if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
144             if (const auto *VAM =
145                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
146               orderConstantValue(VAM->getValue());
147             } else if (const auto *AL =
148                            dyn_cast<DIArgList>(MAV->getMetadata())) {
149               for (const auto *VAM : AL->getArgs())
150                 orderConstantValue(VAM->getValue());
151             }
152           }
153         }
154   }
155   OM.LastGlobalConstantID = OM.size();
156 
157   // Initializers of GlobalValues are processed in
158   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
159   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
160   // by giving IDs in reverse order.
161   //
162   // Since GlobalValues never reference each other directly (just through
163   // initializers), their relative IDs only matter for determining order of
164   // uses in their initializers.
165   for (const Function &F : M)
166     orderValue(&F, OM);
167   for (const GlobalAlias &A : M.aliases())
168     orderValue(&A, OM);
169   for (const GlobalIFunc &I : M.ifuncs())
170     orderValue(&I, OM);
171   for (const GlobalVariable &G : M.globals())
172     orderValue(&G, OM);
173   OM.LastGlobalValueID = OM.size();
174 
175   for (const Function &F : M) {
176     if (F.isDeclaration())
177       continue;
178     // Here we need to match the union of ValueEnumerator::incorporateFunction()
179     // and WriteFunction().  Basic blocks are implicitly declared before
180     // anything else (by declaring their size).
181     for (const BasicBlock &BB : F)
182       orderValue(&BB, OM);
183     for (const Argument &A : F.args())
184       orderValue(&A, OM);
185     for (const BasicBlock &BB : F)
186       for (const Instruction &I : BB) {
187         for (const Value *Op : I.operands())
188           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
189               isa<InlineAsm>(*Op))
190             orderValue(Op, OM);
191         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
192           orderValue(SVI->getShuffleMaskForBitcode(), OM);
193       }
194     for (const BasicBlock &BB : F)
195       for (const Instruction &I : BB)
196         orderValue(&I, OM);
197   }
198   return OM;
199 }
200 
201 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
202                                          unsigned ID, const OrderMap &OM,
203                                          UseListOrderStack &Stack) {
204   // Predict use-list order for this one.
205   using Entry = std::pair<const Use *, unsigned>;
206   SmallVector<Entry, 64> List;
207   for (const Use &U : V->uses())
208     // Check if this user will be serialized.
209     if (OM.lookup(U.getUser()).first)
210       List.push_back(std::make_pair(&U, List.size()));
211 
212   if (List.size() < 2)
213     // We may have lost some users.
214     return;
215 
216   bool IsGlobalValue = OM.isGlobalValue(ID);
217   llvm::sort(List, [&](const Entry &L, const Entry &R) {
218     const Use *LU = L.first;
219     const Use *RU = R.first;
220     if (LU == RU)
221       return false;
222 
223     auto LID = OM.lookup(LU->getUser()).first;
224     auto RID = OM.lookup(RU->getUser()).first;
225 
226     // Global values are processed in reverse order.
227     //
228     // Moreover, initializers of GlobalValues are set *after* all the globals
229     // have been read (despite having earlier IDs).  Rather than awkwardly
230     // modeling this behaviour here, orderModule() has assigned IDs to
231     // initializers of GlobalValues before GlobalValues themselves.
232     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
233       return LID < RID;
234 
235     // If ID is 4, then expect: 7 6 5 1 2 3.
236     if (LID < RID) {
237       if (RID <= ID)
238         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
239           return true;
240       return false;
241     }
242     if (RID < LID) {
243       if (LID <= ID)
244         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245           return false;
246       return true;
247     }
248 
249     // LID and RID are equal, so we have different operands of the same user.
250     // Assume operands are added in order for all instructions.
251     if (LID <= ID)
252       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
253         return LU->getOperandNo() < RU->getOperandNo();
254     return LU->getOperandNo() > RU->getOperandNo();
255   });
256 
257   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
258         return L.second < R.second;
259       }))
260     // Order is already correct.
261     return;
262 
263   // Store the shuffle.
264   Stack.emplace_back(V, F, List.size());
265   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
266   for (size_t I = 0, E = List.size(); I != E; ++I)
267     Stack.back().Shuffle[I] = List[I].second;
268 }
269 
270 static void predictValueUseListOrder(const Value *V, const Function *F,
271                                      OrderMap &OM, UseListOrderStack &Stack) {
272   auto &IDPair = OM[V];
273   assert(IDPair.first && "Unmapped value");
274   if (IDPair.second)
275     // Already predicted.
276     return;
277 
278   // Do the actual prediction.
279   IDPair.second = true;
280   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
281     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
282 
283   // Recursive descent into constants.
284   if (const Constant *C = dyn_cast<Constant>(V)) {
285     if (C->getNumOperands()) { // Visit GlobalValues.
286       for (const Value *Op : C->operands())
287         if (isa<Constant>(Op)) // Visit GlobalValues.
288           predictValueUseListOrder(Op, F, OM, Stack);
289       if (auto *CE = dyn_cast<ConstantExpr>(C))
290         if (CE->getOpcode() == Instruction::ShuffleVector)
291           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
292                                    Stack);
293     }
294   }
295 }
296 
297 static UseListOrderStack predictUseListOrder(const Module &M) {
298   OrderMap OM = orderModule(M);
299 
300   // Use-list orders need to be serialized after all the users have been added
301   // to a value, or else the shuffles will be incomplete.  Store them per
302   // function in a stack.
303   //
304   // Aside from function order, the order of values doesn't matter much here.
305   UseListOrderStack Stack;
306 
307   // We want to visit the functions backward now so we can list function-local
308   // constants in the last Function they're used in.  Module-level constants
309   // have already been visited above.
310   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
311     const Function &F = *I;
312     if (F.isDeclaration())
313       continue;
314     for (const BasicBlock &BB : F)
315       predictValueUseListOrder(&BB, &F, OM, Stack);
316     for (const Argument &A : F.args())
317       predictValueUseListOrder(&A, &F, OM, Stack);
318     for (const BasicBlock &BB : F)
319       for (const Instruction &I : BB) {
320         for (const Value *Op : I.operands())
321           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
322             predictValueUseListOrder(Op, &F, OM, Stack);
323         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
324           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
325                                    Stack);
326       }
327     for (const BasicBlock &BB : F)
328       for (const Instruction &I : BB)
329         predictValueUseListOrder(&I, &F, OM, Stack);
330   }
331 
332   // Visit globals last, since the module-level use-list block will be seen
333   // before the function bodies are processed.
334   for (const GlobalVariable &G : M.globals())
335     predictValueUseListOrder(&G, nullptr, OM, Stack);
336   for (const Function &F : M)
337     predictValueUseListOrder(&F, nullptr, OM, Stack);
338   for (const GlobalAlias &A : M.aliases())
339     predictValueUseListOrder(&A, nullptr, OM, Stack);
340   for (const GlobalIFunc &I : M.ifuncs())
341     predictValueUseListOrder(&I, nullptr, OM, Stack);
342   for (const GlobalVariable &G : M.globals())
343     if (G.hasInitializer())
344       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
345   for (const GlobalAlias &A : M.aliases())
346     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
347   for (const GlobalIFunc &I : M.ifuncs())
348     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
349   for (const Function &F : M) {
350     for (const Use &U : F.operands())
351       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
352   }
353 
354   return Stack;
355 }
356 
357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
358   return V.first->getType()->isIntOrIntVectorTy();
359 }
360 
361 ValueEnumerator::ValueEnumerator(const Module &M,
362                                  bool ShouldPreserveUseListOrder)
363     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
364   if (ShouldPreserveUseListOrder)
365     UseListOrders = predictUseListOrder(M);
366 
367   // Enumerate the global variables.
368   for (const GlobalVariable &GV : M.globals()) {
369     EnumerateValue(&GV);
370     EnumerateType(GV.getValueType());
371   }
372 
373   // Enumerate the functions.
374   for (const Function & F : M) {
375     EnumerateValue(&F);
376     EnumerateType(F.getValueType());
377     EnumerateAttributes(F.getAttributes());
378   }
379 
380   // Enumerate the aliases.
381   for (const GlobalAlias &GA : M.aliases()) {
382     EnumerateValue(&GA);
383     EnumerateType(GA.getValueType());
384   }
385 
386   // Enumerate the ifuncs.
387   for (const GlobalIFunc &GIF : M.ifuncs())
388     EnumerateValue(&GIF);
389 
390   // Remember what is the cutoff between globalvalue's and other constants.
391   unsigned FirstConstant = Values.size();
392 
393   // Enumerate the global variable initializers and attributes.
394   for (const GlobalVariable &GV : M.globals()) {
395     if (GV.hasInitializer())
396       EnumerateValue(GV.getInitializer());
397     if (GV.hasAttributes())
398       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
399   }
400 
401   // Enumerate the aliasees.
402   for (const GlobalAlias &GA : M.aliases())
403     EnumerateValue(GA.getAliasee());
404 
405   // Enumerate the ifunc resolvers.
406   for (const GlobalIFunc &GIF : M.ifuncs())
407     EnumerateValue(GIF.getResolver());
408 
409   // Enumerate any optional Function data.
410   for (const Function &F : M)
411     for (const Use &U : F.operands())
412       EnumerateValue(U.get());
413 
414   // Enumerate the metadata type.
415   //
416   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
417   // only encodes the metadata type when it's used as a value.
418   EnumerateType(Type::getMetadataTy(M.getContext()));
419 
420   // Insert constants and metadata that are named at module level into the slot
421   // pool so that the module symbol table can refer to them...
422   EnumerateValueSymbolTable(M.getValueSymbolTable());
423   EnumerateNamedMetadata(M);
424 
425   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
426   for (const GlobalVariable &GV : M.globals()) {
427     MDs.clear();
428     GV.getAllMetadata(MDs);
429     for (const auto &I : MDs)
430       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
431       // to write metadata to the global variable's own metadata block
432       // (PR28134).
433       EnumerateMetadata(nullptr, I.second);
434   }
435 
436   // Enumerate types used by function bodies and argument lists.
437   for (const Function &F : M) {
438     for (const Argument &A : F.args())
439       EnumerateType(A.getType());
440 
441     // Enumerate metadata attached to this function.
442     MDs.clear();
443     F.getAllMetadata(MDs);
444     for (const auto &I : MDs)
445       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
446 
447     for (const BasicBlock &BB : F)
448       for (const Instruction &I : BB) {
449         for (const Use &Op : I.operands()) {
450           auto *MD = dyn_cast<MetadataAsValue>(&Op);
451           if (!MD) {
452             EnumerateOperandType(Op);
453             continue;
454           }
455 
456           // Local metadata is enumerated during function-incorporation, but
457           // any ConstantAsMetadata arguments in a DIArgList should be examined
458           // now.
459           if (isa<LocalAsMetadata>(MD->getMetadata()))
460             continue;
461           if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
462             for (auto *VAM : AL->getArgs())
463               if (isa<ConstantAsMetadata>(VAM))
464                 EnumerateMetadata(&F, VAM);
465             continue;
466           }
467 
468           EnumerateMetadata(&F, MD->getMetadata());
469         }
470         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
471           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
472         if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
473           EnumerateType(GEP->getSourceElementType());
474         if (auto *AI = dyn_cast<AllocaInst>(&I))
475           EnumerateType(AI->getAllocatedType());
476         EnumerateType(I.getType());
477         if (const auto *Call = dyn_cast<CallBase>(&I)) {
478           EnumerateAttributes(Call->getAttributes());
479           EnumerateType(Call->getFunctionType());
480         }
481 
482         // Enumerate metadata attached with this instruction.
483         MDs.clear();
484         I.getAllMetadataOtherThanDebugLoc(MDs);
485         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
486           EnumerateMetadata(&F, MDs[i].second);
487 
488         // Don't enumerate the location directly -- it has a special record
489         // type -- but enumerate its operands.
490         if (DILocation *L = I.getDebugLoc())
491           for (const Metadata *Op : L->operands())
492             EnumerateMetadata(&F, Op);
493       }
494   }
495 
496   // Optimize constant ordering.
497   OptimizeConstants(FirstConstant, Values.size());
498 
499   // Organize metadata ordering.
500   organizeMetadata();
501 }
502 
503 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
504   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
505   assert(I != InstructionMap.end() && "Instruction is not mapped!");
506   return I->second;
507 }
508 
509 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
510   unsigned ComdatID = Comdats.idFor(C);
511   assert(ComdatID && "Comdat not found!");
512   return ComdatID;
513 }
514 
515 void ValueEnumerator::setInstructionID(const Instruction *I) {
516   InstructionMap[I] = InstructionCount++;
517 }
518 
519 unsigned ValueEnumerator::getValueID(const Value *V) const {
520   if (auto *MD = dyn_cast<MetadataAsValue>(V))
521     return getMetadataID(MD->getMetadata());
522 
523   ValueMapType::const_iterator I = ValueMap.find(V);
524   assert(I != ValueMap.end() && "Value not in slotcalculator!");
525   return I->second-1;
526 }
527 
528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
529 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
530   print(dbgs(), ValueMap, "Default");
531   dbgs() << '\n';
532   print(dbgs(), MetadataMap, "MetaData");
533   dbgs() << '\n';
534 }
535 #endif
536 
537 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
538                             const char *Name) const {
539   OS << "Map Name: " << Name << "\n";
540   OS << "Size: " << Map.size() << "\n";
541   for (ValueMapType::const_iterator I = Map.begin(),
542          E = Map.end(); I != E; ++I) {
543     const Value *V = I->first;
544     if (V->hasName())
545       OS << "Value: " << V->getName();
546     else
547       OS << "Value: [null]\n";
548     V->print(errs());
549     errs() << '\n';
550 
551     OS << " Uses(" << V->getNumUses() << "):";
552     for (const Use &U : V->uses()) {
553       if (&U != &*V->use_begin())
554         OS << ",";
555       if(U->hasName())
556         OS << " " << U->getName();
557       else
558         OS << " [null]";
559 
560     }
561     OS <<  "\n\n";
562   }
563 }
564 
565 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
566                             const char *Name) const {
567   OS << "Map Name: " << Name << "\n";
568   OS << "Size: " << Map.size() << "\n";
569   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
570     const Metadata *MD = I->first;
571     OS << "Metadata: slot = " << I->second.ID << "\n";
572     OS << "Metadata: function = " << I->second.F << "\n";
573     MD->print(OS);
574     OS << "\n";
575   }
576 }
577 
578 /// OptimizeConstants - Reorder constant pool for denser encoding.
579 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
580   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
581 
582   if (ShouldPreserveUseListOrder)
583     // Optimizing constants makes the use-list order difficult to predict.
584     // Disable it for now when trying to preserve the order.
585     return;
586 
587   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
588                    [this](const std::pair<const Value *, unsigned> &LHS,
589                           const std::pair<const Value *, unsigned> &RHS) {
590     // Sort by plane.
591     if (LHS.first->getType() != RHS.first->getType())
592       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
593     // Then by frequency.
594     return LHS.second > RHS.second;
595   });
596 
597   // Ensure that integer and vector of integer constants are at the start of the
598   // constant pool.  This is important so that GEP structure indices come before
599   // gep constant exprs.
600   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
601                         isIntOrIntVectorValue);
602 
603   // Rebuild the modified portion of ValueMap.
604   for (; CstStart != CstEnd; ++CstStart)
605     ValueMap[Values[CstStart].first] = CstStart+1;
606 }
607 
608 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
609 /// table into the values table.
610 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
611   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
612        VI != VE; ++VI)
613     EnumerateValue(VI->getValue());
614 }
615 
616 /// Insert all of the values referenced by named metadata in the specified
617 /// module.
618 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
619   for (const auto &I : M.named_metadata())
620     EnumerateNamedMDNode(&I);
621 }
622 
623 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
624   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
625     EnumerateMetadata(nullptr, MD->getOperand(i));
626 }
627 
628 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
629   return F ? getValueID(F) + 1 : 0;
630 }
631 
632 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
633   EnumerateMetadata(getMetadataFunctionID(F), MD);
634 }
635 
636 void ValueEnumerator::EnumerateFunctionLocalMetadata(
637     const Function &F, const LocalAsMetadata *Local) {
638   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
639 }
640 
641 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
642     const Function &F, const DIArgList *ArgList) {
643   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
644 }
645 
646 void ValueEnumerator::dropFunctionFromMetadata(
647     MetadataMapType::value_type &FirstMD) {
648   SmallVector<const MDNode *, 64> Worklist;
649   auto push = [&Worklist](MetadataMapType::value_type &MD) {
650     auto &Entry = MD.second;
651 
652     // Nothing to do if this metadata isn't tagged.
653     if (!Entry.F)
654       return;
655 
656     // Drop the function tag.
657     Entry.F = 0;
658 
659     // If this is has an ID and is an MDNode, then its operands have entries as
660     // well.  We need to drop the function from them too.
661     if (Entry.ID)
662       if (auto *N = dyn_cast<MDNode>(MD.first))
663         Worklist.push_back(N);
664   };
665   push(FirstMD);
666   while (!Worklist.empty())
667     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
668       if (!Op)
669         continue;
670       auto MD = MetadataMap.find(Op);
671       if (MD != MetadataMap.end())
672         push(*MD);
673     }
674 }
675 
676 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
677   // It's vital for reader efficiency that uniqued subgraphs are done in
678   // post-order; it's expensive when their operands have forward references.
679   // If a distinct node is referenced from a uniqued node, it'll be delayed
680   // until the uniqued subgraph has been completely traversed.
681   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
682 
683   // Start by enumerating MD, and then work through its transitive operands in
684   // post-order.  This requires a depth-first search.
685   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
686   if (const MDNode *N = enumerateMetadataImpl(F, MD))
687     Worklist.push_back(std::make_pair(N, N->op_begin()));
688 
689   while (!Worklist.empty()) {
690     const MDNode *N = Worklist.back().first;
691 
692     // Enumerate operands until we hit a new node.  We need to traverse these
693     // nodes' operands before visiting the rest of N's operands.
694     MDNode::op_iterator I = std::find_if(
695         Worklist.back().second, N->op_end(),
696         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
697     if (I != N->op_end()) {
698       auto *Op = cast<MDNode>(*I);
699       Worklist.back().second = ++I;
700 
701       // Delay traversing Op if it's a distinct node and N is uniqued.
702       if (Op->isDistinct() && !N->isDistinct())
703         DelayedDistinctNodes.push_back(Op);
704       else
705         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
706       continue;
707     }
708 
709     // All the operands have been visited.  Now assign an ID.
710     Worklist.pop_back();
711     MDs.push_back(N);
712     MetadataMap[N].ID = MDs.size();
713 
714     // Flush out any delayed distinct nodes; these are all the distinct nodes
715     // that are leaves in last uniqued subgraph.
716     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
717       for (const MDNode *N : DelayedDistinctNodes)
718         Worklist.push_back(std::make_pair(N, N->op_begin()));
719       DelayedDistinctNodes.clear();
720     }
721   }
722 }
723 
724 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
725   if (!MD)
726     return nullptr;
727 
728   assert(
729       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
730       "Invalid metadata kind");
731 
732   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
733   MDIndex &Entry = Insertion.first->second;
734   if (!Insertion.second) {
735     // Already mapped.  If F doesn't match the function tag, drop it.
736     if (Entry.hasDifferentFunction(F))
737       dropFunctionFromMetadata(*Insertion.first);
738     return nullptr;
739   }
740 
741   // Don't assign IDs to metadata nodes.
742   if (auto *N = dyn_cast<MDNode>(MD))
743     return N;
744 
745   // Save the metadata.
746   MDs.push_back(MD);
747   Entry.ID = MDs.size();
748 
749   // Enumerate the constant, if any.
750   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
751     EnumerateValue(C->getValue());
752 
753   return nullptr;
754 }
755 
756 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
757 /// information reachable from the metadata.
758 void ValueEnumerator::EnumerateFunctionLocalMetadata(
759     unsigned F, const LocalAsMetadata *Local) {
760   assert(F && "Expected a function");
761 
762   // Check to see if it's already in!
763   MDIndex &Index = MetadataMap[Local];
764   if (Index.ID) {
765     assert(Index.F == F && "Expected the same function");
766     return;
767   }
768 
769   MDs.push_back(Local);
770   Index.F = F;
771   Index.ID = MDs.size();
772 
773   EnumerateValue(Local->getValue());
774 }
775 
776 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
777 /// information reachable from the metadata.
778 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
779     unsigned F, const DIArgList *ArgList) {
780   assert(F && "Expected a function");
781 
782   // Check to see if it's already in!
783   MDIndex &Index = MetadataMap[ArgList];
784   if (Index.ID) {
785     assert(Index.F == F && "Expected the same function");
786     return;
787   }
788 
789   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
790     if (isa<LocalAsMetadata>(VAM)) {
791       assert(MetadataMap.count(VAM) &&
792              "LocalAsMetadata should be enumerated before DIArgList");
793       assert(MetadataMap[VAM].F == F &&
794              "Expected LocalAsMetadata in the same function");
795     } else {
796       assert(isa<ConstantAsMetadata>(VAM) &&
797              "Expected LocalAsMetadata or ConstantAsMetadata");
798       assert(ValueMap.count(VAM->getValue()) &&
799              "Constant should be enumerated beforeDIArgList");
800       EnumerateMetadata(F, VAM);
801     }
802   }
803 
804   MDs.push_back(ArgList);
805   Index.F = F;
806   Index.ID = MDs.size();
807 }
808 
809 static unsigned getMetadataTypeOrder(const Metadata *MD) {
810   // Strings are emitted in bulk and must come first.
811   if (isa<MDString>(MD))
812     return 0;
813 
814   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
815   // to the front since we can detect it.
816   auto *N = dyn_cast<MDNode>(MD);
817   if (!N)
818     return 1;
819 
820   // The reader is fast forward references for distinct node operands, but slow
821   // when uniqued operands are unresolved.
822   return N->isDistinct() ? 2 : 3;
823 }
824 
825 void ValueEnumerator::organizeMetadata() {
826   assert(MetadataMap.size() == MDs.size() &&
827          "Metadata map and vector out of sync");
828 
829   if (MDs.empty())
830     return;
831 
832   // Copy out the index information from MetadataMap in order to choose a new
833   // order.
834   SmallVector<MDIndex, 64> Order;
835   Order.reserve(MetadataMap.size());
836   for (const Metadata *MD : MDs)
837     Order.push_back(MetadataMap.lookup(MD));
838 
839   // Partition:
840   //   - by function, then
841   //   - by isa<MDString>
842   // and then sort by the original/current ID.  Since the IDs are guaranteed to
843   // be unique, the result of std::sort will be deterministic.  There's no need
844   // for std::stable_sort.
845   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
846     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
847            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
848   });
849 
850   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
851   // and fix up MetadataMap.
852   std::vector<const Metadata *> OldMDs;
853   MDs.swap(OldMDs);
854   MDs.reserve(OldMDs.size());
855   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
856     auto *MD = Order[I].get(OldMDs);
857     MDs.push_back(MD);
858     MetadataMap[MD].ID = I + 1;
859     if (isa<MDString>(MD))
860       ++NumMDStrings;
861   }
862 
863   // Return early if there's nothing for the functions.
864   if (MDs.size() == Order.size())
865     return;
866 
867   // Build the function metadata ranges.
868   MDRange R;
869   FunctionMDs.reserve(OldMDs.size());
870   unsigned PrevF = 0;
871   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
872        ++I) {
873     unsigned F = Order[I].F;
874     if (!PrevF) {
875       PrevF = F;
876     } else if (PrevF != F) {
877       R.Last = FunctionMDs.size();
878       std::swap(R, FunctionMDInfo[PrevF]);
879       R.First = FunctionMDs.size();
880 
881       ID = MDs.size();
882       PrevF = F;
883     }
884 
885     auto *MD = Order[I].get(OldMDs);
886     FunctionMDs.push_back(MD);
887     MetadataMap[MD].ID = ++ID;
888     if (isa<MDString>(MD))
889       ++R.NumStrings;
890   }
891   R.Last = FunctionMDs.size();
892   FunctionMDInfo[PrevF] = R;
893 }
894 
895 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
896   NumModuleMDs = MDs.size();
897 
898   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
899   NumMDStrings = R.NumStrings;
900   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
901              FunctionMDs.begin() + R.Last);
902 }
903 
904 void ValueEnumerator::EnumerateValue(const Value *V) {
905   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
906   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
907 
908   // Check to see if it's already in!
909   unsigned &ValueID = ValueMap[V];
910   if (ValueID) {
911     // Increment use count.
912     Values[ValueID-1].second++;
913     return;
914   }
915 
916   if (auto *GO = dyn_cast<GlobalObject>(V))
917     if (const Comdat *C = GO->getComdat())
918       Comdats.insert(C);
919 
920   // Enumerate the type of this value.
921   EnumerateType(V->getType());
922 
923   if (const Constant *C = dyn_cast<Constant>(V)) {
924     if (isa<GlobalValue>(C)) {
925       // Initializers for globals are handled explicitly elsewhere.
926     } else if (C->getNumOperands()) {
927       // If a constant has operands, enumerate them.  This makes sure that if a
928       // constant has uses (for example an array of const ints), that they are
929       // inserted also.
930 
931       // We prefer to enumerate them with values before we enumerate the user
932       // itself.  This makes it more likely that we can avoid forward references
933       // in the reader.  We know that there can be no cycles in the constants
934       // graph that don't go through a global variable.
935       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
936            I != E; ++I)
937         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
938           EnumerateValue(*I);
939       if (auto *CE = dyn_cast<ConstantExpr>(C))
940         if (CE->getOpcode() == Instruction::ShuffleVector)
941           EnumerateValue(CE->getShuffleMaskForBitcode());
942 
943       // Finally, add the value.  Doing this could make the ValueID reference be
944       // dangling, don't reuse it.
945       Values.push_back(std::make_pair(V, 1U));
946       ValueMap[V] = Values.size();
947       return;
948     }
949   }
950 
951   // Add the value.
952   Values.push_back(std::make_pair(V, 1U));
953   ValueID = Values.size();
954 }
955 
956 
957 void ValueEnumerator::EnumerateType(Type *Ty) {
958   unsigned *TypeID = &TypeMap[Ty];
959 
960   // We've already seen this type.
961   if (*TypeID)
962     return;
963 
964   // If it is a non-anonymous struct, mark the type as being visited so that we
965   // don't recursively visit it.  This is safe because we allow forward
966   // references of these in the bitcode reader.
967   if (StructType *STy = dyn_cast<StructType>(Ty))
968     if (!STy->isLiteral())
969       *TypeID = ~0U;
970 
971   // Enumerate all of the subtypes before we enumerate this type.  This ensures
972   // that the type will be enumerated in an order that can be directly built.
973   for (Type *SubTy : Ty->subtypes())
974     EnumerateType(SubTy);
975 
976   // Refresh the TypeID pointer in case the table rehashed.
977   TypeID = &TypeMap[Ty];
978 
979   // Check to see if we got the pointer another way.  This can happen when
980   // enumerating recursive types that hit the base case deeper than they start.
981   //
982   // If this is actually a struct that we are treating as forward ref'able,
983   // then emit the definition now that all of its contents are available.
984   if (*TypeID && *TypeID != ~0U)
985     return;
986 
987   // Add this type now that its contents are all happily enumerated.
988   Types.push_back(Ty);
989 
990   *TypeID = Types.size();
991 }
992 
993 // Enumerate the types for the specified value.  If the value is a constant,
994 // walk through it, enumerating the types of the constant.
995 void ValueEnumerator::EnumerateOperandType(const Value *V) {
996   EnumerateType(V->getType());
997 
998   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
999 
1000   const Constant *C = dyn_cast<Constant>(V);
1001   if (!C)
1002     return;
1003 
1004   // If this constant is already enumerated, ignore it, we know its type must
1005   // be enumerated.
1006   if (ValueMap.count(C))
1007     return;
1008 
1009   // This constant may have operands, make sure to enumerate the types in
1010   // them.
1011   for (const Value *Op : C->operands()) {
1012     // Don't enumerate basic blocks here, this happens as operands to
1013     // blockaddress.
1014     if (isa<BasicBlock>(Op))
1015       continue;
1016 
1017     EnumerateOperandType(Op);
1018   }
1019   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1020     if (CE->getOpcode() == Instruction::ShuffleVector)
1021       EnumerateOperandType(CE->getShuffleMaskForBitcode());
1022     if (CE->getOpcode() == Instruction::GetElementPtr)
1023       EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
1024   }
1025 }
1026 
1027 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1028   if (PAL.isEmpty()) return;  // null is always 0.
1029 
1030   // Do a lookup.
1031   unsigned &Entry = AttributeListMap[PAL];
1032   if (Entry == 0) {
1033     // Never saw this before, add it.
1034     AttributeLists.push_back(PAL);
1035     Entry = AttributeLists.size();
1036   }
1037 
1038   // Do lookups for all attribute groups.
1039   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
1040     AttributeSet AS = PAL.getAttributes(i);
1041     if (!AS.hasAttributes())
1042       continue;
1043     IndexAndAttrSet Pair = {i, AS};
1044     unsigned &Entry = AttributeGroupMap[Pair];
1045     if (Entry == 0) {
1046       AttributeGroups.push_back(Pair);
1047       Entry = AttributeGroups.size();
1048 
1049       for (Attribute Attr : AS) {
1050         if (Attr.isTypeAttribute())
1051           EnumerateType(Attr.getValueAsType());
1052       }
1053     }
1054   }
1055 }
1056 
1057 void ValueEnumerator::incorporateFunction(const Function &F) {
1058   InstructionCount = 0;
1059   NumModuleValues = Values.size();
1060 
1061   // Add global metadata to the function block.  This doesn't include
1062   // LocalAsMetadata.
1063   incorporateFunctionMetadata(F);
1064 
1065   // Adding function arguments to the value table.
1066   for (const auto &I : F.args()) {
1067     EnumerateValue(&I);
1068     if (I.hasAttribute(Attribute::ByVal))
1069       EnumerateType(I.getParamByValType());
1070     else if (I.hasAttribute(Attribute::StructRet))
1071       EnumerateType(I.getParamStructRetType());
1072     else if (I.hasAttribute(Attribute::ByRef))
1073       EnumerateType(I.getParamByRefType());
1074   }
1075   FirstFuncConstantID = Values.size();
1076 
1077   // Add all function-level constants to the value table.
1078   for (const BasicBlock &BB : F) {
1079     for (const Instruction &I : BB) {
1080       for (const Use &OI : I.operands()) {
1081         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1082           EnumerateValue(OI);
1083       }
1084       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1085         EnumerateValue(SVI->getShuffleMaskForBitcode());
1086     }
1087     BasicBlocks.push_back(&BB);
1088     ValueMap[&BB] = BasicBlocks.size();
1089   }
1090 
1091   // Optimize the constant layout.
1092   OptimizeConstants(FirstFuncConstantID, Values.size());
1093 
1094   // Add the function's parameter attributes so they are available for use in
1095   // the function's instruction.
1096   EnumerateAttributes(F.getAttributes());
1097 
1098   FirstInstID = Values.size();
1099 
1100   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1101   SmallVector<DIArgList *, 8> ArgListMDVector;
1102   // Add all of the instructions.
1103   for (const BasicBlock &BB : F) {
1104     for (const Instruction &I : BB) {
1105       for (const Use &OI : I.operands()) {
1106         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1107           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1108             // Enumerate metadata after the instructions they might refer to.
1109             FnLocalMDVector.push_back(Local);
1110           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1111             ArgListMDVector.push_back(ArgList);
1112             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1113               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1114                 // Enumerate metadata after the instructions they might refer
1115                 // to.
1116                 FnLocalMDVector.push_back(Local);
1117               }
1118             }
1119           }
1120         }
1121       }
1122 
1123       if (!I.getType()->isVoidTy())
1124         EnumerateValue(&I);
1125     }
1126   }
1127 
1128   // Add all of the function-local metadata.
1129   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1130     // At this point, every local values have been incorporated, we shouldn't
1131     // have a metadata operand that references a value that hasn't been seen.
1132     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1133            "Missing value for metadata operand");
1134     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1135   }
1136   // DIArgList entries must come after function-local metadata, as it is not
1137   // possible to forward-reference them.
1138   for (const DIArgList *ArgList : ArgListMDVector)
1139     EnumerateFunctionLocalListMetadata(F, ArgList);
1140 }
1141 
1142 void ValueEnumerator::purgeFunction() {
1143   /// Remove purged values from the ValueMap.
1144   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1145     ValueMap.erase(Values[i].first);
1146   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1147     MetadataMap.erase(MDs[i]);
1148   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1149     ValueMap.erase(BasicBlocks[i]);
1150 
1151   Values.resize(NumModuleValues);
1152   MDs.resize(NumModuleMDs);
1153   BasicBlocks.clear();
1154   NumMDStrings = 0;
1155 }
1156 
1157 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1158                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1159   unsigned Counter = 0;
1160   for (const BasicBlock &BB : *F)
1161     IDMap[&BB] = ++Counter;
1162 }
1163 
1164 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1165 /// specified basic block.  This is relatively expensive information, so it
1166 /// should only be used by rare constructs such as address-of-label.
1167 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1168   unsigned &Idx = GlobalBasicBlockIDs[BB];
1169   if (Idx != 0)
1170     return Idx-1;
1171 
1172   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1173   return getGlobalBasicBlockID(BB);
1174 }
1175 
1176 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1177   return Log2_32_Ceil(getTypes().size() + 1);
1178 }
1179