1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 603 AbbrevToUse = 0; 604 Vals.push_back(Str[i]); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocSize: 616 return bitc::ATTR_KIND_ALLOC_SIZE; 617 case Attribute::AlwaysInline: 618 return bitc::ATTR_KIND_ALWAYS_INLINE; 619 case Attribute::ArgMemOnly: 620 return bitc::ATTR_KIND_ARGMEMONLY; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 return RawFlags; 1070 } 1071 1072 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1073 // in BitcodeReader.cpp. 1074 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1075 uint64_t RawFlags = 0; 1076 1077 RawFlags |= Flags.NotEligibleToImport; // bool 1078 RawFlags |= (Flags.Live << 1); 1079 RawFlags |= (Flags.DSOLocal << 2); 1080 RawFlags |= (Flags.CanAutoHide << 3); 1081 1082 // Linkage don't need to be remapped at that time for the summary. Any future 1083 // change to the getEncodedLinkage() function will need to be taken into 1084 // account here as well. 1085 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1086 1087 RawFlags |= (Flags.Visibility << 8); // 2 bits 1088 1089 return RawFlags; 1090 } 1091 1092 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1093 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1094 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1095 return RawFlags; 1096 } 1097 1098 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1099 switch (GV.getVisibility()) { 1100 case GlobalValue::DefaultVisibility: return 0; 1101 case GlobalValue::HiddenVisibility: return 1; 1102 case GlobalValue::ProtectedVisibility: return 2; 1103 } 1104 llvm_unreachable("Invalid visibility"); 1105 } 1106 1107 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1108 switch (GV.getDLLStorageClass()) { 1109 case GlobalValue::DefaultStorageClass: return 0; 1110 case GlobalValue::DLLImportStorageClass: return 1; 1111 case GlobalValue::DLLExportStorageClass: return 2; 1112 } 1113 llvm_unreachable("Invalid DLL storage class"); 1114 } 1115 1116 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1117 switch (GV.getThreadLocalMode()) { 1118 case GlobalVariable::NotThreadLocal: return 0; 1119 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1120 case GlobalVariable::LocalDynamicTLSModel: return 2; 1121 case GlobalVariable::InitialExecTLSModel: return 3; 1122 case GlobalVariable::LocalExecTLSModel: return 4; 1123 } 1124 llvm_unreachable("Invalid TLS model"); 1125 } 1126 1127 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1128 switch (C.getSelectionKind()) { 1129 case Comdat::Any: 1130 return bitc::COMDAT_SELECTION_KIND_ANY; 1131 case Comdat::ExactMatch: 1132 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1133 case Comdat::Largest: 1134 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1135 case Comdat::NoDeduplicate: 1136 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1137 case Comdat::SameSize: 1138 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1139 } 1140 llvm_unreachable("Invalid selection kind"); 1141 } 1142 1143 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1144 switch (GV.getUnnamedAddr()) { 1145 case GlobalValue::UnnamedAddr::None: return 0; 1146 case GlobalValue::UnnamedAddr::Local: return 2; 1147 case GlobalValue::UnnamedAddr::Global: return 1; 1148 } 1149 llvm_unreachable("Invalid unnamed_addr"); 1150 } 1151 1152 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1153 if (GenerateHash) 1154 Hasher.update(Str); 1155 return StrtabBuilder.add(Str); 1156 } 1157 1158 void ModuleBitcodeWriter::writeComdats() { 1159 SmallVector<unsigned, 64> Vals; 1160 for (const Comdat *C : VE.getComdats()) { 1161 // COMDAT: [strtab offset, strtab size, selection_kind] 1162 Vals.push_back(addToStrtab(C->getName())); 1163 Vals.push_back(C->getName().size()); 1164 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1165 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1166 Vals.clear(); 1167 } 1168 } 1169 1170 /// Write a record that will eventually hold the word offset of the 1171 /// module-level VST. For now the offset is 0, which will be backpatched 1172 /// after the real VST is written. Saves the bit offset to backpatch. 1173 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1174 // Write a placeholder value in for the offset of the real VST, 1175 // which is written after the function blocks so that it can include 1176 // the offset of each function. The placeholder offset will be 1177 // updated when the real VST is written. 1178 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1180 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1181 // hold the real VST offset. Must use fixed instead of VBR as we don't 1182 // know how many VBR chunks to reserve ahead of time. 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1184 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1185 1186 // Emit the placeholder 1187 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1188 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1189 1190 // Compute and save the bit offset to the placeholder, which will be 1191 // patched when the real VST is written. We can simply subtract the 32-bit 1192 // fixed size from the current bit number to get the location to backpatch. 1193 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1194 } 1195 1196 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1197 1198 /// Determine the encoding to use for the given string name and length. 1199 static StringEncoding getStringEncoding(StringRef Str) { 1200 bool isChar6 = true; 1201 for (char C : Str) { 1202 if (isChar6) 1203 isChar6 = BitCodeAbbrevOp::isChar6(C); 1204 if ((unsigned char)C & 128) 1205 // don't bother scanning the rest. 1206 return SE_Fixed8; 1207 } 1208 if (isChar6) 1209 return SE_Char6; 1210 return SE_Fixed7; 1211 } 1212 1213 /// Emit top-level description of module, including target triple, inline asm, 1214 /// descriptors for global variables, and function prototype info. 1215 /// Returns the bit offset to backpatch with the location of the real VST. 1216 void ModuleBitcodeWriter::writeModuleInfo() { 1217 // Emit various pieces of data attached to a module. 1218 if (!M.getTargetTriple().empty()) 1219 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1220 0 /*TODO*/); 1221 const std::string &DL = M.getDataLayoutStr(); 1222 if (!DL.empty()) 1223 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1224 if (!M.getModuleInlineAsm().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1226 0 /*TODO*/); 1227 1228 // Emit information about sections and GC, computing how many there are. Also 1229 // compute the maximum alignment value. 1230 std::map<std::string, unsigned> SectionMap; 1231 std::map<std::string, unsigned> GCMap; 1232 MaybeAlign MaxAlignment; 1233 unsigned MaxGlobalType = 0; 1234 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1235 if (A) 1236 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1237 }; 1238 for (const GlobalVariable &GV : M.globals()) { 1239 UpdateMaxAlignment(GV.getAlign()); 1240 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1241 if (GV.hasSection()) { 1242 // Give section names unique ID's. 1243 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1244 if (!Entry) { 1245 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1246 0 /*TODO*/); 1247 Entry = SectionMap.size(); 1248 } 1249 } 1250 } 1251 for (const Function &F : M) { 1252 UpdateMaxAlignment(F.getAlign()); 1253 if (F.hasSection()) { 1254 // Give section names unique ID's. 1255 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1256 if (!Entry) { 1257 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1258 0 /*TODO*/); 1259 Entry = SectionMap.size(); 1260 } 1261 } 1262 if (F.hasGC()) { 1263 // Same for GC names. 1264 unsigned &Entry = GCMap[F.getGC()]; 1265 if (!Entry) { 1266 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1267 0 /*TODO*/); 1268 Entry = GCMap.size(); 1269 } 1270 } 1271 } 1272 1273 // Emit abbrev for globals, now that we know # sections and max alignment. 1274 unsigned SimpleGVarAbbrev = 0; 1275 if (!M.global_empty()) { 1276 // Add an abbrev for common globals with no visibility or thread localness. 1277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1282 Log2_32_Ceil(MaxGlobalType+1))); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1284 //| explicitType << 1 1285 //| constant 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1288 if (!MaxAlignment) // Alignment. 1289 Abbv->Add(BitCodeAbbrevOp(0)); 1290 else { 1291 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(MaxEncAlignment+1))); 1294 } 1295 if (SectionMap.empty()) // Section. 1296 Abbv->Add(BitCodeAbbrevOp(0)); 1297 else 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(SectionMap.size()+1))); 1300 // Don't bother emitting vis + thread local. 1301 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 } 1303 1304 SmallVector<unsigned, 64> Vals; 1305 // Emit the module's source file name. 1306 { 1307 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1308 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1309 if (Bits == SE_Char6) 1310 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1311 else if (Bits == SE_Fixed7) 1312 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1313 1314 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1318 Abbv->Add(AbbrevOpToUse); 1319 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1320 1321 for (const auto P : M.getSourceFileName()) 1322 Vals.push_back((unsigned char)P); 1323 1324 // Emit the finished record. 1325 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1326 Vals.clear(); 1327 } 1328 1329 // Emit the global variable information. 1330 for (const GlobalVariable &GV : M.globals()) { 1331 unsigned AbbrevToUse = 0; 1332 1333 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1334 // linkage, alignment, section, visibility, threadlocal, 1335 // unnamed_addr, externally_initialized, dllstorageclass, 1336 // comdat, attributes, DSO_Local] 1337 Vals.push_back(addToStrtab(GV.getName())); 1338 Vals.push_back(GV.getName().size()); 1339 Vals.push_back(VE.getTypeID(GV.getValueType())); 1340 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1341 Vals.push_back(GV.isDeclaration() ? 0 : 1342 (VE.getValueID(GV.getInitializer()) + 1)); 1343 Vals.push_back(getEncodedLinkage(GV)); 1344 Vals.push_back(getEncodedAlign(GV.getAlign())); 1345 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1346 : 0); 1347 if (GV.isThreadLocal() || 1348 GV.getVisibility() != GlobalValue::DefaultVisibility || 1349 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1350 GV.isExternallyInitialized() || 1351 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1352 GV.hasComdat() || 1353 GV.hasAttributes() || 1354 GV.isDSOLocal() || 1355 GV.hasPartition()) { 1356 Vals.push_back(getEncodedVisibility(GV)); 1357 Vals.push_back(getEncodedThreadLocalMode(GV)); 1358 Vals.push_back(getEncodedUnnamedAddr(GV)); 1359 Vals.push_back(GV.isExternallyInitialized()); 1360 Vals.push_back(getEncodedDLLStorageClass(GV)); 1361 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1362 1363 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1364 Vals.push_back(VE.getAttributeListID(AL)); 1365 1366 Vals.push_back(GV.isDSOLocal()); 1367 Vals.push_back(addToStrtab(GV.getPartition())); 1368 Vals.push_back(GV.getPartition().size()); 1369 } else { 1370 AbbrevToUse = SimpleGVarAbbrev; 1371 } 1372 1373 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1374 Vals.clear(); 1375 } 1376 1377 // Emit the function proto information. 1378 for (const Function &F : M) { 1379 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1380 // linkage, paramattrs, alignment, section, visibility, gc, 1381 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1382 // prefixdata, personalityfn, DSO_Local, addrspace] 1383 Vals.push_back(addToStrtab(F.getName())); 1384 Vals.push_back(F.getName().size()); 1385 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1386 Vals.push_back(F.getCallingConv()); 1387 Vals.push_back(F.isDeclaration()); 1388 Vals.push_back(getEncodedLinkage(F)); 1389 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1390 Vals.push_back(getEncodedAlign(F.getAlign())); 1391 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1392 : 0); 1393 Vals.push_back(getEncodedVisibility(F)); 1394 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1395 Vals.push_back(getEncodedUnnamedAddr(F)); 1396 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1397 : 0); 1398 Vals.push_back(getEncodedDLLStorageClass(F)); 1399 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1400 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1401 : 0); 1402 Vals.push_back( 1403 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1404 1405 Vals.push_back(F.isDSOLocal()); 1406 Vals.push_back(F.getAddressSpace()); 1407 Vals.push_back(addToStrtab(F.getPartition())); 1408 Vals.push_back(F.getPartition().size()); 1409 1410 unsigned AbbrevToUse = 0; 1411 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1412 Vals.clear(); 1413 } 1414 1415 // Emit the alias information. 1416 for (const GlobalAlias &A : M.aliases()) { 1417 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1418 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1419 // DSO_Local] 1420 Vals.push_back(addToStrtab(A.getName())); 1421 Vals.push_back(A.getName().size()); 1422 Vals.push_back(VE.getTypeID(A.getValueType())); 1423 Vals.push_back(A.getType()->getAddressSpace()); 1424 Vals.push_back(VE.getValueID(A.getAliasee())); 1425 Vals.push_back(getEncodedLinkage(A)); 1426 Vals.push_back(getEncodedVisibility(A)); 1427 Vals.push_back(getEncodedDLLStorageClass(A)); 1428 Vals.push_back(getEncodedThreadLocalMode(A)); 1429 Vals.push_back(getEncodedUnnamedAddr(A)); 1430 Vals.push_back(A.isDSOLocal()); 1431 Vals.push_back(addToStrtab(A.getPartition())); 1432 Vals.push_back(A.getPartition().size()); 1433 1434 unsigned AbbrevToUse = 0; 1435 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1436 Vals.clear(); 1437 } 1438 1439 // Emit the ifunc information. 1440 for (const GlobalIFunc &I : M.ifuncs()) { 1441 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1442 // val#, linkage, visibility, DSO_Local] 1443 Vals.push_back(addToStrtab(I.getName())); 1444 Vals.push_back(I.getName().size()); 1445 Vals.push_back(VE.getTypeID(I.getValueType())); 1446 Vals.push_back(I.getType()->getAddressSpace()); 1447 Vals.push_back(VE.getValueID(I.getResolver())); 1448 Vals.push_back(getEncodedLinkage(I)); 1449 Vals.push_back(getEncodedVisibility(I)); 1450 Vals.push_back(I.isDSOLocal()); 1451 Vals.push_back(addToStrtab(I.getPartition())); 1452 Vals.push_back(I.getPartition().size()); 1453 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1454 Vals.clear(); 1455 } 1456 1457 writeValueSymbolTableForwardDecl(); 1458 } 1459 1460 static uint64_t getOptimizationFlags(const Value *V) { 1461 uint64_t Flags = 0; 1462 1463 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1464 if (OBO->hasNoSignedWrap()) 1465 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1466 if (OBO->hasNoUnsignedWrap()) 1467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1468 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1469 if (PEO->isExact()) 1470 Flags |= 1 << bitc::PEO_EXACT; 1471 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1472 if (FPMO->hasAllowReassoc()) 1473 Flags |= bitc::AllowReassoc; 1474 if (FPMO->hasNoNaNs()) 1475 Flags |= bitc::NoNaNs; 1476 if (FPMO->hasNoInfs()) 1477 Flags |= bitc::NoInfs; 1478 if (FPMO->hasNoSignedZeros()) 1479 Flags |= bitc::NoSignedZeros; 1480 if (FPMO->hasAllowReciprocal()) 1481 Flags |= bitc::AllowReciprocal; 1482 if (FPMO->hasAllowContract()) 1483 Flags |= bitc::AllowContract; 1484 if (FPMO->hasApproxFunc()) 1485 Flags |= bitc::ApproxFunc; 1486 } 1487 1488 return Flags; 1489 } 1490 1491 void ModuleBitcodeWriter::writeValueAsMetadata( 1492 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1493 // Mimic an MDNode with a value as one operand. 1494 Value *V = MD->getValue(); 1495 Record.push_back(VE.getTypeID(V->getType())); 1496 Record.push_back(VE.getValueID(V)); 1497 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1505 Metadata *MD = N->getOperand(i); 1506 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1507 "Unexpected function-local metadata"); 1508 Record.push_back(VE.getMetadataOrNullID(MD)); 1509 } 1510 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1511 : bitc::METADATA_NODE, 1512 Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1517 // Assume the column is usually under 128, and always output the inlined-at 1518 // location (it's never more expensive than building an array size 1). 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1527 return Stream.EmitAbbrev(std::move(Abbv)); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned &Abbrev) { 1533 if (!Abbrev) 1534 Abbrev = createDILocationAbbrev(); 1535 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(N->getColumn()); 1539 Record.push_back(VE.getMetadataID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1541 Record.push_back(N->isImplicitCode()); 1542 1543 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1548 // Assume the column is usually under 128, and always output the inlined-at 1549 // location (it's never more expensive than building an array size 1). 1550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1551 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 return Stream.EmitAbbrev(std::move(Abbv)); 1559 } 1560 1561 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned &Abbrev) { 1564 if (!Abbrev) 1565 Abbrev = createGenericDINodeAbbrev(); 1566 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getTag()); 1569 Record.push_back(0); // Per-tag version field; unused for now. 1570 1571 for (auto &I : N->operands()) 1572 Record.push_back(VE.getMetadataOrNullID(I)); 1573 1574 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1579 SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 const uint64_t Version = 2 << 1; 1582 Record.push_back((uint64_t)N->isDistinct() | Version); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1587 1588 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1589 Record.clear(); 1590 } 1591 1592 void ModuleBitcodeWriter::writeDIGenericSubrange( 1593 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1594 unsigned Abbrev) { 1595 Record.push_back((uint64_t)N->isDistinct()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1600 1601 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1606 if ((int64_t)V >= 0) 1607 Vals.push_back(V << 1); 1608 else 1609 Vals.push_back((-V << 1) | 1); 1610 } 1611 1612 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1613 // We have an arbitrary precision integer value to write whose 1614 // bit width is > 64. However, in canonical unsigned integer 1615 // format it is likely that the high bits are going to be zero. 1616 // So, we only write the number of active words. 1617 unsigned NumWords = A.getActiveWords(); 1618 const uint64_t *RawData = A.getRawData(); 1619 for (unsigned i = 0; i < NumWords; i++) 1620 emitSignedInt64(Vals, RawData[i]); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 const uint64_t IsBigInt = 1 << 2; 1627 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1628 Record.push_back(N->getValue().getBitWidth()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 emitWideAPInt(Record, N->getValue()); 1631 1632 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(N->getSizeInBits()); 1643 Record.push_back(N->getAlignInBits()); 1644 Record.push_back(N->getEncoding()); 1645 Record.push_back(N->getFlags()); 1646 1647 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(N->getTag()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1659 Record.push_back(N->getSizeInBits()); 1660 Record.push_back(N->getAlignInBits()); 1661 Record.push_back(N->getEncoding()); 1662 1663 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getTag()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(N->getLine()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1677 Record.push_back(N->getSizeInBits()); 1678 Record.push_back(N->getAlignInBits()); 1679 Record.push_back(N->getOffsetInBits()); 1680 Record.push_back(N->getFlags()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1682 1683 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1684 // that there is no DWARF address space associated with DIDerivedType. 1685 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1686 Record.push_back(*DWARFAddressSpace + 1); 1687 else 1688 Record.push_back(0); 1689 1690 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1691 Record.clear(); 1692 } 1693 1694 void ModuleBitcodeWriter::writeDICompositeType( 1695 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1696 unsigned Abbrev) { 1697 const unsigned IsNotUsedInOldTypeRef = 0x2; 1698 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1699 Record.push_back(N->getTag()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1705 Record.push_back(N->getSizeInBits()); 1706 Record.push_back(N->getAlignInBits()); 1707 Record.push_back(N->getOffsetInBits()); 1708 Record.push_back(N->getFlags()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1710 Record.push_back(N->getRuntimeLang()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1719 1720 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1721 Record.clear(); 1722 } 1723 1724 void ModuleBitcodeWriter::writeDISubroutineType( 1725 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1726 unsigned Abbrev) { 1727 const unsigned HasNoOldTypeRefs = 0x2; 1728 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1729 Record.push_back(N->getFlags()); 1730 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1731 Record.push_back(N->getCC()); 1732 1733 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1734 Record.clear(); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 Record.push_back(N->isDistinct()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1743 if (N->getRawChecksum()) { 1744 Record.push_back(N->getRawChecksum()->Kind); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1746 } else { 1747 // Maintain backwards compatibility with the old internal representation of 1748 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1749 Record.push_back(0); 1750 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1751 } 1752 auto Source = N->getRawSource(); 1753 if (Source) 1754 Record.push_back(VE.getMetadataOrNullID(*Source)); 1755 1756 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1761 SmallVectorImpl<uint64_t> &Record, 1762 unsigned Abbrev) { 1763 assert(N->isDistinct() && "Expected distinct compile units"); 1764 Record.push_back(/* IsDistinct */ true); 1765 Record.push_back(N->getSourceLanguage()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1768 Record.push_back(N->isOptimized()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1770 Record.push_back(N->getRuntimeVersion()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1772 Record.push_back(N->getEmissionKind()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1775 Record.push_back(/* subprograms */ 0); 1776 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1778 Record.push_back(N->getDWOId()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1780 Record.push_back(N->getSplitDebugInlining()); 1781 Record.push_back(N->getDebugInfoForProfiling()); 1782 Record.push_back((unsigned)N->getNameTableKind()); 1783 Record.push_back(N->getRangesBaseAddress()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1786 1787 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1792 SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 const uint64_t HasUnitFlag = 1 << 1; 1795 const uint64_t HasSPFlagsFlag = 1 << 2; 1796 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1797 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1801 Record.push_back(N->getLine()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1803 Record.push_back(N->getScopeLine()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1805 Record.push_back(N->getSPFlags()); 1806 Record.push_back(N->getVirtualIndex()); 1807 Record.push_back(N->getFlags()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1812 Record.push_back(N->getThisAdjustment()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1814 1815 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1816 Record.clear(); 1817 } 1818 1819 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1820 SmallVectorImpl<uint64_t> &Record, 1821 unsigned Abbrev) { 1822 Record.push_back(N->isDistinct()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1825 Record.push_back(N->getLine()); 1826 Record.push_back(N->getColumn()); 1827 1828 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1829 Record.clear(); 1830 } 1831 1832 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1833 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1834 unsigned Abbrev) { 1835 Record.push_back(N->isDistinct()); 1836 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1838 Record.push_back(N->getDiscriminator()); 1839 1840 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1841 Record.clear(); 1842 } 1843 1844 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1845 SmallVectorImpl<uint64_t> &Record, 1846 unsigned Abbrev) { 1847 Record.push_back(N->isDistinct()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1852 Record.push_back(N->getLineNo()); 1853 1854 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1855 Record.clear(); 1856 } 1857 1858 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1859 SmallVectorImpl<uint64_t> &Record, 1860 unsigned Abbrev) { 1861 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1862 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1864 1865 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1866 Record.clear(); 1867 } 1868 1869 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1870 SmallVectorImpl<uint64_t> &Record, 1871 unsigned Abbrev) { 1872 Record.push_back(N->isDistinct()); 1873 Record.push_back(N->getMacinfoType()); 1874 Record.push_back(N->getLine()); 1875 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1877 1878 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1879 Record.clear(); 1880 } 1881 1882 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1883 SmallVectorImpl<uint64_t> &Record, 1884 unsigned Abbrev) { 1885 Record.push_back(N->isDistinct()); 1886 Record.push_back(N->getMacinfoType()); 1887 Record.push_back(N->getLine()); 1888 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1890 1891 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1892 Record.clear(); 1893 } 1894 1895 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1896 SmallVectorImpl<uint64_t> &Record, 1897 unsigned Abbrev) { 1898 Record.reserve(N->getArgs().size()); 1899 for (ValueAsMetadata *MD : N->getArgs()) 1900 Record.push_back(VE.getMetadataID(MD)); 1901 1902 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1903 Record.clear(); 1904 } 1905 1906 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1907 SmallVectorImpl<uint64_t> &Record, 1908 unsigned Abbrev) { 1909 Record.push_back(N->isDistinct()); 1910 for (auto &I : N->operands()) 1911 Record.push_back(VE.getMetadataOrNullID(I)); 1912 Record.push_back(N->getLineNo()); 1913 Record.push_back(N->getIsDecl()); 1914 1915 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1916 Record.clear(); 1917 } 1918 1919 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1920 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1921 unsigned Abbrev) { 1922 Record.push_back(N->isDistinct()); 1923 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1924 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1925 Record.push_back(N->isDefault()); 1926 1927 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1928 Record.clear(); 1929 } 1930 1931 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1932 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1933 unsigned Abbrev) { 1934 Record.push_back(N->isDistinct()); 1935 Record.push_back(N->getTag()); 1936 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1938 Record.push_back(N->isDefault()); 1939 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1940 1941 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1942 Record.clear(); 1943 } 1944 1945 void ModuleBitcodeWriter::writeDIGlobalVariable( 1946 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1947 unsigned Abbrev) { 1948 const uint64_t Version = 2 << 1; 1949 Record.push_back((uint64_t)N->isDistinct() | Version); 1950 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1954 Record.push_back(N->getLine()); 1955 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1956 Record.push_back(N->isLocalToUnit()); 1957 Record.push_back(N->isDefinition()); 1958 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1960 Record.push_back(N->getAlignInBits()); 1961 1962 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1963 Record.clear(); 1964 } 1965 1966 void ModuleBitcodeWriter::writeDILocalVariable( 1967 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1968 unsigned Abbrev) { 1969 // In order to support all possible bitcode formats in BitcodeReader we need 1970 // to distinguish the following cases: 1971 // 1) Record has no artificial tag (Record[1]), 1972 // has no obsolete inlinedAt field (Record[9]). 1973 // In this case Record size will be 8, HasAlignment flag is false. 1974 // 2) Record has artificial tag (Record[1]), 1975 // has no obsolete inlignedAt field (Record[9]). 1976 // In this case Record size will be 9, HasAlignment flag is false. 1977 // 3) Record has both artificial tag (Record[1]) and 1978 // obsolete inlignedAt field (Record[9]). 1979 // In this case Record size will be 10, HasAlignment flag is false. 1980 // 4) Record has neither artificial tag, nor inlignedAt field, but 1981 // HasAlignment flag is true and Record[8] contains alignment value. 1982 const uint64_t HasAlignmentFlag = 1 << 1; 1983 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1984 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1985 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1986 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1987 Record.push_back(N->getLine()); 1988 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1989 Record.push_back(N->getArg()); 1990 Record.push_back(N->getFlags()); 1991 Record.push_back(N->getAlignInBits()); 1992 1993 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1994 Record.clear(); 1995 } 1996 1997 void ModuleBitcodeWriter::writeDILabel( 1998 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1999 unsigned Abbrev) { 2000 Record.push_back((uint64_t)N->isDistinct()); 2001 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2002 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2004 Record.push_back(N->getLine()); 2005 2006 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2011 SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.reserve(N->getElements().size() + 1); 2014 const uint64_t Version = 3 << 1; 2015 Record.push_back((uint64_t)N->isDistinct() | Version); 2016 Record.append(N->elements_begin(), N->elements_end()); 2017 2018 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2019 Record.clear(); 2020 } 2021 2022 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2023 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2024 unsigned Abbrev) { 2025 Record.push_back(N->isDistinct()); 2026 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2027 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2028 2029 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2030 Record.clear(); 2031 } 2032 2033 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2034 SmallVectorImpl<uint64_t> &Record, 2035 unsigned Abbrev) { 2036 Record.push_back(N->isDistinct()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2039 Record.push_back(N->getLine()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2042 Record.push_back(N->getAttributes()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2044 2045 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2046 Record.clear(); 2047 } 2048 2049 void ModuleBitcodeWriter::writeDIImportedEntity( 2050 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2051 unsigned Abbrev) { 2052 Record.push_back(N->isDistinct()); 2053 Record.push_back(N->getTag()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2056 Record.push_back(N->getLine()); 2057 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2058 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2059 2060 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2061 Record.clear(); 2062 } 2063 2064 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2066 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2069 return Stream.EmitAbbrev(std::move(Abbv)); 2070 } 2071 2072 void ModuleBitcodeWriter::writeNamedMetadata( 2073 SmallVectorImpl<uint64_t> &Record) { 2074 if (M.named_metadata_empty()) 2075 return; 2076 2077 unsigned Abbrev = createNamedMetadataAbbrev(); 2078 for (const NamedMDNode &NMD : M.named_metadata()) { 2079 // Write name. 2080 StringRef Str = NMD.getName(); 2081 Record.append(Str.bytes_begin(), Str.bytes_end()); 2082 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2083 Record.clear(); 2084 2085 // Write named metadata operands. 2086 for (const MDNode *N : NMD.operands()) 2087 Record.push_back(VE.getMetadataID(N)); 2088 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2089 Record.clear(); 2090 } 2091 } 2092 2093 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2095 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2099 return Stream.EmitAbbrev(std::move(Abbv)); 2100 } 2101 2102 /// Write out a record for MDString. 2103 /// 2104 /// All the metadata strings in a metadata block are emitted in a single 2105 /// record. The sizes and strings themselves are shoved into a blob. 2106 void ModuleBitcodeWriter::writeMetadataStrings( 2107 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2108 if (Strings.empty()) 2109 return; 2110 2111 // Start the record with the number of strings. 2112 Record.push_back(bitc::METADATA_STRINGS); 2113 Record.push_back(Strings.size()); 2114 2115 // Emit the sizes of the strings in the blob. 2116 SmallString<256> Blob; 2117 { 2118 BitstreamWriter W(Blob); 2119 for (const Metadata *MD : Strings) 2120 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2121 W.FlushToWord(); 2122 } 2123 2124 // Add the offset to the strings to the record. 2125 Record.push_back(Blob.size()); 2126 2127 // Add the strings to the blob. 2128 for (const Metadata *MD : Strings) 2129 Blob.append(cast<MDString>(MD)->getString()); 2130 2131 // Emit the final record. 2132 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2133 Record.clear(); 2134 } 2135 2136 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2137 enum MetadataAbbrev : unsigned { 2138 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2139 #include "llvm/IR/Metadata.def" 2140 LastPlusOne 2141 }; 2142 2143 void ModuleBitcodeWriter::writeMetadataRecords( 2144 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2145 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2146 if (MDs.empty()) 2147 return; 2148 2149 // Initialize MDNode abbreviations. 2150 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2151 #include "llvm/IR/Metadata.def" 2152 2153 for (const Metadata *MD : MDs) { 2154 if (IndexPos) 2155 IndexPos->push_back(Stream.GetCurrentBitNo()); 2156 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2157 assert(N->isResolved() && "Expected forward references to be resolved"); 2158 2159 switch (N->getMetadataID()) { 2160 default: 2161 llvm_unreachable("Invalid MDNode subclass"); 2162 #define HANDLE_MDNODE_LEAF(CLASS) \ 2163 case Metadata::CLASS##Kind: \ 2164 if (MDAbbrevs) \ 2165 write##CLASS(cast<CLASS>(N), Record, \ 2166 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2167 else \ 2168 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2169 continue; 2170 #include "llvm/IR/Metadata.def" 2171 } 2172 } 2173 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2174 } 2175 } 2176 2177 void ModuleBitcodeWriter::writeModuleMetadata() { 2178 if (!VE.hasMDs() && M.named_metadata_empty()) 2179 return; 2180 2181 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2182 SmallVector<uint64_t, 64> Record; 2183 2184 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2185 // block and load any metadata. 2186 std::vector<unsigned> MDAbbrevs; 2187 2188 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2189 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2190 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2191 createGenericDINodeAbbrev(); 2192 2193 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2194 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2197 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2198 2199 Abbv = std::make_shared<BitCodeAbbrev>(); 2200 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2203 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2204 2205 // Emit MDStrings together upfront. 2206 writeMetadataStrings(VE.getMDStrings(), Record); 2207 2208 // We only emit an index for the metadata record if we have more than a given 2209 // (naive) threshold of metadatas, otherwise it is not worth it. 2210 if (VE.getNonMDStrings().size() > IndexThreshold) { 2211 // Write a placeholder value in for the offset of the metadata index, 2212 // which is written after the records, so that it can include 2213 // the offset of each entry. The placeholder offset will be 2214 // updated after all records are emitted. 2215 uint64_t Vals[] = {0, 0}; 2216 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2217 } 2218 2219 // Compute and save the bit offset to the current position, which will be 2220 // patched when we emit the index later. We can simply subtract the 64-bit 2221 // fixed size from the current bit number to get the location to backpatch. 2222 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2223 2224 // This index will contain the bitpos for each individual record. 2225 std::vector<uint64_t> IndexPos; 2226 IndexPos.reserve(VE.getNonMDStrings().size()); 2227 2228 // Write all the records 2229 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2230 2231 if (VE.getNonMDStrings().size() > IndexThreshold) { 2232 // Now that we have emitted all the records we will emit the index. But 2233 // first 2234 // backpatch the forward reference so that the reader can skip the records 2235 // efficiently. 2236 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2237 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2238 2239 // Delta encode the index. 2240 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2241 for (auto &Elt : IndexPos) { 2242 auto EltDelta = Elt - PreviousValue; 2243 PreviousValue = Elt; 2244 Elt = EltDelta; 2245 } 2246 // Emit the index record. 2247 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2248 IndexPos.clear(); 2249 } 2250 2251 // Write the named metadata now. 2252 writeNamedMetadata(Record); 2253 2254 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2255 SmallVector<uint64_t, 4> Record; 2256 Record.push_back(VE.getValueID(&GO)); 2257 pushGlobalMetadataAttachment(Record, GO); 2258 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2259 }; 2260 for (const Function &F : M) 2261 if (F.isDeclaration() && F.hasMetadata()) 2262 AddDeclAttachedMetadata(F); 2263 // FIXME: Only store metadata for declarations here, and move data for global 2264 // variable definitions to a separate block (PR28134). 2265 for (const GlobalVariable &GV : M.globals()) 2266 if (GV.hasMetadata()) 2267 AddDeclAttachedMetadata(GV); 2268 2269 Stream.ExitBlock(); 2270 } 2271 2272 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2273 if (!VE.hasMDs()) 2274 return; 2275 2276 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2277 SmallVector<uint64_t, 64> Record; 2278 writeMetadataStrings(VE.getMDStrings(), Record); 2279 writeMetadataRecords(VE.getNonMDStrings(), Record); 2280 Stream.ExitBlock(); 2281 } 2282 2283 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2284 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2285 // [n x [id, mdnode]] 2286 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2287 GO.getAllMetadata(MDs); 2288 for (const auto &I : MDs) { 2289 Record.push_back(I.first); 2290 Record.push_back(VE.getMetadataID(I.second)); 2291 } 2292 } 2293 2294 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2295 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2296 2297 SmallVector<uint64_t, 64> Record; 2298 2299 if (F.hasMetadata()) { 2300 pushGlobalMetadataAttachment(Record, F); 2301 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2302 Record.clear(); 2303 } 2304 2305 // Write metadata attachments 2306 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2307 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2308 for (const BasicBlock &BB : F) 2309 for (const Instruction &I : BB) { 2310 MDs.clear(); 2311 I.getAllMetadataOtherThanDebugLoc(MDs); 2312 2313 // If no metadata, ignore instruction. 2314 if (MDs.empty()) continue; 2315 2316 Record.push_back(VE.getInstructionID(&I)); 2317 2318 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2319 Record.push_back(MDs[i].first); 2320 Record.push_back(VE.getMetadataID(MDs[i].second)); 2321 } 2322 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2323 Record.clear(); 2324 } 2325 2326 Stream.ExitBlock(); 2327 } 2328 2329 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2330 SmallVector<uint64_t, 64> Record; 2331 2332 // Write metadata kinds 2333 // METADATA_KIND - [n x [id, name]] 2334 SmallVector<StringRef, 8> Names; 2335 M.getMDKindNames(Names); 2336 2337 if (Names.empty()) return; 2338 2339 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2340 2341 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2342 Record.push_back(MDKindID); 2343 StringRef KName = Names[MDKindID]; 2344 Record.append(KName.begin(), KName.end()); 2345 2346 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2347 Record.clear(); 2348 } 2349 2350 Stream.ExitBlock(); 2351 } 2352 2353 void ModuleBitcodeWriter::writeOperandBundleTags() { 2354 // Write metadata kinds 2355 // 2356 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2357 // 2358 // OPERAND_BUNDLE_TAG - [strchr x N] 2359 2360 SmallVector<StringRef, 8> Tags; 2361 M.getOperandBundleTags(Tags); 2362 2363 if (Tags.empty()) 2364 return; 2365 2366 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2367 2368 SmallVector<uint64_t, 64> Record; 2369 2370 for (auto Tag : Tags) { 2371 Record.append(Tag.begin(), Tag.end()); 2372 2373 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2374 Record.clear(); 2375 } 2376 2377 Stream.ExitBlock(); 2378 } 2379 2380 void ModuleBitcodeWriter::writeSyncScopeNames() { 2381 SmallVector<StringRef, 8> SSNs; 2382 M.getContext().getSyncScopeNames(SSNs); 2383 if (SSNs.empty()) 2384 return; 2385 2386 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2387 2388 SmallVector<uint64_t, 64> Record; 2389 for (auto SSN : SSNs) { 2390 Record.append(SSN.begin(), SSN.end()); 2391 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2392 Record.clear(); 2393 } 2394 2395 Stream.ExitBlock(); 2396 } 2397 2398 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2399 bool isGlobal) { 2400 if (FirstVal == LastVal) return; 2401 2402 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2403 2404 unsigned AggregateAbbrev = 0; 2405 unsigned String8Abbrev = 0; 2406 unsigned CString7Abbrev = 0; 2407 unsigned CString6Abbrev = 0; 2408 // If this is a constant pool for the module, emit module-specific abbrevs. 2409 if (isGlobal) { 2410 // Abbrev for CST_CODE_AGGREGATE. 2411 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2412 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2415 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2416 2417 // Abbrev for CST_CODE_STRING. 2418 Abbv = std::make_shared<BitCodeAbbrev>(); 2419 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2422 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2423 // Abbrev for CST_CODE_CSTRING. 2424 Abbv = std::make_shared<BitCodeAbbrev>(); 2425 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2428 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2429 // Abbrev for CST_CODE_CSTRING. 2430 Abbv = std::make_shared<BitCodeAbbrev>(); 2431 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2434 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2435 } 2436 2437 SmallVector<uint64_t, 64> Record; 2438 2439 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2440 Type *LastTy = nullptr; 2441 for (unsigned i = FirstVal; i != LastVal; ++i) { 2442 const Value *V = Vals[i].first; 2443 // If we need to switch types, do so now. 2444 if (V->getType() != LastTy) { 2445 LastTy = V->getType(); 2446 Record.push_back(VE.getTypeID(LastTy)); 2447 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2448 CONSTANTS_SETTYPE_ABBREV); 2449 Record.clear(); 2450 } 2451 2452 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2453 Record.push_back( 2454 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2455 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2456 2457 // Add the asm string. 2458 const std::string &AsmStr = IA->getAsmString(); 2459 Record.push_back(AsmStr.size()); 2460 Record.append(AsmStr.begin(), AsmStr.end()); 2461 2462 // Add the constraint string. 2463 const std::string &ConstraintStr = IA->getConstraintString(); 2464 Record.push_back(ConstraintStr.size()); 2465 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2466 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2467 Record.clear(); 2468 continue; 2469 } 2470 const Constant *C = cast<Constant>(V); 2471 unsigned Code = -1U; 2472 unsigned AbbrevToUse = 0; 2473 if (C->isNullValue()) { 2474 Code = bitc::CST_CODE_NULL; 2475 } else if (isa<PoisonValue>(C)) { 2476 Code = bitc::CST_CODE_POISON; 2477 } else if (isa<UndefValue>(C)) { 2478 Code = bitc::CST_CODE_UNDEF; 2479 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2480 if (IV->getBitWidth() <= 64) { 2481 uint64_t V = IV->getSExtValue(); 2482 emitSignedInt64(Record, V); 2483 Code = bitc::CST_CODE_INTEGER; 2484 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2485 } else { // Wide integers, > 64 bits in size. 2486 emitWideAPInt(Record, IV->getValue()); 2487 Code = bitc::CST_CODE_WIDE_INTEGER; 2488 } 2489 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2490 Code = bitc::CST_CODE_FLOAT; 2491 Type *Ty = CFP->getType(); 2492 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2493 Ty->isDoubleTy()) { 2494 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2495 } else if (Ty->isX86_FP80Ty()) { 2496 // api needed to prevent premature destruction 2497 // bits are not in the same order as a normal i80 APInt, compensate. 2498 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2499 const uint64_t *p = api.getRawData(); 2500 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2501 Record.push_back(p[0] & 0xffffLL); 2502 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2503 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2504 const uint64_t *p = api.getRawData(); 2505 Record.push_back(p[0]); 2506 Record.push_back(p[1]); 2507 } else { 2508 assert(0 && "Unknown FP type!"); 2509 } 2510 } else if (isa<ConstantDataSequential>(C) && 2511 cast<ConstantDataSequential>(C)->isString()) { 2512 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2513 // Emit constant strings specially. 2514 unsigned NumElts = Str->getNumElements(); 2515 // If this is a null-terminated string, use the denser CSTRING encoding. 2516 if (Str->isCString()) { 2517 Code = bitc::CST_CODE_CSTRING; 2518 --NumElts; // Don't encode the null, which isn't allowed by char6. 2519 } else { 2520 Code = bitc::CST_CODE_STRING; 2521 AbbrevToUse = String8Abbrev; 2522 } 2523 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2524 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2525 for (unsigned i = 0; i != NumElts; ++i) { 2526 unsigned char V = Str->getElementAsInteger(i); 2527 Record.push_back(V); 2528 isCStr7 &= (V & 128) == 0; 2529 if (isCStrChar6) 2530 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2531 } 2532 2533 if (isCStrChar6) 2534 AbbrevToUse = CString6Abbrev; 2535 else if (isCStr7) 2536 AbbrevToUse = CString7Abbrev; 2537 } else if (const ConstantDataSequential *CDS = 2538 dyn_cast<ConstantDataSequential>(C)) { 2539 Code = bitc::CST_CODE_DATA; 2540 Type *EltTy = CDS->getElementType(); 2541 if (isa<IntegerType>(EltTy)) { 2542 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2543 Record.push_back(CDS->getElementAsInteger(i)); 2544 } else { 2545 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2546 Record.push_back( 2547 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2548 } 2549 } else if (isa<ConstantAggregate>(C)) { 2550 Code = bitc::CST_CODE_AGGREGATE; 2551 for (const Value *Op : C->operands()) 2552 Record.push_back(VE.getValueID(Op)); 2553 AbbrevToUse = AggregateAbbrev; 2554 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2555 switch (CE->getOpcode()) { 2556 default: 2557 if (Instruction::isCast(CE->getOpcode())) { 2558 Code = bitc::CST_CODE_CE_CAST; 2559 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2560 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2561 Record.push_back(VE.getValueID(C->getOperand(0))); 2562 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2563 } else { 2564 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2565 Code = bitc::CST_CODE_CE_BINOP; 2566 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2567 Record.push_back(VE.getValueID(C->getOperand(0))); 2568 Record.push_back(VE.getValueID(C->getOperand(1))); 2569 uint64_t Flags = getOptimizationFlags(CE); 2570 if (Flags != 0) 2571 Record.push_back(Flags); 2572 } 2573 break; 2574 case Instruction::FNeg: { 2575 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2576 Code = bitc::CST_CODE_CE_UNOP; 2577 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2578 Record.push_back(VE.getValueID(C->getOperand(0))); 2579 uint64_t Flags = getOptimizationFlags(CE); 2580 if (Flags != 0) 2581 Record.push_back(Flags); 2582 break; 2583 } 2584 case Instruction::GetElementPtr: { 2585 Code = bitc::CST_CODE_CE_GEP; 2586 const auto *GO = cast<GEPOperator>(C); 2587 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2588 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2589 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2590 Record.push_back((*Idx << 1) | GO->isInBounds()); 2591 } else if (GO->isInBounds()) 2592 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2593 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2594 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2595 Record.push_back(VE.getValueID(C->getOperand(i))); 2596 } 2597 break; 2598 } 2599 case Instruction::Select: 2600 Code = bitc::CST_CODE_CE_SELECT; 2601 Record.push_back(VE.getValueID(C->getOperand(0))); 2602 Record.push_back(VE.getValueID(C->getOperand(1))); 2603 Record.push_back(VE.getValueID(C->getOperand(2))); 2604 break; 2605 case Instruction::ExtractElement: 2606 Code = bitc::CST_CODE_CE_EXTRACTELT; 2607 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2608 Record.push_back(VE.getValueID(C->getOperand(0))); 2609 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2610 Record.push_back(VE.getValueID(C->getOperand(1))); 2611 break; 2612 case Instruction::InsertElement: 2613 Code = bitc::CST_CODE_CE_INSERTELT; 2614 Record.push_back(VE.getValueID(C->getOperand(0))); 2615 Record.push_back(VE.getValueID(C->getOperand(1))); 2616 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2617 Record.push_back(VE.getValueID(C->getOperand(2))); 2618 break; 2619 case Instruction::ShuffleVector: 2620 // If the return type and argument types are the same, this is a 2621 // standard shufflevector instruction. If the types are different, 2622 // then the shuffle is widening or truncating the input vectors, and 2623 // the argument type must also be encoded. 2624 if (C->getType() == C->getOperand(0)->getType()) { 2625 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2626 } else { 2627 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2628 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2629 } 2630 Record.push_back(VE.getValueID(C->getOperand(0))); 2631 Record.push_back(VE.getValueID(C->getOperand(1))); 2632 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2633 break; 2634 case Instruction::ICmp: 2635 case Instruction::FCmp: 2636 Code = bitc::CST_CODE_CE_CMP; 2637 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2638 Record.push_back(VE.getValueID(C->getOperand(0))); 2639 Record.push_back(VE.getValueID(C->getOperand(1))); 2640 Record.push_back(CE->getPredicate()); 2641 break; 2642 } 2643 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2644 Code = bitc::CST_CODE_BLOCKADDRESS; 2645 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2646 Record.push_back(VE.getValueID(BA->getFunction())); 2647 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2648 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2649 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2650 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2651 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2652 } else { 2653 #ifndef NDEBUG 2654 C->dump(); 2655 #endif 2656 llvm_unreachable("Unknown constant!"); 2657 } 2658 Stream.EmitRecord(Code, Record, AbbrevToUse); 2659 Record.clear(); 2660 } 2661 2662 Stream.ExitBlock(); 2663 } 2664 2665 void ModuleBitcodeWriter::writeModuleConstants() { 2666 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2667 2668 // Find the first constant to emit, which is the first non-globalvalue value. 2669 // We know globalvalues have been emitted by WriteModuleInfo. 2670 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2671 if (!isa<GlobalValue>(Vals[i].first)) { 2672 writeConstants(i, Vals.size(), true); 2673 return; 2674 } 2675 } 2676 } 2677 2678 /// pushValueAndType - The file has to encode both the value and type id for 2679 /// many values, because we need to know what type to create for forward 2680 /// references. However, most operands are not forward references, so this type 2681 /// field is not needed. 2682 /// 2683 /// This function adds V's value ID to Vals. If the value ID is higher than the 2684 /// instruction ID, then it is a forward reference, and it also includes the 2685 /// type ID. The value ID that is written is encoded relative to the InstID. 2686 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2687 SmallVectorImpl<unsigned> &Vals) { 2688 unsigned ValID = VE.getValueID(V); 2689 // Make encoding relative to the InstID. 2690 Vals.push_back(InstID - ValID); 2691 if (ValID >= InstID) { 2692 Vals.push_back(VE.getTypeID(V->getType())); 2693 return true; 2694 } 2695 return false; 2696 } 2697 2698 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2699 unsigned InstID) { 2700 SmallVector<unsigned, 64> Record; 2701 LLVMContext &C = CS.getContext(); 2702 2703 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2704 const auto &Bundle = CS.getOperandBundleAt(i); 2705 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2706 2707 for (auto &Input : Bundle.Inputs) 2708 pushValueAndType(Input, InstID, Record); 2709 2710 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2711 Record.clear(); 2712 } 2713 } 2714 2715 /// pushValue - Like pushValueAndType, but where the type of the value is 2716 /// omitted (perhaps it was already encoded in an earlier operand). 2717 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2718 SmallVectorImpl<unsigned> &Vals) { 2719 unsigned ValID = VE.getValueID(V); 2720 Vals.push_back(InstID - ValID); 2721 } 2722 2723 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2724 SmallVectorImpl<uint64_t> &Vals) { 2725 unsigned ValID = VE.getValueID(V); 2726 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2727 emitSignedInt64(Vals, diff); 2728 } 2729 2730 /// WriteInstruction - Emit an instruction to the specified stream. 2731 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2732 unsigned InstID, 2733 SmallVectorImpl<unsigned> &Vals) { 2734 unsigned Code = 0; 2735 unsigned AbbrevToUse = 0; 2736 VE.setInstructionID(&I); 2737 switch (I.getOpcode()) { 2738 default: 2739 if (Instruction::isCast(I.getOpcode())) { 2740 Code = bitc::FUNC_CODE_INST_CAST; 2741 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2742 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2743 Vals.push_back(VE.getTypeID(I.getType())); 2744 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2745 } else { 2746 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2747 Code = bitc::FUNC_CODE_INST_BINOP; 2748 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2749 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2750 pushValue(I.getOperand(1), InstID, Vals); 2751 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2752 uint64_t Flags = getOptimizationFlags(&I); 2753 if (Flags != 0) { 2754 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2755 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2756 Vals.push_back(Flags); 2757 } 2758 } 2759 break; 2760 case Instruction::FNeg: { 2761 Code = bitc::FUNC_CODE_INST_UNOP; 2762 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2763 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2764 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2765 uint64_t Flags = getOptimizationFlags(&I); 2766 if (Flags != 0) { 2767 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2768 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2769 Vals.push_back(Flags); 2770 } 2771 break; 2772 } 2773 case Instruction::GetElementPtr: { 2774 Code = bitc::FUNC_CODE_INST_GEP; 2775 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2776 auto &GEPInst = cast<GetElementPtrInst>(I); 2777 Vals.push_back(GEPInst.isInBounds()); 2778 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2779 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2780 pushValueAndType(I.getOperand(i), InstID, Vals); 2781 break; 2782 } 2783 case Instruction::ExtractValue: { 2784 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2785 pushValueAndType(I.getOperand(0), InstID, Vals); 2786 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2787 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2788 break; 2789 } 2790 case Instruction::InsertValue: { 2791 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2792 pushValueAndType(I.getOperand(0), InstID, Vals); 2793 pushValueAndType(I.getOperand(1), InstID, Vals); 2794 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2795 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2796 break; 2797 } 2798 case Instruction::Select: { 2799 Code = bitc::FUNC_CODE_INST_VSELECT; 2800 pushValueAndType(I.getOperand(1), InstID, Vals); 2801 pushValue(I.getOperand(2), InstID, Vals); 2802 pushValueAndType(I.getOperand(0), InstID, Vals); 2803 uint64_t Flags = getOptimizationFlags(&I); 2804 if (Flags != 0) 2805 Vals.push_back(Flags); 2806 break; 2807 } 2808 case Instruction::ExtractElement: 2809 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2810 pushValueAndType(I.getOperand(0), InstID, Vals); 2811 pushValueAndType(I.getOperand(1), InstID, Vals); 2812 break; 2813 case Instruction::InsertElement: 2814 Code = bitc::FUNC_CODE_INST_INSERTELT; 2815 pushValueAndType(I.getOperand(0), InstID, Vals); 2816 pushValue(I.getOperand(1), InstID, Vals); 2817 pushValueAndType(I.getOperand(2), InstID, Vals); 2818 break; 2819 case Instruction::ShuffleVector: 2820 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2821 pushValueAndType(I.getOperand(0), InstID, Vals); 2822 pushValue(I.getOperand(1), InstID, Vals); 2823 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2824 Vals); 2825 break; 2826 case Instruction::ICmp: 2827 case Instruction::FCmp: { 2828 // compare returning Int1Ty or vector of Int1Ty 2829 Code = bitc::FUNC_CODE_INST_CMP2; 2830 pushValueAndType(I.getOperand(0), InstID, Vals); 2831 pushValue(I.getOperand(1), InstID, Vals); 2832 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2833 uint64_t Flags = getOptimizationFlags(&I); 2834 if (Flags != 0) 2835 Vals.push_back(Flags); 2836 break; 2837 } 2838 2839 case Instruction::Ret: 2840 { 2841 Code = bitc::FUNC_CODE_INST_RET; 2842 unsigned NumOperands = I.getNumOperands(); 2843 if (NumOperands == 0) 2844 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2845 else if (NumOperands == 1) { 2846 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2847 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2848 } else { 2849 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2850 pushValueAndType(I.getOperand(i), InstID, Vals); 2851 } 2852 } 2853 break; 2854 case Instruction::Br: 2855 { 2856 Code = bitc::FUNC_CODE_INST_BR; 2857 const BranchInst &II = cast<BranchInst>(I); 2858 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2859 if (II.isConditional()) { 2860 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2861 pushValue(II.getCondition(), InstID, Vals); 2862 } 2863 } 2864 break; 2865 case Instruction::Switch: 2866 { 2867 Code = bitc::FUNC_CODE_INST_SWITCH; 2868 const SwitchInst &SI = cast<SwitchInst>(I); 2869 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2870 pushValue(SI.getCondition(), InstID, Vals); 2871 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2872 for (auto Case : SI.cases()) { 2873 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2874 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2875 } 2876 } 2877 break; 2878 case Instruction::IndirectBr: 2879 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2880 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2881 // Encode the address operand as relative, but not the basic blocks. 2882 pushValue(I.getOperand(0), InstID, Vals); 2883 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2884 Vals.push_back(VE.getValueID(I.getOperand(i))); 2885 break; 2886 2887 case Instruction::Invoke: { 2888 const InvokeInst *II = cast<InvokeInst>(&I); 2889 const Value *Callee = II->getCalledOperand(); 2890 FunctionType *FTy = II->getFunctionType(); 2891 2892 if (II->hasOperandBundles()) 2893 writeOperandBundles(*II, InstID); 2894 2895 Code = bitc::FUNC_CODE_INST_INVOKE; 2896 2897 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2898 Vals.push_back(II->getCallingConv() | 1 << 13); 2899 Vals.push_back(VE.getValueID(II->getNormalDest())); 2900 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2901 Vals.push_back(VE.getTypeID(FTy)); 2902 pushValueAndType(Callee, InstID, Vals); 2903 2904 // Emit value #'s for the fixed parameters. 2905 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2906 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2907 2908 // Emit type/value pairs for varargs params. 2909 if (FTy->isVarArg()) { 2910 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2911 i != e; ++i) 2912 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2913 } 2914 break; 2915 } 2916 case Instruction::Resume: 2917 Code = bitc::FUNC_CODE_INST_RESUME; 2918 pushValueAndType(I.getOperand(0), InstID, Vals); 2919 break; 2920 case Instruction::CleanupRet: { 2921 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2922 const auto &CRI = cast<CleanupReturnInst>(I); 2923 pushValue(CRI.getCleanupPad(), InstID, Vals); 2924 if (CRI.hasUnwindDest()) 2925 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2926 break; 2927 } 2928 case Instruction::CatchRet: { 2929 Code = bitc::FUNC_CODE_INST_CATCHRET; 2930 const auto &CRI = cast<CatchReturnInst>(I); 2931 pushValue(CRI.getCatchPad(), InstID, Vals); 2932 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2933 break; 2934 } 2935 case Instruction::CleanupPad: 2936 case Instruction::CatchPad: { 2937 const auto &FuncletPad = cast<FuncletPadInst>(I); 2938 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2939 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2940 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2941 2942 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2943 Vals.push_back(NumArgOperands); 2944 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2945 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2946 break; 2947 } 2948 case Instruction::CatchSwitch: { 2949 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2950 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2951 2952 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2953 2954 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2955 Vals.push_back(NumHandlers); 2956 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2957 Vals.push_back(VE.getValueID(CatchPadBB)); 2958 2959 if (CatchSwitch.hasUnwindDest()) 2960 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2961 break; 2962 } 2963 case Instruction::CallBr: { 2964 const CallBrInst *CBI = cast<CallBrInst>(&I); 2965 const Value *Callee = CBI->getCalledOperand(); 2966 FunctionType *FTy = CBI->getFunctionType(); 2967 2968 if (CBI->hasOperandBundles()) 2969 writeOperandBundles(*CBI, InstID); 2970 2971 Code = bitc::FUNC_CODE_INST_CALLBR; 2972 2973 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2974 2975 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2976 1 << bitc::CALL_EXPLICIT_TYPE); 2977 2978 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2979 Vals.push_back(CBI->getNumIndirectDests()); 2980 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2981 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2982 2983 Vals.push_back(VE.getTypeID(FTy)); 2984 pushValueAndType(Callee, InstID, Vals); 2985 2986 // Emit value #'s for the fixed parameters. 2987 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2988 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2989 2990 // Emit type/value pairs for varargs params. 2991 if (FTy->isVarArg()) { 2992 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2993 i != e; ++i) 2994 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2995 } 2996 break; 2997 } 2998 case Instruction::Unreachable: 2999 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3000 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3001 break; 3002 3003 case Instruction::PHI: { 3004 const PHINode &PN = cast<PHINode>(I); 3005 Code = bitc::FUNC_CODE_INST_PHI; 3006 // With the newer instruction encoding, forward references could give 3007 // negative valued IDs. This is most common for PHIs, so we use 3008 // signed VBRs. 3009 SmallVector<uint64_t, 128> Vals64; 3010 Vals64.push_back(VE.getTypeID(PN.getType())); 3011 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3012 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3013 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3014 } 3015 3016 uint64_t Flags = getOptimizationFlags(&I); 3017 if (Flags != 0) 3018 Vals64.push_back(Flags); 3019 3020 // Emit a Vals64 vector and exit. 3021 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3022 Vals64.clear(); 3023 return; 3024 } 3025 3026 case Instruction::LandingPad: { 3027 const LandingPadInst &LP = cast<LandingPadInst>(I); 3028 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3029 Vals.push_back(VE.getTypeID(LP.getType())); 3030 Vals.push_back(LP.isCleanup()); 3031 Vals.push_back(LP.getNumClauses()); 3032 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3033 if (LP.isCatch(I)) 3034 Vals.push_back(LandingPadInst::Catch); 3035 else 3036 Vals.push_back(LandingPadInst::Filter); 3037 pushValueAndType(LP.getClause(I), InstID, Vals); 3038 } 3039 break; 3040 } 3041 3042 case Instruction::Alloca: { 3043 Code = bitc::FUNC_CODE_INST_ALLOCA; 3044 const AllocaInst &AI = cast<AllocaInst>(I); 3045 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3046 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3047 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3048 using APV = AllocaPackedValues; 3049 unsigned Record = 0; 3050 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3051 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3052 Bitfield::set<APV::ExplicitType>(Record, true); 3053 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3054 Vals.push_back(Record); 3055 break; 3056 } 3057 3058 case Instruction::Load: 3059 if (cast<LoadInst>(I).isAtomic()) { 3060 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3061 pushValueAndType(I.getOperand(0), InstID, Vals); 3062 } else { 3063 Code = bitc::FUNC_CODE_INST_LOAD; 3064 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3065 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3066 } 3067 Vals.push_back(VE.getTypeID(I.getType())); 3068 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3069 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3070 if (cast<LoadInst>(I).isAtomic()) { 3071 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3072 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3073 } 3074 break; 3075 case Instruction::Store: 3076 if (cast<StoreInst>(I).isAtomic()) 3077 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3078 else 3079 Code = bitc::FUNC_CODE_INST_STORE; 3080 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3081 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3082 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3083 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3084 if (cast<StoreInst>(I).isAtomic()) { 3085 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3086 Vals.push_back( 3087 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3088 } 3089 break; 3090 case Instruction::AtomicCmpXchg: 3091 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3092 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3093 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3094 pushValue(I.getOperand(2), InstID, Vals); // newval. 3095 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3096 Vals.push_back( 3097 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3098 Vals.push_back( 3099 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3100 Vals.push_back( 3101 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3102 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3103 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3104 break; 3105 case Instruction::AtomicRMW: 3106 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3107 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3108 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3109 Vals.push_back( 3110 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3111 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3112 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3113 Vals.push_back( 3114 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3115 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3116 break; 3117 case Instruction::Fence: 3118 Code = bitc::FUNC_CODE_INST_FENCE; 3119 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3120 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3121 break; 3122 case Instruction::Call: { 3123 const CallInst &CI = cast<CallInst>(I); 3124 FunctionType *FTy = CI.getFunctionType(); 3125 3126 if (CI.hasOperandBundles()) 3127 writeOperandBundles(CI, InstID); 3128 3129 Code = bitc::FUNC_CODE_INST_CALL; 3130 3131 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3132 3133 unsigned Flags = getOptimizationFlags(&I); 3134 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3135 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3136 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3137 1 << bitc::CALL_EXPLICIT_TYPE | 3138 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3139 unsigned(Flags != 0) << bitc::CALL_FMF); 3140 if (Flags != 0) 3141 Vals.push_back(Flags); 3142 3143 Vals.push_back(VE.getTypeID(FTy)); 3144 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3145 3146 // Emit value #'s for the fixed parameters. 3147 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3148 // Check for labels (can happen with asm labels). 3149 if (FTy->getParamType(i)->isLabelTy()) 3150 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3151 else 3152 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3153 } 3154 3155 // Emit type/value pairs for varargs params. 3156 if (FTy->isVarArg()) { 3157 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3158 i != e; ++i) 3159 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3160 } 3161 break; 3162 } 3163 case Instruction::VAArg: 3164 Code = bitc::FUNC_CODE_INST_VAARG; 3165 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3166 pushValue(I.getOperand(0), InstID, Vals); // valist. 3167 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3168 break; 3169 case Instruction::Freeze: 3170 Code = bitc::FUNC_CODE_INST_FREEZE; 3171 pushValueAndType(I.getOperand(0), InstID, Vals); 3172 break; 3173 } 3174 3175 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3176 Vals.clear(); 3177 } 3178 3179 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3180 /// to allow clients to efficiently find the function body. 3181 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3182 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3183 // Get the offset of the VST we are writing, and backpatch it into 3184 // the VST forward declaration record. 3185 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3186 // The BitcodeStartBit was the stream offset of the identification block. 3187 VSTOffset -= bitcodeStartBit(); 3188 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3189 // Note that we add 1 here because the offset is relative to one word 3190 // before the start of the identification block, which was historically 3191 // always the start of the regular bitcode header. 3192 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3193 3194 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3195 3196 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3197 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3200 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3201 3202 for (const Function &F : M) { 3203 uint64_t Record[2]; 3204 3205 if (F.isDeclaration()) 3206 continue; 3207 3208 Record[0] = VE.getValueID(&F); 3209 3210 // Save the word offset of the function (from the start of the 3211 // actual bitcode written to the stream). 3212 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3213 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3214 // Note that we add 1 here because the offset is relative to one word 3215 // before the start of the identification block, which was historically 3216 // always the start of the regular bitcode header. 3217 Record[1] = BitcodeIndex / 32 + 1; 3218 3219 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3220 } 3221 3222 Stream.ExitBlock(); 3223 } 3224 3225 /// Emit names for arguments, instructions and basic blocks in a function. 3226 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3227 const ValueSymbolTable &VST) { 3228 if (VST.empty()) 3229 return; 3230 3231 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3232 3233 // FIXME: Set up the abbrev, we know how many values there are! 3234 // FIXME: We know if the type names can use 7-bit ascii. 3235 SmallVector<uint64_t, 64> NameVals; 3236 3237 for (const ValueName &Name : VST) { 3238 // Figure out the encoding to use for the name. 3239 StringEncoding Bits = getStringEncoding(Name.getKey()); 3240 3241 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3242 NameVals.push_back(VE.getValueID(Name.getValue())); 3243 3244 // VST_CODE_ENTRY: [valueid, namechar x N] 3245 // VST_CODE_BBENTRY: [bbid, namechar x N] 3246 unsigned Code; 3247 if (isa<BasicBlock>(Name.getValue())) { 3248 Code = bitc::VST_CODE_BBENTRY; 3249 if (Bits == SE_Char6) 3250 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3251 } else { 3252 Code = bitc::VST_CODE_ENTRY; 3253 if (Bits == SE_Char6) 3254 AbbrevToUse = VST_ENTRY_6_ABBREV; 3255 else if (Bits == SE_Fixed7) 3256 AbbrevToUse = VST_ENTRY_7_ABBREV; 3257 } 3258 3259 for (const auto P : Name.getKey()) 3260 NameVals.push_back((unsigned char)P); 3261 3262 // Emit the finished record. 3263 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3264 NameVals.clear(); 3265 } 3266 3267 Stream.ExitBlock(); 3268 } 3269 3270 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3271 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3272 unsigned Code; 3273 if (isa<BasicBlock>(Order.V)) 3274 Code = bitc::USELIST_CODE_BB; 3275 else 3276 Code = bitc::USELIST_CODE_DEFAULT; 3277 3278 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3279 Record.push_back(VE.getValueID(Order.V)); 3280 Stream.EmitRecord(Code, Record); 3281 } 3282 3283 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3284 assert(VE.shouldPreserveUseListOrder() && 3285 "Expected to be preserving use-list order"); 3286 3287 auto hasMore = [&]() { 3288 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3289 }; 3290 if (!hasMore()) 3291 // Nothing to do. 3292 return; 3293 3294 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3295 while (hasMore()) { 3296 writeUseList(std::move(VE.UseListOrders.back())); 3297 VE.UseListOrders.pop_back(); 3298 } 3299 Stream.ExitBlock(); 3300 } 3301 3302 /// Emit a function body to the module stream. 3303 void ModuleBitcodeWriter::writeFunction( 3304 const Function &F, 3305 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3306 // Save the bitcode index of the start of this function block for recording 3307 // in the VST. 3308 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3309 3310 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3311 VE.incorporateFunction(F); 3312 3313 SmallVector<unsigned, 64> Vals; 3314 3315 // Emit the number of basic blocks, so the reader can create them ahead of 3316 // time. 3317 Vals.push_back(VE.getBasicBlocks().size()); 3318 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3319 Vals.clear(); 3320 3321 // If there are function-local constants, emit them now. 3322 unsigned CstStart, CstEnd; 3323 VE.getFunctionConstantRange(CstStart, CstEnd); 3324 writeConstants(CstStart, CstEnd, false); 3325 3326 // If there is function-local metadata, emit it now. 3327 writeFunctionMetadata(F); 3328 3329 // Keep a running idea of what the instruction ID is. 3330 unsigned InstID = CstEnd; 3331 3332 bool NeedsMetadataAttachment = F.hasMetadata(); 3333 3334 DILocation *LastDL = nullptr; 3335 // Finally, emit all the instructions, in order. 3336 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3337 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3338 I != E; ++I) { 3339 writeInstruction(*I, InstID, Vals); 3340 3341 if (!I->getType()->isVoidTy()) 3342 ++InstID; 3343 3344 // If the instruction has metadata, write a metadata attachment later. 3345 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3346 3347 // If the instruction has a debug location, emit it. 3348 DILocation *DL = I->getDebugLoc(); 3349 if (!DL) 3350 continue; 3351 3352 if (DL == LastDL) { 3353 // Just repeat the same debug loc as last time. 3354 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3355 continue; 3356 } 3357 3358 Vals.push_back(DL->getLine()); 3359 Vals.push_back(DL->getColumn()); 3360 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3361 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3362 Vals.push_back(DL->isImplicitCode()); 3363 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3364 Vals.clear(); 3365 3366 LastDL = DL; 3367 } 3368 3369 // Emit names for all the instructions etc. 3370 if (auto *Symtab = F.getValueSymbolTable()) 3371 writeFunctionLevelValueSymbolTable(*Symtab); 3372 3373 if (NeedsMetadataAttachment) 3374 writeFunctionMetadataAttachment(F); 3375 if (VE.shouldPreserveUseListOrder()) 3376 writeUseListBlock(&F); 3377 VE.purgeFunction(); 3378 Stream.ExitBlock(); 3379 } 3380 3381 // Emit blockinfo, which defines the standard abbreviations etc. 3382 void ModuleBitcodeWriter::writeBlockInfo() { 3383 // We only want to emit block info records for blocks that have multiple 3384 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3385 // Other blocks can define their abbrevs inline. 3386 Stream.EnterBlockInfoBlock(); 3387 3388 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3389 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3394 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3395 VST_ENTRY_8_ABBREV) 3396 llvm_unreachable("Unexpected abbrev ordering!"); 3397 } 3398 3399 { // 7-bit fixed width VST_CODE_ENTRY strings. 3400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3401 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3405 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3406 VST_ENTRY_7_ABBREV) 3407 llvm_unreachable("Unexpected abbrev ordering!"); 3408 } 3409 { // 6-bit char6 VST_CODE_ENTRY strings. 3410 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3411 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3415 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3416 VST_ENTRY_6_ABBREV) 3417 llvm_unreachable("Unexpected abbrev ordering!"); 3418 } 3419 { // 6-bit char6 VST_CODE_BBENTRY strings. 3420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3421 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3425 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3426 VST_BBENTRY_6_ABBREV) 3427 llvm_unreachable("Unexpected abbrev ordering!"); 3428 } 3429 3430 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3434 VE.computeBitsRequiredForTypeIndicies())); 3435 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3436 CONSTANTS_SETTYPE_ABBREV) 3437 llvm_unreachable("Unexpected abbrev ordering!"); 3438 } 3439 3440 { // INTEGER abbrev for CONSTANTS_BLOCK. 3441 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3444 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3445 CONSTANTS_INTEGER_ABBREV) 3446 llvm_unreachable("Unexpected abbrev ordering!"); 3447 } 3448 3449 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3451 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3454 VE.computeBitsRequiredForTypeIndicies())); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3456 3457 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3458 CONSTANTS_CE_CAST_Abbrev) 3459 llvm_unreachable("Unexpected abbrev ordering!"); 3460 } 3461 { // NULL abbrev for CONSTANTS_BLOCK. 3462 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3463 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3464 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3465 CONSTANTS_NULL_Abbrev) 3466 llvm_unreachable("Unexpected abbrev ordering!"); 3467 } 3468 3469 // FIXME: This should only use space for first class types! 3470 3471 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3476 VE.computeBitsRequiredForTypeIndicies())); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3479 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3480 FUNCTION_INST_LOAD_ABBREV) 3481 llvm_unreachable("Unexpected abbrev ordering!"); 3482 } 3483 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3484 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3488 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3489 FUNCTION_INST_UNOP_ABBREV) 3490 llvm_unreachable("Unexpected abbrev ordering!"); 3491 } 3492 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3493 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3494 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3498 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3499 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3503 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3504 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3508 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3509 FUNCTION_INST_BINOP_ABBREV) 3510 llvm_unreachable("Unexpected abbrev ordering!"); 3511 } 3512 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3519 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3520 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3521 llvm_unreachable("Unexpected abbrev ordering!"); 3522 } 3523 { // INST_CAST abbrev for FUNCTION_BLOCK. 3524 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3525 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3528 VE.computeBitsRequiredForTypeIndicies())); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3530 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3531 FUNCTION_INST_CAST_ABBREV) 3532 llvm_unreachable("Unexpected abbrev ordering!"); 3533 } 3534 3535 { // INST_RET abbrev for FUNCTION_BLOCK. 3536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3538 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3539 FUNCTION_INST_RET_VOID_ABBREV) 3540 llvm_unreachable("Unexpected abbrev ordering!"); 3541 } 3542 { // INST_RET abbrev for FUNCTION_BLOCK. 3543 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3544 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3546 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3547 FUNCTION_INST_RET_VAL_ABBREV) 3548 llvm_unreachable("Unexpected abbrev ordering!"); 3549 } 3550 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3552 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3553 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3554 FUNCTION_INST_UNREACHABLE_ABBREV) 3555 llvm_unreachable("Unexpected abbrev ordering!"); 3556 } 3557 { 3558 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3562 Log2_32_Ceil(VE.getTypes().size() + 1))); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3565 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3566 FUNCTION_INST_GEP_ABBREV) 3567 llvm_unreachable("Unexpected abbrev ordering!"); 3568 } 3569 3570 Stream.ExitBlock(); 3571 } 3572 3573 /// Write the module path strings, currently only used when generating 3574 /// a combined index file. 3575 void IndexBitcodeWriter::writeModStrings() { 3576 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3577 3578 // TODO: See which abbrev sizes we actually need to emit 3579 3580 // 8-bit fixed-width MST_ENTRY strings. 3581 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3582 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3586 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3587 3588 // 7-bit fixed width MST_ENTRY strings. 3589 Abbv = std::make_shared<BitCodeAbbrev>(); 3590 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3594 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3595 3596 // 6-bit char6 MST_ENTRY strings. 3597 Abbv = std::make_shared<BitCodeAbbrev>(); 3598 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3602 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3603 3604 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3605 Abbv = std::make_shared<BitCodeAbbrev>(); 3606 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3612 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3613 3614 SmallVector<unsigned, 64> Vals; 3615 forEachModule( 3616 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3617 StringRef Key = MPSE.getKey(); 3618 const auto &Value = MPSE.getValue(); 3619 StringEncoding Bits = getStringEncoding(Key); 3620 unsigned AbbrevToUse = Abbrev8Bit; 3621 if (Bits == SE_Char6) 3622 AbbrevToUse = Abbrev6Bit; 3623 else if (Bits == SE_Fixed7) 3624 AbbrevToUse = Abbrev7Bit; 3625 3626 Vals.push_back(Value.first); 3627 Vals.append(Key.begin(), Key.end()); 3628 3629 // Emit the finished record. 3630 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3631 3632 // Emit an optional hash for the module now 3633 const auto &Hash = Value.second; 3634 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3635 Vals.assign(Hash.begin(), Hash.end()); 3636 // Emit the hash record. 3637 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3638 } 3639 3640 Vals.clear(); 3641 }); 3642 Stream.ExitBlock(); 3643 } 3644 3645 /// Write the function type metadata related records that need to appear before 3646 /// a function summary entry (whether per-module or combined). 3647 template <typename Fn> 3648 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3649 FunctionSummary *FS, 3650 Fn GetValueID) { 3651 if (!FS->type_tests().empty()) 3652 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3653 3654 SmallVector<uint64_t, 64> Record; 3655 3656 auto WriteVFuncIdVec = [&](uint64_t Ty, 3657 ArrayRef<FunctionSummary::VFuncId> VFs) { 3658 if (VFs.empty()) 3659 return; 3660 Record.clear(); 3661 for (auto &VF : VFs) { 3662 Record.push_back(VF.GUID); 3663 Record.push_back(VF.Offset); 3664 } 3665 Stream.EmitRecord(Ty, Record); 3666 }; 3667 3668 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3669 FS->type_test_assume_vcalls()); 3670 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3671 FS->type_checked_load_vcalls()); 3672 3673 auto WriteConstVCallVec = [&](uint64_t Ty, 3674 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3675 for (auto &VC : VCs) { 3676 Record.clear(); 3677 Record.push_back(VC.VFunc.GUID); 3678 Record.push_back(VC.VFunc.Offset); 3679 llvm::append_range(Record, VC.Args); 3680 Stream.EmitRecord(Ty, Record); 3681 } 3682 }; 3683 3684 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3685 FS->type_test_assume_const_vcalls()); 3686 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3687 FS->type_checked_load_const_vcalls()); 3688 3689 auto WriteRange = [&](ConstantRange Range) { 3690 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3691 assert(Range.getLower().getNumWords() == 1); 3692 assert(Range.getUpper().getNumWords() == 1); 3693 emitSignedInt64(Record, *Range.getLower().getRawData()); 3694 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3695 }; 3696 3697 if (!FS->paramAccesses().empty()) { 3698 Record.clear(); 3699 for (auto &Arg : FS->paramAccesses()) { 3700 size_t UndoSize = Record.size(); 3701 Record.push_back(Arg.ParamNo); 3702 WriteRange(Arg.Use); 3703 Record.push_back(Arg.Calls.size()); 3704 for (auto &Call : Arg.Calls) { 3705 Record.push_back(Call.ParamNo); 3706 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3707 if (!ValueID) { 3708 // If ValueID is unknown we can't drop just this call, we must drop 3709 // entire parameter. 3710 Record.resize(UndoSize); 3711 break; 3712 } 3713 Record.push_back(*ValueID); 3714 WriteRange(Call.Offsets); 3715 } 3716 } 3717 if (!Record.empty()) 3718 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3719 } 3720 } 3721 3722 /// Collect type IDs from type tests used by function. 3723 static void 3724 getReferencedTypeIds(FunctionSummary *FS, 3725 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3726 if (!FS->type_tests().empty()) 3727 for (auto &TT : FS->type_tests()) 3728 ReferencedTypeIds.insert(TT); 3729 3730 auto GetReferencedTypesFromVFuncIdVec = 3731 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3732 for (auto &VF : VFs) 3733 ReferencedTypeIds.insert(VF.GUID); 3734 }; 3735 3736 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3737 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3738 3739 auto GetReferencedTypesFromConstVCallVec = 3740 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3741 for (auto &VC : VCs) 3742 ReferencedTypeIds.insert(VC.VFunc.GUID); 3743 }; 3744 3745 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3746 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3747 } 3748 3749 static void writeWholeProgramDevirtResolutionByArg( 3750 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3751 const WholeProgramDevirtResolution::ByArg &ByArg) { 3752 NameVals.push_back(args.size()); 3753 llvm::append_range(NameVals, args); 3754 3755 NameVals.push_back(ByArg.TheKind); 3756 NameVals.push_back(ByArg.Info); 3757 NameVals.push_back(ByArg.Byte); 3758 NameVals.push_back(ByArg.Bit); 3759 } 3760 3761 static void writeWholeProgramDevirtResolution( 3762 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3763 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3764 NameVals.push_back(Id); 3765 3766 NameVals.push_back(Wpd.TheKind); 3767 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3768 NameVals.push_back(Wpd.SingleImplName.size()); 3769 3770 NameVals.push_back(Wpd.ResByArg.size()); 3771 for (auto &A : Wpd.ResByArg) 3772 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3773 } 3774 3775 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3776 StringTableBuilder &StrtabBuilder, 3777 const std::string &Id, 3778 const TypeIdSummary &Summary) { 3779 NameVals.push_back(StrtabBuilder.add(Id)); 3780 NameVals.push_back(Id.size()); 3781 3782 NameVals.push_back(Summary.TTRes.TheKind); 3783 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3784 NameVals.push_back(Summary.TTRes.AlignLog2); 3785 NameVals.push_back(Summary.TTRes.SizeM1); 3786 NameVals.push_back(Summary.TTRes.BitMask); 3787 NameVals.push_back(Summary.TTRes.InlineBits); 3788 3789 for (auto &W : Summary.WPDRes) 3790 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3791 W.second); 3792 } 3793 3794 static void writeTypeIdCompatibleVtableSummaryRecord( 3795 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3796 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3797 ValueEnumerator &VE) { 3798 NameVals.push_back(StrtabBuilder.add(Id)); 3799 NameVals.push_back(Id.size()); 3800 3801 for (auto &P : Summary) { 3802 NameVals.push_back(P.AddressPointOffset); 3803 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3804 } 3805 } 3806 3807 // Helper to emit a single function summary record. 3808 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3809 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3810 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3811 const Function &F) { 3812 NameVals.push_back(ValueID); 3813 3814 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3815 3816 writeFunctionTypeMetadataRecords( 3817 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3818 return {VE.getValueID(VI.getValue())}; 3819 }); 3820 3821 auto SpecialRefCnts = FS->specialRefCounts(); 3822 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3823 NameVals.push_back(FS->instCount()); 3824 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3825 NameVals.push_back(FS->refs().size()); 3826 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3827 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3828 3829 for (auto &RI : FS->refs()) 3830 NameVals.push_back(VE.getValueID(RI.getValue())); 3831 3832 bool HasProfileData = 3833 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3834 for (auto &ECI : FS->calls()) { 3835 NameVals.push_back(getValueId(ECI.first)); 3836 if (HasProfileData) 3837 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3838 else if (WriteRelBFToSummary) 3839 NameVals.push_back(ECI.second.RelBlockFreq); 3840 } 3841 3842 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3843 unsigned Code = 3844 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3845 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3846 : bitc::FS_PERMODULE)); 3847 3848 // Emit the finished record. 3849 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3850 NameVals.clear(); 3851 } 3852 3853 // Collect the global value references in the given variable's initializer, 3854 // and emit them in a summary record. 3855 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3856 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3857 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3858 auto VI = Index->getValueInfo(V.getGUID()); 3859 if (!VI || VI.getSummaryList().empty()) { 3860 // Only declarations should not have a summary (a declaration might however 3861 // have a summary if the def was in module level asm). 3862 assert(V.isDeclaration()); 3863 return; 3864 } 3865 auto *Summary = VI.getSummaryList()[0].get(); 3866 NameVals.push_back(VE.getValueID(&V)); 3867 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3868 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3869 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3870 3871 auto VTableFuncs = VS->vTableFuncs(); 3872 if (!VTableFuncs.empty()) 3873 NameVals.push_back(VS->refs().size()); 3874 3875 unsigned SizeBeforeRefs = NameVals.size(); 3876 for (auto &RI : VS->refs()) 3877 NameVals.push_back(VE.getValueID(RI.getValue())); 3878 // Sort the refs for determinism output, the vector returned by FS->refs() has 3879 // been initialized from a DenseSet. 3880 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3881 3882 if (VTableFuncs.empty()) 3883 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3884 FSModRefsAbbrev); 3885 else { 3886 // VTableFuncs pairs should already be sorted by offset. 3887 for (auto &P : VTableFuncs) { 3888 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3889 NameVals.push_back(P.VTableOffset); 3890 } 3891 3892 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3893 FSModVTableRefsAbbrev); 3894 } 3895 NameVals.clear(); 3896 } 3897 3898 /// Emit the per-module summary section alongside the rest of 3899 /// the module's bitcode. 3900 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3901 // By default we compile with ThinLTO if the module has a summary, but the 3902 // client can request full LTO with a module flag. 3903 bool IsThinLTO = true; 3904 if (auto *MD = 3905 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3906 IsThinLTO = MD->getZExtValue(); 3907 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3908 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3909 4); 3910 3911 Stream.EmitRecord( 3912 bitc::FS_VERSION, 3913 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3914 3915 // Write the index flags. 3916 uint64_t Flags = 0; 3917 // Bits 1-3 are set only in the combined index, skip them. 3918 if (Index->enableSplitLTOUnit()) 3919 Flags |= 0x8; 3920 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3921 3922 if (Index->begin() == Index->end()) { 3923 Stream.ExitBlock(); 3924 return; 3925 } 3926 3927 for (const auto &GVI : valueIds()) { 3928 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3929 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3930 } 3931 3932 // Abbrev for FS_PERMODULE_PROFILE. 3933 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3934 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3942 // numrefs x valueid, n x (valueid, hotness) 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3945 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3946 3947 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3948 Abbv = std::make_shared<BitCodeAbbrev>(); 3949 if (WriteRelBFToSummary) 3950 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3951 else 3952 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3960 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3963 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3964 3965 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3966 Abbv = std::make_shared<BitCodeAbbrev>(); 3967 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3972 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3973 3974 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3975 Abbv = std::make_shared<BitCodeAbbrev>(); 3976 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3980 // numrefs x valueid, n x (valueid , offset) 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3983 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3984 3985 // Abbrev for FS_ALIAS. 3986 Abbv = std::make_shared<BitCodeAbbrev>(); 3987 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3991 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3992 3993 // Abbrev for FS_TYPE_ID_METADATA 3994 Abbv = std::make_shared<BitCodeAbbrev>(); 3995 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3998 // n x (valueid , offset) 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4001 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4002 4003 SmallVector<uint64_t, 64> NameVals; 4004 // Iterate over the list of functions instead of the Index to 4005 // ensure the ordering is stable. 4006 for (const Function &F : M) { 4007 // Summary emission does not support anonymous functions, they have to 4008 // renamed using the anonymous function renaming pass. 4009 if (!F.hasName()) 4010 report_fatal_error("Unexpected anonymous function when writing summary"); 4011 4012 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4013 if (!VI || VI.getSummaryList().empty()) { 4014 // Only declarations should not have a summary (a declaration might 4015 // however have a summary if the def was in module level asm). 4016 assert(F.isDeclaration()); 4017 continue; 4018 } 4019 auto *Summary = VI.getSummaryList()[0].get(); 4020 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4021 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4022 } 4023 4024 // Capture references from GlobalVariable initializers, which are outside 4025 // of a function scope. 4026 for (const GlobalVariable &G : M.globals()) 4027 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4028 FSModVTableRefsAbbrev); 4029 4030 for (const GlobalAlias &A : M.aliases()) { 4031 auto *Aliasee = A.getBaseObject(); 4032 if (!Aliasee->hasName()) 4033 // Nameless function don't have an entry in the summary, skip it. 4034 continue; 4035 auto AliasId = VE.getValueID(&A); 4036 auto AliaseeId = VE.getValueID(Aliasee); 4037 NameVals.push_back(AliasId); 4038 auto *Summary = Index->getGlobalValueSummary(A); 4039 AliasSummary *AS = cast<AliasSummary>(Summary); 4040 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4041 NameVals.push_back(AliaseeId); 4042 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4043 NameVals.clear(); 4044 } 4045 4046 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4047 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4048 S.second, VE); 4049 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4050 TypeIdCompatibleVtableAbbrev); 4051 NameVals.clear(); 4052 } 4053 4054 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4055 ArrayRef<uint64_t>{Index->getBlockCount()}); 4056 4057 Stream.ExitBlock(); 4058 } 4059 4060 /// Emit the combined summary section into the combined index file. 4061 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4062 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4063 Stream.EmitRecord( 4064 bitc::FS_VERSION, 4065 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4066 4067 // Write the index flags. 4068 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4069 4070 for (const auto &GVI : valueIds()) { 4071 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4072 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4073 } 4074 4075 // Abbrev for FS_COMBINED. 4076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4077 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4087 // numrefs x valueid, n x (valueid) 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4090 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4091 4092 // Abbrev for FS_COMBINED_PROFILE. 4093 Abbv = std::make_shared<BitCodeAbbrev>(); 4094 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4104 // numrefs x valueid, n x (valueid, hotness) 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4107 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4108 4109 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4110 Abbv = std::make_shared<BitCodeAbbrev>(); 4111 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4117 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4118 4119 // Abbrev for FS_COMBINED_ALIAS. 4120 Abbv = std::make_shared<BitCodeAbbrev>(); 4121 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4126 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4127 4128 // The aliases are emitted as a post-pass, and will point to the value 4129 // id of the aliasee. Save them in a vector for post-processing. 4130 SmallVector<AliasSummary *, 64> Aliases; 4131 4132 // Save the value id for each summary for alias emission. 4133 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4134 4135 SmallVector<uint64_t, 64> NameVals; 4136 4137 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4138 // with the type ids referenced by this index file. 4139 std::set<GlobalValue::GUID> ReferencedTypeIds; 4140 4141 // For local linkage, we also emit the original name separately 4142 // immediately after the record. 4143 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4144 if (!GlobalValue::isLocalLinkage(S.linkage())) 4145 return; 4146 NameVals.push_back(S.getOriginalName()); 4147 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4148 NameVals.clear(); 4149 }; 4150 4151 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4152 forEachSummary([&](GVInfo I, bool IsAliasee) { 4153 GlobalValueSummary *S = I.second; 4154 assert(S); 4155 DefOrUseGUIDs.insert(I.first); 4156 for (const ValueInfo &VI : S->refs()) 4157 DefOrUseGUIDs.insert(VI.getGUID()); 4158 4159 auto ValueId = getValueId(I.first); 4160 assert(ValueId); 4161 SummaryToValueIdMap[S] = *ValueId; 4162 4163 // If this is invoked for an aliasee, we want to record the above 4164 // mapping, but then not emit a summary entry (if the aliasee is 4165 // to be imported, we will invoke this separately with IsAliasee=false). 4166 if (IsAliasee) 4167 return; 4168 4169 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4170 // Will process aliases as a post-pass because the reader wants all 4171 // global to be loaded first. 4172 Aliases.push_back(AS); 4173 return; 4174 } 4175 4176 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4177 NameVals.push_back(*ValueId); 4178 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4179 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4180 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4181 for (auto &RI : VS->refs()) { 4182 auto RefValueId = getValueId(RI.getGUID()); 4183 if (!RefValueId) 4184 continue; 4185 NameVals.push_back(*RefValueId); 4186 } 4187 4188 // Emit the finished record. 4189 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4190 FSModRefsAbbrev); 4191 NameVals.clear(); 4192 MaybeEmitOriginalName(*S); 4193 return; 4194 } 4195 4196 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4197 GlobalValue::GUID GUID = VI.getGUID(); 4198 Optional<unsigned> CallValueId = getValueId(GUID); 4199 if (CallValueId) 4200 return CallValueId; 4201 // For SamplePGO, the indirect call targets for local functions will 4202 // have its original name annotated in profile. We try to find the 4203 // corresponding PGOFuncName as the GUID. 4204 GUID = Index.getGUIDFromOriginalID(GUID); 4205 if (!GUID) 4206 return None; 4207 CallValueId = getValueId(GUID); 4208 if (!CallValueId) 4209 return None; 4210 // The mapping from OriginalId to GUID may return a GUID 4211 // that corresponds to a static variable. Filter it out here. 4212 // This can happen when 4213 // 1) There is a call to a library function which does not have 4214 // a CallValidId; 4215 // 2) There is a static variable with the OriginalGUID identical 4216 // to the GUID of the library function in 1); 4217 // When this happens, the logic for SamplePGO kicks in and 4218 // the static variable in 2) will be found, which needs to be 4219 // filtered out. 4220 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4221 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4222 return None; 4223 return CallValueId; 4224 }; 4225 4226 auto *FS = cast<FunctionSummary>(S); 4227 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4228 getReferencedTypeIds(FS, ReferencedTypeIds); 4229 4230 NameVals.push_back(*ValueId); 4231 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4232 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4233 NameVals.push_back(FS->instCount()); 4234 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4235 NameVals.push_back(FS->entryCount()); 4236 4237 // Fill in below 4238 NameVals.push_back(0); // numrefs 4239 NameVals.push_back(0); // rorefcnt 4240 NameVals.push_back(0); // worefcnt 4241 4242 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4243 for (auto &RI : FS->refs()) { 4244 auto RefValueId = getValueId(RI.getGUID()); 4245 if (!RefValueId) 4246 continue; 4247 NameVals.push_back(*RefValueId); 4248 if (RI.isReadOnly()) 4249 RORefCnt++; 4250 else if (RI.isWriteOnly()) 4251 WORefCnt++; 4252 Count++; 4253 } 4254 NameVals[6] = Count; 4255 NameVals[7] = RORefCnt; 4256 NameVals[8] = WORefCnt; 4257 4258 bool HasProfileData = false; 4259 for (auto &EI : FS->calls()) { 4260 HasProfileData |= 4261 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4262 if (HasProfileData) 4263 break; 4264 } 4265 4266 for (auto &EI : FS->calls()) { 4267 // If this GUID doesn't have a value id, it doesn't have a function 4268 // summary and we don't need to record any calls to it. 4269 Optional<unsigned> CallValueId = GetValueId(EI.first); 4270 if (!CallValueId) 4271 continue; 4272 NameVals.push_back(*CallValueId); 4273 if (HasProfileData) 4274 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4275 } 4276 4277 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4278 unsigned Code = 4279 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4280 4281 // Emit the finished record. 4282 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4283 NameVals.clear(); 4284 MaybeEmitOriginalName(*S); 4285 }); 4286 4287 for (auto *AS : Aliases) { 4288 auto AliasValueId = SummaryToValueIdMap[AS]; 4289 assert(AliasValueId); 4290 NameVals.push_back(AliasValueId); 4291 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4292 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4293 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4294 assert(AliaseeValueId); 4295 NameVals.push_back(AliaseeValueId); 4296 4297 // Emit the finished record. 4298 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4299 NameVals.clear(); 4300 MaybeEmitOriginalName(*AS); 4301 4302 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4303 getReferencedTypeIds(FS, ReferencedTypeIds); 4304 } 4305 4306 if (!Index.cfiFunctionDefs().empty()) { 4307 for (auto &S : Index.cfiFunctionDefs()) { 4308 if (DefOrUseGUIDs.count( 4309 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4310 NameVals.push_back(StrtabBuilder.add(S)); 4311 NameVals.push_back(S.size()); 4312 } 4313 } 4314 if (!NameVals.empty()) { 4315 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4316 NameVals.clear(); 4317 } 4318 } 4319 4320 if (!Index.cfiFunctionDecls().empty()) { 4321 for (auto &S : Index.cfiFunctionDecls()) { 4322 if (DefOrUseGUIDs.count( 4323 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4324 NameVals.push_back(StrtabBuilder.add(S)); 4325 NameVals.push_back(S.size()); 4326 } 4327 } 4328 if (!NameVals.empty()) { 4329 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4330 NameVals.clear(); 4331 } 4332 } 4333 4334 // Walk the GUIDs that were referenced, and write the 4335 // corresponding type id records. 4336 for (auto &T : ReferencedTypeIds) { 4337 auto TidIter = Index.typeIds().equal_range(T); 4338 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4339 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4340 It->second.second); 4341 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4342 NameVals.clear(); 4343 } 4344 } 4345 4346 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4347 ArrayRef<uint64_t>{Index.getBlockCount()}); 4348 4349 Stream.ExitBlock(); 4350 } 4351 4352 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4353 /// current llvm version, and a record for the epoch number. 4354 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4355 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4356 4357 // Write the "user readable" string identifying the bitcode producer 4358 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4359 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4362 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4363 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4364 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4365 4366 // Write the epoch version 4367 Abbv = std::make_shared<BitCodeAbbrev>(); 4368 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4370 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4371 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4372 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4373 Stream.ExitBlock(); 4374 } 4375 4376 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4377 // Emit the module's hash. 4378 // MODULE_CODE_HASH: [5*i32] 4379 if (GenerateHash) { 4380 uint32_t Vals[5]; 4381 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4382 Buffer.size() - BlockStartPos)); 4383 StringRef Hash = Hasher.result(); 4384 for (int Pos = 0; Pos < 20; Pos += 4) { 4385 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4386 } 4387 4388 // Emit the finished record. 4389 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4390 4391 if (ModHash) 4392 // Save the written hash value. 4393 llvm::copy(Vals, std::begin(*ModHash)); 4394 } 4395 } 4396 4397 void ModuleBitcodeWriter::write() { 4398 writeIdentificationBlock(Stream); 4399 4400 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4401 size_t BlockStartPos = Buffer.size(); 4402 4403 writeModuleVersion(); 4404 4405 // Emit blockinfo, which defines the standard abbreviations etc. 4406 writeBlockInfo(); 4407 4408 // Emit information describing all of the types in the module. 4409 writeTypeTable(); 4410 4411 // Emit information about attribute groups. 4412 writeAttributeGroupTable(); 4413 4414 // Emit information about parameter attributes. 4415 writeAttributeTable(); 4416 4417 writeComdats(); 4418 4419 // Emit top-level description of module, including target triple, inline asm, 4420 // descriptors for global variables, and function prototype info. 4421 writeModuleInfo(); 4422 4423 // Emit constants. 4424 writeModuleConstants(); 4425 4426 // Emit metadata kind names. 4427 writeModuleMetadataKinds(); 4428 4429 // Emit metadata. 4430 writeModuleMetadata(); 4431 4432 // Emit module-level use-lists. 4433 if (VE.shouldPreserveUseListOrder()) 4434 writeUseListBlock(nullptr); 4435 4436 writeOperandBundleTags(); 4437 writeSyncScopeNames(); 4438 4439 // Emit function bodies. 4440 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4441 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4442 if (!F->isDeclaration()) 4443 writeFunction(*F, FunctionToBitcodeIndex); 4444 4445 // Need to write after the above call to WriteFunction which populates 4446 // the summary information in the index. 4447 if (Index) 4448 writePerModuleGlobalValueSummary(); 4449 4450 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4451 4452 writeModuleHash(BlockStartPos); 4453 4454 Stream.ExitBlock(); 4455 } 4456 4457 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4458 uint32_t &Position) { 4459 support::endian::write32le(&Buffer[Position], Value); 4460 Position += 4; 4461 } 4462 4463 /// If generating a bc file on darwin, we have to emit a 4464 /// header and trailer to make it compatible with the system archiver. To do 4465 /// this we emit the following header, and then emit a trailer that pads the 4466 /// file out to be a multiple of 16 bytes. 4467 /// 4468 /// struct bc_header { 4469 /// uint32_t Magic; // 0x0B17C0DE 4470 /// uint32_t Version; // Version, currently always 0. 4471 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4472 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4473 /// uint32_t CPUType; // CPU specifier. 4474 /// ... potentially more later ... 4475 /// }; 4476 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4477 const Triple &TT) { 4478 unsigned CPUType = ~0U; 4479 4480 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4481 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4482 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4483 // specific constants here because they are implicitly part of the Darwin ABI. 4484 enum { 4485 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4486 DARWIN_CPU_TYPE_X86 = 7, 4487 DARWIN_CPU_TYPE_ARM = 12, 4488 DARWIN_CPU_TYPE_POWERPC = 18 4489 }; 4490 4491 Triple::ArchType Arch = TT.getArch(); 4492 if (Arch == Triple::x86_64) 4493 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4494 else if (Arch == Triple::x86) 4495 CPUType = DARWIN_CPU_TYPE_X86; 4496 else if (Arch == Triple::ppc) 4497 CPUType = DARWIN_CPU_TYPE_POWERPC; 4498 else if (Arch == Triple::ppc64) 4499 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4500 else if (Arch == Triple::arm || Arch == Triple::thumb) 4501 CPUType = DARWIN_CPU_TYPE_ARM; 4502 4503 // Traditional Bitcode starts after header. 4504 assert(Buffer.size() >= BWH_HeaderSize && 4505 "Expected header size to be reserved"); 4506 unsigned BCOffset = BWH_HeaderSize; 4507 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4508 4509 // Write the magic and version. 4510 unsigned Position = 0; 4511 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4512 writeInt32ToBuffer(0, Buffer, Position); // Version. 4513 writeInt32ToBuffer(BCOffset, Buffer, Position); 4514 writeInt32ToBuffer(BCSize, Buffer, Position); 4515 writeInt32ToBuffer(CPUType, Buffer, Position); 4516 4517 // If the file is not a multiple of 16 bytes, insert dummy padding. 4518 while (Buffer.size() & 15) 4519 Buffer.push_back(0); 4520 } 4521 4522 /// Helper to write the header common to all bitcode files. 4523 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4524 // Emit the file header. 4525 Stream.Emit((unsigned)'B', 8); 4526 Stream.Emit((unsigned)'C', 8); 4527 Stream.Emit(0x0, 4); 4528 Stream.Emit(0xC, 4); 4529 Stream.Emit(0xE, 4); 4530 Stream.Emit(0xD, 4); 4531 } 4532 4533 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4534 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4535 writeBitcodeHeader(*Stream); 4536 } 4537 4538 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4539 4540 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4541 Stream->EnterSubblock(Block, 3); 4542 4543 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4544 Abbv->Add(BitCodeAbbrevOp(Record)); 4545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4546 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4547 4548 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4549 4550 Stream->ExitBlock(); 4551 } 4552 4553 void BitcodeWriter::writeSymtab() { 4554 assert(!WroteStrtab && !WroteSymtab); 4555 4556 // If any module has module-level inline asm, we will require a registered asm 4557 // parser for the target so that we can create an accurate symbol table for 4558 // the module. 4559 for (Module *M : Mods) { 4560 if (M->getModuleInlineAsm().empty()) 4561 continue; 4562 4563 std::string Err; 4564 const Triple TT(M->getTargetTriple()); 4565 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4566 if (!T || !T->hasMCAsmParser()) 4567 return; 4568 } 4569 4570 WroteSymtab = true; 4571 SmallVector<char, 0> Symtab; 4572 // The irsymtab::build function may be unable to create a symbol table if the 4573 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4574 // table is not required for correctness, but we still want to be able to 4575 // write malformed modules to bitcode files, so swallow the error. 4576 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4577 consumeError(std::move(E)); 4578 return; 4579 } 4580 4581 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4582 {Symtab.data(), Symtab.size()}); 4583 } 4584 4585 void BitcodeWriter::writeStrtab() { 4586 assert(!WroteStrtab); 4587 4588 std::vector<char> Strtab; 4589 StrtabBuilder.finalizeInOrder(); 4590 Strtab.resize(StrtabBuilder.getSize()); 4591 StrtabBuilder.write((uint8_t *)Strtab.data()); 4592 4593 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4594 {Strtab.data(), Strtab.size()}); 4595 4596 WroteStrtab = true; 4597 } 4598 4599 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4600 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4601 WroteStrtab = true; 4602 } 4603 4604 void BitcodeWriter::writeModule(const Module &M, 4605 bool ShouldPreserveUseListOrder, 4606 const ModuleSummaryIndex *Index, 4607 bool GenerateHash, ModuleHash *ModHash) { 4608 assert(!WroteStrtab); 4609 4610 // The Mods vector is used by irsymtab::build, which requires non-const 4611 // Modules in case it needs to materialize metadata. But the bitcode writer 4612 // requires that the module is materialized, so we can cast to non-const here, 4613 // after checking that it is in fact materialized. 4614 assert(M.isMaterialized()); 4615 Mods.push_back(const_cast<Module *>(&M)); 4616 4617 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4618 ShouldPreserveUseListOrder, Index, 4619 GenerateHash, ModHash); 4620 ModuleWriter.write(); 4621 } 4622 4623 void BitcodeWriter::writeIndex( 4624 const ModuleSummaryIndex *Index, 4625 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4626 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4627 ModuleToSummariesForIndex); 4628 IndexWriter.write(); 4629 } 4630 4631 /// Write the specified module to the specified output stream. 4632 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4633 bool ShouldPreserveUseListOrder, 4634 const ModuleSummaryIndex *Index, 4635 bool GenerateHash, ModuleHash *ModHash) { 4636 SmallVector<char, 0> Buffer; 4637 Buffer.reserve(256*1024); 4638 4639 // If this is darwin or another generic macho target, reserve space for the 4640 // header. 4641 Triple TT(M.getTargetTriple()); 4642 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4643 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4644 4645 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4646 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4647 ModHash); 4648 Writer.writeSymtab(); 4649 Writer.writeStrtab(); 4650 4651 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4652 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4653 4654 // Write the generated bitstream to "Out". 4655 if (!Buffer.empty()) 4656 Out.write((char *)&Buffer.front(), Buffer.size()); 4657 } 4658 4659 void IndexBitcodeWriter::write() { 4660 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4661 4662 writeModuleVersion(); 4663 4664 // Write the module paths in the combined index. 4665 writeModStrings(); 4666 4667 // Write the summary combined index records. 4668 writeCombinedGlobalValueSummary(); 4669 4670 Stream.ExitBlock(); 4671 } 4672 4673 // Write the specified module summary index to the given raw output stream, 4674 // where it will be written in a new bitcode block. This is used when 4675 // writing the combined index file for ThinLTO. When writing a subset of the 4676 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4677 void llvm::WriteIndexToFile( 4678 const ModuleSummaryIndex &Index, raw_ostream &Out, 4679 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4680 SmallVector<char, 0> Buffer; 4681 Buffer.reserve(256 * 1024); 4682 4683 BitcodeWriter Writer(Buffer); 4684 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4685 Writer.writeStrtab(); 4686 4687 Out.write((char *)&Buffer.front(), Buffer.size()); 4688 } 4689 4690 namespace { 4691 4692 /// Class to manage the bitcode writing for a thin link bitcode file. 4693 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4694 /// ModHash is for use in ThinLTO incremental build, generated while writing 4695 /// the module bitcode file. 4696 const ModuleHash *ModHash; 4697 4698 public: 4699 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4700 BitstreamWriter &Stream, 4701 const ModuleSummaryIndex &Index, 4702 const ModuleHash &ModHash) 4703 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4704 /*ShouldPreserveUseListOrder=*/false, &Index), 4705 ModHash(&ModHash) {} 4706 4707 void write(); 4708 4709 private: 4710 void writeSimplifiedModuleInfo(); 4711 }; 4712 4713 } // end anonymous namespace 4714 4715 // This function writes a simpilified module info for thin link bitcode file. 4716 // It only contains the source file name along with the name(the offset and 4717 // size in strtab) and linkage for global values. For the global value info 4718 // entry, in order to keep linkage at offset 5, there are three zeros used 4719 // as padding. 4720 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4721 SmallVector<unsigned, 64> Vals; 4722 // Emit the module's source file name. 4723 { 4724 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4725 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4726 if (Bits == SE_Char6) 4727 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4728 else if (Bits == SE_Fixed7) 4729 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4730 4731 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4732 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4733 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4735 Abbv->Add(AbbrevOpToUse); 4736 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4737 4738 for (const auto P : M.getSourceFileName()) 4739 Vals.push_back((unsigned char)P); 4740 4741 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4742 Vals.clear(); 4743 } 4744 4745 // Emit the global variable information. 4746 for (const GlobalVariable &GV : M.globals()) { 4747 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4748 Vals.push_back(StrtabBuilder.add(GV.getName())); 4749 Vals.push_back(GV.getName().size()); 4750 Vals.push_back(0); 4751 Vals.push_back(0); 4752 Vals.push_back(0); 4753 Vals.push_back(getEncodedLinkage(GV)); 4754 4755 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4756 Vals.clear(); 4757 } 4758 4759 // Emit the function proto information. 4760 for (const Function &F : M) { 4761 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4762 Vals.push_back(StrtabBuilder.add(F.getName())); 4763 Vals.push_back(F.getName().size()); 4764 Vals.push_back(0); 4765 Vals.push_back(0); 4766 Vals.push_back(0); 4767 Vals.push_back(getEncodedLinkage(F)); 4768 4769 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4770 Vals.clear(); 4771 } 4772 4773 // Emit the alias information. 4774 for (const GlobalAlias &A : M.aliases()) { 4775 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4776 Vals.push_back(StrtabBuilder.add(A.getName())); 4777 Vals.push_back(A.getName().size()); 4778 Vals.push_back(0); 4779 Vals.push_back(0); 4780 Vals.push_back(0); 4781 Vals.push_back(getEncodedLinkage(A)); 4782 4783 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4784 Vals.clear(); 4785 } 4786 4787 // Emit the ifunc information. 4788 for (const GlobalIFunc &I : M.ifuncs()) { 4789 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4790 Vals.push_back(StrtabBuilder.add(I.getName())); 4791 Vals.push_back(I.getName().size()); 4792 Vals.push_back(0); 4793 Vals.push_back(0); 4794 Vals.push_back(0); 4795 Vals.push_back(getEncodedLinkage(I)); 4796 4797 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4798 Vals.clear(); 4799 } 4800 } 4801 4802 void ThinLinkBitcodeWriter::write() { 4803 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4804 4805 writeModuleVersion(); 4806 4807 writeSimplifiedModuleInfo(); 4808 4809 writePerModuleGlobalValueSummary(); 4810 4811 // Write module hash. 4812 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4813 4814 Stream.ExitBlock(); 4815 } 4816 4817 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4818 const ModuleSummaryIndex &Index, 4819 const ModuleHash &ModHash) { 4820 assert(!WroteStrtab); 4821 4822 // The Mods vector is used by irsymtab::build, which requires non-const 4823 // Modules in case it needs to materialize metadata. But the bitcode writer 4824 // requires that the module is materialized, so we can cast to non-const here, 4825 // after checking that it is in fact materialized. 4826 assert(M.isMaterialized()); 4827 Mods.push_back(const_cast<Module *>(&M)); 4828 4829 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4830 ModHash); 4831 ThinLinkWriter.write(); 4832 } 4833 4834 // Write the specified thin link bitcode file to the given raw output stream, 4835 // where it will be written in a new bitcode block. This is used when 4836 // writing the per-module index file for ThinLTO. 4837 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4838 const ModuleSummaryIndex &Index, 4839 const ModuleHash &ModHash) { 4840 SmallVector<char, 0> Buffer; 4841 Buffer.reserve(256 * 1024); 4842 4843 BitcodeWriter Writer(Buffer); 4844 Writer.writeThinLinkBitcode(M, Index, ModHash); 4845 Writer.writeSymtab(); 4846 Writer.writeStrtab(); 4847 4848 Out.write((char *)&Buffer.front(), Buffer.size()); 4849 } 4850 4851 static const char *getSectionNameForBitcode(const Triple &T) { 4852 switch (T.getObjectFormat()) { 4853 case Triple::MachO: 4854 return "__LLVM,__bitcode"; 4855 case Triple::COFF: 4856 case Triple::ELF: 4857 case Triple::Wasm: 4858 case Triple::UnknownObjectFormat: 4859 return ".llvmbc"; 4860 case Triple::GOFF: 4861 llvm_unreachable("GOFF is not yet implemented"); 4862 break; 4863 case Triple::XCOFF: 4864 llvm_unreachable("XCOFF is not yet implemented"); 4865 break; 4866 } 4867 llvm_unreachable("Unimplemented ObjectFormatType"); 4868 } 4869 4870 static const char *getSectionNameForCommandline(const Triple &T) { 4871 switch (T.getObjectFormat()) { 4872 case Triple::MachO: 4873 return "__LLVM,__cmdline"; 4874 case Triple::COFF: 4875 case Triple::ELF: 4876 case Triple::Wasm: 4877 case Triple::UnknownObjectFormat: 4878 return ".llvmcmd"; 4879 case Triple::GOFF: 4880 llvm_unreachable("GOFF is not yet implemented"); 4881 break; 4882 case Triple::XCOFF: 4883 llvm_unreachable("XCOFF is not yet implemented"); 4884 break; 4885 } 4886 llvm_unreachable("Unimplemented ObjectFormatType"); 4887 } 4888 4889 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4890 bool EmbedBitcode, bool EmbedCmdline, 4891 const std::vector<uint8_t> &CmdArgs) { 4892 // Save llvm.compiler.used and remove it. 4893 SmallVector<Constant *, 2> UsedArray; 4894 SmallVector<GlobalValue *, 4> UsedGlobals; 4895 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4896 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4897 for (auto *GV : UsedGlobals) { 4898 if (GV->getName() != "llvm.embedded.module" && 4899 GV->getName() != "llvm.cmdline") 4900 UsedArray.push_back( 4901 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4902 } 4903 if (Used) 4904 Used->eraseFromParent(); 4905 4906 // Embed the bitcode for the llvm module. 4907 std::string Data; 4908 ArrayRef<uint8_t> ModuleData; 4909 Triple T(M.getTargetTriple()); 4910 4911 if (EmbedBitcode) { 4912 if (Buf.getBufferSize() == 0 || 4913 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4914 (const unsigned char *)Buf.getBufferEnd())) { 4915 // If the input is LLVM Assembly, bitcode is produced by serializing 4916 // the module. Use-lists order need to be preserved in this case. 4917 llvm::raw_string_ostream OS(Data); 4918 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4919 ModuleData = 4920 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4921 } else 4922 // If the input is LLVM bitcode, write the input byte stream directly. 4923 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4924 Buf.getBufferSize()); 4925 } 4926 llvm::Constant *ModuleConstant = 4927 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4928 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4929 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4930 ModuleConstant); 4931 GV->setSection(getSectionNameForBitcode(T)); 4932 // Set alignment to 1 to prevent padding between two contributions from input 4933 // sections after linking. 4934 GV->setAlignment(Align(1)); 4935 UsedArray.push_back( 4936 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4937 if (llvm::GlobalVariable *Old = 4938 M.getGlobalVariable("llvm.embedded.module", true)) { 4939 assert(Old->hasOneUse() && 4940 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4941 GV->takeName(Old); 4942 Old->eraseFromParent(); 4943 } else { 4944 GV->setName("llvm.embedded.module"); 4945 } 4946 4947 // Skip if only bitcode needs to be embedded. 4948 if (EmbedCmdline) { 4949 // Embed command-line options. 4950 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4951 CmdArgs.size()); 4952 llvm::Constant *CmdConstant = 4953 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4954 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4955 llvm::GlobalValue::PrivateLinkage, 4956 CmdConstant); 4957 GV->setSection(getSectionNameForCommandline(T)); 4958 GV->setAlignment(Align(1)); 4959 UsedArray.push_back( 4960 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4961 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4962 assert(Old->hasOneUse() && 4963 "llvm.cmdline can only be used once in llvm.compiler.used"); 4964 GV->takeName(Old); 4965 Old->eraseFromParent(); 4966 } else { 4967 GV->setName("llvm.cmdline"); 4968 } 4969 } 4970 4971 if (UsedArray.empty()) 4972 return; 4973 4974 // Recreate llvm.compiler.used. 4975 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4976 auto *NewUsed = new GlobalVariable( 4977 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4978 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4979 NewUsed->setSection("llvm.metadata"); 4980 } 4981