1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_RET_VOID_ABBREV, 127 FUNCTION_INST_RET_VAL_ABBREV, 128 FUNCTION_INST_UNREACHABLE_ABBREV, 129 FUNCTION_INST_GEP_ABBREV, 130 }; 131 132 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 133 /// file type. 134 class BitcodeWriterBase { 135 protected: 136 /// The stream created and owned by the client. 137 BitstreamWriter &Stream; 138 139 StringTableBuilder &StrtabBuilder; 140 141 public: 142 /// Constructs a BitcodeWriterBase object that writes to the provided 143 /// \p Stream. 144 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 145 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 146 147 protected: 148 void writeModuleVersion(); 149 }; 150 151 void BitcodeWriterBase::writeModuleVersion() { 152 // VERSION: [version#] 153 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 154 } 155 156 /// Base class to manage the module bitcode writing, currently subclassed for 157 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 158 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 159 protected: 160 /// The Module to write to bitcode. 161 const Module &M; 162 163 /// Enumerates ids for all values in the module. 164 ValueEnumerator VE; 165 166 /// Optional per-module index to write for ThinLTO. 167 const ModuleSummaryIndex *Index; 168 169 /// Map that holds the correspondence between GUIDs in the summary index, 170 /// that came from indirect call profiles, and a value id generated by this 171 /// class to use in the VST and summary block records. 172 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 173 174 /// Tracks the last value id recorded in the GUIDToValueMap. 175 unsigned GlobalValueId; 176 177 /// Saves the offset of the VSTOffset record that must eventually be 178 /// backpatched with the offset of the actual VST. 179 uint64_t VSTOffsetPlaceholder = 0; 180 181 public: 182 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 183 /// writing to the provided \p Buffer. 184 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 185 BitstreamWriter &Stream, 186 bool ShouldPreserveUseListOrder, 187 const ModuleSummaryIndex *Index) 188 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 189 VE(M, ShouldPreserveUseListOrder), Index(Index) { 190 // Assign ValueIds to any callee values in the index that came from 191 // indirect call profiles and were recorded as a GUID not a Value* 192 // (which would have been assigned an ID by the ValueEnumerator). 193 // The starting ValueId is just after the number of values in the 194 // ValueEnumerator, so that they can be emitted in the VST. 195 GlobalValueId = VE.getValues().size(); 196 if (!Index) 197 return; 198 for (const auto &GUIDSummaryLists : *Index) 199 // Examine all summaries for this GUID. 200 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 201 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 202 // For each call in the function summary, see if the call 203 // is to a GUID (which means it is for an indirect call, 204 // otherwise we would have a Value for it). If so, synthesize 205 // a value id. 206 for (auto &CallEdge : FS->calls()) 207 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 208 assignValueId(CallEdge.first.getGUID()); 209 } 210 211 protected: 212 void writePerModuleGlobalValueSummary(); 213 214 private: 215 void writePerModuleFunctionSummaryRecord( 216 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 217 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 218 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 public: 435 /// Constructs a IndexBitcodeWriter object for the given combined index, 436 /// writing to the provided \p Buffer. When writing a subset of the index 437 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 438 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 439 const ModuleSummaryIndex &Index, 440 const std::map<std::string, GVSummaryMapTy> 441 *ModuleToSummariesForIndex = nullptr) 442 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 443 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 444 // Assign unique value ids to all summaries to be written, for use 445 // in writing out the call graph edges. Save the mapping from GUID 446 // to the new global value id to use when writing those edges, which 447 // are currently saved in the index in terms of GUID. 448 forEachSummary([&](GVInfo I, bool IsAliasee) { 449 GUIDToValueIdMap[I.first] = ++GlobalValueId; 450 if (IsAliasee) 451 return; 452 auto *FS = dyn_cast<FunctionSummary>(I.second); 453 if (!FS) 454 return; 455 // Record all stack id indices actually used in the summary entries being 456 // written, so that we can compact them in the case of distributed ThinLTO 457 // indexes. 458 for (auto &CI : FS->callsites()) 459 for (auto Idx : CI.StackIdIndices) 460 StackIdIndices.push_back(Idx); 461 for (auto &AI : FS->allocs()) 462 for (auto &MIB : AI.MIBs) 463 for (auto Idx : MIB.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 }); 466 llvm::sort(StackIdIndices); 467 StackIdIndices.erase( 468 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 469 StackIdIndices.end()); 470 } 471 472 /// The below iterator returns the GUID and associated summary. 473 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 474 475 /// Calls the callback for each value GUID and summary to be written to 476 /// bitcode. This hides the details of whether they are being pulled from the 477 /// entire index or just those in a provided ModuleToSummariesForIndex map. 478 template<typename Functor> 479 void forEachSummary(Functor Callback) { 480 if (ModuleToSummariesForIndex) { 481 for (auto &M : *ModuleToSummariesForIndex) 482 for (auto &Summary : M.second) { 483 Callback(Summary, false); 484 // Ensure aliasee is handled, e.g. for assigning a valueId, 485 // even if we are not importing the aliasee directly (the 486 // imported alias will contain a copy of aliasee). 487 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 488 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 489 } 490 } else { 491 for (auto &Summaries : Index) 492 for (auto &Summary : Summaries.second.SummaryList) 493 Callback({Summaries.first, Summary.get()}, false); 494 } 495 } 496 497 /// Calls the callback for each entry in the modulePaths StringMap that 498 /// should be written to the module path string table. This hides the details 499 /// of whether they are being pulled from the entire index or just those in a 500 /// provided ModuleToSummariesForIndex map. 501 template <typename Functor> void forEachModule(Functor Callback) { 502 if (ModuleToSummariesForIndex) { 503 for (const auto &M : *ModuleToSummariesForIndex) { 504 const auto &MPI = Index.modulePaths().find(M.first); 505 if (MPI == Index.modulePaths().end()) { 506 // This should only happen if the bitcode file was empty, in which 507 // case we shouldn't be importing (the ModuleToSummariesForIndex 508 // would only include the module we are writing and index for). 509 assert(ModuleToSummariesForIndex->size() == 1); 510 continue; 511 } 512 Callback(*MPI); 513 } 514 } else { 515 for (const auto &MPSE : Index.modulePaths()) 516 Callback(MPSE); 517 } 518 } 519 520 /// Main entry point for writing a combined index to bitcode. 521 void write(); 522 523 private: 524 void writeModStrings(); 525 void writeCombinedGlobalValueSummary(); 526 527 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 528 auto VMI = GUIDToValueIdMap.find(ValGUID); 529 if (VMI == GUIDToValueIdMap.end()) 530 return std::nullopt; 531 return VMI->second; 532 } 533 534 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 535 }; 536 537 } // end anonymous namespace 538 539 static unsigned getEncodedCastOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown cast instruction!"); 542 case Instruction::Trunc : return bitc::CAST_TRUNC; 543 case Instruction::ZExt : return bitc::CAST_ZEXT; 544 case Instruction::SExt : return bitc::CAST_SEXT; 545 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 546 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 547 case Instruction::UIToFP : return bitc::CAST_UITOFP; 548 case Instruction::SIToFP : return bitc::CAST_SITOFP; 549 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 550 case Instruction::FPExt : return bitc::CAST_FPEXT; 551 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 552 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 553 case Instruction::BitCast : return bitc::CAST_BITCAST; 554 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 555 } 556 } 557 558 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 559 switch (Opcode) { 560 default: llvm_unreachable("Unknown binary instruction!"); 561 case Instruction::FNeg: return bitc::UNOP_FNEG; 562 } 563 } 564 565 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 566 switch (Opcode) { 567 default: llvm_unreachable("Unknown binary instruction!"); 568 case Instruction::Add: 569 case Instruction::FAdd: return bitc::BINOP_ADD; 570 case Instruction::Sub: 571 case Instruction::FSub: return bitc::BINOP_SUB; 572 case Instruction::Mul: 573 case Instruction::FMul: return bitc::BINOP_MUL; 574 case Instruction::UDiv: return bitc::BINOP_UDIV; 575 case Instruction::FDiv: 576 case Instruction::SDiv: return bitc::BINOP_SDIV; 577 case Instruction::URem: return bitc::BINOP_UREM; 578 case Instruction::FRem: 579 case Instruction::SRem: return bitc::BINOP_SREM; 580 case Instruction::Shl: return bitc::BINOP_SHL; 581 case Instruction::LShr: return bitc::BINOP_LSHR; 582 case Instruction::AShr: return bitc::BINOP_ASHR; 583 case Instruction::And: return bitc::BINOP_AND; 584 case Instruction::Or: return bitc::BINOP_OR; 585 case Instruction::Xor: return bitc::BINOP_XOR; 586 } 587 } 588 589 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 590 switch (Op) { 591 default: llvm_unreachable("Unknown RMW operation!"); 592 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 593 case AtomicRMWInst::Add: return bitc::RMW_ADD; 594 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 595 case AtomicRMWInst::And: return bitc::RMW_AND; 596 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 597 case AtomicRMWInst::Or: return bitc::RMW_OR; 598 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 599 case AtomicRMWInst::Max: return bitc::RMW_MAX; 600 case AtomicRMWInst::Min: return bitc::RMW_MIN; 601 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 602 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 603 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 604 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 605 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 606 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 607 case AtomicRMWInst::UIncWrap: 608 return bitc::RMW_UINC_WRAP; 609 case AtomicRMWInst::UDecWrap: 610 return bitc::RMW_UDEC_WRAP; 611 } 612 } 613 614 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 615 switch (Ordering) { 616 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 617 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 618 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 619 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 620 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 621 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 622 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 623 } 624 llvm_unreachable("Invalid ordering"); 625 } 626 627 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 628 StringRef Str, unsigned AbbrevToUse) { 629 SmallVector<unsigned, 64> Vals; 630 631 // Code: [strchar x N] 632 for (char C : Str) { 633 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 634 AbbrevToUse = 0; 635 Vals.push_back(C); 636 } 637 638 // Emit the finished record. 639 Stream.EmitRecord(Code, Vals, AbbrevToUse); 640 } 641 642 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 643 switch (Kind) { 644 case Attribute::Alignment: 645 return bitc::ATTR_KIND_ALIGNMENT; 646 case Attribute::AllocAlign: 647 return bitc::ATTR_KIND_ALLOC_ALIGN; 648 case Attribute::AllocSize: 649 return bitc::ATTR_KIND_ALLOC_SIZE; 650 case Attribute::AlwaysInline: 651 return bitc::ATTR_KIND_ALWAYS_INLINE; 652 case Attribute::Builtin: 653 return bitc::ATTR_KIND_BUILTIN; 654 case Attribute::ByVal: 655 return bitc::ATTR_KIND_BY_VAL; 656 case Attribute::Convergent: 657 return bitc::ATTR_KIND_CONVERGENT; 658 case Attribute::InAlloca: 659 return bitc::ATTR_KIND_IN_ALLOCA; 660 case Attribute::Cold: 661 return bitc::ATTR_KIND_COLD; 662 case Attribute::DisableSanitizerInstrumentation: 663 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 664 case Attribute::FnRetThunkExtern: 665 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 666 case Attribute::Hot: 667 return bitc::ATTR_KIND_HOT; 668 case Attribute::ElementType: 669 return bitc::ATTR_KIND_ELEMENTTYPE; 670 case Attribute::InlineHint: 671 return bitc::ATTR_KIND_INLINE_HINT; 672 case Attribute::InReg: 673 return bitc::ATTR_KIND_IN_REG; 674 case Attribute::JumpTable: 675 return bitc::ATTR_KIND_JUMP_TABLE; 676 case Attribute::MinSize: 677 return bitc::ATTR_KIND_MIN_SIZE; 678 case Attribute::AllocatedPointer: 679 return bitc::ATTR_KIND_ALLOCATED_POINTER; 680 case Attribute::AllocKind: 681 return bitc::ATTR_KIND_ALLOC_KIND; 682 case Attribute::Memory: 683 return bitc::ATTR_KIND_MEMORY; 684 case Attribute::NoFPClass: 685 return bitc::ATTR_KIND_NOFPCLASS; 686 case Attribute::Naked: 687 return bitc::ATTR_KIND_NAKED; 688 case Attribute::Nest: 689 return bitc::ATTR_KIND_NEST; 690 case Attribute::NoAlias: 691 return bitc::ATTR_KIND_NO_ALIAS; 692 case Attribute::NoBuiltin: 693 return bitc::ATTR_KIND_NO_BUILTIN; 694 case Attribute::NoCallback: 695 return bitc::ATTR_KIND_NO_CALLBACK; 696 case Attribute::NoCapture: 697 return bitc::ATTR_KIND_NO_CAPTURE; 698 case Attribute::NoDuplicate: 699 return bitc::ATTR_KIND_NO_DUPLICATE; 700 case Attribute::NoFree: 701 return bitc::ATTR_KIND_NOFREE; 702 case Attribute::NoImplicitFloat: 703 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 704 case Attribute::NoInline: 705 return bitc::ATTR_KIND_NO_INLINE; 706 case Attribute::NoRecurse: 707 return bitc::ATTR_KIND_NO_RECURSE; 708 case Attribute::NoMerge: 709 return bitc::ATTR_KIND_NO_MERGE; 710 case Attribute::NonLazyBind: 711 return bitc::ATTR_KIND_NON_LAZY_BIND; 712 case Attribute::NonNull: 713 return bitc::ATTR_KIND_NON_NULL; 714 case Attribute::Dereferenceable: 715 return bitc::ATTR_KIND_DEREFERENCEABLE; 716 case Attribute::DereferenceableOrNull: 717 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 718 case Attribute::NoRedZone: 719 return bitc::ATTR_KIND_NO_RED_ZONE; 720 case Attribute::NoReturn: 721 return bitc::ATTR_KIND_NO_RETURN; 722 case Attribute::NoSync: 723 return bitc::ATTR_KIND_NOSYNC; 724 case Attribute::NoCfCheck: 725 return bitc::ATTR_KIND_NOCF_CHECK; 726 case Attribute::NoProfile: 727 return bitc::ATTR_KIND_NO_PROFILE; 728 case Attribute::SkipProfile: 729 return bitc::ATTR_KIND_SKIP_PROFILE; 730 case Attribute::NoUnwind: 731 return bitc::ATTR_KIND_NO_UNWIND; 732 case Attribute::NoSanitizeBounds: 733 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 734 case Attribute::NoSanitizeCoverage: 735 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 736 case Attribute::NullPointerIsValid: 737 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 738 case Attribute::OptForFuzzing: 739 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 740 case Attribute::OptimizeForSize: 741 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 742 case Attribute::OptimizeNone: 743 return bitc::ATTR_KIND_OPTIMIZE_NONE; 744 case Attribute::ReadNone: 745 return bitc::ATTR_KIND_READ_NONE; 746 case Attribute::ReadOnly: 747 return bitc::ATTR_KIND_READ_ONLY; 748 case Attribute::Returned: 749 return bitc::ATTR_KIND_RETURNED; 750 case Attribute::ReturnsTwice: 751 return bitc::ATTR_KIND_RETURNS_TWICE; 752 case Attribute::SExt: 753 return bitc::ATTR_KIND_S_EXT; 754 case Attribute::Speculatable: 755 return bitc::ATTR_KIND_SPECULATABLE; 756 case Attribute::StackAlignment: 757 return bitc::ATTR_KIND_STACK_ALIGNMENT; 758 case Attribute::StackProtect: 759 return bitc::ATTR_KIND_STACK_PROTECT; 760 case Attribute::StackProtectReq: 761 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 762 case Attribute::StackProtectStrong: 763 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 764 case Attribute::SafeStack: 765 return bitc::ATTR_KIND_SAFESTACK; 766 case Attribute::ShadowCallStack: 767 return bitc::ATTR_KIND_SHADOWCALLSTACK; 768 case Attribute::StrictFP: 769 return bitc::ATTR_KIND_STRICT_FP; 770 case Attribute::StructRet: 771 return bitc::ATTR_KIND_STRUCT_RET; 772 case Attribute::SanitizeAddress: 773 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 774 case Attribute::SanitizeHWAddress: 775 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 776 case Attribute::SanitizeThread: 777 return bitc::ATTR_KIND_SANITIZE_THREAD; 778 case Attribute::SanitizeMemory: 779 return bitc::ATTR_KIND_SANITIZE_MEMORY; 780 case Attribute::SpeculativeLoadHardening: 781 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 782 case Attribute::SwiftError: 783 return bitc::ATTR_KIND_SWIFT_ERROR; 784 case Attribute::SwiftSelf: 785 return bitc::ATTR_KIND_SWIFT_SELF; 786 case Attribute::SwiftAsync: 787 return bitc::ATTR_KIND_SWIFT_ASYNC; 788 case Attribute::UWTable: 789 return bitc::ATTR_KIND_UW_TABLE; 790 case Attribute::VScaleRange: 791 return bitc::ATTR_KIND_VSCALE_RANGE; 792 case Attribute::WillReturn: 793 return bitc::ATTR_KIND_WILLRETURN; 794 case Attribute::WriteOnly: 795 return bitc::ATTR_KIND_WRITEONLY; 796 case Attribute::ZExt: 797 return bitc::ATTR_KIND_Z_EXT; 798 case Attribute::ImmArg: 799 return bitc::ATTR_KIND_IMMARG; 800 case Attribute::SanitizeMemTag: 801 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 802 case Attribute::Preallocated: 803 return bitc::ATTR_KIND_PREALLOCATED; 804 case Attribute::NoUndef: 805 return bitc::ATTR_KIND_NOUNDEF; 806 case Attribute::ByRef: 807 return bitc::ATTR_KIND_BYREF; 808 case Attribute::MustProgress: 809 return bitc::ATTR_KIND_MUSTPROGRESS; 810 case Attribute::PresplitCoroutine: 811 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 812 case Attribute::EndAttrKinds: 813 llvm_unreachable("Can not encode end-attribute kinds marker."); 814 case Attribute::None: 815 llvm_unreachable("Can not encode none-attribute."); 816 case Attribute::EmptyKey: 817 case Attribute::TombstoneKey: 818 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 819 } 820 821 llvm_unreachable("Trying to encode unknown attribute"); 822 } 823 824 void ModuleBitcodeWriter::writeAttributeGroupTable() { 825 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 826 VE.getAttributeGroups(); 827 if (AttrGrps.empty()) return; 828 829 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 830 831 SmallVector<uint64_t, 64> Record; 832 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 833 unsigned AttrListIndex = Pair.first; 834 AttributeSet AS = Pair.second; 835 Record.push_back(VE.getAttributeGroupID(Pair)); 836 Record.push_back(AttrListIndex); 837 838 for (Attribute Attr : AS) { 839 if (Attr.isEnumAttribute()) { 840 Record.push_back(0); 841 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 842 } else if (Attr.isIntAttribute()) { 843 Record.push_back(1); 844 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 845 Record.push_back(Attr.getValueAsInt()); 846 } else if (Attr.isStringAttribute()) { 847 StringRef Kind = Attr.getKindAsString(); 848 StringRef Val = Attr.getValueAsString(); 849 850 Record.push_back(Val.empty() ? 3 : 4); 851 Record.append(Kind.begin(), Kind.end()); 852 Record.push_back(0); 853 if (!Val.empty()) { 854 Record.append(Val.begin(), Val.end()); 855 Record.push_back(0); 856 } 857 } else { 858 assert(Attr.isTypeAttribute()); 859 Type *Ty = Attr.getValueAsType(); 860 Record.push_back(Ty ? 6 : 5); 861 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 862 if (Ty) 863 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 864 } 865 } 866 867 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 868 Record.clear(); 869 } 870 871 Stream.ExitBlock(); 872 } 873 874 void ModuleBitcodeWriter::writeAttributeTable() { 875 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 876 if (Attrs.empty()) return; 877 878 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 879 880 SmallVector<uint64_t, 64> Record; 881 for (const AttributeList &AL : Attrs) { 882 for (unsigned i : AL.indexes()) { 883 AttributeSet AS = AL.getAttributes(i); 884 if (AS.hasAttributes()) 885 Record.push_back(VE.getAttributeGroupID({i, AS})); 886 } 887 888 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 889 Record.clear(); 890 } 891 892 Stream.ExitBlock(); 893 } 894 895 /// WriteTypeTable - Write out the type table for a module. 896 void ModuleBitcodeWriter::writeTypeTable() { 897 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 898 899 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 900 SmallVector<uint64_t, 64> TypeVals; 901 902 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 903 904 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 905 auto Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 907 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 908 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Abbrev for TYPE_CODE_FUNCTION. 911 Abbv = std::make_shared<BitCodeAbbrev>(); 912 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 916 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 917 918 // Abbrev for TYPE_CODE_STRUCT_ANON. 919 Abbv = std::make_shared<BitCodeAbbrev>(); 920 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 924 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 925 926 // Abbrev for TYPE_CODE_STRUCT_NAME. 927 Abbv = std::make_shared<BitCodeAbbrev>(); 928 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 931 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 932 933 // Abbrev for TYPE_CODE_STRUCT_NAMED. 934 Abbv = std::make_shared<BitCodeAbbrev>(); 935 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 939 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 940 941 // Abbrev for TYPE_CODE_ARRAY. 942 Abbv = std::make_shared<BitCodeAbbrev>(); 943 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 946 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 947 948 // Emit an entry count so the reader can reserve space. 949 TypeVals.push_back(TypeList.size()); 950 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 951 TypeVals.clear(); 952 953 // Loop over all of the types, emitting each in turn. 954 for (Type *T : TypeList) { 955 int AbbrevToUse = 0; 956 unsigned Code = 0; 957 958 switch (T->getTypeID()) { 959 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 960 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 961 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 962 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 963 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 964 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 965 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 966 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 967 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 968 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 969 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 970 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 971 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 972 case Type::IntegerTyID: 973 // INTEGER: [width] 974 Code = bitc::TYPE_CODE_INTEGER; 975 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 976 break; 977 case Type::PointerTyID: { 978 PointerType *PTy = cast<PointerType>(T); 979 unsigned AddressSpace = PTy->getAddressSpace(); 980 // OPAQUE_POINTER: [address space] 981 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 982 TypeVals.push_back(AddressSpace); 983 if (AddressSpace == 0) 984 AbbrevToUse = OpaquePtrAbbrev; 985 break; 986 } 987 case Type::FunctionTyID: { 988 FunctionType *FT = cast<FunctionType>(T); 989 // FUNCTION: [isvararg, retty, paramty x N] 990 Code = bitc::TYPE_CODE_FUNCTION; 991 TypeVals.push_back(FT->isVarArg()); 992 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 993 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 994 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 995 AbbrevToUse = FunctionAbbrev; 996 break; 997 } 998 case Type::StructTyID: { 999 StructType *ST = cast<StructType>(T); 1000 // STRUCT: [ispacked, eltty x N] 1001 TypeVals.push_back(ST->isPacked()); 1002 // Output all of the element types. 1003 for (Type *ET : ST->elements()) 1004 TypeVals.push_back(VE.getTypeID(ET)); 1005 1006 if (ST->isLiteral()) { 1007 Code = bitc::TYPE_CODE_STRUCT_ANON; 1008 AbbrevToUse = StructAnonAbbrev; 1009 } else { 1010 if (ST->isOpaque()) { 1011 Code = bitc::TYPE_CODE_OPAQUE; 1012 } else { 1013 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1014 AbbrevToUse = StructNamedAbbrev; 1015 } 1016 1017 // Emit the name if it is present. 1018 if (!ST->getName().empty()) 1019 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1020 StructNameAbbrev); 1021 } 1022 break; 1023 } 1024 case Type::ArrayTyID: { 1025 ArrayType *AT = cast<ArrayType>(T); 1026 // ARRAY: [numelts, eltty] 1027 Code = bitc::TYPE_CODE_ARRAY; 1028 TypeVals.push_back(AT->getNumElements()); 1029 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1030 AbbrevToUse = ArrayAbbrev; 1031 break; 1032 } 1033 case Type::FixedVectorTyID: 1034 case Type::ScalableVectorTyID: { 1035 VectorType *VT = cast<VectorType>(T); 1036 // VECTOR [numelts, eltty] or 1037 // [numelts, eltty, scalable] 1038 Code = bitc::TYPE_CODE_VECTOR; 1039 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1040 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1041 if (isa<ScalableVectorType>(VT)) 1042 TypeVals.push_back(true); 1043 break; 1044 } 1045 case Type::TargetExtTyID: { 1046 TargetExtType *TET = cast<TargetExtType>(T); 1047 Code = bitc::TYPE_CODE_TARGET_TYPE; 1048 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1049 StructNameAbbrev); 1050 TypeVals.push_back(TET->getNumTypeParameters()); 1051 for (Type *InnerTy : TET->type_params()) 1052 TypeVals.push_back(VE.getTypeID(InnerTy)); 1053 for (unsigned IntParam : TET->int_params()) 1054 TypeVals.push_back(IntParam); 1055 break; 1056 } 1057 case Type::TypedPointerTyID: 1058 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1059 } 1060 1061 // Emit the finished record. 1062 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1063 TypeVals.clear(); 1064 } 1065 1066 Stream.ExitBlock(); 1067 } 1068 1069 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1070 switch (Linkage) { 1071 case GlobalValue::ExternalLinkage: 1072 return 0; 1073 case GlobalValue::WeakAnyLinkage: 1074 return 16; 1075 case GlobalValue::AppendingLinkage: 1076 return 2; 1077 case GlobalValue::InternalLinkage: 1078 return 3; 1079 case GlobalValue::LinkOnceAnyLinkage: 1080 return 18; 1081 case GlobalValue::ExternalWeakLinkage: 1082 return 7; 1083 case GlobalValue::CommonLinkage: 1084 return 8; 1085 case GlobalValue::PrivateLinkage: 1086 return 9; 1087 case GlobalValue::WeakODRLinkage: 1088 return 17; 1089 case GlobalValue::LinkOnceODRLinkage: 1090 return 19; 1091 case GlobalValue::AvailableExternallyLinkage: 1092 return 12; 1093 } 1094 llvm_unreachable("Invalid linkage"); 1095 } 1096 1097 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1098 return getEncodedLinkage(GV.getLinkage()); 1099 } 1100 1101 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1102 uint64_t RawFlags = 0; 1103 RawFlags |= Flags.ReadNone; 1104 RawFlags |= (Flags.ReadOnly << 1); 1105 RawFlags |= (Flags.NoRecurse << 2); 1106 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1107 RawFlags |= (Flags.NoInline << 4); 1108 RawFlags |= (Flags.AlwaysInline << 5); 1109 RawFlags |= (Flags.NoUnwind << 6); 1110 RawFlags |= (Flags.MayThrow << 7); 1111 RawFlags |= (Flags.HasUnknownCall << 8); 1112 RawFlags |= (Flags.MustBeUnreachable << 9); 1113 return RawFlags; 1114 } 1115 1116 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1117 // in BitcodeReader.cpp. 1118 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1119 uint64_t RawFlags = 0; 1120 1121 RawFlags |= Flags.NotEligibleToImport; // bool 1122 RawFlags |= (Flags.Live << 1); 1123 RawFlags |= (Flags.DSOLocal << 2); 1124 RawFlags |= (Flags.CanAutoHide << 3); 1125 1126 // Linkage don't need to be remapped at that time for the summary. Any future 1127 // change to the getEncodedLinkage() function will need to be taken into 1128 // account here as well. 1129 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1130 1131 RawFlags |= (Flags.Visibility << 8); // 2 bits 1132 1133 return RawFlags; 1134 } 1135 1136 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1137 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1138 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1139 return RawFlags; 1140 } 1141 1142 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1143 switch (GV.getVisibility()) { 1144 case GlobalValue::DefaultVisibility: return 0; 1145 case GlobalValue::HiddenVisibility: return 1; 1146 case GlobalValue::ProtectedVisibility: return 2; 1147 } 1148 llvm_unreachable("Invalid visibility"); 1149 } 1150 1151 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1152 switch (GV.getDLLStorageClass()) { 1153 case GlobalValue::DefaultStorageClass: return 0; 1154 case GlobalValue::DLLImportStorageClass: return 1; 1155 case GlobalValue::DLLExportStorageClass: return 2; 1156 } 1157 llvm_unreachable("Invalid DLL storage class"); 1158 } 1159 1160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1161 switch (GV.getThreadLocalMode()) { 1162 case GlobalVariable::NotThreadLocal: return 0; 1163 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1164 case GlobalVariable::LocalDynamicTLSModel: return 2; 1165 case GlobalVariable::InitialExecTLSModel: return 3; 1166 case GlobalVariable::LocalExecTLSModel: return 4; 1167 } 1168 llvm_unreachable("Invalid TLS model"); 1169 } 1170 1171 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1172 switch (C.getSelectionKind()) { 1173 case Comdat::Any: 1174 return bitc::COMDAT_SELECTION_KIND_ANY; 1175 case Comdat::ExactMatch: 1176 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1177 case Comdat::Largest: 1178 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1179 case Comdat::NoDeduplicate: 1180 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1181 case Comdat::SameSize: 1182 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1183 } 1184 llvm_unreachable("Invalid selection kind"); 1185 } 1186 1187 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1188 switch (GV.getUnnamedAddr()) { 1189 case GlobalValue::UnnamedAddr::None: return 0; 1190 case GlobalValue::UnnamedAddr::Local: return 2; 1191 case GlobalValue::UnnamedAddr::Global: return 1; 1192 } 1193 llvm_unreachable("Invalid unnamed_addr"); 1194 } 1195 1196 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1197 if (GenerateHash) 1198 Hasher.update(Str); 1199 return StrtabBuilder.add(Str); 1200 } 1201 1202 void ModuleBitcodeWriter::writeComdats() { 1203 SmallVector<unsigned, 64> Vals; 1204 for (const Comdat *C : VE.getComdats()) { 1205 // COMDAT: [strtab offset, strtab size, selection_kind] 1206 Vals.push_back(addToStrtab(C->getName())); 1207 Vals.push_back(C->getName().size()); 1208 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1209 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1210 Vals.clear(); 1211 } 1212 } 1213 1214 /// Write a record that will eventually hold the word offset of the 1215 /// module-level VST. For now the offset is 0, which will be backpatched 1216 /// after the real VST is written. Saves the bit offset to backpatch. 1217 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1218 // Write a placeholder value in for the offset of the real VST, 1219 // which is written after the function blocks so that it can include 1220 // the offset of each function. The placeholder offset will be 1221 // updated when the real VST is written. 1222 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1223 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1224 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1225 // hold the real VST offset. Must use fixed instead of VBR as we don't 1226 // know how many VBR chunks to reserve ahead of time. 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1228 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1229 1230 // Emit the placeholder 1231 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1232 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1233 1234 // Compute and save the bit offset to the placeholder, which will be 1235 // patched when the real VST is written. We can simply subtract the 32-bit 1236 // fixed size from the current bit number to get the location to backpatch. 1237 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1238 } 1239 1240 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1241 1242 /// Determine the encoding to use for the given string name and length. 1243 static StringEncoding getStringEncoding(StringRef Str) { 1244 bool isChar6 = true; 1245 for (char C : Str) { 1246 if (isChar6) 1247 isChar6 = BitCodeAbbrevOp::isChar6(C); 1248 if ((unsigned char)C & 128) 1249 // don't bother scanning the rest. 1250 return SE_Fixed8; 1251 } 1252 if (isChar6) 1253 return SE_Char6; 1254 return SE_Fixed7; 1255 } 1256 1257 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1258 "Sanitizer Metadata is too large for naive serialization."); 1259 static unsigned 1260 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1261 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1262 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1263 } 1264 1265 /// Emit top-level description of module, including target triple, inline asm, 1266 /// descriptors for global variables, and function prototype info. 1267 /// Returns the bit offset to backpatch with the location of the real VST. 1268 void ModuleBitcodeWriter::writeModuleInfo() { 1269 // Emit various pieces of data attached to a module. 1270 if (!M.getTargetTriple().empty()) 1271 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1272 0 /*TODO*/); 1273 const std::string &DL = M.getDataLayoutStr(); 1274 if (!DL.empty()) 1275 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1276 if (!M.getModuleInlineAsm().empty()) 1277 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1278 0 /*TODO*/); 1279 1280 // Emit information about sections and GC, computing how many there are. Also 1281 // compute the maximum alignment value. 1282 std::map<std::string, unsigned> SectionMap; 1283 std::map<std::string, unsigned> GCMap; 1284 MaybeAlign MaxAlignment; 1285 unsigned MaxGlobalType = 0; 1286 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1287 if (A) 1288 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1289 }; 1290 for (const GlobalVariable &GV : M.globals()) { 1291 UpdateMaxAlignment(GV.getAlign()); 1292 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1293 if (GV.hasSection()) { 1294 // Give section names unique ID's. 1295 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1296 if (!Entry) { 1297 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1298 0 /*TODO*/); 1299 Entry = SectionMap.size(); 1300 } 1301 } 1302 } 1303 for (const Function &F : M) { 1304 UpdateMaxAlignment(F.getAlign()); 1305 if (F.hasSection()) { 1306 // Give section names unique ID's. 1307 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1308 if (!Entry) { 1309 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1310 0 /*TODO*/); 1311 Entry = SectionMap.size(); 1312 } 1313 } 1314 if (F.hasGC()) { 1315 // Same for GC names. 1316 unsigned &Entry = GCMap[F.getGC()]; 1317 if (!Entry) { 1318 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1319 0 /*TODO*/); 1320 Entry = GCMap.size(); 1321 } 1322 } 1323 } 1324 1325 // Emit abbrev for globals, now that we know # sections and max alignment. 1326 unsigned SimpleGVarAbbrev = 0; 1327 if (!M.global_empty()) { 1328 // Add an abbrev for common globals with no visibility or thread localness. 1329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1330 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1334 Log2_32_Ceil(MaxGlobalType+1))); 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1336 //| explicitType << 1 1337 //| constant 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1340 if (!MaxAlignment) // Alignment. 1341 Abbv->Add(BitCodeAbbrevOp(0)); 1342 else { 1343 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1345 Log2_32_Ceil(MaxEncAlignment+1))); 1346 } 1347 if (SectionMap.empty()) // Section. 1348 Abbv->Add(BitCodeAbbrevOp(0)); 1349 else 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1351 Log2_32_Ceil(SectionMap.size()+1))); 1352 // Don't bother emitting vis + thread local. 1353 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1354 } 1355 1356 SmallVector<unsigned, 64> Vals; 1357 // Emit the module's source file name. 1358 { 1359 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1360 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1361 if (Bits == SE_Char6) 1362 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1363 else if (Bits == SE_Fixed7) 1364 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1365 1366 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1367 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1368 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1370 Abbv->Add(AbbrevOpToUse); 1371 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1372 1373 for (const auto P : M.getSourceFileName()) 1374 Vals.push_back((unsigned char)P); 1375 1376 // Emit the finished record. 1377 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1378 Vals.clear(); 1379 } 1380 1381 // Emit the global variable information. 1382 for (const GlobalVariable &GV : M.globals()) { 1383 unsigned AbbrevToUse = 0; 1384 1385 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1386 // linkage, alignment, section, visibility, threadlocal, 1387 // unnamed_addr, externally_initialized, dllstorageclass, 1388 // comdat, attributes, DSO_Local, GlobalSanitizer] 1389 Vals.push_back(addToStrtab(GV.getName())); 1390 Vals.push_back(GV.getName().size()); 1391 Vals.push_back(VE.getTypeID(GV.getValueType())); 1392 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1393 Vals.push_back(GV.isDeclaration() ? 0 : 1394 (VE.getValueID(GV.getInitializer()) + 1)); 1395 Vals.push_back(getEncodedLinkage(GV)); 1396 Vals.push_back(getEncodedAlign(GV.getAlign())); 1397 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1398 : 0); 1399 if (GV.isThreadLocal() || 1400 GV.getVisibility() != GlobalValue::DefaultVisibility || 1401 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1402 GV.isExternallyInitialized() || 1403 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1404 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1405 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1406 Vals.push_back(getEncodedVisibility(GV)); 1407 Vals.push_back(getEncodedThreadLocalMode(GV)); 1408 Vals.push_back(getEncodedUnnamedAddr(GV)); 1409 Vals.push_back(GV.isExternallyInitialized()); 1410 Vals.push_back(getEncodedDLLStorageClass(GV)); 1411 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1412 1413 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1414 Vals.push_back(VE.getAttributeListID(AL)); 1415 1416 Vals.push_back(GV.isDSOLocal()); 1417 Vals.push_back(addToStrtab(GV.getPartition())); 1418 Vals.push_back(GV.getPartition().size()); 1419 1420 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1421 GV.getSanitizerMetadata()) 1422 : 0)); 1423 } else { 1424 AbbrevToUse = SimpleGVarAbbrev; 1425 } 1426 1427 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1428 Vals.clear(); 1429 } 1430 1431 // Emit the function proto information. 1432 for (const Function &F : M) { 1433 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1434 // linkage, paramattrs, alignment, section, visibility, gc, 1435 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1436 // prefixdata, personalityfn, DSO_Local, addrspace] 1437 Vals.push_back(addToStrtab(F.getName())); 1438 Vals.push_back(F.getName().size()); 1439 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1440 Vals.push_back(F.getCallingConv()); 1441 Vals.push_back(F.isDeclaration()); 1442 Vals.push_back(getEncodedLinkage(F)); 1443 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1444 Vals.push_back(getEncodedAlign(F.getAlign())); 1445 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1446 : 0); 1447 Vals.push_back(getEncodedVisibility(F)); 1448 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1449 Vals.push_back(getEncodedUnnamedAddr(F)); 1450 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1451 : 0); 1452 Vals.push_back(getEncodedDLLStorageClass(F)); 1453 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1454 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1455 : 0); 1456 Vals.push_back( 1457 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1458 1459 Vals.push_back(F.isDSOLocal()); 1460 Vals.push_back(F.getAddressSpace()); 1461 Vals.push_back(addToStrtab(F.getPartition())); 1462 Vals.push_back(F.getPartition().size()); 1463 1464 unsigned AbbrevToUse = 0; 1465 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1466 Vals.clear(); 1467 } 1468 1469 // Emit the alias information. 1470 for (const GlobalAlias &A : M.aliases()) { 1471 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1472 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1473 // DSO_Local] 1474 Vals.push_back(addToStrtab(A.getName())); 1475 Vals.push_back(A.getName().size()); 1476 Vals.push_back(VE.getTypeID(A.getValueType())); 1477 Vals.push_back(A.getType()->getAddressSpace()); 1478 Vals.push_back(VE.getValueID(A.getAliasee())); 1479 Vals.push_back(getEncodedLinkage(A)); 1480 Vals.push_back(getEncodedVisibility(A)); 1481 Vals.push_back(getEncodedDLLStorageClass(A)); 1482 Vals.push_back(getEncodedThreadLocalMode(A)); 1483 Vals.push_back(getEncodedUnnamedAddr(A)); 1484 Vals.push_back(A.isDSOLocal()); 1485 Vals.push_back(addToStrtab(A.getPartition())); 1486 Vals.push_back(A.getPartition().size()); 1487 1488 unsigned AbbrevToUse = 0; 1489 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1490 Vals.clear(); 1491 } 1492 1493 // Emit the ifunc information. 1494 for (const GlobalIFunc &I : M.ifuncs()) { 1495 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1496 // val#, linkage, visibility, DSO_Local] 1497 Vals.push_back(addToStrtab(I.getName())); 1498 Vals.push_back(I.getName().size()); 1499 Vals.push_back(VE.getTypeID(I.getValueType())); 1500 Vals.push_back(I.getType()->getAddressSpace()); 1501 Vals.push_back(VE.getValueID(I.getResolver())); 1502 Vals.push_back(getEncodedLinkage(I)); 1503 Vals.push_back(getEncodedVisibility(I)); 1504 Vals.push_back(I.isDSOLocal()); 1505 Vals.push_back(addToStrtab(I.getPartition())); 1506 Vals.push_back(I.getPartition().size()); 1507 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1508 Vals.clear(); 1509 } 1510 1511 writeValueSymbolTableForwardDecl(); 1512 } 1513 1514 static uint64_t getOptimizationFlags(const Value *V) { 1515 uint64_t Flags = 0; 1516 1517 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1518 if (OBO->hasNoSignedWrap()) 1519 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1520 if (OBO->hasNoUnsignedWrap()) 1521 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1522 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1523 if (PEO->isExact()) 1524 Flags |= 1 << bitc::PEO_EXACT; 1525 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1526 if (FPMO->hasAllowReassoc()) 1527 Flags |= bitc::AllowReassoc; 1528 if (FPMO->hasNoNaNs()) 1529 Flags |= bitc::NoNaNs; 1530 if (FPMO->hasNoInfs()) 1531 Flags |= bitc::NoInfs; 1532 if (FPMO->hasNoSignedZeros()) 1533 Flags |= bitc::NoSignedZeros; 1534 if (FPMO->hasAllowReciprocal()) 1535 Flags |= bitc::AllowReciprocal; 1536 if (FPMO->hasAllowContract()) 1537 Flags |= bitc::AllowContract; 1538 if (FPMO->hasApproxFunc()) 1539 Flags |= bitc::ApproxFunc; 1540 } 1541 1542 return Flags; 1543 } 1544 1545 void ModuleBitcodeWriter::writeValueAsMetadata( 1546 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1547 // Mimic an MDNode with a value as one operand. 1548 Value *V = MD->getValue(); 1549 Record.push_back(VE.getTypeID(V->getType())); 1550 Record.push_back(VE.getValueID(V)); 1551 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1552 Record.clear(); 1553 } 1554 1555 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1556 SmallVectorImpl<uint64_t> &Record, 1557 unsigned Abbrev) { 1558 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1559 Metadata *MD = N->getOperand(i); 1560 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1561 "Unexpected function-local metadata"); 1562 Record.push_back(VE.getMetadataOrNullID(MD)); 1563 } 1564 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1565 : bitc::METADATA_NODE, 1566 Record, Abbrev); 1567 Record.clear(); 1568 } 1569 1570 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1571 // Assume the column is usually under 128, and always output the inlined-at 1572 // location (it's never more expensive than building an array size 1). 1573 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1574 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1581 return Stream.EmitAbbrev(std::move(Abbv)); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned &Abbrev) { 1587 if (!Abbrev) 1588 Abbrev = createDILocationAbbrev(); 1589 1590 Record.push_back(N->isDistinct()); 1591 Record.push_back(N->getLine()); 1592 Record.push_back(N->getColumn()); 1593 Record.push_back(VE.getMetadataID(N->getScope())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1595 Record.push_back(N->isImplicitCode()); 1596 1597 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1602 // Assume the column is usually under 128, and always output the inlined-at 1603 // location (it's never more expensive than building an array size 1). 1604 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1605 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1612 return Stream.EmitAbbrev(std::move(Abbv)); 1613 } 1614 1615 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1616 SmallVectorImpl<uint64_t> &Record, 1617 unsigned &Abbrev) { 1618 if (!Abbrev) 1619 Abbrev = createGenericDINodeAbbrev(); 1620 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(N->getTag()); 1623 Record.push_back(0); // Per-tag version field; unused for now. 1624 1625 for (auto &I : N->operands()) 1626 Record.push_back(VE.getMetadataOrNullID(I)); 1627 1628 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1633 SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 const uint64_t Version = 2 << 1; 1636 Record.push_back((uint64_t)N->isDistinct() | Version); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1638 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1641 1642 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1643 Record.clear(); 1644 } 1645 1646 void ModuleBitcodeWriter::writeDIGenericSubrange( 1647 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1648 unsigned Abbrev) { 1649 Record.push_back((uint64_t)N->isDistinct()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1654 1655 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1656 Record.clear(); 1657 } 1658 1659 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1660 if ((int64_t)V >= 0) 1661 Vals.push_back(V << 1); 1662 else 1663 Vals.push_back((-V << 1) | 1); 1664 } 1665 1666 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1667 // We have an arbitrary precision integer value to write whose 1668 // bit width is > 64. However, in canonical unsigned integer 1669 // format it is likely that the high bits are going to be zero. 1670 // So, we only write the number of active words. 1671 unsigned NumWords = A.getActiveWords(); 1672 const uint64_t *RawData = A.getRawData(); 1673 for (unsigned i = 0; i < NumWords; i++) 1674 emitSignedInt64(Vals, RawData[i]); 1675 } 1676 1677 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1678 SmallVectorImpl<uint64_t> &Record, 1679 unsigned Abbrev) { 1680 const uint64_t IsBigInt = 1 << 2; 1681 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1682 Record.push_back(N->getValue().getBitWidth()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1684 emitWideAPInt(Record, N->getValue()); 1685 1686 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1687 Record.clear(); 1688 } 1689 1690 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1691 SmallVectorImpl<uint64_t> &Record, 1692 unsigned Abbrev) { 1693 Record.push_back(N->isDistinct()); 1694 Record.push_back(N->getTag()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1696 Record.push_back(N->getSizeInBits()); 1697 Record.push_back(N->getAlignInBits()); 1698 Record.push_back(N->getEncoding()); 1699 Record.push_back(N->getFlags()); 1700 1701 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1706 SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 Record.push_back(N->isDistinct()); 1709 Record.push_back(N->getTag()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1714 Record.push_back(N->getSizeInBits()); 1715 Record.push_back(N->getAlignInBits()); 1716 Record.push_back(N->getEncoding()); 1717 1718 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1723 SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 Record.push_back(N->isDistinct()); 1726 Record.push_back(N->getTag()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1729 Record.push_back(N->getLine()); 1730 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1732 Record.push_back(N->getSizeInBits()); 1733 Record.push_back(N->getAlignInBits()); 1734 Record.push_back(N->getOffsetInBits()); 1735 Record.push_back(N->getFlags()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1737 1738 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1739 // that there is no DWARF address space associated with DIDerivedType. 1740 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1741 Record.push_back(*DWARFAddressSpace + 1); 1742 else 1743 Record.push_back(0); 1744 1745 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1746 1747 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1748 Record.clear(); 1749 } 1750 1751 void ModuleBitcodeWriter::writeDICompositeType( 1752 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1753 unsigned Abbrev) { 1754 const unsigned IsNotUsedInOldTypeRef = 0x2; 1755 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1756 Record.push_back(N->getTag()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1759 Record.push_back(N->getLine()); 1760 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1761 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1762 Record.push_back(N->getSizeInBits()); 1763 Record.push_back(N->getAlignInBits()); 1764 Record.push_back(N->getOffsetInBits()); 1765 Record.push_back(N->getFlags()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1767 Record.push_back(N->getRuntimeLang()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1777 1778 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDISubroutineType( 1783 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 const unsigned HasNoOldTypeRefs = 0x2; 1786 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1787 Record.push_back(N->getFlags()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1789 Record.push_back(N->getCC()); 1790 1791 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1796 SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1801 if (N->getRawChecksum()) { 1802 Record.push_back(N->getRawChecksum()->Kind); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1804 } else { 1805 // Maintain backwards compatibility with the old internal representation of 1806 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1807 Record.push_back(0); 1808 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1809 } 1810 auto Source = N->getRawSource(); 1811 if (Source) 1812 Record.push_back(VE.getMetadataOrNullID(Source)); 1813 1814 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1815 Record.clear(); 1816 } 1817 1818 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1819 SmallVectorImpl<uint64_t> &Record, 1820 unsigned Abbrev) { 1821 assert(N->isDistinct() && "Expected distinct compile units"); 1822 Record.push_back(/* IsDistinct */ true); 1823 Record.push_back(N->getSourceLanguage()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1826 Record.push_back(N->isOptimized()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1828 Record.push_back(N->getRuntimeVersion()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1830 Record.push_back(N->getEmissionKind()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1833 Record.push_back(/* subprograms */ 0); 1834 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1836 Record.push_back(N->getDWOId()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1838 Record.push_back(N->getSplitDebugInlining()); 1839 Record.push_back(N->getDebugInfoForProfiling()); 1840 Record.push_back((unsigned)N->getNameTableKind()); 1841 Record.push_back(N->getRangesBaseAddress()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1844 1845 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1850 SmallVectorImpl<uint64_t> &Record, 1851 unsigned Abbrev) { 1852 const uint64_t HasUnitFlag = 1 << 1; 1853 const uint64_t HasSPFlagsFlag = 1 << 2; 1854 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1855 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1859 Record.push_back(N->getLine()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1861 Record.push_back(N->getScopeLine()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1863 Record.push_back(N->getSPFlags()); 1864 Record.push_back(N->getVirtualIndex()); 1865 Record.push_back(N->getFlags()); 1866 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1870 Record.push_back(N->getThisAdjustment()); 1871 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1872 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1874 1875 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1876 Record.clear(); 1877 } 1878 1879 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1880 SmallVectorImpl<uint64_t> &Record, 1881 unsigned Abbrev) { 1882 Record.push_back(N->isDistinct()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1885 Record.push_back(N->getLine()); 1886 Record.push_back(N->getColumn()); 1887 1888 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1889 Record.clear(); 1890 } 1891 1892 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1893 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1894 unsigned Abbrev) { 1895 Record.push_back(N->isDistinct()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1898 Record.push_back(N->getDiscriminator()); 1899 1900 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1901 Record.clear(); 1902 } 1903 1904 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1905 SmallVectorImpl<uint64_t> &Record, 1906 unsigned Abbrev) { 1907 Record.push_back(N->isDistinct()); 1908 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1909 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1910 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1911 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1912 Record.push_back(N->getLineNo()); 1913 1914 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1915 Record.clear(); 1916 } 1917 1918 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1919 SmallVectorImpl<uint64_t> &Record, 1920 unsigned Abbrev) { 1921 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1922 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1923 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1924 1925 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1926 Record.clear(); 1927 } 1928 1929 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1930 SmallVectorImpl<uint64_t> &Record, 1931 unsigned Abbrev) { 1932 Record.push_back(N->isDistinct()); 1933 Record.push_back(N->getMacinfoType()); 1934 Record.push_back(N->getLine()); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1937 1938 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1939 Record.clear(); 1940 } 1941 1942 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1943 SmallVectorImpl<uint64_t> &Record, 1944 unsigned Abbrev) { 1945 Record.push_back(N->isDistinct()); 1946 Record.push_back(N->getMacinfoType()); 1947 Record.push_back(N->getLine()); 1948 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1950 1951 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1952 Record.clear(); 1953 } 1954 1955 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1956 SmallVectorImpl<uint64_t> &Record, 1957 unsigned Abbrev) { 1958 Record.reserve(N->getArgs().size()); 1959 for (ValueAsMetadata *MD : N->getArgs()) 1960 Record.push_back(VE.getMetadataID(MD)); 1961 1962 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1963 Record.clear(); 1964 } 1965 1966 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1967 SmallVectorImpl<uint64_t> &Record, 1968 unsigned Abbrev) { 1969 Record.push_back(N->isDistinct()); 1970 for (auto &I : N->operands()) 1971 Record.push_back(VE.getMetadataOrNullID(I)); 1972 Record.push_back(N->getLineNo()); 1973 Record.push_back(N->getIsDecl()); 1974 1975 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1976 Record.clear(); 1977 } 1978 1979 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1980 SmallVectorImpl<uint64_t> &Record, 1981 unsigned Abbrev) { 1982 // There are no arguments for this metadata type. 1983 Record.push_back(N->isDistinct()); 1984 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1985 Record.clear(); 1986 } 1987 1988 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1989 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1990 unsigned Abbrev) { 1991 Record.push_back(N->isDistinct()); 1992 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1994 Record.push_back(N->isDefault()); 1995 1996 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1997 Record.clear(); 1998 } 1999 2000 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2001 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2002 unsigned Abbrev) { 2003 Record.push_back(N->isDistinct()); 2004 Record.push_back(N->getTag()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2007 Record.push_back(N->isDefault()); 2008 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2009 2010 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2011 Record.clear(); 2012 } 2013 2014 void ModuleBitcodeWriter::writeDIGlobalVariable( 2015 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2016 unsigned Abbrev) { 2017 const uint64_t Version = 2 << 1; 2018 Record.push_back((uint64_t)N->isDistinct() | Version); 2019 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2020 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2021 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2022 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2023 Record.push_back(N->getLine()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2025 Record.push_back(N->isLocalToUnit()); 2026 Record.push_back(N->isDefinition()); 2027 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2029 Record.push_back(N->getAlignInBits()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2031 2032 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2033 Record.clear(); 2034 } 2035 2036 void ModuleBitcodeWriter::writeDILocalVariable( 2037 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2038 unsigned Abbrev) { 2039 // In order to support all possible bitcode formats in BitcodeReader we need 2040 // to distinguish the following cases: 2041 // 1) Record has no artificial tag (Record[1]), 2042 // has no obsolete inlinedAt field (Record[9]). 2043 // In this case Record size will be 8, HasAlignment flag is false. 2044 // 2) Record has artificial tag (Record[1]), 2045 // has no obsolete inlignedAt field (Record[9]). 2046 // In this case Record size will be 9, HasAlignment flag is false. 2047 // 3) Record has both artificial tag (Record[1]) and 2048 // obsolete inlignedAt field (Record[9]). 2049 // In this case Record size will be 10, HasAlignment flag is false. 2050 // 4) Record has neither artificial tag, nor inlignedAt field, but 2051 // HasAlignment flag is true and Record[8] contains alignment value. 2052 const uint64_t HasAlignmentFlag = 1 << 1; 2053 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2054 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2056 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2057 Record.push_back(N->getLine()); 2058 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2059 Record.push_back(N->getArg()); 2060 Record.push_back(N->getFlags()); 2061 Record.push_back(N->getAlignInBits()); 2062 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2063 2064 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeDILabel( 2069 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2070 unsigned Abbrev) { 2071 Record.push_back((uint64_t)N->isDistinct()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2074 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2075 Record.push_back(N->getLine()); 2076 2077 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2078 Record.clear(); 2079 } 2080 2081 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2082 SmallVectorImpl<uint64_t> &Record, 2083 unsigned Abbrev) { 2084 Record.reserve(N->getElements().size() + 1); 2085 const uint64_t Version = 3 << 1; 2086 Record.push_back((uint64_t)N->isDistinct() | Version); 2087 Record.append(N->elements_begin(), N->elements_end()); 2088 2089 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2090 Record.clear(); 2091 } 2092 2093 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2094 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2095 unsigned Abbrev) { 2096 Record.push_back(N->isDistinct()); 2097 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2098 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2099 2100 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2101 Record.clear(); 2102 } 2103 2104 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2105 SmallVectorImpl<uint64_t> &Record, 2106 unsigned Abbrev) { 2107 Record.push_back(N->isDistinct()); 2108 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2109 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2110 Record.push_back(N->getLine()); 2111 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2112 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2113 Record.push_back(N->getAttributes()); 2114 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2115 2116 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2117 Record.clear(); 2118 } 2119 2120 void ModuleBitcodeWriter::writeDIImportedEntity( 2121 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2122 unsigned Abbrev) { 2123 Record.push_back(N->isDistinct()); 2124 Record.push_back(N->getTag()); 2125 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2126 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2127 Record.push_back(N->getLine()); 2128 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2129 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2130 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2131 2132 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2133 Record.clear(); 2134 } 2135 2136 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2137 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2138 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2141 return Stream.EmitAbbrev(std::move(Abbv)); 2142 } 2143 2144 void ModuleBitcodeWriter::writeNamedMetadata( 2145 SmallVectorImpl<uint64_t> &Record) { 2146 if (M.named_metadata_empty()) 2147 return; 2148 2149 unsigned Abbrev = createNamedMetadataAbbrev(); 2150 for (const NamedMDNode &NMD : M.named_metadata()) { 2151 // Write name. 2152 StringRef Str = NMD.getName(); 2153 Record.append(Str.bytes_begin(), Str.bytes_end()); 2154 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2155 Record.clear(); 2156 2157 // Write named metadata operands. 2158 for (const MDNode *N : NMD.operands()) 2159 Record.push_back(VE.getMetadataID(N)); 2160 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2161 Record.clear(); 2162 } 2163 } 2164 2165 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2166 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2167 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2171 return Stream.EmitAbbrev(std::move(Abbv)); 2172 } 2173 2174 /// Write out a record for MDString. 2175 /// 2176 /// All the metadata strings in a metadata block are emitted in a single 2177 /// record. The sizes and strings themselves are shoved into a blob. 2178 void ModuleBitcodeWriter::writeMetadataStrings( 2179 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2180 if (Strings.empty()) 2181 return; 2182 2183 // Start the record with the number of strings. 2184 Record.push_back(bitc::METADATA_STRINGS); 2185 Record.push_back(Strings.size()); 2186 2187 // Emit the sizes of the strings in the blob. 2188 SmallString<256> Blob; 2189 { 2190 BitstreamWriter W(Blob); 2191 for (const Metadata *MD : Strings) 2192 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2193 W.FlushToWord(); 2194 } 2195 2196 // Add the offset to the strings to the record. 2197 Record.push_back(Blob.size()); 2198 2199 // Add the strings to the blob. 2200 for (const Metadata *MD : Strings) 2201 Blob.append(cast<MDString>(MD)->getString()); 2202 2203 // Emit the final record. 2204 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2205 Record.clear(); 2206 } 2207 2208 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2209 enum MetadataAbbrev : unsigned { 2210 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2211 #include "llvm/IR/Metadata.def" 2212 LastPlusOne 2213 }; 2214 2215 void ModuleBitcodeWriter::writeMetadataRecords( 2216 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2217 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2218 if (MDs.empty()) 2219 return; 2220 2221 // Initialize MDNode abbreviations. 2222 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2223 #include "llvm/IR/Metadata.def" 2224 2225 for (const Metadata *MD : MDs) { 2226 if (IndexPos) 2227 IndexPos->push_back(Stream.GetCurrentBitNo()); 2228 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2229 assert(N->isResolved() && "Expected forward references to be resolved"); 2230 2231 switch (N->getMetadataID()) { 2232 default: 2233 llvm_unreachable("Invalid MDNode subclass"); 2234 #define HANDLE_MDNODE_LEAF(CLASS) \ 2235 case Metadata::CLASS##Kind: \ 2236 if (MDAbbrevs) \ 2237 write##CLASS(cast<CLASS>(N), Record, \ 2238 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2239 else \ 2240 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2241 continue; 2242 #include "llvm/IR/Metadata.def" 2243 } 2244 } 2245 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2246 } 2247 } 2248 2249 void ModuleBitcodeWriter::writeModuleMetadata() { 2250 if (!VE.hasMDs() && M.named_metadata_empty()) 2251 return; 2252 2253 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2254 SmallVector<uint64_t, 64> Record; 2255 2256 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2257 // block and load any metadata. 2258 std::vector<unsigned> MDAbbrevs; 2259 2260 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2261 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2262 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2263 createGenericDINodeAbbrev(); 2264 2265 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2266 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2269 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2270 2271 Abbv = std::make_shared<BitCodeAbbrev>(); 2272 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2275 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2276 2277 // Emit MDStrings together upfront. 2278 writeMetadataStrings(VE.getMDStrings(), Record); 2279 2280 // We only emit an index for the metadata record if we have more than a given 2281 // (naive) threshold of metadatas, otherwise it is not worth it. 2282 if (VE.getNonMDStrings().size() > IndexThreshold) { 2283 // Write a placeholder value in for the offset of the metadata index, 2284 // which is written after the records, so that it can include 2285 // the offset of each entry. The placeholder offset will be 2286 // updated after all records are emitted. 2287 uint64_t Vals[] = {0, 0}; 2288 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2289 } 2290 2291 // Compute and save the bit offset to the current position, which will be 2292 // patched when we emit the index later. We can simply subtract the 64-bit 2293 // fixed size from the current bit number to get the location to backpatch. 2294 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2295 2296 // This index will contain the bitpos for each individual record. 2297 std::vector<uint64_t> IndexPos; 2298 IndexPos.reserve(VE.getNonMDStrings().size()); 2299 2300 // Write all the records 2301 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2302 2303 if (VE.getNonMDStrings().size() > IndexThreshold) { 2304 // Now that we have emitted all the records we will emit the index. But 2305 // first 2306 // backpatch the forward reference so that the reader can skip the records 2307 // efficiently. 2308 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2309 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2310 2311 // Delta encode the index. 2312 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2313 for (auto &Elt : IndexPos) { 2314 auto EltDelta = Elt - PreviousValue; 2315 PreviousValue = Elt; 2316 Elt = EltDelta; 2317 } 2318 // Emit the index record. 2319 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2320 IndexPos.clear(); 2321 } 2322 2323 // Write the named metadata now. 2324 writeNamedMetadata(Record); 2325 2326 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2327 SmallVector<uint64_t, 4> Record; 2328 Record.push_back(VE.getValueID(&GO)); 2329 pushGlobalMetadataAttachment(Record, GO); 2330 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2331 }; 2332 for (const Function &F : M) 2333 if (F.isDeclaration() && F.hasMetadata()) 2334 AddDeclAttachedMetadata(F); 2335 // FIXME: Only store metadata for declarations here, and move data for global 2336 // variable definitions to a separate block (PR28134). 2337 for (const GlobalVariable &GV : M.globals()) 2338 if (GV.hasMetadata()) 2339 AddDeclAttachedMetadata(GV); 2340 2341 Stream.ExitBlock(); 2342 } 2343 2344 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2345 if (!VE.hasMDs()) 2346 return; 2347 2348 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2349 SmallVector<uint64_t, 64> Record; 2350 writeMetadataStrings(VE.getMDStrings(), Record); 2351 writeMetadataRecords(VE.getNonMDStrings(), Record); 2352 Stream.ExitBlock(); 2353 } 2354 2355 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2356 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2357 // [n x [id, mdnode]] 2358 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2359 GO.getAllMetadata(MDs); 2360 for (const auto &I : MDs) { 2361 Record.push_back(I.first); 2362 Record.push_back(VE.getMetadataID(I.second)); 2363 } 2364 } 2365 2366 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2367 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2368 2369 SmallVector<uint64_t, 64> Record; 2370 2371 if (F.hasMetadata()) { 2372 pushGlobalMetadataAttachment(Record, F); 2373 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2374 Record.clear(); 2375 } 2376 2377 // Write metadata attachments 2378 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2379 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2380 for (const BasicBlock &BB : F) 2381 for (const Instruction &I : BB) { 2382 MDs.clear(); 2383 I.getAllMetadataOtherThanDebugLoc(MDs); 2384 2385 // If no metadata, ignore instruction. 2386 if (MDs.empty()) continue; 2387 2388 Record.push_back(VE.getInstructionID(&I)); 2389 2390 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2391 Record.push_back(MDs[i].first); 2392 Record.push_back(VE.getMetadataID(MDs[i].second)); 2393 } 2394 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2395 Record.clear(); 2396 } 2397 2398 Stream.ExitBlock(); 2399 } 2400 2401 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2402 SmallVector<uint64_t, 64> Record; 2403 2404 // Write metadata kinds 2405 // METADATA_KIND - [n x [id, name]] 2406 SmallVector<StringRef, 8> Names; 2407 M.getMDKindNames(Names); 2408 2409 if (Names.empty()) return; 2410 2411 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2412 2413 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2414 Record.push_back(MDKindID); 2415 StringRef KName = Names[MDKindID]; 2416 Record.append(KName.begin(), KName.end()); 2417 2418 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2419 Record.clear(); 2420 } 2421 2422 Stream.ExitBlock(); 2423 } 2424 2425 void ModuleBitcodeWriter::writeOperandBundleTags() { 2426 // Write metadata kinds 2427 // 2428 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2429 // 2430 // OPERAND_BUNDLE_TAG - [strchr x N] 2431 2432 SmallVector<StringRef, 8> Tags; 2433 M.getOperandBundleTags(Tags); 2434 2435 if (Tags.empty()) 2436 return; 2437 2438 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2439 2440 SmallVector<uint64_t, 64> Record; 2441 2442 for (auto Tag : Tags) { 2443 Record.append(Tag.begin(), Tag.end()); 2444 2445 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2446 Record.clear(); 2447 } 2448 2449 Stream.ExitBlock(); 2450 } 2451 2452 void ModuleBitcodeWriter::writeSyncScopeNames() { 2453 SmallVector<StringRef, 8> SSNs; 2454 M.getContext().getSyncScopeNames(SSNs); 2455 if (SSNs.empty()) 2456 return; 2457 2458 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2459 2460 SmallVector<uint64_t, 64> Record; 2461 for (auto SSN : SSNs) { 2462 Record.append(SSN.begin(), SSN.end()); 2463 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2464 Record.clear(); 2465 } 2466 2467 Stream.ExitBlock(); 2468 } 2469 2470 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2471 bool isGlobal) { 2472 if (FirstVal == LastVal) return; 2473 2474 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2475 2476 unsigned AggregateAbbrev = 0; 2477 unsigned String8Abbrev = 0; 2478 unsigned CString7Abbrev = 0; 2479 unsigned CString6Abbrev = 0; 2480 // If this is a constant pool for the module, emit module-specific abbrevs. 2481 if (isGlobal) { 2482 // Abbrev for CST_CODE_AGGREGATE. 2483 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2484 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2487 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2488 2489 // Abbrev for CST_CODE_STRING. 2490 Abbv = std::make_shared<BitCodeAbbrev>(); 2491 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2494 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2495 // Abbrev for CST_CODE_CSTRING. 2496 Abbv = std::make_shared<BitCodeAbbrev>(); 2497 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2500 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2501 // Abbrev for CST_CODE_CSTRING. 2502 Abbv = std::make_shared<BitCodeAbbrev>(); 2503 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2506 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2507 } 2508 2509 SmallVector<uint64_t, 64> Record; 2510 2511 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2512 Type *LastTy = nullptr; 2513 for (unsigned i = FirstVal; i != LastVal; ++i) { 2514 const Value *V = Vals[i].first; 2515 // If we need to switch types, do so now. 2516 if (V->getType() != LastTy) { 2517 LastTy = V->getType(); 2518 Record.push_back(VE.getTypeID(LastTy)); 2519 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2520 CONSTANTS_SETTYPE_ABBREV); 2521 Record.clear(); 2522 } 2523 2524 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2525 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2526 Record.push_back( 2527 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2528 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2529 2530 // Add the asm string. 2531 const std::string &AsmStr = IA->getAsmString(); 2532 Record.push_back(AsmStr.size()); 2533 Record.append(AsmStr.begin(), AsmStr.end()); 2534 2535 // Add the constraint string. 2536 const std::string &ConstraintStr = IA->getConstraintString(); 2537 Record.push_back(ConstraintStr.size()); 2538 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2539 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2540 Record.clear(); 2541 continue; 2542 } 2543 const Constant *C = cast<Constant>(V); 2544 unsigned Code = -1U; 2545 unsigned AbbrevToUse = 0; 2546 if (C->isNullValue()) { 2547 Code = bitc::CST_CODE_NULL; 2548 } else if (isa<PoisonValue>(C)) { 2549 Code = bitc::CST_CODE_POISON; 2550 } else if (isa<UndefValue>(C)) { 2551 Code = bitc::CST_CODE_UNDEF; 2552 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2553 if (IV->getBitWidth() <= 64) { 2554 uint64_t V = IV->getSExtValue(); 2555 emitSignedInt64(Record, V); 2556 Code = bitc::CST_CODE_INTEGER; 2557 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2558 } else { // Wide integers, > 64 bits in size. 2559 emitWideAPInt(Record, IV->getValue()); 2560 Code = bitc::CST_CODE_WIDE_INTEGER; 2561 } 2562 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2563 Code = bitc::CST_CODE_FLOAT; 2564 Type *Ty = CFP->getType(); 2565 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2566 Ty->isDoubleTy()) { 2567 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2568 } else if (Ty->isX86_FP80Ty()) { 2569 // api needed to prevent premature destruction 2570 // bits are not in the same order as a normal i80 APInt, compensate. 2571 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2572 const uint64_t *p = api.getRawData(); 2573 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2574 Record.push_back(p[0] & 0xffffLL); 2575 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2576 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2577 const uint64_t *p = api.getRawData(); 2578 Record.push_back(p[0]); 2579 Record.push_back(p[1]); 2580 } else { 2581 assert(0 && "Unknown FP type!"); 2582 } 2583 } else if (isa<ConstantDataSequential>(C) && 2584 cast<ConstantDataSequential>(C)->isString()) { 2585 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2586 // Emit constant strings specially. 2587 unsigned NumElts = Str->getNumElements(); 2588 // If this is a null-terminated string, use the denser CSTRING encoding. 2589 if (Str->isCString()) { 2590 Code = bitc::CST_CODE_CSTRING; 2591 --NumElts; // Don't encode the null, which isn't allowed by char6. 2592 } else { 2593 Code = bitc::CST_CODE_STRING; 2594 AbbrevToUse = String8Abbrev; 2595 } 2596 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2597 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2598 for (unsigned i = 0; i != NumElts; ++i) { 2599 unsigned char V = Str->getElementAsInteger(i); 2600 Record.push_back(V); 2601 isCStr7 &= (V & 128) == 0; 2602 if (isCStrChar6) 2603 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2604 } 2605 2606 if (isCStrChar6) 2607 AbbrevToUse = CString6Abbrev; 2608 else if (isCStr7) 2609 AbbrevToUse = CString7Abbrev; 2610 } else if (const ConstantDataSequential *CDS = 2611 dyn_cast<ConstantDataSequential>(C)) { 2612 Code = bitc::CST_CODE_DATA; 2613 Type *EltTy = CDS->getElementType(); 2614 if (isa<IntegerType>(EltTy)) { 2615 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2616 Record.push_back(CDS->getElementAsInteger(i)); 2617 } else { 2618 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2619 Record.push_back( 2620 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2621 } 2622 } else if (isa<ConstantAggregate>(C)) { 2623 Code = bitc::CST_CODE_AGGREGATE; 2624 for (const Value *Op : C->operands()) 2625 Record.push_back(VE.getValueID(Op)); 2626 AbbrevToUse = AggregateAbbrev; 2627 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2628 switch (CE->getOpcode()) { 2629 default: 2630 if (Instruction::isCast(CE->getOpcode())) { 2631 Code = bitc::CST_CODE_CE_CAST; 2632 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2633 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2634 Record.push_back(VE.getValueID(C->getOperand(0))); 2635 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2636 } else { 2637 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2638 Code = bitc::CST_CODE_CE_BINOP; 2639 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2640 Record.push_back(VE.getValueID(C->getOperand(0))); 2641 Record.push_back(VE.getValueID(C->getOperand(1))); 2642 uint64_t Flags = getOptimizationFlags(CE); 2643 if (Flags != 0) 2644 Record.push_back(Flags); 2645 } 2646 break; 2647 case Instruction::FNeg: { 2648 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2649 Code = bitc::CST_CODE_CE_UNOP; 2650 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2651 Record.push_back(VE.getValueID(C->getOperand(0))); 2652 uint64_t Flags = getOptimizationFlags(CE); 2653 if (Flags != 0) 2654 Record.push_back(Flags); 2655 break; 2656 } 2657 case Instruction::GetElementPtr: { 2658 Code = bitc::CST_CODE_CE_GEP; 2659 const auto *GO = cast<GEPOperator>(C); 2660 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2661 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2662 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2663 Record.push_back((*Idx << 1) | GO->isInBounds()); 2664 } else if (GO->isInBounds()) 2665 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2666 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2667 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2668 Record.push_back(VE.getValueID(C->getOperand(i))); 2669 } 2670 break; 2671 } 2672 case Instruction::ExtractElement: 2673 Code = bitc::CST_CODE_CE_EXTRACTELT; 2674 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2675 Record.push_back(VE.getValueID(C->getOperand(0))); 2676 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2677 Record.push_back(VE.getValueID(C->getOperand(1))); 2678 break; 2679 case Instruction::InsertElement: 2680 Code = bitc::CST_CODE_CE_INSERTELT; 2681 Record.push_back(VE.getValueID(C->getOperand(0))); 2682 Record.push_back(VE.getValueID(C->getOperand(1))); 2683 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2684 Record.push_back(VE.getValueID(C->getOperand(2))); 2685 break; 2686 case Instruction::ShuffleVector: 2687 // If the return type and argument types are the same, this is a 2688 // standard shufflevector instruction. If the types are different, 2689 // then the shuffle is widening or truncating the input vectors, and 2690 // the argument type must also be encoded. 2691 if (C->getType() == C->getOperand(0)->getType()) { 2692 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2693 } else { 2694 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2695 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2696 } 2697 Record.push_back(VE.getValueID(C->getOperand(0))); 2698 Record.push_back(VE.getValueID(C->getOperand(1))); 2699 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2700 break; 2701 case Instruction::ICmp: 2702 case Instruction::FCmp: 2703 Code = bitc::CST_CODE_CE_CMP; 2704 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2705 Record.push_back(VE.getValueID(C->getOperand(0))); 2706 Record.push_back(VE.getValueID(C->getOperand(1))); 2707 Record.push_back(CE->getPredicate()); 2708 break; 2709 } 2710 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2711 Code = bitc::CST_CODE_BLOCKADDRESS; 2712 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2713 Record.push_back(VE.getValueID(BA->getFunction())); 2714 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2715 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2716 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2717 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2718 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2719 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2720 Code = bitc::CST_CODE_NO_CFI_VALUE; 2721 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2722 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2723 } else { 2724 #ifndef NDEBUG 2725 C->dump(); 2726 #endif 2727 llvm_unreachable("Unknown constant!"); 2728 } 2729 Stream.EmitRecord(Code, Record, AbbrevToUse); 2730 Record.clear(); 2731 } 2732 2733 Stream.ExitBlock(); 2734 } 2735 2736 void ModuleBitcodeWriter::writeModuleConstants() { 2737 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2738 2739 // Find the first constant to emit, which is the first non-globalvalue value. 2740 // We know globalvalues have been emitted by WriteModuleInfo. 2741 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2742 if (!isa<GlobalValue>(Vals[i].first)) { 2743 writeConstants(i, Vals.size(), true); 2744 return; 2745 } 2746 } 2747 } 2748 2749 /// pushValueAndType - The file has to encode both the value and type id for 2750 /// many values, because we need to know what type to create for forward 2751 /// references. However, most operands are not forward references, so this type 2752 /// field is not needed. 2753 /// 2754 /// This function adds V's value ID to Vals. If the value ID is higher than the 2755 /// instruction ID, then it is a forward reference, and it also includes the 2756 /// type ID. The value ID that is written is encoded relative to the InstID. 2757 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2758 SmallVectorImpl<unsigned> &Vals) { 2759 unsigned ValID = VE.getValueID(V); 2760 // Make encoding relative to the InstID. 2761 Vals.push_back(InstID - ValID); 2762 if (ValID >= InstID) { 2763 Vals.push_back(VE.getTypeID(V->getType())); 2764 return true; 2765 } 2766 return false; 2767 } 2768 2769 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2770 unsigned InstID) { 2771 SmallVector<unsigned, 64> Record; 2772 LLVMContext &C = CS.getContext(); 2773 2774 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2775 const auto &Bundle = CS.getOperandBundleAt(i); 2776 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2777 2778 for (auto &Input : Bundle.Inputs) 2779 pushValueAndType(Input, InstID, Record); 2780 2781 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2782 Record.clear(); 2783 } 2784 } 2785 2786 /// pushValue - Like pushValueAndType, but where the type of the value is 2787 /// omitted (perhaps it was already encoded in an earlier operand). 2788 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2789 SmallVectorImpl<unsigned> &Vals) { 2790 unsigned ValID = VE.getValueID(V); 2791 Vals.push_back(InstID - ValID); 2792 } 2793 2794 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2795 SmallVectorImpl<uint64_t> &Vals) { 2796 unsigned ValID = VE.getValueID(V); 2797 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2798 emitSignedInt64(Vals, diff); 2799 } 2800 2801 /// WriteInstruction - Emit an instruction to the specified stream. 2802 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2803 unsigned InstID, 2804 SmallVectorImpl<unsigned> &Vals) { 2805 unsigned Code = 0; 2806 unsigned AbbrevToUse = 0; 2807 VE.setInstructionID(&I); 2808 switch (I.getOpcode()) { 2809 default: 2810 if (Instruction::isCast(I.getOpcode())) { 2811 Code = bitc::FUNC_CODE_INST_CAST; 2812 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2813 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2814 Vals.push_back(VE.getTypeID(I.getType())); 2815 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2816 } else { 2817 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2818 Code = bitc::FUNC_CODE_INST_BINOP; 2819 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2820 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2821 pushValue(I.getOperand(1), InstID, Vals); 2822 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2823 uint64_t Flags = getOptimizationFlags(&I); 2824 if (Flags != 0) { 2825 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2826 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2827 Vals.push_back(Flags); 2828 } 2829 } 2830 break; 2831 case Instruction::FNeg: { 2832 Code = bitc::FUNC_CODE_INST_UNOP; 2833 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2834 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2835 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2836 uint64_t Flags = getOptimizationFlags(&I); 2837 if (Flags != 0) { 2838 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2839 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2840 Vals.push_back(Flags); 2841 } 2842 break; 2843 } 2844 case Instruction::GetElementPtr: { 2845 Code = bitc::FUNC_CODE_INST_GEP; 2846 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2847 auto &GEPInst = cast<GetElementPtrInst>(I); 2848 Vals.push_back(GEPInst.isInBounds()); 2849 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2850 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2851 pushValueAndType(I.getOperand(i), InstID, Vals); 2852 break; 2853 } 2854 case Instruction::ExtractValue: { 2855 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2856 pushValueAndType(I.getOperand(0), InstID, Vals); 2857 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2858 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2859 break; 2860 } 2861 case Instruction::InsertValue: { 2862 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2863 pushValueAndType(I.getOperand(0), InstID, Vals); 2864 pushValueAndType(I.getOperand(1), InstID, Vals); 2865 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2866 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2867 break; 2868 } 2869 case Instruction::Select: { 2870 Code = bitc::FUNC_CODE_INST_VSELECT; 2871 pushValueAndType(I.getOperand(1), InstID, Vals); 2872 pushValue(I.getOperand(2), InstID, Vals); 2873 pushValueAndType(I.getOperand(0), InstID, Vals); 2874 uint64_t Flags = getOptimizationFlags(&I); 2875 if (Flags != 0) 2876 Vals.push_back(Flags); 2877 break; 2878 } 2879 case Instruction::ExtractElement: 2880 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2881 pushValueAndType(I.getOperand(0), InstID, Vals); 2882 pushValueAndType(I.getOperand(1), InstID, Vals); 2883 break; 2884 case Instruction::InsertElement: 2885 Code = bitc::FUNC_CODE_INST_INSERTELT; 2886 pushValueAndType(I.getOperand(0), InstID, Vals); 2887 pushValue(I.getOperand(1), InstID, Vals); 2888 pushValueAndType(I.getOperand(2), InstID, Vals); 2889 break; 2890 case Instruction::ShuffleVector: 2891 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2892 pushValueAndType(I.getOperand(0), InstID, Vals); 2893 pushValue(I.getOperand(1), InstID, Vals); 2894 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2895 Vals); 2896 break; 2897 case Instruction::ICmp: 2898 case Instruction::FCmp: { 2899 // compare returning Int1Ty or vector of Int1Ty 2900 Code = bitc::FUNC_CODE_INST_CMP2; 2901 pushValueAndType(I.getOperand(0), InstID, Vals); 2902 pushValue(I.getOperand(1), InstID, Vals); 2903 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2904 uint64_t Flags = getOptimizationFlags(&I); 2905 if (Flags != 0) 2906 Vals.push_back(Flags); 2907 break; 2908 } 2909 2910 case Instruction::Ret: 2911 { 2912 Code = bitc::FUNC_CODE_INST_RET; 2913 unsigned NumOperands = I.getNumOperands(); 2914 if (NumOperands == 0) 2915 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2916 else if (NumOperands == 1) { 2917 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2918 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2919 } else { 2920 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2921 pushValueAndType(I.getOperand(i), InstID, Vals); 2922 } 2923 } 2924 break; 2925 case Instruction::Br: 2926 { 2927 Code = bitc::FUNC_CODE_INST_BR; 2928 const BranchInst &II = cast<BranchInst>(I); 2929 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2930 if (II.isConditional()) { 2931 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2932 pushValue(II.getCondition(), InstID, Vals); 2933 } 2934 } 2935 break; 2936 case Instruction::Switch: 2937 { 2938 Code = bitc::FUNC_CODE_INST_SWITCH; 2939 const SwitchInst &SI = cast<SwitchInst>(I); 2940 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2941 pushValue(SI.getCondition(), InstID, Vals); 2942 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2943 for (auto Case : SI.cases()) { 2944 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2945 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2946 } 2947 } 2948 break; 2949 case Instruction::IndirectBr: 2950 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2951 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2952 // Encode the address operand as relative, but not the basic blocks. 2953 pushValue(I.getOperand(0), InstID, Vals); 2954 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2955 Vals.push_back(VE.getValueID(I.getOperand(i))); 2956 break; 2957 2958 case Instruction::Invoke: { 2959 const InvokeInst *II = cast<InvokeInst>(&I); 2960 const Value *Callee = II->getCalledOperand(); 2961 FunctionType *FTy = II->getFunctionType(); 2962 2963 if (II->hasOperandBundles()) 2964 writeOperandBundles(*II, InstID); 2965 2966 Code = bitc::FUNC_CODE_INST_INVOKE; 2967 2968 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2969 Vals.push_back(II->getCallingConv() | 1 << 13); 2970 Vals.push_back(VE.getValueID(II->getNormalDest())); 2971 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2972 Vals.push_back(VE.getTypeID(FTy)); 2973 pushValueAndType(Callee, InstID, Vals); 2974 2975 // Emit value #'s for the fixed parameters. 2976 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2977 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2978 2979 // Emit type/value pairs for varargs params. 2980 if (FTy->isVarArg()) { 2981 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2982 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2983 } 2984 break; 2985 } 2986 case Instruction::Resume: 2987 Code = bitc::FUNC_CODE_INST_RESUME; 2988 pushValueAndType(I.getOperand(0), InstID, Vals); 2989 break; 2990 case Instruction::CleanupRet: { 2991 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2992 const auto &CRI = cast<CleanupReturnInst>(I); 2993 pushValue(CRI.getCleanupPad(), InstID, Vals); 2994 if (CRI.hasUnwindDest()) 2995 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2996 break; 2997 } 2998 case Instruction::CatchRet: { 2999 Code = bitc::FUNC_CODE_INST_CATCHRET; 3000 const auto &CRI = cast<CatchReturnInst>(I); 3001 pushValue(CRI.getCatchPad(), InstID, Vals); 3002 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3003 break; 3004 } 3005 case Instruction::CleanupPad: 3006 case Instruction::CatchPad: { 3007 const auto &FuncletPad = cast<FuncletPadInst>(I); 3008 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3009 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3010 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3011 3012 unsigned NumArgOperands = FuncletPad.arg_size(); 3013 Vals.push_back(NumArgOperands); 3014 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3015 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3016 break; 3017 } 3018 case Instruction::CatchSwitch: { 3019 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3020 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3021 3022 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3023 3024 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3025 Vals.push_back(NumHandlers); 3026 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3027 Vals.push_back(VE.getValueID(CatchPadBB)); 3028 3029 if (CatchSwitch.hasUnwindDest()) 3030 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3031 break; 3032 } 3033 case Instruction::CallBr: { 3034 const CallBrInst *CBI = cast<CallBrInst>(&I); 3035 const Value *Callee = CBI->getCalledOperand(); 3036 FunctionType *FTy = CBI->getFunctionType(); 3037 3038 if (CBI->hasOperandBundles()) 3039 writeOperandBundles(*CBI, InstID); 3040 3041 Code = bitc::FUNC_CODE_INST_CALLBR; 3042 3043 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3044 3045 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3046 1 << bitc::CALL_EXPLICIT_TYPE); 3047 3048 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3049 Vals.push_back(CBI->getNumIndirectDests()); 3050 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3051 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3052 3053 Vals.push_back(VE.getTypeID(FTy)); 3054 pushValueAndType(Callee, InstID, Vals); 3055 3056 // Emit value #'s for the fixed parameters. 3057 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3058 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3059 3060 // Emit type/value pairs for varargs params. 3061 if (FTy->isVarArg()) { 3062 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3063 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3064 } 3065 break; 3066 } 3067 case Instruction::Unreachable: 3068 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3069 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3070 break; 3071 3072 case Instruction::PHI: { 3073 const PHINode &PN = cast<PHINode>(I); 3074 Code = bitc::FUNC_CODE_INST_PHI; 3075 // With the newer instruction encoding, forward references could give 3076 // negative valued IDs. This is most common for PHIs, so we use 3077 // signed VBRs. 3078 SmallVector<uint64_t, 128> Vals64; 3079 Vals64.push_back(VE.getTypeID(PN.getType())); 3080 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3081 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3082 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3083 } 3084 3085 uint64_t Flags = getOptimizationFlags(&I); 3086 if (Flags != 0) 3087 Vals64.push_back(Flags); 3088 3089 // Emit a Vals64 vector and exit. 3090 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3091 Vals64.clear(); 3092 return; 3093 } 3094 3095 case Instruction::LandingPad: { 3096 const LandingPadInst &LP = cast<LandingPadInst>(I); 3097 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3098 Vals.push_back(VE.getTypeID(LP.getType())); 3099 Vals.push_back(LP.isCleanup()); 3100 Vals.push_back(LP.getNumClauses()); 3101 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3102 if (LP.isCatch(I)) 3103 Vals.push_back(LandingPadInst::Catch); 3104 else 3105 Vals.push_back(LandingPadInst::Filter); 3106 pushValueAndType(LP.getClause(I), InstID, Vals); 3107 } 3108 break; 3109 } 3110 3111 case Instruction::Alloca: { 3112 Code = bitc::FUNC_CODE_INST_ALLOCA; 3113 const AllocaInst &AI = cast<AllocaInst>(I); 3114 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3115 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3116 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3117 using APV = AllocaPackedValues; 3118 unsigned Record = 0; 3119 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3120 Bitfield::set<APV::AlignLower>( 3121 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3122 Bitfield::set<APV::AlignUpper>(Record, 3123 EncodedAlign >> APV::AlignLower::Bits); 3124 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3125 Bitfield::set<APV::ExplicitType>(Record, true); 3126 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3127 Vals.push_back(Record); 3128 3129 unsigned AS = AI.getAddressSpace(); 3130 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3131 Vals.push_back(AS); 3132 break; 3133 } 3134 3135 case Instruction::Load: 3136 if (cast<LoadInst>(I).isAtomic()) { 3137 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3138 pushValueAndType(I.getOperand(0), InstID, Vals); 3139 } else { 3140 Code = bitc::FUNC_CODE_INST_LOAD; 3141 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3142 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3143 } 3144 Vals.push_back(VE.getTypeID(I.getType())); 3145 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3146 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3147 if (cast<LoadInst>(I).isAtomic()) { 3148 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3149 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3150 } 3151 break; 3152 case Instruction::Store: 3153 if (cast<StoreInst>(I).isAtomic()) 3154 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3155 else 3156 Code = bitc::FUNC_CODE_INST_STORE; 3157 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3158 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3159 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3160 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3161 if (cast<StoreInst>(I).isAtomic()) { 3162 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3163 Vals.push_back( 3164 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3165 } 3166 break; 3167 case Instruction::AtomicCmpXchg: 3168 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3169 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3170 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3171 pushValue(I.getOperand(2), InstID, Vals); // newval. 3172 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3173 Vals.push_back( 3174 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3175 Vals.push_back( 3176 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3177 Vals.push_back( 3178 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3179 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3180 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3181 break; 3182 case Instruction::AtomicRMW: 3183 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3184 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3185 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3186 Vals.push_back( 3187 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3188 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3189 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3190 Vals.push_back( 3191 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3192 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3193 break; 3194 case Instruction::Fence: 3195 Code = bitc::FUNC_CODE_INST_FENCE; 3196 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3197 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3198 break; 3199 case Instruction::Call: { 3200 const CallInst &CI = cast<CallInst>(I); 3201 FunctionType *FTy = CI.getFunctionType(); 3202 3203 if (CI.hasOperandBundles()) 3204 writeOperandBundles(CI, InstID); 3205 3206 Code = bitc::FUNC_CODE_INST_CALL; 3207 3208 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3209 3210 unsigned Flags = getOptimizationFlags(&I); 3211 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3212 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3213 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3214 1 << bitc::CALL_EXPLICIT_TYPE | 3215 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3216 unsigned(Flags != 0) << bitc::CALL_FMF); 3217 if (Flags != 0) 3218 Vals.push_back(Flags); 3219 3220 Vals.push_back(VE.getTypeID(FTy)); 3221 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3222 3223 // Emit value #'s for the fixed parameters. 3224 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3225 // Check for labels (can happen with asm labels). 3226 if (FTy->getParamType(i)->isLabelTy()) 3227 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3228 else 3229 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3230 } 3231 3232 // Emit type/value pairs for varargs params. 3233 if (FTy->isVarArg()) { 3234 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3235 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3236 } 3237 break; 3238 } 3239 case Instruction::VAArg: 3240 Code = bitc::FUNC_CODE_INST_VAARG; 3241 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3242 pushValue(I.getOperand(0), InstID, Vals); // valist. 3243 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3244 break; 3245 case Instruction::Freeze: 3246 Code = bitc::FUNC_CODE_INST_FREEZE; 3247 pushValueAndType(I.getOperand(0), InstID, Vals); 3248 break; 3249 } 3250 3251 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3252 Vals.clear(); 3253 } 3254 3255 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3256 /// to allow clients to efficiently find the function body. 3257 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3258 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3259 // Get the offset of the VST we are writing, and backpatch it into 3260 // the VST forward declaration record. 3261 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3262 // The BitcodeStartBit was the stream offset of the identification block. 3263 VSTOffset -= bitcodeStartBit(); 3264 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3265 // Note that we add 1 here because the offset is relative to one word 3266 // before the start of the identification block, which was historically 3267 // always the start of the regular bitcode header. 3268 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3269 3270 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3271 3272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3273 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3276 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3277 3278 for (const Function &F : M) { 3279 uint64_t Record[2]; 3280 3281 if (F.isDeclaration()) 3282 continue; 3283 3284 Record[0] = VE.getValueID(&F); 3285 3286 // Save the word offset of the function (from the start of the 3287 // actual bitcode written to the stream). 3288 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3289 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3290 // Note that we add 1 here because the offset is relative to one word 3291 // before the start of the identification block, which was historically 3292 // always the start of the regular bitcode header. 3293 Record[1] = BitcodeIndex / 32 + 1; 3294 3295 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3296 } 3297 3298 Stream.ExitBlock(); 3299 } 3300 3301 /// Emit names for arguments, instructions and basic blocks in a function. 3302 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3303 const ValueSymbolTable &VST) { 3304 if (VST.empty()) 3305 return; 3306 3307 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3308 3309 // FIXME: Set up the abbrev, we know how many values there are! 3310 // FIXME: We know if the type names can use 7-bit ascii. 3311 SmallVector<uint64_t, 64> NameVals; 3312 3313 for (const ValueName &Name : VST) { 3314 // Figure out the encoding to use for the name. 3315 StringEncoding Bits = getStringEncoding(Name.getKey()); 3316 3317 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3318 NameVals.push_back(VE.getValueID(Name.getValue())); 3319 3320 // VST_CODE_ENTRY: [valueid, namechar x N] 3321 // VST_CODE_BBENTRY: [bbid, namechar x N] 3322 unsigned Code; 3323 if (isa<BasicBlock>(Name.getValue())) { 3324 Code = bitc::VST_CODE_BBENTRY; 3325 if (Bits == SE_Char6) 3326 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3327 } else { 3328 Code = bitc::VST_CODE_ENTRY; 3329 if (Bits == SE_Char6) 3330 AbbrevToUse = VST_ENTRY_6_ABBREV; 3331 else if (Bits == SE_Fixed7) 3332 AbbrevToUse = VST_ENTRY_7_ABBREV; 3333 } 3334 3335 for (const auto P : Name.getKey()) 3336 NameVals.push_back((unsigned char)P); 3337 3338 // Emit the finished record. 3339 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3340 NameVals.clear(); 3341 } 3342 3343 Stream.ExitBlock(); 3344 } 3345 3346 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3347 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3348 unsigned Code; 3349 if (isa<BasicBlock>(Order.V)) 3350 Code = bitc::USELIST_CODE_BB; 3351 else 3352 Code = bitc::USELIST_CODE_DEFAULT; 3353 3354 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3355 Record.push_back(VE.getValueID(Order.V)); 3356 Stream.EmitRecord(Code, Record); 3357 } 3358 3359 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3360 assert(VE.shouldPreserveUseListOrder() && 3361 "Expected to be preserving use-list order"); 3362 3363 auto hasMore = [&]() { 3364 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3365 }; 3366 if (!hasMore()) 3367 // Nothing to do. 3368 return; 3369 3370 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3371 while (hasMore()) { 3372 writeUseList(std::move(VE.UseListOrders.back())); 3373 VE.UseListOrders.pop_back(); 3374 } 3375 Stream.ExitBlock(); 3376 } 3377 3378 /// Emit a function body to the module stream. 3379 void ModuleBitcodeWriter::writeFunction( 3380 const Function &F, 3381 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3382 // Save the bitcode index of the start of this function block for recording 3383 // in the VST. 3384 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3385 3386 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3387 VE.incorporateFunction(F); 3388 3389 SmallVector<unsigned, 64> Vals; 3390 3391 // Emit the number of basic blocks, so the reader can create them ahead of 3392 // time. 3393 Vals.push_back(VE.getBasicBlocks().size()); 3394 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3395 Vals.clear(); 3396 3397 // If there are function-local constants, emit them now. 3398 unsigned CstStart, CstEnd; 3399 VE.getFunctionConstantRange(CstStart, CstEnd); 3400 writeConstants(CstStart, CstEnd, false); 3401 3402 // If there is function-local metadata, emit it now. 3403 writeFunctionMetadata(F); 3404 3405 // Keep a running idea of what the instruction ID is. 3406 unsigned InstID = CstEnd; 3407 3408 bool NeedsMetadataAttachment = F.hasMetadata(); 3409 3410 DILocation *LastDL = nullptr; 3411 SmallSetVector<Function *, 4> BlockAddressUsers; 3412 3413 // Finally, emit all the instructions, in order. 3414 for (const BasicBlock &BB : F) { 3415 for (const Instruction &I : BB) { 3416 writeInstruction(I, InstID, Vals); 3417 3418 if (!I.getType()->isVoidTy()) 3419 ++InstID; 3420 3421 // If the instruction has metadata, write a metadata attachment later. 3422 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3423 3424 // If the instruction has a debug location, emit it. 3425 DILocation *DL = I.getDebugLoc(); 3426 if (!DL) 3427 continue; 3428 3429 if (DL == LastDL) { 3430 // Just repeat the same debug loc as last time. 3431 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3432 continue; 3433 } 3434 3435 Vals.push_back(DL->getLine()); 3436 Vals.push_back(DL->getColumn()); 3437 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3438 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3439 Vals.push_back(DL->isImplicitCode()); 3440 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3441 Vals.clear(); 3442 3443 LastDL = DL; 3444 } 3445 3446 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3447 SmallVector<Value *> Worklist{BA}; 3448 SmallPtrSet<Value *, 8> Visited{BA}; 3449 while (!Worklist.empty()) { 3450 Value *V = Worklist.pop_back_val(); 3451 for (User *U : V->users()) { 3452 if (auto *I = dyn_cast<Instruction>(U)) { 3453 Function *P = I->getFunction(); 3454 if (P != &F) 3455 BlockAddressUsers.insert(P); 3456 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3457 Visited.insert(U).second) 3458 Worklist.push_back(U); 3459 } 3460 } 3461 } 3462 } 3463 3464 if (!BlockAddressUsers.empty()) { 3465 Vals.resize(BlockAddressUsers.size()); 3466 for (auto I : llvm::enumerate(BlockAddressUsers)) 3467 Vals[I.index()] = VE.getValueID(I.value()); 3468 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3469 Vals.clear(); 3470 } 3471 3472 // Emit names for all the instructions etc. 3473 if (auto *Symtab = F.getValueSymbolTable()) 3474 writeFunctionLevelValueSymbolTable(*Symtab); 3475 3476 if (NeedsMetadataAttachment) 3477 writeFunctionMetadataAttachment(F); 3478 if (VE.shouldPreserveUseListOrder()) 3479 writeUseListBlock(&F); 3480 VE.purgeFunction(); 3481 Stream.ExitBlock(); 3482 } 3483 3484 // Emit blockinfo, which defines the standard abbreviations etc. 3485 void ModuleBitcodeWriter::writeBlockInfo() { 3486 // We only want to emit block info records for blocks that have multiple 3487 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3488 // Other blocks can define their abbrevs inline. 3489 Stream.EnterBlockInfoBlock(); 3490 3491 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3492 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3497 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3498 VST_ENTRY_8_ABBREV) 3499 llvm_unreachable("Unexpected abbrev ordering!"); 3500 } 3501 3502 { // 7-bit fixed width VST_CODE_ENTRY strings. 3503 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3504 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3508 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3509 VST_ENTRY_7_ABBREV) 3510 llvm_unreachable("Unexpected abbrev ordering!"); 3511 } 3512 { // 6-bit char6 VST_CODE_ENTRY strings. 3513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3518 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3519 VST_ENTRY_6_ABBREV) 3520 llvm_unreachable("Unexpected abbrev ordering!"); 3521 } 3522 { // 6-bit char6 VST_CODE_BBENTRY strings. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3528 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3529 VST_BBENTRY_6_ABBREV) 3530 llvm_unreachable("Unexpected abbrev ordering!"); 3531 } 3532 3533 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3534 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3535 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3537 VE.computeBitsRequiredForTypeIndicies())); 3538 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3539 CONSTANTS_SETTYPE_ABBREV) 3540 llvm_unreachable("Unexpected abbrev ordering!"); 3541 } 3542 3543 { // INTEGER abbrev for CONSTANTS_BLOCK. 3544 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3545 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3547 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3548 CONSTANTS_INTEGER_ABBREV) 3549 llvm_unreachable("Unexpected abbrev ordering!"); 3550 } 3551 3552 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3554 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3557 VE.computeBitsRequiredForTypeIndicies())); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3559 3560 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3561 CONSTANTS_CE_CAST_Abbrev) 3562 llvm_unreachable("Unexpected abbrev ordering!"); 3563 } 3564 { // NULL abbrev for CONSTANTS_BLOCK. 3565 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3566 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3567 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3568 CONSTANTS_NULL_Abbrev) 3569 llvm_unreachable("Unexpected abbrev ordering!"); 3570 } 3571 3572 // FIXME: This should only use space for first class types! 3573 3574 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3575 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3576 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3579 VE.computeBitsRequiredForTypeIndicies())); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3582 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3583 FUNCTION_INST_LOAD_ABBREV) 3584 llvm_unreachable("Unexpected abbrev ordering!"); 3585 } 3586 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3591 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3592 FUNCTION_INST_UNOP_ABBREV) 3593 llvm_unreachable("Unexpected abbrev ordering!"); 3594 } 3595 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3596 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3597 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3601 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3602 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3603 llvm_unreachable("Unexpected abbrev ordering!"); 3604 } 3605 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3606 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3607 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3611 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3612 FUNCTION_INST_BINOP_ABBREV) 3613 llvm_unreachable("Unexpected abbrev ordering!"); 3614 } 3615 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3616 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3617 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3622 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3623 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3624 llvm_unreachable("Unexpected abbrev ordering!"); 3625 } 3626 { // INST_CAST abbrev for FUNCTION_BLOCK. 3627 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3628 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3631 VE.computeBitsRequiredForTypeIndicies())); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3633 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3634 FUNCTION_INST_CAST_ABBREV) 3635 llvm_unreachable("Unexpected abbrev ordering!"); 3636 } 3637 3638 { // INST_RET abbrev for FUNCTION_BLOCK. 3639 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3640 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3641 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3642 FUNCTION_INST_RET_VOID_ABBREV) 3643 llvm_unreachable("Unexpected abbrev ordering!"); 3644 } 3645 { // INST_RET abbrev for FUNCTION_BLOCK. 3646 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3647 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3649 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3650 FUNCTION_INST_RET_VAL_ABBREV) 3651 llvm_unreachable("Unexpected abbrev ordering!"); 3652 } 3653 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3654 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3655 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3657 FUNCTION_INST_UNREACHABLE_ABBREV) 3658 llvm_unreachable("Unexpected abbrev ordering!"); 3659 } 3660 { 3661 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3665 Log2_32_Ceil(VE.getTypes().size() + 1))); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3668 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3669 FUNCTION_INST_GEP_ABBREV) 3670 llvm_unreachable("Unexpected abbrev ordering!"); 3671 } 3672 3673 Stream.ExitBlock(); 3674 } 3675 3676 /// Write the module path strings, currently only used when generating 3677 /// a combined index file. 3678 void IndexBitcodeWriter::writeModStrings() { 3679 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3680 3681 // TODO: See which abbrev sizes we actually need to emit 3682 3683 // 8-bit fixed-width MST_ENTRY strings. 3684 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3685 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3689 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3690 3691 // 7-bit fixed width MST_ENTRY strings. 3692 Abbv = std::make_shared<BitCodeAbbrev>(); 3693 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3697 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3698 3699 // 6-bit char6 MST_ENTRY strings. 3700 Abbv = std::make_shared<BitCodeAbbrev>(); 3701 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3705 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3706 3707 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3708 Abbv = std::make_shared<BitCodeAbbrev>(); 3709 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3715 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3716 3717 SmallVector<unsigned, 64> Vals; 3718 forEachModule( 3719 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3720 StringRef Key = MPSE.getKey(); 3721 const auto &Value = MPSE.getValue(); 3722 StringEncoding Bits = getStringEncoding(Key); 3723 unsigned AbbrevToUse = Abbrev8Bit; 3724 if (Bits == SE_Char6) 3725 AbbrevToUse = Abbrev6Bit; 3726 else if (Bits == SE_Fixed7) 3727 AbbrevToUse = Abbrev7Bit; 3728 3729 Vals.push_back(Value.first); 3730 Vals.append(Key.begin(), Key.end()); 3731 3732 // Emit the finished record. 3733 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3734 3735 // Emit an optional hash for the module now 3736 const auto &Hash = Value.second; 3737 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3738 Vals.assign(Hash.begin(), Hash.end()); 3739 // Emit the hash record. 3740 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3741 } 3742 3743 Vals.clear(); 3744 }); 3745 Stream.ExitBlock(); 3746 } 3747 3748 /// Write the function type metadata related records that need to appear before 3749 /// a function summary entry (whether per-module or combined). 3750 template <typename Fn> 3751 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3752 FunctionSummary *FS, 3753 Fn GetValueID) { 3754 if (!FS->type_tests().empty()) 3755 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3756 3757 SmallVector<uint64_t, 64> Record; 3758 3759 auto WriteVFuncIdVec = [&](uint64_t Ty, 3760 ArrayRef<FunctionSummary::VFuncId> VFs) { 3761 if (VFs.empty()) 3762 return; 3763 Record.clear(); 3764 for (auto &VF : VFs) { 3765 Record.push_back(VF.GUID); 3766 Record.push_back(VF.Offset); 3767 } 3768 Stream.EmitRecord(Ty, Record); 3769 }; 3770 3771 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3772 FS->type_test_assume_vcalls()); 3773 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3774 FS->type_checked_load_vcalls()); 3775 3776 auto WriteConstVCallVec = [&](uint64_t Ty, 3777 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3778 for (auto &VC : VCs) { 3779 Record.clear(); 3780 Record.push_back(VC.VFunc.GUID); 3781 Record.push_back(VC.VFunc.Offset); 3782 llvm::append_range(Record, VC.Args); 3783 Stream.EmitRecord(Ty, Record); 3784 } 3785 }; 3786 3787 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3788 FS->type_test_assume_const_vcalls()); 3789 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3790 FS->type_checked_load_const_vcalls()); 3791 3792 auto WriteRange = [&](ConstantRange Range) { 3793 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3794 assert(Range.getLower().getNumWords() == 1); 3795 assert(Range.getUpper().getNumWords() == 1); 3796 emitSignedInt64(Record, *Range.getLower().getRawData()); 3797 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3798 }; 3799 3800 if (!FS->paramAccesses().empty()) { 3801 Record.clear(); 3802 for (auto &Arg : FS->paramAccesses()) { 3803 size_t UndoSize = Record.size(); 3804 Record.push_back(Arg.ParamNo); 3805 WriteRange(Arg.Use); 3806 Record.push_back(Arg.Calls.size()); 3807 for (auto &Call : Arg.Calls) { 3808 Record.push_back(Call.ParamNo); 3809 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3810 if (!ValueID) { 3811 // If ValueID is unknown we can't drop just this call, we must drop 3812 // entire parameter. 3813 Record.resize(UndoSize); 3814 break; 3815 } 3816 Record.push_back(*ValueID); 3817 WriteRange(Call.Offsets); 3818 } 3819 } 3820 if (!Record.empty()) 3821 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3822 } 3823 } 3824 3825 /// Collect type IDs from type tests used by function. 3826 static void 3827 getReferencedTypeIds(FunctionSummary *FS, 3828 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3829 if (!FS->type_tests().empty()) 3830 for (auto &TT : FS->type_tests()) 3831 ReferencedTypeIds.insert(TT); 3832 3833 auto GetReferencedTypesFromVFuncIdVec = 3834 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3835 for (auto &VF : VFs) 3836 ReferencedTypeIds.insert(VF.GUID); 3837 }; 3838 3839 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3840 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3841 3842 auto GetReferencedTypesFromConstVCallVec = 3843 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3844 for (auto &VC : VCs) 3845 ReferencedTypeIds.insert(VC.VFunc.GUID); 3846 }; 3847 3848 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3849 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3850 } 3851 3852 static void writeWholeProgramDevirtResolutionByArg( 3853 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3854 const WholeProgramDevirtResolution::ByArg &ByArg) { 3855 NameVals.push_back(args.size()); 3856 llvm::append_range(NameVals, args); 3857 3858 NameVals.push_back(ByArg.TheKind); 3859 NameVals.push_back(ByArg.Info); 3860 NameVals.push_back(ByArg.Byte); 3861 NameVals.push_back(ByArg.Bit); 3862 } 3863 3864 static void writeWholeProgramDevirtResolution( 3865 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3866 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3867 NameVals.push_back(Id); 3868 3869 NameVals.push_back(Wpd.TheKind); 3870 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3871 NameVals.push_back(Wpd.SingleImplName.size()); 3872 3873 NameVals.push_back(Wpd.ResByArg.size()); 3874 for (auto &A : Wpd.ResByArg) 3875 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3876 } 3877 3878 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3879 StringTableBuilder &StrtabBuilder, 3880 const std::string &Id, 3881 const TypeIdSummary &Summary) { 3882 NameVals.push_back(StrtabBuilder.add(Id)); 3883 NameVals.push_back(Id.size()); 3884 3885 NameVals.push_back(Summary.TTRes.TheKind); 3886 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3887 NameVals.push_back(Summary.TTRes.AlignLog2); 3888 NameVals.push_back(Summary.TTRes.SizeM1); 3889 NameVals.push_back(Summary.TTRes.BitMask); 3890 NameVals.push_back(Summary.TTRes.InlineBits); 3891 3892 for (auto &W : Summary.WPDRes) 3893 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3894 W.second); 3895 } 3896 3897 static void writeTypeIdCompatibleVtableSummaryRecord( 3898 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3899 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3900 ValueEnumerator &VE) { 3901 NameVals.push_back(StrtabBuilder.add(Id)); 3902 NameVals.push_back(Id.size()); 3903 3904 for (auto &P : Summary) { 3905 NameVals.push_back(P.AddressPointOffset); 3906 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3907 } 3908 } 3909 3910 static void writeFunctionHeapProfileRecords( 3911 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3912 unsigned AllocAbbrev, bool PerModule, 3913 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3914 std::function<unsigned(unsigned)> GetStackIndex) { 3915 SmallVector<uint64_t> Record; 3916 3917 for (auto &CI : FS->callsites()) { 3918 Record.clear(); 3919 // Per module callsite clones should always have a single entry of 3920 // value 0. 3921 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3922 Record.push_back(GetValueID(CI.Callee)); 3923 if (!PerModule) { 3924 Record.push_back(CI.StackIdIndices.size()); 3925 Record.push_back(CI.Clones.size()); 3926 } 3927 for (auto Id : CI.StackIdIndices) 3928 Record.push_back(GetStackIndex(Id)); 3929 if (!PerModule) { 3930 for (auto V : CI.Clones) 3931 Record.push_back(V); 3932 } 3933 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3934 : bitc::FS_COMBINED_CALLSITE_INFO, 3935 Record, CallsiteAbbrev); 3936 } 3937 3938 for (auto &AI : FS->allocs()) { 3939 Record.clear(); 3940 // Per module alloc versions should always have a single entry of 3941 // value 0. 3942 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3943 if (!PerModule) { 3944 Record.push_back(AI.MIBs.size()); 3945 Record.push_back(AI.Versions.size()); 3946 } 3947 for (auto &MIB : AI.MIBs) { 3948 Record.push_back((uint8_t)MIB.AllocType); 3949 Record.push_back(MIB.StackIdIndices.size()); 3950 for (auto Id : MIB.StackIdIndices) 3951 Record.push_back(GetStackIndex(Id)); 3952 } 3953 if (!PerModule) { 3954 for (auto V : AI.Versions) 3955 Record.push_back(V); 3956 } 3957 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3958 : bitc::FS_COMBINED_ALLOC_INFO, 3959 Record, AllocAbbrev); 3960 } 3961 } 3962 3963 // Helper to emit a single function summary record. 3964 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3965 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3966 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3967 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 3968 NameVals.push_back(ValueID); 3969 3970 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3971 3972 writeFunctionTypeMetadataRecords( 3973 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 3974 return {VE.getValueID(VI.getValue())}; 3975 }); 3976 3977 writeFunctionHeapProfileRecords( 3978 Stream, FS, CallsiteAbbrev, AllocAbbrev, 3979 /*PerModule*/ true, 3980 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 3981 /*GetStackIndex*/ [&](unsigned I) { return I; }); 3982 3983 auto SpecialRefCnts = FS->specialRefCounts(); 3984 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3985 NameVals.push_back(FS->instCount()); 3986 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3987 NameVals.push_back(FS->refs().size()); 3988 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3989 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3990 3991 for (auto &RI : FS->refs()) 3992 NameVals.push_back(VE.getValueID(RI.getValue())); 3993 3994 bool HasProfileData = 3995 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3996 for (auto &ECI : FS->calls()) { 3997 NameVals.push_back(getValueId(ECI.first)); 3998 if (HasProfileData) 3999 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4000 else if (WriteRelBFToSummary) 4001 NameVals.push_back(ECI.second.RelBlockFreq); 4002 } 4003 4004 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4005 unsigned Code = 4006 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4007 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4008 : bitc::FS_PERMODULE)); 4009 4010 // Emit the finished record. 4011 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4012 NameVals.clear(); 4013 } 4014 4015 // Collect the global value references in the given variable's initializer, 4016 // and emit them in a summary record. 4017 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4018 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4019 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4020 auto VI = Index->getValueInfo(V.getGUID()); 4021 if (!VI || VI.getSummaryList().empty()) { 4022 // Only declarations should not have a summary (a declaration might however 4023 // have a summary if the def was in module level asm). 4024 assert(V.isDeclaration()); 4025 return; 4026 } 4027 auto *Summary = VI.getSummaryList()[0].get(); 4028 NameVals.push_back(VE.getValueID(&V)); 4029 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4030 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4031 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4032 4033 auto VTableFuncs = VS->vTableFuncs(); 4034 if (!VTableFuncs.empty()) 4035 NameVals.push_back(VS->refs().size()); 4036 4037 unsigned SizeBeforeRefs = NameVals.size(); 4038 for (auto &RI : VS->refs()) 4039 NameVals.push_back(VE.getValueID(RI.getValue())); 4040 // Sort the refs for determinism output, the vector returned by FS->refs() has 4041 // been initialized from a DenseSet. 4042 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4043 4044 if (VTableFuncs.empty()) 4045 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4046 FSModRefsAbbrev); 4047 else { 4048 // VTableFuncs pairs should already be sorted by offset. 4049 for (auto &P : VTableFuncs) { 4050 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4051 NameVals.push_back(P.VTableOffset); 4052 } 4053 4054 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4055 FSModVTableRefsAbbrev); 4056 } 4057 NameVals.clear(); 4058 } 4059 4060 /// Emit the per-module summary section alongside the rest of 4061 /// the module's bitcode. 4062 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4063 // By default we compile with ThinLTO if the module has a summary, but the 4064 // client can request full LTO with a module flag. 4065 bool IsThinLTO = true; 4066 if (auto *MD = 4067 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4068 IsThinLTO = MD->getZExtValue(); 4069 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4070 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4071 4); 4072 4073 Stream.EmitRecord( 4074 bitc::FS_VERSION, 4075 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4076 4077 // Write the index flags. 4078 uint64_t Flags = 0; 4079 // Bits 1-3 are set only in the combined index, skip them. 4080 if (Index->enableSplitLTOUnit()) 4081 Flags |= 0x8; 4082 if (Index->hasUnifiedLTO()) 4083 Flags |= 0x200; 4084 4085 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4086 4087 if (Index->begin() == Index->end()) { 4088 Stream.ExitBlock(); 4089 return; 4090 } 4091 4092 for (const auto &GVI : valueIds()) { 4093 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4094 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4095 } 4096 4097 if (!Index->stackIds().empty()) { 4098 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4099 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4100 // numids x stackid 4101 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4102 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4103 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4104 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4105 } 4106 4107 // Abbrev for FS_PERMODULE_PROFILE. 4108 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4109 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4117 // numrefs x valueid, n x (valueid, hotness) 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4120 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4121 4122 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4123 Abbv = std::make_shared<BitCodeAbbrev>(); 4124 if (WriteRelBFToSummary) 4125 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4126 else 4127 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4135 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4138 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4139 4140 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4141 Abbv = std::make_shared<BitCodeAbbrev>(); 4142 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4147 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4148 4149 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4150 Abbv = std::make_shared<BitCodeAbbrev>(); 4151 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4155 // numrefs x valueid, n x (valueid , offset) 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4158 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4159 4160 // Abbrev for FS_ALIAS. 4161 Abbv = std::make_shared<BitCodeAbbrev>(); 4162 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4166 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4167 4168 // Abbrev for FS_TYPE_ID_METADATA 4169 Abbv = std::make_shared<BitCodeAbbrev>(); 4170 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4173 // n x (valueid , offset) 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4176 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4177 4178 Abbv = std::make_shared<BitCodeAbbrev>(); 4179 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4181 // n x stackidindex 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4184 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4185 4186 Abbv = std::make_shared<BitCodeAbbrev>(); 4187 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4188 // n x (alloc type, numstackids, numstackids x stackidindex) 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4191 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4192 4193 SmallVector<uint64_t, 64> NameVals; 4194 // Iterate over the list of functions instead of the Index to 4195 // ensure the ordering is stable. 4196 for (const Function &F : M) { 4197 // Summary emission does not support anonymous functions, they have to 4198 // renamed using the anonymous function renaming pass. 4199 if (!F.hasName()) 4200 report_fatal_error("Unexpected anonymous function when writing summary"); 4201 4202 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4203 if (!VI || VI.getSummaryList().empty()) { 4204 // Only declarations should not have a summary (a declaration might 4205 // however have a summary if the def was in module level asm). 4206 assert(F.isDeclaration()); 4207 continue; 4208 } 4209 auto *Summary = VI.getSummaryList()[0].get(); 4210 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4211 FSCallsAbbrev, FSCallsProfileAbbrev, 4212 CallsiteAbbrev, AllocAbbrev, F); 4213 } 4214 4215 // Capture references from GlobalVariable initializers, which are outside 4216 // of a function scope. 4217 for (const GlobalVariable &G : M.globals()) 4218 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4219 FSModVTableRefsAbbrev); 4220 4221 for (const GlobalAlias &A : M.aliases()) { 4222 auto *Aliasee = A.getAliaseeObject(); 4223 // Skip ifunc and nameless functions which don't have an entry in the 4224 // summary. 4225 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4226 continue; 4227 auto AliasId = VE.getValueID(&A); 4228 auto AliaseeId = VE.getValueID(Aliasee); 4229 NameVals.push_back(AliasId); 4230 auto *Summary = Index->getGlobalValueSummary(A); 4231 AliasSummary *AS = cast<AliasSummary>(Summary); 4232 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4233 NameVals.push_back(AliaseeId); 4234 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4235 NameVals.clear(); 4236 } 4237 4238 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4239 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4240 S.second, VE); 4241 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4242 TypeIdCompatibleVtableAbbrev); 4243 NameVals.clear(); 4244 } 4245 4246 if (Index->getBlockCount()) 4247 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4248 ArrayRef<uint64_t>{Index->getBlockCount()}); 4249 4250 Stream.ExitBlock(); 4251 } 4252 4253 /// Emit the combined summary section into the combined index file. 4254 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4255 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4256 Stream.EmitRecord( 4257 bitc::FS_VERSION, 4258 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4259 4260 // Write the index flags. 4261 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4262 4263 for (const auto &GVI : valueIds()) { 4264 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4265 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4266 } 4267 4268 if (!StackIdIndices.empty()) { 4269 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4270 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4271 // numids x stackid 4272 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4273 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4274 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4275 // Write the stack ids used by this index, which will be a subset of those in 4276 // the full index in the case of distributed indexes. 4277 std::vector<uint64_t> StackIds; 4278 for (auto &I : StackIdIndices) 4279 StackIds.push_back(Index.getStackIdAtIndex(I)); 4280 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4281 } 4282 4283 // Abbrev for FS_COMBINED. 4284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4285 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4295 // numrefs x valueid, n x (valueid) 4296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4298 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4299 4300 // Abbrev for FS_COMBINED_PROFILE. 4301 Abbv = std::make_shared<BitCodeAbbrev>(); 4302 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4312 // numrefs x valueid, n x (valueid, hotness) 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4315 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4316 4317 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4318 Abbv = std::make_shared<BitCodeAbbrev>(); 4319 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4325 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4326 4327 // Abbrev for FS_COMBINED_ALIAS. 4328 Abbv = std::make_shared<BitCodeAbbrev>(); 4329 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4334 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4335 4336 Abbv = std::make_shared<BitCodeAbbrev>(); 4337 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4341 // numstackindices x stackidindex, numver x version 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4344 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4345 4346 Abbv = std::make_shared<BitCodeAbbrev>(); 4347 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4350 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4351 // numver x version 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4354 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4355 4356 // The aliases are emitted as a post-pass, and will point to the value 4357 // id of the aliasee. Save them in a vector for post-processing. 4358 SmallVector<AliasSummary *, 64> Aliases; 4359 4360 // Save the value id for each summary for alias emission. 4361 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4362 4363 SmallVector<uint64_t, 64> NameVals; 4364 4365 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4366 // with the type ids referenced by this index file. 4367 std::set<GlobalValue::GUID> ReferencedTypeIds; 4368 4369 // For local linkage, we also emit the original name separately 4370 // immediately after the record. 4371 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4372 // We don't need to emit the original name if we are writing the index for 4373 // distributed backends (in which case ModuleToSummariesForIndex is 4374 // non-null). The original name is only needed during the thin link, since 4375 // for SamplePGO the indirect call targets for local functions have 4376 // have the original name annotated in profile. 4377 // Continue to emit it when writing out the entire combined index, which is 4378 // used in testing the thin link via llvm-lto. 4379 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4380 return; 4381 NameVals.push_back(S.getOriginalName()); 4382 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4383 NameVals.clear(); 4384 }; 4385 4386 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4387 forEachSummary([&](GVInfo I, bool IsAliasee) { 4388 GlobalValueSummary *S = I.second; 4389 assert(S); 4390 DefOrUseGUIDs.insert(I.first); 4391 for (const ValueInfo &VI : S->refs()) 4392 DefOrUseGUIDs.insert(VI.getGUID()); 4393 4394 auto ValueId = getValueId(I.first); 4395 assert(ValueId); 4396 SummaryToValueIdMap[S] = *ValueId; 4397 4398 // If this is invoked for an aliasee, we want to record the above 4399 // mapping, but then not emit a summary entry (if the aliasee is 4400 // to be imported, we will invoke this separately with IsAliasee=false). 4401 if (IsAliasee) 4402 return; 4403 4404 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4405 // Will process aliases as a post-pass because the reader wants all 4406 // global to be loaded first. 4407 Aliases.push_back(AS); 4408 return; 4409 } 4410 4411 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4412 NameVals.push_back(*ValueId); 4413 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4414 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4415 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4416 for (auto &RI : VS->refs()) { 4417 auto RefValueId = getValueId(RI.getGUID()); 4418 if (!RefValueId) 4419 continue; 4420 NameVals.push_back(*RefValueId); 4421 } 4422 4423 // Emit the finished record. 4424 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4425 FSModRefsAbbrev); 4426 NameVals.clear(); 4427 MaybeEmitOriginalName(*S); 4428 return; 4429 } 4430 4431 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4432 if (!VI) 4433 return std::nullopt; 4434 return getValueId(VI.getGUID()); 4435 }; 4436 4437 auto *FS = cast<FunctionSummary>(S); 4438 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4439 getReferencedTypeIds(FS, ReferencedTypeIds); 4440 4441 writeFunctionHeapProfileRecords( 4442 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4443 /*PerModule*/ false, 4444 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4445 std::optional<unsigned> ValueID = GetValueId(VI); 4446 // This can happen in shared index files for distributed ThinLTO if 4447 // the callee function summary is not included. Record 0 which we 4448 // will have to deal with conservatively when doing any kind of 4449 // validation in the ThinLTO backends. 4450 if (!ValueID) 4451 return 0; 4452 return *ValueID; 4453 }, 4454 /*GetStackIndex*/ [&](unsigned I) { 4455 // Get the corresponding index into the list of StackIdIndices 4456 // actually being written for this combined index (which may be a 4457 // subset in the case of distributed indexes). 4458 auto Lower = llvm::lower_bound(StackIdIndices, I); 4459 return std::distance(StackIdIndices.begin(), Lower); 4460 }); 4461 4462 NameVals.push_back(*ValueId); 4463 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4464 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4465 NameVals.push_back(FS->instCount()); 4466 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4467 NameVals.push_back(FS->entryCount()); 4468 4469 // Fill in below 4470 NameVals.push_back(0); // numrefs 4471 NameVals.push_back(0); // rorefcnt 4472 NameVals.push_back(0); // worefcnt 4473 4474 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4475 for (auto &RI : FS->refs()) { 4476 auto RefValueId = getValueId(RI.getGUID()); 4477 if (!RefValueId) 4478 continue; 4479 NameVals.push_back(*RefValueId); 4480 if (RI.isReadOnly()) 4481 RORefCnt++; 4482 else if (RI.isWriteOnly()) 4483 WORefCnt++; 4484 Count++; 4485 } 4486 NameVals[6] = Count; 4487 NameVals[7] = RORefCnt; 4488 NameVals[8] = WORefCnt; 4489 4490 bool HasProfileData = false; 4491 for (auto &EI : FS->calls()) { 4492 HasProfileData |= 4493 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4494 if (HasProfileData) 4495 break; 4496 } 4497 4498 for (auto &EI : FS->calls()) { 4499 // If this GUID doesn't have a value id, it doesn't have a function 4500 // summary and we don't need to record any calls to it. 4501 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4502 if (!CallValueId) 4503 continue; 4504 NameVals.push_back(*CallValueId); 4505 if (HasProfileData) 4506 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4507 } 4508 4509 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4510 unsigned Code = 4511 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4512 4513 // Emit the finished record. 4514 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4515 NameVals.clear(); 4516 MaybeEmitOriginalName(*S); 4517 }); 4518 4519 for (auto *AS : Aliases) { 4520 auto AliasValueId = SummaryToValueIdMap[AS]; 4521 assert(AliasValueId); 4522 NameVals.push_back(AliasValueId); 4523 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4524 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4525 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4526 assert(AliaseeValueId); 4527 NameVals.push_back(AliaseeValueId); 4528 4529 // Emit the finished record. 4530 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4531 NameVals.clear(); 4532 MaybeEmitOriginalName(*AS); 4533 4534 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4535 getReferencedTypeIds(FS, ReferencedTypeIds); 4536 } 4537 4538 if (!Index.cfiFunctionDefs().empty()) { 4539 for (auto &S : Index.cfiFunctionDefs()) { 4540 if (DefOrUseGUIDs.count( 4541 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4542 NameVals.push_back(StrtabBuilder.add(S)); 4543 NameVals.push_back(S.size()); 4544 } 4545 } 4546 if (!NameVals.empty()) { 4547 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4548 NameVals.clear(); 4549 } 4550 } 4551 4552 if (!Index.cfiFunctionDecls().empty()) { 4553 for (auto &S : Index.cfiFunctionDecls()) { 4554 if (DefOrUseGUIDs.count( 4555 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4556 NameVals.push_back(StrtabBuilder.add(S)); 4557 NameVals.push_back(S.size()); 4558 } 4559 } 4560 if (!NameVals.empty()) { 4561 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4562 NameVals.clear(); 4563 } 4564 } 4565 4566 // Walk the GUIDs that were referenced, and write the 4567 // corresponding type id records. 4568 for (auto &T : ReferencedTypeIds) { 4569 auto TidIter = Index.typeIds().equal_range(T); 4570 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4571 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4572 It->second.second); 4573 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4574 NameVals.clear(); 4575 } 4576 } 4577 4578 if (Index.getBlockCount()) 4579 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4580 ArrayRef<uint64_t>{Index.getBlockCount()}); 4581 4582 Stream.ExitBlock(); 4583 } 4584 4585 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4586 /// current llvm version, and a record for the epoch number. 4587 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4588 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4589 4590 // Write the "user readable" string identifying the bitcode producer 4591 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4592 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4595 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4596 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4597 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4598 4599 // Write the epoch version 4600 Abbv = std::make_shared<BitCodeAbbrev>(); 4601 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4603 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4604 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4605 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4606 Stream.ExitBlock(); 4607 } 4608 4609 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4610 // Emit the module's hash. 4611 // MODULE_CODE_HASH: [5*i32] 4612 if (GenerateHash) { 4613 uint32_t Vals[5]; 4614 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4615 Buffer.size() - BlockStartPos)); 4616 std::array<uint8_t, 20> Hash = Hasher.result(); 4617 for (int Pos = 0; Pos < 20; Pos += 4) { 4618 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4619 } 4620 4621 // Emit the finished record. 4622 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4623 4624 if (ModHash) 4625 // Save the written hash value. 4626 llvm::copy(Vals, std::begin(*ModHash)); 4627 } 4628 } 4629 4630 void ModuleBitcodeWriter::write() { 4631 writeIdentificationBlock(Stream); 4632 4633 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4634 size_t BlockStartPos = Buffer.size(); 4635 4636 writeModuleVersion(); 4637 4638 // Emit blockinfo, which defines the standard abbreviations etc. 4639 writeBlockInfo(); 4640 4641 // Emit information describing all of the types in the module. 4642 writeTypeTable(); 4643 4644 // Emit information about attribute groups. 4645 writeAttributeGroupTable(); 4646 4647 // Emit information about parameter attributes. 4648 writeAttributeTable(); 4649 4650 writeComdats(); 4651 4652 // Emit top-level description of module, including target triple, inline asm, 4653 // descriptors for global variables, and function prototype info. 4654 writeModuleInfo(); 4655 4656 // Emit constants. 4657 writeModuleConstants(); 4658 4659 // Emit metadata kind names. 4660 writeModuleMetadataKinds(); 4661 4662 // Emit metadata. 4663 writeModuleMetadata(); 4664 4665 // Emit module-level use-lists. 4666 if (VE.shouldPreserveUseListOrder()) 4667 writeUseListBlock(nullptr); 4668 4669 writeOperandBundleTags(); 4670 writeSyncScopeNames(); 4671 4672 // Emit function bodies. 4673 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4674 for (const Function &F : M) 4675 if (!F.isDeclaration()) 4676 writeFunction(F, FunctionToBitcodeIndex); 4677 4678 // Need to write after the above call to WriteFunction which populates 4679 // the summary information in the index. 4680 if (Index) 4681 writePerModuleGlobalValueSummary(); 4682 4683 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4684 4685 writeModuleHash(BlockStartPos); 4686 4687 Stream.ExitBlock(); 4688 } 4689 4690 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4691 uint32_t &Position) { 4692 support::endian::write32le(&Buffer[Position], Value); 4693 Position += 4; 4694 } 4695 4696 /// If generating a bc file on darwin, we have to emit a 4697 /// header and trailer to make it compatible with the system archiver. To do 4698 /// this we emit the following header, and then emit a trailer that pads the 4699 /// file out to be a multiple of 16 bytes. 4700 /// 4701 /// struct bc_header { 4702 /// uint32_t Magic; // 0x0B17C0DE 4703 /// uint32_t Version; // Version, currently always 0. 4704 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4705 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4706 /// uint32_t CPUType; // CPU specifier. 4707 /// ... potentially more later ... 4708 /// }; 4709 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4710 const Triple &TT) { 4711 unsigned CPUType = ~0U; 4712 4713 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4714 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4715 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4716 // specific constants here because they are implicitly part of the Darwin ABI. 4717 enum { 4718 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4719 DARWIN_CPU_TYPE_X86 = 7, 4720 DARWIN_CPU_TYPE_ARM = 12, 4721 DARWIN_CPU_TYPE_POWERPC = 18 4722 }; 4723 4724 Triple::ArchType Arch = TT.getArch(); 4725 if (Arch == Triple::x86_64) 4726 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4727 else if (Arch == Triple::x86) 4728 CPUType = DARWIN_CPU_TYPE_X86; 4729 else if (Arch == Triple::ppc) 4730 CPUType = DARWIN_CPU_TYPE_POWERPC; 4731 else if (Arch == Triple::ppc64) 4732 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4733 else if (Arch == Triple::arm || Arch == Triple::thumb) 4734 CPUType = DARWIN_CPU_TYPE_ARM; 4735 4736 // Traditional Bitcode starts after header. 4737 assert(Buffer.size() >= BWH_HeaderSize && 4738 "Expected header size to be reserved"); 4739 unsigned BCOffset = BWH_HeaderSize; 4740 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4741 4742 // Write the magic and version. 4743 unsigned Position = 0; 4744 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4745 writeInt32ToBuffer(0, Buffer, Position); // Version. 4746 writeInt32ToBuffer(BCOffset, Buffer, Position); 4747 writeInt32ToBuffer(BCSize, Buffer, Position); 4748 writeInt32ToBuffer(CPUType, Buffer, Position); 4749 4750 // If the file is not a multiple of 16 bytes, insert dummy padding. 4751 while (Buffer.size() & 15) 4752 Buffer.push_back(0); 4753 } 4754 4755 /// Helper to write the header common to all bitcode files. 4756 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4757 // Emit the file header. 4758 Stream.Emit((unsigned)'B', 8); 4759 Stream.Emit((unsigned)'C', 8); 4760 Stream.Emit(0x0, 4); 4761 Stream.Emit(0xC, 4); 4762 Stream.Emit(0xE, 4); 4763 Stream.Emit(0xD, 4); 4764 } 4765 4766 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4767 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4768 writeBitcodeHeader(*Stream); 4769 } 4770 4771 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4772 4773 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4774 Stream->EnterSubblock(Block, 3); 4775 4776 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4777 Abbv->Add(BitCodeAbbrevOp(Record)); 4778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4779 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4780 4781 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4782 4783 Stream->ExitBlock(); 4784 } 4785 4786 void BitcodeWriter::writeSymtab() { 4787 assert(!WroteStrtab && !WroteSymtab); 4788 4789 // If any module has module-level inline asm, we will require a registered asm 4790 // parser for the target so that we can create an accurate symbol table for 4791 // the module. 4792 for (Module *M : Mods) { 4793 if (M->getModuleInlineAsm().empty()) 4794 continue; 4795 4796 std::string Err; 4797 const Triple TT(M->getTargetTriple()); 4798 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4799 if (!T || !T->hasMCAsmParser()) 4800 return; 4801 } 4802 4803 WroteSymtab = true; 4804 SmallVector<char, 0> Symtab; 4805 // The irsymtab::build function may be unable to create a symbol table if the 4806 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4807 // table is not required for correctness, but we still want to be able to 4808 // write malformed modules to bitcode files, so swallow the error. 4809 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4810 consumeError(std::move(E)); 4811 return; 4812 } 4813 4814 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4815 {Symtab.data(), Symtab.size()}); 4816 } 4817 4818 void BitcodeWriter::writeStrtab() { 4819 assert(!WroteStrtab); 4820 4821 std::vector<char> Strtab; 4822 StrtabBuilder.finalizeInOrder(); 4823 Strtab.resize(StrtabBuilder.getSize()); 4824 StrtabBuilder.write((uint8_t *)Strtab.data()); 4825 4826 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4827 {Strtab.data(), Strtab.size()}); 4828 4829 WroteStrtab = true; 4830 } 4831 4832 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4833 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4834 WroteStrtab = true; 4835 } 4836 4837 void BitcodeWriter::writeModule(const Module &M, 4838 bool ShouldPreserveUseListOrder, 4839 const ModuleSummaryIndex *Index, 4840 bool GenerateHash, ModuleHash *ModHash) { 4841 assert(!WroteStrtab); 4842 4843 // The Mods vector is used by irsymtab::build, which requires non-const 4844 // Modules in case it needs to materialize metadata. But the bitcode writer 4845 // requires that the module is materialized, so we can cast to non-const here, 4846 // after checking that it is in fact materialized. 4847 assert(M.isMaterialized()); 4848 Mods.push_back(const_cast<Module *>(&M)); 4849 4850 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4851 ShouldPreserveUseListOrder, Index, 4852 GenerateHash, ModHash); 4853 ModuleWriter.write(); 4854 } 4855 4856 void BitcodeWriter::writeIndex( 4857 const ModuleSummaryIndex *Index, 4858 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4859 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4860 ModuleToSummariesForIndex); 4861 IndexWriter.write(); 4862 } 4863 4864 /// Write the specified module to the specified output stream. 4865 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4866 bool ShouldPreserveUseListOrder, 4867 const ModuleSummaryIndex *Index, 4868 bool GenerateHash, ModuleHash *ModHash) { 4869 SmallVector<char, 0> Buffer; 4870 Buffer.reserve(256*1024); 4871 4872 // If this is darwin or another generic macho target, reserve space for the 4873 // header. 4874 Triple TT(M.getTargetTriple()); 4875 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4876 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4877 4878 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4879 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4880 ModHash); 4881 Writer.writeSymtab(); 4882 Writer.writeStrtab(); 4883 4884 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4885 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4886 4887 // Write the generated bitstream to "Out". 4888 if (!Buffer.empty()) 4889 Out.write((char *)&Buffer.front(), Buffer.size()); 4890 } 4891 4892 void IndexBitcodeWriter::write() { 4893 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4894 4895 writeModuleVersion(); 4896 4897 // Write the module paths in the combined index. 4898 writeModStrings(); 4899 4900 // Write the summary combined index records. 4901 writeCombinedGlobalValueSummary(); 4902 4903 Stream.ExitBlock(); 4904 } 4905 4906 // Write the specified module summary index to the given raw output stream, 4907 // where it will be written in a new bitcode block. This is used when 4908 // writing the combined index file for ThinLTO. When writing a subset of the 4909 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4910 void llvm::writeIndexToFile( 4911 const ModuleSummaryIndex &Index, raw_ostream &Out, 4912 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4913 SmallVector<char, 0> Buffer; 4914 Buffer.reserve(256 * 1024); 4915 4916 BitcodeWriter Writer(Buffer); 4917 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4918 Writer.writeStrtab(); 4919 4920 Out.write((char *)&Buffer.front(), Buffer.size()); 4921 } 4922 4923 namespace { 4924 4925 /// Class to manage the bitcode writing for a thin link bitcode file. 4926 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4927 /// ModHash is for use in ThinLTO incremental build, generated while writing 4928 /// the module bitcode file. 4929 const ModuleHash *ModHash; 4930 4931 public: 4932 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4933 BitstreamWriter &Stream, 4934 const ModuleSummaryIndex &Index, 4935 const ModuleHash &ModHash) 4936 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4937 /*ShouldPreserveUseListOrder=*/false, &Index), 4938 ModHash(&ModHash) {} 4939 4940 void write(); 4941 4942 private: 4943 void writeSimplifiedModuleInfo(); 4944 }; 4945 4946 } // end anonymous namespace 4947 4948 // This function writes a simpilified module info for thin link bitcode file. 4949 // It only contains the source file name along with the name(the offset and 4950 // size in strtab) and linkage for global values. For the global value info 4951 // entry, in order to keep linkage at offset 5, there are three zeros used 4952 // as padding. 4953 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4954 SmallVector<unsigned, 64> Vals; 4955 // Emit the module's source file name. 4956 { 4957 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4958 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4959 if (Bits == SE_Char6) 4960 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4961 else if (Bits == SE_Fixed7) 4962 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4963 4964 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4965 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4966 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4968 Abbv->Add(AbbrevOpToUse); 4969 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4970 4971 for (const auto P : M.getSourceFileName()) 4972 Vals.push_back((unsigned char)P); 4973 4974 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4975 Vals.clear(); 4976 } 4977 4978 // Emit the global variable information. 4979 for (const GlobalVariable &GV : M.globals()) { 4980 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4981 Vals.push_back(StrtabBuilder.add(GV.getName())); 4982 Vals.push_back(GV.getName().size()); 4983 Vals.push_back(0); 4984 Vals.push_back(0); 4985 Vals.push_back(0); 4986 Vals.push_back(getEncodedLinkage(GV)); 4987 4988 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4989 Vals.clear(); 4990 } 4991 4992 // Emit the function proto information. 4993 for (const Function &F : M) { 4994 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4995 Vals.push_back(StrtabBuilder.add(F.getName())); 4996 Vals.push_back(F.getName().size()); 4997 Vals.push_back(0); 4998 Vals.push_back(0); 4999 Vals.push_back(0); 5000 Vals.push_back(getEncodedLinkage(F)); 5001 5002 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5003 Vals.clear(); 5004 } 5005 5006 // Emit the alias information. 5007 for (const GlobalAlias &A : M.aliases()) { 5008 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5009 Vals.push_back(StrtabBuilder.add(A.getName())); 5010 Vals.push_back(A.getName().size()); 5011 Vals.push_back(0); 5012 Vals.push_back(0); 5013 Vals.push_back(0); 5014 Vals.push_back(getEncodedLinkage(A)); 5015 5016 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5017 Vals.clear(); 5018 } 5019 5020 // Emit the ifunc information. 5021 for (const GlobalIFunc &I : M.ifuncs()) { 5022 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5023 Vals.push_back(StrtabBuilder.add(I.getName())); 5024 Vals.push_back(I.getName().size()); 5025 Vals.push_back(0); 5026 Vals.push_back(0); 5027 Vals.push_back(0); 5028 Vals.push_back(getEncodedLinkage(I)); 5029 5030 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5031 Vals.clear(); 5032 } 5033 } 5034 5035 void ThinLinkBitcodeWriter::write() { 5036 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5037 5038 writeModuleVersion(); 5039 5040 writeSimplifiedModuleInfo(); 5041 5042 writePerModuleGlobalValueSummary(); 5043 5044 // Write module hash. 5045 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5046 5047 Stream.ExitBlock(); 5048 } 5049 5050 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5051 const ModuleSummaryIndex &Index, 5052 const ModuleHash &ModHash) { 5053 assert(!WroteStrtab); 5054 5055 // The Mods vector is used by irsymtab::build, which requires non-const 5056 // Modules in case it needs to materialize metadata. But the bitcode writer 5057 // requires that the module is materialized, so we can cast to non-const here, 5058 // after checking that it is in fact materialized. 5059 assert(M.isMaterialized()); 5060 Mods.push_back(const_cast<Module *>(&M)); 5061 5062 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5063 ModHash); 5064 ThinLinkWriter.write(); 5065 } 5066 5067 // Write the specified thin link bitcode file to the given raw output stream, 5068 // where it will be written in a new bitcode block. This is used when 5069 // writing the per-module index file for ThinLTO. 5070 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5071 const ModuleSummaryIndex &Index, 5072 const ModuleHash &ModHash) { 5073 SmallVector<char, 0> Buffer; 5074 Buffer.reserve(256 * 1024); 5075 5076 BitcodeWriter Writer(Buffer); 5077 Writer.writeThinLinkBitcode(M, Index, ModHash); 5078 Writer.writeSymtab(); 5079 Writer.writeStrtab(); 5080 5081 Out.write((char *)&Buffer.front(), Buffer.size()); 5082 } 5083 5084 static const char *getSectionNameForBitcode(const Triple &T) { 5085 switch (T.getObjectFormat()) { 5086 case Triple::MachO: 5087 return "__LLVM,__bitcode"; 5088 case Triple::COFF: 5089 case Triple::ELF: 5090 case Triple::Wasm: 5091 case Triple::UnknownObjectFormat: 5092 return ".llvmbc"; 5093 case Triple::GOFF: 5094 llvm_unreachable("GOFF is not yet implemented"); 5095 break; 5096 case Triple::SPIRV: 5097 llvm_unreachable("SPIRV is not yet implemented"); 5098 break; 5099 case Triple::XCOFF: 5100 llvm_unreachable("XCOFF is not yet implemented"); 5101 break; 5102 case Triple::DXContainer: 5103 llvm_unreachable("DXContainer is not yet implemented"); 5104 break; 5105 } 5106 llvm_unreachable("Unimplemented ObjectFormatType"); 5107 } 5108 5109 static const char *getSectionNameForCommandline(const Triple &T) { 5110 switch (T.getObjectFormat()) { 5111 case Triple::MachO: 5112 return "__LLVM,__cmdline"; 5113 case Triple::COFF: 5114 case Triple::ELF: 5115 case Triple::Wasm: 5116 case Triple::UnknownObjectFormat: 5117 return ".llvmcmd"; 5118 case Triple::GOFF: 5119 llvm_unreachable("GOFF is not yet implemented"); 5120 break; 5121 case Triple::SPIRV: 5122 llvm_unreachable("SPIRV is not yet implemented"); 5123 break; 5124 case Triple::XCOFF: 5125 llvm_unreachable("XCOFF is not yet implemented"); 5126 break; 5127 case Triple::DXContainer: 5128 llvm_unreachable("DXC is not yet implemented"); 5129 break; 5130 } 5131 llvm_unreachable("Unimplemented ObjectFormatType"); 5132 } 5133 5134 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5135 bool EmbedBitcode, bool EmbedCmdline, 5136 const std::vector<uint8_t> &CmdArgs) { 5137 // Save llvm.compiler.used and remove it. 5138 SmallVector<Constant *, 2> UsedArray; 5139 SmallVector<GlobalValue *, 4> UsedGlobals; 5140 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 5141 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5142 for (auto *GV : UsedGlobals) { 5143 if (GV->getName() != "llvm.embedded.module" && 5144 GV->getName() != "llvm.cmdline") 5145 UsedArray.push_back( 5146 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5147 } 5148 if (Used) 5149 Used->eraseFromParent(); 5150 5151 // Embed the bitcode for the llvm module. 5152 std::string Data; 5153 ArrayRef<uint8_t> ModuleData; 5154 Triple T(M.getTargetTriple()); 5155 5156 if (EmbedBitcode) { 5157 if (Buf.getBufferSize() == 0 || 5158 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5159 (const unsigned char *)Buf.getBufferEnd())) { 5160 // If the input is LLVM Assembly, bitcode is produced by serializing 5161 // the module. Use-lists order need to be preserved in this case. 5162 llvm::raw_string_ostream OS(Data); 5163 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5164 ModuleData = 5165 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5166 } else 5167 // If the input is LLVM bitcode, write the input byte stream directly. 5168 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5169 Buf.getBufferSize()); 5170 } 5171 llvm::Constant *ModuleConstant = 5172 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5173 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5174 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5175 ModuleConstant); 5176 GV->setSection(getSectionNameForBitcode(T)); 5177 // Set alignment to 1 to prevent padding between two contributions from input 5178 // sections after linking. 5179 GV->setAlignment(Align(1)); 5180 UsedArray.push_back( 5181 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5182 if (llvm::GlobalVariable *Old = 5183 M.getGlobalVariable("llvm.embedded.module", true)) { 5184 assert(Old->hasZeroLiveUses() && 5185 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5186 GV->takeName(Old); 5187 Old->eraseFromParent(); 5188 } else { 5189 GV->setName("llvm.embedded.module"); 5190 } 5191 5192 // Skip if only bitcode needs to be embedded. 5193 if (EmbedCmdline) { 5194 // Embed command-line options. 5195 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5196 CmdArgs.size()); 5197 llvm::Constant *CmdConstant = 5198 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5199 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5200 llvm::GlobalValue::PrivateLinkage, 5201 CmdConstant); 5202 GV->setSection(getSectionNameForCommandline(T)); 5203 GV->setAlignment(Align(1)); 5204 UsedArray.push_back( 5205 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5206 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5207 assert(Old->hasZeroLiveUses() && 5208 "llvm.cmdline can only be used once in llvm.compiler.used"); 5209 GV->takeName(Old); 5210 Old->eraseFromParent(); 5211 } else { 5212 GV->setName("llvm.cmdline"); 5213 } 5214 } 5215 5216 if (UsedArray.empty()) 5217 return; 5218 5219 // Recreate llvm.compiler.used. 5220 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5221 auto *NewUsed = new GlobalVariable( 5222 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5223 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5224 NewUsed->setSection("llvm.metadata"); 5225 } 5226