1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(const CallBase &CB, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NoMerge: 651 return bitc::ATTR_KIND_NO_MERGE; 652 case Attribute::NonLazyBind: 653 return bitc::ATTR_KIND_NON_LAZY_BIND; 654 case Attribute::NonNull: 655 return bitc::ATTR_KIND_NON_NULL; 656 case Attribute::Dereferenceable: 657 return bitc::ATTR_KIND_DEREFERENCEABLE; 658 case Attribute::DereferenceableOrNull: 659 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 660 case Attribute::NoRedZone: 661 return bitc::ATTR_KIND_NO_RED_ZONE; 662 case Attribute::NoReturn: 663 return bitc::ATTR_KIND_NO_RETURN; 664 case Attribute::NoSync: 665 return bitc::ATTR_KIND_NOSYNC; 666 case Attribute::NoCfCheck: 667 return bitc::ATTR_KIND_NOCF_CHECK; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::NullPointerIsValid: 671 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 672 case Attribute::OptForFuzzing: 673 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 674 case Attribute::OptimizeForSize: 675 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 676 case Attribute::OptimizeNone: 677 return bitc::ATTR_KIND_OPTIMIZE_NONE; 678 case Attribute::ReadNone: 679 return bitc::ATTR_KIND_READ_NONE; 680 case Attribute::ReadOnly: 681 return bitc::ATTR_KIND_READ_ONLY; 682 case Attribute::Returned: 683 return bitc::ATTR_KIND_RETURNED; 684 case Attribute::ReturnsTwice: 685 return bitc::ATTR_KIND_RETURNS_TWICE; 686 case Attribute::SExt: 687 return bitc::ATTR_KIND_S_EXT; 688 case Attribute::Speculatable: 689 return bitc::ATTR_KIND_SPECULATABLE; 690 case Attribute::StackAlignment: 691 return bitc::ATTR_KIND_STACK_ALIGNMENT; 692 case Attribute::StackProtect: 693 return bitc::ATTR_KIND_STACK_PROTECT; 694 case Attribute::StackProtectReq: 695 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 696 case Attribute::StackProtectStrong: 697 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 698 case Attribute::SafeStack: 699 return bitc::ATTR_KIND_SAFESTACK; 700 case Attribute::ShadowCallStack: 701 return bitc::ATTR_KIND_SHADOWCALLSTACK; 702 case Attribute::StrictFP: 703 return bitc::ATTR_KIND_STRICT_FP; 704 case Attribute::StructRet: 705 return bitc::ATTR_KIND_STRUCT_RET; 706 case Attribute::SanitizeAddress: 707 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 708 case Attribute::SanitizeHWAddress: 709 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 710 case Attribute::SanitizeThread: 711 return bitc::ATTR_KIND_SANITIZE_THREAD; 712 case Attribute::SanitizeMemory: 713 return bitc::ATTR_KIND_SANITIZE_MEMORY; 714 case Attribute::SpeculativeLoadHardening: 715 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 716 case Attribute::SwiftError: 717 return bitc::ATTR_KIND_SWIFT_ERROR; 718 case Attribute::SwiftSelf: 719 return bitc::ATTR_KIND_SWIFT_SELF; 720 case Attribute::UWTable: 721 return bitc::ATTR_KIND_UW_TABLE; 722 case Attribute::WillReturn: 723 return bitc::ATTR_KIND_WILLRETURN; 724 case Attribute::WriteOnly: 725 return bitc::ATTR_KIND_WRITEONLY; 726 case Attribute::ZExt: 727 return bitc::ATTR_KIND_Z_EXT; 728 case Attribute::ImmArg: 729 return bitc::ATTR_KIND_IMMARG; 730 case Attribute::SanitizeMemTag: 731 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 732 case Attribute::Preallocated: 733 return bitc::ATTR_KIND_PREALLOCATED; 734 case Attribute::NoUndef: 735 return bitc::ATTR_KIND_NOUNDEF; 736 case Attribute::EndAttrKinds: 737 llvm_unreachable("Can not encode end-attribute kinds marker."); 738 case Attribute::None: 739 llvm_unreachable("Can not encode none-attribute."); 740 case Attribute::EmptyKey: 741 case Attribute::TombstoneKey: 742 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 743 } 744 745 llvm_unreachable("Trying to encode unknown attribute"); 746 } 747 748 void ModuleBitcodeWriter::writeAttributeGroupTable() { 749 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 750 VE.getAttributeGroups(); 751 if (AttrGrps.empty()) return; 752 753 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 754 755 SmallVector<uint64_t, 64> Record; 756 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 757 unsigned AttrListIndex = Pair.first; 758 AttributeSet AS = Pair.second; 759 Record.push_back(VE.getAttributeGroupID(Pair)); 760 Record.push_back(AttrListIndex); 761 762 for (Attribute Attr : AS) { 763 if (Attr.isEnumAttribute()) { 764 Record.push_back(0); 765 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 766 } else if (Attr.isIntAttribute()) { 767 Record.push_back(1); 768 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 769 Record.push_back(Attr.getValueAsInt()); 770 } else if (Attr.isStringAttribute()) { 771 StringRef Kind = Attr.getKindAsString(); 772 StringRef Val = Attr.getValueAsString(); 773 774 Record.push_back(Val.empty() ? 3 : 4); 775 Record.append(Kind.begin(), Kind.end()); 776 Record.push_back(0); 777 if (!Val.empty()) { 778 Record.append(Val.begin(), Val.end()); 779 Record.push_back(0); 780 } 781 } else { 782 assert(Attr.isTypeAttribute()); 783 Type *Ty = Attr.getValueAsType(); 784 Record.push_back(Ty ? 6 : 5); 785 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 786 if (Ty) 787 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 788 } 789 } 790 791 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 792 Record.clear(); 793 } 794 795 Stream.ExitBlock(); 796 } 797 798 void ModuleBitcodeWriter::writeAttributeTable() { 799 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 800 if (Attrs.empty()) return; 801 802 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 803 804 SmallVector<uint64_t, 64> Record; 805 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 806 AttributeList AL = Attrs[i]; 807 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 808 AttributeSet AS = AL.getAttributes(i); 809 if (AS.hasAttributes()) 810 Record.push_back(VE.getAttributeGroupID({i, AS})); 811 } 812 813 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 814 Record.clear(); 815 } 816 817 Stream.ExitBlock(); 818 } 819 820 /// WriteTypeTable - Write out the type table for a module. 821 void ModuleBitcodeWriter::writeTypeTable() { 822 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 823 824 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 825 SmallVector<uint64_t, 64> TypeVals; 826 827 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 828 829 // Abbrev for TYPE_CODE_POINTER. 830 auto Abbv = std::make_shared<BitCodeAbbrev>(); 831 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 833 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 834 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 835 836 // Abbrev for TYPE_CODE_FUNCTION. 837 Abbv = std::make_shared<BitCodeAbbrev>(); 838 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 842 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 843 844 // Abbrev for TYPE_CODE_STRUCT_ANON. 845 Abbv = std::make_shared<BitCodeAbbrev>(); 846 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 850 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 851 852 // Abbrev for TYPE_CODE_STRUCT_NAME. 853 Abbv = std::make_shared<BitCodeAbbrev>(); 854 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 857 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 858 859 // Abbrev for TYPE_CODE_STRUCT_NAMED. 860 Abbv = std::make_shared<BitCodeAbbrev>(); 861 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 865 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_ARRAY. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 872 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 873 874 // Emit an entry count so the reader can reserve space. 875 TypeVals.push_back(TypeList.size()); 876 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 877 TypeVals.clear(); 878 879 // Loop over all of the types, emitting each in turn. 880 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 881 Type *T = TypeList[i]; 882 int AbbrevToUse = 0; 883 unsigned Code = 0; 884 885 switch (T->getTypeID()) { 886 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 887 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 888 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 889 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 890 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 891 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 892 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 893 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 894 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 895 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 896 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 897 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 898 case Type::IntegerTyID: 899 // INTEGER: [width] 900 Code = bitc::TYPE_CODE_INTEGER; 901 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 902 break; 903 case Type::PointerTyID: { 904 PointerType *PTy = cast<PointerType>(T); 905 // POINTER: [pointee type, address space] 906 Code = bitc::TYPE_CODE_POINTER; 907 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 908 unsigned AddressSpace = PTy->getAddressSpace(); 909 TypeVals.push_back(AddressSpace); 910 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 911 break; 912 } 913 case Type::FunctionTyID: { 914 FunctionType *FT = cast<FunctionType>(T); 915 // FUNCTION: [isvararg, retty, paramty x N] 916 Code = bitc::TYPE_CODE_FUNCTION; 917 TypeVals.push_back(FT->isVarArg()); 918 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 919 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 920 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 921 AbbrevToUse = FunctionAbbrev; 922 break; 923 } 924 case Type::StructTyID: { 925 StructType *ST = cast<StructType>(T); 926 // STRUCT: [ispacked, eltty x N] 927 TypeVals.push_back(ST->isPacked()); 928 // Output all of the element types. 929 for (StructType::element_iterator I = ST->element_begin(), 930 E = ST->element_end(); I != E; ++I) 931 TypeVals.push_back(VE.getTypeID(*I)); 932 933 if (ST->isLiteral()) { 934 Code = bitc::TYPE_CODE_STRUCT_ANON; 935 AbbrevToUse = StructAnonAbbrev; 936 } else { 937 if (ST->isOpaque()) { 938 Code = bitc::TYPE_CODE_OPAQUE; 939 } else { 940 Code = bitc::TYPE_CODE_STRUCT_NAMED; 941 AbbrevToUse = StructNamedAbbrev; 942 } 943 944 // Emit the name if it is present. 945 if (!ST->getName().empty()) 946 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 947 StructNameAbbrev); 948 } 949 break; 950 } 951 case Type::ArrayTyID: { 952 ArrayType *AT = cast<ArrayType>(T); 953 // ARRAY: [numelts, eltty] 954 Code = bitc::TYPE_CODE_ARRAY; 955 TypeVals.push_back(AT->getNumElements()); 956 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 957 AbbrevToUse = ArrayAbbrev; 958 break; 959 } 960 case Type::FixedVectorTyID: 961 case Type::ScalableVectorTyID: { 962 VectorType *VT = cast<VectorType>(T); 963 // VECTOR [numelts, eltty] or 964 // [numelts, eltty, scalable] 965 Code = bitc::TYPE_CODE_VECTOR; 966 TypeVals.push_back(VT->getElementCount().Min); 967 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 968 if (isa<ScalableVectorType>(VT)) 969 TypeVals.push_back(true); 970 break; 971 } 972 } 973 974 // Emit the finished record. 975 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 976 TypeVals.clear(); 977 } 978 979 Stream.ExitBlock(); 980 } 981 982 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 983 switch (Linkage) { 984 case GlobalValue::ExternalLinkage: 985 return 0; 986 case GlobalValue::WeakAnyLinkage: 987 return 16; 988 case GlobalValue::AppendingLinkage: 989 return 2; 990 case GlobalValue::InternalLinkage: 991 return 3; 992 case GlobalValue::LinkOnceAnyLinkage: 993 return 18; 994 case GlobalValue::ExternalWeakLinkage: 995 return 7; 996 case GlobalValue::CommonLinkage: 997 return 8; 998 case GlobalValue::PrivateLinkage: 999 return 9; 1000 case GlobalValue::WeakODRLinkage: 1001 return 17; 1002 case GlobalValue::LinkOnceODRLinkage: 1003 return 19; 1004 case GlobalValue::AvailableExternallyLinkage: 1005 return 12; 1006 } 1007 llvm_unreachable("Invalid linkage"); 1008 } 1009 1010 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1011 return getEncodedLinkage(GV.getLinkage()); 1012 } 1013 1014 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1015 uint64_t RawFlags = 0; 1016 RawFlags |= Flags.ReadNone; 1017 RawFlags |= (Flags.ReadOnly << 1); 1018 RawFlags |= (Flags.NoRecurse << 2); 1019 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1020 RawFlags |= (Flags.NoInline << 4); 1021 RawFlags |= (Flags.AlwaysInline << 5); 1022 return RawFlags; 1023 } 1024 1025 // Decode the flags for GlobalValue in the summary 1026 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1027 uint64_t RawFlags = 0; 1028 1029 RawFlags |= Flags.NotEligibleToImport; // bool 1030 RawFlags |= (Flags.Live << 1); 1031 RawFlags |= (Flags.DSOLocal << 2); 1032 RawFlags |= (Flags.CanAutoHide << 3); 1033 1034 // Linkage don't need to be remapped at that time for the summary. Any future 1035 // change to the getEncodedLinkage() function will need to be taken into 1036 // account here as well. 1037 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1038 1039 return RawFlags; 1040 } 1041 1042 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1043 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1044 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1045 return RawFlags; 1046 } 1047 1048 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1049 switch (GV.getVisibility()) { 1050 case GlobalValue::DefaultVisibility: return 0; 1051 case GlobalValue::HiddenVisibility: return 1; 1052 case GlobalValue::ProtectedVisibility: return 2; 1053 } 1054 llvm_unreachable("Invalid visibility"); 1055 } 1056 1057 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1058 switch (GV.getDLLStorageClass()) { 1059 case GlobalValue::DefaultStorageClass: return 0; 1060 case GlobalValue::DLLImportStorageClass: return 1; 1061 case GlobalValue::DLLExportStorageClass: return 2; 1062 } 1063 llvm_unreachable("Invalid DLL storage class"); 1064 } 1065 1066 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1067 switch (GV.getThreadLocalMode()) { 1068 case GlobalVariable::NotThreadLocal: return 0; 1069 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1070 case GlobalVariable::LocalDynamicTLSModel: return 2; 1071 case GlobalVariable::InitialExecTLSModel: return 3; 1072 case GlobalVariable::LocalExecTLSModel: return 4; 1073 } 1074 llvm_unreachable("Invalid TLS model"); 1075 } 1076 1077 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1078 switch (C.getSelectionKind()) { 1079 case Comdat::Any: 1080 return bitc::COMDAT_SELECTION_KIND_ANY; 1081 case Comdat::ExactMatch: 1082 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1083 case Comdat::Largest: 1084 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1085 case Comdat::NoDuplicates: 1086 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1087 case Comdat::SameSize: 1088 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1089 } 1090 llvm_unreachable("Invalid selection kind"); 1091 } 1092 1093 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1094 switch (GV.getUnnamedAddr()) { 1095 case GlobalValue::UnnamedAddr::None: return 0; 1096 case GlobalValue::UnnamedAddr::Local: return 2; 1097 case GlobalValue::UnnamedAddr::Global: return 1; 1098 } 1099 llvm_unreachable("Invalid unnamed_addr"); 1100 } 1101 1102 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1103 if (GenerateHash) 1104 Hasher.update(Str); 1105 return StrtabBuilder.add(Str); 1106 } 1107 1108 void ModuleBitcodeWriter::writeComdats() { 1109 SmallVector<unsigned, 64> Vals; 1110 for (const Comdat *C : VE.getComdats()) { 1111 // COMDAT: [strtab offset, strtab size, selection_kind] 1112 Vals.push_back(addToStrtab(C->getName())); 1113 Vals.push_back(C->getName().size()); 1114 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1115 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1116 Vals.clear(); 1117 } 1118 } 1119 1120 /// Write a record that will eventually hold the word offset of the 1121 /// module-level VST. For now the offset is 0, which will be backpatched 1122 /// after the real VST is written. Saves the bit offset to backpatch. 1123 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1124 // Write a placeholder value in for the offset of the real VST, 1125 // which is written after the function blocks so that it can include 1126 // the offset of each function. The placeholder offset will be 1127 // updated when the real VST is written. 1128 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1129 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1130 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1131 // hold the real VST offset. Must use fixed instead of VBR as we don't 1132 // know how many VBR chunks to reserve ahead of time. 1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1134 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1135 1136 // Emit the placeholder 1137 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1138 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1139 1140 // Compute and save the bit offset to the placeholder, which will be 1141 // patched when the real VST is written. We can simply subtract the 32-bit 1142 // fixed size from the current bit number to get the location to backpatch. 1143 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1144 } 1145 1146 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1147 1148 /// Determine the encoding to use for the given string name and length. 1149 static StringEncoding getStringEncoding(StringRef Str) { 1150 bool isChar6 = true; 1151 for (char C : Str) { 1152 if (isChar6) 1153 isChar6 = BitCodeAbbrevOp::isChar6(C); 1154 if ((unsigned char)C & 128) 1155 // don't bother scanning the rest. 1156 return SE_Fixed8; 1157 } 1158 if (isChar6) 1159 return SE_Char6; 1160 return SE_Fixed7; 1161 } 1162 1163 /// Emit top-level description of module, including target triple, inline asm, 1164 /// descriptors for global variables, and function prototype info. 1165 /// Returns the bit offset to backpatch with the location of the real VST. 1166 void ModuleBitcodeWriter::writeModuleInfo() { 1167 // Emit various pieces of data attached to a module. 1168 if (!M.getTargetTriple().empty()) 1169 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1170 0 /*TODO*/); 1171 const std::string &DL = M.getDataLayoutStr(); 1172 if (!DL.empty()) 1173 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1174 if (!M.getModuleInlineAsm().empty()) 1175 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1176 0 /*TODO*/); 1177 1178 // Emit information about sections and GC, computing how many there are. Also 1179 // compute the maximum alignment value. 1180 std::map<std::string, unsigned> SectionMap; 1181 std::map<std::string, unsigned> GCMap; 1182 unsigned MaxAlignment = 0; 1183 unsigned MaxGlobalType = 0; 1184 for (const GlobalVariable &GV : M.globals()) { 1185 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1186 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1187 if (GV.hasSection()) { 1188 // Give section names unique ID's. 1189 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1190 if (!Entry) { 1191 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1192 0 /*TODO*/); 1193 Entry = SectionMap.size(); 1194 } 1195 } 1196 } 1197 for (const Function &F : M) { 1198 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1199 if (F.hasSection()) { 1200 // Give section names unique ID's. 1201 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1202 if (!Entry) { 1203 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1204 0 /*TODO*/); 1205 Entry = SectionMap.size(); 1206 } 1207 } 1208 if (F.hasGC()) { 1209 // Same for GC names. 1210 unsigned &Entry = GCMap[F.getGC()]; 1211 if (!Entry) { 1212 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1213 0 /*TODO*/); 1214 Entry = GCMap.size(); 1215 } 1216 } 1217 } 1218 1219 // Emit abbrev for globals, now that we know # sections and max alignment. 1220 unsigned SimpleGVarAbbrev = 0; 1221 if (!M.global_empty()) { 1222 // Add an abbrev for common globals with no visibility or thread localness. 1223 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1224 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1228 Log2_32_Ceil(MaxGlobalType+1))); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1230 //| explicitType << 1 1231 //| constant 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1234 if (MaxAlignment == 0) // Alignment. 1235 Abbv->Add(BitCodeAbbrevOp(0)); 1236 else { 1237 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1239 Log2_32_Ceil(MaxEncAlignment+1))); 1240 } 1241 if (SectionMap.empty()) // Section. 1242 Abbv->Add(BitCodeAbbrevOp(0)); 1243 else 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1245 Log2_32_Ceil(SectionMap.size()+1))); 1246 // Don't bother emitting vis + thread local. 1247 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1248 } 1249 1250 SmallVector<unsigned, 64> Vals; 1251 // Emit the module's source file name. 1252 { 1253 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1254 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1255 if (Bits == SE_Char6) 1256 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1257 else if (Bits == SE_Fixed7) 1258 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1259 1260 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1261 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1262 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1264 Abbv->Add(AbbrevOpToUse); 1265 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1266 1267 for (const auto P : M.getSourceFileName()) 1268 Vals.push_back((unsigned char)P); 1269 1270 // Emit the finished record. 1271 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1272 Vals.clear(); 1273 } 1274 1275 // Emit the global variable information. 1276 for (const GlobalVariable &GV : M.globals()) { 1277 unsigned AbbrevToUse = 0; 1278 1279 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1280 // linkage, alignment, section, visibility, threadlocal, 1281 // unnamed_addr, externally_initialized, dllstorageclass, 1282 // comdat, attributes, DSO_Local] 1283 Vals.push_back(addToStrtab(GV.getName())); 1284 Vals.push_back(GV.getName().size()); 1285 Vals.push_back(VE.getTypeID(GV.getValueType())); 1286 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1287 Vals.push_back(GV.isDeclaration() ? 0 : 1288 (VE.getValueID(GV.getInitializer()) + 1)); 1289 Vals.push_back(getEncodedLinkage(GV)); 1290 Vals.push_back(Log2_32(GV.getAlignment())+1); 1291 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1292 : 0); 1293 if (GV.isThreadLocal() || 1294 GV.getVisibility() != GlobalValue::DefaultVisibility || 1295 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1296 GV.isExternallyInitialized() || 1297 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1298 GV.hasComdat() || 1299 GV.hasAttributes() || 1300 GV.isDSOLocal() || 1301 GV.hasPartition()) { 1302 Vals.push_back(getEncodedVisibility(GV)); 1303 Vals.push_back(getEncodedThreadLocalMode(GV)); 1304 Vals.push_back(getEncodedUnnamedAddr(GV)); 1305 Vals.push_back(GV.isExternallyInitialized()); 1306 Vals.push_back(getEncodedDLLStorageClass(GV)); 1307 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1308 1309 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1310 Vals.push_back(VE.getAttributeListID(AL)); 1311 1312 Vals.push_back(GV.isDSOLocal()); 1313 Vals.push_back(addToStrtab(GV.getPartition())); 1314 Vals.push_back(GV.getPartition().size()); 1315 } else { 1316 AbbrevToUse = SimpleGVarAbbrev; 1317 } 1318 1319 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1320 Vals.clear(); 1321 } 1322 1323 // Emit the function proto information. 1324 for (const Function &F : M) { 1325 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1326 // linkage, paramattrs, alignment, section, visibility, gc, 1327 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1328 // prefixdata, personalityfn, DSO_Local, addrspace] 1329 Vals.push_back(addToStrtab(F.getName())); 1330 Vals.push_back(F.getName().size()); 1331 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1332 Vals.push_back(F.getCallingConv()); 1333 Vals.push_back(F.isDeclaration()); 1334 Vals.push_back(getEncodedLinkage(F)); 1335 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1336 Vals.push_back(Log2_32(F.getAlignment())+1); 1337 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1338 : 0); 1339 Vals.push_back(getEncodedVisibility(F)); 1340 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1341 Vals.push_back(getEncodedUnnamedAddr(F)); 1342 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1343 : 0); 1344 Vals.push_back(getEncodedDLLStorageClass(F)); 1345 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1346 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1347 : 0); 1348 Vals.push_back( 1349 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1350 1351 Vals.push_back(F.isDSOLocal()); 1352 Vals.push_back(F.getAddressSpace()); 1353 Vals.push_back(addToStrtab(F.getPartition())); 1354 Vals.push_back(F.getPartition().size()); 1355 1356 unsigned AbbrevToUse = 0; 1357 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1358 Vals.clear(); 1359 } 1360 1361 // Emit the alias information. 1362 for (const GlobalAlias &A : M.aliases()) { 1363 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1364 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1365 // DSO_Local] 1366 Vals.push_back(addToStrtab(A.getName())); 1367 Vals.push_back(A.getName().size()); 1368 Vals.push_back(VE.getTypeID(A.getValueType())); 1369 Vals.push_back(A.getType()->getAddressSpace()); 1370 Vals.push_back(VE.getValueID(A.getAliasee())); 1371 Vals.push_back(getEncodedLinkage(A)); 1372 Vals.push_back(getEncodedVisibility(A)); 1373 Vals.push_back(getEncodedDLLStorageClass(A)); 1374 Vals.push_back(getEncodedThreadLocalMode(A)); 1375 Vals.push_back(getEncodedUnnamedAddr(A)); 1376 Vals.push_back(A.isDSOLocal()); 1377 Vals.push_back(addToStrtab(A.getPartition())); 1378 Vals.push_back(A.getPartition().size()); 1379 1380 unsigned AbbrevToUse = 0; 1381 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1382 Vals.clear(); 1383 } 1384 1385 // Emit the ifunc information. 1386 for (const GlobalIFunc &I : M.ifuncs()) { 1387 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1388 // val#, linkage, visibility, DSO_Local] 1389 Vals.push_back(addToStrtab(I.getName())); 1390 Vals.push_back(I.getName().size()); 1391 Vals.push_back(VE.getTypeID(I.getValueType())); 1392 Vals.push_back(I.getType()->getAddressSpace()); 1393 Vals.push_back(VE.getValueID(I.getResolver())); 1394 Vals.push_back(getEncodedLinkage(I)); 1395 Vals.push_back(getEncodedVisibility(I)); 1396 Vals.push_back(I.isDSOLocal()); 1397 Vals.push_back(addToStrtab(I.getPartition())); 1398 Vals.push_back(I.getPartition().size()); 1399 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1400 Vals.clear(); 1401 } 1402 1403 writeValueSymbolTableForwardDecl(); 1404 } 1405 1406 static uint64_t getOptimizationFlags(const Value *V) { 1407 uint64_t Flags = 0; 1408 1409 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1410 if (OBO->hasNoSignedWrap()) 1411 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1412 if (OBO->hasNoUnsignedWrap()) 1413 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1414 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1415 if (PEO->isExact()) 1416 Flags |= 1 << bitc::PEO_EXACT; 1417 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1418 if (FPMO->hasAllowReassoc()) 1419 Flags |= bitc::AllowReassoc; 1420 if (FPMO->hasNoNaNs()) 1421 Flags |= bitc::NoNaNs; 1422 if (FPMO->hasNoInfs()) 1423 Flags |= bitc::NoInfs; 1424 if (FPMO->hasNoSignedZeros()) 1425 Flags |= bitc::NoSignedZeros; 1426 if (FPMO->hasAllowReciprocal()) 1427 Flags |= bitc::AllowReciprocal; 1428 if (FPMO->hasAllowContract()) 1429 Flags |= bitc::AllowContract; 1430 if (FPMO->hasApproxFunc()) 1431 Flags |= bitc::ApproxFunc; 1432 } 1433 1434 return Flags; 1435 } 1436 1437 void ModuleBitcodeWriter::writeValueAsMetadata( 1438 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1439 // Mimic an MDNode with a value as one operand. 1440 Value *V = MD->getValue(); 1441 Record.push_back(VE.getTypeID(V->getType())); 1442 Record.push_back(VE.getValueID(V)); 1443 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1444 Record.clear(); 1445 } 1446 1447 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1451 Metadata *MD = N->getOperand(i); 1452 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1453 "Unexpected function-local metadata"); 1454 Record.push_back(VE.getMetadataOrNullID(MD)); 1455 } 1456 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1457 : bitc::METADATA_NODE, 1458 Record, Abbrev); 1459 Record.clear(); 1460 } 1461 1462 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1463 // Assume the column is usually under 128, and always output the inlined-at 1464 // location (it's never more expensive than building an array size 1). 1465 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1466 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1473 return Stream.EmitAbbrev(std::move(Abbv)); 1474 } 1475 1476 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1477 SmallVectorImpl<uint64_t> &Record, 1478 unsigned &Abbrev) { 1479 if (!Abbrev) 1480 Abbrev = createDILocationAbbrev(); 1481 1482 Record.push_back(N->isDistinct()); 1483 Record.push_back(N->getLine()); 1484 Record.push_back(N->getColumn()); 1485 Record.push_back(VE.getMetadataID(N->getScope())); 1486 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1487 Record.push_back(N->isImplicitCode()); 1488 1489 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1490 Record.clear(); 1491 } 1492 1493 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1494 // Assume the column is usually under 128, and always output the inlined-at 1495 // location (it's never more expensive than building an array size 1). 1496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1497 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1504 return Stream.EmitAbbrev(std::move(Abbv)); 1505 } 1506 1507 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned &Abbrev) { 1510 if (!Abbrev) 1511 Abbrev = createGenericDINodeAbbrev(); 1512 1513 Record.push_back(N->isDistinct()); 1514 Record.push_back(N->getTag()); 1515 Record.push_back(0); // Per-tag version field; unused for now. 1516 1517 for (auto &I : N->operands()) 1518 Record.push_back(VE.getMetadataOrNullID(I)); 1519 1520 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1525 SmallVectorImpl<uint64_t> &Record, 1526 unsigned Abbrev) { 1527 const uint64_t Version = 2 << 1; 1528 Record.push_back((uint64_t)N->isDistinct() | Version); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1533 1534 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1535 Record.clear(); 1536 } 1537 1538 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1539 if ((int64_t)V >= 0) 1540 Vals.push_back(V << 1); 1541 else 1542 Vals.push_back((-V << 1) | 1); 1543 } 1544 1545 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1546 // We have an arbitrary precision integer value to write whose 1547 // bit width is > 64. However, in canonical unsigned integer 1548 // format it is likely that the high bits are going to be zero. 1549 // So, we only write the number of active words. 1550 unsigned NumWords = A.getActiveWords(); 1551 const uint64_t *RawData = A.getRawData(); 1552 for (unsigned i = 0; i < NumWords; i++) 1553 emitSignedInt64(Vals, RawData[i]); 1554 } 1555 1556 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1557 SmallVectorImpl<uint64_t> &Record, 1558 unsigned Abbrev) { 1559 const uint64_t IsBigInt = 1 << 2; 1560 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1561 Record.push_back(N->getValue().getBitWidth()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1563 emitWideAPInt(Record, N->getValue()); 1564 1565 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1566 Record.clear(); 1567 } 1568 1569 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1570 SmallVectorImpl<uint64_t> &Record, 1571 unsigned Abbrev) { 1572 Record.push_back(N->isDistinct()); 1573 Record.push_back(N->getTag()); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1575 Record.push_back(N->getSizeInBits()); 1576 Record.push_back(N->getAlignInBits()); 1577 Record.push_back(N->getEncoding()); 1578 Record.push_back(N->getFlags()); 1579 1580 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 Record.push_back(N->isDistinct()); 1588 Record.push_back(N->getTag()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1591 Record.push_back(N->getLine()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1594 Record.push_back(N->getSizeInBits()); 1595 Record.push_back(N->getAlignInBits()); 1596 Record.push_back(N->getOffsetInBits()); 1597 Record.push_back(N->getFlags()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1599 1600 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1601 // that there is no DWARF address space associated with DIDerivedType. 1602 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1603 Record.push_back(*DWARFAddressSpace + 1); 1604 else 1605 Record.push_back(0); 1606 1607 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDICompositeType( 1612 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 const unsigned IsNotUsedInOldTypeRef = 0x2; 1615 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1616 Record.push_back(N->getTag()); 1617 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1619 Record.push_back(N->getLine()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1622 Record.push_back(N->getSizeInBits()); 1623 Record.push_back(N->getAlignInBits()); 1624 Record.push_back(N->getOffsetInBits()); 1625 Record.push_back(N->getFlags()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1627 Record.push_back(N->getRuntimeLang()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1633 1634 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1635 Record.clear(); 1636 } 1637 1638 void ModuleBitcodeWriter::writeDISubroutineType( 1639 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1640 unsigned Abbrev) { 1641 const unsigned HasNoOldTypeRefs = 0x2; 1642 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1643 Record.push_back(N->getFlags()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1645 Record.push_back(N->getCC()); 1646 1647 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1657 if (N->getRawChecksum()) { 1658 Record.push_back(N->getRawChecksum()->Kind); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1660 } else { 1661 // Maintain backwards compatibility with the old internal representation of 1662 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1663 Record.push_back(0); 1664 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1665 } 1666 auto Source = N->getRawSource(); 1667 if (Source) 1668 Record.push_back(VE.getMetadataOrNullID(*Source)); 1669 1670 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 assert(N->isDistinct() && "Expected distinct compile units"); 1678 Record.push_back(/* IsDistinct */ true); 1679 Record.push_back(N->getSourceLanguage()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1682 Record.push_back(N->isOptimized()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1684 Record.push_back(N->getRuntimeVersion()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1686 Record.push_back(N->getEmissionKind()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1689 Record.push_back(/* subprograms */ 0); 1690 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1692 Record.push_back(N->getDWOId()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1694 Record.push_back(N->getSplitDebugInlining()); 1695 Record.push_back(N->getDebugInfoForProfiling()); 1696 Record.push_back((unsigned)N->getNameTableKind()); 1697 Record.push_back(N->getRangesBaseAddress()); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1700 1701 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1706 SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 const uint64_t HasUnitFlag = 1 << 1; 1709 const uint64_t HasSPFlagsFlag = 1 << 2; 1710 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1711 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1715 Record.push_back(N->getLine()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1717 Record.push_back(N->getScopeLine()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1719 Record.push_back(N->getSPFlags()); 1720 Record.push_back(N->getVirtualIndex()); 1721 Record.push_back(N->getFlags()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1726 Record.push_back(N->getThisAdjustment()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1728 1729 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1730 Record.clear(); 1731 } 1732 1733 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1734 SmallVectorImpl<uint64_t> &Record, 1735 unsigned Abbrev) { 1736 Record.push_back(N->isDistinct()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1739 Record.push_back(N->getLine()); 1740 Record.push_back(N->getColumn()); 1741 1742 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1743 Record.clear(); 1744 } 1745 1746 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1747 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1748 unsigned Abbrev) { 1749 Record.push_back(N->isDistinct()); 1750 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1752 Record.push_back(N->getDiscriminator()); 1753 1754 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1759 SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 Record.push_back(N->isDistinct()); 1762 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1763 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(N->getLineNo()); 1767 1768 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1769 Record.clear(); 1770 } 1771 1772 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1773 SmallVectorImpl<uint64_t> &Record, 1774 unsigned Abbrev) { 1775 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1776 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1778 1779 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1780 Record.clear(); 1781 } 1782 1783 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1784 SmallVectorImpl<uint64_t> &Record, 1785 unsigned Abbrev) { 1786 Record.push_back(N->isDistinct()); 1787 Record.push_back(N->getMacinfoType()); 1788 Record.push_back(N->getLine()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1791 1792 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1797 SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 Record.push_back(N->isDistinct()); 1800 Record.push_back(N->getMacinfoType()); 1801 Record.push_back(N->getLine()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1804 1805 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1810 SmallVectorImpl<uint64_t> &Record, 1811 unsigned Abbrev) { 1812 Record.push_back(N->isDistinct()); 1813 for (auto &I : N->operands()) 1814 Record.push_back(VE.getMetadataOrNullID(I)); 1815 Record.push_back(N->getLineNo()); 1816 1817 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1818 Record.clear(); 1819 } 1820 1821 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1822 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1823 unsigned Abbrev) { 1824 Record.push_back(N->isDistinct()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1827 Record.push_back(N->isDefault()); 1828 1829 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1830 Record.clear(); 1831 } 1832 1833 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1834 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1835 unsigned Abbrev) { 1836 Record.push_back(N->isDistinct()); 1837 Record.push_back(N->getTag()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1840 Record.push_back(N->isDefault()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1842 1843 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1844 Record.clear(); 1845 } 1846 1847 void ModuleBitcodeWriter::writeDIGlobalVariable( 1848 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1849 unsigned Abbrev) { 1850 const uint64_t Version = 2 << 1; 1851 Record.push_back((uint64_t)N->isDistinct() | Version); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1856 Record.push_back(N->getLine()); 1857 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1858 Record.push_back(N->isLocalToUnit()); 1859 Record.push_back(N->isDefinition()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1862 Record.push_back(N->getAlignInBits()); 1863 1864 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1865 Record.clear(); 1866 } 1867 1868 void ModuleBitcodeWriter::writeDILocalVariable( 1869 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1870 unsigned Abbrev) { 1871 // In order to support all possible bitcode formats in BitcodeReader we need 1872 // to distinguish the following cases: 1873 // 1) Record has no artificial tag (Record[1]), 1874 // has no obsolete inlinedAt field (Record[9]). 1875 // In this case Record size will be 8, HasAlignment flag is false. 1876 // 2) Record has artificial tag (Record[1]), 1877 // has no obsolete inlignedAt field (Record[9]). 1878 // In this case Record size will be 9, HasAlignment flag is false. 1879 // 3) Record has both artificial tag (Record[1]) and 1880 // obsolete inlignedAt field (Record[9]). 1881 // In this case Record size will be 10, HasAlignment flag is false. 1882 // 4) Record has neither artificial tag, nor inlignedAt field, but 1883 // HasAlignment flag is true and Record[8] contains alignment value. 1884 const uint64_t HasAlignmentFlag = 1 << 1; 1885 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1886 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1889 Record.push_back(N->getLine()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1891 Record.push_back(N->getArg()); 1892 Record.push_back(N->getFlags()); 1893 Record.push_back(N->getAlignInBits()); 1894 1895 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDILabel( 1900 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.push_back((uint64_t)N->isDistinct()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1905 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1906 Record.push_back(N->getLine()); 1907 1908 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1909 Record.clear(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1913 SmallVectorImpl<uint64_t> &Record, 1914 unsigned Abbrev) { 1915 Record.reserve(N->getElements().size() + 1); 1916 const uint64_t Version = 3 << 1; 1917 Record.push_back((uint64_t)N->isDistinct() | Version); 1918 Record.append(N->elements_begin(), N->elements_end()); 1919 1920 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1925 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 Record.push_back(N->isDistinct()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1930 1931 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1932 Record.clear(); 1933 } 1934 1935 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1936 SmallVectorImpl<uint64_t> &Record, 1937 unsigned Abbrev) { 1938 Record.push_back(N->isDistinct()); 1939 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1940 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1941 Record.push_back(N->getLine()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1944 Record.push_back(N->getAttributes()); 1945 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1946 1947 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1948 Record.clear(); 1949 } 1950 1951 void ModuleBitcodeWriter::writeDIImportedEntity( 1952 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1953 unsigned Abbrev) { 1954 Record.push_back(N->isDistinct()); 1955 Record.push_back(N->getTag()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1958 Record.push_back(N->getLine()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1961 1962 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1963 Record.clear(); 1964 } 1965 1966 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1967 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1968 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1971 return Stream.EmitAbbrev(std::move(Abbv)); 1972 } 1973 1974 void ModuleBitcodeWriter::writeNamedMetadata( 1975 SmallVectorImpl<uint64_t> &Record) { 1976 if (M.named_metadata_empty()) 1977 return; 1978 1979 unsigned Abbrev = createNamedMetadataAbbrev(); 1980 for (const NamedMDNode &NMD : M.named_metadata()) { 1981 // Write name. 1982 StringRef Str = NMD.getName(); 1983 Record.append(Str.bytes_begin(), Str.bytes_end()); 1984 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1985 Record.clear(); 1986 1987 // Write named metadata operands. 1988 for (const MDNode *N : NMD.operands()) 1989 Record.push_back(VE.getMetadataID(N)); 1990 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1991 Record.clear(); 1992 } 1993 } 1994 1995 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1996 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1997 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2001 return Stream.EmitAbbrev(std::move(Abbv)); 2002 } 2003 2004 /// Write out a record for MDString. 2005 /// 2006 /// All the metadata strings in a metadata block are emitted in a single 2007 /// record. The sizes and strings themselves are shoved into a blob. 2008 void ModuleBitcodeWriter::writeMetadataStrings( 2009 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2010 if (Strings.empty()) 2011 return; 2012 2013 // Start the record with the number of strings. 2014 Record.push_back(bitc::METADATA_STRINGS); 2015 Record.push_back(Strings.size()); 2016 2017 // Emit the sizes of the strings in the blob. 2018 SmallString<256> Blob; 2019 { 2020 BitstreamWriter W(Blob); 2021 for (const Metadata *MD : Strings) 2022 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2023 W.FlushToWord(); 2024 } 2025 2026 // Add the offset to the strings to the record. 2027 Record.push_back(Blob.size()); 2028 2029 // Add the strings to the blob. 2030 for (const Metadata *MD : Strings) 2031 Blob.append(cast<MDString>(MD)->getString()); 2032 2033 // Emit the final record. 2034 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2035 Record.clear(); 2036 } 2037 2038 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2039 enum MetadataAbbrev : unsigned { 2040 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2041 #include "llvm/IR/Metadata.def" 2042 LastPlusOne 2043 }; 2044 2045 void ModuleBitcodeWriter::writeMetadataRecords( 2046 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2047 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2048 if (MDs.empty()) 2049 return; 2050 2051 // Initialize MDNode abbreviations. 2052 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2053 #include "llvm/IR/Metadata.def" 2054 2055 for (const Metadata *MD : MDs) { 2056 if (IndexPos) 2057 IndexPos->push_back(Stream.GetCurrentBitNo()); 2058 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2059 assert(N->isResolved() && "Expected forward references to be resolved"); 2060 2061 switch (N->getMetadataID()) { 2062 default: 2063 llvm_unreachable("Invalid MDNode subclass"); 2064 #define HANDLE_MDNODE_LEAF(CLASS) \ 2065 case Metadata::CLASS##Kind: \ 2066 if (MDAbbrevs) \ 2067 write##CLASS(cast<CLASS>(N), Record, \ 2068 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2069 else \ 2070 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2071 continue; 2072 #include "llvm/IR/Metadata.def" 2073 } 2074 } 2075 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2076 } 2077 } 2078 2079 void ModuleBitcodeWriter::writeModuleMetadata() { 2080 if (!VE.hasMDs() && M.named_metadata_empty()) 2081 return; 2082 2083 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2084 SmallVector<uint64_t, 64> Record; 2085 2086 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2087 // block and load any metadata. 2088 std::vector<unsigned> MDAbbrevs; 2089 2090 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2091 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2092 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2093 createGenericDINodeAbbrev(); 2094 2095 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2096 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2099 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2100 2101 Abbv = std::make_shared<BitCodeAbbrev>(); 2102 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2105 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2106 2107 // Emit MDStrings together upfront. 2108 writeMetadataStrings(VE.getMDStrings(), Record); 2109 2110 // We only emit an index for the metadata record if we have more than a given 2111 // (naive) threshold of metadatas, otherwise it is not worth it. 2112 if (VE.getNonMDStrings().size() > IndexThreshold) { 2113 // Write a placeholder value in for the offset of the metadata index, 2114 // which is written after the records, so that it can include 2115 // the offset of each entry. The placeholder offset will be 2116 // updated after all records are emitted. 2117 uint64_t Vals[] = {0, 0}; 2118 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2119 } 2120 2121 // Compute and save the bit offset to the current position, which will be 2122 // patched when we emit the index later. We can simply subtract the 64-bit 2123 // fixed size from the current bit number to get the location to backpatch. 2124 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2125 2126 // This index will contain the bitpos for each individual record. 2127 std::vector<uint64_t> IndexPos; 2128 IndexPos.reserve(VE.getNonMDStrings().size()); 2129 2130 // Write all the records 2131 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2132 2133 if (VE.getNonMDStrings().size() > IndexThreshold) { 2134 // Now that we have emitted all the records we will emit the index. But 2135 // first 2136 // backpatch the forward reference so that the reader can skip the records 2137 // efficiently. 2138 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2139 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2140 2141 // Delta encode the index. 2142 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2143 for (auto &Elt : IndexPos) { 2144 auto EltDelta = Elt - PreviousValue; 2145 PreviousValue = Elt; 2146 Elt = EltDelta; 2147 } 2148 // Emit the index record. 2149 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2150 IndexPos.clear(); 2151 } 2152 2153 // Write the named metadata now. 2154 writeNamedMetadata(Record); 2155 2156 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2157 SmallVector<uint64_t, 4> Record; 2158 Record.push_back(VE.getValueID(&GO)); 2159 pushGlobalMetadataAttachment(Record, GO); 2160 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2161 }; 2162 for (const Function &F : M) 2163 if (F.isDeclaration() && F.hasMetadata()) 2164 AddDeclAttachedMetadata(F); 2165 // FIXME: Only store metadata for declarations here, and move data for global 2166 // variable definitions to a separate block (PR28134). 2167 for (const GlobalVariable &GV : M.globals()) 2168 if (GV.hasMetadata()) 2169 AddDeclAttachedMetadata(GV); 2170 2171 Stream.ExitBlock(); 2172 } 2173 2174 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2175 if (!VE.hasMDs()) 2176 return; 2177 2178 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2179 SmallVector<uint64_t, 64> Record; 2180 writeMetadataStrings(VE.getMDStrings(), Record); 2181 writeMetadataRecords(VE.getNonMDStrings(), Record); 2182 Stream.ExitBlock(); 2183 } 2184 2185 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2186 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2187 // [n x [id, mdnode]] 2188 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2189 GO.getAllMetadata(MDs); 2190 for (const auto &I : MDs) { 2191 Record.push_back(I.first); 2192 Record.push_back(VE.getMetadataID(I.second)); 2193 } 2194 } 2195 2196 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2197 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2198 2199 SmallVector<uint64_t, 64> Record; 2200 2201 if (F.hasMetadata()) { 2202 pushGlobalMetadataAttachment(Record, F); 2203 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2204 Record.clear(); 2205 } 2206 2207 // Write metadata attachments 2208 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2209 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2210 for (const BasicBlock &BB : F) 2211 for (const Instruction &I : BB) { 2212 MDs.clear(); 2213 I.getAllMetadataOtherThanDebugLoc(MDs); 2214 2215 // If no metadata, ignore instruction. 2216 if (MDs.empty()) continue; 2217 2218 Record.push_back(VE.getInstructionID(&I)); 2219 2220 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2221 Record.push_back(MDs[i].first); 2222 Record.push_back(VE.getMetadataID(MDs[i].second)); 2223 } 2224 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2225 Record.clear(); 2226 } 2227 2228 Stream.ExitBlock(); 2229 } 2230 2231 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2232 SmallVector<uint64_t, 64> Record; 2233 2234 // Write metadata kinds 2235 // METADATA_KIND - [n x [id, name]] 2236 SmallVector<StringRef, 8> Names; 2237 M.getMDKindNames(Names); 2238 2239 if (Names.empty()) return; 2240 2241 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2242 2243 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2244 Record.push_back(MDKindID); 2245 StringRef KName = Names[MDKindID]; 2246 Record.append(KName.begin(), KName.end()); 2247 2248 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2249 Record.clear(); 2250 } 2251 2252 Stream.ExitBlock(); 2253 } 2254 2255 void ModuleBitcodeWriter::writeOperandBundleTags() { 2256 // Write metadata kinds 2257 // 2258 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2259 // 2260 // OPERAND_BUNDLE_TAG - [strchr x N] 2261 2262 SmallVector<StringRef, 8> Tags; 2263 M.getOperandBundleTags(Tags); 2264 2265 if (Tags.empty()) 2266 return; 2267 2268 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2269 2270 SmallVector<uint64_t, 64> Record; 2271 2272 for (auto Tag : Tags) { 2273 Record.append(Tag.begin(), Tag.end()); 2274 2275 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2276 Record.clear(); 2277 } 2278 2279 Stream.ExitBlock(); 2280 } 2281 2282 void ModuleBitcodeWriter::writeSyncScopeNames() { 2283 SmallVector<StringRef, 8> SSNs; 2284 M.getContext().getSyncScopeNames(SSNs); 2285 if (SSNs.empty()) 2286 return; 2287 2288 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2289 2290 SmallVector<uint64_t, 64> Record; 2291 for (auto SSN : SSNs) { 2292 Record.append(SSN.begin(), SSN.end()); 2293 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2294 Record.clear(); 2295 } 2296 2297 Stream.ExitBlock(); 2298 } 2299 2300 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2301 bool isGlobal) { 2302 if (FirstVal == LastVal) return; 2303 2304 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2305 2306 unsigned AggregateAbbrev = 0; 2307 unsigned String8Abbrev = 0; 2308 unsigned CString7Abbrev = 0; 2309 unsigned CString6Abbrev = 0; 2310 // If this is a constant pool for the module, emit module-specific abbrevs. 2311 if (isGlobal) { 2312 // Abbrev for CST_CODE_AGGREGATE. 2313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2314 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2317 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2318 2319 // Abbrev for CST_CODE_STRING. 2320 Abbv = std::make_shared<BitCodeAbbrev>(); 2321 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2324 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2325 // Abbrev for CST_CODE_CSTRING. 2326 Abbv = std::make_shared<BitCodeAbbrev>(); 2327 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2330 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2331 // Abbrev for CST_CODE_CSTRING. 2332 Abbv = std::make_shared<BitCodeAbbrev>(); 2333 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2336 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2337 } 2338 2339 SmallVector<uint64_t, 64> Record; 2340 2341 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2342 Type *LastTy = nullptr; 2343 for (unsigned i = FirstVal; i != LastVal; ++i) { 2344 const Value *V = Vals[i].first; 2345 // If we need to switch types, do so now. 2346 if (V->getType() != LastTy) { 2347 LastTy = V->getType(); 2348 Record.push_back(VE.getTypeID(LastTy)); 2349 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2350 CONSTANTS_SETTYPE_ABBREV); 2351 Record.clear(); 2352 } 2353 2354 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2355 Record.push_back(unsigned(IA->hasSideEffects()) | 2356 unsigned(IA->isAlignStack()) << 1 | 2357 unsigned(IA->getDialect()&1) << 2); 2358 2359 // Add the asm string. 2360 const std::string &AsmStr = IA->getAsmString(); 2361 Record.push_back(AsmStr.size()); 2362 Record.append(AsmStr.begin(), AsmStr.end()); 2363 2364 // Add the constraint string. 2365 const std::string &ConstraintStr = IA->getConstraintString(); 2366 Record.push_back(ConstraintStr.size()); 2367 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2368 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2369 Record.clear(); 2370 continue; 2371 } 2372 const Constant *C = cast<Constant>(V); 2373 unsigned Code = -1U; 2374 unsigned AbbrevToUse = 0; 2375 if (C->isNullValue()) { 2376 Code = bitc::CST_CODE_NULL; 2377 } else if (isa<UndefValue>(C)) { 2378 Code = bitc::CST_CODE_UNDEF; 2379 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2380 if (IV->getBitWidth() <= 64) { 2381 uint64_t V = IV->getSExtValue(); 2382 emitSignedInt64(Record, V); 2383 Code = bitc::CST_CODE_INTEGER; 2384 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2385 } else { // Wide integers, > 64 bits in size. 2386 emitWideAPInt(Record, IV->getValue()); 2387 Code = bitc::CST_CODE_WIDE_INTEGER; 2388 } 2389 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2390 Code = bitc::CST_CODE_FLOAT; 2391 Type *Ty = CFP->getType(); 2392 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2393 Ty->isDoubleTy()) { 2394 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2395 } else if (Ty->isX86_FP80Ty()) { 2396 // api needed to prevent premature destruction 2397 // bits are not in the same order as a normal i80 APInt, compensate. 2398 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2399 const uint64_t *p = api.getRawData(); 2400 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2401 Record.push_back(p[0] & 0xffffLL); 2402 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2403 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2404 const uint64_t *p = api.getRawData(); 2405 Record.push_back(p[0]); 2406 Record.push_back(p[1]); 2407 } else { 2408 assert(0 && "Unknown FP type!"); 2409 } 2410 } else if (isa<ConstantDataSequential>(C) && 2411 cast<ConstantDataSequential>(C)->isString()) { 2412 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2413 // Emit constant strings specially. 2414 unsigned NumElts = Str->getNumElements(); 2415 // If this is a null-terminated string, use the denser CSTRING encoding. 2416 if (Str->isCString()) { 2417 Code = bitc::CST_CODE_CSTRING; 2418 --NumElts; // Don't encode the null, which isn't allowed by char6. 2419 } else { 2420 Code = bitc::CST_CODE_STRING; 2421 AbbrevToUse = String8Abbrev; 2422 } 2423 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2424 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2425 for (unsigned i = 0; i != NumElts; ++i) { 2426 unsigned char V = Str->getElementAsInteger(i); 2427 Record.push_back(V); 2428 isCStr7 &= (V & 128) == 0; 2429 if (isCStrChar6) 2430 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2431 } 2432 2433 if (isCStrChar6) 2434 AbbrevToUse = CString6Abbrev; 2435 else if (isCStr7) 2436 AbbrevToUse = CString7Abbrev; 2437 } else if (const ConstantDataSequential *CDS = 2438 dyn_cast<ConstantDataSequential>(C)) { 2439 Code = bitc::CST_CODE_DATA; 2440 Type *EltTy = CDS->getElementType(); 2441 if (isa<IntegerType>(EltTy)) { 2442 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2443 Record.push_back(CDS->getElementAsInteger(i)); 2444 } else { 2445 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2446 Record.push_back( 2447 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2448 } 2449 } else if (isa<ConstantAggregate>(C)) { 2450 Code = bitc::CST_CODE_AGGREGATE; 2451 for (const Value *Op : C->operands()) 2452 Record.push_back(VE.getValueID(Op)); 2453 AbbrevToUse = AggregateAbbrev; 2454 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2455 switch (CE->getOpcode()) { 2456 default: 2457 if (Instruction::isCast(CE->getOpcode())) { 2458 Code = bitc::CST_CODE_CE_CAST; 2459 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2460 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2461 Record.push_back(VE.getValueID(C->getOperand(0))); 2462 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2463 } else { 2464 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2465 Code = bitc::CST_CODE_CE_BINOP; 2466 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2467 Record.push_back(VE.getValueID(C->getOperand(0))); 2468 Record.push_back(VE.getValueID(C->getOperand(1))); 2469 uint64_t Flags = getOptimizationFlags(CE); 2470 if (Flags != 0) 2471 Record.push_back(Flags); 2472 } 2473 break; 2474 case Instruction::FNeg: { 2475 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2476 Code = bitc::CST_CODE_CE_UNOP; 2477 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2478 Record.push_back(VE.getValueID(C->getOperand(0))); 2479 uint64_t Flags = getOptimizationFlags(CE); 2480 if (Flags != 0) 2481 Record.push_back(Flags); 2482 break; 2483 } 2484 case Instruction::GetElementPtr: { 2485 Code = bitc::CST_CODE_CE_GEP; 2486 const auto *GO = cast<GEPOperator>(C); 2487 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2488 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2489 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2490 Record.push_back((*Idx << 1) | GO->isInBounds()); 2491 } else if (GO->isInBounds()) 2492 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2493 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2494 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2495 Record.push_back(VE.getValueID(C->getOperand(i))); 2496 } 2497 break; 2498 } 2499 case Instruction::Select: 2500 Code = bitc::CST_CODE_CE_SELECT; 2501 Record.push_back(VE.getValueID(C->getOperand(0))); 2502 Record.push_back(VE.getValueID(C->getOperand(1))); 2503 Record.push_back(VE.getValueID(C->getOperand(2))); 2504 break; 2505 case Instruction::ExtractElement: 2506 Code = bitc::CST_CODE_CE_EXTRACTELT; 2507 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2508 Record.push_back(VE.getValueID(C->getOperand(0))); 2509 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2510 Record.push_back(VE.getValueID(C->getOperand(1))); 2511 break; 2512 case Instruction::InsertElement: 2513 Code = bitc::CST_CODE_CE_INSERTELT; 2514 Record.push_back(VE.getValueID(C->getOperand(0))); 2515 Record.push_back(VE.getValueID(C->getOperand(1))); 2516 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2517 Record.push_back(VE.getValueID(C->getOperand(2))); 2518 break; 2519 case Instruction::ShuffleVector: 2520 // If the return type and argument types are the same, this is a 2521 // standard shufflevector instruction. If the types are different, 2522 // then the shuffle is widening or truncating the input vectors, and 2523 // the argument type must also be encoded. 2524 if (C->getType() == C->getOperand(0)->getType()) { 2525 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2526 } else { 2527 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2528 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2529 } 2530 Record.push_back(VE.getValueID(C->getOperand(0))); 2531 Record.push_back(VE.getValueID(C->getOperand(1))); 2532 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2533 break; 2534 case Instruction::ICmp: 2535 case Instruction::FCmp: 2536 Code = bitc::CST_CODE_CE_CMP; 2537 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2538 Record.push_back(VE.getValueID(C->getOperand(0))); 2539 Record.push_back(VE.getValueID(C->getOperand(1))); 2540 Record.push_back(CE->getPredicate()); 2541 break; 2542 } 2543 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2544 Code = bitc::CST_CODE_BLOCKADDRESS; 2545 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2546 Record.push_back(VE.getValueID(BA->getFunction())); 2547 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2548 } else { 2549 #ifndef NDEBUG 2550 C->dump(); 2551 #endif 2552 llvm_unreachable("Unknown constant!"); 2553 } 2554 Stream.EmitRecord(Code, Record, AbbrevToUse); 2555 Record.clear(); 2556 } 2557 2558 Stream.ExitBlock(); 2559 } 2560 2561 void ModuleBitcodeWriter::writeModuleConstants() { 2562 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2563 2564 // Find the first constant to emit, which is the first non-globalvalue value. 2565 // We know globalvalues have been emitted by WriteModuleInfo. 2566 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2567 if (!isa<GlobalValue>(Vals[i].first)) { 2568 writeConstants(i, Vals.size(), true); 2569 return; 2570 } 2571 } 2572 } 2573 2574 /// pushValueAndType - The file has to encode both the value and type id for 2575 /// many values, because we need to know what type to create for forward 2576 /// references. However, most operands are not forward references, so this type 2577 /// field is not needed. 2578 /// 2579 /// This function adds V's value ID to Vals. If the value ID is higher than the 2580 /// instruction ID, then it is a forward reference, and it also includes the 2581 /// type ID. The value ID that is written is encoded relative to the InstID. 2582 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2583 SmallVectorImpl<unsigned> &Vals) { 2584 unsigned ValID = VE.getValueID(V); 2585 // Make encoding relative to the InstID. 2586 Vals.push_back(InstID - ValID); 2587 if (ValID >= InstID) { 2588 Vals.push_back(VE.getTypeID(V->getType())); 2589 return true; 2590 } 2591 return false; 2592 } 2593 2594 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2595 unsigned InstID) { 2596 SmallVector<unsigned, 64> Record; 2597 LLVMContext &C = CS.getContext(); 2598 2599 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2600 const auto &Bundle = CS.getOperandBundleAt(i); 2601 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2602 2603 for (auto &Input : Bundle.Inputs) 2604 pushValueAndType(Input, InstID, Record); 2605 2606 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2607 Record.clear(); 2608 } 2609 } 2610 2611 /// pushValue - Like pushValueAndType, but where the type of the value is 2612 /// omitted (perhaps it was already encoded in an earlier operand). 2613 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2614 SmallVectorImpl<unsigned> &Vals) { 2615 unsigned ValID = VE.getValueID(V); 2616 Vals.push_back(InstID - ValID); 2617 } 2618 2619 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2620 SmallVectorImpl<uint64_t> &Vals) { 2621 unsigned ValID = VE.getValueID(V); 2622 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2623 emitSignedInt64(Vals, diff); 2624 } 2625 2626 /// WriteInstruction - Emit an instruction to the specified stream. 2627 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2628 unsigned InstID, 2629 SmallVectorImpl<unsigned> &Vals) { 2630 unsigned Code = 0; 2631 unsigned AbbrevToUse = 0; 2632 VE.setInstructionID(&I); 2633 switch (I.getOpcode()) { 2634 default: 2635 if (Instruction::isCast(I.getOpcode())) { 2636 Code = bitc::FUNC_CODE_INST_CAST; 2637 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2638 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2639 Vals.push_back(VE.getTypeID(I.getType())); 2640 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2641 } else { 2642 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2643 Code = bitc::FUNC_CODE_INST_BINOP; 2644 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2645 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2646 pushValue(I.getOperand(1), InstID, Vals); 2647 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2648 uint64_t Flags = getOptimizationFlags(&I); 2649 if (Flags != 0) { 2650 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2651 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2652 Vals.push_back(Flags); 2653 } 2654 } 2655 break; 2656 case Instruction::FNeg: { 2657 Code = bitc::FUNC_CODE_INST_UNOP; 2658 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2659 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2660 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2661 uint64_t Flags = getOptimizationFlags(&I); 2662 if (Flags != 0) { 2663 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2664 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2665 Vals.push_back(Flags); 2666 } 2667 break; 2668 } 2669 case Instruction::GetElementPtr: { 2670 Code = bitc::FUNC_CODE_INST_GEP; 2671 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2672 auto &GEPInst = cast<GetElementPtrInst>(I); 2673 Vals.push_back(GEPInst.isInBounds()); 2674 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2675 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2676 pushValueAndType(I.getOperand(i), InstID, Vals); 2677 break; 2678 } 2679 case Instruction::ExtractValue: { 2680 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2681 pushValueAndType(I.getOperand(0), InstID, Vals); 2682 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2683 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2684 break; 2685 } 2686 case Instruction::InsertValue: { 2687 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2688 pushValueAndType(I.getOperand(0), InstID, Vals); 2689 pushValueAndType(I.getOperand(1), InstID, Vals); 2690 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2691 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2692 break; 2693 } 2694 case Instruction::Select: { 2695 Code = bitc::FUNC_CODE_INST_VSELECT; 2696 pushValueAndType(I.getOperand(1), InstID, Vals); 2697 pushValue(I.getOperand(2), InstID, Vals); 2698 pushValueAndType(I.getOperand(0), InstID, Vals); 2699 uint64_t Flags = getOptimizationFlags(&I); 2700 if (Flags != 0) 2701 Vals.push_back(Flags); 2702 break; 2703 } 2704 case Instruction::ExtractElement: 2705 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2706 pushValueAndType(I.getOperand(0), InstID, Vals); 2707 pushValueAndType(I.getOperand(1), InstID, Vals); 2708 break; 2709 case Instruction::InsertElement: 2710 Code = bitc::FUNC_CODE_INST_INSERTELT; 2711 pushValueAndType(I.getOperand(0), InstID, Vals); 2712 pushValue(I.getOperand(1), InstID, Vals); 2713 pushValueAndType(I.getOperand(2), InstID, Vals); 2714 break; 2715 case Instruction::ShuffleVector: 2716 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2717 pushValueAndType(I.getOperand(0), InstID, Vals); 2718 pushValue(I.getOperand(1), InstID, Vals); 2719 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2720 Vals); 2721 break; 2722 case Instruction::ICmp: 2723 case Instruction::FCmp: { 2724 // compare returning Int1Ty or vector of Int1Ty 2725 Code = bitc::FUNC_CODE_INST_CMP2; 2726 pushValueAndType(I.getOperand(0), InstID, Vals); 2727 pushValue(I.getOperand(1), InstID, Vals); 2728 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2729 uint64_t Flags = getOptimizationFlags(&I); 2730 if (Flags != 0) 2731 Vals.push_back(Flags); 2732 break; 2733 } 2734 2735 case Instruction::Ret: 2736 { 2737 Code = bitc::FUNC_CODE_INST_RET; 2738 unsigned NumOperands = I.getNumOperands(); 2739 if (NumOperands == 0) 2740 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2741 else if (NumOperands == 1) { 2742 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2743 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2744 } else { 2745 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2746 pushValueAndType(I.getOperand(i), InstID, Vals); 2747 } 2748 } 2749 break; 2750 case Instruction::Br: 2751 { 2752 Code = bitc::FUNC_CODE_INST_BR; 2753 const BranchInst &II = cast<BranchInst>(I); 2754 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2755 if (II.isConditional()) { 2756 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2757 pushValue(II.getCondition(), InstID, Vals); 2758 } 2759 } 2760 break; 2761 case Instruction::Switch: 2762 { 2763 Code = bitc::FUNC_CODE_INST_SWITCH; 2764 const SwitchInst &SI = cast<SwitchInst>(I); 2765 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2766 pushValue(SI.getCondition(), InstID, Vals); 2767 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2768 for (auto Case : SI.cases()) { 2769 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2770 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2771 } 2772 } 2773 break; 2774 case Instruction::IndirectBr: 2775 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2776 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2777 // Encode the address operand as relative, but not the basic blocks. 2778 pushValue(I.getOperand(0), InstID, Vals); 2779 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2780 Vals.push_back(VE.getValueID(I.getOperand(i))); 2781 break; 2782 2783 case Instruction::Invoke: { 2784 const InvokeInst *II = cast<InvokeInst>(&I); 2785 const Value *Callee = II->getCalledOperand(); 2786 FunctionType *FTy = II->getFunctionType(); 2787 2788 if (II->hasOperandBundles()) 2789 writeOperandBundles(*II, InstID); 2790 2791 Code = bitc::FUNC_CODE_INST_INVOKE; 2792 2793 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2794 Vals.push_back(II->getCallingConv() | 1 << 13); 2795 Vals.push_back(VE.getValueID(II->getNormalDest())); 2796 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2797 Vals.push_back(VE.getTypeID(FTy)); 2798 pushValueAndType(Callee, InstID, Vals); 2799 2800 // Emit value #'s for the fixed parameters. 2801 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2802 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2803 2804 // Emit type/value pairs for varargs params. 2805 if (FTy->isVarArg()) { 2806 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2807 i != e; ++i) 2808 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2809 } 2810 break; 2811 } 2812 case Instruction::Resume: 2813 Code = bitc::FUNC_CODE_INST_RESUME; 2814 pushValueAndType(I.getOperand(0), InstID, Vals); 2815 break; 2816 case Instruction::CleanupRet: { 2817 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2818 const auto &CRI = cast<CleanupReturnInst>(I); 2819 pushValue(CRI.getCleanupPad(), InstID, Vals); 2820 if (CRI.hasUnwindDest()) 2821 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2822 break; 2823 } 2824 case Instruction::CatchRet: { 2825 Code = bitc::FUNC_CODE_INST_CATCHRET; 2826 const auto &CRI = cast<CatchReturnInst>(I); 2827 pushValue(CRI.getCatchPad(), InstID, Vals); 2828 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2829 break; 2830 } 2831 case Instruction::CleanupPad: 2832 case Instruction::CatchPad: { 2833 const auto &FuncletPad = cast<FuncletPadInst>(I); 2834 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2835 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2836 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2837 2838 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2839 Vals.push_back(NumArgOperands); 2840 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2841 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2842 break; 2843 } 2844 case Instruction::CatchSwitch: { 2845 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2846 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2847 2848 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2849 2850 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2851 Vals.push_back(NumHandlers); 2852 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2853 Vals.push_back(VE.getValueID(CatchPadBB)); 2854 2855 if (CatchSwitch.hasUnwindDest()) 2856 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2857 break; 2858 } 2859 case Instruction::CallBr: { 2860 const CallBrInst *CBI = cast<CallBrInst>(&I); 2861 const Value *Callee = CBI->getCalledOperand(); 2862 FunctionType *FTy = CBI->getFunctionType(); 2863 2864 if (CBI->hasOperandBundles()) 2865 writeOperandBundles(*CBI, InstID); 2866 2867 Code = bitc::FUNC_CODE_INST_CALLBR; 2868 2869 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2870 2871 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2872 1 << bitc::CALL_EXPLICIT_TYPE); 2873 2874 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2875 Vals.push_back(CBI->getNumIndirectDests()); 2876 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2877 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2878 2879 Vals.push_back(VE.getTypeID(FTy)); 2880 pushValueAndType(Callee, InstID, Vals); 2881 2882 // Emit value #'s for the fixed parameters. 2883 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2884 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2885 2886 // Emit type/value pairs for varargs params. 2887 if (FTy->isVarArg()) { 2888 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2889 i != e; ++i) 2890 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2891 } 2892 break; 2893 } 2894 case Instruction::Unreachable: 2895 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2896 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2897 break; 2898 2899 case Instruction::PHI: { 2900 const PHINode &PN = cast<PHINode>(I); 2901 Code = bitc::FUNC_CODE_INST_PHI; 2902 // With the newer instruction encoding, forward references could give 2903 // negative valued IDs. This is most common for PHIs, so we use 2904 // signed VBRs. 2905 SmallVector<uint64_t, 128> Vals64; 2906 Vals64.push_back(VE.getTypeID(PN.getType())); 2907 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2908 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2909 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2910 } 2911 2912 uint64_t Flags = getOptimizationFlags(&I); 2913 if (Flags != 0) 2914 Vals64.push_back(Flags); 2915 2916 // Emit a Vals64 vector and exit. 2917 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2918 Vals64.clear(); 2919 return; 2920 } 2921 2922 case Instruction::LandingPad: { 2923 const LandingPadInst &LP = cast<LandingPadInst>(I); 2924 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2925 Vals.push_back(VE.getTypeID(LP.getType())); 2926 Vals.push_back(LP.isCleanup()); 2927 Vals.push_back(LP.getNumClauses()); 2928 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2929 if (LP.isCatch(I)) 2930 Vals.push_back(LandingPadInst::Catch); 2931 else 2932 Vals.push_back(LandingPadInst::Filter); 2933 pushValueAndType(LP.getClause(I), InstID, Vals); 2934 } 2935 break; 2936 } 2937 2938 case Instruction::Alloca: { 2939 Code = bitc::FUNC_CODE_INST_ALLOCA; 2940 const AllocaInst &AI = cast<AllocaInst>(I); 2941 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2942 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2943 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2944 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2945 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2946 "not enough bits for maximum alignment"); 2947 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2948 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2949 AlignRecord |= 1 << 6; 2950 AlignRecord |= AI.isSwiftError() << 7; 2951 Vals.push_back(AlignRecord); 2952 break; 2953 } 2954 2955 case Instruction::Load: 2956 if (cast<LoadInst>(I).isAtomic()) { 2957 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2958 pushValueAndType(I.getOperand(0), InstID, Vals); 2959 } else { 2960 Code = bitc::FUNC_CODE_INST_LOAD; 2961 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2962 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2963 } 2964 Vals.push_back(VE.getTypeID(I.getType())); 2965 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2966 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2967 if (cast<LoadInst>(I).isAtomic()) { 2968 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2969 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2970 } 2971 break; 2972 case Instruction::Store: 2973 if (cast<StoreInst>(I).isAtomic()) 2974 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2975 else 2976 Code = bitc::FUNC_CODE_INST_STORE; 2977 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2978 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2979 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2980 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2981 if (cast<StoreInst>(I).isAtomic()) { 2982 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2983 Vals.push_back( 2984 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2985 } 2986 break; 2987 case Instruction::AtomicCmpXchg: 2988 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2989 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2990 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2991 pushValue(I.getOperand(2), InstID, Vals); // newval. 2992 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2993 Vals.push_back( 2994 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2995 Vals.push_back( 2996 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2997 Vals.push_back( 2998 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2999 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3000 break; 3001 case Instruction::AtomicRMW: 3002 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3003 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3004 pushValue(I.getOperand(1), InstID, Vals); // val. 3005 Vals.push_back( 3006 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3007 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3008 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3009 Vals.push_back( 3010 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3011 break; 3012 case Instruction::Fence: 3013 Code = bitc::FUNC_CODE_INST_FENCE; 3014 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3015 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3016 break; 3017 case Instruction::Call: { 3018 const CallInst &CI = cast<CallInst>(I); 3019 FunctionType *FTy = CI.getFunctionType(); 3020 3021 if (CI.hasOperandBundles()) 3022 writeOperandBundles(CI, InstID); 3023 3024 Code = bitc::FUNC_CODE_INST_CALL; 3025 3026 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3027 3028 unsigned Flags = getOptimizationFlags(&I); 3029 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3030 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3031 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3032 1 << bitc::CALL_EXPLICIT_TYPE | 3033 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3034 unsigned(Flags != 0) << bitc::CALL_FMF); 3035 if (Flags != 0) 3036 Vals.push_back(Flags); 3037 3038 Vals.push_back(VE.getTypeID(FTy)); 3039 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3040 3041 // Emit value #'s for the fixed parameters. 3042 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3043 // Check for labels (can happen with asm labels). 3044 if (FTy->getParamType(i)->isLabelTy()) 3045 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3046 else 3047 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3048 } 3049 3050 // Emit type/value pairs for varargs params. 3051 if (FTy->isVarArg()) { 3052 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3053 i != e; ++i) 3054 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3055 } 3056 break; 3057 } 3058 case Instruction::VAArg: 3059 Code = bitc::FUNC_CODE_INST_VAARG; 3060 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3061 pushValue(I.getOperand(0), InstID, Vals); // valist. 3062 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3063 break; 3064 case Instruction::Freeze: 3065 Code = bitc::FUNC_CODE_INST_FREEZE; 3066 pushValueAndType(I.getOperand(0), InstID, Vals); 3067 break; 3068 } 3069 3070 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3071 Vals.clear(); 3072 } 3073 3074 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3075 /// to allow clients to efficiently find the function body. 3076 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3077 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3078 // Get the offset of the VST we are writing, and backpatch it into 3079 // the VST forward declaration record. 3080 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3081 // The BitcodeStartBit was the stream offset of the identification block. 3082 VSTOffset -= bitcodeStartBit(); 3083 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3084 // Note that we add 1 here because the offset is relative to one word 3085 // before the start of the identification block, which was historically 3086 // always the start of the regular bitcode header. 3087 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3088 3089 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3090 3091 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3092 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3095 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3096 3097 for (const Function &F : M) { 3098 uint64_t Record[2]; 3099 3100 if (F.isDeclaration()) 3101 continue; 3102 3103 Record[0] = VE.getValueID(&F); 3104 3105 // Save the word offset of the function (from the start of the 3106 // actual bitcode written to the stream). 3107 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3108 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3109 // Note that we add 1 here because the offset is relative to one word 3110 // before the start of the identification block, which was historically 3111 // always the start of the regular bitcode header. 3112 Record[1] = BitcodeIndex / 32 + 1; 3113 3114 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3115 } 3116 3117 Stream.ExitBlock(); 3118 } 3119 3120 /// Emit names for arguments, instructions and basic blocks in a function. 3121 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3122 const ValueSymbolTable &VST) { 3123 if (VST.empty()) 3124 return; 3125 3126 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3127 3128 // FIXME: Set up the abbrev, we know how many values there are! 3129 // FIXME: We know if the type names can use 7-bit ascii. 3130 SmallVector<uint64_t, 64> NameVals; 3131 3132 for (const ValueName &Name : VST) { 3133 // Figure out the encoding to use for the name. 3134 StringEncoding Bits = getStringEncoding(Name.getKey()); 3135 3136 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3137 NameVals.push_back(VE.getValueID(Name.getValue())); 3138 3139 // VST_CODE_ENTRY: [valueid, namechar x N] 3140 // VST_CODE_BBENTRY: [bbid, namechar x N] 3141 unsigned Code; 3142 if (isa<BasicBlock>(Name.getValue())) { 3143 Code = bitc::VST_CODE_BBENTRY; 3144 if (Bits == SE_Char6) 3145 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3146 } else { 3147 Code = bitc::VST_CODE_ENTRY; 3148 if (Bits == SE_Char6) 3149 AbbrevToUse = VST_ENTRY_6_ABBREV; 3150 else if (Bits == SE_Fixed7) 3151 AbbrevToUse = VST_ENTRY_7_ABBREV; 3152 } 3153 3154 for (const auto P : Name.getKey()) 3155 NameVals.push_back((unsigned char)P); 3156 3157 // Emit the finished record. 3158 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3159 NameVals.clear(); 3160 } 3161 3162 Stream.ExitBlock(); 3163 } 3164 3165 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3166 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3167 unsigned Code; 3168 if (isa<BasicBlock>(Order.V)) 3169 Code = bitc::USELIST_CODE_BB; 3170 else 3171 Code = bitc::USELIST_CODE_DEFAULT; 3172 3173 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3174 Record.push_back(VE.getValueID(Order.V)); 3175 Stream.EmitRecord(Code, Record); 3176 } 3177 3178 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3179 assert(VE.shouldPreserveUseListOrder() && 3180 "Expected to be preserving use-list order"); 3181 3182 auto hasMore = [&]() { 3183 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3184 }; 3185 if (!hasMore()) 3186 // Nothing to do. 3187 return; 3188 3189 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3190 while (hasMore()) { 3191 writeUseList(std::move(VE.UseListOrders.back())); 3192 VE.UseListOrders.pop_back(); 3193 } 3194 Stream.ExitBlock(); 3195 } 3196 3197 /// Emit a function body to the module stream. 3198 void ModuleBitcodeWriter::writeFunction( 3199 const Function &F, 3200 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3201 // Save the bitcode index of the start of this function block for recording 3202 // in the VST. 3203 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3204 3205 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3206 VE.incorporateFunction(F); 3207 3208 SmallVector<unsigned, 64> Vals; 3209 3210 // Emit the number of basic blocks, so the reader can create them ahead of 3211 // time. 3212 Vals.push_back(VE.getBasicBlocks().size()); 3213 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3214 Vals.clear(); 3215 3216 // If there are function-local constants, emit them now. 3217 unsigned CstStart, CstEnd; 3218 VE.getFunctionConstantRange(CstStart, CstEnd); 3219 writeConstants(CstStart, CstEnd, false); 3220 3221 // If there is function-local metadata, emit it now. 3222 writeFunctionMetadata(F); 3223 3224 // Keep a running idea of what the instruction ID is. 3225 unsigned InstID = CstEnd; 3226 3227 bool NeedsMetadataAttachment = F.hasMetadata(); 3228 3229 DILocation *LastDL = nullptr; 3230 // Finally, emit all the instructions, in order. 3231 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3232 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3233 I != E; ++I) { 3234 writeInstruction(*I, InstID, Vals); 3235 3236 if (!I->getType()->isVoidTy()) 3237 ++InstID; 3238 3239 // If the instruction has metadata, write a metadata attachment later. 3240 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3241 3242 // If the instruction has a debug location, emit it. 3243 DILocation *DL = I->getDebugLoc(); 3244 if (!DL) 3245 continue; 3246 3247 if (DL == LastDL) { 3248 // Just repeat the same debug loc as last time. 3249 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3250 continue; 3251 } 3252 3253 Vals.push_back(DL->getLine()); 3254 Vals.push_back(DL->getColumn()); 3255 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3256 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3257 Vals.push_back(DL->isImplicitCode()); 3258 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3259 Vals.clear(); 3260 3261 LastDL = DL; 3262 } 3263 3264 // Emit names for all the instructions etc. 3265 if (auto *Symtab = F.getValueSymbolTable()) 3266 writeFunctionLevelValueSymbolTable(*Symtab); 3267 3268 if (NeedsMetadataAttachment) 3269 writeFunctionMetadataAttachment(F); 3270 if (VE.shouldPreserveUseListOrder()) 3271 writeUseListBlock(&F); 3272 VE.purgeFunction(); 3273 Stream.ExitBlock(); 3274 } 3275 3276 // Emit blockinfo, which defines the standard abbreviations etc. 3277 void ModuleBitcodeWriter::writeBlockInfo() { 3278 // We only want to emit block info records for blocks that have multiple 3279 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3280 // Other blocks can define their abbrevs inline. 3281 Stream.EnterBlockInfoBlock(); 3282 3283 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3289 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3290 VST_ENTRY_8_ABBREV) 3291 llvm_unreachable("Unexpected abbrev ordering!"); 3292 } 3293 3294 { // 7-bit fixed width VST_CODE_ENTRY strings. 3295 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3296 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3300 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3301 VST_ENTRY_7_ABBREV) 3302 llvm_unreachable("Unexpected abbrev ordering!"); 3303 } 3304 { // 6-bit char6 VST_CODE_ENTRY strings. 3305 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3306 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3310 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3311 VST_ENTRY_6_ABBREV) 3312 llvm_unreachable("Unexpected abbrev ordering!"); 3313 } 3314 { // 6-bit char6 VST_CODE_BBENTRY strings. 3315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3316 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3320 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3321 VST_BBENTRY_6_ABBREV) 3322 llvm_unreachable("Unexpected abbrev ordering!"); 3323 } 3324 3325 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3329 VE.computeBitsRequiredForTypeIndicies())); 3330 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3331 CONSTANTS_SETTYPE_ABBREV) 3332 llvm_unreachable("Unexpected abbrev ordering!"); 3333 } 3334 3335 { // INTEGER abbrev for CONSTANTS_BLOCK. 3336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3337 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3339 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3340 CONSTANTS_INTEGER_ABBREV) 3341 llvm_unreachable("Unexpected abbrev ordering!"); 3342 } 3343 3344 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3345 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3346 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3349 VE.computeBitsRequiredForTypeIndicies())); 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3351 3352 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3353 CONSTANTS_CE_CAST_Abbrev) 3354 llvm_unreachable("Unexpected abbrev ordering!"); 3355 } 3356 { // NULL abbrev for CONSTANTS_BLOCK. 3357 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3358 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3359 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3360 CONSTANTS_NULL_Abbrev) 3361 llvm_unreachable("Unexpected abbrev ordering!"); 3362 } 3363 3364 // FIXME: This should only use space for first class types! 3365 3366 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3367 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3368 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3371 VE.computeBitsRequiredForTypeIndicies())); 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3374 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3375 FUNCTION_INST_LOAD_ABBREV) 3376 llvm_unreachable("Unexpected abbrev ordering!"); 3377 } 3378 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3379 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3380 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3383 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3384 FUNCTION_INST_UNOP_ABBREV) 3385 llvm_unreachable("Unexpected abbrev ordering!"); 3386 } 3387 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3388 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3389 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3394 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3395 llvm_unreachable("Unexpected abbrev ordering!"); 3396 } 3397 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3398 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3399 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3403 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3404 FUNCTION_INST_BINOP_ABBREV) 3405 llvm_unreachable("Unexpected abbrev ordering!"); 3406 } 3407 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3408 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3409 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3414 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3415 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3416 llvm_unreachable("Unexpected abbrev ordering!"); 3417 } 3418 { // INST_CAST abbrev for FUNCTION_BLOCK. 3419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3420 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3423 VE.computeBitsRequiredForTypeIndicies())); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3425 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3426 FUNCTION_INST_CAST_ABBREV) 3427 llvm_unreachable("Unexpected abbrev ordering!"); 3428 } 3429 3430 { // INST_RET abbrev for FUNCTION_BLOCK. 3431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3433 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3434 FUNCTION_INST_RET_VOID_ABBREV) 3435 llvm_unreachable("Unexpected abbrev ordering!"); 3436 } 3437 { // INST_RET abbrev for FUNCTION_BLOCK. 3438 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3439 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3441 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3442 FUNCTION_INST_RET_VAL_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3448 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3449 FUNCTION_INST_UNREACHABLE_ABBREV) 3450 llvm_unreachable("Unexpected abbrev ordering!"); 3451 } 3452 { 3453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3457 Log2_32_Ceil(VE.getTypes().size() + 1))); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3460 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3461 FUNCTION_INST_GEP_ABBREV) 3462 llvm_unreachable("Unexpected abbrev ordering!"); 3463 } 3464 3465 Stream.ExitBlock(); 3466 } 3467 3468 /// Write the module path strings, currently only used when generating 3469 /// a combined index file. 3470 void IndexBitcodeWriter::writeModStrings() { 3471 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3472 3473 // TODO: See which abbrev sizes we actually need to emit 3474 3475 // 8-bit fixed-width MST_ENTRY strings. 3476 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3477 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3481 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3482 3483 // 7-bit fixed width MST_ENTRY strings. 3484 Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3489 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3490 3491 // 6-bit char6 MST_ENTRY strings. 3492 Abbv = std::make_shared<BitCodeAbbrev>(); 3493 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3497 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3498 3499 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3500 Abbv = std::make_shared<BitCodeAbbrev>(); 3501 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3507 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3508 3509 SmallVector<unsigned, 64> Vals; 3510 forEachModule( 3511 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3512 StringRef Key = MPSE.getKey(); 3513 const auto &Value = MPSE.getValue(); 3514 StringEncoding Bits = getStringEncoding(Key); 3515 unsigned AbbrevToUse = Abbrev8Bit; 3516 if (Bits == SE_Char6) 3517 AbbrevToUse = Abbrev6Bit; 3518 else if (Bits == SE_Fixed7) 3519 AbbrevToUse = Abbrev7Bit; 3520 3521 Vals.push_back(Value.first); 3522 Vals.append(Key.begin(), Key.end()); 3523 3524 // Emit the finished record. 3525 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3526 3527 // Emit an optional hash for the module now 3528 const auto &Hash = Value.second; 3529 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3530 Vals.assign(Hash.begin(), Hash.end()); 3531 // Emit the hash record. 3532 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3533 } 3534 3535 Vals.clear(); 3536 }); 3537 Stream.ExitBlock(); 3538 } 3539 3540 /// Write the function type metadata related records that need to appear before 3541 /// a function summary entry (whether per-module or combined). 3542 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3543 FunctionSummary *FS) { 3544 if (!FS->type_tests().empty()) 3545 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3546 3547 SmallVector<uint64_t, 64> Record; 3548 3549 auto WriteVFuncIdVec = [&](uint64_t Ty, 3550 ArrayRef<FunctionSummary::VFuncId> VFs) { 3551 if (VFs.empty()) 3552 return; 3553 Record.clear(); 3554 for (auto &VF : VFs) { 3555 Record.push_back(VF.GUID); 3556 Record.push_back(VF.Offset); 3557 } 3558 Stream.EmitRecord(Ty, Record); 3559 }; 3560 3561 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3562 FS->type_test_assume_vcalls()); 3563 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3564 FS->type_checked_load_vcalls()); 3565 3566 auto WriteConstVCallVec = [&](uint64_t Ty, 3567 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3568 for (auto &VC : VCs) { 3569 Record.clear(); 3570 Record.push_back(VC.VFunc.GUID); 3571 Record.push_back(VC.VFunc.Offset); 3572 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3573 Stream.EmitRecord(Ty, Record); 3574 } 3575 }; 3576 3577 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3578 FS->type_test_assume_const_vcalls()); 3579 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3580 FS->type_checked_load_const_vcalls()); 3581 3582 auto WriteRange = [&](ConstantRange Range) { 3583 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3584 assert(Range.getLower().getNumWords() == 1); 3585 assert(Range.getUpper().getNumWords() == 1); 3586 emitSignedInt64(Record, *Range.getLower().getRawData()); 3587 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3588 }; 3589 3590 if (!FS->paramAccesses().empty()) { 3591 Record.clear(); 3592 for (auto &Arg : FS->paramAccesses()) { 3593 Record.push_back(Arg.ParamNo); 3594 WriteRange(Arg.Use); 3595 Record.push_back(Arg.Calls.size()); 3596 for (auto &Call : Arg.Calls) { 3597 Record.push_back(Call.ParamNo); 3598 Record.push_back(Call.Callee); 3599 WriteRange(Call.Offsets); 3600 } 3601 } 3602 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3603 } 3604 } 3605 3606 /// Collect type IDs from type tests used by function. 3607 static void 3608 getReferencedTypeIds(FunctionSummary *FS, 3609 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3610 if (!FS->type_tests().empty()) 3611 for (auto &TT : FS->type_tests()) 3612 ReferencedTypeIds.insert(TT); 3613 3614 auto GetReferencedTypesFromVFuncIdVec = 3615 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3616 for (auto &VF : VFs) 3617 ReferencedTypeIds.insert(VF.GUID); 3618 }; 3619 3620 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3621 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3622 3623 auto GetReferencedTypesFromConstVCallVec = 3624 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3625 for (auto &VC : VCs) 3626 ReferencedTypeIds.insert(VC.VFunc.GUID); 3627 }; 3628 3629 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3630 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3631 } 3632 3633 static void writeWholeProgramDevirtResolutionByArg( 3634 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3635 const WholeProgramDevirtResolution::ByArg &ByArg) { 3636 NameVals.push_back(args.size()); 3637 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3638 3639 NameVals.push_back(ByArg.TheKind); 3640 NameVals.push_back(ByArg.Info); 3641 NameVals.push_back(ByArg.Byte); 3642 NameVals.push_back(ByArg.Bit); 3643 } 3644 3645 static void writeWholeProgramDevirtResolution( 3646 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3647 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3648 NameVals.push_back(Id); 3649 3650 NameVals.push_back(Wpd.TheKind); 3651 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3652 NameVals.push_back(Wpd.SingleImplName.size()); 3653 3654 NameVals.push_back(Wpd.ResByArg.size()); 3655 for (auto &A : Wpd.ResByArg) 3656 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3657 } 3658 3659 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3660 StringTableBuilder &StrtabBuilder, 3661 const std::string &Id, 3662 const TypeIdSummary &Summary) { 3663 NameVals.push_back(StrtabBuilder.add(Id)); 3664 NameVals.push_back(Id.size()); 3665 3666 NameVals.push_back(Summary.TTRes.TheKind); 3667 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3668 NameVals.push_back(Summary.TTRes.AlignLog2); 3669 NameVals.push_back(Summary.TTRes.SizeM1); 3670 NameVals.push_back(Summary.TTRes.BitMask); 3671 NameVals.push_back(Summary.TTRes.InlineBits); 3672 3673 for (auto &W : Summary.WPDRes) 3674 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3675 W.second); 3676 } 3677 3678 static void writeTypeIdCompatibleVtableSummaryRecord( 3679 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3680 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3681 ValueEnumerator &VE) { 3682 NameVals.push_back(StrtabBuilder.add(Id)); 3683 NameVals.push_back(Id.size()); 3684 3685 for (auto &P : Summary) { 3686 NameVals.push_back(P.AddressPointOffset); 3687 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3688 } 3689 } 3690 3691 // Helper to emit a single function summary record. 3692 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3693 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3694 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3695 const Function &F) { 3696 NameVals.push_back(ValueID); 3697 3698 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3699 writeFunctionTypeMetadataRecords(Stream, FS); 3700 3701 auto SpecialRefCnts = FS->specialRefCounts(); 3702 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3703 NameVals.push_back(FS->instCount()); 3704 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3705 NameVals.push_back(FS->refs().size()); 3706 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3707 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3708 3709 for (auto &RI : FS->refs()) 3710 NameVals.push_back(VE.getValueID(RI.getValue())); 3711 3712 bool HasProfileData = 3713 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3714 for (auto &ECI : FS->calls()) { 3715 NameVals.push_back(getValueId(ECI.first)); 3716 if (HasProfileData) 3717 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3718 else if (WriteRelBFToSummary) 3719 NameVals.push_back(ECI.second.RelBlockFreq); 3720 } 3721 3722 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3723 unsigned Code = 3724 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3725 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3726 : bitc::FS_PERMODULE)); 3727 3728 // Emit the finished record. 3729 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3730 NameVals.clear(); 3731 } 3732 3733 // Collect the global value references in the given variable's initializer, 3734 // and emit them in a summary record. 3735 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3736 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3737 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3738 auto VI = Index->getValueInfo(V.getGUID()); 3739 if (!VI || VI.getSummaryList().empty()) { 3740 // Only declarations should not have a summary (a declaration might however 3741 // have a summary if the def was in module level asm). 3742 assert(V.isDeclaration()); 3743 return; 3744 } 3745 auto *Summary = VI.getSummaryList()[0].get(); 3746 NameVals.push_back(VE.getValueID(&V)); 3747 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3748 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3749 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3750 3751 auto VTableFuncs = VS->vTableFuncs(); 3752 if (!VTableFuncs.empty()) 3753 NameVals.push_back(VS->refs().size()); 3754 3755 unsigned SizeBeforeRefs = NameVals.size(); 3756 for (auto &RI : VS->refs()) 3757 NameVals.push_back(VE.getValueID(RI.getValue())); 3758 // Sort the refs for determinism output, the vector returned by FS->refs() has 3759 // been initialized from a DenseSet. 3760 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3761 3762 if (VTableFuncs.empty()) 3763 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3764 FSModRefsAbbrev); 3765 else { 3766 // VTableFuncs pairs should already be sorted by offset. 3767 for (auto &P : VTableFuncs) { 3768 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3769 NameVals.push_back(P.VTableOffset); 3770 } 3771 3772 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3773 FSModVTableRefsAbbrev); 3774 } 3775 NameVals.clear(); 3776 } 3777 3778 /// Emit the per-module summary section alongside the rest of 3779 /// the module's bitcode. 3780 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3781 // By default we compile with ThinLTO if the module has a summary, but the 3782 // client can request full LTO with a module flag. 3783 bool IsThinLTO = true; 3784 if (auto *MD = 3785 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3786 IsThinLTO = MD->getZExtValue(); 3787 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3788 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3789 4); 3790 3791 Stream.EmitRecord( 3792 bitc::FS_VERSION, 3793 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3794 3795 // Write the index flags. 3796 uint64_t Flags = 0; 3797 // Bits 1-3 are set only in the combined index, skip them. 3798 if (Index->enableSplitLTOUnit()) 3799 Flags |= 0x8; 3800 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3801 3802 if (Index->begin() == Index->end()) { 3803 Stream.ExitBlock(); 3804 return; 3805 } 3806 3807 for (const auto &GVI : valueIds()) { 3808 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3809 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3810 } 3811 3812 // Abbrev for FS_PERMODULE_PROFILE. 3813 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3814 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3822 // numrefs x valueid, n x (valueid, hotness) 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3825 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3826 3827 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3828 Abbv = std::make_shared<BitCodeAbbrev>(); 3829 if (WriteRelBFToSummary) 3830 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3831 else 3832 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3840 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3843 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3844 3845 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3846 Abbv = std::make_shared<BitCodeAbbrev>(); 3847 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3852 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3853 3854 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3855 Abbv = std::make_shared<BitCodeAbbrev>(); 3856 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3860 // numrefs x valueid, n x (valueid , offset) 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3863 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3864 3865 // Abbrev for FS_ALIAS. 3866 Abbv = std::make_shared<BitCodeAbbrev>(); 3867 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3871 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3872 3873 // Abbrev for FS_TYPE_ID_METADATA 3874 Abbv = std::make_shared<BitCodeAbbrev>(); 3875 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3878 // n x (valueid , offset) 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3881 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3882 3883 SmallVector<uint64_t, 64> NameVals; 3884 // Iterate over the list of functions instead of the Index to 3885 // ensure the ordering is stable. 3886 for (const Function &F : M) { 3887 // Summary emission does not support anonymous functions, they have to 3888 // renamed using the anonymous function renaming pass. 3889 if (!F.hasName()) 3890 report_fatal_error("Unexpected anonymous function when writing summary"); 3891 3892 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3893 if (!VI || VI.getSummaryList().empty()) { 3894 // Only declarations should not have a summary (a declaration might 3895 // however have a summary if the def was in module level asm). 3896 assert(F.isDeclaration()); 3897 continue; 3898 } 3899 auto *Summary = VI.getSummaryList()[0].get(); 3900 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3901 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3902 } 3903 3904 // Capture references from GlobalVariable initializers, which are outside 3905 // of a function scope. 3906 for (const GlobalVariable &G : M.globals()) 3907 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3908 FSModVTableRefsAbbrev); 3909 3910 for (const GlobalAlias &A : M.aliases()) { 3911 auto *Aliasee = A.getBaseObject(); 3912 if (!Aliasee->hasName()) 3913 // Nameless function don't have an entry in the summary, skip it. 3914 continue; 3915 auto AliasId = VE.getValueID(&A); 3916 auto AliaseeId = VE.getValueID(Aliasee); 3917 NameVals.push_back(AliasId); 3918 auto *Summary = Index->getGlobalValueSummary(A); 3919 AliasSummary *AS = cast<AliasSummary>(Summary); 3920 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3921 NameVals.push_back(AliaseeId); 3922 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3923 NameVals.clear(); 3924 } 3925 3926 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3927 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3928 S.second, VE); 3929 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3930 TypeIdCompatibleVtableAbbrev); 3931 NameVals.clear(); 3932 } 3933 3934 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 3935 ArrayRef<uint64_t>{Index->getBlockCount()}); 3936 3937 Stream.ExitBlock(); 3938 } 3939 3940 /// Emit the combined summary section into the combined index file. 3941 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3942 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3943 Stream.EmitRecord( 3944 bitc::FS_VERSION, 3945 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3946 3947 // Write the index flags. 3948 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3949 3950 for (const auto &GVI : valueIds()) { 3951 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3952 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3953 } 3954 3955 // Abbrev for FS_COMBINED. 3956 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3957 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3967 // numrefs x valueid, n x (valueid) 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3970 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3971 3972 // Abbrev for FS_COMBINED_PROFILE. 3973 Abbv = std::make_shared<BitCodeAbbrev>(); 3974 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3984 // numrefs x valueid, n x (valueid, hotness) 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3987 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3988 3989 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3990 Abbv = std::make_shared<BitCodeAbbrev>(); 3991 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3997 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3998 3999 // Abbrev for FS_COMBINED_ALIAS. 4000 Abbv = std::make_shared<BitCodeAbbrev>(); 4001 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4006 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4007 4008 // The aliases are emitted as a post-pass, and will point to the value 4009 // id of the aliasee. Save them in a vector for post-processing. 4010 SmallVector<AliasSummary *, 64> Aliases; 4011 4012 // Save the value id for each summary for alias emission. 4013 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4014 4015 SmallVector<uint64_t, 64> NameVals; 4016 4017 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4018 // with the type ids referenced by this index file. 4019 std::set<GlobalValue::GUID> ReferencedTypeIds; 4020 4021 // For local linkage, we also emit the original name separately 4022 // immediately after the record. 4023 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4024 if (!GlobalValue::isLocalLinkage(S.linkage())) 4025 return; 4026 NameVals.push_back(S.getOriginalName()); 4027 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4028 NameVals.clear(); 4029 }; 4030 4031 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4032 forEachSummary([&](GVInfo I, bool IsAliasee) { 4033 GlobalValueSummary *S = I.second; 4034 assert(S); 4035 DefOrUseGUIDs.insert(I.first); 4036 for (const ValueInfo &VI : S->refs()) 4037 DefOrUseGUIDs.insert(VI.getGUID()); 4038 4039 auto ValueId = getValueId(I.first); 4040 assert(ValueId); 4041 SummaryToValueIdMap[S] = *ValueId; 4042 4043 // If this is invoked for an aliasee, we want to record the above 4044 // mapping, but then not emit a summary entry (if the aliasee is 4045 // to be imported, we will invoke this separately with IsAliasee=false). 4046 if (IsAliasee) 4047 return; 4048 4049 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4050 // Will process aliases as a post-pass because the reader wants all 4051 // global to be loaded first. 4052 Aliases.push_back(AS); 4053 return; 4054 } 4055 4056 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4057 NameVals.push_back(*ValueId); 4058 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4059 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4060 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4061 for (auto &RI : VS->refs()) { 4062 auto RefValueId = getValueId(RI.getGUID()); 4063 if (!RefValueId) 4064 continue; 4065 NameVals.push_back(*RefValueId); 4066 } 4067 4068 // Emit the finished record. 4069 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4070 FSModRefsAbbrev); 4071 NameVals.clear(); 4072 MaybeEmitOriginalName(*S); 4073 return; 4074 } 4075 4076 auto *FS = cast<FunctionSummary>(S); 4077 writeFunctionTypeMetadataRecords(Stream, FS); 4078 getReferencedTypeIds(FS, ReferencedTypeIds); 4079 4080 NameVals.push_back(*ValueId); 4081 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4082 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4083 NameVals.push_back(FS->instCount()); 4084 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4085 NameVals.push_back(FS->entryCount()); 4086 4087 // Fill in below 4088 NameVals.push_back(0); // numrefs 4089 NameVals.push_back(0); // rorefcnt 4090 NameVals.push_back(0); // worefcnt 4091 4092 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4093 for (auto &RI : FS->refs()) { 4094 auto RefValueId = getValueId(RI.getGUID()); 4095 if (!RefValueId) 4096 continue; 4097 NameVals.push_back(*RefValueId); 4098 if (RI.isReadOnly()) 4099 RORefCnt++; 4100 else if (RI.isWriteOnly()) 4101 WORefCnt++; 4102 Count++; 4103 } 4104 NameVals[6] = Count; 4105 NameVals[7] = RORefCnt; 4106 NameVals[8] = WORefCnt; 4107 4108 bool HasProfileData = false; 4109 for (auto &EI : FS->calls()) { 4110 HasProfileData |= 4111 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4112 if (HasProfileData) 4113 break; 4114 } 4115 4116 for (auto &EI : FS->calls()) { 4117 // If this GUID doesn't have a value id, it doesn't have a function 4118 // summary and we don't need to record any calls to it. 4119 GlobalValue::GUID GUID = EI.first.getGUID(); 4120 auto CallValueId = getValueId(GUID); 4121 if (!CallValueId) { 4122 // For SamplePGO, the indirect call targets for local functions will 4123 // have its original name annotated in profile. We try to find the 4124 // corresponding PGOFuncName as the GUID. 4125 GUID = Index.getGUIDFromOriginalID(GUID); 4126 if (GUID == 0) 4127 continue; 4128 CallValueId = getValueId(GUID); 4129 if (!CallValueId) 4130 continue; 4131 // The mapping from OriginalId to GUID may return a GUID 4132 // that corresponds to a static variable. Filter it out here. 4133 // This can happen when 4134 // 1) There is a call to a library function which does not have 4135 // a CallValidId; 4136 // 2) There is a static variable with the OriginalGUID identical 4137 // to the GUID of the library function in 1); 4138 // When this happens, the logic for SamplePGO kicks in and 4139 // the static variable in 2) will be found, which needs to be 4140 // filtered out. 4141 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4142 if (GVSum && 4143 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4144 continue; 4145 } 4146 NameVals.push_back(*CallValueId); 4147 if (HasProfileData) 4148 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4149 } 4150 4151 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4152 unsigned Code = 4153 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4154 4155 // Emit the finished record. 4156 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4157 NameVals.clear(); 4158 MaybeEmitOriginalName(*S); 4159 }); 4160 4161 for (auto *AS : Aliases) { 4162 auto AliasValueId = SummaryToValueIdMap[AS]; 4163 assert(AliasValueId); 4164 NameVals.push_back(AliasValueId); 4165 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4166 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4167 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4168 assert(AliaseeValueId); 4169 NameVals.push_back(AliaseeValueId); 4170 4171 // Emit the finished record. 4172 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4173 NameVals.clear(); 4174 MaybeEmitOriginalName(*AS); 4175 4176 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4177 getReferencedTypeIds(FS, ReferencedTypeIds); 4178 } 4179 4180 if (!Index.cfiFunctionDefs().empty()) { 4181 for (auto &S : Index.cfiFunctionDefs()) { 4182 if (DefOrUseGUIDs.count( 4183 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4184 NameVals.push_back(StrtabBuilder.add(S)); 4185 NameVals.push_back(S.size()); 4186 } 4187 } 4188 if (!NameVals.empty()) { 4189 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4190 NameVals.clear(); 4191 } 4192 } 4193 4194 if (!Index.cfiFunctionDecls().empty()) { 4195 for (auto &S : Index.cfiFunctionDecls()) { 4196 if (DefOrUseGUIDs.count( 4197 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4198 NameVals.push_back(StrtabBuilder.add(S)); 4199 NameVals.push_back(S.size()); 4200 } 4201 } 4202 if (!NameVals.empty()) { 4203 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4204 NameVals.clear(); 4205 } 4206 } 4207 4208 // Walk the GUIDs that were referenced, and write the 4209 // corresponding type id records. 4210 for (auto &T : ReferencedTypeIds) { 4211 auto TidIter = Index.typeIds().equal_range(T); 4212 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4213 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4214 It->second.second); 4215 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4216 NameVals.clear(); 4217 } 4218 } 4219 4220 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4221 ArrayRef<uint64_t>{Index.getBlockCount()}); 4222 4223 Stream.ExitBlock(); 4224 } 4225 4226 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4227 /// current llvm version, and a record for the epoch number. 4228 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4229 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4230 4231 // Write the "user readable" string identifying the bitcode producer 4232 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4233 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4236 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4237 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4238 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4239 4240 // Write the epoch version 4241 Abbv = std::make_shared<BitCodeAbbrev>(); 4242 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4244 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4245 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4246 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4247 Stream.ExitBlock(); 4248 } 4249 4250 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4251 // Emit the module's hash. 4252 // MODULE_CODE_HASH: [5*i32] 4253 if (GenerateHash) { 4254 uint32_t Vals[5]; 4255 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4256 Buffer.size() - BlockStartPos)); 4257 StringRef Hash = Hasher.result(); 4258 for (int Pos = 0; Pos < 20; Pos += 4) { 4259 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4260 } 4261 4262 // Emit the finished record. 4263 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4264 4265 if (ModHash) 4266 // Save the written hash value. 4267 llvm::copy(Vals, std::begin(*ModHash)); 4268 } 4269 } 4270 4271 void ModuleBitcodeWriter::write() { 4272 writeIdentificationBlock(Stream); 4273 4274 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4275 size_t BlockStartPos = Buffer.size(); 4276 4277 writeModuleVersion(); 4278 4279 // Emit blockinfo, which defines the standard abbreviations etc. 4280 writeBlockInfo(); 4281 4282 // Emit information describing all of the types in the module. 4283 writeTypeTable(); 4284 4285 // Emit information about attribute groups. 4286 writeAttributeGroupTable(); 4287 4288 // Emit information about parameter attributes. 4289 writeAttributeTable(); 4290 4291 writeComdats(); 4292 4293 // Emit top-level description of module, including target triple, inline asm, 4294 // descriptors for global variables, and function prototype info. 4295 writeModuleInfo(); 4296 4297 // Emit constants. 4298 writeModuleConstants(); 4299 4300 // Emit metadata kind names. 4301 writeModuleMetadataKinds(); 4302 4303 // Emit metadata. 4304 writeModuleMetadata(); 4305 4306 // Emit module-level use-lists. 4307 if (VE.shouldPreserveUseListOrder()) 4308 writeUseListBlock(nullptr); 4309 4310 writeOperandBundleTags(); 4311 writeSyncScopeNames(); 4312 4313 // Emit function bodies. 4314 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4315 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4316 if (!F->isDeclaration()) 4317 writeFunction(*F, FunctionToBitcodeIndex); 4318 4319 // Need to write after the above call to WriteFunction which populates 4320 // the summary information in the index. 4321 if (Index) 4322 writePerModuleGlobalValueSummary(); 4323 4324 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4325 4326 writeModuleHash(BlockStartPos); 4327 4328 Stream.ExitBlock(); 4329 } 4330 4331 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4332 uint32_t &Position) { 4333 support::endian::write32le(&Buffer[Position], Value); 4334 Position += 4; 4335 } 4336 4337 /// If generating a bc file on darwin, we have to emit a 4338 /// header and trailer to make it compatible with the system archiver. To do 4339 /// this we emit the following header, and then emit a trailer that pads the 4340 /// file out to be a multiple of 16 bytes. 4341 /// 4342 /// struct bc_header { 4343 /// uint32_t Magic; // 0x0B17C0DE 4344 /// uint32_t Version; // Version, currently always 0. 4345 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4346 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4347 /// uint32_t CPUType; // CPU specifier. 4348 /// ... potentially more later ... 4349 /// }; 4350 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4351 const Triple &TT) { 4352 unsigned CPUType = ~0U; 4353 4354 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4355 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4356 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4357 // specific constants here because they are implicitly part of the Darwin ABI. 4358 enum { 4359 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4360 DARWIN_CPU_TYPE_X86 = 7, 4361 DARWIN_CPU_TYPE_ARM = 12, 4362 DARWIN_CPU_TYPE_POWERPC = 18 4363 }; 4364 4365 Triple::ArchType Arch = TT.getArch(); 4366 if (Arch == Triple::x86_64) 4367 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4368 else if (Arch == Triple::x86) 4369 CPUType = DARWIN_CPU_TYPE_X86; 4370 else if (Arch == Triple::ppc) 4371 CPUType = DARWIN_CPU_TYPE_POWERPC; 4372 else if (Arch == Triple::ppc64) 4373 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4374 else if (Arch == Triple::arm || Arch == Triple::thumb) 4375 CPUType = DARWIN_CPU_TYPE_ARM; 4376 4377 // Traditional Bitcode starts after header. 4378 assert(Buffer.size() >= BWH_HeaderSize && 4379 "Expected header size to be reserved"); 4380 unsigned BCOffset = BWH_HeaderSize; 4381 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4382 4383 // Write the magic and version. 4384 unsigned Position = 0; 4385 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4386 writeInt32ToBuffer(0, Buffer, Position); // Version. 4387 writeInt32ToBuffer(BCOffset, Buffer, Position); 4388 writeInt32ToBuffer(BCSize, Buffer, Position); 4389 writeInt32ToBuffer(CPUType, Buffer, Position); 4390 4391 // If the file is not a multiple of 16 bytes, insert dummy padding. 4392 while (Buffer.size() & 15) 4393 Buffer.push_back(0); 4394 } 4395 4396 /// Helper to write the header common to all bitcode files. 4397 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4398 // Emit the file header. 4399 Stream.Emit((unsigned)'B', 8); 4400 Stream.Emit((unsigned)'C', 8); 4401 Stream.Emit(0x0, 4); 4402 Stream.Emit(0xC, 4); 4403 Stream.Emit(0xE, 4); 4404 Stream.Emit(0xD, 4); 4405 } 4406 4407 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4408 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4409 writeBitcodeHeader(*Stream); 4410 } 4411 4412 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4413 4414 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4415 Stream->EnterSubblock(Block, 3); 4416 4417 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4418 Abbv->Add(BitCodeAbbrevOp(Record)); 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4420 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4421 4422 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4423 4424 Stream->ExitBlock(); 4425 } 4426 4427 void BitcodeWriter::writeSymtab() { 4428 assert(!WroteStrtab && !WroteSymtab); 4429 4430 // If any module has module-level inline asm, we will require a registered asm 4431 // parser for the target so that we can create an accurate symbol table for 4432 // the module. 4433 for (Module *M : Mods) { 4434 if (M->getModuleInlineAsm().empty()) 4435 continue; 4436 4437 std::string Err; 4438 const Triple TT(M->getTargetTriple()); 4439 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4440 if (!T || !T->hasMCAsmParser()) 4441 return; 4442 } 4443 4444 WroteSymtab = true; 4445 SmallVector<char, 0> Symtab; 4446 // The irsymtab::build function may be unable to create a symbol table if the 4447 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4448 // table is not required for correctness, but we still want to be able to 4449 // write malformed modules to bitcode files, so swallow the error. 4450 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4451 consumeError(std::move(E)); 4452 return; 4453 } 4454 4455 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4456 {Symtab.data(), Symtab.size()}); 4457 } 4458 4459 void BitcodeWriter::writeStrtab() { 4460 assert(!WroteStrtab); 4461 4462 std::vector<char> Strtab; 4463 StrtabBuilder.finalizeInOrder(); 4464 Strtab.resize(StrtabBuilder.getSize()); 4465 StrtabBuilder.write((uint8_t *)Strtab.data()); 4466 4467 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4468 {Strtab.data(), Strtab.size()}); 4469 4470 WroteStrtab = true; 4471 } 4472 4473 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4474 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4475 WroteStrtab = true; 4476 } 4477 4478 void BitcodeWriter::writeModule(const Module &M, 4479 bool ShouldPreserveUseListOrder, 4480 const ModuleSummaryIndex *Index, 4481 bool GenerateHash, ModuleHash *ModHash) { 4482 assert(!WroteStrtab); 4483 4484 // The Mods vector is used by irsymtab::build, which requires non-const 4485 // Modules in case it needs to materialize metadata. But the bitcode writer 4486 // requires that the module is materialized, so we can cast to non-const here, 4487 // after checking that it is in fact materialized. 4488 assert(M.isMaterialized()); 4489 Mods.push_back(const_cast<Module *>(&M)); 4490 4491 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4492 ShouldPreserveUseListOrder, Index, 4493 GenerateHash, ModHash); 4494 ModuleWriter.write(); 4495 } 4496 4497 void BitcodeWriter::writeIndex( 4498 const ModuleSummaryIndex *Index, 4499 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4500 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4501 ModuleToSummariesForIndex); 4502 IndexWriter.write(); 4503 } 4504 4505 /// Write the specified module to the specified output stream. 4506 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4507 bool ShouldPreserveUseListOrder, 4508 const ModuleSummaryIndex *Index, 4509 bool GenerateHash, ModuleHash *ModHash) { 4510 SmallVector<char, 0> Buffer; 4511 Buffer.reserve(256*1024); 4512 4513 // If this is darwin or another generic macho target, reserve space for the 4514 // header. 4515 Triple TT(M.getTargetTriple()); 4516 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4517 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4518 4519 BitcodeWriter Writer(Buffer); 4520 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4521 ModHash); 4522 Writer.writeSymtab(); 4523 Writer.writeStrtab(); 4524 4525 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4526 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4527 4528 // Write the generated bitstream to "Out". 4529 Out.write((char*)&Buffer.front(), Buffer.size()); 4530 } 4531 4532 void IndexBitcodeWriter::write() { 4533 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4534 4535 writeModuleVersion(); 4536 4537 // Write the module paths in the combined index. 4538 writeModStrings(); 4539 4540 // Write the summary combined index records. 4541 writeCombinedGlobalValueSummary(); 4542 4543 Stream.ExitBlock(); 4544 } 4545 4546 // Write the specified module summary index to the given raw output stream, 4547 // where it will be written in a new bitcode block. This is used when 4548 // writing the combined index file for ThinLTO. When writing a subset of the 4549 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4550 void llvm::WriteIndexToFile( 4551 const ModuleSummaryIndex &Index, raw_ostream &Out, 4552 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4553 SmallVector<char, 0> Buffer; 4554 Buffer.reserve(256 * 1024); 4555 4556 BitcodeWriter Writer(Buffer); 4557 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4558 Writer.writeStrtab(); 4559 4560 Out.write((char *)&Buffer.front(), Buffer.size()); 4561 } 4562 4563 namespace { 4564 4565 /// Class to manage the bitcode writing for a thin link bitcode file. 4566 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4567 /// ModHash is for use in ThinLTO incremental build, generated while writing 4568 /// the module bitcode file. 4569 const ModuleHash *ModHash; 4570 4571 public: 4572 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4573 BitstreamWriter &Stream, 4574 const ModuleSummaryIndex &Index, 4575 const ModuleHash &ModHash) 4576 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4577 /*ShouldPreserveUseListOrder=*/false, &Index), 4578 ModHash(&ModHash) {} 4579 4580 void write(); 4581 4582 private: 4583 void writeSimplifiedModuleInfo(); 4584 }; 4585 4586 } // end anonymous namespace 4587 4588 // This function writes a simpilified module info for thin link bitcode file. 4589 // It only contains the source file name along with the name(the offset and 4590 // size in strtab) and linkage for global values. For the global value info 4591 // entry, in order to keep linkage at offset 5, there are three zeros used 4592 // as padding. 4593 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4594 SmallVector<unsigned, 64> Vals; 4595 // Emit the module's source file name. 4596 { 4597 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4598 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4599 if (Bits == SE_Char6) 4600 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4601 else if (Bits == SE_Fixed7) 4602 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4603 4604 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4605 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4606 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4608 Abbv->Add(AbbrevOpToUse); 4609 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4610 4611 for (const auto P : M.getSourceFileName()) 4612 Vals.push_back((unsigned char)P); 4613 4614 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4615 Vals.clear(); 4616 } 4617 4618 // Emit the global variable information. 4619 for (const GlobalVariable &GV : M.globals()) { 4620 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4621 Vals.push_back(StrtabBuilder.add(GV.getName())); 4622 Vals.push_back(GV.getName().size()); 4623 Vals.push_back(0); 4624 Vals.push_back(0); 4625 Vals.push_back(0); 4626 Vals.push_back(getEncodedLinkage(GV)); 4627 4628 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4629 Vals.clear(); 4630 } 4631 4632 // Emit the function proto information. 4633 for (const Function &F : M) { 4634 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4635 Vals.push_back(StrtabBuilder.add(F.getName())); 4636 Vals.push_back(F.getName().size()); 4637 Vals.push_back(0); 4638 Vals.push_back(0); 4639 Vals.push_back(0); 4640 Vals.push_back(getEncodedLinkage(F)); 4641 4642 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4643 Vals.clear(); 4644 } 4645 4646 // Emit the alias information. 4647 for (const GlobalAlias &A : M.aliases()) { 4648 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4649 Vals.push_back(StrtabBuilder.add(A.getName())); 4650 Vals.push_back(A.getName().size()); 4651 Vals.push_back(0); 4652 Vals.push_back(0); 4653 Vals.push_back(0); 4654 Vals.push_back(getEncodedLinkage(A)); 4655 4656 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4657 Vals.clear(); 4658 } 4659 4660 // Emit the ifunc information. 4661 for (const GlobalIFunc &I : M.ifuncs()) { 4662 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4663 Vals.push_back(StrtabBuilder.add(I.getName())); 4664 Vals.push_back(I.getName().size()); 4665 Vals.push_back(0); 4666 Vals.push_back(0); 4667 Vals.push_back(0); 4668 Vals.push_back(getEncodedLinkage(I)); 4669 4670 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4671 Vals.clear(); 4672 } 4673 } 4674 4675 void ThinLinkBitcodeWriter::write() { 4676 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4677 4678 writeModuleVersion(); 4679 4680 writeSimplifiedModuleInfo(); 4681 4682 writePerModuleGlobalValueSummary(); 4683 4684 // Write module hash. 4685 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4686 4687 Stream.ExitBlock(); 4688 } 4689 4690 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4691 const ModuleSummaryIndex &Index, 4692 const ModuleHash &ModHash) { 4693 assert(!WroteStrtab); 4694 4695 // The Mods vector is used by irsymtab::build, which requires non-const 4696 // Modules in case it needs to materialize metadata. But the bitcode writer 4697 // requires that the module is materialized, so we can cast to non-const here, 4698 // after checking that it is in fact materialized. 4699 assert(M.isMaterialized()); 4700 Mods.push_back(const_cast<Module *>(&M)); 4701 4702 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4703 ModHash); 4704 ThinLinkWriter.write(); 4705 } 4706 4707 // Write the specified thin link bitcode file to the given raw output stream, 4708 // where it will be written in a new bitcode block. This is used when 4709 // writing the per-module index file for ThinLTO. 4710 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4711 const ModuleSummaryIndex &Index, 4712 const ModuleHash &ModHash) { 4713 SmallVector<char, 0> Buffer; 4714 Buffer.reserve(256 * 1024); 4715 4716 BitcodeWriter Writer(Buffer); 4717 Writer.writeThinLinkBitcode(M, Index, ModHash); 4718 Writer.writeSymtab(); 4719 Writer.writeStrtab(); 4720 4721 Out.write((char *)&Buffer.front(), Buffer.size()); 4722 } 4723 4724 static const char *getSectionNameForBitcode(const Triple &T) { 4725 switch (T.getObjectFormat()) { 4726 case Triple::MachO: 4727 return "__LLVM,__bitcode"; 4728 case Triple::COFF: 4729 case Triple::ELF: 4730 case Triple::Wasm: 4731 case Triple::UnknownObjectFormat: 4732 return ".llvmbc"; 4733 case Triple::XCOFF: 4734 llvm_unreachable("XCOFF is not yet implemented"); 4735 break; 4736 } 4737 llvm_unreachable("Unimplemented ObjectFormatType"); 4738 } 4739 4740 static const char *getSectionNameForCommandline(const Triple &T) { 4741 switch (T.getObjectFormat()) { 4742 case Triple::MachO: 4743 return "__LLVM,__cmdline"; 4744 case Triple::COFF: 4745 case Triple::ELF: 4746 case Triple::Wasm: 4747 case Triple::UnknownObjectFormat: 4748 return ".llvmcmd"; 4749 case Triple::XCOFF: 4750 llvm_unreachable("XCOFF is not yet implemented"); 4751 break; 4752 } 4753 llvm_unreachable("Unimplemented ObjectFormatType"); 4754 } 4755 4756 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4757 bool EmbedBitcode, bool EmbedMarker, 4758 const std::vector<uint8_t> *CmdArgs) { 4759 // Save llvm.compiler.used and remove it. 4760 SmallVector<Constant *, 2> UsedArray; 4761 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4762 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4763 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4764 for (auto *GV : UsedGlobals) { 4765 if (GV->getName() != "llvm.embedded.module" && 4766 GV->getName() != "llvm.cmdline") 4767 UsedArray.push_back( 4768 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4769 } 4770 if (Used) 4771 Used->eraseFromParent(); 4772 4773 // Embed the bitcode for the llvm module. 4774 std::string Data; 4775 ArrayRef<uint8_t> ModuleData; 4776 Triple T(M.getTargetTriple()); 4777 // Create a constant that contains the bitcode. 4778 // In case of embedding a marker, ignore the input Buf and use the empty 4779 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4780 if (EmbedBitcode) { 4781 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4782 (const unsigned char *)Buf.getBufferEnd())) { 4783 // If the input is LLVM Assembly, bitcode is produced by serializing 4784 // the module. Use-lists order need to be preserved in this case. 4785 llvm::raw_string_ostream OS(Data); 4786 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4787 ModuleData = 4788 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4789 } else 4790 // If the input is LLVM bitcode, write the input byte stream directly. 4791 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4792 Buf.getBufferSize()); 4793 } 4794 llvm::Constant *ModuleConstant = 4795 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4796 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4797 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4798 ModuleConstant); 4799 GV->setSection(getSectionNameForBitcode(T)); 4800 UsedArray.push_back( 4801 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4802 if (llvm::GlobalVariable *Old = 4803 M.getGlobalVariable("llvm.embedded.module", true)) { 4804 assert(Old->hasOneUse() && 4805 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4806 GV->takeName(Old); 4807 Old->eraseFromParent(); 4808 } else { 4809 GV->setName("llvm.embedded.module"); 4810 } 4811 4812 // Skip if only bitcode needs to be embedded. 4813 if (EmbedMarker) { 4814 // Embed command-line options. 4815 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4816 CmdArgs->size()); 4817 llvm::Constant *CmdConstant = 4818 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4819 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4820 llvm::GlobalValue::PrivateLinkage, 4821 CmdConstant); 4822 GV->setSection(getSectionNameForCommandline(T)); 4823 UsedArray.push_back( 4824 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4825 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4826 assert(Old->hasOneUse() && 4827 "llvm.cmdline can only be used once in llvm.compiler.used"); 4828 GV->takeName(Old); 4829 Old->eraseFromParent(); 4830 } else { 4831 GV->setName("llvm.cmdline"); 4832 } 4833 } 4834 4835 if (UsedArray.empty()) 4836 return; 4837 4838 // Recreate llvm.compiler.used. 4839 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4840 auto *NewUsed = new GlobalVariable( 4841 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4842 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4843 NewUsed->setSection("llvm.metadata"); 4844 } 4845