1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) { 463 // If the stack id list is empty, this callsite info was synthesized for 464 // a missing tail call frame. Ensure that the callee's GUID gets a value 465 // id. Normally we only generate these for defined summaries, which in 466 // the case of distributed ThinLTO is only the functions already defined 467 // in the module or that we want to import. We don't bother to include 468 // all the callee symbols as they aren't normally needed in the backend. 469 // However, for the synthesized callsite infos we do need the callee 470 // GUID in the backend so that we can correlate the identified callee 471 // with this callsite info (which for non-tail calls is done by the 472 // ordering of the callsite infos and verified via stack ids). 473 if (CI.StackIdIndices.empty()) { 474 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 475 continue; 476 } 477 for (auto Idx : CI.StackIdIndices) 478 StackIdIndices.push_back(Idx); 479 } 480 for (auto &AI : FS->allocs()) 481 for (auto &MIB : AI.MIBs) 482 for (auto Idx : MIB.StackIdIndices) 483 StackIdIndices.push_back(Idx); 484 }); 485 llvm::sort(StackIdIndices); 486 StackIdIndices.erase( 487 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 488 StackIdIndices.end()); 489 } 490 491 /// The below iterator returns the GUID and associated summary. 492 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 493 494 /// Calls the callback for each value GUID and summary to be written to 495 /// bitcode. This hides the details of whether they are being pulled from the 496 /// entire index or just those in a provided ModuleToSummariesForIndex map. 497 template<typename Functor> 498 void forEachSummary(Functor Callback) { 499 if (ModuleToSummariesForIndex) { 500 for (auto &M : *ModuleToSummariesForIndex) 501 for (auto &Summary : M.second) { 502 Callback(Summary, false); 503 // Ensure aliasee is handled, e.g. for assigning a valueId, 504 // even if we are not importing the aliasee directly (the 505 // imported alias will contain a copy of aliasee). 506 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 507 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 508 } 509 } else { 510 for (auto &Summaries : Index) 511 for (auto &Summary : Summaries.second.SummaryList) 512 Callback({Summaries.first, Summary.get()}, false); 513 } 514 } 515 516 /// Calls the callback for each entry in the modulePaths StringMap that 517 /// should be written to the module path string table. This hides the details 518 /// of whether they are being pulled from the entire index or just those in a 519 /// provided ModuleToSummariesForIndex map. 520 template <typename Functor> void forEachModule(Functor Callback) { 521 if (ModuleToSummariesForIndex) { 522 for (const auto &M : *ModuleToSummariesForIndex) { 523 const auto &MPI = Index.modulePaths().find(M.first); 524 if (MPI == Index.modulePaths().end()) { 525 // This should only happen if the bitcode file was empty, in which 526 // case we shouldn't be importing (the ModuleToSummariesForIndex 527 // would only include the module we are writing and index for). 528 assert(ModuleToSummariesForIndex->size() == 1); 529 continue; 530 } 531 Callback(*MPI); 532 } 533 } else { 534 // Since StringMap iteration order isn't guaranteed, order by path string 535 // first. 536 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 537 // map lookup. 538 std::vector<StringRef> ModulePaths; 539 for (auto &[ModPath, _] : Index.modulePaths()) 540 ModulePaths.push_back(ModPath); 541 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 542 for (auto &ModPath : ModulePaths) 543 Callback(*Index.modulePaths().find(ModPath)); 544 } 545 } 546 547 /// Main entry point for writing a combined index to bitcode. 548 void write(); 549 550 private: 551 void writeModStrings(); 552 void writeCombinedGlobalValueSummary(); 553 554 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 555 auto VMI = GUIDToValueIdMap.find(ValGUID); 556 if (VMI == GUIDToValueIdMap.end()) 557 return std::nullopt; 558 return VMI->second; 559 } 560 561 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 562 }; 563 564 } // end anonymous namespace 565 566 static unsigned getEncodedCastOpcode(unsigned Opcode) { 567 switch (Opcode) { 568 default: llvm_unreachable("Unknown cast instruction!"); 569 case Instruction::Trunc : return bitc::CAST_TRUNC; 570 case Instruction::ZExt : return bitc::CAST_ZEXT; 571 case Instruction::SExt : return bitc::CAST_SEXT; 572 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 573 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 574 case Instruction::UIToFP : return bitc::CAST_UITOFP; 575 case Instruction::SIToFP : return bitc::CAST_SITOFP; 576 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 577 case Instruction::FPExt : return bitc::CAST_FPEXT; 578 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 579 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 580 case Instruction::BitCast : return bitc::CAST_BITCAST; 581 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 582 } 583 } 584 585 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 586 switch (Opcode) { 587 default: llvm_unreachable("Unknown binary instruction!"); 588 case Instruction::FNeg: return bitc::UNOP_FNEG; 589 } 590 } 591 592 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 593 switch (Opcode) { 594 default: llvm_unreachable("Unknown binary instruction!"); 595 case Instruction::Add: 596 case Instruction::FAdd: return bitc::BINOP_ADD; 597 case Instruction::Sub: 598 case Instruction::FSub: return bitc::BINOP_SUB; 599 case Instruction::Mul: 600 case Instruction::FMul: return bitc::BINOP_MUL; 601 case Instruction::UDiv: return bitc::BINOP_UDIV; 602 case Instruction::FDiv: 603 case Instruction::SDiv: return bitc::BINOP_SDIV; 604 case Instruction::URem: return bitc::BINOP_UREM; 605 case Instruction::FRem: 606 case Instruction::SRem: return bitc::BINOP_SREM; 607 case Instruction::Shl: return bitc::BINOP_SHL; 608 case Instruction::LShr: return bitc::BINOP_LSHR; 609 case Instruction::AShr: return bitc::BINOP_ASHR; 610 case Instruction::And: return bitc::BINOP_AND; 611 case Instruction::Or: return bitc::BINOP_OR; 612 case Instruction::Xor: return bitc::BINOP_XOR; 613 } 614 } 615 616 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 617 switch (Op) { 618 default: llvm_unreachable("Unknown RMW operation!"); 619 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 620 case AtomicRMWInst::Add: return bitc::RMW_ADD; 621 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 622 case AtomicRMWInst::And: return bitc::RMW_AND; 623 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 624 case AtomicRMWInst::Or: return bitc::RMW_OR; 625 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 626 case AtomicRMWInst::Max: return bitc::RMW_MAX; 627 case AtomicRMWInst::Min: return bitc::RMW_MIN; 628 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 629 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 630 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 631 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 632 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 633 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 634 case AtomicRMWInst::UIncWrap: 635 return bitc::RMW_UINC_WRAP; 636 case AtomicRMWInst::UDecWrap: 637 return bitc::RMW_UDEC_WRAP; 638 } 639 } 640 641 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 642 switch (Ordering) { 643 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 644 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 645 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 646 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 647 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 648 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 649 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 650 } 651 llvm_unreachable("Invalid ordering"); 652 } 653 654 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 655 StringRef Str, unsigned AbbrevToUse) { 656 SmallVector<unsigned, 64> Vals; 657 658 // Code: [strchar x N] 659 for (char C : Str) { 660 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 661 AbbrevToUse = 0; 662 Vals.push_back(C); 663 } 664 665 // Emit the finished record. 666 Stream.EmitRecord(Code, Vals, AbbrevToUse); 667 } 668 669 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 670 switch (Kind) { 671 case Attribute::Alignment: 672 return bitc::ATTR_KIND_ALIGNMENT; 673 case Attribute::AllocAlign: 674 return bitc::ATTR_KIND_ALLOC_ALIGN; 675 case Attribute::AllocSize: 676 return bitc::ATTR_KIND_ALLOC_SIZE; 677 case Attribute::AlwaysInline: 678 return bitc::ATTR_KIND_ALWAYS_INLINE; 679 case Attribute::Builtin: 680 return bitc::ATTR_KIND_BUILTIN; 681 case Attribute::ByVal: 682 return bitc::ATTR_KIND_BY_VAL; 683 case Attribute::Convergent: 684 return bitc::ATTR_KIND_CONVERGENT; 685 case Attribute::InAlloca: 686 return bitc::ATTR_KIND_IN_ALLOCA; 687 case Attribute::Cold: 688 return bitc::ATTR_KIND_COLD; 689 case Attribute::DisableSanitizerInstrumentation: 690 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 691 case Attribute::FnRetThunkExtern: 692 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 693 case Attribute::Hot: 694 return bitc::ATTR_KIND_HOT; 695 case Attribute::ElementType: 696 return bitc::ATTR_KIND_ELEMENTTYPE; 697 case Attribute::InlineHint: 698 return bitc::ATTR_KIND_INLINE_HINT; 699 case Attribute::InReg: 700 return bitc::ATTR_KIND_IN_REG; 701 case Attribute::JumpTable: 702 return bitc::ATTR_KIND_JUMP_TABLE; 703 case Attribute::MinSize: 704 return bitc::ATTR_KIND_MIN_SIZE; 705 case Attribute::AllocatedPointer: 706 return bitc::ATTR_KIND_ALLOCATED_POINTER; 707 case Attribute::AllocKind: 708 return bitc::ATTR_KIND_ALLOC_KIND; 709 case Attribute::Memory: 710 return bitc::ATTR_KIND_MEMORY; 711 case Attribute::NoFPClass: 712 return bitc::ATTR_KIND_NOFPCLASS; 713 case Attribute::Naked: 714 return bitc::ATTR_KIND_NAKED; 715 case Attribute::Nest: 716 return bitc::ATTR_KIND_NEST; 717 case Attribute::NoAlias: 718 return bitc::ATTR_KIND_NO_ALIAS; 719 case Attribute::NoBuiltin: 720 return bitc::ATTR_KIND_NO_BUILTIN; 721 case Attribute::NoCallback: 722 return bitc::ATTR_KIND_NO_CALLBACK; 723 case Attribute::NoCapture: 724 return bitc::ATTR_KIND_NO_CAPTURE; 725 case Attribute::NoDuplicate: 726 return bitc::ATTR_KIND_NO_DUPLICATE; 727 case Attribute::NoFree: 728 return bitc::ATTR_KIND_NOFREE; 729 case Attribute::NoImplicitFloat: 730 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 731 case Attribute::NoInline: 732 return bitc::ATTR_KIND_NO_INLINE; 733 case Attribute::NoRecurse: 734 return bitc::ATTR_KIND_NO_RECURSE; 735 case Attribute::NoMerge: 736 return bitc::ATTR_KIND_NO_MERGE; 737 case Attribute::NonLazyBind: 738 return bitc::ATTR_KIND_NON_LAZY_BIND; 739 case Attribute::NonNull: 740 return bitc::ATTR_KIND_NON_NULL; 741 case Attribute::Dereferenceable: 742 return bitc::ATTR_KIND_DEREFERENCEABLE; 743 case Attribute::DereferenceableOrNull: 744 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 745 case Attribute::NoRedZone: 746 return bitc::ATTR_KIND_NO_RED_ZONE; 747 case Attribute::NoReturn: 748 return bitc::ATTR_KIND_NO_RETURN; 749 case Attribute::NoSync: 750 return bitc::ATTR_KIND_NOSYNC; 751 case Attribute::NoCfCheck: 752 return bitc::ATTR_KIND_NOCF_CHECK; 753 case Attribute::NoProfile: 754 return bitc::ATTR_KIND_NO_PROFILE; 755 case Attribute::SkipProfile: 756 return bitc::ATTR_KIND_SKIP_PROFILE; 757 case Attribute::NoUnwind: 758 return bitc::ATTR_KIND_NO_UNWIND; 759 case Attribute::NoSanitizeBounds: 760 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 761 case Attribute::NoSanitizeCoverage: 762 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 763 case Attribute::NullPointerIsValid: 764 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 765 case Attribute::OptimizeForDebugging: 766 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 767 case Attribute::OptForFuzzing: 768 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 769 case Attribute::OptimizeForSize: 770 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 771 case Attribute::OptimizeNone: 772 return bitc::ATTR_KIND_OPTIMIZE_NONE; 773 case Attribute::ReadNone: 774 return bitc::ATTR_KIND_READ_NONE; 775 case Attribute::ReadOnly: 776 return bitc::ATTR_KIND_READ_ONLY; 777 case Attribute::Returned: 778 return bitc::ATTR_KIND_RETURNED; 779 case Attribute::ReturnsTwice: 780 return bitc::ATTR_KIND_RETURNS_TWICE; 781 case Attribute::SExt: 782 return bitc::ATTR_KIND_S_EXT; 783 case Attribute::Speculatable: 784 return bitc::ATTR_KIND_SPECULATABLE; 785 case Attribute::StackAlignment: 786 return bitc::ATTR_KIND_STACK_ALIGNMENT; 787 case Attribute::StackProtect: 788 return bitc::ATTR_KIND_STACK_PROTECT; 789 case Attribute::StackProtectReq: 790 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 791 case Attribute::StackProtectStrong: 792 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 793 case Attribute::SafeStack: 794 return bitc::ATTR_KIND_SAFESTACK; 795 case Attribute::ShadowCallStack: 796 return bitc::ATTR_KIND_SHADOWCALLSTACK; 797 case Attribute::StrictFP: 798 return bitc::ATTR_KIND_STRICT_FP; 799 case Attribute::StructRet: 800 return bitc::ATTR_KIND_STRUCT_RET; 801 case Attribute::SanitizeAddress: 802 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 803 case Attribute::SanitizeHWAddress: 804 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 805 case Attribute::SanitizeThread: 806 return bitc::ATTR_KIND_SANITIZE_THREAD; 807 case Attribute::SanitizeMemory: 808 return bitc::ATTR_KIND_SANITIZE_MEMORY; 809 case Attribute::SpeculativeLoadHardening: 810 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 811 case Attribute::SwiftError: 812 return bitc::ATTR_KIND_SWIFT_ERROR; 813 case Attribute::SwiftSelf: 814 return bitc::ATTR_KIND_SWIFT_SELF; 815 case Attribute::SwiftAsync: 816 return bitc::ATTR_KIND_SWIFT_ASYNC; 817 case Attribute::UWTable: 818 return bitc::ATTR_KIND_UW_TABLE; 819 case Attribute::VScaleRange: 820 return bitc::ATTR_KIND_VSCALE_RANGE; 821 case Attribute::WillReturn: 822 return bitc::ATTR_KIND_WILLRETURN; 823 case Attribute::WriteOnly: 824 return bitc::ATTR_KIND_WRITEONLY; 825 case Attribute::ZExt: 826 return bitc::ATTR_KIND_Z_EXT; 827 case Attribute::ImmArg: 828 return bitc::ATTR_KIND_IMMARG; 829 case Attribute::SanitizeMemTag: 830 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 831 case Attribute::Preallocated: 832 return bitc::ATTR_KIND_PREALLOCATED; 833 case Attribute::NoUndef: 834 return bitc::ATTR_KIND_NOUNDEF; 835 case Attribute::ByRef: 836 return bitc::ATTR_KIND_BYREF; 837 case Attribute::MustProgress: 838 return bitc::ATTR_KIND_MUSTPROGRESS; 839 case Attribute::PresplitCoroutine: 840 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 841 case Attribute::Writable: 842 return bitc::ATTR_KIND_WRITABLE; 843 case Attribute::CoroDestroyOnlyWhenComplete: 844 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 845 case Attribute::DeadOnUnwind: 846 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 847 case Attribute::EndAttrKinds: 848 llvm_unreachable("Can not encode end-attribute kinds marker."); 849 case Attribute::None: 850 llvm_unreachable("Can not encode none-attribute."); 851 case Attribute::EmptyKey: 852 case Attribute::TombstoneKey: 853 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 854 } 855 856 llvm_unreachable("Trying to encode unknown attribute"); 857 } 858 859 void ModuleBitcodeWriter::writeAttributeGroupTable() { 860 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 861 VE.getAttributeGroups(); 862 if (AttrGrps.empty()) return; 863 864 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 865 866 SmallVector<uint64_t, 64> Record; 867 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 868 unsigned AttrListIndex = Pair.first; 869 AttributeSet AS = Pair.second; 870 Record.push_back(VE.getAttributeGroupID(Pair)); 871 Record.push_back(AttrListIndex); 872 873 for (Attribute Attr : AS) { 874 if (Attr.isEnumAttribute()) { 875 Record.push_back(0); 876 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 877 } else if (Attr.isIntAttribute()) { 878 Record.push_back(1); 879 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 880 Record.push_back(Attr.getValueAsInt()); 881 } else if (Attr.isStringAttribute()) { 882 StringRef Kind = Attr.getKindAsString(); 883 StringRef Val = Attr.getValueAsString(); 884 885 Record.push_back(Val.empty() ? 3 : 4); 886 Record.append(Kind.begin(), Kind.end()); 887 Record.push_back(0); 888 if (!Val.empty()) { 889 Record.append(Val.begin(), Val.end()); 890 Record.push_back(0); 891 } 892 } else { 893 assert(Attr.isTypeAttribute()); 894 Type *Ty = Attr.getValueAsType(); 895 Record.push_back(Ty ? 6 : 5); 896 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 897 if (Ty) 898 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 899 } 900 } 901 902 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 903 Record.clear(); 904 } 905 906 Stream.ExitBlock(); 907 } 908 909 void ModuleBitcodeWriter::writeAttributeTable() { 910 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 911 if (Attrs.empty()) return; 912 913 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 914 915 SmallVector<uint64_t, 64> Record; 916 for (const AttributeList &AL : Attrs) { 917 for (unsigned i : AL.indexes()) { 918 AttributeSet AS = AL.getAttributes(i); 919 if (AS.hasAttributes()) 920 Record.push_back(VE.getAttributeGroupID({i, AS})); 921 } 922 923 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 924 Record.clear(); 925 } 926 927 Stream.ExitBlock(); 928 } 929 930 /// WriteTypeTable - Write out the type table for a module. 931 void ModuleBitcodeWriter::writeTypeTable() { 932 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 933 934 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 935 SmallVector<uint64_t, 64> TypeVals; 936 937 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 938 939 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 941 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 942 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 943 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 944 945 // Abbrev for TYPE_CODE_FUNCTION. 946 Abbv = std::make_shared<BitCodeAbbrev>(); 947 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 951 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 952 953 // Abbrev for TYPE_CODE_STRUCT_ANON. 954 Abbv = std::make_shared<BitCodeAbbrev>(); 955 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 959 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 960 961 // Abbrev for TYPE_CODE_STRUCT_NAME. 962 Abbv = std::make_shared<BitCodeAbbrev>(); 963 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 966 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 967 968 // Abbrev for TYPE_CODE_STRUCT_NAMED. 969 Abbv = std::make_shared<BitCodeAbbrev>(); 970 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 974 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 975 976 // Abbrev for TYPE_CODE_ARRAY. 977 Abbv = std::make_shared<BitCodeAbbrev>(); 978 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 981 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 982 983 // Emit an entry count so the reader can reserve space. 984 TypeVals.push_back(TypeList.size()); 985 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 986 TypeVals.clear(); 987 988 // Loop over all of the types, emitting each in turn. 989 for (Type *T : TypeList) { 990 int AbbrevToUse = 0; 991 unsigned Code = 0; 992 993 switch (T->getTypeID()) { 994 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 995 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 996 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 997 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 998 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 999 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1000 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1001 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1002 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1003 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 1004 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 1005 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1006 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1007 case Type::IntegerTyID: 1008 // INTEGER: [width] 1009 Code = bitc::TYPE_CODE_INTEGER; 1010 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1011 break; 1012 case Type::PointerTyID: { 1013 PointerType *PTy = cast<PointerType>(T); 1014 unsigned AddressSpace = PTy->getAddressSpace(); 1015 // OPAQUE_POINTER: [address space] 1016 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1017 TypeVals.push_back(AddressSpace); 1018 if (AddressSpace == 0) 1019 AbbrevToUse = OpaquePtrAbbrev; 1020 break; 1021 } 1022 case Type::FunctionTyID: { 1023 FunctionType *FT = cast<FunctionType>(T); 1024 // FUNCTION: [isvararg, retty, paramty x N] 1025 Code = bitc::TYPE_CODE_FUNCTION; 1026 TypeVals.push_back(FT->isVarArg()); 1027 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1028 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1029 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1030 AbbrevToUse = FunctionAbbrev; 1031 break; 1032 } 1033 case Type::StructTyID: { 1034 StructType *ST = cast<StructType>(T); 1035 // STRUCT: [ispacked, eltty x N] 1036 TypeVals.push_back(ST->isPacked()); 1037 // Output all of the element types. 1038 for (Type *ET : ST->elements()) 1039 TypeVals.push_back(VE.getTypeID(ET)); 1040 1041 if (ST->isLiteral()) { 1042 Code = bitc::TYPE_CODE_STRUCT_ANON; 1043 AbbrevToUse = StructAnonAbbrev; 1044 } else { 1045 if (ST->isOpaque()) { 1046 Code = bitc::TYPE_CODE_OPAQUE; 1047 } else { 1048 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1049 AbbrevToUse = StructNamedAbbrev; 1050 } 1051 1052 // Emit the name if it is present. 1053 if (!ST->getName().empty()) 1054 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1055 StructNameAbbrev); 1056 } 1057 break; 1058 } 1059 case Type::ArrayTyID: { 1060 ArrayType *AT = cast<ArrayType>(T); 1061 // ARRAY: [numelts, eltty] 1062 Code = bitc::TYPE_CODE_ARRAY; 1063 TypeVals.push_back(AT->getNumElements()); 1064 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1065 AbbrevToUse = ArrayAbbrev; 1066 break; 1067 } 1068 case Type::FixedVectorTyID: 1069 case Type::ScalableVectorTyID: { 1070 VectorType *VT = cast<VectorType>(T); 1071 // VECTOR [numelts, eltty] or 1072 // [numelts, eltty, scalable] 1073 Code = bitc::TYPE_CODE_VECTOR; 1074 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1075 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1076 if (isa<ScalableVectorType>(VT)) 1077 TypeVals.push_back(true); 1078 break; 1079 } 1080 case Type::TargetExtTyID: { 1081 TargetExtType *TET = cast<TargetExtType>(T); 1082 Code = bitc::TYPE_CODE_TARGET_TYPE; 1083 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1084 StructNameAbbrev); 1085 TypeVals.push_back(TET->getNumTypeParameters()); 1086 for (Type *InnerTy : TET->type_params()) 1087 TypeVals.push_back(VE.getTypeID(InnerTy)); 1088 for (unsigned IntParam : TET->int_params()) 1089 TypeVals.push_back(IntParam); 1090 break; 1091 } 1092 case Type::TypedPointerTyID: 1093 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1094 } 1095 1096 // Emit the finished record. 1097 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1098 TypeVals.clear(); 1099 } 1100 1101 Stream.ExitBlock(); 1102 } 1103 1104 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1105 switch (Linkage) { 1106 case GlobalValue::ExternalLinkage: 1107 return 0; 1108 case GlobalValue::WeakAnyLinkage: 1109 return 16; 1110 case GlobalValue::AppendingLinkage: 1111 return 2; 1112 case GlobalValue::InternalLinkage: 1113 return 3; 1114 case GlobalValue::LinkOnceAnyLinkage: 1115 return 18; 1116 case GlobalValue::ExternalWeakLinkage: 1117 return 7; 1118 case GlobalValue::CommonLinkage: 1119 return 8; 1120 case GlobalValue::PrivateLinkage: 1121 return 9; 1122 case GlobalValue::WeakODRLinkage: 1123 return 17; 1124 case GlobalValue::LinkOnceODRLinkage: 1125 return 19; 1126 case GlobalValue::AvailableExternallyLinkage: 1127 return 12; 1128 } 1129 llvm_unreachable("Invalid linkage"); 1130 } 1131 1132 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1133 return getEncodedLinkage(GV.getLinkage()); 1134 } 1135 1136 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1137 uint64_t RawFlags = 0; 1138 RawFlags |= Flags.ReadNone; 1139 RawFlags |= (Flags.ReadOnly << 1); 1140 RawFlags |= (Flags.NoRecurse << 2); 1141 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1142 RawFlags |= (Flags.NoInline << 4); 1143 RawFlags |= (Flags.AlwaysInline << 5); 1144 RawFlags |= (Flags.NoUnwind << 6); 1145 RawFlags |= (Flags.MayThrow << 7); 1146 RawFlags |= (Flags.HasUnknownCall << 8); 1147 RawFlags |= (Flags.MustBeUnreachable << 9); 1148 return RawFlags; 1149 } 1150 1151 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1152 // in BitcodeReader.cpp. 1153 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1154 uint64_t RawFlags = 0; 1155 1156 RawFlags |= Flags.NotEligibleToImport; // bool 1157 RawFlags |= (Flags.Live << 1); 1158 RawFlags |= (Flags.DSOLocal << 2); 1159 RawFlags |= (Flags.CanAutoHide << 3); 1160 1161 // Linkage don't need to be remapped at that time for the summary. Any future 1162 // change to the getEncodedLinkage() function will need to be taken into 1163 // account here as well. 1164 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1165 1166 RawFlags |= (Flags.Visibility << 8); // 2 bits 1167 1168 return RawFlags; 1169 } 1170 1171 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1172 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1173 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1174 return RawFlags; 1175 } 1176 1177 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1178 uint64_t RawFlags = 0; 1179 1180 RawFlags |= CI.Hotness; // 3 bits 1181 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1182 1183 return RawFlags; 1184 } 1185 1186 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1187 uint64_t RawFlags = 0; 1188 1189 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1190 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1191 1192 return RawFlags; 1193 } 1194 1195 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1196 switch (GV.getVisibility()) { 1197 case GlobalValue::DefaultVisibility: return 0; 1198 case GlobalValue::HiddenVisibility: return 1; 1199 case GlobalValue::ProtectedVisibility: return 2; 1200 } 1201 llvm_unreachable("Invalid visibility"); 1202 } 1203 1204 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1205 switch (GV.getDLLStorageClass()) { 1206 case GlobalValue::DefaultStorageClass: return 0; 1207 case GlobalValue::DLLImportStorageClass: return 1; 1208 case GlobalValue::DLLExportStorageClass: return 2; 1209 } 1210 llvm_unreachable("Invalid DLL storage class"); 1211 } 1212 1213 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1214 switch (GV.getThreadLocalMode()) { 1215 case GlobalVariable::NotThreadLocal: return 0; 1216 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1217 case GlobalVariable::LocalDynamicTLSModel: return 2; 1218 case GlobalVariable::InitialExecTLSModel: return 3; 1219 case GlobalVariable::LocalExecTLSModel: return 4; 1220 } 1221 llvm_unreachable("Invalid TLS model"); 1222 } 1223 1224 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1225 switch (C.getSelectionKind()) { 1226 case Comdat::Any: 1227 return bitc::COMDAT_SELECTION_KIND_ANY; 1228 case Comdat::ExactMatch: 1229 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1230 case Comdat::Largest: 1231 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1232 case Comdat::NoDeduplicate: 1233 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1234 case Comdat::SameSize: 1235 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1236 } 1237 llvm_unreachable("Invalid selection kind"); 1238 } 1239 1240 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1241 switch (GV.getUnnamedAddr()) { 1242 case GlobalValue::UnnamedAddr::None: return 0; 1243 case GlobalValue::UnnamedAddr::Local: return 2; 1244 case GlobalValue::UnnamedAddr::Global: return 1; 1245 } 1246 llvm_unreachable("Invalid unnamed_addr"); 1247 } 1248 1249 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1250 if (GenerateHash) 1251 Hasher.update(Str); 1252 return StrtabBuilder.add(Str); 1253 } 1254 1255 void ModuleBitcodeWriter::writeComdats() { 1256 SmallVector<unsigned, 64> Vals; 1257 for (const Comdat *C : VE.getComdats()) { 1258 // COMDAT: [strtab offset, strtab size, selection_kind] 1259 Vals.push_back(addToStrtab(C->getName())); 1260 Vals.push_back(C->getName().size()); 1261 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1262 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1263 Vals.clear(); 1264 } 1265 } 1266 1267 /// Write a record that will eventually hold the word offset of the 1268 /// module-level VST. For now the offset is 0, which will be backpatched 1269 /// after the real VST is written. Saves the bit offset to backpatch. 1270 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1271 // Write a placeholder value in for the offset of the real VST, 1272 // which is written after the function blocks so that it can include 1273 // the offset of each function. The placeholder offset will be 1274 // updated when the real VST is written. 1275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1276 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1277 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1278 // hold the real VST offset. Must use fixed instead of VBR as we don't 1279 // know how many VBR chunks to reserve ahead of time. 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1281 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1282 1283 // Emit the placeholder 1284 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1285 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1286 1287 // Compute and save the bit offset to the placeholder, which will be 1288 // patched when the real VST is written. We can simply subtract the 32-bit 1289 // fixed size from the current bit number to get the location to backpatch. 1290 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1291 } 1292 1293 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1294 1295 /// Determine the encoding to use for the given string name and length. 1296 static StringEncoding getStringEncoding(StringRef Str) { 1297 bool isChar6 = true; 1298 for (char C : Str) { 1299 if (isChar6) 1300 isChar6 = BitCodeAbbrevOp::isChar6(C); 1301 if ((unsigned char)C & 128) 1302 // don't bother scanning the rest. 1303 return SE_Fixed8; 1304 } 1305 if (isChar6) 1306 return SE_Char6; 1307 return SE_Fixed7; 1308 } 1309 1310 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1311 "Sanitizer Metadata is too large for naive serialization."); 1312 static unsigned 1313 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1314 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1315 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1316 } 1317 1318 /// Emit top-level description of module, including target triple, inline asm, 1319 /// descriptors for global variables, and function prototype info. 1320 /// Returns the bit offset to backpatch with the location of the real VST. 1321 void ModuleBitcodeWriter::writeModuleInfo() { 1322 // Emit various pieces of data attached to a module. 1323 if (!M.getTargetTriple().empty()) 1324 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1325 0 /*TODO*/); 1326 const std::string &DL = M.getDataLayoutStr(); 1327 if (!DL.empty()) 1328 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1329 if (!M.getModuleInlineAsm().empty()) 1330 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1331 0 /*TODO*/); 1332 1333 // Emit information about sections and GC, computing how many there are. Also 1334 // compute the maximum alignment value. 1335 std::map<std::string, unsigned> SectionMap; 1336 std::map<std::string, unsigned> GCMap; 1337 MaybeAlign MaxAlignment; 1338 unsigned MaxGlobalType = 0; 1339 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1340 if (A) 1341 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1342 }; 1343 for (const GlobalVariable &GV : M.globals()) { 1344 UpdateMaxAlignment(GV.getAlign()); 1345 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1346 if (GV.hasSection()) { 1347 // Give section names unique ID's. 1348 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1349 if (!Entry) { 1350 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1351 0 /*TODO*/); 1352 Entry = SectionMap.size(); 1353 } 1354 } 1355 } 1356 for (const Function &F : M) { 1357 UpdateMaxAlignment(F.getAlign()); 1358 if (F.hasSection()) { 1359 // Give section names unique ID's. 1360 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1361 if (!Entry) { 1362 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1363 0 /*TODO*/); 1364 Entry = SectionMap.size(); 1365 } 1366 } 1367 if (F.hasGC()) { 1368 // Same for GC names. 1369 unsigned &Entry = GCMap[F.getGC()]; 1370 if (!Entry) { 1371 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1372 0 /*TODO*/); 1373 Entry = GCMap.size(); 1374 } 1375 } 1376 } 1377 1378 // Emit abbrev for globals, now that we know # sections and max alignment. 1379 unsigned SimpleGVarAbbrev = 0; 1380 if (!M.global_empty()) { 1381 // Add an abbrev for common globals with no visibility or thread localness. 1382 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1387 Log2_32_Ceil(MaxGlobalType+1))); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1389 //| explicitType << 1 1390 //| constant 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1393 if (!MaxAlignment) // Alignment. 1394 Abbv->Add(BitCodeAbbrevOp(0)); 1395 else { 1396 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1398 Log2_32_Ceil(MaxEncAlignment+1))); 1399 } 1400 if (SectionMap.empty()) // Section. 1401 Abbv->Add(BitCodeAbbrevOp(0)); 1402 else 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1404 Log2_32_Ceil(SectionMap.size()+1))); 1405 // Don't bother emitting vis + thread local. 1406 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1407 } 1408 1409 SmallVector<unsigned, 64> Vals; 1410 // Emit the module's source file name. 1411 { 1412 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1413 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1414 if (Bits == SE_Char6) 1415 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1416 else if (Bits == SE_Fixed7) 1417 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1418 1419 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1421 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1423 Abbv->Add(AbbrevOpToUse); 1424 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1425 1426 for (const auto P : M.getSourceFileName()) 1427 Vals.push_back((unsigned char)P); 1428 1429 // Emit the finished record. 1430 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1431 Vals.clear(); 1432 } 1433 1434 // Emit the global variable information. 1435 for (const GlobalVariable &GV : M.globals()) { 1436 unsigned AbbrevToUse = 0; 1437 1438 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1439 // linkage, alignment, section, visibility, threadlocal, 1440 // unnamed_addr, externally_initialized, dllstorageclass, 1441 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1442 Vals.push_back(addToStrtab(GV.getName())); 1443 Vals.push_back(GV.getName().size()); 1444 Vals.push_back(VE.getTypeID(GV.getValueType())); 1445 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1446 Vals.push_back(GV.isDeclaration() ? 0 : 1447 (VE.getValueID(GV.getInitializer()) + 1)); 1448 Vals.push_back(getEncodedLinkage(GV)); 1449 Vals.push_back(getEncodedAlign(GV.getAlign())); 1450 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1451 : 0); 1452 if (GV.isThreadLocal() || 1453 GV.getVisibility() != GlobalValue::DefaultVisibility || 1454 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1455 GV.isExternallyInitialized() || 1456 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1457 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1458 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1459 Vals.push_back(getEncodedVisibility(GV)); 1460 Vals.push_back(getEncodedThreadLocalMode(GV)); 1461 Vals.push_back(getEncodedUnnamedAddr(GV)); 1462 Vals.push_back(GV.isExternallyInitialized()); 1463 Vals.push_back(getEncodedDLLStorageClass(GV)); 1464 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1465 1466 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1467 Vals.push_back(VE.getAttributeListID(AL)); 1468 1469 Vals.push_back(GV.isDSOLocal()); 1470 Vals.push_back(addToStrtab(GV.getPartition())); 1471 Vals.push_back(GV.getPartition().size()); 1472 1473 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1474 GV.getSanitizerMetadata()) 1475 : 0)); 1476 Vals.push_back(GV.getCodeModelRaw()); 1477 } else { 1478 AbbrevToUse = SimpleGVarAbbrev; 1479 } 1480 1481 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1482 Vals.clear(); 1483 } 1484 1485 // Emit the function proto information. 1486 for (const Function &F : M) { 1487 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1488 // linkage, paramattrs, alignment, section, visibility, gc, 1489 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1490 // prefixdata, personalityfn, DSO_Local, addrspace] 1491 Vals.push_back(addToStrtab(F.getName())); 1492 Vals.push_back(F.getName().size()); 1493 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1494 Vals.push_back(F.getCallingConv()); 1495 Vals.push_back(F.isDeclaration()); 1496 Vals.push_back(getEncodedLinkage(F)); 1497 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1498 Vals.push_back(getEncodedAlign(F.getAlign())); 1499 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1500 : 0); 1501 Vals.push_back(getEncodedVisibility(F)); 1502 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1503 Vals.push_back(getEncodedUnnamedAddr(F)); 1504 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1505 : 0); 1506 Vals.push_back(getEncodedDLLStorageClass(F)); 1507 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1508 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1509 : 0); 1510 Vals.push_back( 1511 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1512 1513 Vals.push_back(F.isDSOLocal()); 1514 Vals.push_back(F.getAddressSpace()); 1515 Vals.push_back(addToStrtab(F.getPartition())); 1516 Vals.push_back(F.getPartition().size()); 1517 1518 unsigned AbbrevToUse = 0; 1519 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1520 Vals.clear(); 1521 } 1522 1523 // Emit the alias information. 1524 for (const GlobalAlias &A : M.aliases()) { 1525 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1526 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1527 // DSO_Local] 1528 Vals.push_back(addToStrtab(A.getName())); 1529 Vals.push_back(A.getName().size()); 1530 Vals.push_back(VE.getTypeID(A.getValueType())); 1531 Vals.push_back(A.getType()->getAddressSpace()); 1532 Vals.push_back(VE.getValueID(A.getAliasee())); 1533 Vals.push_back(getEncodedLinkage(A)); 1534 Vals.push_back(getEncodedVisibility(A)); 1535 Vals.push_back(getEncodedDLLStorageClass(A)); 1536 Vals.push_back(getEncodedThreadLocalMode(A)); 1537 Vals.push_back(getEncodedUnnamedAddr(A)); 1538 Vals.push_back(A.isDSOLocal()); 1539 Vals.push_back(addToStrtab(A.getPartition())); 1540 Vals.push_back(A.getPartition().size()); 1541 1542 unsigned AbbrevToUse = 0; 1543 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1544 Vals.clear(); 1545 } 1546 1547 // Emit the ifunc information. 1548 for (const GlobalIFunc &I : M.ifuncs()) { 1549 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1550 // val#, linkage, visibility, DSO_Local] 1551 Vals.push_back(addToStrtab(I.getName())); 1552 Vals.push_back(I.getName().size()); 1553 Vals.push_back(VE.getTypeID(I.getValueType())); 1554 Vals.push_back(I.getType()->getAddressSpace()); 1555 Vals.push_back(VE.getValueID(I.getResolver())); 1556 Vals.push_back(getEncodedLinkage(I)); 1557 Vals.push_back(getEncodedVisibility(I)); 1558 Vals.push_back(I.isDSOLocal()); 1559 Vals.push_back(addToStrtab(I.getPartition())); 1560 Vals.push_back(I.getPartition().size()); 1561 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1562 Vals.clear(); 1563 } 1564 1565 writeValueSymbolTableForwardDecl(); 1566 } 1567 1568 static uint64_t getOptimizationFlags(const Value *V) { 1569 uint64_t Flags = 0; 1570 1571 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1572 if (OBO->hasNoSignedWrap()) 1573 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1574 if (OBO->hasNoUnsignedWrap()) 1575 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1576 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1577 if (PEO->isExact()) 1578 Flags |= 1 << bitc::PEO_EXACT; 1579 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1580 if (PDI->isDisjoint()) 1581 Flags |= 1 << bitc::PDI_DISJOINT; 1582 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1583 if (FPMO->hasAllowReassoc()) 1584 Flags |= bitc::AllowReassoc; 1585 if (FPMO->hasNoNaNs()) 1586 Flags |= bitc::NoNaNs; 1587 if (FPMO->hasNoInfs()) 1588 Flags |= bitc::NoInfs; 1589 if (FPMO->hasNoSignedZeros()) 1590 Flags |= bitc::NoSignedZeros; 1591 if (FPMO->hasAllowReciprocal()) 1592 Flags |= bitc::AllowReciprocal; 1593 if (FPMO->hasAllowContract()) 1594 Flags |= bitc::AllowContract; 1595 if (FPMO->hasApproxFunc()) 1596 Flags |= bitc::ApproxFunc; 1597 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1598 if (NNI->hasNonNeg()) 1599 Flags |= 1 << bitc::PNNI_NON_NEG; 1600 } 1601 1602 return Flags; 1603 } 1604 1605 void ModuleBitcodeWriter::writeValueAsMetadata( 1606 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1607 // Mimic an MDNode with a value as one operand. 1608 Value *V = MD->getValue(); 1609 Record.push_back(VE.getTypeID(V->getType())); 1610 Record.push_back(VE.getValueID(V)); 1611 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1612 Record.clear(); 1613 } 1614 1615 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1616 SmallVectorImpl<uint64_t> &Record, 1617 unsigned Abbrev) { 1618 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1619 Metadata *MD = N->getOperand(i); 1620 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1621 "Unexpected function-local metadata"); 1622 Record.push_back(VE.getMetadataOrNullID(MD)); 1623 } 1624 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1625 : bitc::METADATA_NODE, 1626 Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1631 // Assume the column is usually under 128, and always output the inlined-at 1632 // location (it's never more expensive than building an array size 1). 1633 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1634 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1641 return Stream.EmitAbbrev(std::move(Abbv)); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned &Abbrev) { 1647 if (!Abbrev) 1648 Abbrev = createDILocationAbbrev(); 1649 1650 Record.push_back(N->isDistinct()); 1651 Record.push_back(N->getLine()); 1652 Record.push_back(N->getColumn()); 1653 Record.push_back(VE.getMetadataID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1655 Record.push_back(N->isImplicitCode()); 1656 1657 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1662 // Assume the column is usually under 128, and always output the inlined-at 1663 // location (it's never more expensive than building an array size 1). 1664 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1665 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1672 return Stream.EmitAbbrev(std::move(Abbv)); 1673 } 1674 1675 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1676 SmallVectorImpl<uint64_t> &Record, 1677 unsigned &Abbrev) { 1678 if (!Abbrev) 1679 Abbrev = createGenericDINodeAbbrev(); 1680 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(N->getTag()); 1683 Record.push_back(0); // Per-tag version field; unused for now. 1684 1685 for (auto &I : N->operands()) 1686 Record.push_back(VE.getMetadataOrNullID(I)); 1687 1688 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1693 SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 const uint64_t Version = 2 << 1; 1696 Record.push_back((uint64_t)N->isDistinct() | Version); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1701 1702 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDIGenericSubrange( 1707 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 Record.push_back((uint64_t)N->isDistinct()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1714 1715 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1720 if ((int64_t)V >= 0) 1721 Vals.push_back(V << 1); 1722 else 1723 Vals.push_back((-V << 1) | 1); 1724 } 1725 1726 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1727 // We have an arbitrary precision integer value to write whose 1728 // bit width is > 64. However, in canonical unsigned integer 1729 // format it is likely that the high bits are going to be zero. 1730 // So, we only write the number of active words. 1731 unsigned NumWords = A.getActiveWords(); 1732 const uint64_t *RawData = A.getRawData(); 1733 for (unsigned i = 0; i < NumWords; i++) 1734 emitSignedInt64(Vals, RawData[i]); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 const uint64_t IsBigInt = 1 << 2; 1741 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1742 Record.push_back(N->getValue().getBitWidth()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1744 emitWideAPInt(Record, N->getValue()); 1745 1746 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1751 SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.push_back(N->isDistinct()); 1754 Record.push_back(N->getTag()); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1756 Record.push_back(N->getSizeInBits()); 1757 Record.push_back(N->getAlignInBits()); 1758 Record.push_back(N->getEncoding()); 1759 Record.push_back(N->getFlags()); 1760 1761 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1766 SmallVectorImpl<uint64_t> &Record, 1767 unsigned Abbrev) { 1768 Record.push_back(N->isDistinct()); 1769 Record.push_back(N->getTag()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1774 Record.push_back(N->getSizeInBits()); 1775 Record.push_back(N->getAlignInBits()); 1776 Record.push_back(N->getEncoding()); 1777 1778 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1783 SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 Record.push_back(N->isDistinct()); 1786 Record.push_back(N->getTag()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1789 Record.push_back(N->getLine()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1792 Record.push_back(N->getSizeInBits()); 1793 Record.push_back(N->getAlignInBits()); 1794 Record.push_back(N->getOffsetInBits()); 1795 Record.push_back(N->getFlags()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1797 1798 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1799 // that there is no DWARF address space associated with DIDerivedType. 1800 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1801 Record.push_back(*DWARFAddressSpace + 1); 1802 else 1803 Record.push_back(0); 1804 1805 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1806 1807 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 void ModuleBitcodeWriter::writeDICompositeType( 1812 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1813 unsigned Abbrev) { 1814 const unsigned IsNotUsedInOldTypeRef = 0x2; 1815 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1816 Record.push_back(N->getTag()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1819 Record.push_back(N->getLine()); 1820 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1822 Record.push_back(N->getSizeInBits()); 1823 Record.push_back(N->getAlignInBits()); 1824 Record.push_back(N->getOffsetInBits()); 1825 Record.push_back(N->getFlags()); 1826 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1827 Record.push_back(N->getRuntimeLang()); 1828 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1837 1838 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1839 Record.clear(); 1840 } 1841 1842 void ModuleBitcodeWriter::writeDISubroutineType( 1843 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1844 unsigned Abbrev) { 1845 const unsigned HasNoOldTypeRefs = 0x2; 1846 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1847 Record.push_back(N->getFlags()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1849 Record.push_back(N->getCC()); 1850 1851 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1852 Record.clear(); 1853 } 1854 1855 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1856 SmallVectorImpl<uint64_t> &Record, 1857 unsigned Abbrev) { 1858 Record.push_back(N->isDistinct()); 1859 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1861 if (N->getRawChecksum()) { 1862 Record.push_back(N->getRawChecksum()->Kind); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1864 } else { 1865 // Maintain backwards compatibility with the old internal representation of 1866 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1867 Record.push_back(0); 1868 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1869 } 1870 auto Source = N->getRawSource(); 1871 if (Source) 1872 Record.push_back(VE.getMetadataOrNullID(Source)); 1873 1874 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1875 Record.clear(); 1876 } 1877 1878 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1879 SmallVectorImpl<uint64_t> &Record, 1880 unsigned Abbrev) { 1881 assert(N->isDistinct() && "Expected distinct compile units"); 1882 Record.push_back(/* IsDistinct */ true); 1883 Record.push_back(N->getSourceLanguage()); 1884 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1885 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1886 Record.push_back(N->isOptimized()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1888 Record.push_back(N->getRuntimeVersion()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1890 Record.push_back(N->getEmissionKind()); 1891 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1893 Record.push_back(/* subprograms */ 0); 1894 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1896 Record.push_back(N->getDWOId()); 1897 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1898 Record.push_back(N->getSplitDebugInlining()); 1899 Record.push_back(N->getDebugInfoForProfiling()); 1900 Record.push_back((unsigned)N->getNameTableKind()); 1901 Record.push_back(N->getRangesBaseAddress()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1904 1905 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1906 Record.clear(); 1907 } 1908 1909 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1910 SmallVectorImpl<uint64_t> &Record, 1911 unsigned Abbrev) { 1912 const uint64_t HasUnitFlag = 1 << 1; 1913 const uint64_t HasSPFlagsFlag = 1 << 2; 1914 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1915 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1919 Record.push_back(N->getLine()); 1920 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1921 Record.push_back(N->getScopeLine()); 1922 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1923 Record.push_back(N->getSPFlags()); 1924 Record.push_back(N->getVirtualIndex()); 1925 Record.push_back(N->getFlags()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1927 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1930 Record.push_back(N->getThisAdjustment()); 1931 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1934 1935 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1945 Record.push_back(N->getLine()); 1946 Record.push_back(N->getColumn()); 1947 1948 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1953 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 Record.push_back(N->isDistinct()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1958 Record.push_back(N->getDiscriminator()); 1959 1960 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1965 SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 Record.push_back(N->isDistinct()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1969 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1970 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1971 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1972 Record.push_back(N->getLineNo()); 1973 1974 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1975 Record.clear(); 1976 } 1977 1978 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1979 SmallVectorImpl<uint64_t> &Record, 1980 unsigned Abbrev) { 1981 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1982 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1983 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1984 1985 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1986 Record.clear(); 1987 } 1988 1989 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1990 SmallVectorImpl<uint64_t> &Record, 1991 unsigned Abbrev) { 1992 Record.push_back(N->isDistinct()); 1993 Record.push_back(N->getMacinfoType()); 1994 Record.push_back(N->getLine()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1997 1998 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1999 Record.clear(); 2000 } 2001 2002 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2003 SmallVectorImpl<uint64_t> &Record, 2004 unsigned Abbrev) { 2005 Record.push_back(N->isDistinct()); 2006 Record.push_back(N->getMacinfoType()); 2007 Record.push_back(N->getLine()); 2008 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2009 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2010 2011 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2012 Record.clear(); 2013 } 2014 2015 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2016 SmallVectorImpl<uint64_t> &Record) { 2017 Record.reserve(N->getArgs().size()); 2018 for (ValueAsMetadata *MD : N->getArgs()) 2019 Record.push_back(VE.getMetadataID(MD)); 2020 2021 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2022 Record.clear(); 2023 } 2024 2025 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2026 SmallVectorImpl<uint64_t> &Record, 2027 unsigned Abbrev) { 2028 Record.push_back(N->isDistinct()); 2029 for (auto &I : N->operands()) 2030 Record.push_back(VE.getMetadataOrNullID(I)); 2031 Record.push_back(N->getLineNo()); 2032 Record.push_back(N->getIsDecl()); 2033 2034 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2035 Record.clear(); 2036 } 2037 2038 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2039 SmallVectorImpl<uint64_t> &Record, 2040 unsigned Abbrev) { 2041 // There are no arguments for this metadata type. 2042 Record.push_back(N->isDistinct()); 2043 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2044 Record.clear(); 2045 } 2046 2047 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2048 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2049 unsigned Abbrev) { 2050 Record.push_back(N->isDistinct()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2053 Record.push_back(N->isDefault()); 2054 2055 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2056 Record.clear(); 2057 } 2058 2059 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2060 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2061 unsigned Abbrev) { 2062 Record.push_back(N->isDistinct()); 2063 Record.push_back(N->getTag()); 2064 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2065 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2066 Record.push_back(N->isDefault()); 2067 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2068 2069 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2070 Record.clear(); 2071 } 2072 2073 void ModuleBitcodeWriter::writeDIGlobalVariable( 2074 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2075 unsigned Abbrev) { 2076 const uint64_t Version = 2 << 1; 2077 Record.push_back((uint64_t)N->isDistinct() | Version); 2078 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2081 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2082 Record.push_back(N->getLine()); 2083 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2084 Record.push_back(N->isLocalToUnit()); 2085 Record.push_back(N->isDefinition()); 2086 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2087 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2088 Record.push_back(N->getAlignInBits()); 2089 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2090 2091 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2092 Record.clear(); 2093 } 2094 2095 void ModuleBitcodeWriter::writeDILocalVariable( 2096 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2097 unsigned Abbrev) { 2098 // In order to support all possible bitcode formats in BitcodeReader we need 2099 // to distinguish the following cases: 2100 // 1) Record has no artificial tag (Record[1]), 2101 // has no obsolete inlinedAt field (Record[9]). 2102 // In this case Record size will be 8, HasAlignment flag is false. 2103 // 2) Record has artificial tag (Record[1]), 2104 // has no obsolete inlignedAt field (Record[9]). 2105 // In this case Record size will be 9, HasAlignment flag is false. 2106 // 3) Record has both artificial tag (Record[1]) and 2107 // obsolete inlignedAt field (Record[9]). 2108 // In this case Record size will be 10, HasAlignment flag is false. 2109 // 4) Record has neither artificial tag, nor inlignedAt field, but 2110 // HasAlignment flag is true and Record[8] contains alignment value. 2111 const uint64_t HasAlignmentFlag = 1 << 1; 2112 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2113 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2114 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2115 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2116 Record.push_back(N->getLine()); 2117 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2118 Record.push_back(N->getArg()); 2119 Record.push_back(N->getFlags()); 2120 Record.push_back(N->getAlignInBits()); 2121 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2122 2123 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2124 Record.clear(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeDILabel( 2128 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2129 unsigned Abbrev) { 2130 Record.push_back((uint64_t)N->isDistinct()); 2131 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2132 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2133 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2134 Record.push_back(N->getLine()); 2135 2136 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2137 Record.clear(); 2138 } 2139 2140 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2141 SmallVectorImpl<uint64_t> &Record, 2142 unsigned Abbrev) { 2143 Record.reserve(N->getElements().size() + 1); 2144 const uint64_t Version = 3 << 1; 2145 Record.push_back((uint64_t)N->isDistinct() | Version); 2146 Record.append(N->elements_begin(), N->elements_end()); 2147 2148 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2149 Record.clear(); 2150 } 2151 2152 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2153 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2154 unsigned Abbrev) { 2155 Record.push_back(N->isDistinct()); 2156 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2157 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2158 2159 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2160 Record.clear(); 2161 } 2162 2163 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2164 SmallVectorImpl<uint64_t> &Record, 2165 unsigned Abbrev) { 2166 Record.push_back(N->isDistinct()); 2167 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2168 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2169 Record.push_back(N->getLine()); 2170 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2171 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2172 Record.push_back(N->getAttributes()); 2173 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2174 2175 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2176 Record.clear(); 2177 } 2178 2179 void ModuleBitcodeWriter::writeDIImportedEntity( 2180 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2181 unsigned Abbrev) { 2182 Record.push_back(N->isDistinct()); 2183 Record.push_back(N->getTag()); 2184 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2185 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2186 Record.push_back(N->getLine()); 2187 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2188 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2189 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2190 2191 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2192 Record.clear(); 2193 } 2194 2195 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2196 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2197 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2200 return Stream.EmitAbbrev(std::move(Abbv)); 2201 } 2202 2203 void ModuleBitcodeWriter::writeNamedMetadata( 2204 SmallVectorImpl<uint64_t> &Record) { 2205 if (M.named_metadata_empty()) 2206 return; 2207 2208 unsigned Abbrev = createNamedMetadataAbbrev(); 2209 for (const NamedMDNode &NMD : M.named_metadata()) { 2210 // Write name. 2211 StringRef Str = NMD.getName(); 2212 Record.append(Str.bytes_begin(), Str.bytes_end()); 2213 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2214 Record.clear(); 2215 2216 // Write named metadata operands. 2217 for (const MDNode *N : NMD.operands()) 2218 Record.push_back(VE.getMetadataID(N)); 2219 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2220 Record.clear(); 2221 } 2222 } 2223 2224 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2225 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2226 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2230 return Stream.EmitAbbrev(std::move(Abbv)); 2231 } 2232 2233 /// Write out a record for MDString. 2234 /// 2235 /// All the metadata strings in a metadata block are emitted in a single 2236 /// record. The sizes and strings themselves are shoved into a blob. 2237 void ModuleBitcodeWriter::writeMetadataStrings( 2238 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2239 if (Strings.empty()) 2240 return; 2241 2242 // Start the record with the number of strings. 2243 Record.push_back(bitc::METADATA_STRINGS); 2244 Record.push_back(Strings.size()); 2245 2246 // Emit the sizes of the strings in the blob. 2247 SmallString<256> Blob; 2248 { 2249 BitstreamWriter W(Blob); 2250 for (const Metadata *MD : Strings) 2251 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2252 W.FlushToWord(); 2253 } 2254 2255 // Add the offset to the strings to the record. 2256 Record.push_back(Blob.size()); 2257 2258 // Add the strings to the blob. 2259 for (const Metadata *MD : Strings) 2260 Blob.append(cast<MDString>(MD)->getString()); 2261 2262 // Emit the final record. 2263 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2264 Record.clear(); 2265 } 2266 2267 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2268 enum MetadataAbbrev : unsigned { 2269 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2270 #include "llvm/IR/Metadata.def" 2271 LastPlusOne 2272 }; 2273 2274 void ModuleBitcodeWriter::writeMetadataRecords( 2275 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2276 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2277 if (MDs.empty()) 2278 return; 2279 2280 // Initialize MDNode abbreviations. 2281 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2282 #include "llvm/IR/Metadata.def" 2283 2284 for (const Metadata *MD : MDs) { 2285 if (IndexPos) 2286 IndexPos->push_back(Stream.GetCurrentBitNo()); 2287 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2288 assert(N->isResolved() && "Expected forward references to be resolved"); 2289 2290 switch (N->getMetadataID()) { 2291 default: 2292 llvm_unreachable("Invalid MDNode subclass"); 2293 #define HANDLE_MDNODE_LEAF(CLASS) \ 2294 case Metadata::CLASS##Kind: \ 2295 if (MDAbbrevs) \ 2296 write##CLASS(cast<CLASS>(N), Record, \ 2297 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2298 else \ 2299 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2300 continue; 2301 #include "llvm/IR/Metadata.def" 2302 } 2303 } 2304 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2305 writeDIArgList(AL, Record); 2306 continue; 2307 } 2308 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2309 } 2310 } 2311 2312 void ModuleBitcodeWriter::writeModuleMetadata() { 2313 if (!VE.hasMDs() && M.named_metadata_empty()) 2314 return; 2315 2316 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2317 SmallVector<uint64_t, 64> Record; 2318 2319 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2320 // block and load any metadata. 2321 std::vector<unsigned> MDAbbrevs; 2322 2323 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2324 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2325 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2326 createGenericDINodeAbbrev(); 2327 2328 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2329 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2332 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2333 2334 Abbv = std::make_shared<BitCodeAbbrev>(); 2335 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2338 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2339 2340 // Emit MDStrings together upfront. 2341 writeMetadataStrings(VE.getMDStrings(), Record); 2342 2343 // We only emit an index for the metadata record if we have more than a given 2344 // (naive) threshold of metadatas, otherwise it is not worth it. 2345 if (VE.getNonMDStrings().size() > IndexThreshold) { 2346 // Write a placeholder value in for the offset of the metadata index, 2347 // which is written after the records, so that it can include 2348 // the offset of each entry. The placeholder offset will be 2349 // updated after all records are emitted. 2350 uint64_t Vals[] = {0, 0}; 2351 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2352 } 2353 2354 // Compute and save the bit offset to the current position, which will be 2355 // patched when we emit the index later. We can simply subtract the 64-bit 2356 // fixed size from the current bit number to get the location to backpatch. 2357 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2358 2359 // This index will contain the bitpos for each individual record. 2360 std::vector<uint64_t> IndexPos; 2361 IndexPos.reserve(VE.getNonMDStrings().size()); 2362 2363 // Write all the records 2364 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2365 2366 if (VE.getNonMDStrings().size() > IndexThreshold) { 2367 // Now that we have emitted all the records we will emit the index. But 2368 // first 2369 // backpatch the forward reference so that the reader can skip the records 2370 // efficiently. 2371 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2372 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2373 2374 // Delta encode the index. 2375 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2376 for (auto &Elt : IndexPos) { 2377 auto EltDelta = Elt - PreviousValue; 2378 PreviousValue = Elt; 2379 Elt = EltDelta; 2380 } 2381 // Emit the index record. 2382 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2383 IndexPos.clear(); 2384 } 2385 2386 // Write the named metadata now. 2387 writeNamedMetadata(Record); 2388 2389 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2390 SmallVector<uint64_t, 4> Record; 2391 Record.push_back(VE.getValueID(&GO)); 2392 pushGlobalMetadataAttachment(Record, GO); 2393 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2394 }; 2395 for (const Function &F : M) 2396 if (F.isDeclaration() && F.hasMetadata()) 2397 AddDeclAttachedMetadata(F); 2398 // FIXME: Only store metadata for declarations here, and move data for global 2399 // variable definitions to a separate block (PR28134). 2400 for (const GlobalVariable &GV : M.globals()) 2401 if (GV.hasMetadata()) 2402 AddDeclAttachedMetadata(GV); 2403 2404 Stream.ExitBlock(); 2405 } 2406 2407 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2408 if (!VE.hasMDs()) 2409 return; 2410 2411 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2412 SmallVector<uint64_t, 64> Record; 2413 writeMetadataStrings(VE.getMDStrings(), Record); 2414 writeMetadataRecords(VE.getNonMDStrings(), Record); 2415 Stream.ExitBlock(); 2416 } 2417 2418 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2419 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2420 // [n x [id, mdnode]] 2421 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2422 GO.getAllMetadata(MDs); 2423 for (const auto &I : MDs) { 2424 Record.push_back(I.first); 2425 Record.push_back(VE.getMetadataID(I.second)); 2426 } 2427 } 2428 2429 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2430 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2431 2432 SmallVector<uint64_t, 64> Record; 2433 2434 if (F.hasMetadata()) { 2435 pushGlobalMetadataAttachment(Record, F); 2436 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2437 Record.clear(); 2438 } 2439 2440 // Write metadata attachments 2441 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2442 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2443 for (const BasicBlock &BB : F) 2444 for (const Instruction &I : BB) { 2445 MDs.clear(); 2446 I.getAllMetadataOtherThanDebugLoc(MDs); 2447 2448 // If no metadata, ignore instruction. 2449 if (MDs.empty()) continue; 2450 2451 Record.push_back(VE.getInstructionID(&I)); 2452 2453 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2454 Record.push_back(MDs[i].first); 2455 Record.push_back(VE.getMetadataID(MDs[i].second)); 2456 } 2457 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2458 Record.clear(); 2459 } 2460 2461 Stream.ExitBlock(); 2462 } 2463 2464 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2465 SmallVector<uint64_t, 64> Record; 2466 2467 // Write metadata kinds 2468 // METADATA_KIND - [n x [id, name]] 2469 SmallVector<StringRef, 8> Names; 2470 M.getMDKindNames(Names); 2471 2472 if (Names.empty()) return; 2473 2474 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2475 2476 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2477 Record.push_back(MDKindID); 2478 StringRef KName = Names[MDKindID]; 2479 Record.append(KName.begin(), KName.end()); 2480 2481 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2482 Record.clear(); 2483 } 2484 2485 Stream.ExitBlock(); 2486 } 2487 2488 void ModuleBitcodeWriter::writeOperandBundleTags() { 2489 // Write metadata kinds 2490 // 2491 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2492 // 2493 // OPERAND_BUNDLE_TAG - [strchr x N] 2494 2495 SmallVector<StringRef, 8> Tags; 2496 M.getOperandBundleTags(Tags); 2497 2498 if (Tags.empty()) 2499 return; 2500 2501 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2502 2503 SmallVector<uint64_t, 64> Record; 2504 2505 for (auto Tag : Tags) { 2506 Record.append(Tag.begin(), Tag.end()); 2507 2508 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2509 Record.clear(); 2510 } 2511 2512 Stream.ExitBlock(); 2513 } 2514 2515 void ModuleBitcodeWriter::writeSyncScopeNames() { 2516 SmallVector<StringRef, 8> SSNs; 2517 M.getContext().getSyncScopeNames(SSNs); 2518 if (SSNs.empty()) 2519 return; 2520 2521 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2522 2523 SmallVector<uint64_t, 64> Record; 2524 for (auto SSN : SSNs) { 2525 Record.append(SSN.begin(), SSN.end()); 2526 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2527 Record.clear(); 2528 } 2529 2530 Stream.ExitBlock(); 2531 } 2532 2533 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2534 bool isGlobal) { 2535 if (FirstVal == LastVal) return; 2536 2537 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2538 2539 unsigned AggregateAbbrev = 0; 2540 unsigned String8Abbrev = 0; 2541 unsigned CString7Abbrev = 0; 2542 unsigned CString6Abbrev = 0; 2543 // If this is a constant pool for the module, emit module-specific abbrevs. 2544 if (isGlobal) { 2545 // Abbrev for CST_CODE_AGGREGATE. 2546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2547 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2550 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2551 2552 // Abbrev for CST_CODE_STRING. 2553 Abbv = std::make_shared<BitCodeAbbrev>(); 2554 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2557 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2558 // Abbrev for CST_CODE_CSTRING. 2559 Abbv = std::make_shared<BitCodeAbbrev>(); 2560 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2563 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2564 // Abbrev for CST_CODE_CSTRING. 2565 Abbv = std::make_shared<BitCodeAbbrev>(); 2566 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2569 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2570 } 2571 2572 SmallVector<uint64_t, 64> Record; 2573 2574 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2575 Type *LastTy = nullptr; 2576 for (unsigned i = FirstVal; i != LastVal; ++i) { 2577 const Value *V = Vals[i].first; 2578 // If we need to switch types, do so now. 2579 if (V->getType() != LastTy) { 2580 LastTy = V->getType(); 2581 Record.push_back(VE.getTypeID(LastTy)); 2582 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2583 CONSTANTS_SETTYPE_ABBREV); 2584 Record.clear(); 2585 } 2586 2587 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2588 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2589 Record.push_back( 2590 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2591 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2592 2593 // Add the asm string. 2594 const std::string &AsmStr = IA->getAsmString(); 2595 Record.push_back(AsmStr.size()); 2596 Record.append(AsmStr.begin(), AsmStr.end()); 2597 2598 // Add the constraint string. 2599 const std::string &ConstraintStr = IA->getConstraintString(); 2600 Record.push_back(ConstraintStr.size()); 2601 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2602 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2603 Record.clear(); 2604 continue; 2605 } 2606 const Constant *C = cast<Constant>(V); 2607 unsigned Code = -1U; 2608 unsigned AbbrevToUse = 0; 2609 if (C->isNullValue()) { 2610 Code = bitc::CST_CODE_NULL; 2611 } else if (isa<PoisonValue>(C)) { 2612 Code = bitc::CST_CODE_POISON; 2613 } else if (isa<UndefValue>(C)) { 2614 Code = bitc::CST_CODE_UNDEF; 2615 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2616 if (IV->getBitWidth() <= 64) { 2617 uint64_t V = IV->getSExtValue(); 2618 emitSignedInt64(Record, V); 2619 Code = bitc::CST_CODE_INTEGER; 2620 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2621 } else { // Wide integers, > 64 bits in size. 2622 emitWideAPInt(Record, IV->getValue()); 2623 Code = bitc::CST_CODE_WIDE_INTEGER; 2624 } 2625 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2626 Code = bitc::CST_CODE_FLOAT; 2627 Type *Ty = CFP->getType(); 2628 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2629 Ty->isDoubleTy()) { 2630 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2631 } else if (Ty->isX86_FP80Ty()) { 2632 // api needed to prevent premature destruction 2633 // bits are not in the same order as a normal i80 APInt, compensate. 2634 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2635 const uint64_t *p = api.getRawData(); 2636 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2637 Record.push_back(p[0] & 0xffffLL); 2638 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2639 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2640 const uint64_t *p = api.getRawData(); 2641 Record.push_back(p[0]); 2642 Record.push_back(p[1]); 2643 } else { 2644 assert(0 && "Unknown FP type!"); 2645 } 2646 } else if (isa<ConstantDataSequential>(C) && 2647 cast<ConstantDataSequential>(C)->isString()) { 2648 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2649 // Emit constant strings specially. 2650 unsigned NumElts = Str->getNumElements(); 2651 // If this is a null-terminated string, use the denser CSTRING encoding. 2652 if (Str->isCString()) { 2653 Code = bitc::CST_CODE_CSTRING; 2654 --NumElts; // Don't encode the null, which isn't allowed by char6. 2655 } else { 2656 Code = bitc::CST_CODE_STRING; 2657 AbbrevToUse = String8Abbrev; 2658 } 2659 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2660 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2661 for (unsigned i = 0; i != NumElts; ++i) { 2662 unsigned char V = Str->getElementAsInteger(i); 2663 Record.push_back(V); 2664 isCStr7 &= (V & 128) == 0; 2665 if (isCStrChar6) 2666 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2667 } 2668 2669 if (isCStrChar6) 2670 AbbrevToUse = CString6Abbrev; 2671 else if (isCStr7) 2672 AbbrevToUse = CString7Abbrev; 2673 } else if (const ConstantDataSequential *CDS = 2674 dyn_cast<ConstantDataSequential>(C)) { 2675 Code = bitc::CST_CODE_DATA; 2676 Type *EltTy = CDS->getElementType(); 2677 if (isa<IntegerType>(EltTy)) { 2678 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2679 Record.push_back(CDS->getElementAsInteger(i)); 2680 } else { 2681 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2682 Record.push_back( 2683 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2684 } 2685 } else if (isa<ConstantAggregate>(C)) { 2686 Code = bitc::CST_CODE_AGGREGATE; 2687 for (const Value *Op : C->operands()) 2688 Record.push_back(VE.getValueID(Op)); 2689 AbbrevToUse = AggregateAbbrev; 2690 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2691 switch (CE->getOpcode()) { 2692 default: 2693 if (Instruction::isCast(CE->getOpcode())) { 2694 Code = bitc::CST_CODE_CE_CAST; 2695 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2696 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2697 Record.push_back(VE.getValueID(C->getOperand(0))); 2698 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2699 } else { 2700 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2701 Code = bitc::CST_CODE_CE_BINOP; 2702 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2703 Record.push_back(VE.getValueID(C->getOperand(0))); 2704 Record.push_back(VE.getValueID(C->getOperand(1))); 2705 uint64_t Flags = getOptimizationFlags(CE); 2706 if (Flags != 0) 2707 Record.push_back(Flags); 2708 } 2709 break; 2710 case Instruction::FNeg: { 2711 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2712 Code = bitc::CST_CODE_CE_UNOP; 2713 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2714 Record.push_back(VE.getValueID(C->getOperand(0))); 2715 uint64_t Flags = getOptimizationFlags(CE); 2716 if (Flags != 0) 2717 Record.push_back(Flags); 2718 break; 2719 } 2720 case Instruction::GetElementPtr: { 2721 Code = bitc::CST_CODE_CE_GEP; 2722 const auto *GO = cast<GEPOperator>(C); 2723 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2724 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2725 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2726 Record.push_back((*Idx << 1) | GO->isInBounds()); 2727 } else if (GO->isInBounds()) 2728 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2729 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2730 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2731 Record.push_back(VE.getValueID(C->getOperand(i))); 2732 } 2733 break; 2734 } 2735 case Instruction::ExtractElement: 2736 Code = bitc::CST_CODE_CE_EXTRACTELT; 2737 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2738 Record.push_back(VE.getValueID(C->getOperand(0))); 2739 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2740 Record.push_back(VE.getValueID(C->getOperand(1))); 2741 break; 2742 case Instruction::InsertElement: 2743 Code = bitc::CST_CODE_CE_INSERTELT; 2744 Record.push_back(VE.getValueID(C->getOperand(0))); 2745 Record.push_back(VE.getValueID(C->getOperand(1))); 2746 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2747 Record.push_back(VE.getValueID(C->getOperand(2))); 2748 break; 2749 case Instruction::ShuffleVector: 2750 // If the return type and argument types are the same, this is a 2751 // standard shufflevector instruction. If the types are different, 2752 // then the shuffle is widening or truncating the input vectors, and 2753 // the argument type must also be encoded. 2754 if (C->getType() == C->getOperand(0)->getType()) { 2755 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2756 } else { 2757 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2758 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2759 } 2760 Record.push_back(VE.getValueID(C->getOperand(0))); 2761 Record.push_back(VE.getValueID(C->getOperand(1))); 2762 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2763 break; 2764 case Instruction::ICmp: 2765 case Instruction::FCmp: 2766 Code = bitc::CST_CODE_CE_CMP; 2767 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2768 Record.push_back(VE.getValueID(C->getOperand(0))); 2769 Record.push_back(VE.getValueID(C->getOperand(1))); 2770 Record.push_back(CE->getPredicate()); 2771 break; 2772 } 2773 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2774 Code = bitc::CST_CODE_BLOCKADDRESS; 2775 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2776 Record.push_back(VE.getValueID(BA->getFunction())); 2777 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2778 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2779 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2780 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2781 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2782 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2783 Code = bitc::CST_CODE_NO_CFI_VALUE; 2784 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2785 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2786 } else { 2787 #ifndef NDEBUG 2788 C->dump(); 2789 #endif 2790 llvm_unreachable("Unknown constant!"); 2791 } 2792 Stream.EmitRecord(Code, Record, AbbrevToUse); 2793 Record.clear(); 2794 } 2795 2796 Stream.ExitBlock(); 2797 } 2798 2799 void ModuleBitcodeWriter::writeModuleConstants() { 2800 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2801 2802 // Find the first constant to emit, which is the first non-globalvalue value. 2803 // We know globalvalues have been emitted by WriteModuleInfo. 2804 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2805 if (!isa<GlobalValue>(Vals[i].first)) { 2806 writeConstants(i, Vals.size(), true); 2807 return; 2808 } 2809 } 2810 } 2811 2812 /// pushValueAndType - The file has to encode both the value and type id for 2813 /// many values, because we need to know what type to create for forward 2814 /// references. However, most operands are not forward references, so this type 2815 /// field is not needed. 2816 /// 2817 /// This function adds V's value ID to Vals. If the value ID is higher than the 2818 /// instruction ID, then it is a forward reference, and it also includes the 2819 /// type ID. The value ID that is written is encoded relative to the InstID. 2820 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2821 SmallVectorImpl<unsigned> &Vals) { 2822 unsigned ValID = VE.getValueID(V); 2823 // Make encoding relative to the InstID. 2824 Vals.push_back(InstID - ValID); 2825 if (ValID >= InstID) { 2826 Vals.push_back(VE.getTypeID(V->getType())); 2827 return true; 2828 } 2829 return false; 2830 } 2831 2832 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2833 unsigned InstID) { 2834 SmallVector<unsigned, 64> Record; 2835 LLVMContext &C = CS.getContext(); 2836 2837 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2838 const auto &Bundle = CS.getOperandBundleAt(i); 2839 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2840 2841 for (auto &Input : Bundle.Inputs) 2842 pushValueAndType(Input, InstID, Record); 2843 2844 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2845 Record.clear(); 2846 } 2847 } 2848 2849 /// pushValue - Like pushValueAndType, but where the type of the value is 2850 /// omitted (perhaps it was already encoded in an earlier operand). 2851 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2852 SmallVectorImpl<unsigned> &Vals) { 2853 unsigned ValID = VE.getValueID(V); 2854 Vals.push_back(InstID - ValID); 2855 } 2856 2857 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2858 SmallVectorImpl<uint64_t> &Vals) { 2859 unsigned ValID = VE.getValueID(V); 2860 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2861 emitSignedInt64(Vals, diff); 2862 } 2863 2864 /// WriteInstruction - Emit an instruction to the specified stream. 2865 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2866 unsigned InstID, 2867 SmallVectorImpl<unsigned> &Vals) { 2868 unsigned Code = 0; 2869 unsigned AbbrevToUse = 0; 2870 VE.setInstructionID(&I); 2871 switch (I.getOpcode()) { 2872 default: 2873 if (Instruction::isCast(I.getOpcode())) { 2874 Code = bitc::FUNC_CODE_INST_CAST; 2875 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2876 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2877 Vals.push_back(VE.getTypeID(I.getType())); 2878 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2879 uint64_t Flags = getOptimizationFlags(&I); 2880 if (Flags != 0) { 2881 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2882 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2883 Vals.push_back(Flags); 2884 } 2885 } else { 2886 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2887 Code = bitc::FUNC_CODE_INST_BINOP; 2888 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2889 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2890 pushValue(I.getOperand(1), InstID, Vals); 2891 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2892 uint64_t Flags = getOptimizationFlags(&I); 2893 if (Flags != 0) { 2894 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2895 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2896 Vals.push_back(Flags); 2897 } 2898 } 2899 break; 2900 case Instruction::FNeg: { 2901 Code = bitc::FUNC_CODE_INST_UNOP; 2902 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2903 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2904 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2905 uint64_t Flags = getOptimizationFlags(&I); 2906 if (Flags != 0) { 2907 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2908 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2909 Vals.push_back(Flags); 2910 } 2911 break; 2912 } 2913 case Instruction::GetElementPtr: { 2914 Code = bitc::FUNC_CODE_INST_GEP; 2915 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2916 auto &GEPInst = cast<GetElementPtrInst>(I); 2917 Vals.push_back(GEPInst.isInBounds()); 2918 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2919 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2920 pushValueAndType(I.getOperand(i), InstID, Vals); 2921 break; 2922 } 2923 case Instruction::ExtractValue: { 2924 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2925 pushValueAndType(I.getOperand(0), InstID, Vals); 2926 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2927 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2928 break; 2929 } 2930 case Instruction::InsertValue: { 2931 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2932 pushValueAndType(I.getOperand(0), InstID, Vals); 2933 pushValueAndType(I.getOperand(1), InstID, Vals); 2934 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2935 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2936 break; 2937 } 2938 case Instruction::Select: { 2939 Code = bitc::FUNC_CODE_INST_VSELECT; 2940 pushValueAndType(I.getOperand(1), InstID, Vals); 2941 pushValue(I.getOperand(2), InstID, Vals); 2942 pushValueAndType(I.getOperand(0), InstID, Vals); 2943 uint64_t Flags = getOptimizationFlags(&I); 2944 if (Flags != 0) 2945 Vals.push_back(Flags); 2946 break; 2947 } 2948 case Instruction::ExtractElement: 2949 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2950 pushValueAndType(I.getOperand(0), InstID, Vals); 2951 pushValueAndType(I.getOperand(1), InstID, Vals); 2952 break; 2953 case Instruction::InsertElement: 2954 Code = bitc::FUNC_CODE_INST_INSERTELT; 2955 pushValueAndType(I.getOperand(0), InstID, Vals); 2956 pushValue(I.getOperand(1), InstID, Vals); 2957 pushValueAndType(I.getOperand(2), InstID, Vals); 2958 break; 2959 case Instruction::ShuffleVector: 2960 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2961 pushValueAndType(I.getOperand(0), InstID, Vals); 2962 pushValue(I.getOperand(1), InstID, Vals); 2963 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2964 Vals); 2965 break; 2966 case Instruction::ICmp: 2967 case Instruction::FCmp: { 2968 // compare returning Int1Ty or vector of Int1Ty 2969 Code = bitc::FUNC_CODE_INST_CMP2; 2970 pushValueAndType(I.getOperand(0), InstID, Vals); 2971 pushValue(I.getOperand(1), InstID, Vals); 2972 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2973 uint64_t Flags = getOptimizationFlags(&I); 2974 if (Flags != 0) 2975 Vals.push_back(Flags); 2976 break; 2977 } 2978 2979 case Instruction::Ret: 2980 { 2981 Code = bitc::FUNC_CODE_INST_RET; 2982 unsigned NumOperands = I.getNumOperands(); 2983 if (NumOperands == 0) 2984 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2985 else if (NumOperands == 1) { 2986 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2987 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2988 } else { 2989 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2990 pushValueAndType(I.getOperand(i), InstID, Vals); 2991 } 2992 } 2993 break; 2994 case Instruction::Br: 2995 { 2996 Code = bitc::FUNC_CODE_INST_BR; 2997 const BranchInst &II = cast<BranchInst>(I); 2998 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2999 if (II.isConditional()) { 3000 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3001 pushValue(II.getCondition(), InstID, Vals); 3002 } 3003 } 3004 break; 3005 case Instruction::Switch: 3006 { 3007 Code = bitc::FUNC_CODE_INST_SWITCH; 3008 const SwitchInst &SI = cast<SwitchInst>(I); 3009 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3010 pushValue(SI.getCondition(), InstID, Vals); 3011 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3012 for (auto Case : SI.cases()) { 3013 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3014 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3015 } 3016 } 3017 break; 3018 case Instruction::IndirectBr: 3019 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3020 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3021 // Encode the address operand as relative, but not the basic blocks. 3022 pushValue(I.getOperand(0), InstID, Vals); 3023 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3024 Vals.push_back(VE.getValueID(I.getOperand(i))); 3025 break; 3026 3027 case Instruction::Invoke: { 3028 const InvokeInst *II = cast<InvokeInst>(&I); 3029 const Value *Callee = II->getCalledOperand(); 3030 FunctionType *FTy = II->getFunctionType(); 3031 3032 if (II->hasOperandBundles()) 3033 writeOperandBundles(*II, InstID); 3034 3035 Code = bitc::FUNC_CODE_INST_INVOKE; 3036 3037 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3038 Vals.push_back(II->getCallingConv() | 1 << 13); 3039 Vals.push_back(VE.getValueID(II->getNormalDest())); 3040 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3041 Vals.push_back(VE.getTypeID(FTy)); 3042 pushValueAndType(Callee, InstID, Vals); 3043 3044 // Emit value #'s for the fixed parameters. 3045 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3046 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3047 3048 // Emit type/value pairs for varargs params. 3049 if (FTy->isVarArg()) { 3050 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3051 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3052 } 3053 break; 3054 } 3055 case Instruction::Resume: 3056 Code = bitc::FUNC_CODE_INST_RESUME; 3057 pushValueAndType(I.getOperand(0), InstID, Vals); 3058 break; 3059 case Instruction::CleanupRet: { 3060 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3061 const auto &CRI = cast<CleanupReturnInst>(I); 3062 pushValue(CRI.getCleanupPad(), InstID, Vals); 3063 if (CRI.hasUnwindDest()) 3064 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3065 break; 3066 } 3067 case Instruction::CatchRet: { 3068 Code = bitc::FUNC_CODE_INST_CATCHRET; 3069 const auto &CRI = cast<CatchReturnInst>(I); 3070 pushValue(CRI.getCatchPad(), InstID, Vals); 3071 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3072 break; 3073 } 3074 case Instruction::CleanupPad: 3075 case Instruction::CatchPad: { 3076 const auto &FuncletPad = cast<FuncletPadInst>(I); 3077 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3078 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3079 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3080 3081 unsigned NumArgOperands = FuncletPad.arg_size(); 3082 Vals.push_back(NumArgOperands); 3083 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3084 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3085 break; 3086 } 3087 case Instruction::CatchSwitch: { 3088 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3089 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3090 3091 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3092 3093 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3094 Vals.push_back(NumHandlers); 3095 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3096 Vals.push_back(VE.getValueID(CatchPadBB)); 3097 3098 if (CatchSwitch.hasUnwindDest()) 3099 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3100 break; 3101 } 3102 case Instruction::CallBr: { 3103 const CallBrInst *CBI = cast<CallBrInst>(&I); 3104 const Value *Callee = CBI->getCalledOperand(); 3105 FunctionType *FTy = CBI->getFunctionType(); 3106 3107 if (CBI->hasOperandBundles()) 3108 writeOperandBundles(*CBI, InstID); 3109 3110 Code = bitc::FUNC_CODE_INST_CALLBR; 3111 3112 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3113 3114 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3115 1 << bitc::CALL_EXPLICIT_TYPE); 3116 3117 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3118 Vals.push_back(CBI->getNumIndirectDests()); 3119 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3120 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3121 3122 Vals.push_back(VE.getTypeID(FTy)); 3123 pushValueAndType(Callee, InstID, Vals); 3124 3125 // Emit value #'s for the fixed parameters. 3126 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3127 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3128 3129 // Emit type/value pairs for varargs params. 3130 if (FTy->isVarArg()) { 3131 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3132 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3133 } 3134 break; 3135 } 3136 case Instruction::Unreachable: 3137 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3138 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3139 break; 3140 3141 case Instruction::PHI: { 3142 const PHINode &PN = cast<PHINode>(I); 3143 Code = bitc::FUNC_CODE_INST_PHI; 3144 // With the newer instruction encoding, forward references could give 3145 // negative valued IDs. This is most common for PHIs, so we use 3146 // signed VBRs. 3147 SmallVector<uint64_t, 128> Vals64; 3148 Vals64.push_back(VE.getTypeID(PN.getType())); 3149 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3150 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3151 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3152 } 3153 3154 uint64_t Flags = getOptimizationFlags(&I); 3155 if (Flags != 0) 3156 Vals64.push_back(Flags); 3157 3158 // Emit a Vals64 vector and exit. 3159 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3160 Vals64.clear(); 3161 return; 3162 } 3163 3164 case Instruction::LandingPad: { 3165 const LandingPadInst &LP = cast<LandingPadInst>(I); 3166 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3167 Vals.push_back(VE.getTypeID(LP.getType())); 3168 Vals.push_back(LP.isCleanup()); 3169 Vals.push_back(LP.getNumClauses()); 3170 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3171 if (LP.isCatch(I)) 3172 Vals.push_back(LandingPadInst::Catch); 3173 else 3174 Vals.push_back(LandingPadInst::Filter); 3175 pushValueAndType(LP.getClause(I), InstID, Vals); 3176 } 3177 break; 3178 } 3179 3180 case Instruction::Alloca: { 3181 Code = bitc::FUNC_CODE_INST_ALLOCA; 3182 const AllocaInst &AI = cast<AllocaInst>(I); 3183 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3184 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3185 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3186 using APV = AllocaPackedValues; 3187 unsigned Record = 0; 3188 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3189 Bitfield::set<APV::AlignLower>( 3190 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3191 Bitfield::set<APV::AlignUpper>(Record, 3192 EncodedAlign >> APV::AlignLower::Bits); 3193 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3194 Bitfield::set<APV::ExplicitType>(Record, true); 3195 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3196 Vals.push_back(Record); 3197 3198 unsigned AS = AI.getAddressSpace(); 3199 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3200 Vals.push_back(AS); 3201 break; 3202 } 3203 3204 case Instruction::Load: 3205 if (cast<LoadInst>(I).isAtomic()) { 3206 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3207 pushValueAndType(I.getOperand(0), InstID, Vals); 3208 } else { 3209 Code = bitc::FUNC_CODE_INST_LOAD; 3210 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3211 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3212 } 3213 Vals.push_back(VE.getTypeID(I.getType())); 3214 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3215 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3216 if (cast<LoadInst>(I).isAtomic()) { 3217 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3218 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3219 } 3220 break; 3221 case Instruction::Store: 3222 if (cast<StoreInst>(I).isAtomic()) 3223 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3224 else 3225 Code = bitc::FUNC_CODE_INST_STORE; 3226 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3227 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3228 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3229 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3230 if (cast<StoreInst>(I).isAtomic()) { 3231 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3232 Vals.push_back( 3233 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3234 } 3235 break; 3236 case Instruction::AtomicCmpXchg: 3237 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3238 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3239 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3240 pushValue(I.getOperand(2), InstID, Vals); // newval. 3241 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3242 Vals.push_back( 3243 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3244 Vals.push_back( 3245 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3246 Vals.push_back( 3247 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3248 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3249 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3250 break; 3251 case Instruction::AtomicRMW: 3252 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3253 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3254 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3255 Vals.push_back( 3256 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3257 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3258 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3259 Vals.push_back( 3260 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3261 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3262 break; 3263 case Instruction::Fence: 3264 Code = bitc::FUNC_CODE_INST_FENCE; 3265 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3266 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3267 break; 3268 case Instruction::Call: { 3269 const CallInst &CI = cast<CallInst>(I); 3270 FunctionType *FTy = CI.getFunctionType(); 3271 3272 if (CI.hasOperandBundles()) 3273 writeOperandBundles(CI, InstID); 3274 3275 Code = bitc::FUNC_CODE_INST_CALL; 3276 3277 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3278 3279 unsigned Flags = getOptimizationFlags(&I); 3280 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3281 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3282 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3283 1 << bitc::CALL_EXPLICIT_TYPE | 3284 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3285 unsigned(Flags != 0) << bitc::CALL_FMF); 3286 if (Flags != 0) 3287 Vals.push_back(Flags); 3288 3289 Vals.push_back(VE.getTypeID(FTy)); 3290 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3291 3292 // Emit value #'s for the fixed parameters. 3293 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3294 // Check for labels (can happen with asm labels). 3295 if (FTy->getParamType(i)->isLabelTy()) 3296 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3297 else 3298 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3299 } 3300 3301 // Emit type/value pairs for varargs params. 3302 if (FTy->isVarArg()) { 3303 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3304 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3305 } 3306 break; 3307 } 3308 case Instruction::VAArg: 3309 Code = bitc::FUNC_CODE_INST_VAARG; 3310 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3311 pushValue(I.getOperand(0), InstID, Vals); // valist. 3312 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3313 break; 3314 case Instruction::Freeze: 3315 Code = bitc::FUNC_CODE_INST_FREEZE; 3316 pushValueAndType(I.getOperand(0), InstID, Vals); 3317 break; 3318 } 3319 3320 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3321 Vals.clear(); 3322 } 3323 3324 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3325 /// to allow clients to efficiently find the function body. 3326 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3327 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3328 // Get the offset of the VST we are writing, and backpatch it into 3329 // the VST forward declaration record. 3330 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3331 // The BitcodeStartBit was the stream offset of the identification block. 3332 VSTOffset -= bitcodeStartBit(); 3333 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3334 // Note that we add 1 here because the offset is relative to one word 3335 // before the start of the identification block, which was historically 3336 // always the start of the regular bitcode header. 3337 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3338 3339 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3340 3341 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3342 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3345 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3346 3347 for (const Function &F : M) { 3348 uint64_t Record[2]; 3349 3350 if (F.isDeclaration()) 3351 continue; 3352 3353 Record[0] = VE.getValueID(&F); 3354 3355 // Save the word offset of the function (from the start of the 3356 // actual bitcode written to the stream). 3357 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3358 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3359 // Note that we add 1 here because the offset is relative to one word 3360 // before the start of the identification block, which was historically 3361 // always the start of the regular bitcode header. 3362 Record[1] = BitcodeIndex / 32 + 1; 3363 3364 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3365 } 3366 3367 Stream.ExitBlock(); 3368 } 3369 3370 /// Emit names for arguments, instructions and basic blocks in a function. 3371 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3372 const ValueSymbolTable &VST) { 3373 if (VST.empty()) 3374 return; 3375 3376 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3377 3378 // FIXME: Set up the abbrev, we know how many values there are! 3379 // FIXME: We know if the type names can use 7-bit ascii. 3380 SmallVector<uint64_t, 64> NameVals; 3381 3382 for (const ValueName &Name : VST) { 3383 // Figure out the encoding to use for the name. 3384 StringEncoding Bits = getStringEncoding(Name.getKey()); 3385 3386 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3387 NameVals.push_back(VE.getValueID(Name.getValue())); 3388 3389 // VST_CODE_ENTRY: [valueid, namechar x N] 3390 // VST_CODE_BBENTRY: [bbid, namechar x N] 3391 unsigned Code; 3392 if (isa<BasicBlock>(Name.getValue())) { 3393 Code = bitc::VST_CODE_BBENTRY; 3394 if (Bits == SE_Char6) 3395 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3396 } else { 3397 Code = bitc::VST_CODE_ENTRY; 3398 if (Bits == SE_Char6) 3399 AbbrevToUse = VST_ENTRY_6_ABBREV; 3400 else if (Bits == SE_Fixed7) 3401 AbbrevToUse = VST_ENTRY_7_ABBREV; 3402 } 3403 3404 for (const auto P : Name.getKey()) 3405 NameVals.push_back((unsigned char)P); 3406 3407 // Emit the finished record. 3408 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3409 NameVals.clear(); 3410 } 3411 3412 Stream.ExitBlock(); 3413 } 3414 3415 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3416 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3417 unsigned Code; 3418 if (isa<BasicBlock>(Order.V)) 3419 Code = bitc::USELIST_CODE_BB; 3420 else 3421 Code = bitc::USELIST_CODE_DEFAULT; 3422 3423 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3424 Record.push_back(VE.getValueID(Order.V)); 3425 Stream.EmitRecord(Code, Record); 3426 } 3427 3428 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3429 assert(VE.shouldPreserveUseListOrder() && 3430 "Expected to be preserving use-list order"); 3431 3432 auto hasMore = [&]() { 3433 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3434 }; 3435 if (!hasMore()) 3436 // Nothing to do. 3437 return; 3438 3439 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3440 while (hasMore()) { 3441 writeUseList(std::move(VE.UseListOrders.back())); 3442 VE.UseListOrders.pop_back(); 3443 } 3444 Stream.ExitBlock(); 3445 } 3446 3447 /// Emit a function body to the module stream. 3448 void ModuleBitcodeWriter::writeFunction( 3449 const Function &F, 3450 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3451 // Save the bitcode index of the start of this function block for recording 3452 // in the VST. 3453 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3454 3455 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3456 VE.incorporateFunction(F); 3457 3458 SmallVector<unsigned, 64> Vals; 3459 3460 // Emit the number of basic blocks, so the reader can create them ahead of 3461 // time. 3462 Vals.push_back(VE.getBasicBlocks().size()); 3463 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3464 Vals.clear(); 3465 3466 // If there are function-local constants, emit them now. 3467 unsigned CstStart, CstEnd; 3468 VE.getFunctionConstantRange(CstStart, CstEnd); 3469 writeConstants(CstStart, CstEnd, false); 3470 3471 // If there is function-local metadata, emit it now. 3472 writeFunctionMetadata(F); 3473 3474 // Keep a running idea of what the instruction ID is. 3475 unsigned InstID = CstEnd; 3476 3477 bool NeedsMetadataAttachment = F.hasMetadata(); 3478 3479 DILocation *LastDL = nullptr; 3480 SmallSetVector<Function *, 4> BlockAddressUsers; 3481 3482 // Finally, emit all the instructions, in order. 3483 for (const BasicBlock &BB : F) { 3484 for (const Instruction &I : BB) { 3485 writeInstruction(I, InstID, Vals); 3486 3487 if (!I.getType()->isVoidTy()) 3488 ++InstID; 3489 3490 // If the instruction has metadata, write a metadata attachment later. 3491 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3492 3493 // If the instruction has a debug location, emit it. 3494 DILocation *DL = I.getDebugLoc(); 3495 if (!DL) 3496 continue; 3497 3498 if (DL == LastDL) { 3499 // Just repeat the same debug loc as last time. 3500 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3501 continue; 3502 } 3503 3504 Vals.push_back(DL->getLine()); 3505 Vals.push_back(DL->getColumn()); 3506 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3507 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3508 Vals.push_back(DL->isImplicitCode()); 3509 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3510 Vals.clear(); 3511 3512 LastDL = DL; 3513 } 3514 3515 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3516 SmallVector<Value *> Worklist{BA}; 3517 SmallPtrSet<Value *, 8> Visited{BA}; 3518 while (!Worklist.empty()) { 3519 Value *V = Worklist.pop_back_val(); 3520 for (User *U : V->users()) { 3521 if (auto *I = dyn_cast<Instruction>(U)) { 3522 Function *P = I->getFunction(); 3523 if (P != &F) 3524 BlockAddressUsers.insert(P); 3525 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3526 Visited.insert(U).second) 3527 Worklist.push_back(U); 3528 } 3529 } 3530 } 3531 } 3532 3533 if (!BlockAddressUsers.empty()) { 3534 Vals.resize(BlockAddressUsers.size()); 3535 for (auto I : llvm::enumerate(BlockAddressUsers)) 3536 Vals[I.index()] = VE.getValueID(I.value()); 3537 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3538 Vals.clear(); 3539 } 3540 3541 // Emit names for all the instructions etc. 3542 if (auto *Symtab = F.getValueSymbolTable()) 3543 writeFunctionLevelValueSymbolTable(*Symtab); 3544 3545 if (NeedsMetadataAttachment) 3546 writeFunctionMetadataAttachment(F); 3547 if (VE.shouldPreserveUseListOrder()) 3548 writeUseListBlock(&F); 3549 VE.purgeFunction(); 3550 Stream.ExitBlock(); 3551 } 3552 3553 // Emit blockinfo, which defines the standard abbreviations etc. 3554 void ModuleBitcodeWriter::writeBlockInfo() { 3555 // We only want to emit block info records for blocks that have multiple 3556 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3557 // Other blocks can define their abbrevs inline. 3558 Stream.EnterBlockInfoBlock(); 3559 3560 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3561 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3566 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3567 VST_ENTRY_8_ABBREV) 3568 llvm_unreachable("Unexpected abbrev ordering!"); 3569 } 3570 3571 { // 7-bit fixed width VST_CODE_ENTRY strings. 3572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3573 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3577 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3578 VST_ENTRY_7_ABBREV) 3579 llvm_unreachable("Unexpected abbrev ordering!"); 3580 } 3581 { // 6-bit char6 VST_CODE_ENTRY strings. 3582 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3587 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3588 VST_ENTRY_6_ABBREV) 3589 llvm_unreachable("Unexpected abbrev ordering!"); 3590 } 3591 { // 6-bit char6 VST_CODE_BBENTRY strings. 3592 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3593 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3597 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3598 VST_BBENTRY_6_ABBREV) 3599 llvm_unreachable("Unexpected abbrev ordering!"); 3600 } 3601 3602 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3606 VE.computeBitsRequiredForTypeIndicies())); 3607 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3608 CONSTANTS_SETTYPE_ABBREV) 3609 llvm_unreachable("Unexpected abbrev ordering!"); 3610 } 3611 3612 { // INTEGER abbrev for CONSTANTS_BLOCK. 3613 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3616 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3617 CONSTANTS_INTEGER_ABBREV) 3618 llvm_unreachable("Unexpected abbrev ordering!"); 3619 } 3620 3621 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3622 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3623 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3626 VE.computeBitsRequiredForTypeIndicies())); 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3628 3629 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3630 CONSTANTS_CE_CAST_Abbrev) 3631 llvm_unreachable("Unexpected abbrev ordering!"); 3632 } 3633 { // NULL abbrev for CONSTANTS_BLOCK. 3634 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3635 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3636 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3637 CONSTANTS_NULL_Abbrev) 3638 llvm_unreachable("Unexpected abbrev ordering!"); 3639 } 3640 3641 // FIXME: This should only use space for first class types! 3642 3643 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3644 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3645 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3648 VE.computeBitsRequiredForTypeIndicies())); 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3651 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3652 FUNCTION_INST_LOAD_ABBREV) 3653 llvm_unreachable("Unexpected abbrev ordering!"); 3654 } 3655 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3656 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3657 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3660 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3661 FUNCTION_INST_UNOP_ABBREV) 3662 llvm_unreachable("Unexpected abbrev ordering!"); 3663 } 3664 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3665 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3666 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3670 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3671 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3672 llvm_unreachable("Unexpected abbrev ordering!"); 3673 } 3674 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3675 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3676 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3680 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3681 FUNCTION_INST_BINOP_ABBREV) 3682 llvm_unreachable("Unexpected abbrev ordering!"); 3683 } 3684 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3685 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3686 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3691 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3692 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3693 llvm_unreachable("Unexpected abbrev ordering!"); 3694 } 3695 { // INST_CAST abbrev for FUNCTION_BLOCK. 3696 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3697 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3700 VE.computeBitsRequiredForTypeIndicies())); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3702 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3703 FUNCTION_INST_CAST_ABBREV) 3704 llvm_unreachable("Unexpected abbrev ordering!"); 3705 } 3706 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3707 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3708 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3711 VE.computeBitsRequiredForTypeIndicies())); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3714 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3715 FUNCTION_INST_CAST_FLAGS_ABBREV) 3716 llvm_unreachable("Unexpected abbrev ordering!"); 3717 } 3718 3719 { // INST_RET abbrev for FUNCTION_BLOCK. 3720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3721 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3722 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3723 FUNCTION_INST_RET_VOID_ABBREV) 3724 llvm_unreachable("Unexpected abbrev ordering!"); 3725 } 3726 { // INST_RET abbrev for FUNCTION_BLOCK. 3727 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3728 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3730 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3731 FUNCTION_INST_RET_VAL_ABBREV) 3732 llvm_unreachable("Unexpected abbrev ordering!"); 3733 } 3734 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3735 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3736 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3737 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3738 FUNCTION_INST_UNREACHABLE_ABBREV) 3739 llvm_unreachable("Unexpected abbrev ordering!"); 3740 } 3741 { 3742 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3743 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3746 Log2_32_Ceil(VE.getTypes().size() + 1))); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3749 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3750 FUNCTION_INST_GEP_ABBREV) 3751 llvm_unreachable("Unexpected abbrev ordering!"); 3752 } 3753 3754 Stream.ExitBlock(); 3755 } 3756 3757 /// Write the module path strings, currently only used when generating 3758 /// a combined index file. 3759 void IndexBitcodeWriter::writeModStrings() { 3760 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3761 3762 // TODO: See which abbrev sizes we actually need to emit 3763 3764 // 8-bit fixed-width MST_ENTRY strings. 3765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3766 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3770 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3771 3772 // 7-bit fixed width MST_ENTRY strings. 3773 Abbv = std::make_shared<BitCodeAbbrev>(); 3774 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3778 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3779 3780 // 6-bit char6 MST_ENTRY strings. 3781 Abbv = std::make_shared<BitCodeAbbrev>(); 3782 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3786 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3787 3788 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3789 Abbv = std::make_shared<BitCodeAbbrev>(); 3790 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3796 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3797 3798 SmallVector<unsigned, 64> Vals; 3799 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3800 StringRef Key = MPSE.getKey(); 3801 const auto &Hash = MPSE.getValue(); 3802 StringEncoding Bits = getStringEncoding(Key); 3803 unsigned AbbrevToUse = Abbrev8Bit; 3804 if (Bits == SE_Char6) 3805 AbbrevToUse = Abbrev6Bit; 3806 else if (Bits == SE_Fixed7) 3807 AbbrevToUse = Abbrev7Bit; 3808 3809 auto ModuleId = ModuleIdMap.size(); 3810 ModuleIdMap[Key] = ModuleId; 3811 Vals.push_back(ModuleId); 3812 Vals.append(Key.begin(), Key.end()); 3813 3814 // Emit the finished record. 3815 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3816 3817 // Emit an optional hash for the module now 3818 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3819 Vals.assign(Hash.begin(), Hash.end()); 3820 // Emit the hash record. 3821 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3822 } 3823 3824 Vals.clear(); 3825 }); 3826 Stream.ExitBlock(); 3827 } 3828 3829 /// Write the function type metadata related records that need to appear before 3830 /// a function summary entry (whether per-module or combined). 3831 template <typename Fn> 3832 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3833 FunctionSummary *FS, 3834 Fn GetValueID) { 3835 if (!FS->type_tests().empty()) 3836 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3837 3838 SmallVector<uint64_t, 64> Record; 3839 3840 auto WriteVFuncIdVec = [&](uint64_t Ty, 3841 ArrayRef<FunctionSummary::VFuncId> VFs) { 3842 if (VFs.empty()) 3843 return; 3844 Record.clear(); 3845 for (auto &VF : VFs) { 3846 Record.push_back(VF.GUID); 3847 Record.push_back(VF.Offset); 3848 } 3849 Stream.EmitRecord(Ty, Record); 3850 }; 3851 3852 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3853 FS->type_test_assume_vcalls()); 3854 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3855 FS->type_checked_load_vcalls()); 3856 3857 auto WriteConstVCallVec = [&](uint64_t Ty, 3858 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3859 for (auto &VC : VCs) { 3860 Record.clear(); 3861 Record.push_back(VC.VFunc.GUID); 3862 Record.push_back(VC.VFunc.Offset); 3863 llvm::append_range(Record, VC.Args); 3864 Stream.EmitRecord(Ty, Record); 3865 } 3866 }; 3867 3868 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3869 FS->type_test_assume_const_vcalls()); 3870 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3871 FS->type_checked_load_const_vcalls()); 3872 3873 auto WriteRange = [&](ConstantRange Range) { 3874 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3875 assert(Range.getLower().getNumWords() == 1); 3876 assert(Range.getUpper().getNumWords() == 1); 3877 emitSignedInt64(Record, *Range.getLower().getRawData()); 3878 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3879 }; 3880 3881 if (!FS->paramAccesses().empty()) { 3882 Record.clear(); 3883 for (auto &Arg : FS->paramAccesses()) { 3884 size_t UndoSize = Record.size(); 3885 Record.push_back(Arg.ParamNo); 3886 WriteRange(Arg.Use); 3887 Record.push_back(Arg.Calls.size()); 3888 for (auto &Call : Arg.Calls) { 3889 Record.push_back(Call.ParamNo); 3890 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3891 if (!ValueID) { 3892 // If ValueID is unknown we can't drop just this call, we must drop 3893 // entire parameter. 3894 Record.resize(UndoSize); 3895 break; 3896 } 3897 Record.push_back(*ValueID); 3898 WriteRange(Call.Offsets); 3899 } 3900 } 3901 if (!Record.empty()) 3902 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3903 } 3904 } 3905 3906 /// Collect type IDs from type tests used by function. 3907 static void 3908 getReferencedTypeIds(FunctionSummary *FS, 3909 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3910 if (!FS->type_tests().empty()) 3911 for (auto &TT : FS->type_tests()) 3912 ReferencedTypeIds.insert(TT); 3913 3914 auto GetReferencedTypesFromVFuncIdVec = 3915 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3916 for (auto &VF : VFs) 3917 ReferencedTypeIds.insert(VF.GUID); 3918 }; 3919 3920 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3921 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3922 3923 auto GetReferencedTypesFromConstVCallVec = 3924 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3925 for (auto &VC : VCs) 3926 ReferencedTypeIds.insert(VC.VFunc.GUID); 3927 }; 3928 3929 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3930 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3931 } 3932 3933 static void writeWholeProgramDevirtResolutionByArg( 3934 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3935 const WholeProgramDevirtResolution::ByArg &ByArg) { 3936 NameVals.push_back(args.size()); 3937 llvm::append_range(NameVals, args); 3938 3939 NameVals.push_back(ByArg.TheKind); 3940 NameVals.push_back(ByArg.Info); 3941 NameVals.push_back(ByArg.Byte); 3942 NameVals.push_back(ByArg.Bit); 3943 } 3944 3945 static void writeWholeProgramDevirtResolution( 3946 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3947 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3948 NameVals.push_back(Id); 3949 3950 NameVals.push_back(Wpd.TheKind); 3951 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3952 NameVals.push_back(Wpd.SingleImplName.size()); 3953 3954 NameVals.push_back(Wpd.ResByArg.size()); 3955 for (auto &A : Wpd.ResByArg) 3956 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3957 } 3958 3959 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3960 StringTableBuilder &StrtabBuilder, 3961 const std::string &Id, 3962 const TypeIdSummary &Summary) { 3963 NameVals.push_back(StrtabBuilder.add(Id)); 3964 NameVals.push_back(Id.size()); 3965 3966 NameVals.push_back(Summary.TTRes.TheKind); 3967 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3968 NameVals.push_back(Summary.TTRes.AlignLog2); 3969 NameVals.push_back(Summary.TTRes.SizeM1); 3970 NameVals.push_back(Summary.TTRes.BitMask); 3971 NameVals.push_back(Summary.TTRes.InlineBits); 3972 3973 for (auto &W : Summary.WPDRes) 3974 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3975 W.second); 3976 } 3977 3978 static void writeTypeIdCompatibleVtableSummaryRecord( 3979 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3980 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3981 ValueEnumerator &VE) { 3982 NameVals.push_back(StrtabBuilder.add(Id)); 3983 NameVals.push_back(Id.size()); 3984 3985 for (auto &P : Summary) { 3986 NameVals.push_back(P.AddressPointOffset); 3987 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3988 } 3989 } 3990 3991 static void writeFunctionHeapProfileRecords( 3992 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3993 unsigned AllocAbbrev, bool PerModule, 3994 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3995 std::function<unsigned(unsigned)> GetStackIndex) { 3996 SmallVector<uint64_t> Record; 3997 3998 for (auto &CI : FS->callsites()) { 3999 Record.clear(); 4000 // Per module callsite clones should always have a single entry of 4001 // value 0. 4002 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4003 Record.push_back(GetValueID(CI.Callee)); 4004 if (!PerModule) { 4005 Record.push_back(CI.StackIdIndices.size()); 4006 Record.push_back(CI.Clones.size()); 4007 } 4008 for (auto Id : CI.StackIdIndices) 4009 Record.push_back(GetStackIndex(Id)); 4010 if (!PerModule) { 4011 for (auto V : CI.Clones) 4012 Record.push_back(V); 4013 } 4014 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4015 : bitc::FS_COMBINED_CALLSITE_INFO, 4016 Record, CallsiteAbbrev); 4017 } 4018 4019 for (auto &AI : FS->allocs()) { 4020 Record.clear(); 4021 // Per module alloc versions should always have a single entry of 4022 // value 0. 4023 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4024 if (!PerModule) { 4025 Record.push_back(AI.MIBs.size()); 4026 Record.push_back(AI.Versions.size()); 4027 } 4028 for (auto &MIB : AI.MIBs) { 4029 Record.push_back((uint8_t)MIB.AllocType); 4030 Record.push_back(MIB.StackIdIndices.size()); 4031 for (auto Id : MIB.StackIdIndices) 4032 Record.push_back(GetStackIndex(Id)); 4033 } 4034 if (!PerModule) { 4035 for (auto V : AI.Versions) 4036 Record.push_back(V); 4037 } 4038 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4039 : bitc::FS_COMBINED_ALLOC_INFO, 4040 Record, AllocAbbrev); 4041 } 4042 } 4043 4044 // Helper to emit a single function summary record. 4045 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4046 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4047 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4048 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4049 unsigned AllocAbbrev, const Function &F) { 4050 NameVals.push_back(ValueID); 4051 4052 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4053 4054 writeFunctionTypeMetadataRecords( 4055 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4056 return {VE.getValueID(VI.getValue())}; 4057 }); 4058 4059 writeFunctionHeapProfileRecords( 4060 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4061 /*PerModule*/ true, 4062 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4063 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4064 4065 auto SpecialRefCnts = FS->specialRefCounts(); 4066 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4067 NameVals.push_back(FS->instCount()); 4068 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4069 NameVals.push_back(FS->refs().size()); 4070 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4071 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4072 4073 for (auto &RI : FS->refs()) 4074 NameVals.push_back(VE.getValueID(RI.getValue())); 4075 4076 const bool UseRelBFRecord = 4077 WriteRelBFToSummary && !F.hasProfileData() && 4078 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4079 for (auto &ECI : FS->calls()) { 4080 NameVals.push_back(getValueId(ECI.first)); 4081 if (UseRelBFRecord) 4082 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4083 else 4084 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4085 } 4086 4087 unsigned FSAbbrev = 4088 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4089 unsigned Code = 4090 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4091 4092 // Emit the finished record. 4093 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4094 NameVals.clear(); 4095 } 4096 4097 // Collect the global value references in the given variable's initializer, 4098 // and emit them in a summary record. 4099 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4100 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4101 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4102 auto VI = Index->getValueInfo(V.getGUID()); 4103 if (!VI || VI.getSummaryList().empty()) { 4104 // Only declarations should not have a summary (a declaration might however 4105 // have a summary if the def was in module level asm). 4106 assert(V.isDeclaration()); 4107 return; 4108 } 4109 auto *Summary = VI.getSummaryList()[0].get(); 4110 NameVals.push_back(VE.getValueID(&V)); 4111 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4112 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4113 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4114 4115 auto VTableFuncs = VS->vTableFuncs(); 4116 if (!VTableFuncs.empty()) 4117 NameVals.push_back(VS->refs().size()); 4118 4119 unsigned SizeBeforeRefs = NameVals.size(); 4120 for (auto &RI : VS->refs()) 4121 NameVals.push_back(VE.getValueID(RI.getValue())); 4122 // Sort the refs for determinism output, the vector returned by FS->refs() has 4123 // been initialized from a DenseSet. 4124 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4125 4126 if (VTableFuncs.empty()) 4127 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4128 FSModRefsAbbrev); 4129 else { 4130 // VTableFuncs pairs should already be sorted by offset. 4131 for (auto &P : VTableFuncs) { 4132 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4133 NameVals.push_back(P.VTableOffset); 4134 } 4135 4136 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4137 FSModVTableRefsAbbrev); 4138 } 4139 NameVals.clear(); 4140 } 4141 4142 /// Emit the per-module summary section alongside the rest of 4143 /// the module's bitcode. 4144 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4145 // By default we compile with ThinLTO if the module has a summary, but the 4146 // client can request full LTO with a module flag. 4147 bool IsThinLTO = true; 4148 if (auto *MD = 4149 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4150 IsThinLTO = MD->getZExtValue(); 4151 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4152 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4153 4); 4154 4155 Stream.EmitRecord( 4156 bitc::FS_VERSION, 4157 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4158 4159 // Write the index flags. 4160 uint64_t Flags = 0; 4161 // Bits 1-3 are set only in the combined index, skip them. 4162 if (Index->enableSplitLTOUnit()) 4163 Flags |= 0x8; 4164 if (Index->hasUnifiedLTO()) 4165 Flags |= 0x200; 4166 4167 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4168 4169 if (Index->begin() == Index->end()) { 4170 Stream.ExitBlock(); 4171 return; 4172 } 4173 4174 for (const auto &GVI : valueIds()) { 4175 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4176 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4177 } 4178 4179 if (!Index->stackIds().empty()) { 4180 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4181 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4182 // numids x stackid 4183 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4184 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4185 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4186 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4187 } 4188 4189 // Abbrev for FS_PERMODULE_PROFILE. 4190 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4199 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4202 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4203 4204 // Abbrev for FS_PERMODULE_RELBF. 4205 Abbv = std::make_shared<BitCodeAbbrev>(); 4206 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4214 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4217 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4218 4219 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4220 Abbv = std::make_shared<BitCodeAbbrev>(); 4221 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4226 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4227 4228 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4229 Abbv = std::make_shared<BitCodeAbbrev>(); 4230 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4234 // numrefs x valueid, n x (valueid , offset) 4235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4237 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4238 4239 // Abbrev for FS_ALIAS. 4240 Abbv = std::make_shared<BitCodeAbbrev>(); 4241 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4245 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4246 4247 // Abbrev for FS_TYPE_ID_METADATA 4248 Abbv = std::make_shared<BitCodeAbbrev>(); 4249 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4252 // n x (valueid , offset) 4253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4255 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4256 4257 Abbv = std::make_shared<BitCodeAbbrev>(); 4258 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4260 // n x stackidindex 4261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4263 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4264 4265 Abbv = std::make_shared<BitCodeAbbrev>(); 4266 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4267 // n x (alloc type, numstackids, numstackids x stackidindex) 4268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4270 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4271 4272 SmallVector<uint64_t, 64> NameVals; 4273 // Iterate over the list of functions instead of the Index to 4274 // ensure the ordering is stable. 4275 for (const Function &F : M) { 4276 // Summary emission does not support anonymous functions, they have to 4277 // renamed using the anonymous function renaming pass. 4278 if (!F.hasName()) 4279 report_fatal_error("Unexpected anonymous function when writing summary"); 4280 4281 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4282 if (!VI || VI.getSummaryList().empty()) { 4283 // Only declarations should not have a summary (a declaration might 4284 // however have a summary if the def was in module level asm). 4285 assert(F.isDeclaration()); 4286 continue; 4287 } 4288 auto *Summary = VI.getSummaryList()[0].get(); 4289 writePerModuleFunctionSummaryRecord( 4290 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4291 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4292 } 4293 4294 // Capture references from GlobalVariable initializers, which are outside 4295 // of a function scope. 4296 for (const GlobalVariable &G : M.globals()) 4297 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4298 FSModVTableRefsAbbrev); 4299 4300 for (const GlobalAlias &A : M.aliases()) { 4301 auto *Aliasee = A.getAliaseeObject(); 4302 // Skip ifunc and nameless functions which don't have an entry in the 4303 // summary. 4304 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4305 continue; 4306 auto AliasId = VE.getValueID(&A); 4307 auto AliaseeId = VE.getValueID(Aliasee); 4308 NameVals.push_back(AliasId); 4309 auto *Summary = Index->getGlobalValueSummary(A); 4310 AliasSummary *AS = cast<AliasSummary>(Summary); 4311 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4312 NameVals.push_back(AliaseeId); 4313 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4314 NameVals.clear(); 4315 } 4316 4317 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4318 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4319 S.second, VE); 4320 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4321 TypeIdCompatibleVtableAbbrev); 4322 NameVals.clear(); 4323 } 4324 4325 if (Index->getBlockCount()) 4326 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4327 ArrayRef<uint64_t>{Index->getBlockCount()}); 4328 4329 Stream.ExitBlock(); 4330 } 4331 4332 /// Emit the combined summary section into the combined index file. 4333 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4334 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4335 Stream.EmitRecord( 4336 bitc::FS_VERSION, 4337 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4338 4339 // Write the index flags. 4340 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4341 4342 for (const auto &GVI : valueIds()) { 4343 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4344 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4345 } 4346 4347 if (!StackIdIndices.empty()) { 4348 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4349 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4350 // numids x stackid 4351 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4352 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4353 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4354 // Write the stack ids used by this index, which will be a subset of those in 4355 // the full index in the case of distributed indexes. 4356 std::vector<uint64_t> StackIds; 4357 for (auto &I : StackIdIndices) 4358 StackIds.push_back(Index.getStackIdAtIndex(I)); 4359 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4360 } 4361 4362 // Abbrev for FS_COMBINED_PROFILE. 4363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4364 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4374 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4377 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4378 4379 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4380 Abbv = std::make_shared<BitCodeAbbrev>(); 4381 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4387 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4388 4389 // Abbrev for FS_COMBINED_ALIAS. 4390 Abbv = std::make_shared<BitCodeAbbrev>(); 4391 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4396 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4397 4398 Abbv = std::make_shared<BitCodeAbbrev>(); 4399 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4403 // numstackindices x stackidindex, numver x version 4404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4406 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4407 4408 Abbv = std::make_shared<BitCodeAbbrev>(); 4409 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4412 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4413 // numver x version 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4416 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4417 4418 // The aliases are emitted as a post-pass, and will point to the value 4419 // id of the aliasee. Save them in a vector for post-processing. 4420 SmallVector<AliasSummary *, 64> Aliases; 4421 4422 // Save the value id for each summary for alias emission. 4423 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4424 4425 SmallVector<uint64_t, 64> NameVals; 4426 4427 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4428 // with the type ids referenced by this index file. 4429 std::set<GlobalValue::GUID> ReferencedTypeIds; 4430 4431 // For local linkage, we also emit the original name separately 4432 // immediately after the record. 4433 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4434 // We don't need to emit the original name if we are writing the index for 4435 // distributed backends (in which case ModuleToSummariesForIndex is 4436 // non-null). The original name is only needed during the thin link, since 4437 // for SamplePGO the indirect call targets for local functions have 4438 // have the original name annotated in profile. 4439 // Continue to emit it when writing out the entire combined index, which is 4440 // used in testing the thin link via llvm-lto. 4441 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4442 return; 4443 NameVals.push_back(S.getOriginalName()); 4444 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4445 NameVals.clear(); 4446 }; 4447 4448 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4449 forEachSummary([&](GVInfo I, bool IsAliasee) { 4450 GlobalValueSummary *S = I.second; 4451 assert(S); 4452 DefOrUseGUIDs.insert(I.first); 4453 for (const ValueInfo &VI : S->refs()) 4454 DefOrUseGUIDs.insert(VI.getGUID()); 4455 4456 auto ValueId = getValueId(I.first); 4457 assert(ValueId); 4458 SummaryToValueIdMap[S] = *ValueId; 4459 4460 // If this is invoked for an aliasee, we want to record the above 4461 // mapping, but then not emit a summary entry (if the aliasee is 4462 // to be imported, we will invoke this separately with IsAliasee=false). 4463 if (IsAliasee) 4464 return; 4465 4466 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4467 // Will process aliases as a post-pass because the reader wants all 4468 // global to be loaded first. 4469 Aliases.push_back(AS); 4470 return; 4471 } 4472 4473 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4474 NameVals.push_back(*ValueId); 4475 assert(ModuleIdMap.count(VS->modulePath())); 4476 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4477 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4478 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4479 for (auto &RI : VS->refs()) { 4480 auto RefValueId = getValueId(RI.getGUID()); 4481 if (!RefValueId) 4482 continue; 4483 NameVals.push_back(*RefValueId); 4484 } 4485 4486 // Emit the finished record. 4487 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4488 FSModRefsAbbrev); 4489 NameVals.clear(); 4490 MaybeEmitOriginalName(*S); 4491 return; 4492 } 4493 4494 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4495 if (!VI) 4496 return std::nullopt; 4497 return getValueId(VI.getGUID()); 4498 }; 4499 4500 auto *FS = cast<FunctionSummary>(S); 4501 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4502 getReferencedTypeIds(FS, ReferencedTypeIds); 4503 4504 writeFunctionHeapProfileRecords( 4505 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4506 /*PerModule*/ false, 4507 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4508 std::optional<unsigned> ValueID = GetValueId(VI); 4509 // This can happen in shared index files for distributed ThinLTO if 4510 // the callee function summary is not included. Record 0 which we 4511 // will have to deal with conservatively when doing any kind of 4512 // validation in the ThinLTO backends. 4513 if (!ValueID) 4514 return 0; 4515 return *ValueID; 4516 }, 4517 /*GetStackIndex*/ [&](unsigned I) { 4518 // Get the corresponding index into the list of StackIdIndices 4519 // actually being written for this combined index (which may be a 4520 // subset in the case of distributed indexes). 4521 auto Lower = llvm::lower_bound(StackIdIndices, I); 4522 return std::distance(StackIdIndices.begin(), Lower); 4523 }); 4524 4525 NameVals.push_back(*ValueId); 4526 assert(ModuleIdMap.count(FS->modulePath())); 4527 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4528 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4529 NameVals.push_back(FS->instCount()); 4530 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4531 NameVals.push_back(FS->entryCount()); 4532 4533 // Fill in below 4534 NameVals.push_back(0); // numrefs 4535 NameVals.push_back(0); // rorefcnt 4536 NameVals.push_back(0); // worefcnt 4537 4538 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4539 for (auto &RI : FS->refs()) { 4540 auto RefValueId = getValueId(RI.getGUID()); 4541 if (!RefValueId) 4542 continue; 4543 NameVals.push_back(*RefValueId); 4544 if (RI.isReadOnly()) 4545 RORefCnt++; 4546 else if (RI.isWriteOnly()) 4547 WORefCnt++; 4548 Count++; 4549 } 4550 NameVals[6] = Count; 4551 NameVals[7] = RORefCnt; 4552 NameVals[8] = WORefCnt; 4553 4554 for (auto &EI : FS->calls()) { 4555 // If this GUID doesn't have a value id, it doesn't have a function 4556 // summary and we don't need to record any calls to it. 4557 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4558 if (!CallValueId) 4559 continue; 4560 NameVals.push_back(*CallValueId); 4561 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4562 } 4563 4564 // Emit the finished record. 4565 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4566 FSCallsProfileAbbrev); 4567 NameVals.clear(); 4568 MaybeEmitOriginalName(*S); 4569 }); 4570 4571 for (auto *AS : Aliases) { 4572 auto AliasValueId = SummaryToValueIdMap[AS]; 4573 assert(AliasValueId); 4574 NameVals.push_back(AliasValueId); 4575 assert(ModuleIdMap.count(AS->modulePath())); 4576 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4577 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4578 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4579 assert(AliaseeValueId); 4580 NameVals.push_back(AliaseeValueId); 4581 4582 // Emit the finished record. 4583 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4584 NameVals.clear(); 4585 MaybeEmitOriginalName(*AS); 4586 4587 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4588 getReferencedTypeIds(FS, ReferencedTypeIds); 4589 } 4590 4591 if (!Index.cfiFunctionDefs().empty()) { 4592 for (auto &S : Index.cfiFunctionDefs()) { 4593 if (DefOrUseGUIDs.count( 4594 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4595 NameVals.push_back(StrtabBuilder.add(S)); 4596 NameVals.push_back(S.size()); 4597 } 4598 } 4599 if (!NameVals.empty()) { 4600 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4601 NameVals.clear(); 4602 } 4603 } 4604 4605 if (!Index.cfiFunctionDecls().empty()) { 4606 for (auto &S : Index.cfiFunctionDecls()) { 4607 if (DefOrUseGUIDs.count( 4608 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4609 NameVals.push_back(StrtabBuilder.add(S)); 4610 NameVals.push_back(S.size()); 4611 } 4612 } 4613 if (!NameVals.empty()) { 4614 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4615 NameVals.clear(); 4616 } 4617 } 4618 4619 // Walk the GUIDs that were referenced, and write the 4620 // corresponding type id records. 4621 for (auto &T : ReferencedTypeIds) { 4622 auto TidIter = Index.typeIds().equal_range(T); 4623 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4624 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4625 It->second.second); 4626 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4627 NameVals.clear(); 4628 } 4629 } 4630 4631 if (Index.getBlockCount()) 4632 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4633 ArrayRef<uint64_t>{Index.getBlockCount()}); 4634 4635 Stream.ExitBlock(); 4636 } 4637 4638 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4639 /// current llvm version, and a record for the epoch number. 4640 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4641 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4642 4643 // Write the "user readable" string identifying the bitcode producer 4644 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4645 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4648 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4649 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4650 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4651 4652 // Write the epoch version 4653 Abbv = std::make_shared<BitCodeAbbrev>(); 4654 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4656 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4657 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4658 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4659 Stream.ExitBlock(); 4660 } 4661 4662 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4663 // Emit the module's hash. 4664 // MODULE_CODE_HASH: [5*i32] 4665 if (GenerateHash) { 4666 uint32_t Vals[5]; 4667 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4668 Buffer.size() - BlockStartPos)); 4669 std::array<uint8_t, 20> Hash = Hasher.result(); 4670 for (int Pos = 0; Pos < 20; Pos += 4) { 4671 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4672 } 4673 4674 // Emit the finished record. 4675 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4676 4677 if (ModHash) 4678 // Save the written hash value. 4679 llvm::copy(Vals, std::begin(*ModHash)); 4680 } 4681 } 4682 4683 void ModuleBitcodeWriter::write() { 4684 writeIdentificationBlock(Stream); 4685 4686 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4687 size_t BlockStartPos = Buffer.size(); 4688 4689 writeModuleVersion(); 4690 4691 // Emit blockinfo, which defines the standard abbreviations etc. 4692 writeBlockInfo(); 4693 4694 // Emit information describing all of the types in the module. 4695 writeTypeTable(); 4696 4697 // Emit information about attribute groups. 4698 writeAttributeGroupTable(); 4699 4700 // Emit information about parameter attributes. 4701 writeAttributeTable(); 4702 4703 writeComdats(); 4704 4705 // Emit top-level description of module, including target triple, inline asm, 4706 // descriptors for global variables, and function prototype info. 4707 writeModuleInfo(); 4708 4709 // Emit constants. 4710 writeModuleConstants(); 4711 4712 // Emit metadata kind names. 4713 writeModuleMetadataKinds(); 4714 4715 // Emit metadata. 4716 writeModuleMetadata(); 4717 4718 // Emit module-level use-lists. 4719 if (VE.shouldPreserveUseListOrder()) 4720 writeUseListBlock(nullptr); 4721 4722 writeOperandBundleTags(); 4723 writeSyncScopeNames(); 4724 4725 // Emit function bodies. 4726 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4727 for (const Function &F : M) 4728 if (!F.isDeclaration()) 4729 writeFunction(F, FunctionToBitcodeIndex); 4730 4731 // Need to write after the above call to WriteFunction which populates 4732 // the summary information in the index. 4733 if (Index) 4734 writePerModuleGlobalValueSummary(); 4735 4736 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4737 4738 writeModuleHash(BlockStartPos); 4739 4740 Stream.ExitBlock(); 4741 } 4742 4743 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4744 uint32_t &Position) { 4745 support::endian::write32le(&Buffer[Position], Value); 4746 Position += 4; 4747 } 4748 4749 /// If generating a bc file on darwin, we have to emit a 4750 /// header and trailer to make it compatible with the system archiver. To do 4751 /// this we emit the following header, and then emit a trailer that pads the 4752 /// file out to be a multiple of 16 bytes. 4753 /// 4754 /// struct bc_header { 4755 /// uint32_t Magic; // 0x0B17C0DE 4756 /// uint32_t Version; // Version, currently always 0. 4757 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4758 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4759 /// uint32_t CPUType; // CPU specifier. 4760 /// ... potentially more later ... 4761 /// }; 4762 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4763 const Triple &TT) { 4764 unsigned CPUType = ~0U; 4765 4766 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4767 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4768 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4769 // specific constants here because they are implicitly part of the Darwin ABI. 4770 enum { 4771 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4772 DARWIN_CPU_TYPE_X86 = 7, 4773 DARWIN_CPU_TYPE_ARM = 12, 4774 DARWIN_CPU_TYPE_POWERPC = 18 4775 }; 4776 4777 Triple::ArchType Arch = TT.getArch(); 4778 if (Arch == Triple::x86_64) 4779 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4780 else if (Arch == Triple::x86) 4781 CPUType = DARWIN_CPU_TYPE_X86; 4782 else if (Arch == Triple::ppc) 4783 CPUType = DARWIN_CPU_TYPE_POWERPC; 4784 else if (Arch == Triple::ppc64) 4785 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4786 else if (Arch == Triple::arm || Arch == Triple::thumb) 4787 CPUType = DARWIN_CPU_TYPE_ARM; 4788 4789 // Traditional Bitcode starts after header. 4790 assert(Buffer.size() >= BWH_HeaderSize && 4791 "Expected header size to be reserved"); 4792 unsigned BCOffset = BWH_HeaderSize; 4793 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4794 4795 // Write the magic and version. 4796 unsigned Position = 0; 4797 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4798 writeInt32ToBuffer(0, Buffer, Position); // Version. 4799 writeInt32ToBuffer(BCOffset, Buffer, Position); 4800 writeInt32ToBuffer(BCSize, Buffer, Position); 4801 writeInt32ToBuffer(CPUType, Buffer, Position); 4802 4803 // If the file is not a multiple of 16 bytes, insert dummy padding. 4804 while (Buffer.size() & 15) 4805 Buffer.push_back(0); 4806 } 4807 4808 /// Helper to write the header common to all bitcode files. 4809 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4810 // Emit the file header. 4811 Stream.Emit((unsigned)'B', 8); 4812 Stream.Emit((unsigned)'C', 8); 4813 Stream.Emit(0x0, 4); 4814 Stream.Emit(0xC, 4); 4815 Stream.Emit(0xE, 4); 4816 Stream.Emit(0xD, 4); 4817 } 4818 4819 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4820 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4821 writeBitcodeHeader(*Stream); 4822 } 4823 4824 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4825 4826 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4827 Stream->EnterSubblock(Block, 3); 4828 4829 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4830 Abbv->Add(BitCodeAbbrevOp(Record)); 4831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4832 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4833 4834 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4835 4836 Stream->ExitBlock(); 4837 } 4838 4839 void BitcodeWriter::writeSymtab() { 4840 assert(!WroteStrtab && !WroteSymtab); 4841 4842 // If any module has module-level inline asm, we will require a registered asm 4843 // parser for the target so that we can create an accurate symbol table for 4844 // the module. 4845 for (Module *M : Mods) { 4846 if (M->getModuleInlineAsm().empty()) 4847 continue; 4848 4849 std::string Err; 4850 const Triple TT(M->getTargetTriple()); 4851 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4852 if (!T || !T->hasMCAsmParser()) 4853 return; 4854 } 4855 4856 WroteSymtab = true; 4857 SmallVector<char, 0> Symtab; 4858 // The irsymtab::build function may be unable to create a symbol table if the 4859 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4860 // table is not required for correctness, but we still want to be able to 4861 // write malformed modules to bitcode files, so swallow the error. 4862 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4863 consumeError(std::move(E)); 4864 return; 4865 } 4866 4867 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4868 {Symtab.data(), Symtab.size()}); 4869 } 4870 4871 void BitcodeWriter::writeStrtab() { 4872 assert(!WroteStrtab); 4873 4874 std::vector<char> Strtab; 4875 StrtabBuilder.finalizeInOrder(); 4876 Strtab.resize(StrtabBuilder.getSize()); 4877 StrtabBuilder.write((uint8_t *)Strtab.data()); 4878 4879 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4880 {Strtab.data(), Strtab.size()}); 4881 4882 WroteStrtab = true; 4883 } 4884 4885 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4886 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4887 WroteStrtab = true; 4888 } 4889 4890 void BitcodeWriter::writeModule(const Module &M, 4891 bool ShouldPreserveUseListOrder, 4892 const ModuleSummaryIndex *Index, 4893 bool GenerateHash, ModuleHash *ModHash) { 4894 assert(!WroteStrtab); 4895 4896 // The Mods vector is used by irsymtab::build, which requires non-const 4897 // Modules in case it needs to materialize metadata. But the bitcode writer 4898 // requires that the module is materialized, so we can cast to non-const here, 4899 // after checking that it is in fact materialized. 4900 assert(M.isMaterialized()); 4901 Mods.push_back(const_cast<Module *>(&M)); 4902 4903 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4904 ShouldPreserveUseListOrder, Index, 4905 GenerateHash, ModHash); 4906 ModuleWriter.write(); 4907 } 4908 4909 void BitcodeWriter::writeIndex( 4910 const ModuleSummaryIndex *Index, 4911 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4912 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4913 ModuleToSummariesForIndex); 4914 IndexWriter.write(); 4915 } 4916 4917 /// Write the specified module to the specified output stream. 4918 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4919 bool ShouldPreserveUseListOrder, 4920 const ModuleSummaryIndex *Index, 4921 bool GenerateHash, ModuleHash *ModHash) { 4922 SmallVector<char, 0> Buffer; 4923 Buffer.reserve(256*1024); 4924 4925 // If this is darwin or another generic macho target, reserve space for the 4926 // header. 4927 Triple TT(M.getTargetTriple()); 4928 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4929 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4930 4931 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4932 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4933 ModHash); 4934 Writer.writeSymtab(); 4935 Writer.writeStrtab(); 4936 4937 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4938 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4939 4940 // Write the generated bitstream to "Out". 4941 if (!Buffer.empty()) 4942 Out.write((char *)&Buffer.front(), Buffer.size()); 4943 } 4944 4945 void IndexBitcodeWriter::write() { 4946 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4947 4948 writeModuleVersion(); 4949 4950 // Write the module paths in the combined index. 4951 writeModStrings(); 4952 4953 // Write the summary combined index records. 4954 writeCombinedGlobalValueSummary(); 4955 4956 Stream.ExitBlock(); 4957 } 4958 4959 // Write the specified module summary index to the given raw output stream, 4960 // where it will be written in a new bitcode block. This is used when 4961 // writing the combined index file for ThinLTO. When writing a subset of the 4962 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4963 void llvm::writeIndexToFile( 4964 const ModuleSummaryIndex &Index, raw_ostream &Out, 4965 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4966 SmallVector<char, 0> Buffer; 4967 Buffer.reserve(256 * 1024); 4968 4969 BitcodeWriter Writer(Buffer); 4970 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4971 Writer.writeStrtab(); 4972 4973 Out.write((char *)&Buffer.front(), Buffer.size()); 4974 } 4975 4976 namespace { 4977 4978 /// Class to manage the bitcode writing for a thin link bitcode file. 4979 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4980 /// ModHash is for use in ThinLTO incremental build, generated while writing 4981 /// the module bitcode file. 4982 const ModuleHash *ModHash; 4983 4984 public: 4985 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4986 BitstreamWriter &Stream, 4987 const ModuleSummaryIndex &Index, 4988 const ModuleHash &ModHash) 4989 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4990 /*ShouldPreserveUseListOrder=*/false, &Index), 4991 ModHash(&ModHash) {} 4992 4993 void write(); 4994 4995 private: 4996 void writeSimplifiedModuleInfo(); 4997 }; 4998 4999 } // end anonymous namespace 5000 5001 // This function writes a simpilified module info for thin link bitcode file. 5002 // It only contains the source file name along with the name(the offset and 5003 // size in strtab) and linkage for global values. For the global value info 5004 // entry, in order to keep linkage at offset 5, there are three zeros used 5005 // as padding. 5006 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5007 SmallVector<unsigned, 64> Vals; 5008 // Emit the module's source file name. 5009 { 5010 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5011 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5012 if (Bits == SE_Char6) 5013 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5014 else if (Bits == SE_Fixed7) 5015 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5016 5017 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5018 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5019 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5021 Abbv->Add(AbbrevOpToUse); 5022 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5023 5024 for (const auto P : M.getSourceFileName()) 5025 Vals.push_back((unsigned char)P); 5026 5027 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5028 Vals.clear(); 5029 } 5030 5031 // Emit the global variable information. 5032 for (const GlobalVariable &GV : M.globals()) { 5033 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5034 Vals.push_back(StrtabBuilder.add(GV.getName())); 5035 Vals.push_back(GV.getName().size()); 5036 Vals.push_back(0); 5037 Vals.push_back(0); 5038 Vals.push_back(0); 5039 Vals.push_back(getEncodedLinkage(GV)); 5040 5041 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5042 Vals.clear(); 5043 } 5044 5045 // Emit the function proto information. 5046 for (const Function &F : M) { 5047 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5048 Vals.push_back(StrtabBuilder.add(F.getName())); 5049 Vals.push_back(F.getName().size()); 5050 Vals.push_back(0); 5051 Vals.push_back(0); 5052 Vals.push_back(0); 5053 Vals.push_back(getEncodedLinkage(F)); 5054 5055 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5056 Vals.clear(); 5057 } 5058 5059 // Emit the alias information. 5060 for (const GlobalAlias &A : M.aliases()) { 5061 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5062 Vals.push_back(StrtabBuilder.add(A.getName())); 5063 Vals.push_back(A.getName().size()); 5064 Vals.push_back(0); 5065 Vals.push_back(0); 5066 Vals.push_back(0); 5067 Vals.push_back(getEncodedLinkage(A)); 5068 5069 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5070 Vals.clear(); 5071 } 5072 5073 // Emit the ifunc information. 5074 for (const GlobalIFunc &I : M.ifuncs()) { 5075 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5076 Vals.push_back(StrtabBuilder.add(I.getName())); 5077 Vals.push_back(I.getName().size()); 5078 Vals.push_back(0); 5079 Vals.push_back(0); 5080 Vals.push_back(0); 5081 Vals.push_back(getEncodedLinkage(I)); 5082 5083 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5084 Vals.clear(); 5085 } 5086 } 5087 5088 void ThinLinkBitcodeWriter::write() { 5089 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5090 5091 writeModuleVersion(); 5092 5093 writeSimplifiedModuleInfo(); 5094 5095 writePerModuleGlobalValueSummary(); 5096 5097 // Write module hash. 5098 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5099 5100 Stream.ExitBlock(); 5101 } 5102 5103 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5104 const ModuleSummaryIndex &Index, 5105 const ModuleHash &ModHash) { 5106 assert(!WroteStrtab); 5107 5108 // The Mods vector is used by irsymtab::build, which requires non-const 5109 // Modules in case it needs to materialize metadata. But the bitcode writer 5110 // requires that the module is materialized, so we can cast to non-const here, 5111 // after checking that it is in fact materialized. 5112 assert(M.isMaterialized()); 5113 Mods.push_back(const_cast<Module *>(&M)); 5114 5115 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5116 ModHash); 5117 ThinLinkWriter.write(); 5118 } 5119 5120 // Write the specified thin link bitcode file to the given raw output stream, 5121 // where it will be written in a new bitcode block. This is used when 5122 // writing the per-module index file for ThinLTO. 5123 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5124 const ModuleSummaryIndex &Index, 5125 const ModuleHash &ModHash) { 5126 SmallVector<char, 0> Buffer; 5127 Buffer.reserve(256 * 1024); 5128 5129 BitcodeWriter Writer(Buffer); 5130 Writer.writeThinLinkBitcode(M, Index, ModHash); 5131 Writer.writeSymtab(); 5132 Writer.writeStrtab(); 5133 5134 Out.write((char *)&Buffer.front(), Buffer.size()); 5135 } 5136 5137 static const char *getSectionNameForBitcode(const Triple &T) { 5138 switch (T.getObjectFormat()) { 5139 case Triple::MachO: 5140 return "__LLVM,__bitcode"; 5141 case Triple::COFF: 5142 case Triple::ELF: 5143 case Triple::Wasm: 5144 case Triple::UnknownObjectFormat: 5145 return ".llvmbc"; 5146 case Triple::GOFF: 5147 llvm_unreachable("GOFF is not yet implemented"); 5148 break; 5149 case Triple::SPIRV: 5150 llvm_unreachable("SPIRV is not yet implemented"); 5151 break; 5152 case Triple::XCOFF: 5153 llvm_unreachable("XCOFF is not yet implemented"); 5154 break; 5155 case Triple::DXContainer: 5156 llvm_unreachable("DXContainer is not yet implemented"); 5157 break; 5158 } 5159 llvm_unreachable("Unimplemented ObjectFormatType"); 5160 } 5161 5162 static const char *getSectionNameForCommandline(const Triple &T) { 5163 switch (T.getObjectFormat()) { 5164 case Triple::MachO: 5165 return "__LLVM,__cmdline"; 5166 case Triple::COFF: 5167 case Triple::ELF: 5168 case Triple::Wasm: 5169 case Triple::UnknownObjectFormat: 5170 return ".llvmcmd"; 5171 case Triple::GOFF: 5172 llvm_unreachable("GOFF is not yet implemented"); 5173 break; 5174 case Triple::SPIRV: 5175 llvm_unreachable("SPIRV is not yet implemented"); 5176 break; 5177 case Triple::XCOFF: 5178 llvm_unreachable("XCOFF is not yet implemented"); 5179 break; 5180 case Triple::DXContainer: 5181 llvm_unreachable("DXC is not yet implemented"); 5182 break; 5183 } 5184 llvm_unreachable("Unimplemented ObjectFormatType"); 5185 } 5186 5187 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5188 bool EmbedBitcode, bool EmbedCmdline, 5189 const std::vector<uint8_t> &CmdArgs) { 5190 // Save llvm.compiler.used and remove it. 5191 SmallVector<Constant *, 2> UsedArray; 5192 SmallVector<GlobalValue *, 4> UsedGlobals; 5193 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5194 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5195 for (auto *GV : UsedGlobals) { 5196 if (GV->getName() != "llvm.embedded.module" && 5197 GV->getName() != "llvm.cmdline") 5198 UsedArray.push_back( 5199 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5200 } 5201 if (Used) 5202 Used->eraseFromParent(); 5203 5204 // Embed the bitcode for the llvm module. 5205 std::string Data; 5206 ArrayRef<uint8_t> ModuleData; 5207 Triple T(M.getTargetTriple()); 5208 5209 if (EmbedBitcode) { 5210 if (Buf.getBufferSize() == 0 || 5211 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5212 (const unsigned char *)Buf.getBufferEnd())) { 5213 // If the input is LLVM Assembly, bitcode is produced by serializing 5214 // the module. Use-lists order need to be preserved in this case. 5215 llvm::raw_string_ostream OS(Data); 5216 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5217 ModuleData = 5218 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5219 } else 5220 // If the input is LLVM bitcode, write the input byte stream directly. 5221 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5222 Buf.getBufferSize()); 5223 } 5224 llvm::Constant *ModuleConstant = 5225 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5226 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5227 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5228 ModuleConstant); 5229 GV->setSection(getSectionNameForBitcode(T)); 5230 // Set alignment to 1 to prevent padding between two contributions from input 5231 // sections after linking. 5232 GV->setAlignment(Align(1)); 5233 UsedArray.push_back( 5234 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5235 if (llvm::GlobalVariable *Old = 5236 M.getGlobalVariable("llvm.embedded.module", true)) { 5237 assert(Old->hasZeroLiveUses() && 5238 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5239 GV->takeName(Old); 5240 Old->eraseFromParent(); 5241 } else { 5242 GV->setName("llvm.embedded.module"); 5243 } 5244 5245 // Skip if only bitcode needs to be embedded. 5246 if (EmbedCmdline) { 5247 // Embed command-line options. 5248 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5249 CmdArgs.size()); 5250 llvm::Constant *CmdConstant = 5251 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5252 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5253 llvm::GlobalValue::PrivateLinkage, 5254 CmdConstant); 5255 GV->setSection(getSectionNameForCommandline(T)); 5256 GV->setAlignment(Align(1)); 5257 UsedArray.push_back( 5258 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5259 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5260 assert(Old->hasZeroLiveUses() && 5261 "llvm.cmdline can only be used once in llvm.compiler.used"); 5262 GV->takeName(Old); 5263 Old->eraseFromParent(); 5264 } else { 5265 GV->setName("llvm.cmdline"); 5266 } 5267 } 5268 5269 if (UsedArray.empty()) 5270 return; 5271 5272 // Recreate llvm.compiler.used. 5273 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5274 auto *NewUsed = new GlobalVariable( 5275 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5276 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5277 NewUsed->setSection("llvm.metadata"); 5278 } 5279