xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp (revision 05427f4639bcf2703329a9be9d25ec09bb782742)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cstddef>
44 #include <iterator>
45 #include <tuple>
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 struct OrderMap {
52   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
53   unsigned LastGlobalValueID = 0;
54 
55   OrderMap() = default;
56 
57   bool isGlobalValue(unsigned ID) const {
58     return ID <= LastGlobalValueID;
59   }
60 
61   unsigned size() const { return IDs.size(); }
62   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
63 
64   std::pair<unsigned, bool> lookup(const Value *V) const {
65     return IDs.lookup(V);
66   }
67 
68   void index(const Value *V) {
69     // Explicitly sequence get-size and insert-value operations to avoid UB.
70     unsigned ID = IDs.size() + 1;
71     IDs[V].first = ID;
72   }
73 };
74 
75 } // end anonymous namespace
76 
77 static void orderValue(const Value *V, OrderMap &OM) {
78   if (OM.lookup(V).first)
79     return;
80 
81   if (const Constant *C = dyn_cast<Constant>(V)) {
82     if (C->getNumOperands()) {
83       for (const Value *Op : C->operands())
84         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
85           orderValue(Op, OM);
86       if (auto *CE = dyn_cast<ConstantExpr>(C))
87         if (CE->getOpcode() == Instruction::ShuffleVector)
88           orderValue(CE->getShuffleMaskForBitcode(), OM);
89     }
90   }
91 
92   // Note: we cannot cache this lookup above, since inserting into the map
93   // changes the map's size, and thus affects the other IDs.
94   OM.index(V);
95 }
96 
97 static OrderMap orderModule(const Module &M) {
98   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
99   // and ValueEnumerator::incorporateFunction().
100   OrderMap OM;
101 
102   // Initializers of GlobalValues are processed in
103   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
104   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
105   // by giving IDs in reverse order.
106   //
107   // Since GlobalValues never reference each other directly (just through
108   // initializers), their relative IDs only matter for determining order of
109   // uses in their initializers.
110   for (const GlobalVariable &G : reverse(M.globals()))
111     orderValue(&G, OM);
112   for (const GlobalAlias &A : reverse(M.aliases()))
113     orderValue(&A, OM);
114   for (const GlobalIFunc &I : reverse(M.ifuncs()))
115     orderValue(&I, OM);
116   for (const Function &F : reverse(M))
117     orderValue(&F, OM);
118   OM.LastGlobalValueID = OM.size();
119 
120   auto orderConstantValue = [&OM](const Value *V) {
121     if (isa<Constant>(V) || isa<InlineAsm>(V))
122       orderValue(V, OM);
123   };
124 
125   for (const Function &F : M) {
126     if (F.isDeclaration())
127       continue;
128     // Here we need to match the union of ValueEnumerator::incorporateFunction()
129     // and WriteFunction().  Basic blocks are implicitly declared before
130     // anything else (by declaring their size).
131     for (const BasicBlock &BB : F)
132       orderValue(&BB, OM);
133 
134     // Metadata used by instructions is decoded before the actual instructions,
135     // so visit any constants used by it beforehand.
136     for (const BasicBlock &BB : F)
137       for (const Instruction &I : BB) {
138         auto OrderConstantFromMetadata = [&](Metadata *MD) {
139           if (const auto *VAM = dyn_cast<ValueAsMetadata>(MD)) {
140             orderConstantValue(VAM->getValue());
141           } else if (const auto *AL = dyn_cast<DIArgList>(MD)) {
142             for (const auto *VAM : AL->getArgs())
143               orderConstantValue(VAM->getValue());
144           }
145         };
146 
147         for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
148           OrderConstantFromMetadata(DVR.getRawLocation());
149           if (DVR.isDbgAssign())
150             OrderConstantFromMetadata(DVR.getRawAddress());
151         }
152 
153         for (const Value *V : I.operands()) {
154           if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
155             OrderConstantFromMetadata(MAV->getMetadata());
156         }
157       }
158 
159     for (const Argument &A : F.args())
160       orderValue(&A, OM);
161     for (const BasicBlock &BB : F)
162       for (const Instruction &I : BB) {
163         for (const Value *Op : I.operands())
164           orderConstantValue(Op);
165         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
166           orderValue(SVI->getShuffleMaskForBitcode(), OM);
167         orderValue(&I, OM);
168       }
169   }
170   return OM;
171 }
172 
173 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
174                                          unsigned ID, const OrderMap &OM,
175                                          UseListOrderStack &Stack) {
176   // Predict use-list order for this one.
177   using Entry = std::pair<const Use *, unsigned>;
178   SmallVector<Entry, 64> List;
179   for (const Use &U : V->uses())
180     // Check if this user will be serialized.
181     if (OM.lookup(U.getUser()).first)
182       List.push_back(std::make_pair(&U, List.size()));
183 
184   if (List.size() < 2)
185     // We may have lost some users.
186     return;
187 
188   bool IsGlobalValue = OM.isGlobalValue(ID);
189   llvm::sort(List, [&](const Entry &L, const Entry &R) {
190     const Use *LU = L.first;
191     const Use *RU = R.first;
192     if (LU == RU)
193       return false;
194 
195     auto LID = OM.lookup(LU->getUser()).first;
196     auto RID = OM.lookup(RU->getUser()).first;
197 
198     // If ID is 4, then expect: 7 6 5 1 2 3.
199     if (LID < RID) {
200       if (RID <= ID)
201         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
202           return true;
203       return false;
204     }
205     if (RID < LID) {
206       if (LID <= ID)
207         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
208           return false;
209       return true;
210     }
211 
212     // LID and RID are equal, so we have different operands of the same user.
213     // Assume operands are added in order for all instructions.
214     if (LID <= ID)
215       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
216         return LU->getOperandNo() < RU->getOperandNo();
217     return LU->getOperandNo() > RU->getOperandNo();
218   });
219 
220   if (llvm::is_sorted(List, llvm::less_second()))
221     // Order is already correct.
222     return;
223 
224   // Store the shuffle.
225   Stack.emplace_back(V, F, List.size());
226   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
227   for (size_t I = 0, E = List.size(); I != E; ++I)
228     Stack.back().Shuffle[I] = List[I].second;
229 }
230 
231 static void predictValueUseListOrder(const Value *V, const Function *F,
232                                      OrderMap &OM, UseListOrderStack &Stack) {
233   auto &IDPair = OM[V];
234   assert(IDPair.first && "Unmapped value");
235   if (IDPair.second)
236     // Already predicted.
237     return;
238 
239   // Do the actual prediction.
240   IDPair.second = true;
241   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
242     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
243 
244   // Recursive descent into constants.
245   if (const Constant *C = dyn_cast<Constant>(V)) {
246     if (C->getNumOperands()) { // Visit GlobalValues.
247       for (const Value *Op : C->operands())
248         if (isa<Constant>(Op)) // Visit GlobalValues.
249           predictValueUseListOrder(Op, F, OM, Stack);
250       if (auto *CE = dyn_cast<ConstantExpr>(C))
251         if (CE->getOpcode() == Instruction::ShuffleVector)
252           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
253                                    Stack);
254     }
255   }
256 }
257 
258 static UseListOrderStack predictUseListOrder(const Module &M) {
259   OrderMap OM = orderModule(M);
260 
261   // Use-list orders need to be serialized after all the users have been added
262   // to a value, or else the shuffles will be incomplete.  Store them per
263   // function in a stack.
264   //
265   // Aside from function order, the order of values doesn't matter much here.
266   UseListOrderStack Stack;
267 
268   // We want to visit the functions backward now so we can list function-local
269   // constants in the last Function they're used in.  Module-level constants
270   // have already been visited above.
271   for (const Function &F : llvm::reverse(M)) {
272     auto PredictValueOrderFromMetadata = [&](Metadata *MD) {
273       if (const auto *VAM = dyn_cast<ValueAsMetadata>(MD)) {
274         predictValueUseListOrder(VAM->getValue(), &F, OM, Stack);
275       } else if (const auto *AL = dyn_cast<DIArgList>(MD)) {
276         for (const auto *VAM : AL->getArgs())
277           predictValueUseListOrder(VAM->getValue(), &F, OM, Stack);
278       }
279     };
280     if (F.isDeclaration())
281       continue;
282     for (const BasicBlock &BB : F)
283       predictValueUseListOrder(&BB, &F, OM, Stack);
284     for (const Argument &A : F.args())
285       predictValueUseListOrder(&A, &F, OM, Stack);
286     for (const BasicBlock &BB : F) {
287       for (const Instruction &I : BB) {
288         for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
289           PredictValueOrderFromMetadata(DVR.getRawLocation());
290           if (DVR.isDbgAssign())
291             PredictValueOrderFromMetadata(DVR.getRawAddress());
292         }
293         for (const Value *Op : I.operands()) {
294           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
295             predictValueUseListOrder(Op, &F, OM, Stack);
296           if (const auto *MAV = dyn_cast<MetadataAsValue>(Op))
297             PredictValueOrderFromMetadata(MAV->getMetadata());
298         }
299         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
300           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
301                                    Stack);
302         predictValueUseListOrder(&I, &F, OM, Stack);
303       }
304     }
305   }
306 
307   // Visit globals last, since the module-level use-list block will be seen
308   // before the function bodies are processed.
309   for (const GlobalVariable &G : M.globals())
310     predictValueUseListOrder(&G, nullptr, OM, Stack);
311   for (const Function &F : M)
312     predictValueUseListOrder(&F, nullptr, OM, Stack);
313   for (const GlobalAlias &A : M.aliases())
314     predictValueUseListOrder(&A, nullptr, OM, Stack);
315   for (const GlobalIFunc &I : M.ifuncs())
316     predictValueUseListOrder(&I, nullptr, OM, Stack);
317   for (const GlobalVariable &G : M.globals())
318     if (G.hasInitializer())
319       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
320   for (const GlobalAlias &A : M.aliases())
321     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
322   for (const GlobalIFunc &I : M.ifuncs())
323     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
324   for (const Function &F : M) {
325     for (const Use &U : F.operands())
326       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
327   }
328 
329   return Stack;
330 }
331 
332 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
333   return V.first->getType()->isIntOrIntVectorTy();
334 }
335 
336 ValueEnumerator::ValueEnumerator(const Module &M,
337                                  bool ShouldPreserveUseListOrder)
338     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
339   if (ShouldPreserveUseListOrder)
340     UseListOrders = predictUseListOrder(M);
341 
342   // Enumerate the global variables.
343   for (const GlobalVariable &GV : M.globals()) {
344     EnumerateValue(&GV);
345     EnumerateType(GV.getValueType());
346   }
347 
348   // Enumerate the functions.
349   for (const Function & F : M) {
350     EnumerateValue(&F);
351     EnumerateType(F.getValueType());
352     EnumerateAttributes(F.getAttributes());
353   }
354 
355   // Enumerate the aliases.
356   for (const GlobalAlias &GA : M.aliases()) {
357     EnumerateValue(&GA);
358     EnumerateType(GA.getValueType());
359   }
360 
361   // Enumerate the ifuncs.
362   for (const GlobalIFunc &GIF : M.ifuncs()) {
363     EnumerateValue(&GIF);
364     EnumerateType(GIF.getValueType());
365   }
366 
367   // Remember what is the cutoff between globalvalue's and other constants.
368   unsigned FirstConstant = Values.size();
369 
370   // Enumerate the global variable initializers and attributes.
371   for (const GlobalVariable &GV : M.globals()) {
372     if (GV.hasInitializer())
373       EnumerateValue(GV.getInitializer());
374     if (GV.hasAttributes())
375       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
376   }
377 
378   // Enumerate the aliasees.
379   for (const GlobalAlias &GA : M.aliases())
380     EnumerateValue(GA.getAliasee());
381 
382   // Enumerate the ifunc resolvers.
383   for (const GlobalIFunc &GIF : M.ifuncs())
384     EnumerateValue(GIF.getResolver());
385 
386   // Enumerate any optional Function data.
387   for (const Function &F : M)
388     for (const Use &U : F.operands())
389       EnumerateValue(U.get());
390 
391   // Enumerate the metadata type.
392   //
393   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
394   // only encodes the metadata type when it's used as a value.
395   EnumerateType(Type::getMetadataTy(M.getContext()));
396 
397   // Insert constants and metadata that are named at module level into the slot
398   // pool so that the module symbol table can refer to them...
399   EnumerateValueSymbolTable(M.getValueSymbolTable());
400   EnumerateNamedMetadata(M);
401 
402   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
403   for (const GlobalVariable &GV : M.globals()) {
404     MDs.clear();
405     GV.getAllMetadata(MDs);
406     for (const auto &I : MDs)
407       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
408       // to write metadata to the global variable's own metadata block
409       // (PR28134).
410       EnumerateMetadata(nullptr, I.second);
411   }
412 
413   // Enumerate types used by function bodies and argument lists.
414   for (const Function &F : M) {
415     for (const Argument &A : F.args())
416       EnumerateType(A.getType());
417 
418     // Enumerate metadata attached to this function.
419     MDs.clear();
420     F.getAllMetadata(MDs);
421     for (const auto &I : MDs)
422       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
423 
424     for (const BasicBlock &BB : F)
425       for (const Instruction &I : BB) {
426         // Local metadata is enumerated during function-incorporation, but
427         // any ConstantAsMetadata arguments in a DIArgList should be examined
428         // now.
429         auto EnumerateNonLocalValuesFromMetadata = [&](Metadata *MD) {
430           assert(MD && "Metadata unexpectedly null");
431           if (const auto *AL = dyn_cast<DIArgList>(MD)) {
432             for (const auto *VAM : AL->getArgs()) {
433               if (isa<ConstantAsMetadata>(VAM))
434                 EnumerateMetadata(&F, VAM);
435             }
436             return;
437           }
438 
439           if (!isa<LocalAsMetadata>(MD))
440             EnumerateMetadata(&F, MD);
441         };
442 
443         for (DbgRecord &DR : I.getDbgRecordRange()) {
444           if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
445             EnumerateMetadata(&F, DLR->getLabel());
446             EnumerateMetadata(&F, &*DLR->getDebugLoc());
447             continue;
448           }
449           // Enumerate non-local location metadata.
450           DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
451           EnumerateNonLocalValuesFromMetadata(DVR.getRawLocation());
452           EnumerateMetadata(&F, DVR.getExpression());
453           EnumerateMetadata(&F, DVR.getVariable());
454           EnumerateMetadata(&F, &*DVR.getDebugLoc());
455           if (DVR.isDbgAssign()) {
456             EnumerateNonLocalValuesFromMetadata(DVR.getRawAddress());
457             EnumerateMetadata(&F, DVR.getAssignID());
458             EnumerateMetadata(&F, DVR.getAddressExpression());
459           }
460         }
461         for (const Use &Op : I.operands()) {
462           auto *MD = dyn_cast<MetadataAsValue>(&Op);
463           if (!MD) {
464             EnumerateOperandType(Op);
465             continue;
466           }
467 
468           EnumerateNonLocalValuesFromMetadata(MD->getMetadata());
469         }
470         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
471           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
472         if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
473           EnumerateType(GEP->getSourceElementType());
474         if (auto *AI = dyn_cast<AllocaInst>(&I))
475           EnumerateType(AI->getAllocatedType());
476         EnumerateType(I.getType());
477         if (const auto *Call = dyn_cast<CallBase>(&I)) {
478           EnumerateAttributes(Call->getAttributes());
479           EnumerateType(Call->getFunctionType());
480         }
481 
482         // Enumerate metadata attached with this instruction.
483         MDs.clear();
484         I.getAllMetadataOtherThanDebugLoc(MDs);
485         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
486           EnumerateMetadata(&F, MDs[i].second);
487 
488         // Don't enumerate the location directly -- it has a special record
489         // type -- but enumerate its operands.
490         if (DILocation *L = I.getDebugLoc())
491           for (const Metadata *Op : L->operands())
492             EnumerateMetadata(&F, Op);
493       }
494   }
495 
496   // Optimize constant ordering.
497   OptimizeConstants(FirstConstant, Values.size());
498 
499   // Organize metadata ordering.
500   organizeMetadata();
501 }
502 
503 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
504   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
505   assert(I != InstructionMap.end() && "Instruction is not mapped!");
506   return I->second;
507 }
508 
509 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
510   unsigned ComdatID = Comdats.idFor(C);
511   assert(ComdatID && "Comdat not found!");
512   return ComdatID;
513 }
514 
515 void ValueEnumerator::setInstructionID(const Instruction *I) {
516   InstructionMap[I] = InstructionCount++;
517 }
518 
519 unsigned ValueEnumerator::getValueID(const Value *V) const {
520   if (auto *MD = dyn_cast<MetadataAsValue>(V))
521     return getMetadataID(MD->getMetadata());
522 
523   ValueMapType::const_iterator I = ValueMap.find(V);
524   assert(I != ValueMap.end() && "Value not in slotcalculator!");
525   return I->second-1;
526 }
527 
528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
529 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
530   print(dbgs(), ValueMap, "Default");
531   dbgs() << '\n';
532   print(dbgs(), MetadataMap, "MetaData");
533   dbgs() << '\n';
534 }
535 #endif
536 
537 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
538                             const char *Name) const {
539   OS << "Map Name: " << Name << "\n";
540   OS << "Size: " << Map.size() << "\n";
541   for (const auto &I : Map) {
542     const Value *V = I.first;
543     if (V->hasName())
544       OS << "Value: " << V->getName();
545     else
546       OS << "Value: [null]\n";
547     V->print(errs());
548     errs() << '\n';
549 
550     OS << " Uses(" << V->getNumUses() << "):";
551     for (const Use &U : V->uses()) {
552       if (&U != &*V->use_begin())
553         OS << ",";
554       if(U->hasName())
555         OS << " " << U->getName();
556       else
557         OS << " [null]";
558 
559     }
560     OS <<  "\n\n";
561   }
562 }
563 
564 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
565                             const char *Name) const {
566   OS << "Map Name: " << Name << "\n";
567   OS << "Size: " << Map.size() << "\n";
568   for (const auto &I : Map) {
569     const Metadata *MD = I.first;
570     OS << "Metadata: slot = " << I.second.ID << "\n";
571     OS << "Metadata: function = " << I.second.F << "\n";
572     MD->print(OS);
573     OS << "\n";
574   }
575 }
576 
577 /// OptimizeConstants - Reorder constant pool for denser encoding.
578 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
579   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
580 
581   if (ShouldPreserveUseListOrder)
582     // Optimizing constants makes the use-list order difficult to predict.
583     // Disable it for now when trying to preserve the order.
584     return;
585 
586   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
587                    [this](const std::pair<const Value *, unsigned> &LHS,
588                           const std::pair<const Value *, unsigned> &RHS) {
589     // Sort by plane.
590     if (LHS.first->getType() != RHS.first->getType())
591       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
592     // Then by frequency.
593     return LHS.second > RHS.second;
594   });
595 
596   // Ensure that integer and vector of integer constants are at the start of the
597   // constant pool.  This is important so that GEP structure indices come before
598   // gep constant exprs.
599   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
600                         isIntOrIntVectorValue);
601 
602   // Rebuild the modified portion of ValueMap.
603   for (; CstStart != CstEnd; ++CstStart)
604     ValueMap[Values[CstStart].first] = CstStart+1;
605 }
606 
607 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
608 /// table into the values table.
609 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
610   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
611        VI != VE; ++VI)
612     EnumerateValue(VI->getValue());
613 }
614 
615 /// Insert all of the values referenced by named metadata in the specified
616 /// module.
617 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
618   for (const auto &I : M.named_metadata())
619     EnumerateNamedMDNode(&I);
620 }
621 
622 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
623   for (const MDNode *N : MD->operands())
624     EnumerateMetadata(nullptr, N);
625 }
626 
627 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
628   return F ? getValueID(F) + 1 : 0;
629 }
630 
631 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
632   EnumerateMetadata(getMetadataFunctionID(F), MD);
633 }
634 
635 void ValueEnumerator::EnumerateFunctionLocalMetadata(
636     const Function &F, const LocalAsMetadata *Local) {
637   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
638 }
639 
640 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
641     const Function &F, const DIArgList *ArgList) {
642   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
643 }
644 
645 void ValueEnumerator::dropFunctionFromMetadata(
646     MetadataMapType::value_type &FirstMD) {
647   SmallVector<const MDNode *, 64> Worklist;
648   auto push = [&Worklist](MetadataMapType::value_type &MD) {
649     auto &Entry = MD.second;
650 
651     // Nothing to do if this metadata isn't tagged.
652     if (!Entry.F)
653       return;
654 
655     // Drop the function tag.
656     Entry.F = 0;
657 
658     // If this is has an ID and is an MDNode, then its operands have entries as
659     // well.  We need to drop the function from them too.
660     if (Entry.ID)
661       if (auto *N = dyn_cast<MDNode>(MD.first))
662         Worklist.push_back(N);
663   };
664   push(FirstMD);
665   while (!Worklist.empty())
666     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
667       if (!Op)
668         continue;
669       auto MD = MetadataMap.find(Op);
670       if (MD != MetadataMap.end())
671         push(*MD);
672     }
673 }
674 
675 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
676   // It's vital for reader efficiency that uniqued subgraphs are done in
677   // post-order; it's expensive when their operands have forward references.
678   // If a distinct node is referenced from a uniqued node, it'll be delayed
679   // until the uniqued subgraph has been completely traversed.
680   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
681 
682   // Start by enumerating MD, and then work through its transitive operands in
683   // post-order.  This requires a depth-first search.
684   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
685   if (const MDNode *N = enumerateMetadataImpl(F, MD))
686     Worklist.push_back(std::make_pair(N, N->op_begin()));
687 
688   while (!Worklist.empty()) {
689     const MDNode *N = Worklist.back().first;
690 
691     // Enumerate operands until we hit a new node.  We need to traverse these
692     // nodes' operands before visiting the rest of N's operands.
693     MDNode::op_iterator I = std::find_if(
694         Worklist.back().second, N->op_end(),
695         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
696     if (I != N->op_end()) {
697       auto *Op = cast<MDNode>(*I);
698       Worklist.back().second = ++I;
699 
700       // Delay traversing Op if it's a distinct node and N is uniqued.
701       if (Op->isDistinct() && !N->isDistinct())
702         DelayedDistinctNodes.push_back(Op);
703       else
704         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
705       continue;
706     }
707 
708     // All the operands have been visited.  Now assign an ID.
709     Worklist.pop_back();
710     MDs.push_back(N);
711     MetadataMap[N].ID = MDs.size();
712 
713     // Flush out any delayed distinct nodes; these are all the distinct nodes
714     // that are leaves in last uniqued subgraph.
715     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
716       for (const MDNode *N : DelayedDistinctNodes)
717         Worklist.push_back(std::make_pair(N, N->op_begin()));
718       DelayedDistinctNodes.clear();
719     }
720   }
721 }
722 
723 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
724   if (!MD)
725     return nullptr;
726 
727   assert(
728       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
729       "Invalid metadata kind");
730 
731   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
732   MDIndex &Entry = Insertion.first->second;
733   if (!Insertion.second) {
734     // Already mapped.  If F doesn't match the function tag, drop it.
735     if (Entry.hasDifferentFunction(F))
736       dropFunctionFromMetadata(*Insertion.first);
737     return nullptr;
738   }
739 
740   // Don't assign IDs to metadata nodes.
741   if (auto *N = dyn_cast<MDNode>(MD))
742     return N;
743 
744   // Save the metadata.
745   MDs.push_back(MD);
746   Entry.ID = MDs.size();
747 
748   // Enumerate the constant, if any.
749   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
750     EnumerateValue(C->getValue());
751 
752   return nullptr;
753 }
754 
755 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
756 /// information reachable from the metadata.
757 void ValueEnumerator::EnumerateFunctionLocalMetadata(
758     unsigned F, const LocalAsMetadata *Local) {
759   assert(F && "Expected a function");
760 
761   // Check to see if it's already in!
762   MDIndex &Index = MetadataMap[Local];
763   if (Index.ID) {
764     assert(Index.F == F && "Expected the same function");
765     return;
766   }
767 
768   MDs.push_back(Local);
769   Index.F = F;
770   Index.ID = MDs.size();
771 
772   EnumerateValue(Local->getValue());
773 }
774 
775 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
776 /// information reachable from the metadata.
777 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
778     unsigned F, const DIArgList *ArgList) {
779   assert(F && "Expected a function");
780 
781   // Check to see if it's already in!
782   MDIndex &Index = MetadataMap[ArgList];
783   if (Index.ID) {
784     assert(Index.F == F && "Expected the same function");
785     return;
786   }
787 
788   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
789     if (isa<LocalAsMetadata>(VAM)) {
790       assert(MetadataMap.count(VAM) &&
791              "LocalAsMetadata should be enumerated before DIArgList");
792       assert(MetadataMap[VAM].F == F &&
793              "Expected LocalAsMetadata in the same function");
794     } else {
795       assert(isa<ConstantAsMetadata>(VAM) &&
796              "Expected LocalAsMetadata or ConstantAsMetadata");
797       assert(ValueMap.count(VAM->getValue()) &&
798              "Constant should be enumerated beforeDIArgList");
799       EnumerateMetadata(F, VAM);
800     }
801   }
802 
803   MDs.push_back(ArgList);
804   Index.F = F;
805   Index.ID = MDs.size();
806 }
807 
808 static unsigned getMetadataTypeOrder(const Metadata *MD) {
809   // Strings are emitted in bulk and must come first.
810   if (isa<MDString>(MD))
811     return 0;
812 
813   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
814   // to the front since we can detect it.
815   auto *N = dyn_cast<MDNode>(MD);
816   if (!N)
817     return 1;
818 
819   // The reader is fast forward references for distinct node operands, but slow
820   // when uniqued operands are unresolved.
821   return N->isDistinct() ? 2 : 3;
822 }
823 
824 void ValueEnumerator::organizeMetadata() {
825   assert(MetadataMap.size() == MDs.size() &&
826          "Metadata map and vector out of sync");
827 
828   if (MDs.empty())
829     return;
830 
831   // Copy out the index information from MetadataMap in order to choose a new
832   // order.
833   SmallVector<MDIndex, 64> Order;
834   Order.reserve(MetadataMap.size());
835   for (const Metadata *MD : MDs)
836     Order.push_back(MetadataMap.lookup(MD));
837 
838   // Partition:
839   //   - by function, then
840   //   - by isa<MDString>
841   // and then sort by the original/current ID.  Since the IDs are guaranteed to
842   // be unique, the result of llvm::sort will be deterministic.  There's no need
843   // for std::stable_sort.
844   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
845     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
846            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
847   });
848 
849   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
850   // and fix up MetadataMap.
851   std::vector<const Metadata *> OldMDs;
852   MDs.swap(OldMDs);
853   MDs.reserve(OldMDs.size());
854   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
855     auto *MD = Order[I].get(OldMDs);
856     MDs.push_back(MD);
857     MetadataMap[MD].ID = I + 1;
858     if (isa<MDString>(MD))
859       ++NumMDStrings;
860   }
861 
862   // Return early if there's nothing for the functions.
863   if (MDs.size() == Order.size())
864     return;
865 
866   // Build the function metadata ranges.
867   MDRange R;
868   FunctionMDs.reserve(OldMDs.size());
869   unsigned PrevF = 0;
870   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
871        ++I) {
872     unsigned F = Order[I].F;
873     if (!PrevF) {
874       PrevF = F;
875     } else if (PrevF != F) {
876       R.Last = FunctionMDs.size();
877       std::swap(R, FunctionMDInfo[PrevF]);
878       R.First = FunctionMDs.size();
879 
880       ID = MDs.size();
881       PrevF = F;
882     }
883 
884     auto *MD = Order[I].get(OldMDs);
885     FunctionMDs.push_back(MD);
886     MetadataMap[MD].ID = ++ID;
887     if (isa<MDString>(MD))
888       ++R.NumStrings;
889   }
890   R.Last = FunctionMDs.size();
891   FunctionMDInfo[PrevF] = R;
892 }
893 
894 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
895   NumModuleMDs = MDs.size();
896 
897   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
898   NumMDStrings = R.NumStrings;
899   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
900              FunctionMDs.begin() + R.Last);
901 }
902 
903 void ValueEnumerator::EnumerateValue(const Value *V) {
904   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
905   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
906 
907   // Check to see if it's already in!
908   unsigned &ValueID = ValueMap[V];
909   if (ValueID) {
910     // Increment use count.
911     Values[ValueID-1].second++;
912     return;
913   }
914 
915   if (auto *GO = dyn_cast<GlobalObject>(V))
916     if (const Comdat *C = GO->getComdat())
917       Comdats.insert(C);
918 
919   // Enumerate the type of this value.
920   EnumerateType(V->getType());
921 
922   if (const Constant *C = dyn_cast<Constant>(V)) {
923     if (isa<GlobalValue>(C)) {
924       // Initializers for globals are handled explicitly elsewhere.
925     } else if (C->getNumOperands()) {
926       // If a constant has operands, enumerate them.  This makes sure that if a
927       // constant has uses (for example an array of const ints), that they are
928       // inserted also.
929 
930       // We prefer to enumerate them with values before we enumerate the user
931       // itself.  This makes it more likely that we can avoid forward references
932       // in the reader.  We know that there can be no cycles in the constants
933       // graph that don't go through a global variable.
934       for (const Use &U : C->operands())
935         if (!isa<BasicBlock>(U)) // Don't enumerate BB operand to BlockAddress.
936           EnumerateValue(U);
937       if (auto *CE = dyn_cast<ConstantExpr>(C)) {
938         if (CE->getOpcode() == Instruction::ShuffleVector)
939           EnumerateValue(CE->getShuffleMaskForBitcode());
940         if (auto *GEP = dyn_cast<GEPOperator>(CE))
941           EnumerateType(GEP->getSourceElementType());
942       }
943 
944       // Finally, add the value.  Doing this could make the ValueID reference be
945       // dangling, don't reuse it.
946       Values.push_back(std::make_pair(V, 1U));
947       ValueMap[V] = Values.size();
948       return;
949     }
950   }
951 
952   // Add the value.
953   Values.push_back(std::make_pair(V, 1U));
954   ValueID = Values.size();
955 }
956 
957 
958 void ValueEnumerator::EnumerateType(Type *Ty) {
959   unsigned *TypeID = &TypeMap[Ty];
960 
961   // We've already seen this type.
962   if (*TypeID)
963     return;
964 
965   // If it is a non-anonymous struct, mark the type as being visited so that we
966   // don't recursively visit it.  This is safe because we allow forward
967   // references of these in the bitcode reader.
968   if (StructType *STy = dyn_cast<StructType>(Ty))
969     if (!STy->isLiteral())
970       *TypeID = ~0U;
971 
972   // Enumerate all of the subtypes before we enumerate this type.  This ensures
973   // that the type will be enumerated in an order that can be directly built.
974   for (Type *SubTy : Ty->subtypes())
975     EnumerateType(SubTy);
976 
977   // Refresh the TypeID pointer in case the table rehashed.
978   TypeID = &TypeMap[Ty];
979 
980   // Check to see if we got the pointer another way.  This can happen when
981   // enumerating recursive types that hit the base case deeper than they start.
982   //
983   // If this is actually a struct that we are treating as forward ref'able,
984   // then emit the definition now that all of its contents are available.
985   if (*TypeID && *TypeID != ~0U)
986     return;
987 
988   // Add this type now that its contents are all happily enumerated.
989   Types.push_back(Ty);
990 
991   *TypeID = Types.size();
992 }
993 
994 // Enumerate the types for the specified value.  If the value is a constant,
995 // walk through it, enumerating the types of the constant.
996 void ValueEnumerator::EnumerateOperandType(const Value *V) {
997   EnumerateType(V->getType());
998 
999   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
1000 
1001   const Constant *C = dyn_cast<Constant>(V);
1002   if (!C)
1003     return;
1004 
1005   // If this constant is already enumerated, ignore it, we know its type must
1006   // be enumerated.
1007   if (ValueMap.count(C))
1008     return;
1009 
1010   // This constant may have operands, make sure to enumerate the types in
1011   // them.
1012   for (const Value *Op : C->operands()) {
1013     // Don't enumerate basic blocks here, this happens as operands to
1014     // blockaddress.
1015     if (isa<BasicBlock>(Op))
1016       continue;
1017 
1018     EnumerateOperandType(Op);
1019   }
1020   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1021     if (CE->getOpcode() == Instruction::ShuffleVector)
1022       EnumerateOperandType(CE->getShuffleMaskForBitcode());
1023     if (CE->getOpcode() == Instruction::GetElementPtr)
1024       EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
1025   }
1026 }
1027 
1028 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1029   if (PAL.isEmpty()) return;  // null is always 0.
1030 
1031   // Do a lookup.
1032   unsigned &Entry = AttributeListMap[PAL];
1033   if (Entry == 0) {
1034     // Never saw this before, add it.
1035     AttributeLists.push_back(PAL);
1036     Entry = AttributeLists.size();
1037   }
1038 
1039   // Do lookups for all attribute groups.
1040   for (unsigned i : PAL.indexes()) {
1041     AttributeSet AS = PAL.getAttributes(i);
1042     if (!AS.hasAttributes())
1043       continue;
1044     IndexAndAttrSet Pair = {i, AS};
1045     unsigned &Entry = AttributeGroupMap[Pair];
1046     if (Entry == 0) {
1047       AttributeGroups.push_back(Pair);
1048       Entry = AttributeGroups.size();
1049 
1050       for (Attribute Attr : AS) {
1051         if (Attr.isTypeAttribute())
1052           EnumerateType(Attr.getValueAsType());
1053       }
1054     }
1055   }
1056 }
1057 
1058 void ValueEnumerator::incorporateFunction(const Function &F) {
1059   InstructionCount = 0;
1060   NumModuleValues = Values.size();
1061 
1062   // Add global metadata to the function block.  This doesn't include
1063   // LocalAsMetadata.
1064   incorporateFunctionMetadata(F);
1065 
1066   // Adding function arguments to the value table.
1067   for (const auto &I : F.args()) {
1068     EnumerateValue(&I);
1069     if (I.hasAttribute(Attribute::ByVal))
1070       EnumerateType(I.getParamByValType());
1071     else if (I.hasAttribute(Attribute::StructRet))
1072       EnumerateType(I.getParamStructRetType());
1073     else if (I.hasAttribute(Attribute::ByRef))
1074       EnumerateType(I.getParamByRefType());
1075   }
1076   FirstFuncConstantID = Values.size();
1077 
1078   // Add all function-level constants to the value table.
1079   for (const BasicBlock &BB : F) {
1080     for (const Instruction &I : BB) {
1081       for (const Use &OI : I.operands()) {
1082         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1083           EnumerateValue(OI);
1084       }
1085       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1086         EnumerateValue(SVI->getShuffleMaskForBitcode());
1087     }
1088     BasicBlocks.push_back(&BB);
1089     ValueMap[&BB] = BasicBlocks.size();
1090   }
1091 
1092   // Optimize the constant layout.
1093   OptimizeConstants(FirstFuncConstantID, Values.size());
1094 
1095   // Add the function's parameter attributes so they are available for use in
1096   // the function's instruction.
1097   EnumerateAttributes(F.getAttributes());
1098 
1099   FirstInstID = Values.size();
1100 
1101   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1102   SmallVector<DIArgList *, 8> ArgListMDVector;
1103 
1104   auto AddFnLocalMetadata = [&](Metadata *MD) {
1105     if (!MD)
1106       return;
1107     if (auto *Local = dyn_cast<LocalAsMetadata>(MD)) {
1108       // Enumerate metadata after the instructions they might refer to.
1109       FnLocalMDVector.push_back(Local);
1110     } else if (auto *ArgList = dyn_cast<DIArgList>(MD)) {
1111       ArgListMDVector.push_back(ArgList);
1112       for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1113         if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1114           // Enumerate metadata after the instructions they might refer
1115           // to.
1116           FnLocalMDVector.push_back(Local);
1117         }
1118       }
1119     }
1120   };
1121 
1122   // Add all of the instructions.
1123   for (const BasicBlock &BB : F) {
1124     for (const Instruction &I : BB) {
1125       for (const Use &OI : I.operands()) {
1126         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
1127           AddFnLocalMetadata(MD->getMetadata());
1128       }
1129       /// RemoveDIs: Add non-instruction function-local metadata uses.
1130       for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
1131         assert(DVR.getRawLocation() &&
1132                "DbgVariableRecord location unexpectedly null");
1133         AddFnLocalMetadata(DVR.getRawLocation());
1134         if (DVR.isDbgAssign()) {
1135           assert(DVR.getRawAddress() &&
1136                  "DbgVariableRecord location unexpectedly null");
1137           AddFnLocalMetadata(DVR.getRawAddress());
1138         }
1139       }
1140       if (!I.getType()->isVoidTy())
1141         EnumerateValue(&I);
1142     }
1143   }
1144 
1145   // Add all of the function-local metadata.
1146   for (const LocalAsMetadata *Local : FnLocalMDVector) {
1147     // At this point, every local values have been incorporated, we shouldn't
1148     // have a metadata operand that references a value that hasn't been seen.
1149     assert(ValueMap.count(Local->getValue()) &&
1150            "Missing value for metadata operand");
1151     EnumerateFunctionLocalMetadata(F, Local);
1152   }
1153   // DIArgList entries must come after function-local metadata, as it is not
1154   // possible to forward-reference them.
1155   for (const DIArgList *ArgList : ArgListMDVector)
1156     EnumerateFunctionLocalListMetadata(F, ArgList);
1157 }
1158 
1159 void ValueEnumerator::purgeFunction() {
1160   /// Remove purged values from the ValueMap.
1161   for (const auto &V : llvm::drop_begin(Values, NumModuleValues))
1162     ValueMap.erase(V.first);
1163   for (const Metadata *MD : llvm::drop_begin(MDs, NumModuleMDs))
1164     MetadataMap.erase(MD);
1165   for (const BasicBlock *BB : BasicBlocks)
1166     ValueMap.erase(BB);
1167 
1168   Values.resize(NumModuleValues);
1169   MDs.resize(NumModuleMDs);
1170   BasicBlocks.clear();
1171   NumMDStrings = 0;
1172 }
1173 
1174 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1175                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1176   unsigned Counter = 0;
1177   for (const BasicBlock &BB : *F)
1178     IDMap[&BB] = ++Counter;
1179 }
1180 
1181 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1182 /// specified basic block.  This is relatively expensive information, so it
1183 /// should only be used by rare constructs such as address-of-label.
1184 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1185   unsigned &Idx = GlobalBasicBlockIDs[BB];
1186   if (Idx != 0)
1187     return Idx-1;
1188 
1189   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1190   return getGlobalBasicBlockID(BB);
1191 }
1192 
1193 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndices() const {
1194   return Log2_32_Ceil(getTypes().size() + 1);
1195 }
1196