xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 725a9f47324d42037db93c27ceb40d4956872f3e)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/MC/TargetRegistry.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <optional>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<unsigned>
87     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
88                    cl::desc("Number of metadatas above which we emit an index "
89                             "to enable lazy-loading"));
90 static cl::opt<uint32_t> FlushThreshold(
91     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
92     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
93 
94 static cl::opt<bool> WriteRelBFToSummary(
95     "write-relbf-to-summary", cl::Hidden, cl::init(false),
96     cl::desc("Write relative block frequency to function summary "));
97 
98 namespace llvm {
99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
100 }
101 
102 namespace {
103 
104 /// These are manifest constants used by the bitcode writer. They do not need to
105 /// be kept in sync with the reader, but need to be consistent within this file.
106 enum {
107   // VALUE_SYMTAB_BLOCK abbrev id's.
108   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109   VST_ENTRY_7_ABBREV,
110   VST_ENTRY_6_ABBREV,
111   VST_BBENTRY_6_ABBREV,
112 
113   // CONSTANTS_BLOCK abbrev id's.
114   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115   CONSTANTS_INTEGER_ABBREV,
116   CONSTANTS_CE_CAST_Abbrev,
117   CONSTANTS_NULL_Abbrev,
118 
119   // FUNCTION_BLOCK abbrev id's.
120   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
121   FUNCTION_INST_UNOP_ABBREV,
122   FUNCTION_INST_UNOP_FLAGS_ABBREV,
123   FUNCTION_INST_BINOP_ABBREV,
124   FUNCTION_INST_BINOP_FLAGS_ABBREV,
125   FUNCTION_INST_CAST_ABBREV,
126   FUNCTION_INST_CAST_FLAGS_ABBREV,
127   FUNCTION_INST_RET_VOID_ABBREV,
128   FUNCTION_INST_RET_VAL_ABBREV,
129   FUNCTION_INST_UNREACHABLE_ABBREV,
130   FUNCTION_INST_GEP_ABBREV,
131 };
132 
133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
134 /// file type.
135 class BitcodeWriterBase {
136 protected:
137   /// The stream created and owned by the client.
138   BitstreamWriter &Stream;
139 
140   StringTableBuilder &StrtabBuilder;
141 
142 public:
143   /// Constructs a BitcodeWriterBase object that writes to the provided
144   /// \p Stream.
145   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
146       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
147 
148 protected:
149   void writeModuleVersion();
150 };
151 
152 void BitcodeWriterBase::writeModuleVersion() {
153   // VERSION: [version#]
154   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
155 }
156 
157 /// Base class to manage the module bitcode writing, currently subclassed for
158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
159 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
160 protected:
161   /// The Module to write to bitcode.
162   const Module &M;
163 
164   /// Enumerates ids for all values in the module.
165   ValueEnumerator VE;
166 
167   /// Optional per-module index to write for ThinLTO.
168   const ModuleSummaryIndex *Index;
169 
170   /// Map that holds the correspondence between GUIDs in the summary index,
171   /// that came from indirect call profiles, and a value id generated by this
172   /// class to use in the VST and summary block records.
173   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
174 
175   /// Tracks the last value id recorded in the GUIDToValueMap.
176   unsigned GlobalValueId;
177 
178   /// Saves the offset of the VSTOffset record that must eventually be
179   /// backpatched with the offset of the actual VST.
180   uint64_t VSTOffsetPlaceholder = 0;
181 
182 public:
183   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
184   /// writing to the provided \p Buffer.
185   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
186                           BitstreamWriter &Stream,
187                           bool ShouldPreserveUseListOrder,
188                           const ModuleSummaryIndex *Index)
189       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
190         VE(M, ShouldPreserveUseListOrder), Index(Index) {
191     // Assign ValueIds to any callee values in the index that came from
192     // indirect call profiles and were recorded as a GUID not a Value*
193     // (which would have been assigned an ID by the ValueEnumerator).
194     // The starting ValueId is just after the number of values in the
195     // ValueEnumerator, so that they can be emitted in the VST.
196     GlobalValueId = VE.getValues().size();
197     if (!Index)
198       return;
199     for (const auto &GUIDSummaryLists : *Index)
200       // Examine all summaries for this GUID.
201       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
202         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
203           // For each call in the function summary, see if the call
204           // is to a GUID (which means it is for an indirect call,
205           // otherwise we would have a Value for it). If so, synthesize
206           // a value id.
207           for (auto &CallEdge : FS->calls())
208             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
209               assignValueId(CallEdge.first.getGUID());
210   }
211 
212 protected:
213   void writePerModuleGlobalValueSummary();
214 
215 private:
216   void writePerModuleFunctionSummaryRecord(
217       SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
218       unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
219       unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
220   void writeModuleLevelReferences(const GlobalVariable &V,
221                                   SmallVector<uint64_t, 64> &NameVals,
222                                   unsigned FSModRefsAbbrev,
223                                   unsigned FSModVTableRefsAbbrev);
224 
225   void assignValueId(GlobalValue::GUID ValGUID) {
226     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
227   }
228 
229   unsigned getValueId(GlobalValue::GUID ValGUID) {
230     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
231     // Expect that any GUID value had a value Id assigned by an
232     // earlier call to assignValueId.
233     assert(VMI != GUIDToValueIdMap.end() &&
234            "GUID does not have assigned value Id");
235     return VMI->second;
236   }
237 
238   // Helper to get the valueId for the type of value recorded in VI.
239   unsigned getValueId(ValueInfo VI) {
240     if (!VI.haveGVs() || !VI.getValue())
241       return getValueId(VI.getGUID());
242     return VE.getValueID(VI.getValue());
243   }
244 
245   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
246 };
247 
248 /// Class to manage the bitcode writing for a module.
249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
250   /// Pointer to the buffer allocated by caller for bitcode writing.
251   const SmallVectorImpl<char> &Buffer;
252 
253   /// True if a module hash record should be written.
254   bool GenerateHash;
255 
256   /// If non-null, when GenerateHash is true, the resulting hash is written
257   /// into ModHash.
258   ModuleHash *ModHash;
259 
260   SHA1 Hasher;
261 
262   /// The start bit of the identification block.
263   uint64_t BitcodeStartBit;
264 
265 public:
266   /// Constructs a ModuleBitcodeWriter object for the given Module,
267   /// writing to the provided \p Buffer.
268   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
269                       StringTableBuilder &StrtabBuilder,
270                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
271                       const ModuleSummaryIndex *Index, bool GenerateHash,
272                       ModuleHash *ModHash = nullptr)
273       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
274                                 ShouldPreserveUseListOrder, Index),
275         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
276         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
277 
278   /// Emit the current module to the bitstream.
279   void write();
280 
281 private:
282   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
283 
284   size_t addToStrtab(StringRef Str);
285 
286   void writeAttributeGroupTable();
287   void writeAttributeTable();
288   void writeTypeTable();
289   void writeComdats();
290   void writeValueSymbolTableForwardDecl();
291   void writeModuleInfo();
292   void writeValueAsMetadata(const ValueAsMetadata *MD,
293                             SmallVectorImpl<uint64_t> &Record);
294   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
295                     unsigned Abbrev);
296   unsigned createDILocationAbbrev();
297   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
298                        unsigned &Abbrev);
299   unsigned createGenericDINodeAbbrev();
300   void writeGenericDINode(const GenericDINode *N,
301                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
302   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
303                        unsigned Abbrev);
304   void writeDIGenericSubrange(const DIGenericSubrange *N,
305                               SmallVectorImpl<uint64_t> &Record,
306                               unsigned Abbrev);
307   void writeDIEnumerator(const DIEnumerator *N,
308                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
309   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
310                         unsigned Abbrev);
311   void writeDIStringType(const DIStringType *N,
312                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDIDerivedType(const DIDerivedType *N,
314                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315   void writeDICompositeType(const DICompositeType *N,
316                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317   void writeDISubroutineType(const DISubroutineType *N,
318                              SmallVectorImpl<uint64_t> &Record,
319                              unsigned Abbrev);
320   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
321                    unsigned Abbrev);
322   void writeDICompileUnit(const DICompileUnit *N,
323                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324   void writeDISubprogram(const DISubprogram *N,
325                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
326   void writeDILexicalBlock(const DILexicalBlock *N,
327                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
328   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
329                                SmallVectorImpl<uint64_t> &Record,
330                                unsigned Abbrev);
331   void writeDICommonBlock(const DICommonBlock *N,
332                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
333   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
334                         unsigned Abbrev);
335   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
336                     unsigned Abbrev);
337   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
338                         unsigned Abbrev);
339   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
340   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341                      unsigned Abbrev);
342   void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
343                        unsigned Abbrev);
344   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
345                                     SmallVectorImpl<uint64_t> &Record,
346                                     unsigned Abbrev);
347   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
348                                      SmallVectorImpl<uint64_t> &Record,
349                                      unsigned Abbrev);
350   void writeDIGlobalVariable(const DIGlobalVariable *N,
351                              SmallVectorImpl<uint64_t> &Record,
352                              unsigned Abbrev);
353   void writeDILocalVariable(const DILocalVariable *N,
354                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355   void writeDILabel(const DILabel *N,
356                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357   void writeDIExpression(const DIExpression *N,
358                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
359   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
360                                        SmallVectorImpl<uint64_t> &Record,
361                                        unsigned Abbrev);
362   void writeDIObjCProperty(const DIObjCProperty *N,
363                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
364   void writeDIImportedEntity(const DIImportedEntity *N,
365                              SmallVectorImpl<uint64_t> &Record,
366                              unsigned Abbrev);
367   unsigned createNamedMetadataAbbrev();
368   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
369   unsigned createMetadataStringsAbbrev();
370   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
371                             SmallVectorImpl<uint64_t> &Record);
372   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
373                             SmallVectorImpl<uint64_t> &Record,
374                             std::vector<unsigned> *MDAbbrevs = nullptr,
375                             std::vector<uint64_t> *IndexPos = nullptr);
376   void writeModuleMetadata();
377   void writeFunctionMetadata(const Function &F);
378   void writeFunctionMetadataAttachment(const Function &F);
379   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
380                                     const GlobalObject &GO);
381   void writeModuleMetadataKinds();
382   void writeOperandBundleTags();
383   void writeSyncScopeNames();
384   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
385   void writeModuleConstants();
386   bool pushValueAndType(const Value *V, unsigned InstID,
387                         SmallVectorImpl<unsigned> &Vals);
388   void writeOperandBundles(const CallBase &CB, unsigned InstID);
389   void pushValue(const Value *V, unsigned InstID,
390                  SmallVectorImpl<unsigned> &Vals);
391   void pushValueSigned(const Value *V, unsigned InstID,
392                        SmallVectorImpl<uint64_t> &Vals);
393   void writeInstruction(const Instruction &I, unsigned InstID,
394                         SmallVectorImpl<unsigned> &Vals);
395   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
396   void writeGlobalValueSymbolTable(
397       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
398   void writeUseList(UseListOrder &&Order);
399   void writeUseListBlock(const Function *F);
400   void
401   writeFunction(const Function &F,
402                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
403   void writeBlockInfo();
404   void writeModuleHash(size_t BlockStartPos);
405 
406   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
407     return unsigned(SSID);
408   }
409 
410   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
411 };
412 
413 /// Class to manage the bitcode writing for a combined index.
414 class IndexBitcodeWriter : public BitcodeWriterBase {
415   /// The combined index to write to bitcode.
416   const ModuleSummaryIndex &Index;
417 
418   /// When writing a subset of the index for distributed backends, client
419   /// provides a map of modules to the corresponding GUIDs/summaries to write.
420   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
421 
422   /// Map that holds the correspondence between the GUID used in the combined
423   /// index and a value id generated by this class to use in references.
424   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
425 
426   // The sorted stack id indices actually used in the summary entries being
427   // written, which will be a subset of those in the full index in the case of
428   // distributed indexes.
429   std::vector<unsigned> StackIdIndices;
430 
431   /// Tracks the last value id recorded in the GUIDToValueMap.
432   unsigned GlobalValueId = 0;
433 
434   /// Tracks the assignment of module paths in the module path string table to
435   /// an id assigned for use in summary references to the module path.
436   DenseMap<StringRef, uint64_t> ModuleIdMap;
437 
438 public:
439   /// Constructs a IndexBitcodeWriter object for the given combined index,
440   /// writing to the provided \p Buffer. When writing a subset of the index
441   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
442   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
443                      const ModuleSummaryIndex &Index,
444                      const std::map<std::string, GVSummaryMapTy>
445                          *ModuleToSummariesForIndex = nullptr)
446       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
447         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
448     // Assign unique value ids to all summaries to be written, for use
449     // in writing out the call graph edges. Save the mapping from GUID
450     // to the new global value id to use when writing those edges, which
451     // are currently saved in the index in terms of GUID.
452     forEachSummary([&](GVInfo I, bool IsAliasee) {
453       GUIDToValueIdMap[I.first] = ++GlobalValueId;
454       if (IsAliasee)
455         return;
456       auto *FS = dyn_cast<FunctionSummary>(I.second);
457       if (!FS)
458         return;
459       // Record all stack id indices actually used in the summary entries being
460       // written, so that we can compact them in the case of distributed ThinLTO
461       // indexes.
462       for (auto &CI : FS->callsites()) {
463         // If the stack id list is empty, this callsite info was synthesized for
464         // a missing tail call frame. Ensure that the callee's GUID gets a value
465         // id. Normally we only generate these for defined summaries, which in
466         // the case of distributed ThinLTO is only the functions already defined
467         // in the module or that we want to import. We don't bother to include
468         // all the callee symbols as they aren't normally needed in the backend.
469         // However, for the synthesized callsite infos we do need the callee
470         // GUID in the backend so that we can correlate the identified callee
471         // with this callsite info (which for non-tail calls is done by the
472         // ordering of the callsite infos and verified via stack ids).
473         if (CI.StackIdIndices.empty()) {
474           GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
475           continue;
476         }
477         for (auto Idx : CI.StackIdIndices)
478           StackIdIndices.push_back(Idx);
479       }
480       for (auto &AI : FS->allocs())
481         for (auto &MIB : AI.MIBs)
482           for (auto Idx : MIB.StackIdIndices)
483             StackIdIndices.push_back(Idx);
484     });
485     llvm::sort(StackIdIndices);
486     StackIdIndices.erase(
487         std::unique(StackIdIndices.begin(), StackIdIndices.end()),
488         StackIdIndices.end());
489   }
490 
491   /// The below iterator returns the GUID and associated summary.
492   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
493 
494   /// Calls the callback for each value GUID and summary to be written to
495   /// bitcode. This hides the details of whether they are being pulled from the
496   /// entire index or just those in a provided ModuleToSummariesForIndex map.
497   template<typename Functor>
498   void forEachSummary(Functor Callback) {
499     if (ModuleToSummariesForIndex) {
500       for (auto &M : *ModuleToSummariesForIndex)
501         for (auto &Summary : M.second) {
502           Callback(Summary, false);
503           // Ensure aliasee is handled, e.g. for assigning a valueId,
504           // even if we are not importing the aliasee directly (the
505           // imported alias will contain a copy of aliasee).
506           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
507             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
508         }
509     } else {
510       for (auto &Summaries : Index)
511         for (auto &Summary : Summaries.second.SummaryList)
512           Callback({Summaries.first, Summary.get()}, false);
513     }
514   }
515 
516   /// Calls the callback for each entry in the modulePaths StringMap that
517   /// should be written to the module path string table. This hides the details
518   /// of whether they are being pulled from the entire index or just those in a
519   /// provided ModuleToSummariesForIndex map.
520   template <typename Functor> void forEachModule(Functor Callback) {
521     if (ModuleToSummariesForIndex) {
522       for (const auto &M : *ModuleToSummariesForIndex) {
523         const auto &MPI = Index.modulePaths().find(M.first);
524         if (MPI == Index.modulePaths().end()) {
525           // This should only happen if the bitcode file was empty, in which
526           // case we shouldn't be importing (the ModuleToSummariesForIndex
527           // would only include the module we are writing and index for).
528           assert(ModuleToSummariesForIndex->size() == 1);
529           continue;
530         }
531         Callback(*MPI);
532       }
533     } else {
534       // Since StringMap iteration order isn't guaranteed, order by path string
535       // first.
536       // FIXME: Make this a vector of StringMapEntry instead to avoid the later
537       // map lookup.
538       std::vector<StringRef> ModulePaths;
539       for (auto &[ModPath, _] : Index.modulePaths())
540         ModulePaths.push_back(ModPath);
541       llvm::sort(ModulePaths.begin(), ModulePaths.end());
542       for (auto &ModPath : ModulePaths)
543         Callback(*Index.modulePaths().find(ModPath));
544     }
545   }
546 
547   /// Main entry point for writing a combined index to bitcode.
548   void write();
549 
550 private:
551   void writeModStrings();
552   void writeCombinedGlobalValueSummary();
553 
554   std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
555     auto VMI = GUIDToValueIdMap.find(ValGUID);
556     if (VMI == GUIDToValueIdMap.end())
557       return std::nullopt;
558     return VMI->second;
559   }
560 
561   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
562 };
563 
564 } // end anonymous namespace
565 
566 static unsigned getEncodedCastOpcode(unsigned Opcode) {
567   switch (Opcode) {
568   default: llvm_unreachable("Unknown cast instruction!");
569   case Instruction::Trunc   : return bitc::CAST_TRUNC;
570   case Instruction::ZExt    : return bitc::CAST_ZEXT;
571   case Instruction::SExt    : return bitc::CAST_SEXT;
572   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
573   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
574   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
575   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
576   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
577   case Instruction::FPExt   : return bitc::CAST_FPEXT;
578   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
579   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
580   case Instruction::BitCast : return bitc::CAST_BITCAST;
581   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
582   }
583 }
584 
585 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
586   switch (Opcode) {
587   default: llvm_unreachable("Unknown binary instruction!");
588   case Instruction::FNeg: return bitc::UNOP_FNEG;
589   }
590 }
591 
592 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
593   switch (Opcode) {
594   default: llvm_unreachable("Unknown binary instruction!");
595   case Instruction::Add:
596   case Instruction::FAdd: return bitc::BINOP_ADD;
597   case Instruction::Sub:
598   case Instruction::FSub: return bitc::BINOP_SUB;
599   case Instruction::Mul:
600   case Instruction::FMul: return bitc::BINOP_MUL;
601   case Instruction::UDiv: return bitc::BINOP_UDIV;
602   case Instruction::FDiv:
603   case Instruction::SDiv: return bitc::BINOP_SDIV;
604   case Instruction::URem: return bitc::BINOP_UREM;
605   case Instruction::FRem:
606   case Instruction::SRem: return bitc::BINOP_SREM;
607   case Instruction::Shl:  return bitc::BINOP_SHL;
608   case Instruction::LShr: return bitc::BINOP_LSHR;
609   case Instruction::AShr: return bitc::BINOP_ASHR;
610   case Instruction::And:  return bitc::BINOP_AND;
611   case Instruction::Or:   return bitc::BINOP_OR;
612   case Instruction::Xor:  return bitc::BINOP_XOR;
613   }
614 }
615 
616 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
617   switch (Op) {
618   default: llvm_unreachable("Unknown RMW operation!");
619   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
620   case AtomicRMWInst::Add: return bitc::RMW_ADD;
621   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
622   case AtomicRMWInst::And: return bitc::RMW_AND;
623   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
624   case AtomicRMWInst::Or: return bitc::RMW_OR;
625   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
626   case AtomicRMWInst::Max: return bitc::RMW_MAX;
627   case AtomicRMWInst::Min: return bitc::RMW_MIN;
628   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
629   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
630   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
631   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
632   case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
633   case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
634   case AtomicRMWInst::UIncWrap:
635     return bitc::RMW_UINC_WRAP;
636   case AtomicRMWInst::UDecWrap:
637     return bitc::RMW_UDEC_WRAP;
638   }
639 }
640 
641 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
642   switch (Ordering) {
643   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
644   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
645   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
646   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
647   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
648   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
649   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
650   }
651   llvm_unreachable("Invalid ordering");
652 }
653 
654 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
655                               StringRef Str, unsigned AbbrevToUse) {
656   SmallVector<unsigned, 64> Vals;
657 
658   // Code: [strchar x N]
659   for (char C : Str) {
660     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
661       AbbrevToUse = 0;
662     Vals.push_back(C);
663   }
664 
665   // Emit the finished record.
666   Stream.EmitRecord(Code, Vals, AbbrevToUse);
667 }
668 
669 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
670   switch (Kind) {
671   case Attribute::Alignment:
672     return bitc::ATTR_KIND_ALIGNMENT;
673   case Attribute::AllocAlign:
674     return bitc::ATTR_KIND_ALLOC_ALIGN;
675   case Attribute::AllocSize:
676     return bitc::ATTR_KIND_ALLOC_SIZE;
677   case Attribute::AlwaysInline:
678     return bitc::ATTR_KIND_ALWAYS_INLINE;
679   case Attribute::Builtin:
680     return bitc::ATTR_KIND_BUILTIN;
681   case Attribute::ByVal:
682     return bitc::ATTR_KIND_BY_VAL;
683   case Attribute::Convergent:
684     return bitc::ATTR_KIND_CONVERGENT;
685   case Attribute::InAlloca:
686     return bitc::ATTR_KIND_IN_ALLOCA;
687   case Attribute::Cold:
688     return bitc::ATTR_KIND_COLD;
689   case Attribute::DisableSanitizerInstrumentation:
690     return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
691   case Attribute::FnRetThunkExtern:
692     return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
693   case Attribute::Hot:
694     return bitc::ATTR_KIND_HOT;
695   case Attribute::ElementType:
696     return bitc::ATTR_KIND_ELEMENTTYPE;
697   case Attribute::InlineHint:
698     return bitc::ATTR_KIND_INLINE_HINT;
699   case Attribute::InReg:
700     return bitc::ATTR_KIND_IN_REG;
701   case Attribute::JumpTable:
702     return bitc::ATTR_KIND_JUMP_TABLE;
703   case Attribute::MinSize:
704     return bitc::ATTR_KIND_MIN_SIZE;
705   case Attribute::AllocatedPointer:
706     return bitc::ATTR_KIND_ALLOCATED_POINTER;
707   case Attribute::AllocKind:
708     return bitc::ATTR_KIND_ALLOC_KIND;
709   case Attribute::Memory:
710     return bitc::ATTR_KIND_MEMORY;
711   case Attribute::NoFPClass:
712     return bitc::ATTR_KIND_NOFPCLASS;
713   case Attribute::Naked:
714     return bitc::ATTR_KIND_NAKED;
715   case Attribute::Nest:
716     return bitc::ATTR_KIND_NEST;
717   case Attribute::NoAlias:
718     return bitc::ATTR_KIND_NO_ALIAS;
719   case Attribute::NoBuiltin:
720     return bitc::ATTR_KIND_NO_BUILTIN;
721   case Attribute::NoCallback:
722     return bitc::ATTR_KIND_NO_CALLBACK;
723   case Attribute::NoCapture:
724     return bitc::ATTR_KIND_NO_CAPTURE;
725   case Attribute::NoDuplicate:
726     return bitc::ATTR_KIND_NO_DUPLICATE;
727   case Attribute::NoFree:
728     return bitc::ATTR_KIND_NOFREE;
729   case Attribute::NoImplicitFloat:
730     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
731   case Attribute::NoInline:
732     return bitc::ATTR_KIND_NO_INLINE;
733   case Attribute::NoRecurse:
734     return bitc::ATTR_KIND_NO_RECURSE;
735   case Attribute::NoMerge:
736     return bitc::ATTR_KIND_NO_MERGE;
737   case Attribute::NonLazyBind:
738     return bitc::ATTR_KIND_NON_LAZY_BIND;
739   case Attribute::NonNull:
740     return bitc::ATTR_KIND_NON_NULL;
741   case Attribute::Dereferenceable:
742     return bitc::ATTR_KIND_DEREFERENCEABLE;
743   case Attribute::DereferenceableOrNull:
744     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
745   case Attribute::NoRedZone:
746     return bitc::ATTR_KIND_NO_RED_ZONE;
747   case Attribute::NoReturn:
748     return bitc::ATTR_KIND_NO_RETURN;
749   case Attribute::NoSync:
750     return bitc::ATTR_KIND_NOSYNC;
751   case Attribute::NoCfCheck:
752     return bitc::ATTR_KIND_NOCF_CHECK;
753   case Attribute::NoProfile:
754     return bitc::ATTR_KIND_NO_PROFILE;
755   case Attribute::SkipProfile:
756     return bitc::ATTR_KIND_SKIP_PROFILE;
757   case Attribute::NoUnwind:
758     return bitc::ATTR_KIND_NO_UNWIND;
759   case Attribute::NoSanitizeBounds:
760     return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
761   case Attribute::NoSanitizeCoverage:
762     return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
763   case Attribute::NullPointerIsValid:
764     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
765   case Attribute::OptimizeForDebugging:
766     return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
767   case Attribute::OptForFuzzing:
768     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
769   case Attribute::OptimizeForSize:
770     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
771   case Attribute::OptimizeNone:
772     return bitc::ATTR_KIND_OPTIMIZE_NONE;
773   case Attribute::ReadNone:
774     return bitc::ATTR_KIND_READ_NONE;
775   case Attribute::ReadOnly:
776     return bitc::ATTR_KIND_READ_ONLY;
777   case Attribute::Returned:
778     return bitc::ATTR_KIND_RETURNED;
779   case Attribute::ReturnsTwice:
780     return bitc::ATTR_KIND_RETURNS_TWICE;
781   case Attribute::SExt:
782     return bitc::ATTR_KIND_S_EXT;
783   case Attribute::Speculatable:
784     return bitc::ATTR_KIND_SPECULATABLE;
785   case Attribute::StackAlignment:
786     return bitc::ATTR_KIND_STACK_ALIGNMENT;
787   case Attribute::StackProtect:
788     return bitc::ATTR_KIND_STACK_PROTECT;
789   case Attribute::StackProtectReq:
790     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
791   case Attribute::StackProtectStrong:
792     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
793   case Attribute::SafeStack:
794     return bitc::ATTR_KIND_SAFESTACK;
795   case Attribute::ShadowCallStack:
796     return bitc::ATTR_KIND_SHADOWCALLSTACK;
797   case Attribute::StrictFP:
798     return bitc::ATTR_KIND_STRICT_FP;
799   case Attribute::StructRet:
800     return bitc::ATTR_KIND_STRUCT_RET;
801   case Attribute::SanitizeAddress:
802     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
803   case Attribute::SanitizeHWAddress:
804     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
805   case Attribute::SanitizeThread:
806     return bitc::ATTR_KIND_SANITIZE_THREAD;
807   case Attribute::SanitizeMemory:
808     return bitc::ATTR_KIND_SANITIZE_MEMORY;
809   case Attribute::SpeculativeLoadHardening:
810     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
811   case Attribute::SwiftError:
812     return bitc::ATTR_KIND_SWIFT_ERROR;
813   case Attribute::SwiftSelf:
814     return bitc::ATTR_KIND_SWIFT_SELF;
815   case Attribute::SwiftAsync:
816     return bitc::ATTR_KIND_SWIFT_ASYNC;
817   case Attribute::UWTable:
818     return bitc::ATTR_KIND_UW_TABLE;
819   case Attribute::VScaleRange:
820     return bitc::ATTR_KIND_VSCALE_RANGE;
821   case Attribute::WillReturn:
822     return bitc::ATTR_KIND_WILLRETURN;
823   case Attribute::WriteOnly:
824     return bitc::ATTR_KIND_WRITEONLY;
825   case Attribute::ZExt:
826     return bitc::ATTR_KIND_Z_EXT;
827   case Attribute::ImmArg:
828     return bitc::ATTR_KIND_IMMARG;
829   case Attribute::SanitizeMemTag:
830     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
831   case Attribute::Preallocated:
832     return bitc::ATTR_KIND_PREALLOCATED;
833   case Attribute::NoUndef:
834     return bitc::ATTR_KIND_NOUNDEF;
835   case Attribute::ByRef:
836     return bitc::ATTR_KIND_BYREF;
837   case Attribute::MustProgress:
838     return bitc::ATTR_KIND_MUSTPROGRESS;
839   case Attribute::PresplitCoroutine:
840     return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
841   case Attribute::Writable:
842     return bitc::ATTR_KIND_WRITABLE;
843   case Attribute::CoroDestroyOnlyWhenComplete:
844     return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
845   case Attribute::DeadOnUnwind:
846     return bitc::ATTR_KIND_DEAD_ON_UNWIND;
847   case Attribute::EndAttrKinds:
848     llvm_unreachable("Can not encode end-attribute kinds marker.");
849   case Attribute::None:
850     llvm_unreachable("Can not encode none-attribute.");
851   case Attribute::EmptyKey:
852   case Attribute::TombstoneKey:
853     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
854   }
855 
856   llvm_unreachable("Trying to encode unknown attribute");
857 }
858 
859 void ModuleBitcodeWriter::writeAttributeGroupTable() {
860   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
861       VE.getAttributeGroups();
862   if (AttrGrps.empty()) return;
863 
864   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
865 
866   SmallVector<uint64_t, 64> Record;
867   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
868     unsigned AttrListIndex = Pair.first;
869     AttributeSet AS = Pair.second;
870     Record.push_back(VE.getAttributeGroupID(Pair));
871     Record.push_back(AttrListIndex);
872 
873     for (Attribute Attr : AS) {
874       if (Attr.isEnumAttribute()) {
875         Record.push_back(0);
876         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
877       } else if (Attr.isIntAttribute()) {
878         Record.push_back(1);
879         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
880         Record.push_back(Attr.getValueAsInt());
881       } else if (Attr.isStringAttribute()) {
882         StringRef Kind = Attr.getKindAsString();
883         StringRef Val = Attr.getValueAsString();
884 
885         Record.push_back(Val.empty() ? 3 : 4);
886         Record.append(Kind.begin(), Kind.end());
887         Record.push_back(0);
888         if (!Val.empty()) {
889           Record.append(Val.begin(), Val.end());
890           Record.push_back(0);
891         }
892       } else {
893         assert(Attr.isTypeAttribute());
894         Type *Ty = Attr.getValueAsType();
895         Record.push_back(Ty ? 6 : 5);
896         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
897         if (Ty)
898           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
899       }
900     }
901 
902     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
903     Record.clear();
904   }
905 
906   Stream.ExitBlock();
907 }
908 
909 void ModuleBitcodeWriter::writeAttributeTable() {
910   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
911   if (Attrs.empty()) return;
912 
913   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
914 
915   SmallVector<uint64_t, 64> Record;
916   for (const AttributeList &AL : Attrs) {
917     for (unsigned i : AL.indexes()) {
918       AttributeSet AS = AL.getAttributes(i);
919       if (AS.hasAttributes())
920         Record.push_back(VE.getAttributeGroupID({i, AS}));
921     }
922 
923     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
924     Record.clear();
925   }
926 
927   Stream.ExitBlock();
928 }
929 
930 /// WriteTypeTable - Write out the type table for a module.
931 void ModuleBitcodeWriter::writeTypeTable() {
932   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
933 
934   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
935   SmallVector<uint64_t, 64> TypeVals;
936 
937   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
938 
939   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
940   auto Abbv = std::make_shared<BitCodeAbbrev>();
941   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
942   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
943   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
944 
945   // Abbrev for TYPE_CODE_FUNCTION.
946   Abbv = std::make_shared<BitCodeAbbrev>();
947   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
948   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
949   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
950   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
951   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
952 
953   // Abbrev for TYPE_CODE_STRUCT_ANON.
954   Abbv = std::make_shared<BitCodeAbbrev>();
955   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
956   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
959   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
960 
961   // Abbrev for TYPE_CODE_STRUCT_NAME.
962   Abbv = std::make_shared<BitCodeAbbrev>();
963   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
964   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
965   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
966   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
967 
968   // Abbrev for TYPE_CODE_STRUCT_NAMED.
969   Abbv = std::make_shared<BitCodeAbbrev>();
970   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
974   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
975 
976   // Abbrev for TYPE_CODE_ARRAY.
977   Abbv = std::make_shared<BitCodeAbbrev>();
978   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
979   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
980   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
981   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
982 
983   // Emit an entry count so the reader can reserve space.
984   TypeVals.push_back(TypeList.size());
985   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
986   TypeVals.clear();
987 
988   // Loop over all of the types, emitting each in turn.
989   for (Type *T : TypeList) {
990     int AbbrevToUse = 0;
991     unsigned Code = 0;
992 
993     switch (T->getTypeID()) {
994     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
995     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
996     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
997     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
998     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
999     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
1000     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
1001     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1002     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
1003     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
1004     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
1005     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
1006     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
1007     case Type::IntegerTyID:
1008       // INTEGER: [width]
1009       Code = bitc::TYPE_CODE_INTEGER;
1010       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1011       break;
1012     case Type::PointerTyID: {
1013       PointerType *PTy = cast<PointerType>(T);
1014       unsigned AddressSpace = PTy->getAddressSpace();
1015       // OPAQUE_POINTER: [address space]
1016       Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1017       TypeVals.push_back(AddressSpace);
1018       if (AddressSpace == 0)
1019         AbbrevToUse = OpaquePtrAbbrev;
1020       break;
1021     }
1022     case Type::FunctionTyID: {
1023       FunctionType *FT = cast<FunctionType>(T);
1024       // FUNCTION: [isvararg, retty, paramty x N]
1025       Code = bitc::TYPE_CODE_FUNCTION;
1026       TypeVals.push_back(FT->isVarArg());
1027       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1028       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1029         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1030       AbbrevToUse = FunctionAbbrev;
1031       break;
1032     }
1033     case Type::StructTyID: {
1034       StructType *ST = cast<StructType>(T);
1035       // STRUCT: [ispacked, eltty x N]
1036       TypeVals.push_back(ST->isPacked());
1037       // Output all of the element types.
1038       for (Type *ET : ST->elements())
1039         TypeVals.push_back(VE.getTypeID(ET));
1040 
1041       if (ST->isLiteral()) {
1042         Code = bitc::TYPE_CODE_STRUCT_ANON;
1043         AbbrevToUse = StructAnonAbbrev;
1044       } else {
1045         if (ST->isOpaque()) {
1046           Code = bitc::TYPE_CODE_OPAQUE;
1047         } else {
1048           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1049           AbbrevToUse = StructNamedAbbrev;
1050         }
1051 
1052         // Emit the name if it is present.
1053         if (!ST->getName().empty())
1054           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1055                             StructNameAbbrev);
1056       }
1057       break;
1058     }
1059     case Type::ArrayTyID: {
1060       ArrayType *AT = cast<ArrayType>(T);
1061       // ARRAY: [numelts, eltty]
1062       Code = bitc::TYPE_CODE_ARRAY;
1063       TypeVals.push_back(AT->getNumElements());
1064       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1065       AbbrevToUse = ArrayAbbrev;
1066       break;
1067     }
1068     case Type::FixedVectorTyID:
1069     case Type::ScalableVectorTyID: {
1070       VectorType *VT = cast<VectorType>(T);
1071       // VECTOR [numelts, eltty] or
1072       //        [numelts, eltty, scalable]
1073       Code = bitc::TYPE_CODE_VECTOR;
1074       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1075       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1076       if (isa<ScalableVectorType>(VT))
1077         TypeVals.push_back(true);
1078       break;
1079     }
1080     case Type::TargetExtTyID: {
1081       TargetExtType *TET = cast<TargetExtType>(T);
1082       Code = bitc::TYPE_CODE_TARGET_TYPE;
1083       writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1084                         StructNameAbbrev);
1085       TypeVals.push_back(TET->getNumTypeParameters());
1086       for (Type *InnerTy : TET->type_params())
1087         TypeVals.push_back(VE.getTypeID(InnerTy));
1088       for (unsigned IntParam : TET->int_params())
1089         TypeVals.push_back(IntParam);
1090       break;
1091     }
1092     case Type::TypedPointerTyID:
1093       llvm_unreachable("Typed pointers cannot be added to IR modules");
1094     }
1095 
1096     // Emit the finished record.
1097     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1098     TypeVals.clear();
1099   }
1100 
1101   Stream.ExitBlock();
1102 }
1103 
1104 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1105   switch (Linkage) {
1106   case GlobalValue::ExternalLinkage:
1107     return 0;
1108   case GlobalValue::WeakAnyLinkage:
1109     return 16;
1110   case GlobalValue::AppendingLinkage:
1111     return 2;
1112   case GlobalValue::InternalLinkage:
1113     return 3;
1114   case GlobalValue::LinkOnceAnyLinkage:
1115     return 18;
1116   case GlobalValue::ExternalWeakLinkage:
1117     return 7;
1118   case GlobalValue::CommonLinkage:
1119     return 8;
1120   case GlobalValue::PrivateLinkage:
1121     return 9;
1122   case GlobalValue::WeakODRLinkage:
1123     return 17;
1124   case GlobalValue::LinkOnceODRLinkage:
1125     return 19;
1126   case GlobalValue::AvailableExternallyLinkage:
1127     return 12;
1128   }
1129   llvm_unreachable("Invalid linkage");
1130 }
1131 
1132 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1133   return getEncodedLinkage(GV.getLinkage());
1134 }
1135 
1136 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1137   uint64_t RawFlags = 0;
1138   RawFlags |= Flags.ReadNone;
1139   RawFlags |= (Flags.ReadOnly << 1);
1140   RawFlags |= (Flags.NoRecurse << 2);
1141   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1142   RawFlags |= (Flags.NoInline << 4);
1143   RawFlags |= (Flags.AlwaysInline << 5);
1144   RawFlags |= (Flags.NoUnwind << 6);
1145   RawFlags |= (Flags.MayThrow << 7);
1146   RawFlags |= (Flags.HasUnknownCall << 8);
1147   RawFlags |= (Flags.MustBeUnreachable << 9);
1148   return RawFlags;
1149 }
1150 
1151 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1152 // in BitcodeReader.cpp.
1153 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1154   uint64_t RawFlags = 0;
1155 
1156   RawFlags |= Flags.NotEligibleToImport; // bool
1157   RawFlags |= (Flags.Live << 1);
1158   RawFlags |= (Flags.DSOLocal << 2);
1159   RawFlags |= (Flags.CanAutoHide << 3);
1160 
1161   // Linkage don't need to be remapped at that time for the summary. Any future
1162   // change to the getEncodedLinkage() function will need to be taken into
1163   // account here as well.
1164   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1165 
1166   RawFlags |= (Flags.Visibility << 8); // 2 bits
1167 
1168   return RawFlags;
1169 }
1170 
1171 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1172   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1173                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1174   return RawFlags;
1175 }
1176 
1177 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1178   uint64_t RawFlags = 0;
1179 
1180   RawFlags |= CI.Hotness;            // 3 bits
1181   RawFlags |= (CI.HasTailCall << 3); // 1 bit
1182 
1183   return RawFlags;
1184 }
1185 
1186 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1187   uint64_t RawFlags = 0;
1188 
1189   RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1190   RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1191 
1192   return RawFlags;
1193 }
1194 
1195 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1196   switch (GV.getVisibility()) {
1197   case GlobalValue::DefaultVisibility:   return 0;
1198   case GlobalValue::HiddenVisibility:    return 1;
1199   case GlobalValue::ProtectedVisibility: return 2;
1200   }
1201   llvm_unreachable("Invalid visibility");
1202 }
1203 
1204 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1205   switch (GV.getDLLStorageClass()) {
1206   case GlobalValue::DefaultStorageClass:   return 0;
1207   case GlobalValue::DLLImportStorageClass: return 1;
1208   case GlobalValue::DLLExportStorageClass: return 2;
1209   }
1210   llvm_unreachable("Invalid DLL storage class");
1211 }
1212 
1213 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1214   switch (GV.getThreadLocalMode()) {
1215     case GlobalVariable::NotThreadLocal:         return 0;
1216     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1217     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1218     case GlobalVariable::InitialExecTLSModel:    return 3;
1219     case GlobalVariable::LocalExecTLSModel:      return 4;
1220   }
1221   llvm_unreachable("Invalid TLS model");
1222 }
1223 
1224 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1225   switch (C.getSelectionKind()) {
1226   case Comdat::Any:
1227     return bitc::COMDAT_SELECTION_KIND_ANY;
1228   case Comdat::ExactMatch:
1229     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1230   case Comdat::Largest:
1231     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1232   case Comdat::NoDeduplicate:
1233     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1234   case Comdat::SameSize:
1235     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1236   }
1237   llvm_unreachable("Invalid selection kind");
1238 }
1239 
1240 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1241   switch (GV.getUnnamedAddr()) {
1242   case GlobalValue::UnnamedAddr::None:   return 0;
1243   case GlobalValue::UnnamedAddr::Local:  return 2;
1244   case GlobalValue::UnnamedAddr::Global: return 1;
1245   }
1246   llvm_unreachable("Invalid unnamed_addr");
1247 }
1248 
1249 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1250   if (GenerateHash)
1251     Hasher.update(Str);
1252   return StrtabBuilder.add(Str);
1253 }
1254 
1255 void ModuleBitcodeWriter::writeComdats() {
1256   SmallVector<unsigned, 64> Vals;
1257   for (const Comdat *C : VE.getComdats()) {
1258     // COMDAT: [strtab offset, strtab size, selection_kind]
1259     Vals.push_back(addToStrtab(C->getName()));
1260     Vals.push_back(C->getName().size());
1261     Vals.push_back(getEncodedComdatSelectionKind(*C));
1262     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1263     Vals.clear();
1264   }
1265 }
1266 
1267 /// Write a record that will eventually hold the word offset of the
1268 /// module-level VST. For now the offset is 0, which will be backpatched
1269 /// after the real VST is written. Saves the bit offset to backpatch.
1270 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1271   // Write a placeholder value in for the offset of the real VST,
1272   // which is written after the function blocks so that it can include
1273   // the offset of each function. The placeholder offset will be
1274   // updated when the real VST is written.
1275   auto Abbv = std::make_shared<BitCodeAbbrev>();
1276   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1277   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1278   // hold the real VST offset. Must use fixed instead of VBR as we don't
1279   // know how many VBR chunks to reserve ahead of time.
1280   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1281   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1282 
1283   // Emit the placeholder
1284   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1285   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1286 
1287   // Compute and save the bit offset to the placeholder, which will be
1288   // patched when the real VST is written. We can simply subtract the 32-bit
1289   // fixed size from the current bit number to get the location to backpatch.
1290   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1291 }
1292 
1293 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1294 
1295 /// Determine the encoding to use for the given string name and length.
1296 static StringEncoding getStringEncoding(StringRef Str) {
1297   bool isChar6 = true;
1298   for (char C : Str) {
1299     if (isChar6)
1300       isChar6 = BitCodeAbbrevOp::isChar6(C);
1301     if ((unsigned char)C & 128)
1302       // don't bother scanning the rest.
1303       return SE_Fixed8;
1304   }
1305   if (isChar6)
1306     return SE_Char6;
1307   return SE_Fixed7;
1308 }
1309 
1310 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1311               "Sanitizer Metadata is too large for naive serialization.");
1312 static unsigned
1313 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1314   return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1315          (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1316 }
1317 
1318 /// Emit top-level description of module, including target triple, inline asm,
1319 /// descriptors for global variables, and function prototype info.
1320 /// Returns the bit offset to backpatch with the location of the real VST.
1321 void ModuleBitcodeWriter::writeModuleInfo() {
1322   // Emit various pieces of data attached to a module.
1323   if (!M.getTargetTriple().empty())
1324     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1325                       0 /*TODO*/);
1326   const std::string &DL = M.getDataLayoutStr();
1327   if (!DL.empty())
1328     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1329   if (!M.getModuleInlineAsm().empty())
1330     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1331                       0 /*TODO*/);
1332 
1333   // Emit information about sections and GC, computing how many there are. Also
1334   // compute the maximum alignment value.
1335   std::map<std::string, unsigned> SectionMap;
1336   std::map<std::string, unsigned> GCMap;
1337   MaybeAlign MaxAlignment;
1338   unsigned MaxGlobalType = 0;
1339   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1340     if (A)
1341       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1342   };
1343   for (const GlobalVariable &GV : M.globals()) {
1344     UpdateMaxAlignment(GV.getAlign());
1345     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1346     if (GV.hasSection()) {
1347       // Give section names unique ID's.
1348       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1349       if (!Entry) {
1350         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1351                           0 /*TODO*/);
1352         Entry = SectionMap.size();
1353       }
1354     }
1355   }
1356   for (const Function &F : M) {
1357     UpdateMaxAlignment(F.getAlign());
1358     if (F.hasSection()) {
1359       // Give section names unique ID's.
1360       unsigned &Entry = SectionMap[std::string(F.getSection())];
1361       if (!Entry) {
1362         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1363                           0 /*TODO*/);
1364         Entry = SectionMap.size();
1365       }
1366     }
1367     if (F.hasGC()) {
1368       // Same for GC names.
1369       unsigned &Entry = GCMap[F.getGC()];
1370       if (!Entry) {
1371         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1372                           0 /*TODO*/);
1373         Entry = GCMap.size();
1374       }
1375     }
1376   }
1377 
1378   // Emit abbrev for globals, now that we know # sections and max alignment.
1379   unsigned SimpleGVarAbbrev = 0;
1380   if (!M.global_empty()) {
1381     // Add an abbrev for common globals with no visibility or thread localness.
1382     auto Abbv = std::make_shared<BitCodeAbbrev>();
1383     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1387                               Log2_32_Ceil(MaxGlobalType+1)));
1388     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1389                                                            //| explicitType << 1
1390                                                            //| constant
1391     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1392     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1393     if (!MaxAlignment)                                     // Alignment.
1394       Abbv->Add(BitCodeAbbrevOp(0));
1395     else {
1396       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1397       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1398                                Log2_32_Ceil(MaxEncAlignment+1)));
1399     }
1400     if (SectionMap.empty())                                    // Section.
1401       Abbv->Add(BitCodeAbbrevOp(0));
1402     else
1403       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1404                                Log2_32_Ceil(SectionMap.size()+1)));
1405     // Don't bother emitting vis + thread local.
1406     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1407   }
1408 
1409   SmallVector<unsigned, 64> Vals;
1410   // Emit the module's source file name.
1411   {
1412     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1413     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1414     if (Bits == SE_Char6)
1415       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1416     else if (Bits == SE_Fixed7)
1417       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1418 
1419     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1420     auto Abbv = std::make_shared<BitCodeAbbrev>();
1421     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1422     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1423     Abbv->Add(AbbrevOpToUse);
1424     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1425 
1426     for (const auto P : M.getSourceFileName())
1427       Vals.push_back((unsigned char)P);
1428 
1429     // Emit the finished record.
1430     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1431     Vals.clear();
1432   }
1433 
1434   // Emit the global variable information.
1435   for (const GlobalVariable &GV : M.globals()) {
1436     unsigned AbbrevToUse = 0;
1437 
1438     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1439     //             linkage, alignment, section, visibility, threadlocal,
1440     //             unnamed_addr, externally_initialized, dllstorageclass,
1441     //             comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1442     Vals.push_back(addToStrtab(GV.getName()));
1443     Vals.push_back(GV.getName().size());
1444     Vals.push_back(VE.getTypeID(GV.getValueType()));
1445     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1446     Vals.push_back(GV.isDeclaration() ? 0 :
1447                    (VE.getValueID(GV.getInitializer()) + 1));
1448     Vals.push_back(getEncodedLinkage(GV));
1449     Vals.push_back(getEncodedAlign(GV.getAlign()));
1450     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1451                                    : 0);
1452     if (GV.isThreadLocal() ||
1453         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1454         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1455         GV.isExternallyInitialized() ||
1456         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1457         GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1458         GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1459       Vals.push_back(getEncodedVisibility(GV));
1460       Vals.push_back(getEncodedThreadLocalMode(GV));
1461       Vals.push_back(getEncodedUnnamedAddr(GV));
1462       Vals.push_back(GV.isExternallyInitialized());
1463       Vals.push_back(getEncodedDLLStorageClass(GV));
1464       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1465 
1466       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1467       Vals.push_back(VE.getAttributeListID(AL));
1468 
1469       Vals.push_back(GV.isDSOLocal());
1470       Vals.push_back(addToStrtab(GV.getPartition()));
1471       Vals.push_back(GV.getPartition().size());
1472 
1473       Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1474                                                       GV.getSanitizerMetadata())
1475                                                 : 0));
1476       Vals.push_back(GV.getCodeModelRaw());
1477     } else {
1478       AbbrevToUse = SimpleGVarAbbrev;
1479     }
1480 
1481     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1482     Vals.clear();
1483   }
1484 
1485   // Emit the function proto information.
1486   for (const Function &F : M) {
1487     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1488     //             linkage, paramattrs, alignment, section, visibility, gc,
1489     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1490     //             prefixdata, personalityfn, DSO_Local, addrspace]
1491     Vals.push_back(addToStrtab(F.getName()));
1492     Vals.push_back(F.getName().size());
1493     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1494     Vals.push_back(F.getCallingConv());
1495     Vals.push_back(F.isDeclaration());
1496     Vals.push_back(getEncodedLinkage(F));
1497     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1498     Vals.push_back(getEncodedAlign(F.getAlign()));
1499     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1500                                   : 0);
1501     Vals.push_back(getEncodedVisibility(F));
1502     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1503     Vals.push_back(getEncodedUnnamedAddr(F));
1504     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1505                                        : 0);
1506     Vals.push_back(getEncodedDLLStorageClass(F));
1507     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1508     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1509                                      : 0);
1510     Vals.push_back(
1511         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1512 
1513     Vals.push_back(F.isDSOLocal());
1514     Vals.push_back(F.getAddressSpace());
1515     Vals.push_back(addToStrtab(F.getPartition()));
1516     Vals.push_back(F.getPartition().size());
1517 
1518     unsigned AbbrevToUse = 0;
1519     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1520     Vals.clear();
1521   }
1522 
1523   // Emit the alias information.
1524   for (const GlobalAlias &A : M.aliases()) {
1525     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1526     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1527     //         DSO_Local]
1528     Vals.push_back(addToStrtab(A.getName()));
1529     Vals.push_back(A.getName().size());
1530     Vals.push_back(VE.getTypeID(A.getValueType()));
1531     Vals.push_back(A.getType()->getAddressSpace());
1532     Vals.push_back(VE.getValueID(A.getAliasee()));
1533     Vals.push_back(getEncodedLinkage(A));
1534     Vals.push_back(getEncodedVisibility(A));
1535     Vals.push_back(getEncodedDLLStorageClass(A));
1536     Vals.push_back(getEncodedThreadLocalMode(A));
1537     Vals.push_back(getEncodedUnnamedAddr(A));
1538     Vals.push_back(A.isDSOLocal());
1539     Vals.push_back(addToStrtab(A.getPartition()));
1540     Vals.push_back(A.getPartition().size());
1541 
1542     unsigned AbbrevToUse = 0;
1543     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1544     Vals.clear();
1545   }
1546 
1547   // Emit the ifunc information.
1548   for (const GlobalIFunc &I : M.ifuncs()) {
1549     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1550     //         val#, linkage, visibility, DSO_Local]
1551     Vals.push_back(addToStrtab(I.getName()));
1552     Vals.push_back(I.getName().size());
1553     Vals.push_back(VE.getTypeID(I.getValueType()));
1554     Vals.push_back(I.getType()->getAddressSpace());
1555     Vals.push_back(VE.getValueID(I.getResolver()));
1556     Vals.push_back(getEncodedLinkage(I));
1557     Vals.push_back(getEncodedVisibility(I));
1558     Vals.push_back(I.isDSOLocal());
1559     Vals.push_back(addToStrtab(I.getPartition()));
1560     Vals.push_back(I.getPartition().size());
1561     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1562     Vals.clear();
1563   }
1564 
1565   writeValueSymbolTableForwardDecl();
1566 }
1567 
1568 static uint64_t getOptimizationFlags(const Value *V) {
1569   uint64_t Flags = 0;
1570 
1571   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1572     if (OBO->hasNoSignedWrap())
1573       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1574     if (OBO->hasNoUnsignedWrap())
1575       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1576   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1577     if (PEO->isExact())
1578       Flags |= 1 << bitc::PEO_EXACT;
1579   } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1580     if (PDI->isDisjoint())
1581       Flags |= 1 << bitc::PDI_DISJOINT;
1582   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1583     if (FPMO->hasAllowReassoc())
1584       Flags |= bitc::AllowReassoc;
1585     if (FPMO->hasNoNaNs())
1586       Flags |= bitc::NoNaNs;
1587     if (FPMO->hasNoInfs())
1588       Flags |= bitc::NoInfs;
1589     if (FPMO->hasNoSignedZeros())
1590       Flags |= bitc::NoSignedZeros;
1591     if (FPMO->hasAllowReciprocal())
1592       Flags |= bitc::AllowReciprocal;
1593     if (FPMO->hasAllowContract())
1594       Flags |= bitc::AllowContract;
1595     if (FPMO->hasApproxFunc())
1596       Flags |= bitc::ApproxFunc;
1597   } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1598     if (NNI->hasNonNeg())
1599       Flags |= 1 << bitc::PNNI_NON_NEG;
1600   }
1601 
1602   return Flags;
1603 }
1604 
1605 void ModuleBitcodeWriter::writeValueAsMetadata(
1606     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1607   // Mimic an MDNode with a value as one operand.
1608   Value *V = MD->getValue();
1609   Record.push_back(VE.getTypeID(V->getType()));
1610   Record.push_back(VE.getValueID(V));
1611   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1612   Record.clear();
1613 }
1614 
1615 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1616                                        SmallVectorImpl<uint64_t> &Record,
1617                                        unsigned Abbrev) {
1618   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1619     Metadata *MD = N->getOperand(i);
1620     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1621            "Unexpected function-local metadata");
1622     Record.push_back(VE.getMetadataOrNullID(MD));
1623   }
1624   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1625                                     : bitc::METADATA_NODE,
1626                     Record, Abbrev);
1627   Record.clear();
1628 }
1629 
1630 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1631   // Assume the column is usually under 128, and always output the inlined-at
1632   // location (it's never more expensive than building an array size 1).
1633   auto Abbv = std::make_shared<BitCodeAbbrev>();
1634   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1635   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1636   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1637   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1638   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1639   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1640   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1641   return Stream.EmitAbbrev(std::move(Abbv));
1642 }
1643 
1644 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1645                                           SmallVectorImpl<uint64_t> &Record,
1646                                           unsigned &Abbrev) {
1647   if (!Abbrev)
1648     Abbrev = createDILocationAbbrev();
1649 
1650   Record.push_back(N->isDistinct());
1651   Record.push_back(N->getLine());
1652   Record.push_back(N->getColumn());
1653   Record.push_back(VE.getMetadataID(N->getScope()));
1654   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1655   Record.push_back(N->isImplicitCode());
1656 
1657   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1658   Record.clear();
1659 }
1660 
1661 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1662   // Assume the column is usually under 128, and always output the inlined-at
1663   // location (it's never more expensive than building an array size 1).
1664   auto Abbv = std::make_shared<BitCodeAbbrev>();
1665   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1667   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1668   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1669   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1670   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1671   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1672   return Stream.EmitAbbrev(std::move(Abbv));
1673 }
1674 
1675 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1676                                              SmallVectorImpl<uint64_t> &Record,
1677                                              unsigned &Abbrev) {
1678   if (!Abbrev)
1679     Abbrev = createGenericDINodeAbbrev();
1680 
1681   Record.push_back(N->isDistinct());
1682   Record.push_back(N->getTag());
1683   Record.push_back(0); // Per-tag version field; unused for now.
1684 
1685   for (auto &I : N->operands())
1686     Record.push_back(VE.getMetadataOrNullID(I));
1687 
1688   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1689   Record.clear();
1690 }
1691 
1692 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1693                                           SmallVectorImpl<uint64_t> &Record,
1694                                           unsigned Abbrev) {
1695   const uint64_t Version = 2 << 1;
1696   Record.push_back((uint64_t)N->isDistinct() | Version);
1697   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1698   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1699   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1700   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1701 
1702   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1703   Record.clear();
1704 }
1705 
1706 void ModuleBitcodeWriter::writeDIGenericSubrange(
1707     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1708     unsigned Abbrev) {
1709   Record.push_back((uint64_t)N->isDistinct());
1710   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1711   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1712   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1713   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1714 
1715   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1716   Record.clear();
1717 }
1718 
1719 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1720   if ((int64_t)V >= 0)
1721     Vals.push_back(V << 1);
1722   else
1723     Vals.push_back((-V << 1) | 1);
1724 }
1725 
1726 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1727   // We have an arbitrary precision integer value to write whose
1728   // bit width is > 64. However, in canonical unsigned integer
1729   // format it is likely that the high bits are going to be zero.
1730   // So, we only write the number of active words.
1731   unsigned NumWords = A.getActiveWords();
1732   const uint64_t *RawData = A.getRawData();
1733   for (unsigned i = 0; i < NumWords; i++)
1734     emitSignedInt64(Vals, RawData[i]);
1735 }
1736 
1737 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1738                                             SmallVectorImpl<uint64_t> &Record,
1739                                             unsigned Abbrev) {
1740   const uint64_t IsBigInt = 1 << 2;
1741   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1742   Record.push_back(N->getValue().getBitWidth());
1743   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1744   emitWideAPInt(Record, N->getValue());
1745 
1746   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1747   Record.clear();
1748 }
1749 
1750 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1751                                            SmallVectorImpl<uint64_t> &Record,
1752                                            unsigned Abbrev) {
1753   Record.push_back(N->isDistinct());
1754   Record.push_back(N->getTag());
1755   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1756   Record.push_back(N->getSizeInBits());
1757   Record.push_back(N->getAlignInBits());
1758   Record.push_back(N->getEncoding());
1759   Record.push_back(N->getFlags());
1760 
1761   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1762   Record.clear();
1763 }
1764 
1765 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1766                                             SmallVectorImpl<uint64_t> &Record,
1767                                             unsigned Abbrev) {
1768   Record.push_back(N->isDistinct());
1769   Record.push_back(N->getTag());
1770   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1771   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1772   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1773   Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1774   Record.push_back(N->getSizeInBits());
1775   Record.push_back(N->getAlignInBits());
1776   Record.push_back(N->getEncoding());
1777 
1778   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1779   Record.clear();
1780 }
1781 
1782 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1783                                              SmallVectorImpl<uint64_t> &Record,
1784                                              unsigned Abbrev) {
1785   Record.push_back(N->isDistinct());
1786   Record.push_back(N->getTag());
1787   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1788   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1789   Record.push_back(N->getLine());
1790   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1791   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1792   Record.push_back(N->getSizeInBits());
1793   Record.push_back(N->getAlignInBits());
1794   Record.push_back(N->getOffsetInBits());
1795   Record.push_back(N->getFlags());
1796   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1797 
1798   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1799   // that there is no DWARF address space associated with DIDerivedType.
1800   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1801     Record.push_back(*DWARFAddressSpace + 1);
1802   else
1803     Record.push_back(0);
1804 
1805   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1806 
1807   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1808   Record.clear();
1809 }
1810 
1811 void ModuleBitcodeWriter::writeDICompositeType(
1812     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1813     unsigned Abbrev) {
1814   const unsigned IsNotUsedInOldTypeRef = 0x2;
1815   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1816   Record.push_back(N->getTag());
1817   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1818   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1819   Record.push_back(N->getLine());
1820   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1821   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1822   Record.push_back(N->getSizeInBits());
1823   Record.push_back(N->getAlignInBits());
1824   Record.push_back(N->getOffsetInBits());
1825   Record.push_back(N->getFlags());
1826   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1827   Record.push_back(N->getRuntimeLang());
1828   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1829   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1830   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1831   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1832   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1833   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1834   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1835   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1836   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1837 
1838   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1839   Record.clear();
1840 }
1841 
1842 void ModuleBitcodeWriter::writeDISubroutineType(
1843     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1844     unsigned Abbrev) {
1845   const unsigned HasNoOldTypeRefs = 0x2;
1846   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1847   Record.push_back(N->getFlags());
1848   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1849   Record.push_back(N->getCC());
1850 
1851   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1852   Record.clear();
1853 }
1854 
1855 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1856                                       SmallVectorImpl<uint64_t> &Record,
1857                                       unsigned Abbrev) {
1858   Record.push_back(N->isDistinct());
1859   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1860   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1861   if (N->getRawChecksum()) {
1862     Record.push_back(N->getRawChecksum()->Kind);
1863     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1864   } else {
1865     // Maintain backwards compatibility with the old internal representation of
1866     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1867     Record.push_back(0);
1868     Record.push_back(VE.getMetadataOrNullID(nullptr));
1869   }
1870   auto Source = N->getRawSource();
1871   if (Source)
1872     Record.push_back(VE.getMetadataOrNullID(Source));
1873 
1874   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1875   Record.clear();
1876 }
1877 
1878 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1879                                              SmallVectorImpl<uint64_t> &Record,
1880                                              unsigned Abbrev) {
1881   assert(N->isDistinct() && "Expected distinct compile units");
1882   Record.push_back(/* IsDistinct */ true);
1883   Record.push_back(N->getSourceLanguage());
1884   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1885   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1886   Record.push_back(N->isOptimized());
1887   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1888   Record.push_back(N->getRuntimeVersion());
1889   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1890   Record.push_back(N->getEmissionKind());
1891   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1892   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1893   Record.push_back(/* subprograms */ 0);
1894   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1895   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1896   Record.push_back(N->getDWOId());
1897   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1898   Record.push_back(N->getSplitDebugInlining());
1899   Record.push_back(N->getDebugInfoForProfiling());
1900   Record.push_back((unsigned)N->getNameTableKind());
1901   Record.push_back(N->getRangesBaseAddress());
1902   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1903   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1904 
1905   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1906   Record.clear();
1907 }
1908 
1909 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1910                                             SmallVectorImpl<uint64_t> &Record,
1911                                             unsigned Abbrev) {
1912   const uint64_t HasUnitFlag = 1 << 1;
1913   const uint64_t HasSPFlagsFlag = 1 << 2;
1914   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1915   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1916   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1917   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1918   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1919   Record.push_back(N->getLine());
1920   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1921   Record.push_back(N->getScopeLine());
1922   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1923   Record.push_back(N->getSPFlags());
1924   Record.push_back(N->getVirtualIndex());
1925   Record.push_back(N->getFlags());
1926   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1927   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1928   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1929   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1930   Record.push_back(N->getThisAdjustment());
1931   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1932   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1933   Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1934 
1935   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1936   Record.clear();
1937 }
1938 
1939 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1940                                               SmallVectorImpl<uint64_t> &Record,
1941                                               unsigned Abbrev) {
1942   Record.push_back(N->isDistinct());
1943   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1944   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1945   Record.push_back(N->getLine());
1946   Record.push_back(N->getColumn());
1947 
1948   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1949   Record.clear();
1950 }
1951 
1952 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1953     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1954     unsigned Abbrev) {
1955   Record.push_back(N->isDistinct());
1956   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1957   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1958   Record.push_back(N->getDiscriminator());
1959 
1960   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1961   Record.clear();
1962 }
1963 
1964 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1965                                              SmallVectorImpl<uint64_t> &Record,
1966                                              unsigned Abbrev) {
1967   Record.push_back(N->isDistinct());
1968   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1969   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1970   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1971   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1972   Record.push_back(N->getLineNo());
1973 
1974   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1975   Record.clear();
1976 }
1977 
1978 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1979                                            SmallVectorImpl<uint64_t> &Record,
1980                                            unsigned Abbrev) {
1981   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1982   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1983   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1984 
1985   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1986   Record.clear();
1987 }
1988 
1989 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1990                                        SmallVectorImpl<uint64_t> &Record,
1991                                        unsigned Abbrev) {
1992   Record.push_back(N->isDistinct());
1993   Record.push_back(N->getMacinfoType());
1994   Record.push_back(N->getLine());
1995   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1996   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1997 
1998   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1999   Record.clear();
2000 }
2001 
2002 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2003                                            SmallVectorImpl<uint64_t> &Record,
2004                                            unsigned Abbrev) {
2005   Record.push_back(N->isDistinct());
2006   Record.push_back(N->getMacinfoType());
2007   Record.push_back(N->getLine());
2008   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2009   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2010 
2011   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2012   Record.clear();
2013 }
2014 
2015 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2016                                          SmallVectorImpl<uint64_t> &Record) {
2017   Record.reserve(N->getArgs().size());
2018   for (ValueAsMetadata *MD : N->getArgs())
2019     Record.push_back(VE.getMetadataID(MD));
2020 
2021   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2022   Record.clear();
2023 }
2024 
2025 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2026                                         SmallVectorImpl<uint64_t> &Record,
2027                                         unsigned Abbrev) {
2028   Record.push_back(N->isDistinct());
2029   for (auto &I : N->operands())
2030     Record.push_back(VE.getMetadataOrNullID(I));
2031   Record.push_back(N->getLineNo());
2032   Record.push_back(N->getIsDecl());
2033 
2034   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2035   Record.clear();
2036 }
2037 
2038 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2039                                           SmallVectorImpl<uint64_t> &Record,
2040                                           unsigned Abbrev) {
2041   // There are no arguments for this metadata type.
2042   Record.push_back(N->isDistinct());
2043   Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2044   Record.clear();
2045 }
2046 
2047 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2048     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2049     unsigned Abbrev) {
2050   Record.push_back(N->isDistinct());
2051   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2052   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2053   Record.push_back(N->isDefault());
2054 
2055   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2056   Record.clear();
2057 }
2058 
2059 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2060     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2061     unsigned Abbrev) {
2062   Record.push_back(N->isDistinct());
2063   Record.push_back(N->getTag());
2064   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2065   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2066   Record.push_back(N->isDefault());
2067   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2068 
2069   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2070   Record.clear();
2071 }
2072 
2073 void ModuleBitcodeWriter::writeDIGlobalVariable(
2074     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2075     unsigned Abbrev) {
2076   const uint64_t Version = 2 << 1;
2077   Record.push_back((uint64_t)N->isDistinct() | Version);
2078   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2079   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2080   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2081   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2082   Record.push_back(N->getLine());
2083   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2084   Record.push_back(N->isLocalToUnit());
2085   Record.push_back(N->isDefinition());
2086   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2087   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2088   Record.push_back(N->getAlignInBits());
2089   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2090 
2091   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2092   Record.clear();
2093 }
2094 
2095 void ModuleBitcodeWriter::writeDILocalVariable(
2096     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2097     unsigned Abbrev) {
2098   // In order to support all possible bitcode formats in BitcodeReader we need
2099   // to distinguish the following cases:
2100   // 1) Record has no artificial tag (Record[1]),
2101   //   has no obsolete inlinedAt field (Record[9]).
2102   //   In this case Record size will be 8, HasAlignment flag is false.
2103   // 2) Record has artificial tag (Record[1]),
2104   //   has no obsolete inlignedAt field (Record[9]).
2105   //   In this case Record size will be 9, HasAlignment flag is false.
2106   // 3) Record has both artificial tag (Record[1]) and
2107   //   obsolete inlignedAt field (Record[9]).
2108   //   In this case Record size will be 10, HasAlignment flag is false.
2109   // 4) Record has neither artificial tag, nor inlignedAt field, but
2110   //   HasAlignment flag is true and Record[8] contains alignment value.
2111   const uint64_t HasAlignmentFlag = 1 << 1;
2112   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2113   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2114   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2115   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2116   Record.push_back(N->getLine());
2117   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2118   Record.push_back(N->getArg());
2119   Record.push_back(N->getFlags());
2120   Record.push_back(N->getAlignInBits());
2121   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2122 
2123   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2124   Record.clear();
2125 }
2126 
2127 void ModuleBitcodeWriter::writeDILabel(
2128     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2129     unsigned Abbrev) {
2130   Record.push_back((uint64_t)N->isDistinct());
2131   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2132   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2133   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2134   Record.push_back(N->getLine());
2135 
2136   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2137   Record.clear();
2138 }
2139 
2140 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2141                                             SmallVectorImpl<uint64_t> &Record,
2142                                             unsigned Abbrev) {
2143   Record.reserve(N->getElements().size() + 1);
2144   const uint64_t Version = 3 << 1;
2145   Record.push_back((uint64_t)N->isDistinct() | Version);
2146   Record.append(N->elements_begin(), N->elements_end());
2147 
2148   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2149   Record.clear();
2150 }
2151 
2152 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2153     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2154     unsigned Abbrev) {
2155   Record.push_back(N->isDistinct());
2156   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2157   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2158 
2159   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2160   Record.clear();
2161 }
2162 
2163 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2164                                               SmallVectorImpl<uint64_t> &Record,
2165                                               unsigned Abbrev) {
2166   Record.push_back(N->isDistinct());
2167   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2168   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2169   Record.push_back(N->getLine());
2170   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2171   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2172   Record.push_back(N->getAttributes());
2173   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2174 
2175   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2176   Record.clear();
2177 }
2178 
2179 void ModuleBitcodeWriter::writeDIImportedEntity(
2180     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2181     unsigned Abbrev) {
2182   Record.push_back(N->isDistinct());
2183   Record.push_back(N->getTag());
2184   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2185   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2186   Record.push_back(N->getLine());
2187   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2188   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2189   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2190 
2191   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2192   Record.clear();
2193 }
2194 
2195 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2196   auto Abbv = std::make_shared<BitCodeAbbrev>();
2197   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2198   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2199   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2200   return Stream.EmitAbbrev(std::move(Abbv));
2201 }
2202 
2203 void ModuleBitcodeWriter::writeNamedMetadata(
2204     SmallVectorImpl<uint64_t> &Record) {
2205   if (M.named_metadata_empty())
2206     return;
2207 
2208   unsigned Abbrev = createNamedMetadataAbbrev();
2209   for (const NamedMDNode &NMD : M.named_metadata()) {
2210     // Write name.
2211     StringRef Str = NMD.getName();
2212     Record.append(Str.bytes_begin(), Str.bytes_end());
2213     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2214     Record.clear();
2215 
2216     // Write named metadata operands.
2217     for (const MDNode *N : NMD.operands())
2218       Record.push_back(VE.getMetadataID(N));
2219     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2220     Record.clear();
2221   }
2222 }
2223 
2224 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2225   auto Abbv = std::make_shared<BitCodeAbbrev>();
2226   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2227   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2228   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2229   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2230   return Stream.EmitAbbrev(std::move(Abbv));
2231 }
2232 
2233 /// Write out a record for MDString.
2234 ///
2235 /// All the metadata strings in a metadata block are emitted in a single
2236 /// record.  The sizes and strings themselves are shoved into a blob.
2237 void ModuleBitcodeWriter::writeMetadataStrings(
2238     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2239   if (Strings.empty())
2240     return;
2241 
2242   // Start the record with the number of strings.
2243   Record.push_back(bitc::METADATA_STRINGS);
2244   Record.push_back(Strings.size());
2245 
2246   // Emit the sizes of the strings in the blob.
2247   SmallString<256> Blob;
2248   {
2249     BitstreamWriter W(Blob);
2250     for (const Metadata *MD : Strings)
2251       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2252     W.FlushToWord();
2253   }
2254 
2255   // Add the offset to the strings to the record.
2256   Record.push_back(Blob.size());
2257 
2258   // Add the strings to the blob.
2259   for (const Metadata *MD : Strings)
2260     Blob.append(cast<MDString>(MD)->getString());
2261 
2262   // Emit the final record.
2263   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2264   Record.clear();
2265 }
2266 
2267 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2268 enum MetadataAbbrev : unsigned {
2269 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2270 #include "llvm/IR/Metadata.def"
2271   LastPlusOne
2272 };
2273 
2274 void ModuleBitcodeWriter::writeMetadataRecords(
2275     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2276     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2277   if (MDs.empty())
2278     return;
2279 
2280   // Initialize MDNode abbreviations.
2281 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2282 #include "llvm/IR/Metadata.def"
2283 
2284   for (const Metadata *MD : MDs) {
2285     if (IndexPos)
2286       IndexPos->push_back(Stream.GetCurrentBitNo());
2287     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2288       assert(N->isResolved() && "Expected forward references to be resolved");
2289 
2290       switch (N->getMetadataID()) {
2291       default:
2292         llvm_unreachable("Invalid MDNode subclass");
2293 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2294   case Metadata::CLASS##Kind:                                                  \
2295     if (MDAbbrevs)                                                             \
2296       write##CLASS(cast<CLASS>(N), Record,                                     \
2297                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2298     else                                                                       \
2299       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2300     continue;
2301 #include "llvm/IR/Metadata.def"
2302       }
2303     }
2304     if (auto *AL = dyn_cast<DIArgList>(MD)) {
2305       writeDIArgList(AL, Record);
2306       continue;
2307     }
2308     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2309   }
2310 }
2311 
2312 void ModuleBitcodeWriter::writeModuleMetadata() {
2313   if (!VE.hasMDs() && M.named_metadata_empty())
2314     return;
2315 
2316   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2317   SmallVector<uint64_t, 64> Record;
2318 
2319   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2320   // block and load any metadata.
2321   std::vector<unsigned> MDAbbrevs;
2322 
2323   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2324   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2325   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2326       createGenericDINodeAbbrev();
2327 
2328   auto Abbv = std::make_shared<BitCodeAbbrev>();
2329   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2332   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2333 
2334   Abbv = std::make_shared<BitCodeAbbrev>();
2335   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2338   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2339 
2340   // Emit MDStrings together upfront.
2341   writeMetadataStrings(VE.getMDStrings(), Record);
2342 
2343   // We only emit an index for the metadata record if we have more than a given
2344   // (naive) threshold of metadatas, otherwise it is not worth it.
2345   if (VE.getNonMDStrings().size() > IndexThreshold) {
2346     // Write a placeholder value in for the offset of the metadata index,
2347     // which is written after the records, so that it can include
2348     // the offset of each entry. The placeholder offset will be
2349     // updated after all records are emitted.
2350     uint64_t Vals[] = {0, 0};
2351     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2352   }
2353 
2354   // Compute and save the bit offset to the current position, which will be
2355   // patched when we emit the index later. We can simply subtract the 64-bit
2356   // fixed size from the current bit number to get the location to backpatch.
2357   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2358 
2359   // This index will contain the bitpos for each individual record.
2360   std::vector<uint64_t> IndexPos;
2361   IndexPos.reserve(VE.getNonMDStrings().size());
2362 
2363   // Write all the records
2364   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2365 
2366   if (VE.getNonMDStrings().size() > IndexThreshold) {
2367     // Now that we have emitted all the records we will emit the index. But
2368     // first
2369     // backpatch the forward reference so that the reader can skip the records
2370     // efficiently.
2371     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2372                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2373 
2374     // Delta encode the index.
2375     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2376     for (auto &Elt : IndexPos) {
2377       auto EltDelta = Elt - PreviousValue;
2378       PreviousValue = Elt;
2379       Elt = EltDelta;
2380     }
2381     // Emit the index record.
2382     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2383     IndexPos.clear();
2384   }
2385 
2386   // Write the named metadata now.
2387   writeNamedMetadata(Record);
2388 
2389   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2390     SmallVector<uint64_t, 4> Record;
2391     Record.push_back(VE.getValueID(&GO));
2392     pushGlobalMetadataAttachment(Record, GO);
2393     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2394   };
2395   for (const Function &F : M)
2396     if (F.isDeclaration() && F.hasMetadata())
2397       AddDeclAttachedMetadata(F);
2398   // FIXME: Only store metadata for declarations here, and move data for global
2399   // variable definitions to a separate block (PR28134).
2400   for (const GlobalVariable &GV : M.globals())
2401     if (GV.hasMetadata())
2402       AddDeclAttachedMetadata(GV);
2403 
2404   Stream.ExitBlock();
2405 }
2406 
2407 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2408   if (!VE.hasMDs())
2409     return;
2410 
2411   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2412   SmallVector<uint64_t, 64> Record;
2413   writeMetadataStrings(VE.getMDStrings(), Record);
2414   writeMetadataRecords(VE.getNonMDStrings(), Record);
2415   Stream.ExitBlock();
2416 }
2417 
2418 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2419     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2420   // [n x [id, mdnode]]
2421   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2422   GO.getAllMetadata(MDs);
2423   for (const auto &I : MDs) {
2424     Record.push_back(I.first);
2425     Record.push_back(VE.getMetadataID(I.second));
2426   }
2427 }
2428 
2429 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2430   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2431 
2432   SmallVector<uint64_t, 64> Record;
2433 
2434   if (F.hasMetadata()) {
2435     pushGlobalMetadataAttachment(Record, F);
2436     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2437     Record.clear();
2438   }
2439 
2440   // Write metadata attachments
2441   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2442   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2443   for (const BasicBlock &BB : F)
2444     for (const Instruction &I : BB) {
2445       MDs.clear();
2446       I.getAllMetadataOtherThanDebugLoc(MDs);
2447 
2448       // If no metadata, ignore instruction.
2449       if (MDs.empty()) continue;
2450 
2451       Record.push_back(VE.getInstructionID(&I));
2452 
2453       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2454         Record.push_back(MDs[i].first);
2455         Record.push_back(VE.getMetadataID(MDs[i].second));
2456       }
2457       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2458       Record.clear();
2459     }
2460 
2461   Stream.ExitBlock();
2462 }
2463 
2464 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2465   SmallVector<uint64_t, 64> Record;
2466 
2467   // Write metadata kinds
2468   // METADATA_KIND - [n x [id, name]]
2469   SmallVector<StringRef, 8> Names;
2470   M.getMDKindNames(Names);
2471 
2472   if (Names.empty()) return;
2473 
2474   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2475 
2476   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2477     Record.push_back(MDKindID);
2478     StringRef KName = Names[MDKindID];
2479     Record.append(KName.begin(), KName.end());
2480 
2481     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2482     Record.clear();
2483   }
2484 
2485   Stream.ExitBlock();
2486 }
2487 
2488 void ModuleBitcodeWriter::writeOperandBundleTags() {
2489   // Write metadata kinds
2490   //
2491   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2492   //
2493   // OPERAND_BUNDLE_TAG - [strchr x N]
2494 
2495   SmallVector<StringRef, 8> Tags;
2496   M.getOperandBundleTags(Tags);
2497 
2498   if (Tags.empty())
2499     return;
2500 
2501   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2502 
2503   SmallVector<uint64_t, 64> Record;
2504 
2505   for (auto Tag : Tags) {
2506     Record.append(Tag.begin(), Tag.end());
2507 
2508     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2509     Record.clear();
2510   }
2511 
2512   Stream.ExitBlock();
2513 }
2514 
2515 void ModuleBitcodeWriter::writeSyncScopeNames() {
2516   SmallVector<StringRef, 8> SSNs;
2517   M.getContext().getSyncScopeNames(SSNs);
2518   if (SSNs.empty())
2519     return;
2520 
2521   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2522 
2523   SmallVector<uint64_t, 64> Record;
2524   for (auto SSN : SSNs) {
2525     Record.append(SSN.begin(), SSN.end());
2526     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2527     Record.clear();
2528   }
2529 
2530   Stream.ExitBlock();
2531 }
2532 
2533 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2534                                          bool isGlobal) {
2535   if (FirstVal == LastVal) return;
2536 
2537   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2538 
2539   unsigned AggregateAbbrev = 0;
2540   unsigned String8Abbrev = 0;
2541   unsigned CString7Abbrev = 0;
2542   unsigned CString6Abbrev = 0;
2543   // If this is a constant pool for the module, emit module-specific abbrevs.
2544   if (isGlobal) {
2545     // Abbrev for CST_CODE_AGGREGATE.
2546     auto Abbv = std::make_shared<BitCodeAbbrev>();
2547     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2548     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2549     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2550     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2551 
2552     // Abbrev for CST_CODE_STRING.
2553     Abbv = std::make_shared<BitCodeAbbrev>();
2554     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2555     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2556     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2557     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2558     // Abbrev for CST_CODE_CSTRING.
2559     Abbv = std::make_shared<BitCodeAbbrev>();
2560     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2561     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2563     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2564     // Abbrev for CST_CODE_CSTRING.
2565     Abbv = std::make_shared<BitCodeAbbrev>();
2566     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2567     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2568     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2569     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2570   }
2571 
2572   SmallVector<uint64_t, 64> Record;
2573 
2574   const ValueEnumerator::ValueList &Vals = VE.getValues();
2575   Type *LastTy = nullptr;
2576   for (unsigned i = FirstVal; i != LastVal; ++i) {
2577     const Value *V = Vals[i].first;
2578     // If we need to switch types, do so now.
2579     if (V->getType() != LastTy) {
2580       LastTy = V->getType();
2581       Record.push_back(VE.getTypeID(LastTy));
2582       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2583                         CONSTANTS_SETTYPE_ABBREV);
2584       Record.clear();
2585     }
2586 
2587     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2588       Record.push_back(VE.getTypeID(IA->getFunctionType()));
2589       Record.push_back(
2590           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2591           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2592 
2593       // Add the asm string.
2594       const std::string &AsmStr = IA->getAsmString();
2595       Record.push_back(AsmStr.size());
2596       Record.append(AsmStr.begin(), AsmStr.end());
2597 
2598       // Add the constraint string.
2599       const std::string &ConstraintStr = IA->getConstraintString();
2600       Record.push_back(ConstraintStr.size());
2601       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2602       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2603       Record.clear();
2604       continue;
2605     }
2606     const Constant *C = cast<Constant>(V);
2607     unsigned Code = -1U;
2608     unsigned AbbrevToUse = 0;
2609     if (C->isNullValue()) {
2610       Code = bitc::CST_CODE_NULL;
2611     } else if (isa<PoisonValue>(C)) {
2612       Code = bitc::CST_CODE_POISON;
2613     } else if (isa<UndefValue>(C)) {
2614       Code = bitc::CST_CODE_UNDEF;
2615     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2616       if (IV->getBitWidth() <= 64) {
2617         uint64_t V = IV->getSExtValue();
2618         emitSignedInt64(Record, V);
2619         Code = bitc::CST_CODE_INTEGER;
2620         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2621       } else {                             // Wide integers, > 64 bits in size.
2622         emitWideAPInt(Record, IV->getValue());
2623         Code = bitc::CST_CODE_WIDE_INTEGER;
2624       }
2625     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2626       Code = bitc::CST_CODE_FLOAT;
2627       Type *Ty = CFP->getType();
2628       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2629           Ty->isDoubleTy()) {
2630         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2631       } else if (Ty->isX86_FP80Ty()) {
2632         // api needed to prevent premature destruction
2633         // bits are not in the same order as a normal i80 APInt, compensate.
2634         APInt api = CFP->getValueAPF().bitcastToAPInt();
2635         const uint64_t *p = api.getRawData();
2636         Record.push_back((p[1] << 48) | (p[0] >> 16));
2637         Record.push_back(p[0] & 0xffffLL);
2638       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2639         APInt api = CFP->getValueAPF().bitcastToAPInt();
2640         const uint64_t *p = api.getRawData();
2641         Record.push_back(p[0]);
2642         Record.push_back(p[1]);
2643       } else {
2644         assert(0 && "Unknown FP type!");
2645       }
2646     } else if (isa<ConstantDataSequential>(C) &&
2647                cast<ConstantDataSequential>(C)->isString()) {
2648       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2649       // Emit constant strings specially.
2650       unsigned NumElts = Str->getNumElements();
2651       // If this is a null-terminated string, use the denser CSTRING encoding.
2652       if (Str->isCString()) {
2653         Code = bitc::CST_CODE_CSTRING;
2654         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2655       } else {
2656         Code = bitc::CST_CODE_STRING;
2657         AbbrevToUse = String8Abbrev;
2658       }
2659       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2660       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2661       for (unsigned i = 0; i != NumElts; ++i) {
2662         unsigned char V = Str->getElementAsInteger(i);
2663         Record.push_back(V);
2664         isCStr7 &= (V & 128) == 0;
2665         if (isCStrChar6)
2666           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2667       }
2668 
2669       if (isCStrChar6)
2670         AbbrevToUse = CString6Abbrev;
2671       else if (isCStr7)
2672         AbbrevToUse = CString7Abbrev;
2673     } else if (const ConstantDataSequential *CDS =
2674                   dyn_cast<ConstantDataSequential>(C)) {
2675       Code = bitc::CST_CODE_DATA;
2676       Type *EltTy = CDS->getElementType();
2677       if (isa<IntegerType>(EltTy)) {
2678         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2679           Record.push_back(CDS->getElementAsInteger(i));
2680       } else {
2681         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2682           Record.push_back(
2683               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2684       }
2685     } else if (isa<ConstantAggregate>(C)) {
2686       Code = bitc::CST_CODE_AGGREGATE;
2687       for (const Value *Op : C->operands())
2688         Record.push_back(VE.getValueID(Op));
2689       AbbrevToUse = AggregateAbbrev;
2690     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2691       switch (CE->getOpcode()) {
2692       default:
2693         if (Instruction::isCast(CE->getOpcode())) {
2694           Code = bitc::CST_CODE_CE_CAST;
2695           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2696           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2697           Record.push_back(VE.getValueID(C->getOperand(0)));
2698           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2699         } else {
2700           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2701           Code = bitc::CST_CODE_CE_BINOP;
2702           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2703           Record.push_back(VE.getValueID(C->getOperand(0)));
2704           Record.push_back(VE.getValueID(C->getOperand(1)));
2705           uint64_t Flags = getOptimizationFlags(CE);
2706           if (Flags != 0)
2707             Record.push_back(Flags);
2708         }
2709         break;
2710       case Instruction::FNeg: {
2711         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2712         Code = bitc::CST_CODE_CE_UNOP;
2713         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2714         Record.push_back(VE.getValueID(C->getOperand(0)));
2715         uint64_t Flags = getOptimizationFlags(CE);
2716         if (Flags != 0)
2717           Record.push_back(Flags);
2718         break;
2719       }
2720       case Instruction::GetElementPtr: {
2721         Code = bitc::CST_CODE_CE_GEP;
2722         const auto *GO = cast<GEPOperator>(C);
2723         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2724         if (std::optional<unsigned> Idx = GO->getInRangeIndex()) {
2725           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2726           Record.push_back((*Idx << 1) | GO->isInBounds());
2727         } else if (GO->isInBounds())
2728           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2729         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2730           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2731           Record.push_back(VE.getValueID(C->getOperand(i)));
2732         }
2733         break;
2734       }
2735       case Instruction::ExtractElement:
2736         Code = bitc::CST_CODE_CE_EXTRACTELT;
2737         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2738         Record.push_back(VE.getValueID(C->getOperand(0)));
2739         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2740         Record.push_back(VE.getValueID(C->getOperand(1)));
2741         break;
2742       case Instruction::InsertElement:
2743         Code = bitc::CST_CODE_CE_INSERTELT;
2744         Record.push_back(VE.getValueID(C->getOperand(0)));
2745         Record.push_back(VE.getValueID(C->getOperand(1)));
2746         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2747         Record.push_back(VE.getValueID(C->getOperand(2)));
2748         break;
2749       case Instruction::ShuffleVector:
2750         // If the return type and argument types are the same, this is a
2751         // standard shufflevector instruction.  If the types are different,
2752         // then the shuffle is widening or truncating the input vectors, and
2753         // the argument type must also be encoded.
2754         if (C->getType() == C->getOperand(0)->getType()) {
2755           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2756         } else {
2757           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2758           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2759         }
2760         Record.push_back(VE.getValueID(C->getOperand(0)));
2761         Record.push_back(VE.getValueID(C->getOperand(1)));
2762         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2763         break;
2764       case Instruction::ICmp:
2765       case Instruction::FCmp:
2766         Code = bitc::CST_CODE_CE_CMP;
2767         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2768         Record.push_back(VE.getValueID(C->getOperand(0)));
2769         Record.push_back(VE.getValueID(C->getOperand(1)));
2770         Record.push_back(CE->getPredicate());
2771         break;
2772       }
2773     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2774       Code = bitc::CST_CODE_BLOCKADDRESS;
2775       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2776       Record.push_back(VE.getValueID(BA->getFunction()));
2777       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2778     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2779       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2780       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2781       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2782     } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2783       Code = bitc::CST_CODE_NO_CFI_VALUE;
2784       Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2785       Record.push_back(VE.getValueID(NC->getGlobalValue()));
2786     } else {
2787 #ifndef NDEBUG
2788       C->dump();
2789 #endif
2790       llvm_unreachable("Unknown constant!");
2791     }
2792     Stream.EmitRecord(Code, Record, AbbrevToUse);
2793     Record.clear();
2794   }
2795 
2796   Stream.ExitBlock();
2797 }
2798 
2799 void ModuleBitcodeWriter::writeModuleConstants() {
2800   const ValueEnumerator::ValueList &Vals = VE.getValues();
2801 
2802   // Find the first constant to emit, which is the first non-globalvalue value.
2803   // We know globalvalues have been emitted by WriteModuleInfo.
2804   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2805     if (!isa<GlobalValue>(Vals[i].first)) {
2806       writeConstants(i, Vals.size(), true);
2807       return;
2808     }
2809   }
2810 }
2811 
2812 /// pushValueAndType - The file has to encode both the value and type id for
2813 /// many values, because we need to know what type to create for forward
2814 /// references.  However, most operands are not forward references, so this type
2815 /// field is not needed.
2816 ///
2817 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2818 /// instruction ID, then it is a forward reference, and it also includes the
2819 /// type ID.  The value ID that is written is encoded relative to the InstID.
2820 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2821                                            SmallVectorImpl<unsigned> &Vals) {
2822   unsigned ValID = VE.getValueID(V);
2823   // Make encoding relative to the InstID.
2824   Vals.push_back(InstID - ValID);
2825   if (ValID >= InstID) {
2826     Vals.push_back(VE.getTypeID(V->getType()));
2827     return true;
2828   }
2829   return false;
2830 }
2831 
2832 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2833                                               unsigned InstID) {
2834   SmallVector<unsigned, 64> Record;
2835   LLVMContext &C = CS.getContext();
2836 
2837   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2838     const auto &Bundle = CS.getOperandBundleAt(i);
2839     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2840 
2841     for (auto &Input : Bundle.Inputs)
2842       pushValueAndType(Input, InstID, Record);
2843 
2844     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2845     Record.clear();
2846   }
2847 }
2848 
2849 /// pushValue - Like pushValueAndType, but where the type of the value is
2850 /// omitted (perhaps it was already encoded in an earlier operand).
2851 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2852                                     SmallVectorImpl<unsigned> &Vals) {
2853   unsigned ValID = VE.getValueID(V);
2854   Vals.push_back(InstID - ValID);
2855 }
2856 
2857 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2858                                           SmallVectorImpl<uint64_t> &Vals) {
2859   unsigned ValID = VE.getValueID(V);
2860   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2861   emitSignedInt64(Vals, diff);
2862 }
2863 
2864 /// WriteInstruction - Emit an instruction to the specified stream.
2865 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2866                                            unsigned InstID,
2867                                            SmallVectorImpl<unsigned> &Vals) {
2868   unsigned Code = 0;
2869   unsigned AbbrevToUse = 0;
2870   VE.setInstructionID(&I);
2871   switch (I.getOpcode()) {
2872   default:
2873     if (Instruction::isCast(I.getOpcode())) {
2874       Code = bitc::FUNC_CODE_INST_CAST;
2875       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2876         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2877       Vals.push_back(VE.getTypeID(I.getType()));
2878       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2879       uint64_t Flags = getOptimizationFlags(&I);
2880       if (Flags != 0) {
2881         if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2882           AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2883         Vals.push_back(Flags);
2884       }
2885     } else {
2886       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2887       Code = bitc::FUNC_CODE_INST_BINOP;
2888       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2889         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2890       pushValue(I.getOperand(1), InstID, Vals);
2891       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2892       uint64_t Flags = getOptimizationFlags(&I);
2893       if (Flags != 0) {
2894         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2895           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2896         Vals.push_back(Flags);
2897       }
2898     }
2899     break;
2900   case Instruction::FNeg: {
2901     Code = bitc::FUNC_CODE_INST_UNOP;
2902     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2903       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2904     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2905     uint64_t Flags = getOptimizationFlags(&I);
2906     if (Flags != 0) {
2907       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2908         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2909       Vals.push_back(Flags);
2910     }
2911     break;
2912   }
2913   case Instruction::GetElementPtr: {
2914     Code = bitc::FUNC_CODE_INST_GEP;
2915     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2916     auto &GEPInst = cast<GetElementPtrInst>(I);
2917     Vals.push_back(GEPInst.isInBounds());
2918     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2919     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2920       pushValueAndType(I.getOperand(i), InstID, Vals);
2921     break;
2922   }
2923   case Instruction::ExtractValue: {
2924     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2925     pushValueAndType(I.getOperand(0), InstID, Vals);
2926     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2927     Vals.append(EVI->idx_begin(), EVI->idx_end());
2928     break;
2929   }
2930   case Instruction::InsertValue: {
2931     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2932     pushValueAndType(I.getOperand(0), InstID, Vals);
2933     pushValueAndType(I.getOperand(1), InstID, Vals);
2934     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2935     Vals.append(IVI->idx_begin(), IVI->idx_end());
2936     break;
2937   }
2938   case Instruction::Select: {
2939     Code = bitc::FUNC_CODE_INST_VSELECT;
2940     pushValueAndType(I.getOperand(1), InstID, Vals);
2941     pushValue(I.getOperand(2), InstID, Vals);
2942     pushValueAndType(I.getOperand(0), InstID, Vals);
2943     uint64_t Flags = getOptimizationFlags(&I);
2944     if (Flags != 0)
2945       Vals.push_back(Flags);
2946     break;
2947   }
2948   case Instruction::ExtractElement:
2949     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2950     pushValueAndType(I.getOperand(0), InstID, Vals);
2951     pushValueAndType(I.getOperand(1), InstID, Vals);
2952     break;
2953   case Instruction::InsertElement:
2954     Code = bitc::FUNC_CODE_INST_INSERTELT;
2955     pushValueAndType(I.getOperand(0), InstID, Vals);
2956     pushValue(I.getOperand(1), InstID, Vals);
2957     pushValueAndType(I.getOperand(2), InstID, Vals);
2958     break;
2959   case Instruction::ShuffleVector:
2960     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2961     pushValueAndType(I.getOperand(0), InstID, Vals);
2962     pushValue(I.getOperand(1), InstID, Vals);
2963     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2964               Vals);
2965     break;
2966   case Instruction::ICmp:
2967   case Instruction::FCmp: {
2968     // compare returning Int1Ty or vector of Int1Ty
2969     Code = bitc::FUNC_CODE_INST_CMP2;
2970     pushValueAndType(I.getOperand(0), InstID, Vals);
2971     pushValue(I.getOperand(1), InstID, Vals);
2972     Vals.push_back(cast<CmpInst>(I).getPredicate());
2973     uint64_t Flags = getOptimizationFlags(&I);
2974     if (Flags != 0)
2975       Vals.push_back(Flags);
2976     break;
2977   }
2978 
2979   case Instruction::Ret:
2980     {
2981       Code = bitc::FUNC_CODE_INST_RET;
2982       unsigned NumOperands = I.getNumOperands();
2983       if (NumOperands == 0)
2984         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2985       else if (NumOperands == 1) {
2986         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2987           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2988       } else {
2989         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2990           pushValueAndType(I.getOperand(i), InstID, Vals);
2991       }
2992     }
2993     break;
2994   case Instruction::Br:
2995     {
2996       Code = bitc::FUNC_CODE_INST_BR;
2997       const BranchInst &II = cast<BranchInst>(I);
2998       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2999       if (II.isConditional()) {
3000         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3001         pushValue(II.getCondition(), InstID, Vals);
3002       }
3003     }
3004     break;
3005   case Instruction::Switch:
3006     {
3007       Code = bitc::FUNC_CODE_INST_SWITCH;
3008       const SwitchInst &SI = cast<SwitchInst>(I);
3009       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3010       pushValue(SI.getCondition(), InstID, Vals);
3011       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3012       for (auto Case : SI.cases()) {
3013         Vals.push_back(VE.getValueID(Case.getCaseValue()));
3014         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3015       }
3016     }
3017     break;
3018   case Instruction::IndirectBr:
3019     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3020     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3021     // Encode the address operand as relative, but not the basic blocks.
3022     pushValue(I.getOperand(0), InstID, Vals);
3023     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3024       Vals.push_back(VE.getValueID(I.getOperand(i)));
3025     break;
3026 
3027   case Instruction::Invoke: {
3028     const InvokeInst *II = cast<InvokeInst>(&I);
3029     const Value *Callee = II->getCalledOperand();
3030     FunctionType *FTy = II->getFunctionType();
3031 
3032     if (II->hasOperandBundles())
3033       writeOperandBundles(*II, InstID);
3034 
3035     Code = bitc::FUNC_CODE_INST_INVOKE;
3036 
3037     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3038     Vals.push_back(II->getCallingConv() | 1 << 13);
3039     Vals.push_back(VE.getValueID(II->getNormalDest()));
3040     Vals.push_back(VE.getValueID(II->getUnwindDest()));
3041     Vals.push_back(VE.getTypeID(FTy));
3042     pushValueAndType(Callee, InstID, Vals);
3043 
3044     // Emit value #'s for the fixed parameters.
3045     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3046       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3047 
3048     // Emit type/value pairs for varargs params.
3049     if (FTy->isVarArg()) {
3050       for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3051         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3052     }
3053     break;
3054   }
3055   case Instruction::Resume:
3056     Code = bitc::FUNC_CODE_INST_RESUME;
3057     pushValueAndType(I.getOperand(0), InstID, Vals);
3058     break;
3059   case Instruction::CleanupRet: {
3060     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3061     const auto &CRI = cast<CleanupReturnInst>(I);
3062     pushValue(CRI.getCleanupPad(), InstID, Vals);
3063     if (CRI.hasUnwindDest())
3064       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3065     break;
3066   }
3067   case Instruction::CatchRet: {
3068     Code = bitc::FUNC_CODE_INST_CATCHRET;
3069     const auto &CRI = cast<CatchReturnInst>(I);
3070     pushValue(CRI.getCatchPad(), InstID, Vals);
3071     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3072     break;
3073   }
3074   case Instruction::CleanupPad:
3075   case Instruction::CatchPad: {
3076     const auto &FuncletPad = cast<FuncletPadInst>(I);
3077     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3078                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
3079     pushValue(FuncletPad.getParentPad(), InstID, Vals);
3080 
3081     unsigned NumArgOperands = FuncletPad.arg_size();
3082     Vals.push_back(NumArgOperands);
3083     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3084       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3085     break;
3086   }
3087   case Instruction::CatchSwitch: {
3088     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3089     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3090 
3091     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3092 
3093     unsigned NumHandlers = CatchSwitch.getNumHandlers();
3094     Vals.push_back(NumHandlers);
3095     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3096       Vals.push_back(VE.getValueID(CatchPadBB));
3097 
3098     if (CatchSwitch.hasUnwindDest())
3099       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3100     break;
3101   }
3102   case Instruction::CallBr: {
3103     const CallBrInst *CBI = cast<CallBrInst>(&I);
3104     const Value *Callee = CBI->getCalledOperand();
3105     FunctionType *FTy = CBI->getFunctionType();
3106 
3107     if (CBI->hasOperandBundles())
3108       writeOperandBundles(*CBI, InstID);
3109 
3110     Code = bitc::FUNC_CODE_INST_CALLBR;
3111 
3112     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3113 
3114     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3115                    1 << bitc::CALL_EXPLICIT_TYPE);
3116 
3117     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3118     Vals.push_back(CBI->getNumIndirectDests());
3119     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3120       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3121 
3122     Vals.push_back(VE.getTypeID(FTy));
3123     pushValueAndType(Callee, InstID, Vals);
3124 
3125     // Emit value #'s for the fixed parameters.
3126     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3127       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3128 
3129     // Emit type/value pairs for varargs params.
3130     if (FTy->isVarArg()) {
3131       for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3132         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3133     }
3134     break;
3135   }
3136   case Instruction::Unreachable:
3137     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3138     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3139     break;
3140 
3141   case Instruction::PHI: {
3142     const PHINode &PN = cast<PHINode>(I);
3143     Code = bitc::FUNC_CODE_INST_PHI;
3144     // With the newer instruction encoding, forward references could give
3145     // negative valued IDs.  This is most common for PHIs, so we use
3146     // signed VBRs.
3147     SmallVector<uint64_t, 128> Vals64;
3148     Vals64.push_back(VE.getTypeID(PN.getType()));
3149     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3150       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3151       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3152     }
3153 
3154     uint64_t Flags = getOptimizationFlags(&I);
3155     if (Flags != 0)
3156       Vals64.push_back(Flags);
3157 
3158     // Emit a Vals64 vector and exit.
3159     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3160     Vals64.clear();
3161     return;
3162   }
3163 
3164   case Instruction::LandingPad: {
3165     const LandingPadInst &LP = cast<LandingPadInst>(I);
3166     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3167     Vals.push_back(VE.getTypeID(LP.getType()));
3168     Vals.push_back(LP.isCleanup());
3169     Vals.push_back(LP.getNumClauses());
3170     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3171       if (LP.isCatch(I))
3172         Vals.push_back(LandingPadInst::Catch);
3173       else
3174         Vals.push_back(LandingPadInst::Filter);
3175       pushValueAndType(LP.getClause(I), InstID, Vals);
3176     }
3177     break;
3178   }
3179 
3180   case Instruction::Alloca: {
3181     Code = bitc::FUNC_CODE_INST_ALLOCA;
3182     const AllocaInst &AI = cast<AllocaInst>(I);
3183     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3184     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3185     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3186     using APV = AllocaPackedValues;
3187     unsigned Record = 0;
3188     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3189     Bitfield::set<APV::AlignLower>(
3190         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3191     Bitfield::set<APV::AlignUpper>(Record,
3192                                    EncodedAlign >> APV::AlignLower::Bits);
3193     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3194     Bitfield::set<APV::ExplicitType>(Record, true);
3195     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3196     Vals.push_back(Record);
3197 
3198     unsigned AS = AI.getAddressSpace();
3199     if (AS != M.getDataLayout().getAllocaAddrSpace())
3200       Vals.push_back(AS);
3201     break;
3202   }
3203 
3204   case Instruction::Load:
3205     if (cast<LoadInst>(I).isAtomic()) {
3206       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3207       pushValueAndType(I.getOperand(0), InstID, Vals);
3208     } else {
3209       Code = bitc::FUNC_CODE_INST_LOAD;
3210       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3211         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3212     }
3213     Vals.push_back(VE.getTypeID(I.getType()));
3214     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3215     Vals.push_back(cast<LoadInst>(I).isVolatile());
3216     if (cast<LoadInst>(I).isAtomic()) {
3217       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3218       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3219     }
3220     break;
3221   case Instruction::Store:
3222     if (cast<StoreInst>(I).isAtomic())
3223       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3224     else
3225       Code = bitc::FUNC_CODE_INST_STORE;
3226     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3227     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3228     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3229     Vals.push_back(cast<StoreInst>(I).isVolatile());
3230     if (cast<StoreInst>(I).isAtomic()) {
3231       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3232       Vals.push_back(
3233           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3234     }
3235     break;
3236   case Instruction::AtomicCmpXchg:
3237     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3238     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3239     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3240     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3241     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3242     Vals.push_back(
3243         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3244     Vals.push_back(
3245         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3246     Vals.push_back(
3247         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3248     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3249     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3250     break;
3251   case Instruction::AtomicRMW:
3252     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3253     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3254     pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3255     Vals.push_back(
3256         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3257     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3258     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3259     Vals.push_back(
3260         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3261     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3262     break;
3263   case Instruction::Fence:
3264     Code = bitc::FUNC_CODE_INST_FENCE;
3265     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3266     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3267     break;
3268   case Instruction::Call: {
3269     const CallInst &CI = cast<CallInst>(I);
3270     FunctionType *FTy = CI.getFunctionType();
3271 
3272     if (CI.hasOperandBundles())
3273       writeOperandBundles(CI, InstID);
3274 
3275     Code = bitc::FUNC_CODE_INST_CALL;
3276 
3277     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3278 
3279     unsigned Flags = getOptimizationFlags(&I);
3280     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3281                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3282                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3283                    1 << bitc::CALL_EXPLICIT_TYPE |
3284                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3285                    unsigned(Flags != 0) << bitc::CALL_FMF);
3286     if (Flags != 0)
3287       Vals.push_back(Flags);
3288 
3289     Vals.push_back(VE.getTypeID(FTy));
3290     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3291 
3292     // Emit value #'s for the fixed parameters.
3293     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3294       // Check for labels (can happen with asm labels).
3295       if (FTy->getParamType(i)->isLabelTy())
3296         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3297       else
3298         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3299     }
3300 
3301     // Emit type/value pairs for varargs params.
3302     if (FTy->isVarArg()) {
3303       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3304         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3305     }
3306     break;
3307   }
3308   case Instruction::VAArg:
3309     Code = bitc::FUNC_CODE_INST_VAARG;
3310     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3311     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3312     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3313     break;
3314   case Instruction::Freeze:
3315     Code = bitc::FUNC_CODE_INST_FREEZE;
3316     pushValueAndType(I.getOperand(0), InstID, Vals);
3317     break;
3318   }
3319 
3320   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3321   Vals.clear();
3322 }
3323 
3324 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3325 /// to allow clients to efficiently find the function body.
3326 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3327   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3328   // Get the offset of the VST we are writing, and backpatch it into
3329   // the VST forward declaration record.
3330   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3331   // The BitcodeStartBit was the stream offset of the identification block.
3332   VSTOffset -= bitcodeStartBit();
3333   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3334   // Note that we add 1 here because the offset is relative to one word
3335   // before the start of the identification block, which was historically
3336   // always the start of the regular bitcode header.
3337   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3338 
3339   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3340 
3341   auto Abbv = std::make_shared<BitCodeAbbrev>();
3342   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3343   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3344   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3345   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3346 
3347   for (const Function &F : M) {
3348     uint64_t Record[2];
3349 
3350     if (F.isDeclaration())
3351       continue;
3352 
3353     Record[0] = VE.getValueID(&F);
3354 
3355     // Save the word offset of the function (from the start of the
3356     // actual bitcode written to the stream).
3357     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3358     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3359     // Note that we add 1 here because the offset is relative to one word
3360     // before the start of the identification block, which was historically
3361     // always the start of the regular bitcode header.
3362     Record[1] = BitcodeIndex / 32 + 1;
3363 
3364     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3365   }
3366 
3367   Stream.ExitBlock();
3368 }
3369 
3370 /// Emit names for arguments, instructions and basic blocks in a function.
3371 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3372     const ValueSymbolTable &VST) {
3373   if (VST.empty())
3374     return;
3375 
3376   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3377 
3378   // FIXME: Set up the abbrev, we know how many values there are!
3379   // FIXME: We know if the type names can use 7-bit ascii.
3380   SmallVector<uint64_t, 64> NameVals;
3381 
3382   for (const ValueName &Name : VST) {
3383     // Figure out the encoding to use for the name.
3384     StringEncoding Bits = getStringEncoding(Name.getKey());
3385 
3386     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3387     NameVals.push_back(VE.getValueID(Name.getValue()));
3388 
3389     // VST_CODE_ENTRY:   [valueid, namechar x N]
3390     // VST_CODE_BBENTRY: [bbid, namechar x N]
3391     unsigned Code;
3392     if (isa<BasicBlock>(Name.getValue())) {
3393       Code = bitc::VST_CODE_BBENTRY;
3394       if (Bits == SE_Char6)
3395         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3396     } else {
3397       Code = bitc::VST_CODE_ENTRY;
3398       if (Bits == SE_Char6)
3399         AbbrevToUse = VST_ENTRY_6_ABBREV;
3400       else if (Bits == SE_Fixed7)
3401         AbbrevToUse = VST_ENTRY_7_ABBREV;
3402     }
3403 
3404     for (const auto P : Name.getKey())
3405       NameVals.push_back((unsigned char)P);
3406 
3407     // Emit the finished record.
3408     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3409     NameVals.clear();
3410   }
3411 
3412   Stream.ExitBlock();
3413 }
3414 
3415 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3416   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3417   unsigned Code;
3418   if (isa<BasicBlock>(Order.V))
3419     Code = bitc::USELIST_CODE_BB;
3420   else
3421     Code = bitc::USELIST_CODE_DEFAULT;
3422 
3423   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3424   Record.push_back(VE.getValueID(Order.V));
3425   Stream.EmitRecord(Code, Record);
3426 }
3427 
3428 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3429   assert(VE.shouldPreserveUseListOrder() &&
3430          "Expected to be preserving use-list order");
3431 
3432   auto hasMore = [&]() {
3433     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3434   };
3435   if (!hasMore())
3436     // Nothing to do.
3437     return;
3438 
3439   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3440   while (hasMore()) {
3441     writeUseList(std::move(VE.UseListOrders.back()));
3442     VE.UseListOrders.pop_back();
3443   }
3444   Stream.ExitBlock();
3445 }
3446 
3447 /// Emit a function body to the module stream.
3448 void ModuleBitcodeWriter::writeFunction(
3449     const Function &F,
3450     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3451   // Save the bitcode index of the start of this function block for recording
3452   // in the VST.
3453   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3454 
3455   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3456   VE.incorporateFunction(F);
3457 
3458   SmallVector<unsigned, 64> Vals;
3459 
3460   // Emit the number of basic blocks, so the reader can create them ahead of
3461   // time.
3462   Vals.push_back(VE.getBasicBlocks().size());
3463   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3464   Vals.clear();
3465 
3466   // If there are function-local constants, emit them now.
3467   unsigned CstStart, CstEnd;
3468   VE.getFunctionConstantRange(CstStart, CstEnd);
3469   writeConstants(CstStart, CstEnd, false);
3470 
3471   // If there is function-local metadata, emit it now.
3472   writeFunctionMetadata(F);
3473 
3474   // Keep a running idea of what the instruction ID is.
3475   unsigned InstID = CstEnd;
3476 
3477   bool NeedsMetadataAttachment = F.hasMetadata();
3478 
3479   DILocation *LastDL = nullptr;
3480   SmallSetVector<Function *, 4> BlockAddressUsers;
3481 
3482   // Finally, emit all the instructions, in order.
3483   for (const BasicBlock &BB : F) {
3484     for (const Instruction &I : BB) {
3485       writeInstruction(I, InstID, Vals);
3486 
3487       if (!I.getType()->isVoidTy())
3488         ++InstID;
3489 
3490       // If the instruction has metadata, write a metadata attachment later.
3491       NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3492 
3493       // If the instruction has a debug location, emit it.
3494       DILocation *DL = I.getDebugLoc();
3495       if (!DL)
3496         continue;
3497 
3498       if (DL == LastDL) {
3499         // Just repeat the same debug loc as last time.
3500         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3501         continue;
3502       }
3503 
3504       Vals.push_back(DL->getLine());
3505       Vals.push_back(DL->getColumn());
3506       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3507       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3508       Vals.push_back(DL->isImplicitCode());
3509       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3510       Vals.clear();
3511 
3512       LastDL = DL;
3513     }
3514 
3515     if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3516       SmallVector<Value *> Worklist{BA};
3517       SmallPtrSet<Value *, 8> Visited{BA};
3518       while (!Worklist.empty()) {
3519         Value *V = Worklist.pop_back_val();
3520         for (User *U : V->users()) {
3521           if (auto *I = dyn_cast<Instruction>(U)) {
3522             Function *P = I->getFunction();
3523             if (P != &F)
3524               BlockAddressUsers.insert(P);
3525           } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3526                      Visited.insert(U).second)
3527             Worklist.push_back(U);
3528         }
3529       }
3530     }
3531   }
3532 
3533   if (!BlockAddressUsers.empty()) {
3534     Vals.resize(BlockAddressUsers.size());
3535     for (auto I : llvm::enumerate(BlockAddressUsers))
3536       Vals[I.index()] = VE.getValueID(I.value());
3537     Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3538     Vals.clear();
3539   }
3540 
3541   // Emit names for all the instructions etc.
3542   if (auto *Symtab = F.getValueSymbolTable())
3543     writeFunctionLevelValueSymbolTable(*Symtab);
3544 
3545   if (NeedsMetadataAttachment)
3546     writeFunctionMetadataAttachment(F);
3547   if (VE.shouldPreserveUseListOrder())
3548     writeUseListBlock(&F);
3549   VE.purgeFunction();
3550   Stream.ExitBlock();
3551 }
3552 
3553 // Emit blockinfo, which defines the standard abbreviations etc.
3554 void ModuleBitcodeWriter::writeBlockInfo() {
3555   // We only want to emit block info records for blocks that have multiple
3556   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3557   // Other blocks can define their abbrevs inline.
3558   Stream.EnterBlockInfoBlock();
3559 
3560   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3561     auto Abbv = std::make_shared<BitCodeAbbrev>();
3562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3564     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3565     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3566     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3567         VST_ENTRY_8_ABBREV)
3568       llvm_unreachable("Unexpected abbrev ordering!");
3569   }
3570 
3571   { // 7-bit fixed width VST_CODE_ENTRY strings.
3572     auto Abbv = std::make_shared<BitCodeAbbrev>();
3573     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3574     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3575     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3576     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3577     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3578         VST_ENTRY_7_ABBREV)
3579       llvm_unreachable("Unexpected abbrev ordering!");
3580   }
3581   { // 6-bit char6 VST_CODE_ENTRY strings.
3582     auto Abbv = std::make_shared<BitCodeAbbrev>();
3583     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3584     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3585     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3587     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3588         VST_ENTRY_6_ABBREV)
3589       llvm_unreachable("Unexpected abbrev ordering!");
3590   }
3591   { // 6-bit char6 VST_CODE_BBENTRY strings.
3592     auto Abbv = std::make_shared<BitCodeAbbrev>();
3593     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3594     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3595     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3596     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3597     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3598         VST_BBENTRY_6_ABBREV)
3599       llvm_unreachable("Unexpected abbrev ordering!");
3600   }
3601 
3602   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3603     auto Abbv = std::make_shared<BitCodeAbbrev>();
3604     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3605     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3606                               VE.computeBitsRequiredForTypeIndicies()));
3607     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3608         CONSTANTS_SETTYPE_ABBREV)
3609       llvm_unreachable("Unexpected abbrev ordering!");
3610   }
3611 
3612   { // INTEGER abbrev for CONSTANTS_BLOCK.
3613     auto Abbv = std::make_shared<BitCodeAbbrev>();
3614     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3616     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3617         CONSTANTS_INTEGER_ABBREV)
3618       llvm_unreachable("Unexpected abbrev ordering!");
3619   }
3620 
3621   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3622     auto Abbv = std::make_shared<BitCodeAbbrev>();
3623     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3624     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3625     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3626                               VE.computeBitsRequiredForTypeIndicies()));
3627     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3628 
3629     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3630         CONSTANTS_CE_CAST_Abbrev)
3631       llvm_unreachable("Unexpected abbrev ordering!");
3632   }
3633   { // NULL abbrev for CONSTANTS_BLOCK.
3634     auto Abbv = std::make_shared<BitCodeAbbrev>();
3635     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3636     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3637         CONSTANTS_NULL_Abbrev)
3638       llvm_unreachable("Unexpected abbrev ordering!");
3639   }
3640 
3641   // FIXME: This should only use space for first class types!
3642 
3643   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3644     auto Abbv = std::make_shared<BitCodeAbbrev>();
3645     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3648                               VE.computeBitsRequiredForTypeIndicies()));
3649     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3650     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3651     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3652         FUNCTION_INST_LOAD_ABBREV)
3653       llvm_unreachable("Unexpected abbrev ordering!");
3654   }
3655   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3656     auto Abbv = std::make_shared<BitCodeAbbrev>();
3657     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3658     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3660     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3661         FUNCTION_INST_UNOP_ABBREV)
3662       llvm_unreachable("Unexpected abbrev ordering!");
3663   }
3664   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3665     auto Abbv = std::make_shared<BitCodeAbbrev>();
3666     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3667     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3668     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3670     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3671         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3672       llvm_unreachable("Unexpected abbrev ordering!");
3673   }
3674   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3675     auto Abbv = std::make_shared<BitCodeAbbrev>();
3676     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3677     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3680     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3681         FUNCTION_INST_BINOP_ABBREV)
3682       llvm_unreachable("Unexpected abbrev ordering!");
3683   }
3684   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3685     auto Abbv = std::make_shared<BitCodeAbbrev>();
3686     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3687     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3688     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3689     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3690     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3691     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3692         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3693       llvm_unreachable("Unexpected abbrev ordering!");
3694   }
3695   { // INST_CAST abbrev for FUNCTION_BLOCK.
3696     auto Abbv = std::make_shared<BitCodeAbbrev>();
3697     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3698     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3699     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3700                               VE.computeBitsRequiredForTypeIndicies()));
3701     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3702     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3703         FUNCTION_INST_CAST_ABBREV)
3704       llvm_unreachable("Unexpected abbrev ordering!");
3705   }
3706   { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3707     auto Abbv = std::make_shared<BitCodeAbbrev>();
3708     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3711                               VE.computeBitsRequiredForTypeIndicies()));
3712     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3713     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3714     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3715         FUNCTION_INST_CAST_FLAGS_ABBREV)
3716       llvm_unreachable("Unexpected abbrev ordering!");
3717   }
3718 
3719   { // INST_RET abbrev for FUNCTION_BLOCK.
3720     auto Abbv = std::make_shared<BitCodeAbbrev>();
3721     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3722     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3723         FUNCTION_INST_RET_VOID_ABBREV)
3724       llvm_unreachable("Unexpected abbrev ordering!");
3725   }
3726   { // INST_RET abbrev for FUNCTION_BLOCK.
3727     auto Abbv = std::make_shared<BitCodeAbbrev>();
3728     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3729     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3730     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3731         FUNCTION_INST_RET_VAL_ABBREV)
3732       llvm_unreachable("Unexpected abbrev ordering!");
3733   }
3734   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3735     auto Abbv = std::make_shared<BitCodeAbbrev>();
3736     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3737     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3738         FUNCTION_INST_UNREACHABLE_ABBREV)
3739       llvm_unreachable("Unexpected abbrev ordering!");
3740   }
3741   {
3742     auto Abbv = std::make_shared<BitCodeAbbrev>();
3743     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3746                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3747     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3748     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3749     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3750         FUNCTION_INST_GEP_ABBREV)
3751       llvm_unreachable("Unexpected abbrev ordering!");
3752   }
3753 
3754   Stream.ExitBlock();
3755 }
3756 
3757 /// Write the module path strings, currently only used when generating
3758 /// a combined index file.
3759 void IndexBitcodeWriter::writeModStrings() {
3760   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3761 
3762   // TODO: See which abbrev sizes we actually need to emit
3763 
3764   // 8-bit fixed-width MST_ENTRY strings.
3765   auto Abbv = std::make_shared<BitCodeAbbrev>();
3766   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3767   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3769   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3770   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3771 
3772   // 7-bit fixed width MST_ENTRY strings.
3773   Abbv = std::make_shared<BitCodeAbbrev>();
3774   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3776   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3778   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3779 
3780   // 6-bit char6 MST_ENTRY strings.
3781   Abbv = std::make_shared<BitCodeAbbrev>();
3782   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3783   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3784   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3785   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3786   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3787 
3788   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3789   Abbv = std::make_shared<BitCodeAbbrev>();
3790   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3796   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3797 
3798   SmallVector<unsigned, 64> Vals;
3799   forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3800     StringRef Key = MPSE.getKey();
3801     const auto &Hash = MPSE.getValue();
3802     StringEncoding Bits = getStringEncoding(Key);
3803     unsigned AbbrevToUse = Abbrev8Bit;
3804     if (Bits == SE_Char6)
3805       AbbrevToUse = Abbrev6Bit;
3806     else if (Bits == SE_Fixed7)
3807       AbbrevToUse = Abbrev7Bit;
3808 
3809     auto ModuleId = ModuleIdMap.size();
3810     ModuleIdMap[Key] = ModuleId;
3811     Vals.push_back(ModuleId);
3812     Vals.append(Key.begin(), Key.end());
3813 
3814     // Emit the finished record.
3815     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3816 
3817     // Emit an optional hash for the module now
3818     if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3819       Vals.assign(Hash.begin(), Hash.end());
3820       // Emit the hash record.
3821       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3822     }
3823 
3824     Vals.clear();
3825   });
3826   Stream.ExitBlock();
3827 }
3828 
3829 /// Write the function type metadata related records that need to appear before
3830 /// a function summary entry (whether per-module or combined).
3831 template <typename Fn>
3832 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3833                                              FunctionSummary *FS,
3834                                              Fn GetValueID) {
3835   if (!FS->type_tests().empty())
3836     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3837 
3838   SmallVector<uint64_t, 64> Record;
3839 
3840   auto WriteVFuncIdVec = [&](uint64_t Ty,
3841                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3842     if (VFs.empty())
3843       return;
3844     Record.clear();
3845     for (auto &VF : VFs) {
3846       Record.push_back(VF.GUID);
3847       Record.push_back(VF.Offset);
3848     }
3849     Stream.EmitRecord(Ty, Record);
3850   };
3851 
3852   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3853                   FS->type_test_assume_vcalls());
3854   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3855                   FS->type_checked_load_vcalls());
3856 
3857   auto WriteConstVCallVec = [&](uint64_t Ty,
3858                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3859     for (auto &VC : VCs) {
3860       Record.clear();
3861       Record.push_back(VC.VFunc.GUID);
3862       Record.push_back(VC.VFunc.Offset);
3863       llvm::append_range(Record, VC.Args);
3864       Stream.EmitRecord(Ty, Record);
3865     }
3866   };
3867 
3868   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3869                      FS->type_test_assume_const_vcalls());
3870   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3871                      FS->type_checked_load_const_vcalls());
3872 
3873   auto WriteRange = [&](ConstantRange Range) {
3874     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3875     assert(Range.getLower().getNumWords() == 1);
3876     assert(Range.getUpper().getNumWords() == 1);
3877     emitSignedInt64(Record, *Range.getLower().getRawData());
3878     emitSignedInt64(Record, *Range.getUpper().getRawData());
3879   };
3880 
3881   if (!FS->paramAccesses().empty()) {
3882     Record.clear();
3883     for (auto &Arg : FS->paramAccesses()) {
3884       size_t UndoSize = Record.size();
3885       Record.push_back(Arg.ParamNo);
3886       WriteRange(Arg.Use);
3887       Record.push_back(Arg.Calls.size());
3888       for (auto &Call : Arg.Calls) {
3889         Record.push_back(Call.ParamNo);
3890         std::optional<unsigned> ValueID = GetValueID(Call.Callee);
3891         if (!ValueID) {
3892           // If ValueID is unknown we can't drop just this call, we must drop
3893           // entire parameter.
3894           Record.resize(UndoSize);
3895           break;
3896         }
3897         Record.push_back(*ValueID);
3898         WriteRange(Call.Offsets);
3899       }
3900     }
3901     if (!Record.empty())
3902       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3903   }
3904 }
3905 
3906 /// Collect type IDs from type tests used by function.
3907 static void
3908 getReferencedTypeIds(FunctionSummary *FS,
3909                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3910   if (!FS->type_tests().empty())
3911     for (auto &TT : FS->type_tests())
3912       ReferencedTypeIds.insert(TT);
3913 
3914   auto GetReferencedTypesFromVFuncIdVec =
3915       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3916         for (auto &VF : VFs)
3917           ReferencedTypeIds.insert(VF.GUID);
3918       };
3919 
3920   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3921   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3922 
3923   auto GetReferencedTypesFromConstVCallVec =
3924       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3925         for (auto &VC : VCs)
3926           ReferencedTypeIds.insert(VC.VFunc.GUID);
3927       };
3928 
3929   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3930   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3931 }
3932 
3933 static void writeWholeProgramDevirtResolutionByArg(
3934     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3935     const WholeProgramDevirtResolution::ByArg &ByArg) {
3936   NameVals.push_back(args.size());
3937   llvm::append_range(NameVals, args);
3938 
3939   NameVals.push_back(ByArg.TheKind);
3940   NameVals.push_back(ByArg.Info);
3941   NameVals.push_back(ByArg.Byte);
3942   NameVals.push_back(ByArg.Bit);
3943 }
3944 
3945 static void writeWholeProgramDevirtResolution(
3946     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3947     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3948   NameVals.push_back(Id);
3949 
3950   NameVals.push_back(Wpd.TheKind);
3951   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3952   NameVals.push_back(Wpd.SingleImplName.size());
3953 
3954   NameVals.push_back(Wpd.ResByArg.size());
3955   for (auto &A : Wpd.ResByArg)
3956     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3957 }
3958 
3959 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3960                                      StringTableBuilder &StrtabBuilder,
3961                                      const std::string &Id,
3962                                      const TypeIdSummary &Summary) {
3963   NameVals.push_back(StrtabBuilder.add(Id));
3964   NameVals.push_back(Id.size());
3965 
3966   NameVals.push_back(Summary.TTRes.TheKind);
3967   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3968   NameVals.push_back(Summary.TTRes.AlignLog2);
3969   NameVals.push_back(Summary.TTRes.SizeM1);
3970   NameVals.push_back(Summary.TTRes.BitMask);
3971   NameVals.push_back(Summary.TTRes.InlineBits);
3972 
3973   for (auto &W : Summary.WPDRes)
3974     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3975                                       W.second);
3976 }
3977 
3978 static void writeTypeIdCompatibleVtableSummaryRecord(
3979     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3980     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3981     ValueEnumerator &VE) {
3982   NameVals.push_back(StrtabBuilder.add(Id));
3983   NameVals.push_back(Id.size());
3984 
3985   for (auto &P : Summary) {
3986     NameVals.push_back(P.AddressPointOffset);
3987     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3988   }
3989 }
3990 
3991 static void writeFunctionHeapProfileRecords(
3992     BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
3993     unsigned AllocAbbrev, bool PerModule,
3994     std::function<unsigned(const ValueInfo &VI)> GetValueID,
3995     std::function<unsigned(unsigned)> GetStackIndex) {
3996   SmallVector<uint64_t> Record;
3997 
3998   for (auto &CI : FS->callsites()) {
3999     Record.clear();
4000     // Per module callsite clones should always have a single entry of
4001     // value 0.
4002     assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4003     Record.push_back(GetValueID(CI.Callee));
4004     if (!PerModule) {
4005       Record.push_back(CI.StackIdIndices.size());
4006       Record.push_back(CI.Clones.size());
4007     }
4008     for (auto Id : CI.StackIdIndices)
4009       Record.push_back(GetStackIndex(Id));
4010     if (!PerModule) {
4011       for (auto V : CI.Clones)
4012         Record.push_back(V);
4013     }
4014     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4015                                 : bitc::FS_COMBINED_CALLSITE_INFO,
4016                       Record, CallsiteAbbrev);
4017   }
4018 
4019   for (auto &AI : FS->allocs()) {
4020     Record.clear();
4021     // Per module alloc versions should always have a single entry of
4022     // value 0.
4023     assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4024     if (!PerModule) {
4025       Record.push_back(AI.MIBs.size());
4026       Record.push_back(AI.Versions.size());
4027     }
4028     for (auto &MIB : AI.MIBs) {
4029       Record.push_back((uint8_t)MIB.AllocType);
4030       Record.push_back(MIB.StackIdIndices.size());
4031       for (auto Id : MIB.StackIdIndices)
4032         Record.push_back(GetStackIndex(Id));
4033     }
4034     if (!PerModule) {
4035       for (auto V : AI.Versions)
4036         Record.push_back(V);
4037     }
4038     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4039                                 : bitc::FS_COMBINED_ALLOC_INFO,
4040                       Record, AllocAbbrev);
4041   }
4042 }
4043 
4044 // Helper to emit a single function summary record.
4045 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4046     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4047     unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4048     unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4049     unsigned AllocAbbrev, const Function &F) {
4050   NameVals.push_back(ValueID);
4051 
4052   FunctionSummary *FS = cast<FunctionSummary>(Summary);
4053 
4054   writeFunctionTypeMetadataRecords(
4055       Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4056         return {VE.getValueID(VI.getValue())};
4057       });
4058 
4059   writeFunctionHeapProfileRecords(
4060       Stream, FS, CallsiteAbbrev, AllocAbbrev,
4061       /*PerModule*/ true,
4062       /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4063       /*GetStackIndex*/ [&](unsigned I) { return I; });
4064 
4065   auto SpecialRefCnts = FS->specialRefCounts();
4066   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4067   NameVals.push_back(FS->instCount());
4068   NameVals.push_back(getEncodedFFlags(FS->fflags()));
4069   NameVals.push_back(FS->refs().size());
4070   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
4071   NameVals.push_back(SpecialRefCnts.second); // worefcnt
4072 
4073   for (auto &RI : FS->refs())
4074     NameVals.push_back(VE.getValueID(RI.getValue()));
4075 
4076   const bool UseRelBFRecord =
4077       WriteRelBFToSummary && !F.hasProfileData() &&
4078       ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4079   for (auto &ECI : FS->calls()) {
4080     NameVals.push_back(getValueId(ECI.first));
4081     if (UseRelBFRecord)
4082       NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4083     else
4084       NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4085   }
4086 
4087   unsigned FSAbbrev =
4088       (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4089   unsigned Code =
4090       (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4091 
4092   // Emit the finished record.
4093   Stream.EmitRecord(Code, NameVals, FSAbbrev);
4094   NameVals.clear();
4095 }
4096 
4097 // Collect the global value references in the given variable's initializer,
4098 // and emit them in a summary record.
4099 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4100     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4101     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4102   auto VI = Index->getValueInfo(V.getGUID());
4103   if (!VI || VI.getSummaryList().empty()) {
4104     // Only declarations should not have a summary (a declaration might however
4105     // have a summary if the def was in module level asm).
4106     assert(V.isDeclaration());
4107     return;
4108   }
4109   auto *Summary = VI.getSummaryList()[0].get();
4110   NameVals.push_back(VE.getValueID(&V));
4111   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4112   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4113   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4114 
4115   auto VTableFuncs = VS->vTableFuncs();
4116   if (!VTableFuncs.empty())
4117     NameVals.push_back(VS->refs().size());
4118 
4119   unsigned SizeBeforeRefs = NameVals.size();
4120   for (auto &RI : VS->refs())
4121     NameVals.push_back(VE.getValueID(RI.getValue()));
4122   // Sort the refs for determinism output, the vector returned by FS->refs() has
4123   // been initialized from a DenseSet.
4124   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4125 
4126   if (VTableFuncs.empty())
4127     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4128                       FSModRefsAbbrev);
4129   else {
4130     // VTableFuncs pairs should already be sorted by offset.
4131     for (auto &P : VTableFuncs) {
4132       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4133       NameVals.push_back(P.VTableOffset);
4134     }
4135 
4136     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4137                       FSModVTableRefsAbbrev);
4138   }
4139   NameVals.clear();
4140 }
4141 
4142 /// Emit the per-module summary section alongside the rest of
4143 /// the module's bitcode.
4144 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4145   // By default we compile with ThinLTO if the module has a summary, but the
4146   // client can request full LTO with a module flag.
4147   bool IsThinLTO = true;
4148   if (auto *MD =
4149           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4150     IsThinLTO = MD->getZExtValue();
4151   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4152                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4153                        4);
4154 
4155   Stream.EmitRecord(
4156       bitc::FS_VERSION,
4157       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4158 
4159   // Write the index flags.
4160   uint64_t Flags = 0;
4161   // Bits 1-3 are set only in the combined index, skip them.
4162   if (Index->enableSplitLTOUnit())
4163     Flags |= 0x8;
4164   if (Index->hasUnifiedLTO())
4165     Flags |= 0x200;
4166 
4167   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4168 
4169   if (Index->begin() == Index->end()) {
4170     Stream.ExitBlock();
4171     return;
4172   }
4173 
4174   for (const auto &GVI : valueIds()) {
4175     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4176                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4177   }
4178 
4179   if (!Index->stackIds().empty()) {
4180     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4181     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4182     // numids x stackid
4183     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4184     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4185     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4186     Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4187   }
4188 
4189   // Abbrev for FS_PERMODULE_PROFILE.
4190   auto Abbv = std::make_shared<BitCodeAbbrev>();
4191   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4192   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4193   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags
4194   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4196   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4197   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4198   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4199   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4200   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4201   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4202   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4203 
4204   // Abbrev for FS_PERMODULE_RELBF.
4205   Abbv = std::make_shared<BitCodeAbbrev>();
4206   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4207   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4208   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4209   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4210   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4211   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4212   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4213   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4214   // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4215   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4216   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4217   unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4218 
4219   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4220   Abbv = std::make_shared<BitCodeAbbrev>();
4221   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4222   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4223   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4224   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4225   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4226   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4227 
4228   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4229   Abbv = std::make_shared<BitCodeAbbrev>();
4230   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4231   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4232   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4234   // numrefs x valueid, n x (valueid , offset)
4235   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4236   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4237   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4238 
4239   // Abbrev for FS_ALIAS.
4240   Abbv = std::make_shared<BitCodeAbbrev>();
4241   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4243   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4244   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4245   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4246 
4247   // Abbrev for FS_TYPE_ID_METADATA
4248   Abbv = std::make_shared<BitCodeAbbrev>();
4249   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4250   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4251   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4252   // n x (valueid , offset)
4253   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4254   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4255   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4256 
4257   Abbv = std::make_shared<BitCodeAbbrev>();
4258   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4259   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4260   // n x stackidindex
4261   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4262   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4263   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4264 
4265   Abbv = std::make_shared<BitCodeAbbrev>();
4266   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4267   // n x (alloc type, numstackids, numstackids x stackidindex)
4268   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4269   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4270   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4271 
4272   SmallVector<uint64_t, 64> NameVals;
4273   // Iterate over the list of functions instead of the Index to
4274   // ensure the ordering is stable.
4275   for (const Function &F : M) {
4276     // Summary emission does not support anonymous functions, they have to
4277     // renamed using the anonymous function renaming pass.
4278     if (!F.hasName())
4279       report_fatal_error("Unexpected anonymous function when writing summary");
4280 
4281     ValueInfo VI = Index->getValueInfo(F.getGUID());
4282     if (!VI || VI.getSummaryList().empty()) {
4283       // Only declarations should not have a summary (a declaration might
4284       // however have a summary if the def was in module level asm).
4285       assert(F.isDeclaration());
4286       continue;
4287     }
4288     auto *Summary = VI.getSummaryList()[0].get();
4289     writePerModuleFunctionSummaryRecord(
4290         NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4291         FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4292   }
4293 
4294   // Capture references from GlobalVariable initializers, which are outside
4295   // of a function scope.
4296   for (const GlobalVariable &G : M.globals())
4297     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4298                                FSModVTableRefsAbbrev);
4299 
4300   for (const GlobalAlias &A : M.aliases()) {
4301     auto *Aliasee = A.getAliaseeObject();
4302     // Skip ifunc and nameless functions which don't have an entry in the
4303     // summary.
4304     if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4305       continue;
4306     auto AliasId = VE.getValueID(&A);
4307     auto AliaseeId = VE.getValueID(Aliasee);
4308     NameVals.push_back(AliasId);
4309     auto *Summary = Index->getGlobalValueSummary(A);
4310     AliasSummary *AS = cast<AliasSummary>(Summary);
4311     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4312     NameVals.push_back(AliaseeId);
4313     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4314     NameVals.clear();
4315   }
4316 
4317   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4318     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4319                                              S.second, VE);
4320     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4321                       TypeIdCompatibleVtableAbbrev);
4322     NameVals.clear();
4323   }
4324 
4325   if (Index->getBlockCount())
4326     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4327                       ArrayRef<uint64_t>{Index->getBlockCount()});
4328 
4329   Stream.ExitBlock();
4330 }
4331 
4332 /// Emit the combined summary section into the combined index file.
4333 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4334   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4335   Stream.EmitRecord(
4336       bitc::FS_VERSION,
4337       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4338 
4339   // Write the index flags.
4340   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4341 
4342   for (const auto &GVI : valueIds()) {
4343     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4344                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4345   }
4346 
4347   if (!StackIdIndices.empty()) {
4348     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4349     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4350     // numids x stackid
4351     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4352     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4353     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4354     // Write the stack ids used by this index, which will be a subset of those in
4355     // the full index in the case of distributed indexes.
4356     std::vector<uint64_t> StackIds;
4357     for (auto &I : StackIdIndices)
4358       StackIds.push_back(Index.getStackIdAtIndex(I));
4359     Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4360   }
4361 
4362   // Abbrev for FS_COMBINED_PROFILE.
4363   auto Abbv = std::make_shared<BitCodeAbbrev>();
4364   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4374   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4376   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4377   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4378 
4379   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4380   Abbv = std::make_shared<BitCodeAbbrev>();
4381   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4383   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4387   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4388 
4389   // Abbrev for FS_COMBINED_ALIAS.
4390   Abbv = std::make_shared<BitCodeAbbrev>();
4391   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4392   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4393   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4394   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4395   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4396   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4397 
4398   Abbv = std::make_shared<BitCodeAbbrev>();
4399   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4400   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4402   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4403   // numstackindices x stackidindex, numver x version
4404   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4405   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4406   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4407 
4408   Abbv = std::make_shared<BitCodeAbbrev>();
4409   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4410   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4411   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4412   // nummib x (alloc type, numstackids, numstackids x stackidindex),
4413   // numver x version
4414   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4415   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4416   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4417 
4418   // The aliases are emitted as a post-pass, and will point to the value
4419   // id of the aliasee. Save them in a vector for post-processing.
4420   SmallVector<AliasSummary *, 64> Aliases;
4421 
4422   // Save the value id for each summary for alias emission.
4423   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4424 
4425   SmallVector<uint64_t, 64> NameVals;
4426 
4427   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4428   // with the type ids referenced by this index file.
4429   std::set<GlobalValue::GUID> ReferencedTypeIds;
4430 
4431   // For local linkage, we also emit the original name separately
4432   // immediately after the record.
4433   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4434     // We don't need to emit the original name if we are writing the index for
4435     // distributed backends (in which case ModuleToSummariesForIndex is
4436     // non-null). The original name is only needed during the thin link, since
4437     // for SamplePGO the indirect call targets for local functions have
4438     // have the original name annotated in profile.
4439     // Continue to emit it when writing out the entire combined index, which is
4440     // used in testing the thin link via llvm-lto.
4441     if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4442       return;
4443     NameVals.push_back(S.getOriginalName());
4444     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4445     NameVals.clear();
4446   };
4447 
4448   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4449   forEachSummary([&](GVInfo I, bool IsAliasee) {
4450     GlobalValueSummary *S = I.second;
4451     assert(S);
4452     DefOrUseGUIDs.insert(I.first);
4453     for (const ValueInfo &VI : S->refs())
4454       DefOrUseGUIDs.insert(VI.getGUID());
4455 
4456     auto ValueId = getValueId(I.first);
4457     assert(ValueId);
4458     SummaryToValueIdMap[S] = *ValueId;
4459 
4460     // If this is invoked for an aliasee, we want to record the above
4461     // mapping, but then not emit a summary entry (if the aliasee is
4462     // to be imported, we will invoke this separately with IsAliasee=false).
4463     if (IsAliasee)
4464       return;
4465 
4466     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4467       // Will process aliases as a post-pass because the reader wants all
4468       // global to be loaded first.
4469       Aliases.push_back(AS);
4470       return;
4471     }
4472 
4473     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4474       NameVals.push_back(*ValueId);
4475       assert(ModuleIdMap.count(VS->modulePath()));
4476       NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4477       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4478       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4479       for (auto &RI : VS->refs()) {
4480         auto RefValueId = getValueId(RI.getGUID());
4481         if (!RefValueId)
4482           continue;
4483         NameVals.push_back(*RefValueId);
4484       }
4485 
4486       // Emit the finished record.
4487       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4488                         FSModRefsAbbrev);
4489       NameVals.clear();
4490       MaybeEmitOriginalName(*S);
4491       return;
4492     }
4493 
4494     auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4495       if (!VI)
4496         return std::nullopt;
4497       return getValueId(VI.getGUID());
4498     };
4499 
4500     auto *FS = cast<FunctionSummary>(S);
4501     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4502     getReferencedTypeIds(FS, ReferencedTypeIds);
4503 
4504     writeFunctionHeapProfileRecords(
4505         Stream, FS, CallsiteAbbrev, AllocAbbrev,
4506         /*PerModule*/ false,
4507         /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4508           std::optional<unsigned> ValueID = GetValueId(VI);
4509           // This can happen in shared index files for distributed ThinLTO if
4510           // the callee function summary is not included. Record 0 which we
4511           // will have to deal with conservatively when doing any kind of
4512           // validation in the ThinLTO backends.
4513           if (!ValueID)
4514             return 0;
4515           return *ValueID;
4516         },
4517         /*GetStackIndex*/ [&](unsigned I) {
4518           // Get the corresponding index into the list of StackIdIndices
4519           // actually being written for this combined index (which may be a
4520           // subset in the case of distributed indexes).
4521           auto Lower = llvm::lower_bound(StackIdIndices, I);
4522           return std::distance(StackIdIndices.begin(), Lower);
4523         });
4524 
4525     NameVals.push_back(*ValueId);
4526     assert(ModuleIdMap.count(FS->modulePath()));
4527     NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4528     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4529     NameVals.push_back(FS->instCount());
4530     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4531     NameVals.push_back(FS->entryCount());
4532 
4533     // Fill in below
4534     NameVals.push_back(0); // numrefs
4535     NameVals.push_back(0); // rorefcnt
4536     NameVals.push_back(0); // worefcnt
4537 
4538     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4539     for (auto &RI : FS->refs()) {
4540       auto RefValueId = getValueId(RI.getGUID());
4541       if (!RefValueId)
4542         continue;
4543       NameVals.push_back(*RefValueId);
4544       if (RI.isReadOnly())
4545         RORefCnt++;
4546       else if (RI.isWriteOnly())
4547         WORefCnt++;
4548       Count++;
4549     }
4550     NameVals[6] = Count;
4551     NameVals[7] = RORefCnt;
4552     NameVals[8] = WORefCnt;
4553 
4554     for (auto &EI : FS->calls()) {
4555       // If this GUID doesn't have a value id, it doesn't have a function
4556       // summary and we don't need to record any calls to it.
4557       std::optional<unsigned> CallValueId = GetValueId(EI.first);
4558       if (!CallValueId)
4559         continue;
4560       NameVals.push_back(*CallValueId);
4561       NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4562     }
4563 
4564     // Emit the finished record.
4565     Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4566                       FSCallsProfileAbbrev);
4567     NameVals.clear();
4568     MaybeEmitOriginalName(*S);
4569   });
4570 
4571   for (auto *AS : Aliases) {
4572     auto AliasValueId = SummaryToValueIdMap[AS];
4573     assert(AliasValueId);
4574     NameVals.push_back(AliasValueId);
4575     assert(ModuleIdMap.count(AS->modulePath()));
4576     NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4577     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4578     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4579     assert(AliaseeValueId);
4580     NameVals.push_back(AliaseeValueId);
4581 
4582     // Emit the finished record.
4583     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4584     NameVals.clear();
4585     MaybeEmitOriginalName(*AS);
4586 
4587     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4588       getReferencedTypeIds(FS, ReferencedTypeIds);
4589   }
4590 
4591   if (!Index.cfiFunctionDefs().empty()) {
4592     for (auto &S : Index.cfiFunctionDefs()) {
4593       if (DefOrUseGUIDs.count(
4594               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4595         NameVals.push_back(StrtabBuilder.add(S));
4596         NameVals.push_back(S.size());
4597       }
4598     }
4599     if (!NameVals.empty()) {
4600       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4601       NameVals.clear();
4602     }
4603   }
4604 
4605   if (!Index.cfiFunctionDecls().empty()) {
4606     for (auto &S : Index.cfiFunctionDecls()) {
4607       if (DefOrUseGUIDs.count(
4608               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4609         NameVals.push_back(StrtabBuilder.add(S));
4610         NameVals.push_back(S.size());
4611       }
4612     }
4613     if (!NameVals.empty()) {
4614       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4615       NameVals.clear();
4616     }
4617   }
4618 
4619   // Walk the GUIDs that were referenced, and write the
4620   // corresponding type id records.
4621   for (auto &T : ReferencedTypeIds) {
4622     auto TidIter = Index.typeIds().equal_range(T);
4623     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4624       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4625                                It->second.second);
4626       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4627       NameVals.clear();
4628     }
4629   }
4630 
4631   if (Index.getBlockCount())
4632     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4633                       ArrayRef<uint64_t>{Index.getBlockCount()});
4634 
4635   Stream.ExitBlock();
4636 }
4637 
4638 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4639 /// current llvm version, and a record for the epoch number.
4640 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4641   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4642 
4643   // Write the "user readable" string identifying the bitcode producer
4644   auto Abbv = std::make_shared<BitCodeAbbrev>();
4645   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4646   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4647   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4648   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4649   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4650                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4651 
4652   // Write the epoch version
4653   Abbv = std::make_shared<BitCodeAbbrev>();
4654   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4655   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4656   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4657   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4658   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4659   Stream.ExitBlock();
4660 }
4661 
4662 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4663   // Emit the module's hash.
4664   // MODULE_CODE_HASH: [5*i32]
4665   if (GenerateHash) {
4666     uint32_t Vals[5];
4667     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4668                                     Buffer.size() - BlockStartPos));
4669     std::array<uint8_t, 20> Hash = Hasher.result();
4670     for (int Pos = 0; Pos < 20; Pos += 4) {
4671       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4672     }
4673 
4674     // Emit the finished record.
4675     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4676 
4677     if (ModHash)
4678       // Save the written hash value.
4679       llvm::copy(Vals, std::begin(*ModHash));
4680   }
4681 }
4682 
4683 void ModuleBitcodeWriter::write() {
4684   writeIdentificationBlock(Stream);
4685 
4686   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4687   size_t BlockStartPos = Buffer.size();
4688 
4689   writeModuleVersion();
4690 
4691   // Emit blockinfo, which defines the standard abbreviations etc.
4692   writeBlockInfo();
4693 
4694   // Emit information describing all of the types in the module.
4695   writeTypeTable();
4696 
4697   // Emit information about attribute groups.
4698   writeAttributeGroupTable();
4699 
4700   // Emit information about parameter attributes.
4701   writeAttributeTable();
4702 
4703   writeComdats();
4704 
4705   // Emit top-level description of module, including target triple, inline asm,
4706   // descriptors for global variables, and function prototype info.
4707   writeModuleInfo();
4708 
4709   // Emit constants.
4710   writeModuleConstants();
4711 
4712   // Emit metadata kind names.
4713   writeModuleMetadataKinds();
4714 
4715   // Emit metadata.
4716   writeModuleMetadata();
4717 
4718   // Emit module-level use-lists.
4719   if (VE.shouldPreserveUseListOrder())
4720     writeUseListBlock(nullptr);
4721 
4722   writeOperandBundleTags();
4723   writeSyncScopeNames();
4724 
4725   // Emit function bodies.
4726   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4727   for (const Function &F : M)
4728     if (!F.isDeclaration())
4729       writeFunction(F, FunctionToBitcodeIndex);
4730 
4731   // Need to write after the above call to WriteFunction which populates
4732   // the summary information in the index.
4733   if (Index)
4734     writePerModuleGlobalValueSummary();
4735 
4736   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4737 
4738   writeModuleHash(BlockStartPos);
4739 
4740   Stream.ExitBlock();
4741 }
4742 
4743 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4744                                uint32_t &Position) {
4745   support::endian::write32le(&Buffer[Position], Value);
4746   Position += 4;
4747 }
4748 
4749 /// If generating a bc file on darwin, we have to emit a
4750 /// header and trailer to make it compatible with the system archiver.  To do
4751 /// this we emit the following header, and then emit a trailer that pads the
4752 /// file out to be a multiple of 16 bytes.
4753 ///
4754 /// struct bc_header {
4755 ///   uint32_t Magic;         // 0x0B17C0DE
4756 ///   uint32_t Version;       // Version, currently always 0.
4757 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4758 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4759 ///   uint32_t CPUType;       // CPU specifier.
4760 ///   ... potentially more later ...
4761 /// };
4762 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4763                                          const Triple &TT) {
4764   unsigned CPUType = ~0U;
4765 
4766   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4767   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4768   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4769   // specific constants here because they are implicitly part of the Darwin ABI.
4770   enum {
4771     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4772     DARWIN_CPU_TYPE_X86        = 7,
4773     DARWIN_CPU_TYPE_ARM        = 12,
4774     DARWIN_CPU_TYPE_POWERPC    = 18
4775   };
4776 
4777   Triple::ArchType Arch = TT.getArch();
4778   if (Arch == Triple::x86_64)
4779     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4780   else if (Arch == Triple::x86)
4781     CPUType = DARWIN_CPU_TYPE_X86;
4782   else if (Arch == Triple::ppc)
4783     CPUType = DARWIN_CPU_TYPE_POWERPC;
4784   else if (Arch == Triple::ppc64)
4785     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4786   else if (Arch == Triple::arm || Arch == Triple::thumb)
4787     CPUType = DARWIN_CPU_TYPE_ARM;
4788 
4789   // Traditional Bitcode starts after header.
4790   assert(Buffer.size() >= BWH_HeaderSize &&
4791          "Expected header size to be reserved");
4792   unsigned BCOffset = BWH_HeaderSize;
4793   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4794 
4795   // Write the magic and version.
4796   unsigned Position = 0;
4797   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4798   writeInt32ToBuffer(0, Buffer, Position); // Version.
4799   writeInt32ToBuffer(BCOffset, Buffer, Position);
4800   writeInt32ToBuffer(BCSize, Buffer, Position);
4801   writeInt32ToBuffer(CPUType, Buffer, Position);
4802 
4803   // If the file is not a multiple of 16 bytes, insert dummy padding.
4804   while (Buffer.size() & 15)
4805     Buffer.push_back(0);
4806 }
4807 
4808 /// Helper to write the header common to all bitcode files.
4809 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4810   // Emit the file header.
4811   Stream.Emit((unsigned)'B', 8);
4812   Stream.Emit((unsigned)'C', 8);
4813   Stream.Emit(0x0, 4);
4814   Stream.Emit(0xC, 4);
4815   Stream.Emit(0xE, 4);
4816   Stream.Emit(0xD, 4);
4817 }
4818 
4819 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4820     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4821   writeBitcodeHeader(*Stream);
4822 }
4823 
4824 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4825 
4826 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4827   Stream->EnterSubblock(Block, 3);
4828 
4829   auto Abbv = std::make_shared<BitCodeAbbrev>();
4830   Abbv->Add(BitCodeAbbrevOp(Record));
4831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4832   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4833 
4834   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4835 
4836   Stream->ExitBlock();
4837 }
4838 
4839 void BitcodeWriter::writeSymtab() {
4840   assert(!WroteStrtab && !WroteSymtab);
4841 
4842   // If any module has module-level inline asm, we will require a registered asm
4843   // parser for the target so that we can create an accurate symbol table for
4844   // the module.
4845   for (Module *M : Mods) {
4846     if (M->getModuleInlineAsm().empty())
4847       continue;
4848 
4849     std::string Err;
4850     const Triple TT(M->getTargetTriple());
4851     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4852     if (!T || !T->hasMCAsmParser())
4853       return;
4854   }
4855 
4856   WroteSymtab = true;
4857   SmallVector<char, 0> Symtab;
4858   // The irsymtab::build function may be unable to create a symbol table if the
4859   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4860   // table is not required for correctness, but we still want to be able to
4861   // write malformed modules to bitcode files, so swallow the error.
4862   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4863     consumeError(std::move(E));
4864     return;
4865   }
4866 
4867   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4868             {Symtab.data(), Symtab.size()});
4869 }
4870 
4871 void BitcodeWriter::writeStrtab() {
4872   assert(!WroteStrtab);
4873 
4874   std::vector<char> Strtab;
4875   StrtabBuilder.finalizeInOrder();
4876   Strtab.resize(StrtabBuilder.getSize());
4877   StrtabBuilder.write((uint8_t *)Strtab.data());
4878 
4879   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4880             {Strtab.data(), Strtab.size()});
4881 
4882   WroteStrtab = true;
4883 }
4884 
4885 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4886   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4887   WroteStrtab = true;
4888 }
4889 
4890 void BitcodeWriter::writeModule(const Module &M,
4891                                 bool ShouldPreserveUseListOrder,
4892                                 const ModuleSummaryIndex *Index,
4893                                 bool GenerateHash, ModuleHash *ModHash) {
4894   assert(!WroteStrtab);
4895 
4896   // The Mods vector is used by irsymtab::build, which requires non-const
4897   // Modules in case it needs to materialize metadata. But the bitcode writer
4898   // requires that the module is materialized, so we can cast to non-const here,
4899   // after checking that it is in fact materialized.
4900   assert(M.isMaterialized());
4901   Mods.push_back(const_cast<Module *>(&M));
4902 
4903   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4904                                    ShouldPreserveUseListOrder, Index,
4905                                    GenerateHash, ModHash);
4906   ModuleWriter.write();
4907 }
4908 
4909 void BitcodeWriter::writeIndex(
4910     const ModuleSummaryIndex *Index,
4911     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4912   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4913                                  ModuleToSummariesForIndex);
4914   IndexWriter.write();
4915 }
4916 
4917 /// Write the specified module to the specified output stream.
4918 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4919                               bool ShouldPreserveUseListOrder,
4920                               const ModuleSummaryIndex *Index,
4921                               bool GenerateHash, ModuleHash *ModHash) {
4922   SmallVector<char, 0> Buffer;
4923   Buffer.reserve(256*1024);
4924 
4925   // If this is darwin or another generic macho target, reserve space for the
4926   // header.
4927   Triple TT(M.getTargetTriple());
4928   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4929     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4930 
4931   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4932   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4933                      ModHash);
4934   Writer.writeSymtab();
4935   Writer.writeStrtab();
4936 
4937   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4938     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4939 
4940   // Write the generated bitstream to "Out".
4941   if (!Buffer.empty())
4942     Out.write((char *)&Buffer.front(), Buffer.size());
4943 }
4944 
4945 void IndexBitcodeWriter::write() {
4946   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4947 
4948   writeModuleVersion();
4949 
4950   // Write the module paths in the combined index.
4951   writeModStrings();
4952 
4953   // Write the summary combined index records.
4954   writeCombinedGlobalValueSummary();
4955 
4956   Stream.ExitBlock();
4957 }
4958 
4959 // Write the specified module summary index to the given raw output stream,
4960 // where it will be written in a new bitcode block. This is used when
4961 // writing the combined index file for ThinLTO. When writing a subset of the
4962 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4963 void llvm::writeIndexToFile(
4964     const ModuleSummaryIndex &Index, raw_ostream &Out,
4965     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4966   SmallVector<char, 0> Buffer;
4967   Buffer.reserve(256 * 1024);
4968 
4969   BitcodeWriter Writer(Buffer);
4970   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4971   Writer.writeStrtab();
4972 
4973   Out.write((char *)&Buffer.front(), Buffer.size());
4974 }
4975 
4976 namespace {
4977 
4978 /// Class to manage the bitcode writing for a thin link bitcode file.
4979 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4980   /// ModHash is for use in ThinLTO incremental build, generated while writing
4981   /// the module bitcode file.
4982   const ModuleHash *ModHash;
4983 
4984 public:
4985   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4986                         BitstreamWriter &Stream,
4987                         const ModuleSummaryIndex &Index,
4988                         const ModuleHash &ModHash)
4989       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4990                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4991         ModHash(&ModHash) {}
4992 
4993   void write();
4994 
4995 private:
4996   void writeSimplifiedModuleInfo();
4997 };
4998 
4999 } // end anonymous namespace
5000 
5001 // This function writes a simpilified module info for thin link bitcode file.
5002 // It only contains the source file name along with the name(the offset and
5003 // size in strtab) and linkage for global values. For the global value info
5004 // entry, in order to keep linkage at offset 5, there are three zeros used
5005 // as padding.
5006 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5007   SmallVector<unsigned, 64> Vals;
5008   // Emit the module's source file name.
5009   {
5010     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5011     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5012     if (Bits == SE_Char6)
5013       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5014     else if (Bits == SE_Fixed7)
5015       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5016 
5017     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5018     auto Abbv = std::make_shared<BitCodeAbbrev>();
5019     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5021     Abbv->Add(AbbrevOpToUse);
5022     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5023 
5024     for (const auto P : M.getSourceFileName())
5025       Vals.push_back((unsigned char)P);
5026 
5027     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5028     Vals.clear();
5029   }
5030 
5031   // Emit the global variable information.
5032   for (const GlobalVariable &GV : M.globals()) {
5033     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5034     Vals.push_back(StrtabBuilder.add(GV.getName()));
5035     Vals.push_back(GV.getName().size());
5036     Vals.push_back(0);
5037     Vals.push_back(0);
5038     Vals.push_back(0);
5039     Vals.push_back(getEncodedLinkage(GV));
5040 
5041     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5042     Vals.clear();
5043   }
5044 
5045   // Emit the function proto information.
5046   for (const Function &F : M) {
5047     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
5048     Vals.push_back(StrtabBuilder.add(F.getName()));
5049     Vals.push_back(F.getName().size());
5050     Vals.push_back(0);
5051     Vals.push_back(0);
5052     Vals.push_back(0);
5053     Vals.push_back(getEncodedLinkage(F));
5054 
5055     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5056     Vals.clear();
5057   }
5058 
5059   // Emit the alias information.
5060   for (const GlobalAlias &A : M.aliases()) {
5061     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5062     Vals.push_back(StrtabBuilder.add(A.getName()));
5063     Vals.push_back(A.getName().size());
5064     Vals.push_back(0);
5065     Vals.push_back(0);
5066     Vals.push_back(0);
5067     Vals.push_back(getEncodedLinkage(A));
5068 
5069     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5070     Vals.clear();
5071   }
5072 
5073   // Emit the ifunc information.
5074   for (const GlobalIFunc &I : M.ifuncs()) {
5075     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5076     Vals.push_back(StrtabBuilder.add(I.getName()));
5077     Vals.push_back(I.getName().size());
5078     Vals.push_back(0);
5079     Vals.push_back(0);
5080     Vals.push_back(0);
5081     Vals.push_back(getEncodedLinkage(I));
5082 
5083     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5084     Vals.clear();
5085   }
5086 }
5087 
5088 void ThinLinkBitcodeWriter::write() {
5089   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5090 
5091   writeModuleVersion();
5092 
5093   writeSimplifiedModuleInfo();
5094 
5095   writePerModuleGlobalValueSummary();
5096 
5097   // Write module hash.
5098   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5099 
5100   Stream.ExitBlock();
5101 }
5102 
5103 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5104                                          const ModuleSummaryIndex &Index,
5105                                          const ModuleHash &ModHash) {
5106   assert(!WroteStrtab);
5107 
5108   // The Mods vector is used by irsymtab::build, which requires non-const
5109   // Modules in case it needs to materialize metadata. But the bitcode writer
5110   // requires that the module is materialized, so we can cast to non-const here,
5111   // after checking that it is in fact materialized.
5112   assert(M.isMaterialized());
5113   Mods.push_back(const_cast<Module *>(&M));
5114 
5115   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5116                                        ModHash);
5117   ThinLinkWriter.write();
5118 }
5119 
5120 // Write the specified thin link bitcode file to the given raw output stream,
5121 // where it will be written in a new bitcode block. This is used when
5122 // writing the per-module index file for ThinLTO.
5123 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5124                                       const ModuleSummaryIndex &Index,
5125                                       const ModuleHash &ModHash) {
5126   SmallVector<char, 0> Buffer;
5127   Buffer.reserve(256 * 1024);
5128 
5129   BitcodeWriter Writer(Buffer);
5130   Writer.writeThinLinkBitcode(M, Index, ModHash);
5131   Writer.writeSymtab();
5132   Writer.writeStrtab();
5133 
5134   Out.write((char *)&Buffer.front(), Buffer.size());
5135 }
5136 
5137 static const char *getSectionNameForBitcode(const Triple &T) {
5138   switch (T.getObjectFormat()) {
5139   case Triple::MachO:
5140     return "__LLVM,__bitcode";
5141   case Triple::COFF:
5142   case Triple::ELF:
5143   case Triple::Wasm:
5144   case Triple::UnknownObjectFormat:
5145     return ".llvmbc";
5146   case Triple::GOFF:
5147     llvm_unreachable("GOFF is not yet implemented");
5148     break;
5149   case Triple::SPIRV:
5150     llvm_unreachable("SPIRV is not yet implemented");
5151     break;
5152   case Triple::XCOFF:
5153     llvm_unreachable("XCOFF is not yet implemented");
5154     break;
5155   case Triple::DXContainer:
5156     llvm_unreachable("DXContainer is not yet implemented");
5157     break;
5158   }
5159   llvm_unreachable("Unimplemented ObjectFormatType");
5160 }
5161 
5162 static const char *getSectionNameForCommandline(const Triple &T) {
5163   switch (T.getObjectFormat()) {
5164   case Triple::MachO:
5165     return "__LLVM,__cmdline";
5166   case Triple::COFF:
5167   case Triple::ELF:
5168   case Triple::Wasm:
5169   case Triple::UnknownObjectFormat:
5170     return ".llvmcmd";
5171   case Triple::GOFF:
5172     llvm_unreachable("GOFF is not yet implemented");
5173     break;
5174   case Triple::SPIRV:
5175     llvm_unreachable("SPIRV is not yet implemented");
5176     break;
5177   case Triple::XCOFF:
5178     llvm_unreachable("XCOFF is not yet implemented");
5179     break;
5180   case Triple::DXContainer:
5181     llvm_unreachable("DXC is not yet implemented");
5182     break;
5183   }
5184   llvm_unreachable("Unimplemented ObjectFormatType");
5185 }
5186 
5187 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5188                                 bool EmbedBitcode, bool EmbedCmdline,
5189                                 const std::vector<uint8_t> &CmdArgs) {
5190   // Save llvm.compiler.used and remove it.
5191   SmallVector<Constant *, 2> UsedArray;
5192   SmallVector<GlobalValue *, 4> UsedGlobals;
5193   Type *UsedElementType = PointerType::getUnqual(M.getContext());
5194   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5195   for (auto *GV : UsedGlobals) {
5196     if (GV->getName() != "llvm.embedded.module" &&
5197         GV->getName() != "llvm.cmdline")
5198       UsedArray.push_back(
5199           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5200   }
5201   if (Used)
5202     Used->eraseFromParent();
5203 
5204   // Embed the bitcode for the llvm module.
5205   std::string Data;
5206   ArrayRef<uint8_t> ModuleData;
5207   Triple T(M.getTargetTriple());
5208 
5209   if (EmbedBitcode) {
5210     if (Buf.getBufferSize() == 0 ||
5211         !isBitcode((const unsigned char *)Buf.getBufferStart(),
5212                    (const unsigned char *)Buf.getBufferEnd())) {
5213       // If the input is LLVM Assembly, bitcode is produced by serializing
5214       // the module. Use-lists order need to be preserved in this case.
5215       llvm::raw_string_ostream OS(Data);
5216       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5217       ModuleData =
5218           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5219     } else
5220       // If the input is LLVM bitcode, write the input byte stream directly.
5221       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5222                                      Buf.getBufferSize());
5223   }
5224   llvm::Constant *ModuleConstant =
5225       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5226   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5227       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5228       ModuleConstant);
5229   GV->setSection(getSectionNameForBitcode(T));
5230   // Set alignment to 1 to prevent padding between two contributions from input
5231   // sections after linking.
5232   GV->setAlignment(Align(1));
5233   UsedArray.push_back(
5234       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5235   if (llvm::GlobalVariable *Old =
5236           M.getGlobalVariable("llvm.embedded.module", true)) {
5237     assert(Old->hasZeroLiveUses() &&
5238            "llvm.embedded.module can only be used once in llvm.compiler.used");
5239     GV->takeName(Old);
5240     Old->eraseFromParent();
5241   } else {
5242     GV->setName("llvm.embedded.module");
5243   }
5244 
5245   // Skip if only bitcode needs to be embedded.
5246   if (EmbedCmdline) {
5247     // Embed command-line options.
5248     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5249                               CmdArgs.size());
5250     llvm::Constant *CmdConstant =
5251         llvm::ConstantDataArray::get(M.getContext(), CmdData);
5252     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5253                                   llvm::GlobalValue::PrivateLinkage,
5254                                   CmdConstant);
5255     GV->setSection(getSectionNameForCommandline(T));
5256     GV->setAlignment(Align(1));
5257     UsedArray.push_back(
5258         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5259     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5260       assert(Old->hasZeroLiveUses() &&
5261              "llvm.cmdline can only be used once in llvm.compiler.used");
5262       GV->takeName(Old);
5263       Old->eraseFromParent();
5264     } else {
5265       GV->setName("llvm.cmdline");
5266     }
5267   }
5268 
5269   if (UsedArray.empty())
5270     return;
5271 
5272   // Recreate llvm.compiler.used.
5273   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5274   auto *NewUsed = new GlobalVariable(
5275       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5276       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5277   NewUsed->setSection("llvm.metadata");
5278 }
5279