1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitstream/BitCodes.h" 28 #include "llvm/Bitstream/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NonLazyBind: 651 return bitc::ATTR_KIND_NON_LAZY_BIND; 652 case Attribute::NonNull: 653 return bitc::ATTR_KIND_NON_NULL; 654 case Attribute::Dereferenceable: 655 return bitc::ATTR_KIND_DEREFERENCEABLE; 656 case Attribute::DereferenceableOrNull: 657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 658 case Attribute::NoRedZone: 659 return bitc::ATTR_KIND_NO_RED_ZONE; 660 case Attribute::NoReturn: 661 return bitc::ATTR_KIND_NO_RETURN; 662 case Attribute::NoSync: 663 return bitc::ATTR_KIND_NOSYNC; 664 case Attribute::NoCfCheck: 665 return bitc::ATTR_KIND_NOCF_CHECK; 666 case Attribute::NoUnwind: 667 return bitc::ATTR_KIND_NO_UNWIND; 668 case Attribute::OptForFuzzing: 669 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::Speculatable: 685 return bitc::ATTR_KIND_SPECULATABLE; 686 case Attribute::StackAlignment: 687 return bitc::ATTR_KIND_STACK_ALIGNMENT; 688 case Attribute::StackProtect: 689 return bitc::ATTR_KIND_STACK_PROTECT; 690 case Attribute::StackProtectReq: 691 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 692 case Attribute::StackProtectStrong: 693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 694 case Attribute::SafeStack: 695 return bitc::ATTR_KIND_SAFESTACK; 696 case Attribute::ShadowCallStack: 697 return bitc::ATTR_KIND_SHADOWCALLSTACK; 698 case Attribute::StrictFP: 699 return bitc::ATTR_KIND_STRICT_FP; 700 case Attribute::StructRet: 701 return bitc::ATTR_KIND_STRUCT_RET; 702 case Attribute::SanitizeAddress: 703 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 704 case Attribute::SanitizeHWAddress: 705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 706 case Attribute::SanitizeThread: 707 return bitc::ATTR_KIND_SANITIZE_THREAD; 708 case Attribute::SanitizeMemory: 709 return bitc::ATTR_KIND_SANITIZE_MEMORY; 710 case Attribute::SpeculativeLoadHardening: 711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 712 case Attribute::SwiftError: 713 return bitc::ATTR_KIND_SWIFT_ERROR; 714 case Attribute::SwiftSelf: 715 return bitc::ATTR_KIND_SWIFT_SELF; 716 case Attribute::UWTable: 717 return bitc::ATTR_KIND_UW_TABLE; 718 case Attribute::WillReturn: 719 return bitc::ATTR_KIND_WILLRETURN; 720 case Attribute::WriteOnly: 721 return bitc::ATTR_KIND_WRITEONLY; 722 case Attribute::ZExt: 723 return bitc::ATTR_KIND_Z_EXT; 724 case Attribute::ImmArg: 725 return bitc::ATTR_KIND_IMMARG; 726 case Attribute::SanitizeMemTag: 727 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 728 case Attribute::EndAttrKinds: 729 llvm_unreachable("Can not encode end-attribute kinds marker."); 730 case Attribute::None: 731 llvm_unreachable("Can not encode none-attribute."); 732 } 733 734 llvm_unreachable("Trying to encode unknown attribute"); 735 } 736 737 void ModuleBitcodeWriter::writeAttributeGroupTable() { 738 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 739 VE.getAttributeGroups(); 740 if (AttrGrps.empty()) return; 741 742 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 743 744 SmallVector<uint64_t, 64> Record; 745 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 746 unsigned AttrListIndex = Pair.first; 747 AttributeSet AS = Pair.second; 748 Record.push_back(VE.getAttributeGroupID(Pair)); 749 Record.push_back(AttrListIndex); 750 751 for (Attribute Attr : AS) { 752 if (Attr.isEnumAttribute()) { 753 Record.push_back(0); 754 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 755 } else if (Attr.isIntAttribute()) { 756 Record.push_back(1); 757 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 758 Record.push_back(Attr.getValueAsInt()); 759 } else if (Attr.isStringAttribute()) { 760 StringRef Kind = Attr.getKindAsString(); 761 StringRef Val = Attr.getValueAsString(); 762 763 Record.push_back(Val.empty() ? 3 : 4); 764 Record.append(Kind.begin(), Kind.end()); 765 Record.push_back(0); 766 if (!Val.empty()) { 767 Record.append(Val.begin(), Val.end()); 768 Record.push_back(0); 769 } 770 } else { 771 assert(Attr.isTypeAttribute()); 772 Type *Ty = Attr.getValueAsType(); 773 Record.push_back(Ty ? 6 : 5); 774 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 775 if (Ty) 776 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 777 } 778 } 779 780 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 781 Record.clear(); 782 } 783 784 Stream.ExitBlock(); 785 } 786 787 void ModuleBitcodeWriter::writeAttributeTable() { 788 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 789 if (Attrs.empty()) return; 790 791 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 792 793 SmallVector<uint64_t, 64> Record; 794 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 795 AttributeList AL = Attrs[i]; 796 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 797 AttributeSet AS = AL.getAttributes(i); 798 if (AS.hasAttributes()) 799 Record.push_back(VE.getAttributeGroupID({i, AS})); 800 } 801 802 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 803 Record.clear(); 804 } 805 806 Stream.ExitBlock(); 807 } 808 809 /// WriteTypeTable - Write out the type table for a module. 810 void ModuleBitcodeWriter::writeTypeTable() { 811 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 812 813 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 814 SmallVector<uint64_t, 64> TypeVals; 815 816 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 817 818 // Abbrev for TYPE_CODE_POINTER. 819 auto Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 822 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 823 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_FUNCTION. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 832 833 // Abbrev for TYPE_CODE_STRUCT_ANON. 834 Abbv = std::make_shared<BitCodeAbbrev>(); 835 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 839 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 840 841 // Abbrev for TYPE_CODE_STRUCT_NAME. 842 Abbv = std::make_shared<BitCodeAbbrev>(); 843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 846 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 847 848 // Abbrev for TYPE_CODE_STRUCT_NAMED. 849 Abbv = std::make_shared<BitCodeAbbrev>(); 850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 854 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 855 856 // Abbrev for TYPE_CODE_ARRAY. 857 Abbv = std::make_shared<BitCodeAbbrev>(); 858 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 861 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 862 863 // Emit an entry count so the reader can reserve space. 864 TypeVals.push_back(TypeList.size()); 865 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 866 TypeVals.clear(); 867 868 // Loop over all of the types, emitting each in turn. 869 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 870 Type *T = TypeList[i]; 871 int AbbrevToUse = 0; 872 unsigned Code = 0; 873 874 switch (T->getTypeID()) { 875 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 876 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 877 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 878 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 879 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 880 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 881 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 882 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 883 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 884 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 885 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 886 case Type::IntegerTyID: 887 // INTEGER: [width] 888 Code = bitc::TYPE_CODE_INTEGER; 889 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 890 break; 891 case Type::PointerTyID: { 892 PointerType *PTy = cast<PointerType>(T); 893 // POINTER: [pointee type, address space] 894 Code = bitc::TYPE_CODE_POINTER; 895 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 896 unsigned AddressSpace = PTy->getAddressSpace(); 897 TypeVals.push_back(AddressSpace); 898 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 899 break; 900 } 901 case Type::FunctionTyID: { 902 FunctionType *FT = cast<FunctionType>(T); 903 // FUNCTION: [isvararg, retty, paramty x N] 904 Code = bitc::TYPE_CODE_FUNCTION; 905 TypeVals.push_back(FT->isVarArg()); 906 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 907 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 908 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 909 AbbrevToUse = FunctionAbbrev; 910 break; 911 } 912 case Type::StructTyID: { 913 StructType *ST = cast<StructType>(T); 914 // STRUCT: [ispacked, eltty x N] 915 TypeVals.push_back(ST->isPacked()); 916 // Output all of the element types. 917 for (StructType::element_iterator I = ST->element_begin(), 918 E = ST->element_end(); I != E; ++I) 919 TypeVals.push_back(VE.getTypeID(*I)); 920 921 if (ST->isLiteral()) { 922 Code = bitc::TYPE_CODE_STRUCT_ANON; 923 AbbrevToUse = StructAnonAbbrev; 924 } else { 925 if (ST->isOpaque()) { 926 Code = bitc::TYPE_CODE_OPAQUE; 927 } else { 928 Code = bitc::TYPE_CODE_STRUCT_NAMED; 929 AbbrevToUse = StructNamedAbbrev; 930 } 931 932 // Emit the name if it is present. 933 if (!ST->getName().empty()) 934 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 935 StructNameAbbrev); 936 } 937 break; 938 } 939 case Type::ArrayTyID: { 940 ArrayType *AT = cast<ArrayType>(T); 941 // ARRAY: [numelts, eltty] 942 Code = bitc::TYPE_CODE_ARRAY; 943 TypeVals.push_back(AT->getNumElements()); 944 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 945 AbbrevToUse = ArrayAbbrev; 946 break; 947 } 948 case Type::VectorTyID: { 949 VectorType *VT = cast<VectorType>(T); 950 // VECTOR [numelts, eltty] or 951 // [numelts, eltty, scalable] 952 Code = bitc::TYPE_CODE_VECTOR; 953 TypeVals.push_back(VT->getNumElements()); 954 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 955 if (VT->isScalable()) 956 TypeVals.push_back(VT->isScalable()); 957 break; 958 } 959 } 960 961 // Emit the finished record. 962 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 963 TypeVals.clear(); 964 } 965 966 Stream.ExitBlock(); 967 } 968 969 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 970 switch (Linkage) { 971 case GlobalValue::ExternalLinkage: 972 return 0; 973 case GlobalValue::WeakAnyLinkage: 974 return 16; 975 case GlobalValue::AppendingLinkage: 976 return 2; 977 case GlobalValue::InternalLinkage: 978 return 3; 979 case GlobalValue::LinkOnceAnyLinkage: 980 return 18; 981 case GlobalValue::ExternalWeakLinkage: 982 return 7; 983 case GlobalValue::CommonLinkage: 984 return 8; 985 case GlobalValue::PrivateLinkage: 986 return 9; 987 case GlobalValue::WeakODRLinkage: 988 return 17; 989 case GlobalValue::LinkOnceODRLinkage: 990 return 19; 991 case GlobalValue::AvailableExternallyLinkage: 992 return 12; 993 } 994 llvm_unreachable("Invalid linkage"); 995 } 996 997 static unsigned getEncodedLinkage(const GlobalValue &GV) { 998 return getEncodedLinkage(GV.getLinkage()); 999 } 1000 1001 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1002 uint64_t RawFlags = 0; 1003 RawFlags |= Flags.ReadNone; 1004 RawFlags |= (Flags.ReadOnly << 1); 1005 RawFlags |= (Flags.NoRecurse << 2); 1006 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1007 RawFlags |= (Flags.NoInline << 4); 1008 return RawFlags; 1009 } 1010 1011 // Decode the flags for GlobalValue in the summary 1012 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1013 uint64_t RawFlags = 0; 1014 1015 RawFlags |= Flags.NotEligibleToImport; // bool 1016 RawFlags |= (Flags.Live << 1); 1017 RawFlags |= (Flags.DSOLocal << 2); 1018 RawFlags |= (Flags.CanAutoHide << 3); 1019 1020 // Linkage don't need to be remapped at that time for the summary. Any future 1021 // change to the getEncodedLinkage() function will need to be taken into 1022 // account here as well. 1023 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1024 1025 return RawFlags; 1026 } 1027 1028 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1029 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1030 return RawFlags; 1031 } 1032 1033 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1034 switch (GV.getVisibility()) { 1035 case GlobalValue::DefaultVisibility: return 0; 1036 case GlobalValue::HiddenVisibility: return 1; 1037 case GlobalValue::ProtectedVisibility: return 2; 1038 } 1039 llvm_unreachable("Invalid visibility"); 1040 } 1041 1042 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1043 switch (GV.getDLLStorageClass()) { 1044 case GlobalValue::DefaultStorageClass: return 0; 1045 case GlobalValue::DLLImportStorageClass: return 1; 1046 case GlobalValue::DLLExportStorageClass: return 2; 1047 } 1048 llvm_unreachable("Invalid DLL storage class"); 1049 } 1050 1051 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1052 switch (GV.getThreadLocalMode()) { 1053 case GlobalVariable::NotThreadLocal: return 0; 1054 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1055 case GlobalVariable::LocalDynamicTLSModel: return 2; 1056 case GlobalVariable::InitialExecTLSModel: return 3; 1057 case GlobalVariable::LocalExecTLSModel: return 4; 1058 } 1059 llvm_unreachable("Invalid TLS model"); 1060 } 1061 1062 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1063 switch (C.getSelectionKind()) { 1064 case Comdat::Any: 1065 return bitc::COMDAT_SELECTION_KIND_ANY; 1066 case Comdat::ExactMatch: 1067 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1068 case Comdat::Largest: 1069 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1070 case Comdat::NoDuplicates: 1071 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1072 case Comdat::SameSize: 1073 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1074 } 1075 llvm_unreachable("Invalid selection kind"); 1076 } 1077 1078 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1079 switch (GV.getUnnamedAddr()) { 1080 case GlobalValue::UnnamedAddr::None: return 0; 1081 case GlobalValue::UnnamedAddr::Local: return 2; 1082 case GlobalValue::UnnamedAddr::Global: return 1; 1083 } 1084 llvm_unreachable("Invalid unnamed_addr"); 1085 } 1086 1087 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1088 if (GenerateHash) 1089 Hasher.update(Str); 1090 return StrtabBuilder.add(Str); 1091 } 1092 1093 void ModuleBitcodeWriter::writeComdats() { 1094 SmallVector<unsigned, 64> Vals; 1095 for (const Comdat *C : VE.getComdats()) { 1096 // COMDAT: [strtab offset, strtab size, selection_kind] 1097 Vals.push_back(addToStrtab(C->getName())); 1098 Vals.push_back(C->getName().size()); 1099 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1100 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1101 Vals.clear(); 1102 } 1103 } 1104 1105 /// Write a record that will eventually hold the word offset of the 1106 /// module-level VST. For now the offset is 0, which will be backpatched 1107 /// after the real VST is written. Saves the bit offset to backpatch. 1108 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1109 // Write a placeholder value in for the offset of the real VST, 1110 // which is written after the function blocks so that it can include 1111 // the offset of each function. The placeholder offset will be 1112 // updated when the real VST is written. 1113 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1114 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1115 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1116 // hold the real VST offset. Must use fixed instead of VBR as we don't 1117 // know how many VBR chunks to reserve ahead of time. 1118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1119 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1120 1121 // Emit the placeholder 1122 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1123 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1124 1125 // Compute and save the bit offset to the placeholder, which will be 1126 // patched when the real VST is written. We can simply subtract the 32-bit 1127 // fixed size from the current bit number to get the location to backpatch. 1128 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1129 } 1130 1131 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1132 1133 /// Determine the encoding to use for the given string name and length. 1134 static StringEncoding getStringEncoding(StringRef Str) { 1135 bool isChar6 = true; 1136 for (char C : Str) { 1137 if (isChar6) 1138 isChar6 = BitCodeAbbrevOp::isChar6(C); 1139 if ((unsigned char)C & 128) 1140 // don't bother scanning the rest. 1141 return SE_Fixed8; 1142 } 1143 if (isChar6) 1144 return SE_Char6; 1145 return SE_Fixed7; 1146 } 1147 1148 /// Emit top-level description of module, including target triple, inline asm, 1149 /// descriptors for global variables, and function prototype info. 1150 /// Returns the bit offset to backpatch with the location of the real VST. 1151 void ModuleBitcodeWriter::writeModuleInfo() { 1152 // Emit various pieces of data attached to a module. 1153 if (!M.getTargetTriple().empty()) 1154 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1155 0 /*TODO*/); 1156 const std::string &DL = M.getDataLayoutStr(); 1157 if (!DL.empty()) 1158 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1159 if (!M.getModuleInlineAsm().empty()) 1160 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1161 0 /*TODO*/); 1162 1163 // Emit information about sections and GC, computing how many there are. Also 1164 // compute the maximum alignment value. 1165 std::map<std::string, unsigned> SectionMap; 1166 std::map<std::string, unsigned> GCMap; 1167 unsigned MaxAlignment = 0; 1168 unsigned MaxGlobalType = 0; 1169 for (const GlobalValue &GV : M.globals()) { 1170 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1171 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1172 if (GV.hasSection()) { 1173 // Give section names unique ID's. 1174 unsigned &Entry = SectionMap[GV.getSection()]; 1175 if (!Entry) { 1176 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1177 0 /*TODO*/); 1178 Entry = SectionMap.size(); 1179 } 1180 } 1181 } 1182 for (const Function &F : M) { 1183 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1184 if (F.hasSection()) { 1185 // Give section names unique ID's. 1186 unsigned &Entry = SectionMap[F.getSection()]; 1187 if (!Entry) { 1188 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1189 0 /*TODO*/); 1190 Entry = SectionMap.size(); 1191 } 1192 } 1193 if (F.hasGC()) { 1194 // Same for GC names. 1195 unsigned &Entry = GCMap[F.getGC()]; 1196 if (!Entry) { 1197 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1198 0 /*TODO*/); 1199 Entry = GCMap.size(); 1200 } 1201 } 1202 } 1203 1204 // Emit abbrev for globals, now that we know # sections and max alignment. 1205 unsigned SimpleGVarAbbrev = 0; 1206 if (!M.global_empty()) { 1207 // Add an abbrev for common globals with no visibility or thread localness. 1208 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1209 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1213 Log2_32_Ceil(MaxGlobalType+1))); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1215 //| explicitType << 1 1216 //| constant 1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1219 if (MaxAlignment == 0) // Alignment. 1220 Abbv->Add(BitCodeAbbrevOp(0)); 1221 else { 1222 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1224 Log2_32_Ceil(MaxEncAlignment+1))); 1225 } 1226 if (SectionMap.empty()) // Section. 1227 Abbv->Add(BitCodeAbbrevOp(0)); 1228 else 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1230 Log2_32_Ceil(SectionMap.size()+1))); 1231 // Don't bother emitting vis + thread local. 1232 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1233 } 1234 1235 SmallVector<unsigned, 64> Vals; 1236 // Emit the module's source file name. 1237 { 1238 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1239 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1240 if (Bits == SE_Char6) 1241 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1242 else if (Bits == SE_Fixed7) 1243 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1244 1245 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1246 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1247 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1249 Abbv->Add(AbbrevOpToUse); 1250 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1251 1252 for (const auto P : M.getSourceFileName()) 1253 Vals.push_back((unsigned char)P); 1254 1255 // Emit the finished record. 1256 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1257 Vals.clear(); 1258 } 1259 1260 // Emit the global variable information. 1261 for (const GlobalVariable &GV : M.globals()) { 1262 unsigned AbbrevToUse = 0; 1263 1264 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1265 // linkage, alignment, section, visibility, threadlocal, 1266 // unnamed_addr, externally_initialized, dllstorageclass, 1267 // comdat, attributes, DSO_Local] 1268 Vals.push_back(addToStrtab(GV.getName())); 1269 Vals.push_back(GV.getName().size()); 1270 Vals.push_back(VE.getTypeID(GV.getValueType())); 1271 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1272 Vals.push_back(GV.isDeclaration() ? 0 : 1273 (VE.getValueID(GV.getInitializer()) + 1)); 1274 Vals.push_back(getEncodedLinkage(GV)); 1275 Vals.push_back(Log2_32(GV.getAlignment())+1); 1276 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1277 if (GV.isThreadLocal() || 1278 GV.getVisibility() != GlobalValue::DefaultVisibility || 1279 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1280 GV.isExternallyInitialized() || 1281 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1282 GV.hasComdat() || 1283 GV.hasAttributes() || 1284 GV.isDSOLocal() || 1285 GV.hasPartition()) { 1286 Vals.push_back(getEncodedVisibility(GV)); 1287 Vals.push_back(getEncodedThreadLocalMode(GV)); 1288 Vals.push_back(getEncodedUnnamedAddr(GV)); 1289 Vals.push_back(GV.isExternallyInitialized()); 1290 Vals.push_back(getEncodedDLLStorageClass(GV)); 1291 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1292 1293 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1294 Vals.push_back(VE.getAttributeListID(AL)); 1295 1296 Vals.push_back(GV.isDSOLocal()); 1297 Vals.push_back(addToStrtab(GV.getPartition())); 1298 Vals.push_back(GV.getPartition().size()); 1299 } else { 1300 AbbrevToUse = SimpleGVarAbbrev; 1301 } 1302 1303 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1304 Vals.clear(); 1305 } 1306 1307 // Emit the function proto information. 1308 for (const Function &F : M) { 1309 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1310 // linkage, paramattrs, alignment, section, visibility, gc, 1311 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1312 // prefixdata, personalityfn, DSO_Local, addrspace] 1313 Vals.push_back(addToStrtab(F.getName())); 1314 Vals.push_back(F.getName().size()); 1315 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1316 Vals.push_back(F.getCallingConv()); 1317 Vals.push_back(F.isDeclaration()); 1318 Vals.push_back(getEncodedLinkage(F)); 1319 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1320 Vals.push_back(Log2_32(F.getAlignment())+1); 1321 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1322 Vals.push_back(getEncodedVisibility(F)); 1323 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1324 Vals.push_back(getEncodedUnnamedAddr(F)); 1325 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1326 : 0); 1327 Vals.push_back(getEncodedDLLStorageClass(F)); 1328 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1329 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1330 : 0); 1331 Vals.push_back( 1332 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1333 1334 Vals.push_back(F.isDSOLocal()); 1335 Vals.push_back(F.getAddressSpace()); 1336 Vals.push_back(addToStrtab(F.getPartition())); 1337 Vals.push_back(F.getPartition().size()); 1338 1339 unsigned AbbrevToUse = 0; 1340 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1341 Vals.clear(); 1342 } 1343 1344 // Emit the alias information. 1345 for (const GlobalAlias &A : M.aliases()) { 1346 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1347 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1348 // DSO_Local] 1349 Vals.push_back(addToStrtab(A.getName())); 1350 Vals.push_back(A.getName().size()); 1351 Vals.push_back(VE.getTypeID(A.getValueType())); 1352 Vals.push_back(A.getType()->getAddressSpace()); 1353 Vals.push_back(VE.getValueID(A.getAliasee())); 1354 Vals.push_back(getEncodedLinkage(A)); 1355 Vals.push_back(getEncodedVisibility(A)); 1356 Vals.push_back(getEncodedDLLStorageClass(A)); 1357 Vals.push_back(getEncodedThreadLocalMode(A)); 1358 Vals.push_back(getEncodedUnnamedAddr(A)); 1359 Vals.push_back(A.isDSOLocal()); 1360 Vals.push_back(addToStrtab(A.getPartition())); 1361 Vals.push_back(A.getPartition().size()); 1362 1363 unsigned AbbrevToUse = 0; 1364 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1365 Vals.clear(); 1366 } 1367 1368 // Emit the ifunc information. 1369 for (const GlobalIFunc &I : M.ifuncs()) { 1370 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1371 // val#, linkage, visibility, DSO_Local] 1372 Vals.push_back(addToStrtab(I.getName())); 1373 Vals.push_back(I.getName().size()); 1374 Vals.push_back(VE.getTypeID(I.getValueType())); 1375 Vals.push_back(I.getType()->getAddressSpace()); 1376 Vals.push_back(VE.getValueID(I.getResolver())); 1377 Vals.push_back(getEncodedLinkage(I)); 1378 Vals.push_back(getEncodedVisibility(I)); 1379 Vals.push_back(I.isDSOLocal()); 1380 Vals.push_back(addToStrtab(I.getPartition())); 1381 Vals.push_back(I.getPartition().size()); 1382 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1383 Vals.clear(); 1384 } 1385 1386 writeValueSymbolTableForwardDecl(); 1387 } 1388 1389 static uint64_t getOptimizationFlags(const Value *V) { 1390 uint64_t Flags = 0; 1391 1392 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1393 if (OBO->hasNoSignedWrap()) 1394 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1395 if (OBO->hasNoUnsignedWrap()) 1396 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1397 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1398 if (PEO->isExact()) 1399 Flags |= 1 << bitc::PEO_EXACT; 1400 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1401 if (FPMO->hasAllowReassoc()) 1402 Flags |= bitc::AllowReassoc; 1403 if (FPMO->hasNoNaNs()) 1404 Flags |= bitc::NoNaNs; 1405 if (FPMO->hasNoInfs()) 1406 Flags |= bitc::NoInfs; 1407 if (FPMO->hasNoSignedZeros()) 1408 Flags |= bitc::NoSignedZeros; 1409 if (FPMO->hasAllowReciprocal()) 1410 Flags |= bitc::AllowReciprocal; 1411 if (FPMO->hasAllowContract()) 1412 Flags |= bitc::AllowContract; 1413 if (FPMO->hasApproxFunc()) 1414 Flags |= bitc::ApproxFunc; 1415 } 1416 1417 return Flags; 1418 } 1419 1420 void ModuleBitcodeWriter::writeValueAsMetadata( 1421 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1422 // Mimic an MDNode with a value as one operand. 1423 Value *V = MD->getValue(); 1424 Record.push_back(VE.getTypeID(V->getType())); 1425 Record.push_back(VE.getValueID(V)); 1426 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1427 Record.clear(); 1428 } 1429 1430 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1431 SmallVectorImpl<uint64_t> &Record, 1432 unsigned Abbrev) { 1433 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1434 Metadata *MD = N->getOperand(i); 1435 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1436 "Unexpected function-local metadata"); 1437 Record.push_back(VE.getMetadataOrNullID(MD)); 1438 } 1439 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1440 : bitc::METADATA_NODE, 1441 Record, Abbrev); 1442 Record.clear(); 1443 } 1444 1445 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1446 // Assume the column is usually under 128, and always output the inlined-at 1447 // location (it's never more expensive than building an array size 1). 1448 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1449 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1456 return Stream.EmitAbbrev(std::move(Abbv)); 1457 } 1458 1459 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1460 SmallVectorImpl<uint64_t> &Record, 1461 unsigned &Abbrev) { 1462 if (!Abbrev) 1463 Abbrev = createDILocationAbbrev(); 1464 1465 Record.push_back(N->isDistinct()); 1466 Record.push_back(N->getLine()); 1467 Record.push_back(N->getColumn()); 1468 Record.push_back(VE.getMetadataID(N->getScope())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1470 Record.push_back(N->isImplicitCode()); 1471 1472 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1473 Record.clear(); 1474 } 1475 1476 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1477 // Assume the column is usually under 128, and always output the inlined-at 1478 // location (it's never more expensive than building an array size 1). 1479 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1480 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1487 return Stream.EmitAbbrev(std::move(Abbv)); 1488 } 1489 1490 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1491 SmallVectorImpl<uint64_t> &Record, 1492 unsigned &Abbrev) { 1493 if (!Abbrev) 1494 Abbrev = createGenericDINodeAbbrev(); 1495 1496 Record.push_back(N->isDistinct()); 1497 Record.push_back(N->getTag()); 1498 Record.push_back(0); // Per-tag version field; unused for now. 1499 1500 for (auto &I : N->operands()) 1501 Record.push_back(VE.getMetadataOrNullID(I)); 1502 1503 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1504 Record.clear(); 1505 } 1506 1507 static uint64_t rotateSign(int64_t I) { 1508 uint64_t U = I; 1509 return I < 0 ? ~(U << 1) : U << 1; 1510 } 1511 1512 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1513 SmallVectorImpl<uint64_t> &Record, 1514 unsigned Abbrev) { 1515 const uint64_t Version = 1 << 1; 1516 Record.push_back((uint64_t)N->isDistinct() | Version); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1518 Record.push_back(rotateSign(N->getLowerBound())); 1519 1520 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1525 SmallVectorImpl<uint64_t> &Record, 1526 unsigned Abbrev) { 1527 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1528 Record.push_back(rotateSign(N->getValue())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1530 1531 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1532 Record.clear(); 1533 } 1534 1535 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1536 SmallVectorImpl<uint64_t> &Record, 1537 unsigned Abbrev) { 1538 Record.push_back(N->isDistinct()); 1539 Record.push_back(N->getTag()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1541 Record.push_back(N->getSizeInBits()); 1542 Record.push_back(N->getAlignInBits()); 1543 Record.push_back(N->getEncoding()); 1544 Record.push_back(N->getFlags()); 1545 1546 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1551 SmallVectorImpl<uint64_t> &Record, 1552 unsigned Abbrev) { 1553 Record.push_back(N->isDistinct()); 1554 Record.push_back(N->getTag()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1557 Record.push_back(N->getLine()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1559 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1560 Record.push_back(N->getSizeInBits()); 1561 Record.push_back(N->getAlignInBits()); 1562 Record.push_back(N->getOffsetInBits()); 1563 Record.push_back(N->getFlags()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1565 1566 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1567 // that there is no DWARF address space associated with DIDerivedType. 1568 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1569 Record.push_back(*DWARFAddressSpace + 1); 1570 else 1571 Record.push_back(0); 1572 1573 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeDICompositeType( 1578 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 const unsigned IsNotUsedInOldTypeRef = 0x2; 1581 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1582 Record.push_back(N->getTag()); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1585 Record.push_back(N->getLine()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1588 Record.push_back(N->getSizeInBits()); 1589 Record.push_back(N->getAlignInBits()); 1590 Record.push_back(N->getOffsetInBits()); 1591 Record.push_back(N->getFlags()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1593 Record.push_back(N->getRuntimeLang()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1598 1599 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1600 Record.clear(); 1601 } 1602 1603 void ModuleBitcodeWriter::writeDISubroutineType( 1604 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1605 unsigned Abbrev) { 1606 const unsigned HasNoOldTypeRefs = 0x2; 1607 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1608 Record.push_back(N->getFlags()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1610 Record.push_back(N->getCC()); 1611 1612 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1617 SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 Record.push_back(N->isDistinct()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1622 if (N->getRawChecksum()) { 1623 Record.push_back(N->getRawChecksum()->Kind); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1625 } else { 1626 // Maintain backwards compatibility with the old internal representation of 1627 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1628 Record.push_back(0); 1629 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1630 } 1631 auto Source = N->getRawSource(); 1632 if (Source) 1633 Record.push_back(VE.getMetadataOrNullID(*Source)); 1634 1635 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 assert(N->isDistinct() && "Expected distinct compile units"); 1643 Record.push_back(/* IsDistinct */ true); 1644 Record.push_back(N->getSourceLanguage()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1647 Record.push_back(N->isOptimized()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1649 Record.push_back(N->getRuntimeVersion()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1651 Record.push_back(N->getEmissionKind()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1654 Record.push_back(/* subprograms */ 0); 1655 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1657 Record.push_back(N->getDWOId()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1659 Record.push_back(N->getSplitDebugInlining()); 1660 Record.push_back(N->getDebugInfoForProfiling()); 1661 Record.push_back((unsigned)N->getNameTableKind()); 1662 1663 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 const uint64_t HasUnitFlag = 1 << 1; 1671 const uint64_t HasSPFlagsFlag = 1 << 2; 1672 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1673 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1679 Record.push_back(N->getScopeLine()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1681 Record.push_back(N->getSPFlags()); 1682 Record.push_back(N->getVirtualIndex()); 1683 Record.push_back(N->getFlags()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1688 Record.push_back(N->getThisAdjustment()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1690 1691 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1692 Record.clear(); 1693 } 1694 1695 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1696 SmallVectorImpl<uint64_t> &Record, 1697 unsigned Abbrev) { 1698 Record.push_back(N->isDistinct()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1701 Record.push_back(N->getLine()); 1702 Record.push_back(N->getColumn()); 1703 1704 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1705 Record.clear(); 1706 } 1707 1708 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1709 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1710 unsigned Abbrev) { 1711 Record.push_back(N->isDistinct()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1714 Record.push_back(N->getDiscriminator()); 1715 1716 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1717 Record.clear(); 1718 } 1719 1720 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1721 SmallVectorImpl<uint64_t> &Record, 1722 unsigned Abbrev) { 1723 Record.push_back(N->isDistinct()); 1724 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1728 Record.push_back(N->getLineNo()); 1729 1730 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1731 Record.clear(); 1732 } 1733 1734 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1735 SmallVectorImpl<uint64_t> &Record, 1736 unsigned Abbrev) { 1737 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1738 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1740 1741 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1742 Record.clear(); 1743 } 1744 1745 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1746 SmallVectorImpl<uint64_t> &Record, 1747 unsigned Abbrev) { 1748 Record.push_back(N->isDistinct()); 1749 Record.push_back(N->getMacinfoType()); 1750 Record.push_back(N->getLine()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1753 1754 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1759 SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 Record.push_back(N->isDistinct()); 1762 Record.push_back(N->getMacinfoType()); 1763 Record.push_back(N->getLine()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1766 1767 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1768 Record.clear(); 1769 } 1770 1771 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1772 SmallVectorImpl<uint64_t> &Record, 1773 unsigned Abbrev) { 1774 Record.push_back(N->isDistinct()); 1775 for (auto &I : N->operands()) 1776 Record.push_back(VE.getMetadataOrNullID(I)); 1777 1778 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1783 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 Record.push_back(N->isDistinct()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1788 1789 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1794 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1795 unsigned Abbrev) { 1796 Record.push_back(N->isDistinct()); 1797 Record.push_back(N->getTag()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1801 1802 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1803 Record.clear(); 1804 } 1805 1806 void ModuleBitcodeWriter::writeDIGlobalVariable( 1807 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1808 unsigned Abbrev) { 1809 const uint64_t Version = 2 << 1; 1810 Record.push_back((uint64_t)N->isDistinct() | Version); 1811 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1815 Record.push_back(N->getLine()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1817 Record.push_back(N->isLocalToUnit()); 1818 Record.push_back(N->isDefinition()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1821 Record.push_back(N->getAlignInBits()); 1822 1823 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDILocalVariable( 1828 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 // In order to support all possible bitcode formats in BitcodeReader we need 1831 // to distinguish the following cases: 1832 // 1) Record has no artificial tag (Record[1]), 1833 // has no obsolete inlinedAt field (Record[9]). 1834 // In this case Record size will be 8, HasAlignment flag is false. 1835 // 2) Record has artificial tag (Record[1]), 1836 // has no obsolete inlignedAt field (Record[9]). 1837 // In this case Record size will be 9, HasAlignment flag is false. 1838 // 3) Record has both artificial tag (Record[1]) and 1839 // obsolete inlignedAt field (Record[9]). 1840 // In this case Record size will be 10, HasAlignment flag is false. 1841 // 4) Record has neither artificial tag, nor inlignedAt field, but 1842 // HasAlignment flag is true and Record[8] contains alignment value. 1843 const uint64_t HasAlignmentFlag = 1 << 1; 1844 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1845 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1848 Record.push_back(N->getLine()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1850 Record.push_back(N->getArg()); 1851 Record.push_back(N->getFlags()); 1852 Record.push_back(N->getAlignInBits()); 1853 1854 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1855 Record.clear(); 1856 } 1857 1858 void ModuleBitcodeWriter::writeDILabel( 1859 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1860 unsigned Abbrev) { 1861 Record.push_back((uint64_t)N->isDistinct()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1865 Record.push_back(N->getLine()); 1866 1867 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1868 Record.clear(); 1869 } 1870 1871 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1872 SmallVectorImpl<uint64_t> &Record, 1873 unsigned Abbrev) { 1874 Record.reserve(N->getElements().size() + 1); 1875 const uint64_t Version = 3 << 1; 1876 Record.push_back((uint64_t)N->isDistinct() | Version); 1877 Record.append(N->elements_begin(), N->elements_end()); 1878 1879 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1880 Record.clear(); 1881 } 1882 1883 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1884 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1885 unsigned Abbrev) { 1886 Record.push_back(N->isDistinct()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1889 1890 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1891 Record.clear(); 1892 } 1893 1894 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1895 SmallVectorImpl<uint64_t> &Record, 1896 unsigned Abbrev) { 1897 Record.push_back(N->isDistinct()); 1898 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1899 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1900 Record.push_back(N->getLine()); 1901 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1903 Record.push_back(N->getAttributes()); 1904 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1905 1906 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDIImportedEntity( 1911 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 Record.push_back(N->getTag()); 1915 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1917 Record.push_back(N->getLine()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1919 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1920 1921 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1926 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1927 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1930 return Stream.EmitAbbrev(std::move(Abbv)); 1931 } 1932 1933 void ModuleBitcodeWriter::writeNamedMetadata( 1934 SmallVectorImpl<uint64_t> &Record) { 1935 if (M.named_metadata_empty()) 1936 return; 1937 1938 unsigned Abbrev = createNamedMetadataAbbrev(); 1939 for (const NamedMDNode &NMD : M.named_metadata()) { 1940 // Write name. 1941 StringRef Str = NMD.getName(); 1942 Record.append(Str.bytes_begin(), Str.bytes_end()); 1943 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1944 Record.clear(); 1945 1946 // Write named metadata operands. 1947 for (const MDNode *N : NMD.operands()) 1948 Record.push_back(VE.getMetadataID(N)); 1949 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1950 Record.clear(); 1951 } 1952 } 1953 1954 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1955 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1956 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1960 return Stream.EmitAbbrev(std::move(Abbv)); 1961 } 1962 1963 /// Write out a record for MDString. 1964 /// 1965 /// All the metadata strings in a metadata block are emitted in a single 1966 /// record. The sizes and strings themselves are shoved into a blob. 1967 void ModuleBitcodeWriter::writeMetadataStrings( 1968 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1969 if (Strings.empty()) 1970 return; 1971 1972 // Start the record with the number of strings. 1973 Record.push_back(bitc::METADATA_STRINGS); 1974 Record.push_back(Strings.size()); 1975 1976 // Emit the sizes of the strings in the blob. 1977 SmallString<256> Blob; 1978 { 1979 BitstreamWriter W(Blob); 1980 for (const Metadata *MD : Strings) 1981 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1982 W.FlushToWord(); 1983 } 1984 1985 // Add the offset to the strings to the record. 1986 Record.push_back(Blob.size()); 1987 1988 // Add the strings to the blob. 1989 for (const Metadata *MD : Strings) 1990 Blob.append(cast<MDString>(MD)->getString()); 1991 1992 // Emit the final record. 1993 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1994 Record.clear(); 1995 } 1996 1997 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1998 enum MetadataAbbrev : unsigned { 1999 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2000 #include "llvm/IR/Metadata.def" 2001 LastPlusOne 2002 }; 2003 2004 void ModuleBitcodeWriter::writeMetadataRecords( 2005 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2006 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2007 if (MDs.empty()) 2008 return; 2009 2010 // Initialize MDNode abbreviations. 2011 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2012 #include "llvm/IR/Metadata.def" 2013 2014 for (const Metadata *MD : MDs) { 2015 if (IndexPos) 2016 IndexPos->push_back(Stream.GetCurrentBitNo()); 2017 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2018 assert(N->isResolved() && "Expected forward references to be resolved"); 2019 2020 switch (N->getMetadataID()) { 2021 default: 2022 llvm_unreachable("Invalid MDNode subclass"); 2023 #define HANDLE_MDNODE_LEAF(CLASS) \ 2024 case Metadata::CLASS##Kind: \ 2025 if (MDAbbrevs) \ 2026 write##CLASS(cast<CLASS>(N), Record, \ 2027 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2028 else \ 2029 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2030 continue; 2031 #include "llvm/IR/Metadata.def" 2032 } 2033 } 2034 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2035 } 2036 } 2037 2038 void ModuleBitcodeWriter::writeModuleMetadata() { 2039 if (!VE.hasMDs() && M.named_metadata_empty()) 2040 return; 2041 2042 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2043 SmallVector<uint64_t, 64> Record; 2044 2045 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2046 // block and load any metadata. 2047 std::vector<unsigned> MDAbbrevs; 2048 2049 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2050 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2051 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2052 createGenericDINodeAbbrev(); 2053 2054 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2055 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2058 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2059 2060 Abbv = std::make_shared<BitCodeAbbrev>(); 2061 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2064 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2065 2066 // Emit MDStrings together upfront. 2067 writeMetadataStrings(VE.getMDStrings(), Record); 2068 2069 // We only emit an index for the metadata record if we have more than a given 2070 // (naive) threshold of metadatas, otherwise it is not worth it. 2071 if (VE.getNonMDStrings().size() > IndexThreshold) { 2072 // Write a placeholder value in for the offset of the metadata index, 2073 // which is written after the records, so that it can include 2074 // the offset of each entry. The placeholder offset will be 2075 // updated after all records are emitted. 2076 uint64_t Vals[] = {0, 0}; 2077 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2078 } 2079 2080 // Compute and save the bit offset to the current position, which will be 2081 // patched when we emit the index later. We can simply subtract the 64-bit 2082 // fixed size from the current bit number to get the location to backpatch. 2083 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2084 2085 // This index will contain the bitpos for each individual record. 2086 std::vector<uint64_t> IndexPos; 2087 IndexPos.reserve(VE.getNonMDStrings().size()); 2088 2089 // Write all the records 2090 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2091 2092 if (VE.getNonMDStrings().size() > IndexThreshold) { 2093 // Now that we have emitted all the records we will emit the index. But 2094 // first 2095 // backpatch the forward reference so that the reader can skip the records 2096 // efficiently. 2097 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2098 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2099 2100 // Delta encode the index. 2101 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2102 for (auto &Elt : IndexPos) { 2103 auto EltDelta = Elt - PreviousValue; 2104 PreviousValue = Elt; 2105 Elt = EltDelta; 2106 } 2107 // Emit the index record. 2108 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2109 IndexPos.clear(); 2110 } 2111 2112 // Write the named metadata now. 2113 writeNamedMetadata(Record); 2114 2115 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2116 SmallVector<uint64_t, 4> Record; 2117 Record.push_back(VE.getValueID(&GO)); 2118 pushGlobalMetadataAttachment(Record, GO); 2119 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2120 }; 2121 for (const Function &F : M) 2122 if (F.isDeclaration() && F.hasMetadata()) 2123 AddDeclAttachedMetadata(F); 2124 // FIXME: Only store metadata for declarations here, and move data for global 2125 // variable definitions to a separate block (PR28134). 2126 for (const GlobalVariable &GV : M.globals()) 2127 if (GV.hasMetadata()) 2128 AddDeclAttachedMetadata(GV); 2129 2130 Stream.ExitBlock(); 2131 } 2132 2133 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2134 if (!VE.hasMDs()) 2135 return; 2136 2137 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2138 SmallVector<uint64_t, 64> Record; 2139 writeMetadataStrings(VE.getMDStrings(), Record); 2140 writeMetadataRecords(VE.getNonMDStrings(), Record); 2141 Stream.ExitBlock(); 2142 } 2143 2144 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2145 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2146 // [n x [id, mdnode]] 2147 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2148 GO.getAllMetadata(MDs); 2149 for (const auto &I : MDs) { 2150 Record.push_back(I.first); 2151 Record.push_back(VE.getMetadataID(I.second)); 2152 } 2153 } 2154 2155 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2156 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2157 2158 SmallVector<uint64_t, 64> Record; 2159 2160 if (F.hasMetadata()) { 2161 pushGlobalMetadataAttachment(Record, F); 2162 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2163 Record.clear(); 2164 } 2165 2166 // Write metadata attachments 2167 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2168 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2169 for (const BasicBlock &BB : F) 2170 for (const Instruction &I : BB) { 2171 MDs.clear(); 2172 I.getAllMetadataOtherThanDebugLoc(MDs); 2173 2174 // If no metadata, ignore instruction. 2175 if (MDs.empty()) continue; 2176 2177 Record.push_back(VE.getInstructionID(&I)); 2178 2179 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2180 Record.push_back(MDs[i].first); 2181 Record.push_back(VE.getMetadataID(MDs[i].second)); 2182 } 2183 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2184 Record.clear(); 2185 } 2186 2187 Stream.ExitBlock(); 2188 } 2189 2190 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2191 SmallVector<uint64_t, 64> Record; 2192 2193 // Write metadata kinds 2194 // METADATA_KIND - [n x [id, name]] 2195 SmallVector<StringRef, 8> Names; 2196 M.getMDKindNames(Names); 2197 2198 if (Names.empty()) return; 2199 2200 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2201 2202 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2203 Record.push_back(MDKindID); 2204 StringRef KName = Names[MDKindID]; 2205 Record.append(KName.begin(), KName.end()); 2206 2207 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2208 Record.clear(); 2209 } 2210 2211 Stream.ExitBlock(); 2212 } 2213 2214 void ModuleBitcodeWriter::writeOperandBundleTags() { 2215 // Write metadata kinds 2216 // 2217 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2218 // 2219 // OPERAND_BUNDLE_TAG - [strchr x N] 2220 2221 SmallVector<StringRef, 8> Tags; 2222 M.getOperandBundleTags(Tags); 2223 2224 if (Tags.empty()) 2225 return; 2226 2227 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2228 2229 SmallVector<uint64_t, 64> Record; 2230 2231 for (auto Tag : Tags) { 2232 Record.append(Tag.begin(), Tag.end()); 2233 2234 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2235 Record.clear(); 2236 } 2237 2238 Stream.ExitBlock(); 2239 } 2240 2241 void ModuleBitcodeWriter::writeSyncScopeNames() { 2242 SmallVector<StringRef, 8> SSNs; 2243 M.getContext().getSyncScopeNames(SSNs); 2244 if (SSNs.empty()) 2245 return; 2246 2247 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2248 2249 SmallVector<uint64_t, 64> Record; 2250 for (auto SSN : SSNs) { 2251 Record.append(SSN.begin(), SSN.end()); 2252 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2253 Record.clear(); 2254 } 2255 2256 Stream.ExitBlock(); 2257 } 2258 2259 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2260 if ((int64_t)V >= 0) 2261 Vals.push_back(V << 1); 2262 else 2263 Vals.push_back((-V << 1) | 1); 2264 } 2265 2266 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2267 bool isGlobal) { 2268 if (FirstVal == LastVal) return; 2269 2270 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2271 2272 unsigned AggregateAbbrev = 0; 2273 unsigned String8Abbrev = 0; 2274 unsigned CString7Abbrev = 0; 2275 unsigned CString6Abbrev = 0; 2276 // If this is a constant pool for the module, emit module-specific abbrevs. 2277 if (isGlobal) { 2278 // Abbrev for CST_CODE_AGGREGATE. 2279 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2280 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2283 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2284 2285 // Abbrev for CST_CODE_STRING. 2286 Abbv = std::make_shared<BitCodeAbbrev>(); 2287 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2290 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2291 // Abbrev for CST_CODE_CSTRING. 2292 Abbv = std::make_shared<BitCodeAbbrev>(); 2293 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2296 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2297 // Abbrev for CST_CODE_CSTRING. 2298 Abbv = std::make_shared<BitCodeAbbrev>(); 2299 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2302 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2303 } 2304 2305 SmallVector<uint64_t, 64> Record; 2306 2307 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2308 Type *LastTy = nullptr; 2309 for (unsigned i = FirstVal; i != LastVal; ++i) { 2310 const Value *V = Vals[i].first; 2311 // If we need to switch types, do so now. 2312 if (V->getType() != LastTy) { 2313 LastTy = V->getType(); 2314 Record.push_back(VE.getTypeID(LastTy)); 2315 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2316 CONSTANTS_SETTYPE_ABBREV); 2317 Record.clear(); 2318 } 2319 2320 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2321 Record.push_back(unsigned(IA->hasSideEffects()) | 2322 unsigned(IA->isAlignStack()) << 1 | 2323 unsigned(IA->getDialect()&1) << 2); 2324 2325 // Add the asm string. 2326 const std::string &AsmStr = IA->getAsmString(); 2327 Record.push_back(AsmStr.size()); 2328 Record.append(AsmStr.begin(), AsmStr.end()); 2329 2330 // Add the constraint string. 2331 const std::string &ConstraintStr = IA->getConstraintString(); 2332 Record.push_back(ConstraintStr.size()); 2333 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2334 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2335 Record.clear(); 2336 continue; 2337 } 2338 const Constant *C = cast<Constant>(V); 2339 unsigned Code = -1U; 2340 unsigned AbbrevToUse = 0; 2341 if (C->isNullValue()) { 2342 Code = bitc::CST_CODE_NULL; 2343 } else if (isa<UndefValue>(C)) { 2344 Code = bitc::CST_CODE_UNDEF; 2345 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2346 if (IV->getBitWidth() <= 64) { 2347 uint64_t V = IV->getSExtValue(); 2348 emitSignedInt64(Record, V); 2349 Code = bitc::CST_CODE_INTEGER; 2350 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2351 } else { // Wide integers, > 64 bits in size. 2352 // We have an arbitrary precision integer value to write whose 2353 // bit width is > 64. However, in canonical unsigned integer 2354 // format it is likely that the high bits are going to be zero. 2355 // So, we only write the number of active words. 2356 unsigned NWords = IV->getValue().getActiveWords(); 2357 const uint64_t *RawWords = IV->getValue().getRawData(); 2358 for (unsigned i = 0; i != NWords; ++i) { 2359 emitSignedInt64(Record, RawWords[i]); 2360 } 2361 Code = bitc::CST_CODE_WIDE_INTEGER; 2362 } 2363 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2364 Code = bitc::CST_CODE_FLOAT; 2365 Type *Ty = CFP->getType(); 2366 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2367 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2368 } else if (Ty->isX86_FP80Ty()) { 2369 // api needed to prevent premature destruction 2370 // bits are not in the same order as a normal i80 APInt, compensate. 2371 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2372 const uint64_t *p = api.getRawData(); 2373 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2374 Record.push_back(p[0] & 0xffffLL); 2375 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2376 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2377 const uint64_t *p = api.getRawData(); 2378 Record.push_back(p[0]); 2379 Record.push_back(p[1]); 2380 } else { 2381 assert(0 && "Unknown FP type!"); 2382 } 2383 } else if (isa<ConstantDataSequential>(C) && 2384 cast<ConstantDataSequential>(C)->isString()) { 2385 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2386 // Emit constant strings specially. 2387 unsigned NumElts = Str->getNumElements(); 2388 // If this is a null-terminated string, use the denser CSTRING encoding. 2389 if (Str->isCString()) { 2390 Code = bitc::CST_CODE_CSTRING; 2391 --NumElts; // Don't encode the null, which isn't allowed by char6. 2392 } else { 2393 Code = bitc::CST_CODE_STRING; 2394 AbbrevToUse = String8Abbrev; 2395 } 2396 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2397 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2398 for (unsigned i = 0; i != NumElts; ++i) { 2399 unsigned char V = Str->getElementAsInteger(i); 2400 Record.push_back(V); 2401 isCStr7 &= (V & 128) == 0; 2402 if (isCStrChar6) 2403 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2404 } 2405 2406 if (isCStrChar6) 2407 AbbrevToUse = CString6Abbrev; 2408 else if (isCStr7) 2409 AbbrevToUse = CString7Abbrev; 2410 } else if (const ConstantDataSequential *CDS = 2411 dyn_cast<ConstantDataSequential>(C)) { 2412 Code = bitc::CST_CODE_DATA; 2413 Type *EltTy = CDS->getType()->getElementType(); 2414 if (isa<IntegerType>(EltTy)) { 2415 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2416 Record.push_back(CDS->getElementAsInteger(i)); 2417 } else { 2418 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2419 Record.push_back( 2420 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2421 } 2422 } else if (isa<ConstantAggregate>(C)) { 2423 Code = bitc::CST_CODE_AGGREGATE; 2424 for (const Value *Op : C->operands()) 2425 Record.push_back(VE.getValueID(Op)); 2426 AbbrevToUse = AggregateAbbrev; 2427 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2428 switch (CE->getOpcode()) { 2429 default: 2430 if (Instruction::isCast(CE->getOpcode())) { 2431 Code = bitc::CST_CODE_CE_CAST; 2432 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2433 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2434 Record.push_back(VE.getValueID(C->getOperand(0))); 2435 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2436 } else { 2437 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2438 Code = bitc::CST_CODE_CE_BINOP; 2439 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2440 Record.push_back(VE.getValueID(C->getOperand(0))); 2441 Record.push_back(VE.getValueID(C->getOperand(1))); 2442 uint64_t Flags = getOptimizationFlags(CE); 2443 if (Flags != 0) 2444 Record.push_back(Flags); 2445 } 2446 break; 2447 case Instruction::FNeg: { 2448 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2449 Code = bitc::CST_CODE_CE_UNOP; 2450 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2451 Record.push_back(VE.getValueID(C->getOperand(0))); 2452 uint64_t Flags = getOptimizationFlags(CE); 2453 if (Flags != 0) 2454 Record.push_back(Flags); 2455 break; 2456 } 2457 case Instruction::GetElementPtr: { 2458 Code = bitc::CST_CODE_CE_GEP; 2459 const auto *GO = cast<GEPOperator>(C); 2460 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2461 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2462 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2463 Record.push_back((*Idx << 1) | GO->isInBounds()); 2464 } else if (GO->isInBounds()) 2465 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2466 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2467 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2468 Record.push_back(VE.getValueID(C->getOperand(i))); 2469 } 2470 break; 2471 } 2472 case Instruction::Select: 2473 Code = bitc::CST_CODE_CE_SELECT; 2474 Record.push_back(VE.getValueID(C->getOperand(0))); 2475 Record.push_back(VE.getValueID(C->getOperand(1))); 2476 Record.push_back(VE.getValueID(C->getOperand(2))); 2477 break; 2478 case Instruction::ExtractElement: 2479 Code = bitc::CST_CODE_CE_EXTRACTELT; 2480 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2481 Record.push_back(VE.getValueID(C->getOperand(0))); 2482 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2483 Record.push_back(VE.getValueID(C->getOperand(1))); 2484 break; 2485 case Instruction::InsertElement: 2486 Code = bitc::CST_CODE_CE_INSERTELT; 2487 Record.push_back(VE.getValueID(C->getOperand(0))); 2488 Record.push_back(VE.getValueID(C->getOperand(1))); 2489 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2490 Record.push_back(VE.getValueID(C->getOperand(2))); 2491 break; 2492 case Instruction::ShuffleVector: 2493 // If the return type and argument types are the same, this is a 2494 // standard shufflevector instruction. If the types are different, 2495 // then the shuffle is widening or truncating the input vectors, and 2496 // the argument type must also be encoded. 2497 if (C->getType() == C->getOperand(0)->getType()) { 2498 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2499 } else { 2500 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2501 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2502 } 2503 Record.push_back(VE.getValueID(C->getOperand(0))); 2504 Record.push_back(VE.getValueID(C->getOperand(1))); 2505 Record.push_back(VE.getValueID(C->getOperand(2))); 2506 break; 2507 case Instruction::ICmp: 2508 case Instruction::FCmp: 2509 Code = bitc::CST_CODE_CE_CMP; 2510 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2511 Record.push_back(VE.getValueID(C->getOperand(0))); 2512 Record.push_back(VE.getValueID(C->getOperand(1))); 2513 Record.push_back(CE->getPredicate()); 2514 break; 2515 } 2516 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2517 Code = bitc::CST_CODE_BLOCKADDRESS; 2518 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2519 Record.push_back(VE.getValueID(BA->getFunction())); 2520 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2521 } else { 2522 #ifndef NDEBUG 2523 C->dump(); 2524 #endif 2525 llvm_unreachable("Unknown constant!"); 2526 } 2527 Stream.EmitRecord(Code, Record, AbbrevToUse); 2528 Record.clear(); 2529 } 2530 2531 Stream.ExitBlock(); 2532 } 2533 2534 void ModuleBitcodeWriter::writeModuleConstants() { 2535 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2536 2537 // Find the first constant to emit, which is the first non-globalvalue value. 2538 // We know globalvalues have been emitted by WriteModuleInfo. 2539 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2540 if (!isa<GlobalValue>(Vals[i].first)) { 2541 writeConstants(i, Vals.size(), true); 2542 return; 2543 } 2544 } 2545 } 2546 2547 /// pushValueAndType - The file has to encode both the value and type id for 2548 /// many values, because we need to know what type to create for forward 2549 /// references. However, most operands are not forward references, so this type 2550 /// field is not needed. 2551 /// 2552 /// This function adds V's value ID to Vals. If the value ID is higher than the 2553 /// instruction ID, then it is a forward reference, and it also includes the 2554 /// type ID. The value ID that is written is encoded relative to the InstID. 2555 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2556 SmallVectorImpl<unsigned> &Vals) { 2557 unsigned ValID = VE.getValueID(V); 2558 // Make encoding relative to the InstID. 2559 Vals.push_back(InstID - ValID); 2560 if (ValID >= InstID) { 2561 Vals.push_back(VE.getTypeID(V->getType())); 2562 return true; 2563 } 2564 return false; 2565 } 2566 2567 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2568 unsigned InstID) { 2569 SmallVector<unsigned, 64> Record; 2570 LLVMContext &C = CS.getInstruction()->getContext(); 2571 2572 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2573 const auto &Bundle = CS.getOperandBundleAt(i); 2574 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2575 2576 for (auto &Input : Bundle.Inputs) 2577 pushValueAndType(Input, InstID, Record); 2578 2579 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2580 Record.clear(); 2581 } 2582 } 2583 2584 /// pushValue - Like pushValueAndType, but where the type of the value is 2585 /// omitted (perhaps it was already encoded in an earlier operand). 2586 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2587 SmallVectorImpl<unsigned> &Vals) { 2588 unsigned ValID = VE.getValueID(V); 2589 Vals.push_back(InstID - ValID); 2590 } 2591 2592 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2593 SmallVectorImpl<uint64_t> &Vals) { 2594 unsigned ValID = VE.getValueID(V); 2595 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2596 emitSignedInt64(Vals, diff); 2597 } 2598 2599 /// WriteInstruction - Emit an instruction to the specified stream. 2600 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2601 unsigned InstID, 2602 SmallVectorImpl<unsigned> &Vals) { 2603 unsigned Code = 0; 2604 unsigned AbbrevToUse = 0; 2605 VE.setInstructionID(&I); 2606 switch (I.getOpcode()) { 2607 default: 2608 if (Instruction::isCast(I.getOpcode())) { 2609 Code = bitc::FUNC_CODE_INST_CAST; 2610 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2611 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2612 Vals.push_back(VE.getTypeID(I.getType())); 2613 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2614 } else { 2615 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2616 Code = bitc::FUNC_CODE_INST_BINOP; 2617 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2618 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2619 pushValue(I.getOperand(1), InstID, Vals); 2620 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2621 uint64_t Flags = getOptimizationFlags(&I); 2622 if (Flags != 0) { 2623 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2624 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2625 Vals.push_back(Flags); 2626 } 2627 } 2628 break; 2629 case Instruction::FNeg: { 2630 Code = bitc::FUNC_CODE_INST_UNOP; 2631 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2632 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2633 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2634 uint64_t Flags = getOptimizationFlags(&I); 2635 if (Flags != 0) { 2636 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2637 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2638 Vals.push_back(Flags); 2639 } 2640 break; 2641 } 2642 case Instruction::GetElementPtr: { 2643 Code = bitc::FUNC_CODE_INST_GEP; 2644 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2645 auto &GEPInst = cast<GetElementPtrInst>(I); 2646 Vals.push_back(GEPInst.isInBounds()); 2647 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2648 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2649 pushValueAndType(I.getOperand(i), InstID, Vals); 2650 break; 2651 } 2652 case Instruction::ExtractValue: { 2653 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2654 pushValueAndType(I.getOperand(0), InstID, Vals); 2655 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2656 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2657 break; 2658 } 2659 case Instruction::InsertValue: { 2660 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2661 pushValueAndType(I.getOperand(0), InstID, Vals); 2662 pushValueAndType(I.getOperand(1), InstID, Vals); 2663 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2664 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2665 break; 2666 } 2667 case Instruction::Select: { 2668 Code = bitc::FUNC_CODE_INST_VSELECT; 2669 pushValueAndType(I.getOperand(1), InstID, Vals); 2670 pushValue(I.getOperand(2), InstID, Vals); 2671 pushValueAndType(I.getOperand(0), InstID, Vals); 2672 uint64_t Flags = getOptimizationFlags(&I); 2673 if (Flags != 0) 2674 Vals.push_back(Flags); 2675 break; 2676 } 2677 case Instruction::ExtractElement: 2678 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2679 pushValueAndType(I.getOperand(0), InstID, Vals); 2680 pushValueAndType(I.getOperand(1), InstID, Vals); 2681 break; 2682 case Instruction::InsertElement: 2683 Code = bitc::FUNC_CODE_INST_INSERTELT; 2684 pushValueAndType(I.getOperand(0), InstID, Vals); 2685 pushValue(I.getOperand(1), InstID, Vals); 2686 pushValueAndType(I.getOperand(2), InstID, Vals); 2687 break; 2688 case Instruction::ShuffleVector: 2689 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2690 pushValueAndType(I.getOperand(0), InstID, Vals); 2691 pushValue(I.getOperand(1), InstID, Vals); 2692 pushValue(I.getOperand(2), InstID, Vals); 2693 break; 2694 case Instruction::ICmp: 2695 case Instruction::FCmp: { 2696 // compare returning Int1Ty or vector of Int1Ty 2697 Code = bitc::FUNC_CODE_INST_CMP2; 2698 pushValueAndType(I.getOperand(0), InstID, Vals); 2699 pushValue(I.getOperand(1), InstID, Vals); 2700 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2701 uint64_t Flags = getOptimizationFlags(&I); 2702 if (Flags != 0) 2703 Vals.push_back(Flags); 2704 break; 2705 } 2706 2707 case Instruction::Ret: 2708 { 2709 Code = bitc::FUNC_CODE_INST_RET; 2710 unsigned NumOperands = I.getNumOperands(); 2711 if (NumOperands == 0) 2712 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2713 else if (NumOperands == 1) { 2714 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2715 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2716 } else { 2717 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2718 pushValueAndType(I.getOperand(i), InstID, Vals); 2719 } 2720 } 2721 break; 2722 case Instruction::Br: 2723 { 2724 Code = bitc::FUNC_CODE_INST_BR; 2725 const BranchInst &II = cast<BranchInst>(I); 2726 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2727 if (II.isConditional()) { 2728 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2729 pushValue(II.getCondition(), InstID, Vals); 2730 } 2731 } 2732 break; 2733 case Instruction::Switch: 2734 { 2735 Code = bitc::FUNC_CODE_INST_SWITCH; 2736 const SwitchInst &SI = cast<SwitchInst>(I); 2737 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2738 pushValue(SI.getCondition(), InstID, Vals); 2739 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2740 for (auto Case : SI.cases()) { 2741 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2742 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2743 } 2744 } 2745 break; 2746 case Instruction::IndirectBr: 2747 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2748 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2749 // Encode the address operand as relative, but not the basic blocks. 2750 pushValue(I.getOperand(0), InstID, Vals); 2751 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2752 Vals.push_back(VE.getValueID(I.getOperand(i))); 2753 break; 2754 2755 case Instruction::Invoke: { 2756 const InvokeInst *II = cast<InvokeInst>(&I); 2757 const Value *Callee = II->getCalledValue(); 2758 FunctionType *FTy = II->getFunctionType(); 2759 2760 if (II->hasOperandBundles()) 2761 writeOperandBundles(II, InstID); 2762 2763 Code = bitc::FUNC_CODE_INST_INVOKE; 2764 2765 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2766 Vals.push_back(II->getCallingConv() | 1 << 13); 2767 Vals.push_back(VE.getValueID(II->getNormalDest())); 2768 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2769 Vals.push_back(VE.getTypeID(FTy)); 2770 pushValueAndType(Callee, InstID, Vals); 2771 2772 // Emit value #'s for the fixed parameters. 2773 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2774 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2775 2776 // Emit type/value pairs for varargs params. 2777 if (FTy->isVarArg()) { 2778 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2779 i != e; ++i) 2780 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2781 } 2782 break; 2783 } 2784 case Instruction::Resume: 2785 Code = bitc::FUNC_CODE_INST_RESUME; 2786 pushValueAndType(I.getOperand(0), InstID, Vals); 2787 break; 2788 case Instruction::CleanupRet: { 2789 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2790 const auto &CRI = cast<CleanupReturnInst>(I); 2791 pushValue(CRI.getCleanupPad(), InstID, Vals); 2792 if (CRI.hasUnwindDest()) 2793 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2794 break; 2795 } 2796 case Instruction::CatchRet: { 2797 Code = bitc::FUNC_CODE_INST_CATCHRET; 2798 const auto &CRI = cast<CatchReturnInst>(I); 2799 pushValue(CRI.getCatchPad(), InstID, Vals); 2800 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2801 break; 2802 } 2803 case Instruction::CleanupPad: 2804 case Instruction::CatchPad: { 2805 const auto &FuncletPad = cast<FuncletPadInst>(I); 2806 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2807 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2808 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2809 2810 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2811 Vals.push_back(NumArgOperands); 2812 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2813 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2814 break; 2815 } 2816 case Instruction::CatchSwitch: { 2817 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2818 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2819 2820 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2821 2822 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2823 Vals.push_back(NumHandlers); 2824 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2825 Vals.push_back(VE.getValueID(CatchPadBB)); 2826 2827 if (CatchSwitch.hasUnwindDest()) 2828 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2829 break; 2830 } 2831 case Instruction::CallBr: { 2832 const CallBrInst *CBI = cast<CallBrInst>(&I); 2833 const Value *Callee = CBI->getCalledValue(); 2834 FunctionType *FTy = CBI->getFunctionType(); 2835 2836 if (CBI->hasOperandBundles()) 2837 writeOperandBundles(CBI, InstID); 2838 2839 Code = bitc::FUNC_CODE_INST_CALLBR; 2840 2841 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2842 2843 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2844 1 << bitc::CALL_EXPLICIT_TYPE); 2845 2846 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2847 Vals.push_back(CBI->getNumIndirectDests()); 2848 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2849 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2850 2851 Vals.push_back(VE.getTypeID(FTy)); 2852 pushValueAndType(Callee, InstID, Vals); 2853 2854 // Emit value #'s for the fixed parameters. 2855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2856 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2857 2858 // Emit type/value pairs for varargs params. 2859 if (FTy->isVarArg()) { 2860 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2861 i != e; ++i) 2862 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2863 } 2864 break; 2865 } 2866 case Instruction::Unreachable: 2867 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2868 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2869 break; 2870 2871 case Instruction::PHI: { 2872 const PHINode &PN = cast<PHINode>(I); 2873 Code = bitc::FUNC_CODE_INST_PHI; 2874 // With the newer instruction encoding, forward references could give 2875 // negative valued IDs. This is most common for PHIs, so we use 2876 // signed VBRs. 2877 SmallVector<uint64_t, 128> Vals64; 2878 Vals64.push_back(VE.getTypeID(PN.getType())); 2879 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2880 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2881 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2882 } 2883 2884 uint64_t Flags = getOptimizationFlags(&I); 2885 if (Flags != 0) 2886 Vals64.push_back(Flags); 2887 2888 // Emit a Vals64 vector and exit. 2889 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2890 Vals64.clear(); 2891 return; 2892 } 2893 2894 case Instruction::LandingPad: { 2895 const LandingPadInst &LP = cast<LandingPadInst>(I); 2896 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2897 Vals.push_back(VE.getTypeID(LP.getType())); 2898 Vals.push_back(LP.isCleanup()); 2899 Vals.push_back(LP.getNumClauses()); 2900 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2901 if (LP.isCatch(I)) 2902 Vals.push_back(LandingPadInst::Catch); 2903 else 2904 Vals.push_back(LandingPadInst::Filter); 2905 pushValueAndType(LP.getClause(I), InstID, Vals); 2906 } 2907 break; 2908 } 2909 2910 case Instruction::Alloca: { 2911 Code = bitc::FUNC_CODE_INST_ALLOCA; 2912 const AllocaInst &AI = cast<AllocaInst>(I); 2913 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2914 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2915 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2916 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2917 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2918 "not enough bits for maximum alignment"); 2919 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2920 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2921 AlignRecord |= 1 << 6; 2922 AlignRecord |= AI.isSwiftError() << 7; 2923 Vals.push_back(AlignRecord); 2924 break; 2925 } 2926 2927 case Instruction::Load: 2928 if (cast<LoadInst>(I).isAtomic()) { 2929 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2930 pushValueAndType(I.getOperand(0), InstID, Vals); 2931 } else { 2932 Code = bitc::FUNC_CODE_INST_LOAD; 2933 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2934 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2935 } 2936 Vals.push_back(VE.getTypeID(I.getType())); 2937 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2938 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2939 if (cast<LoadInst>(I).isAtomic()) { 2940 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2941 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2942 } 2943 break; 2944 case Instruction::Store: 2945 if (cast<StoreInst>(I).isAtomic()) 2946 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2947 else 2948 Code = bitc::FUNC_CODE_INST_STORE; 2949 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2950 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2951 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2952 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2953 if (cast<StoreInst>(I).isAtomic()) { 2954 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2955 Vals.push_back( 2956 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2957 } 2958 break; 2959 case Instruction::AtomicCmpXchg: 2960 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2961 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2962 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2963 pushValue(I.getOperand(2), InstID, Vals); // newval. 2964 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2965 Vals.push_back( 2966 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2967 Vals.push_back( 2968 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2969 Vals.push_back( 2970 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2971 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2972 break; 2973 case Instruction::AtomicRMW: 2974 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2975 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2976 pushValue(I.getOperand(1), InstID, Vals); // val. 2977 Vals.push_back( 2978 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2979 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2980 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2981 Vals.push_back( 2982 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2983 break; 2984 case Instruction::Fence: 2985 Code = bitc::FUNC_CODE_INST_FENCE; 2986 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2987 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2988 break; 2989 case Instruction::Call: { 2990 const CallInst &CI = cast<CallInst>(I); 2991 FunctionType *FTy = CI.getFunctionType(); 2992 2993 if (CI.hasOperandBundles()) 2994 writeOperandBundles(&CI, InstID); 2995 2996 Code = bitc::FUNC_CODE_INST_CALL; 2997 2998 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2999 3000 unsigned Flags = getOptimizationFlags(&I); 3001 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3002 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3003 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3004 1 << bitc::CALL_EXPLICIT_TYPE | 3005 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3006 unsigned(Flags != 0) << bitc::CALL_FMF); 3007 if (Flags != 0) 3008 Vals.push_back(Flags); 3009 3010 Vals.push_back(VE.getTypeID(FTy)); 3011 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3012 3013 // Emit value #'s for the fixed parameters. 3014 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3015 // Check for labels (can happen with asm labels). 3016 if (FTy->getParamType(i)->isLabelTy()) 3017 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3018 else 3019 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3020 } 3021 3022 // Emit type/value pairs for varargs params. 3023 if (FTy->isVarArg()) { 3024 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3025 i != e; ++i) 3026 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3027 } 3028 break; 3029 } 3030 case Instruction::VAArg: 3031 Code = bitc::FUNC_CODE_INST_VAARG; 3032 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3033 pushValue(I.getOperand(0), InstID, Vals); // valist. 3034 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3035 break; 3036 } 3037 3038 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3039 Vals.clear(); 3040 } 3041 3042 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3043 /// to allow clients to efficiently find the function body. 3044 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3045 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3046 // Get the offset of the VST we are writing, and backpatch it into 3047 // the VST forward declaration record. 3048 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3049 // The BitcodeStartBit was the stream offset of the identification block. 3050 VSTOffset -= bitcodeStartBit(); 3051 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3052 // Note that we add 1 here because the offset is relative to one word 3053 // before the start of the identification block, which was historically 3054 // always the start of the regular bitcode header. 3055 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3056 3057 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3058 3059 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3060 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3063 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3064 3065 for (const Function &F : M) { 3066 uint64_t Record[2]; 3067 3068 if (F.isDeclaration()) 3069 continue; 3070 3071 Record[0] = VE.getValueID(&F); 3072 3073 // Save the word offset of the function (from the start of the 3074 // actual bitcode written to the stream). 3075 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3076 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3077 // Note that we add 1 here because the offset is relative to one word 3078 // before the start of the identification block, which was historically 3079 // always the start of the regular bitcode header. 3080 Record[1] = BitcodeIndex / 32 + 1; 3081 3082 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3083 } 3084 3085 Stream.ExitBlock(); 3086 } 3087 3088 /// Emit names for arguments, instructions and basic blocks in a function. 3089 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3090 const ValueSymbolTable &VST) { 3091 if (VST.empty()) 3092 return; 3093 3094 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3095 3096 // FIXME: Set up the abbrev, we know how many values there are! 3097 // FIXME: We know if the type names can use 7-bit ascii. 3098 SmallVector<uint64_t, 64> NameVals; 3099 3100 for (const ValueName &Name : VST) { 3101 // Figure out the encoding to use for the name. 3102 StringEncoding Bits = getStringEncoding(Name.getKey()); 3103 3104 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3105 NameVals.push_back(VE.getValueID(Name.getValue())); 3106 3107 // VST_CODE_ENTRY: [valueid, namechar x N] 3108 // VST_CODE_BBENTRY: [bbid, namechar x N] 3109 unsigned Code; 3110 if (isa<BasicBlock>(Name.getValue())) { 3111 Code = bitc::VST_CODE_BBENTRY; 3112 if (Bits == SE_Char6) 3113 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3114 } else { 3115 Code = bitc::VST_CODE_ENTRY; 3116 if (Bits == SE_Char6) 3117 AbbrevToUse = VST_ENTRY_6_ABBREV; 3118 else if (Bits == SE_Fixed7) 3119 AbbrevToUse = VST_ENTRY_7_ABBREV; 3120 } 3121 3122 for (const auto P : Name.getKey()) 3123 NameVals.push_back((unsigned char)P); 3124 3125 // Emit the finished record. 3126 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3127 NameVals.clear(); 3128 } 3129 3130 Stream.ExitBlock(); 3131 } 3132 3133 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3134 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3135 unsigned Code; 3136 if (isa<BasicBlock>(Order.V)) 3137 Code = bitc::USELIST_CODE_BB; 3138 else 3139 Code = bitc::USELIST_CODE_DEFAULT; 3140 3141 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3142 Record.push_back(VE.getValueID(Order.V)); 3143 Stream.EmitRecord(Code, Record); 3144 } 3145 3146 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3147 assert(VE.shouldPreserveUseListOrder() && 3148 "Expected to be preserving use-list order"); 3149 3150 auto hasMore = [&]() { 3151 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3152 }; 3153 if (!hasMore()) 3154 // Nothing to do. 3155 return; 3156 3157 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3158 while (hasMore()) { 3159 writeUseList(std::move(VE.UseListOrders.back())); 3160 VE.UseListOrders.pop_back(); 3161 } 3162 Stream.ExitBlock(); 3163 } 3164 3165 /// Emit a function body to the module stream. 3166 void ModuleBitcodeWriter::writeFunction( 3167 const Function &F, 3168 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3169 // Save the bitcode index of the start of this function block for recording 3170 // in the VST. 3171 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3172 3173 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3174 VE.incorporateFunction(F); 3175 3176 SmallVector<unsigned, 64> Vals; 3177 3178 // Emit the number of basic blocks, so the reader can create them ahead of 3179 // time. 3180 Vals.push_back(VE.getBasicBlocks().size()); 3181 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3182 Vals.clear(); 3183 3184 // If there are function-local constants, emit them now. 3185 unsigned CstStart, CstEnd; 3186 VE.getFunctionConstantRange(CstStart, CstEnd); 3187 writeConstants(CstStart, CstEnd, false); 3188 3189 // If there is function-local metadata, emit it now. 3190 writeFunctionMetadata(F); 3191 3192 // Keep a running idea of what the instruction ID is. 3193 unsigned InstID = CstEnd; 3194 3195 bool NeedsMetadataAttachment = F.hasMetadata(); 3196 3197 DILocation *LastDL = nullptr; 3198 // Finally, emit all the instructions, in order. 3199 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3200 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3201 I != E; ++I) { 3202 writeInstruction(*I, InstID, Vals); 3203 3204 if (!I->getType()->isVoidTy()) 3205 ++InstID; 3206 3207 // If the instruction has metadata, write a metadata attachment later. 3208 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3209 3210 // If the instruction has a debug location, emit it. 3211 DILocation *DL = I->getDebugLoc(); 3212 if (!DL) 3213 continue; 3214 3215 if (DL == LastDL) { 3216 // Just repeat the same debug loc as last time. 3217 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3218 continue; 3219 } 3220 3221 Vals.push_back(DL->getLine()); 3222 Vals.push_back(DL->getColumn()); 3223 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3224 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3225 Vals.push_back(DL->isImplicitCode()); 3226 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3227 Vals.clear(); 3228 3229 LastDL = DL; 3230 } 3231 3232 // Emit names for all the instructions etc. 3233 if (auto *Symtab = F.getValueSymbolTable()) 3234 writeFunctionLevelValueSymbolTable(*Symtab); 3235 3236 if (NeedsMetadataAttachment) 3237 writeFunctionMetadataAttachment(F); 3238 if (VE.shouldPreserveUseListOrder()) 3239 writeUseListBlock(&F); 3240 VE.purgeFunction(); 3241 Stream.ExitBlock(); 3242 } 3243 3244 // Emit blockinfo, which defines the standard abbreviations etc. 3245 void ModuleBitcodeWriter::writeBlockInfo() { 3246 // We only want to emit block info records for blocks that have multiple 3247 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3248 // Other blocks can define their abbrevs inline. 3249 Stream.EnterBlockInfoBlock(); 3250 3251 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3252 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3257 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3258 VST_ENTRY_8_ABBREV) 3259 llvm_unreachable("Unexpected abbrev ordering!"); 3260 } 3261 3262 { // 7-bit fixed width VST_CODE_ENTRY strings. 3263 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3264 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3268 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3269 VST_ENTRY_7_ABBREV) 3270 llvm_unreachable("Unexpected abbrev ordering!"); 3271 } 3272 { // 6-bit char6 VST_CODE_ENTRY strings. 3273 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3274 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3278 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3279 VST_ENTRY_6_ABBREV) 3280 llvm_unreachable("Unexpected abbrev ordering!"); 3281 } 3282 { // 6-bit char6 VST_CODE_BBENTRY strings. 3283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3284 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3288 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3289 VST_BBENTRY_6_ABBREV) 3290 llvm_unreachable("Unexpected abbrev ordering!"); 3291 } 3292 3293 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3294 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3295 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3297 VE.computeBitsRequiredForTypeIndicies())); 3298 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3299 CONSTANTS_SETTYPE_ABBREV) 3300 llvm_unreachable("Unexpected abbrev ordering!"); 3301 } 3302 3303 { // INTEGER abbrev for CONSTANTS_BLOCK. 3304 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3305 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3307 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3308 CONSTANTS_INTEGER_ABBREV) 3309 llvm_unreachable("Unexpected abbrev ordering!"); 3310 } 3311 3312 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3314 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3317 VE.computeBitsRequiredForTypeIndicies())); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3319 3320 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3321 CONSTANTS_CE_CAST_Abbrev) 3322 llvm_unreachable("Unexpected abbrev ordering!"); 3323 } 3324 { // NULL abbrev for CONSTANTS_BLOCK. 3325 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3326 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3327 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3328 CONSTANTS_NULL_Abbrev) 3329 llvm_unreachable("Unexpected abbrev ordering!"); 3330 } 3331 3332 // FIXME: This should only use space for first class types! 3333 3334 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3335 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3336 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3339 VE.computeBitsRequiredForTypeIndicies())); 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3342 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3343 FUNCTION_INST_LOAD_ABBREV) 3344 llvm_unreachable("Unexpected abbrev ordering!"); 3345 } 3346 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3348 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3351 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3352 FUNCTION_INST_UNOP_ABBREV) 3353 llvm_unreachable("Unexpected abbrev ordering!"); 3354 } 3355 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3356 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3357 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3361 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3362 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3363 llvm_unreachable("Unexpected abbrev ordering!"); 3364 } 3365 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3366 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3367 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3371 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3372 FUNCTION_INST_BINOP_ABBREV) 3373 llvm_unreachable("Unexpected abbrev ordering!"); 3374 } 3375 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3376 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3377 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3382 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3383 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3384 llvm_unreachable("Unexpected abbrev ordering!"); 3385 } 3386 { // INST_CAST abbrev for FUNCTION_BLOCK. 3387 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3388 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3391 VE.computeBitsRequiredForTypeIndicies())); 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3394 FUNCTION_INST_CAST_ABBREV) 3395 llvm_unreachable("Unexpected abbrev ordering!"); 3396 } 3397 3398 { // INST_RET abbrev for FUNCTION_BLOCK. 3399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3400 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3401 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3402 FUNCTION_INST_RET_VOID_ABBREV) 3403 llvm_unreachable("Unexpected abbrev ordering!"); 3404 } 3405 { // INST_RET abbrev for FUNCTION_BLOCK. 3406 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3407 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3409 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3410 FUNCTION_INST_RET_VAL_ABBREV) 3411 llvm_unreachable("Unexpected abbrev ordering!"); 3412 } 3413 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3416 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3417 FUNCTION_INST_UNREACHABLE_ABBREV) 3418 llvm_unreachable("Unexpected abbrev ordering!"); 3419 } 3420 { 3421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3422 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3425 Log2_32_Ceil(VE.getTypes().size() + 1))); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3428 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3429 FUNCTION_INST_GEP_ABBREV) 3430 llvm_unreachable("Unexpected abbrev ordering!"); 3431 } 3432 3433 Stream.ExitBlock(); 3434 } 3435 3436 /// Write the module path strings, currently only used when generating 3437 /// a combined index file. 3438 void IndexBitcodeWriter::writeModStrings() { 3439 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3440 3441 // TODO: See which abbrev sizes we actually need to emit 3442 3443 // 8-bit fixed-width MST_ENTRY strings. 3444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3449 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3450 3451 // 7-bit fixed width MST_ENTRY strings. 3452 Abbv = std::make_shared<BitCodeAbbrev>(); 3453 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3457 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3458 3459 // 6-bit char6 MST_ENTRY strings. 3460 Abbv = std::make_shared<BitCodeAbbrev>(); 3461 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3465 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3466 3467 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3468 Abbv = std::make_shared<BitCodeAbbrev>(); 3469 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3475 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3476 3477 SmallVector<unsigned, 64> Vals; 3478 forEachModule( 3479 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3480 StringRef Key = MPSE.getKey(); 3481 const auto &Value = MPSE.getValue(); 3482 StringEncoding Bits = getStringEncoding(Key); 3483 unsigned AbbrevToUse = Abbrev8Bit; 3484 if (Bits == SE_Char6) 3485 AbbrevToUse = Abbrev6Bit; 3486 else if (Bits == SE_Fixed7) 3487 AbbrevToUse = Abbrev7Bit; 3488 3489 Vals.push_back(Value.first); 3490 Vals.append(Key.begin(), Key.end()); 3491 3492 // Emit the finished record. 3493 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3494 3495 // Emit an optional hash for the module now 3496 const auto &Hash = Value.second; 3497 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3498 Vals.assign(Hash.begin(), Hash.end()); 3499 // Emit the hash record. 3500 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3501 } 3502 3503 Vals.clear(); 3504 }); 3505 Stream.ExitBlock(); 3506 } 3507 3508 /// Write the function type metadata related records that need to appear before 3509 /// a function summary entry (whether per-module or combined). 3510 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3511 FunctionSummary *FS) { 3512 if (!FS->type_tests().empty()) 3513 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3514 3515 SmallVector<uint64_t, 64> Record; 3516 3517 auto WriteVFuncIdVec = [&](uint64_t Ty, 3518 ArrayRef<FunctionSummary::VFuncId> VFs) { 3519 if (VFs.empty()) 3520 return; 3521 Record.clear(); 3522 for (auto &VF : VFs) { 3523 Record.push_back(VF.GUID); 3524 Record.push_back(VF.Offset); 3525 } 3526 Stream.EmitRecord(Ty, Record); 3527 }; 3528 3529 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3530 FS->type_test_assume_vcalls()); 3531 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3532 FS->type_checked_load_vcalls()); 3533 3534 auto WriteConstVCallVec = [&](uint64_t Ty, 3535 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3536 for (auto &VC : VCs) { 3537 Record.clear(); 3538 Record.push_back(VC.VFunc.GUID); 3539 Record.push_back(VC.VFunc.Offset); 3540 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3541 Stream.EmitRecord(Ty, Record); 3542 } 3543 }; 3544 3545 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3546 FS->type_test_assume_const_vcalls()); 3547 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3548 FS->type_checked_load_const_vcalls()); 3549 } 3550 3551 /// Collect type IDs from type tests used by function. 3552 static void 3553 getReferencedTypeIds(FunctionSummary *FS, 3554 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3555 if (!FS->type_tests().empty()) 3556 for (auto &TT : FS->type_tests()) 3557 ReferencedTypeIds.insert(TT); 3558 3559 auto GetReferencedTypesFromVFuncIdVec = 3560 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3561 for (auto &VF : VFs) 3562 ReferencedTypeIds.insert(VF.GUID); 3563 }; 3564 3565 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3566 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3567 3568 auto GetReferencedTypesFromConstVCallVec = 3569 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3570 for (auto &VC : VCs) 3571 ReferencedTypeIds.insert(VC.VFunc.GUID); 3572 }; 3573 3574 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3575 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3576 } 3577 3578 static void writeWholeProgramDevirtResolutionByArg( 3579 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3580 const WholeProgramDevirtResolution::ByArg &ByArg) { 3581 NameVals.push_back(args.size()); 3582 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3583 3584 NameVals.push_back(ByArg.TheKind); 3585 NameVals.push_back(ByArg.Info); 3586 NameVals.push_back(ByArg.Byte); 3587 NameVals.push_back(ByArg.Bit); 3588 } 3589 3590 static void writeWholeProgramDevirtResolution( 3591 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3592 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3593 NameVals.push_back(Id); 3594 3595 NameVals.push_back(Wpd.TheKind); 3596 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3597 NameVals.push_back(Wpd.SingleImplName.size()); 3598 3599 NameVals.push_back(Wpd.ResByArg.size()); 3600 for (auto &A : Wpd.ResByArg) 3601 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3602 } 3603 3604 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3605 StringTableBuilder &StrtabBuilder, 3606 const std::string &Id, 3607 const TypeIdSummary &Summary) { 3608 NameVals.push_back(StrtabBuilder.add(Id)); 3609 NameVals.push_back(Id.size()); 3610 3611 NameVals.push_back(Summary.TTRes.TheKind); 3612 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3613 NameVals.push_back(Summary.TTRes.AlignLog2); 3614 NameVals.push_back(Summary.TTRes.SizeM1); 3615 NameVals.push_back(Summary.TTRes.BitMask); 3616 NameVals.push_back(Summary.TTRes.InlineBits); 3617 3618 for (auto &W : Summary.WPDRes) 3619 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3620 W.second); 3621 } 3622 3623 static void writeTypeIdCompatibleVtableSummaryRecord( 3624 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3625 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3626 ValueEnumerator &VE) { 3627 NameVals.push_back(StrtabBuilder.add(Id)); 3628 NameVals.push_back(Id.size()); 3629 3630 for (auto &P : Summary) { 3631 NameVals.push_back(P.AddressPointOffset); 3632 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3633 } 3634 } 3635 3636 // Helper to emit a single function summary record. 3637 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3638 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3639 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3640 const Function &F) { 3641 NameVals.push_back(ValueID); 3642 3643 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3644 writeFunctionTypeMetadataRecords(Stream, FS); 3645 3646 auto SpecialRefCnts = FS->specialRefCounts(); 3647 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3648 NameVals.push_back(FS->instCount()); 3649 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3650 NameVals.push_back(FS->refs().size()); 3651 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3652 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3653 3654 for (auto &RI : FS->refs()) 3655 NameVals.push_back(VE.getValueID(RI.getValue())); 3656 3657 bool HasProfileData = 3658 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3659 for (auto &ECI : FS->calls()) { 3660 NameVals.push_back(getValueId(ECI.first)); 3661 if (HasProfileData) 3662 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3663 else if (WriteRelBFToSummary) 3664 NameVals.push_back(ECI.second.RelBlockFreq); 3665 } 3666 3667 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3668 unsigned Code = 3669 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3670 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3671 : bitc::FS_PERMODULE)); 3672 3673 // Emit the finished record. 3674 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3675 NameVals.clear(); 3676 } 3677 3678 // Collect the global value references in the given variable's initializer, 3679 // and emit them in a summary record. 3680 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3681 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3682 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3683 auto VI = Index->getValueInfo(V.getGUID()); 3684 if (!VI || VI.getSummaryList().empty()) { 3685 // Only declarations should not have a summary (a declaration might however 3686 // have a summary if the def was in module level asm). 3687 assert(V.isDeclaration()); 3688 return; 3689 } 3690 auto *Summary = VI.getSummaryList()[0].get(); 3691 NameVals.push_back(VE.getValueID(&V)); 3692 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3693 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3694 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3695 3696 auto VTableFuncs = VS->vTableFuncs(); 3697 if (!VTableFuncs.empty()) 3698 NameVals.push_back(VS->refs().size()); 3699 3700 unsigned SizeBeforeRefs = NameVals.size(); 3701 for (auto &RI : VS->refs()) 3702 NameVals.push_back(VE.getValueID(RI.getValue())); 3703 // Sort the refs for determinism output, the vector returned by FS->refs() has 3704 // been initialized from a DenseSet. 3705 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3706 3707 if (VTableFuncs.empty()) 3708 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3709 FSModRefsAbbrev); 3710 else { 3711 // VTableFuncs pairs should already be sorted by offset. 3712 for (auto &P : VTableFuncs) { 3713 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3714 NameVals.push_back(P.VTableOffset); 3715 } 3716 3717 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3718 FSModVTableRefsAbbrev); 3719 } 3720 NameVals.clear(); 3721 } 3722 3723 // Current version for the summary. 3724 // This is bumped whenever we introduce changes in the way some record are 3725 // interpreted, like flags for instance. 3726 static const uint64_t INDEX_VERSION = 7; 3727 3728 /// Emit the per-module summary section alongside the rest of 3729 /// the module's bitcode. 3730 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3731 // By default we compile with ThinLTO if the module has a summary, but the 3732 // client can request full LTO with a module flag. 3733 bool IsThinLTO = true; 3734 if (auto *MD = 3735 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3736 IsThinLTO = MD->getZExtValue(); 3737 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3738 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3739 4); 3740 3741 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3742 3743 // Write the index flags. 3744 uint64_t Flags = 0; 3745 // Bits 1-3 are set only in the combined index, skip them. 3746 if (Index->enableSplitLTOUnit()) 3747 Flags |= 0x8; 3748 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3749 3750 if (Index->begin() == Index->end()) { 3751 Stream.ExitBlock(); 3752 return; 3753 } 3754 3755 for (const auto &GVI : valueIds()) { 3756 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3757 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3758 } 3759 3760 // Abbrev for FS_PERMODULE_PROFILE. 3761 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3762 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3770 // numrefs x valueid, n x (valueid, hotness) 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3773 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3774 3775 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3776 Abbv = std::make_shared<BitCodeAbbrev>(); 3777 if (WriteRelBFToSummary) 3778 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3779 else 3780 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3788 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3791 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3792 3793 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3794 Abbv = std::make_shared<BitCodeAbbrev>(); 3795 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3800 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3801 3802 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3803 Abbv = std::make_shared<BitCodeAbbrev>(); 3804 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3808 // numrefs x valueid, n x (valueid , offset) 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3811 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3812 3813 // Abbrev for FS_ALIAS. 3814 Abbv = std::make_shared<BitCodeAbbrev>(); 3815 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3819 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3820 3821 // Abbrev for FS_TYPE_ID_METADATA 3822 Abbv = std::make_shared<BitCodeAbbrev>(); 3823 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3826 // n x (valueid , offset) 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3829 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3830 3831 SmallVector<uint64_t, 64> NameVals; 3832 // Iterate over the list of functions instead of the Index to 3833 // ensure the ordering is stable. 3834 for (const Function &F : M) { 3835 // Summary emission does not support anonymous functions, they have to 3836 // renamed using the anonymous function renaming pass. 3837 if (!F.hasName()) 3838 report_fatal_error("Unexpected anonymous function when writing summary"); 3839 3840 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3841 if (!VI || VI.getSummaryList().empty()) { 3842 // Only declarations should not have a summary (a declaration might 3843 // however have a summary if the def was in module level asm). 3844 assert(F.isDeclaration()); 3845 continue; 3846 } 3847 auto *Summary = VI.getSummaryList()[0].get(); 3848 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3849 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3850 } 3851 3852 // Capture references from GlobalVariable initializers, which are outside 3853 // of a function scope. 3854 for (const GlobalVariable &G : M.globals()) 3855 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3856 FSModVTableRefsAbbrev); 3857 3858 for (const GlobalAlias &A : M.aliases()) { 3859 auto *Aliasee = A.getBaseObject(); 3860 if (!Aliasee->hasName()) 3861 // Nameless function don't have an entry in the summary, skip it. 3862 continue; 3863 auto AliasId = VE.getValueID(&A); 3864 auto AliaseeId = VE.getValueID(Aliasee); 3865 NameVals.push_back(AliasId); 3866 auto *Summary = Index->getGlobalValueSummary(A); 3867 AliasSummary *AS = cast<AliasSummary>(Summary); 3868 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3869 NameVals.push_back(AliaseeId); 3870 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3871 NameVals.clear(); 3872 } 3873 3874 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3875 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3876 S.second, VE); 3877 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3878 TypeIdCompatibleVtableAbbrev); 3879 NameVals.clear(); 3880 } 3881 3882 Stream.ExitBlock(); 3883 } 3884 3885 /// Emit the combined summary section into the combined index file. 3886 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3887 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3888 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3889 3890 // Write the index flags. 3891 uint64_t Flags = 0; 3892 if (Index.withGlobalValueDeadStripping()) 3893 Flags |= 0x1; 3894 if (Index.skipModuleByDistributedBackend()) 3895 Flags |= 0x2; 3896 if (Index.hasSyntheticEntryCounts()) 3897 Flags |= 0x4; 3898 if (Index.enableSplitLTOUnit()) 3899 Flags |= 0x8; 3900 if (Index.partiallySplitLTOUnits()) 3901 Flags |= 0x10; 3902 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3903 3904 for (const auto &GVI : valueIds()) { 3905 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3906 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3907 } 3908 3909 // Abbrev for FS_COMBINED. 3910 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3911 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3921 // numrefs x valueid, n x (valueid) 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3924 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3925 3926 // Abbrev for FS_COMBINED_PROFILE. 3927 Abbv = std::make_shared<BitCodeAbbrev>(); 3928 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3938 // numrefs x valueid, n x (valueid, hotness) 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3941 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3942 3943 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3944 Abbv = std::make_shared<BitCodeAbbrev>(); 3945 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3951 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3952 3953 // Abbrev for FS_COMBINED_ALIAS. 3954 Abbv = std::make_shared<BitCodeAbbrev>(); 3955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3960 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3961 3962 // The aliases are emitted as a post-pass, and will point to the value 3963 // id of the aliasee. Save them in a vector for post-processing. 3964 SmallVector<AliasSummary *, 64> Aliases; 3965 3966 // Save the value id for each summary for alias emission. 3967 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3968 3969 SmallVector<uint64_t, 64> NameVals; 3970 3971 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3972 // with the type ids referenced by this index file. 3973 std::set<GlobalValue::GUID> ReferencedTypeIds; 3974 3975 // For local linkage, we also emit the original name separately 3976 // immediately after the record. 3977 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3978 if (!GlobalValue::isLocalLinkage(S.linkage())) 3979 return; 3980 NameVals.push_back(S.getOriginalName()); 3981 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3982 NameVals.clear(); 3983 }; 3984 3985 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3986 forEachSummary([&](GVInfo I, bool IsAliasee) { 3987 GlobalValueSummary *S = I.second; 3988 assert(S); 3989 DefOrUseGUIDs.insert(I.first); 3990 for (const ValueInfo &VI : S->refs()) 3991 DefOrUseGUIDs.insert(VI.getGUID()); 3992 3993 auto ValueId = getValueId(I.first); 3994 assert(ValueId); 3995 SummaryToValueIdMap[S] = *ValueId; 3996 3997 // If this is invoked for an aliasee, we want to record the above 3998 // mapping, but then not emit a summary entry (if the aliasee is 3999 // to be imported, we will invoke this separately with IsAliasee=false). 4000 if (IsAliasee) 4001 return; 4002 4003 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4004 // Will process aliases as a post-pass because the reader wants all 4005 // global to be loaded first. 4006 Aliases.push_back(AS); 4007 return; 4008 } 4009 4010 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4011 NameVals.push_back(*ValueId); 4012 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4013 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4014 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4015 for (auto &RI : VS->refs()) { 4016 auto RefValueId = getValueId(RI.getGUID()); 4017 if (!RefValueId) 4018 continue; 4019 NameVals.push_back(*RefValueId); 4020 } 4021 4022 // Emit the finished record. 4023 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4024 FSModRefsAbbrev); 4025 NameVals.clear(); 4026 MaybeEmitOriginalName(*S); 4027 return; 4028 } 4029 4030 auto *FS = cast<FunctionSummary>(S); 4031 writeFunctionTypeMetadataRecords(Stream, FS); 4032 getReferencedTypeIds(FS, ReferencedTypeIds); 4033 4034 NameVals.push_back(*ValueId); 4035 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4036 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4037 NameVals.push_back(FS->instCount()); 4038 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4039 NameVals.push_back(FS->entryCount()); 4040 4041 // Fill in below 4042 NameVals.push_back(0); // numrefs 4043 NameVals.push_back(0); // rorefcnt 4044 NameVals.push_back(0); // worefcnt 4045 4046 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4047 for (auto &RI : FS->refs()) { 4048 auto RefValueId = getValueId(RI.getGUID()); 4049 if (!RefValueId) 4050 continue; 4051 NameVals.push_back(*RefValueId); 4052 if (RI.isReadOnly()) 4053 RORefCnt++; 4054 else if (RI.isWriteOnly()) 4055 WORefCnt++; 4056 Count++; 4057 } 4058 NameVals[6] = Count; 4059 NameVals[7] = RORefCnt; 4060 NameVals[8] = WORefCnt; 4061 4062 bool HasProfileData = false; 4063 for (auto &EI : FS->calls()) { 4064 HasProfileData |= 4065 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4066 if (HasProfileData) 4067 break; 4068 } 4069 4070 for (auto &EI : FS->calls()) { 4071 // If this GUID doesn't have a value id, it doesn't have a function 4072 // summary and we don't need to record any calls to it. 4073 GlobalValue::GUID GUID = EI.first.getGUID(); 4074 auto CallValueId = getValueId(GUID); 4075 if (!CallValueId) { 4076 // For SamplePGO, the indirect call targets for local functions will 4077 // have its original name annotated in profile. We try to find the 4078 // corresponding PGOFuncName as the GUID. 4079 GUID = Index.getGUIDFromOriginalID(GUID); 4080 if (GUID == 0) 4081 continue; 4082 CallValueId = getValueId(GUID); 4083 if (!CallValueId) 4084 continue; 4085 // The mapping from OriginalId to GUID may return a GUID 4086 // that corresponds to a static variable. Filter it out here. 4087 // This can happen when 4088 // 1) There is a call to a library function which does not have 4089 // a CallValidId; 4090 // 2) There is a static variable with the OriginalGUID identical 4091 // to the GUID of the library function in 1); 4092 // When this happens, the logic for SamplePGO kicks in and 4093 // the static variable in 2) will be found, which needs to be 4094 // filtered out. 4095 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4096 if (GVSum && 4097 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4098 continue; 4099 } 4100 NameVals.push_back(*CallValueId); 4101 if (HasProfileData) 4102 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4103 } 4104 4105 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4106 unsigned Code = 4107 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4108 4109 // Emit the finished record. 4110 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4111 NameVals.clear(); 4112 MaybeEmitOriginalName(*S); 4113 }); 4114 4115 for (auto *AS : Aliases) { 4116 auto AliasValueId = SummaryToValueIdMap[AS]; 4117 assert(AliasValueId); 4118 NameVals.push_back(AliasValueId); 4119 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4120 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4121 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4122 assert(AliaseeValueId); 4123 NameVals.push_back(AliaseeValueId); 4124 4125 // Emit the finished record. 4126 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4127 NameVals.clear(); 4128 MaybeEmitOriginalName(*AS); 4129 4130 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4131 getReferencedTypeIds(FS, ReferencedTypeIds); 4132 } 4133 4134 if (!Index.cfiFunctionDefs().empty()) { 4135 for (auto &S : Index.cfiFunctionDefs()) { 4136 if (DefOrUseGUIDs.count( 4137 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4138 NameVals.push_back(StrtabBuilder.add(S)); 4139 NameVals.push_back(S.size()); 4140 } 4141 } 4142 if (!NameVals.empty()) { 4143 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4144 NameVals.clear(); 4145 } 4146 } 4147 4148 if (!Index.cfiFunctionDecls().empty()) { 4149 for (auto &S : Index.cfiFunctionDecls()) { 4150 if (DefOrUseGUIDs.count( 4151 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4152 NameVals.push_back(StrtabBuilder.add(S)); 4153 NameVals.push_back(S.size()); 4154 } 4155 } 4156 if (!NameVals.empty()) { 4157 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4158 NameVals.clear(); 4159 } 4160 } 4161 4162 // Walk the GUIDs that were referenced, and write the 4163 // corresponding type id records. 4164 for (auto &T : ReferencedTypeIds) { 4165 auto TidIter = Index.typeIds().equal_range(T); 4166 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4167 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4168 It->second.second); 4169 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4170 NameVals.clear(); 4171 } 4172 } 4173 4174 Stream.ExitBlock(); 4175 } 4176 4177 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4178 /// current llvm version, and a record for the epoch number. 4179 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4180 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4181 4182 // Write the "user readable" string identifying the bitcode producer 4183 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4184 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4187 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4188 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4189 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4190 4191 // Write the epoch version 4192 Abbv = std::make_shared<BitCodeAbbrev>(); 4193 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4195 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4196 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4197 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4198 Stream.ExitBlock(); 4199 } 4200 4201 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4202 // Emit the module's hash. 4203 // MODULE_CODE_HASH: [5*i32] 4204 if (GenerateHash) { 4205 uint32_t Vals[5]; 4206 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4207 Buffer.size() - BlockStartPos)); 4208 StringRef Hash = Hasher.result(); 4209 for (int Pos = 0; Pos < 20; Pos += 4) { 4210 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4211 } 4212 4213 // Emit the finished record. 4214 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4215 4216 if (ModHash) 4217 // Save the written hash value. 4218 llvm::copy(Vals, std::begin(*ModHash)); 4219 } 4220 } 4221 4222 void ModuleBitcodeWriter::write() { 4223 writeIdentificationBlock(Stream); 4224 4225 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4226 size_t BlockStartPos = Buffer.size(); 4227 4228 writeModuleVersion(); 4229 4230 // Emit blockinfo, which defines the standard abbreviations etc. 4231 writeBlockInfo(); 4232 4233 // Emit information describing all of the types in the module. 4234 writeTypeTable(); 4235 4236 // Emit information about attribute groups. 4237 writeAttributeGroupTable(); 4238 4239 // Emit information about parameter attributes. 4240 writeAttributeTable(); 4241 4242 writeComdats(); 4243 4244 // Emit top-level description of module, including target triple, inline asm, 4245 // descriptors for global variables, and function prototype info. 4246 writeModuleInfo(); 4247 4248 // Emit constants. 4249 writeModuleConstants(); 4250 4251 // Emit metadata kind names. 4252 writeModuleMetadataKinds(); 4253 4254 // Emit metadata. 4255 writeModuleMetadata(); 4256 4257 // Emit module-level use-lists. 4258 if (VE.shouldPreserveUseListOrder()) 4259 writeUseListBlock(nullptr); 4260 4261 writeOperandBundleTags(); 4262 writeSyncScopeNames(); 4263 4264 // Emit function bodies. 4265 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4266 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4267 if (!F->isDeclaration()) 4268 writeFunction(*F, FunctionToBitcodeIndex); 4269 4270 // Need to write after the above call to WriteFunction which populates 4271 // the summary information in the index. 4272 if (Index) 4273 writePerModuleGlobalValueSummary(); 4274 4275 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4276 4277 writeModuleHash(BlockStartPos); 4278 4279 Stream.ExitBlock(); 4280 } 4281 4282 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4283 uint32_t &Position) { 4284 support::endian::write32le(&Buffer[Position], Value); 4285 Position += 4; 4286 } 4287 4288 /// If generating a bc file on darwin, we have to emit a 4289 /// header and trailer to make it compatible with the system archiver. To do 4290 /// this we emit the following header, and then emit a trailer that pads the 4291 /// file out to be a multiple of 16 bytes. 4292 /// 4293 /// struct bc_header { 4294 /// uint32_t Magic; // 0x0B17C0DE 4295 /// uint32_t Version; // Version, currently always 0. 4296 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4297 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4298 /// uint32_t CPUType; // CPU specifier. 4299 /// ... potentially more later ... 4300 /// }; 4301 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4302 const Triple &TT) { 4303 unsigned CPUType = ~0U; 4304 4305 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4306 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4307 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4308 // specific constants here because they are implicitly part of the Darwin ABI. 4309 enum { 4310 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4311 DARWIN_CPU_TYPE_X86 = 7, 4312 DARWIN_CPU_TYPE_ARM = 12, 4313 DARWIN_CPU_TYPE_POWERPC = 18 4314 }; 4315 4316 Triple::ArchType Arch = TT.getArch(); 4317 if (Arch == Triple::x86_64) 4318 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4319 else if (Arch == Triple::x86) 4320 CPUType = DARWIN_CPU_TYPE_X86; 4321 else if (Arch == Triple::ppc) 4322 CPUType = DARWIN_CPU_TYPE_POWERPC; 4323 else if (Arch == Triple::ppc64) 4324 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4325 else if (Arch == Triple::arm || Arch == Triple::thumb) 4326 CPUType = DARWIN_CPU_TYPE_ARM; 4327 4328 // Traditional Bitcode starts after header. 4329 assert(Buffer.size() >= BWH_HeaderSize && 4330 "Expected header size to be reserved"); 4331 unsigned BCOffset = BWH_HeaderSize; 4332 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4333 4334 // Write the magic and version. 4335 unsigned Position = 0; 4336 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4337 writeInt32ToBuffer(0, Buffer, Position); // Version. 4338 writeInt32ToBuffer(BCOffset, Buffer, Position); 4339 writeInt32ToBuffer(BCSize, Buffer, Position); 4340 writeInt32ToBuffer(CPUType, Buffer, Position); 4341 4342 // If the file is not a multiple of 16 bytes, insert dummy padding. 4343 while (Buffer.size() & 15) 4344 Buffer.push_back(0); 4345 } 4346 4347 /// Helper to write the header common to all bitcode files. 4348 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4349 // Emit the file header. 4350 Stream.Emit((unsigned)'B', 8); 4351 Stream.Emit((unsigned)'C', 8); 4352 Stream.Emit(0x0, 4); 4353 Stream.Emit(0xC, 4); 4354 Stream.Emit(0xE, 4); 4355 Stream.Emit(0xD, 4); 4356 } 4357 4358 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4359 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4360 writeBitcodeHeader(*Stream); 4361 } 4362 4363 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4364 4365 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4366 Stream->EnterSubblock(Block, 3); 4367 4368 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4369 Abbv->Add(BitCodeAbbrevOp(Record)); 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4371 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4372 4373 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4374 4375 Stream->ExitBlock(); 4376 } 4377 4378 void BitcodeWriter::writeSymtab() { 4379 assert(!WroteStrtab && !WroteSymtab); 4380 4381 // If any module has module-level inline asm, we will require a registered asm 4382 // parser for the target so that we can create an accurate symbol table for 4383 // the module. 4384 for (Module *M : Mods) { 4385 if (M->getModuleInlineAsm().empty()) 4386 continue; 4387 4388 std::string Err; 4389 const Triple TT(M->getTargetTriple()); 4390 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4391 if (!T || !T->hasMCAsmParser()) 4392 return; 4393 } 4394 4395 WroteSymtab = true; 4396 SmallVector<char, 0> Symtab; 4397 // The irsymtab::build function may be unable to create a symbol table if the 4398 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4399 // table is not required for correctness, but we still want to be able to 4400 // write malformed modules to bitcode files, so swallow the error. 4401 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4402 consumeError(std::move(E)); 4403 return; 4404 } 4405 4406 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4407 {Symtab.data(), Symtab.size()}); 4408 } 4409 4410 void BitcodeWriter::writeStrtab() { 4411 assert(!WroteStrtab); 4412 4413 std::vector<char> Strtab; 4414 StrtabBuilder.finalizeInOrder(); 4415 Strtab.resize(StrtabBuilder.getSize()); 4416 StrtabBuilder.write((uint8_t *)Strtab.data()); 4417 4418 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4419 {Strtab.data(), Strtab.size()}); 4420 4421 WroteStrtab = true; 4422 } 4423 4424 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4425 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4426 WroteStrtab = true; 4427 } 4428 4429 void BitcodeWriter::writeModule(const Module &M, 4430 bool ShouldPreserveUseListOrder, 4431 const ModuleSummaryIndex *Index, 4432 bool GenerateHash, ModuleHash *ModHash) { 4433 assert(!WroteStrtab); 4434 4435 // The Mods vector is used by irsymtab::build, which requires non-const 4436 // Modules in case it needs to materialize metadata. But the bitcode writer 4437 // requires that the module is materialized, so we can cast to non-const here, 4438 // after checking that it is in fact materialized. 4439 assert(M.isMaterialized()); 4440 Mods.push_back(const_cast<Module *>(&M)); 4441 4442 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4443 ShouldPreserveUseListOrder, Index, 4444 GenerateHash, ModHash); 4445 ModuleWriter.write(); 4446 } 4447 4448 void BitcodeWriter::writeIndex( 4449 const ModuleSummaryIndex *Index, 4450 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4451 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4452 ModuleToSummariesForIndex); 4453 IndexWriter.write(); 4454 } 4455 4456 /// Write the specified module to the specified output stream. 4457 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4458 bool ShouldPreserveUseListOrder, 4459 const ModuleSummaryIndex *Index, 4460 bool GenerateHash, ModuleHash *ModHash) { 4461 SmallVector<char, 0> Buffer; 4462 Buffer.reserve(256*1024); 4463 4464 // If this is darwin or another generic macho target, reserve space for the 4465 // header. 4466 Triple TT(M.getTargetTriple()); 4467 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4468 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4469 4470 BitcodeWriter Writer(Buffer); 4471 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4472 ModHash); 4473 Writer.writeSymtab(); 4474 Writer.writeStrtab(); 4475 4476 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4477 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4478 4479 // Write the generated bitstream to "Out". 4480 Out.write((char*)&Buffer.front(), Buffer.size()); 4481 } 4482 4483 void IndexBitcodeWriter::write() { 4484 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4485 4486 writeModuleVersion(); 4487 4488 // Write the module paths in the combined index. 4489 writeModStrings(); 4490 4491 // Write the summary combined index records. 4492 writeCombinedGlobalValueSummary(); 4493 4494 Stream.ExitBlock(); 4495 } 4496 4497 // Write the specified module summary index to the given raw output stream, 4498 // where it will be written in a new bitcode block. This is used when 4499 // writing the combined index file for ThinLTO. When writing a subset of the 4500 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4501 void llvm::WriteIndexToFile( 4502 const ModuleSummaryIndex &Index, raw_ostream &Out, 4503 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4504 SmallVector<char, 0> Buffer; 4505 Buffer.reserve(256 * 1024); 4506 4507 BitcodeWriter Writer(Buffer); 4508 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4509 Writer.writeStrtab(); 4510 4511 Out.write((char *)&Buffer.front(), Buffer.size()); 4512 } 4513 4514 namespace { 4515 4516 /// Class to manage the bitcode writing for a thin link bitcode file. 4517 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4518 /// ModHash is for use in ThinLTO incremental build, generated while writing 4519 /// the module bitcode file. 4520 const ModuleHash *ModHash; 4521 4522 public: 4523 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4524 BitstreamWriter &Stream, 4525 const ModuleSummaryIndex &Index, 4526 const ModuleHash &ModHash) 4527 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4528 /*ShouldPreserveUseListOrder=*/false, &Index), 4529 ModHash(&ModHash) {} 4530 4531 void write(); 4532 4533 private: 4534 void writeSimplifiedModuleInfo(); 4535 }; 4536 4537 } // end anonymous namespace 4538 4539 // This function writes a simpilified module info for thin link bitcode file. 4540 // It only contains the source file name along with the name(the offset and 4541 // size in strtab) and linkage for global values. For the global value info 4542 // entry, in order to keep linkage at offset 5, there are three zeros used 4543 // as padding. 4544 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4545 SmallVector<unsigned, 64> Vals; 4546 // Emit the module's source file name. 4547 { 4548 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4549 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4550 if (Bits == SE_Char6) 4551 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4552 else if (Bits == SE_Fixed7) 4553 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4554 4555 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4557 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4559 Abbv->Add(AbbrevOpToUse); 4560 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4561 4562 for (const auto P : M.getSourceFileName()) 4563 Vals.push_back((unsigned char)P); 4564 4565 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4566 Vals.clear(); 4567 } 4568 4569 // Emit the global variable information. 4570 for (const GlobalVariable &GV : M.globals()) { 4571 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4572 Vals.push_back(StrtabBuilder.add(GV.getName())); 4573 Vals.push_back(GV.getName().size()); 4574 Vals.push_back(0); 4575 Vals.push_back(0); 4576 Vals.push_back(0); 4577 Vals.push_back(getEncodedLinkage(GV)); 4578 4579 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4580 Vals.clear(); 4581 } 4582 4583 // Emit the function proto information. 4584 for (const Function &F : M) { 4585 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4586 Vals.push_back(StrtabBuilder.add(F.getName())); 4587 Vals.push_back(F.getName().size()); 4588 Vals.push_back(0); 4589 Vals.push_back(0); 4590 Vals.push_back(0); 4591 Vals.push_back(getEncodedLinkage(F)); 4592 4593 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4594 Vals.clear(); 4595 } 4596 4597 // Emit the alias information. 4598 for (const GlobalAlias &A : M.aliases()) { 4599 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4600 Vals.push_back(StrtabBuilder.add(A.getName())); 4601 Vals.push_back(A.getName().size()); 4602 Vals.push_back(0); 4603 Vals.push_back(0); 4604 Vals.push_back(0); 4605 Vals.push_back(getEncodedLinkage(A)); 4606 4607 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4608 Vals.clear(); 4609 } 4610 4611 // Emit the ifunc information. 4612 for (const GlobalIFunc &I : M.ifuncs()) { 4613 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4614 Vals.push_back(StrtabBuilder.add(I.getName())); 4615 Vals.push_back(I.getName().size()); 4616 Vals.push_back(0); 4617 Vals.push_back(0); 4618 Vals.push_back(0); 4619 Vals.push_back(getEncodedLinkage(I)); 4620 4621 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4622 Vals.clear(); 4623 } 4624 } 4625 4626 void ThinLinkBitcodeWriter::write() { 4627 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4628 4629 writeModuleVersion(); 4630 4631 writeSimplifiedModuleInfo(); 4632 4633 writePerModuleGlobalValueSummary(); 4634 4635 // Write module hash. 4636 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4637 4638 Stream.ExitBlock(); 4639 } 4640 4641 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4642 const ModuleSummaryIndex &Index, 4643 const ModuleHash &ModHash) { 4644 assert(!WroteStrtab); 4645 4646 // The Mods vector is used by irsymtab::build, which requires non-const 4647 // Modules in case it needs to materialize metadata. But the bitcode writer 4648 // requires that the module is materialized, so we can cast to non-const here, 4649 // after checking that it is in fact materialized. 4650 assert(M.isMaterialized()); 4651 Mods.push_back(const_cast<Module *>(&M)); 4652 4653 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4654 ModHash); 4655 ThinLinkWriter.write(); 4656 } 4657 4658 // Write the specified thin link bitcode file to the given raw output stream, 4659 // where it will be written in a new bitcode block. This is used when 4660 // writing the per-module index file for ThinLTO. 4661 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4662 const ModuleSummaryIndex &Index, 4663 const ModuleHash &ModHash) { 4664 SmallVector<char, 0> Buffer; 4665 Buffer.reserve(256 * 1024); 4666 4667 BitcodeWriter Writer(Buffer); 4668 Writer.writeThinLinkBitcode(M, Index, ModHash); 4669 Writer.writeSymtab(); 4670 Writer.writeStrtab(); 4671 4672 Out.write((char *)&Buffer.front(), Buffer.size()); 4673 } 4674