xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 681ce946f33e75c590e97c53076e86dff1fe8f4a)
1  //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Bitcode writer implementation.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/Bitcode/BitcodeWriter.h"
14  #include "ValueEnumerator.h"
15  #include "llvm/ADT/APFloat.h"
16  #include "llvm/ADT/APInt.h"
17  #include "llvm/ADT/ArrayRef.h"
18  #include "llvm/ADT/DenseMap.h"
19  #include "llvm/ADT/None.h"
20  #include "llvm/ADT/Optional.h"
21  #include "llvm/ADT/STLExtras.h"
22  #include "llvm/ADT/SmallString.h"
23  #include "llvm/ADT/SmallVector.h"
24  #include "llvm/ADT/StringMap.h"
25  #include "llvm/ADT/StringRef.h"
26  #include "llvm/ADT/Triple.h"
27  #include "llvm/Bitcode/BitcodeCommon.h"
28  #include "llvm/Bitcode/BitcodeReader.h"
29  #include "llvm/Bitcode/LLVMBitCodes.h"
30  #include "llvm/Bitstream/BitCodes.h"
31  #include "llvm/Bitstream/BitstreamWriter.h"
32  #include "llvm/Config/llvm-config.h"
33  #include "llvm/IR/Attributes.h"
34  #include "llvm/IR/BasicBlock.h"
35  #include "llvm/IR/Comdat.h"
36  #include "llvm/IR/Constant.h"
37  #include "llvm/IR/Constants.h"
38  #include "llvm/IR/DebugInfoMetadata.h"
39  #include "llvm/IR/DebugLoc.h"
40  #include "llvm/IR/DerivedTypes.h"
41  #include "llvm/IR/Function.h"
42  #include "llvm/IR/GlobalAlias.h"
43  #include "llvm/IR/GlobalIFunc.h"
44  #include "llvm/IR/GlobalObject.h"
45  #include "llvm/IR/GlobalValue.h"
46  #include "llvm/IR/GlobalVariable.h"
47  #include "llvm/IR/InlineAsm.h"
48  #include "llvm/IR/InstrTypes.h"
49  #include "llvm/IR/Instruction.h"
50  #include "llvm/IR/Instructions.h"
51  #include "llvm/IR/LLVMContext.h"
52  #include "llvm/IR/Metadata.h"
53  #include "llvm/IR/Module.h"
54  #include "llvm/IR/ModuleSummaryIndex.h"
55  #include "llvm/IR/Operator.h"
56  #include "llvm/IR/Type.h"
57  #include "llvm/IR/UseListOrder.h"
58  #include "llvm/IR/Value.h"
59  #include "llvm/IR/ValueSymbolTable.h"
60  #include "llvm/MC/StringTableBuilder.h"
61  #include "llvm/Object/IRSymtab.h"
62  #include "llvm/Support/AtomicOrdering.h"
63  #include "llvm/Support/Casting.h"
64  #include "llvm/Support/CommandLine.h"
65  #include "llvm/Support/Endian.h"
66  #include "llvm/Support/Error.h"
67  #include "llvm/Support/ErrorHandling.h"
68  #include "llvm/Support/MathExtras.h"
69  #include "llvm/Support/SHA1.h"
70  #include "llvm/Support/TargetRegistry.h"
71  #include "llvm/Support/raw_ostream.h"
72  #include <algorithm>
73  #include <cassert>
74  #include <cstddef>
75  #include <cstdint>
76  #include <iterator>
77  #include <map>
78  #include <memory>
79  #include <string>
80  #include <utility>
81  #include <vector>
82  
83  using namespace llvm;
84  
85  static cl::opt<unsigned>
86      IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                     cl::desc("Number of metadatas above which we emit an index "
88                              "to enable lazy-loading"));
89  static cl::opt<uint32_t> FlushThreshold(
90      "bitcode-flush-threshold", cl::Hidden, cl::init(512),
91      cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
92  
93  static cl::opt<bool> WriteRelBFToSummary(
94      "write-relbf-to-summary", cl::Hidden, cl::init(false),
95      cl::desc("Write relative block frequency to function summary "));
96  
97  extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
98  
99  namespace {
100  
101  /// These are manifest constants used by the bitcode writer. They do not need to
102  /// be kept in sync with the reader, but need to be consistent within this file.
103  enum {
104    // VALUE_SYMTAB_BLOCK abbrev id's.
105    VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
106    VST_ENTRY_7_ABBREV,
107    VST_ENTRY_6_ABBREV,
108    VST_BBENTRY_6_ABBREV,
109  
110    // CONSTANTS_BLOCK abbrev id's.
111    CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112    CONSTANTS_INTEGER_ABBREV,
113    CONSTANTS_CE_CAST_Abbrev,
114    CONSTANTS_NULL_Abbrev,
115  
116    // FUNCTION_BLOCK abbrev id's.
117    FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118    FUNCTION_INST_UNOP_ABBREV,
119    FUNCTION_INST_UNOP_FLAGS_ABBREV,
120    FUNCTION_INST_BINOP_ABBREV,
121    FUNCTION_INST_BINOP_FLAGS_ABBREV,
122    FUNCTION_INST_CAST_ABBREV,
123    FUNCTION_INST_RET_VOID_ABBREV,
124    FUNCTION_INST_RET_VAL_ABBREV,
125    FUNCTION_INST_UNREACHABLE_ABBREV,
126    FUNCTION_INST_GEP_ABBREV,
127  };
128  
129  /// Abstract class to manage the bitcode writing, subclassed for each bitcode
130  /// file type.
131  class BitcodeWriterBase {
132  protected:
133    /// The stream created and owned by the client.
134    BitstreamWriter &Stream;
135  
136    StringTableBuilder &StrtabBuilder;
137  
138  public:
139    /// Constructs a BitcodeWriterBase object that writes to the provided
140    /// \p Stream.
141    BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
142        : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
143  
144  protected:
145    void writeBitcodeHeader();
146    void writeModuleVersion();
147  };
148  
149  void BitcodeWriterBase::writeModuleVersion() {
150    // VERSION: [version#]
151    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
152  }
153  
154  /// Base class to manage the module bitcode writing, currently subclassed for
155  /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
156  class ModuleBitcodeWriterBase : public BitcodeWriterBase {
157  protected:
158    /// The Module to write to bitcode.
159    const Module &M;
160  
161    /// Enumerates ids for all values in the module.
162    ValueEnumerator VE;
163  
164    /// Optional per-module index to write for ThinLTO.
165    const ModuleSummaryIndex *Index;
166  
167    /// Map that holds the correspondence between GUIDs in the summary index,
168    /// that came from indirect call profiles, and a value id generated by this
169    /// class to use in the VST and summary block records.
170    std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
171  
172    /// Tracks the last value id recorded in the GUIDToValueMap.
173    unsigned GlobalValueId;
174  
175    /// Saves the offset of the VSTOffset record that must eventually be
176    /// backpatched with the offset of the actual VST.
177    uint64_t VSTOffsetPlaceholder = 0;
178  
179  public:
180    /// Constructs a ModuleBitcodeWriterBase object for the given Module,
181    /// writing to the provided \p Buffer.
182    ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
183                            BitstreamWriter &Stream,
184                            bool ShouldPreserveUseListOrder,
185                            const ModuleSummaryIndex *Index)
186        : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
187          VE(M, ShouldPreserveUseListOrder), Index(Index) {
188      // Assign ValueIds to any callee values in the index that came from
189      // indirect call profiles and were recorded as a GUID not a Value*
190      // (which would have been assigned an ID by the ValueEnumerator).
191      // The starting ValueId is just after the number of values in the
192      // ValueEnumerator, so that they can be emitted in the VST.
193      GlobalValueId = VE.getValues().size();
194      if (!Index)
195        return;
196      for (const auto &GUIDSummaryLists : *Index)
197        // Examine all summaries for this GUID.
198        for (auto &Summary : GUIDSummaryLists.second.SummaryList)
199          if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
200            // For each call in the function summary, see if the call
201            // is to a GUID (which means it is for an indirect call,
202            // otherwise we would have a Value for it). If so, synthesize
203            // a value id.
204            for (auto &CallEdge : FS->calls())
205              if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
206                assignValueId(CallEdge.first.getGUID());
207    }
208  
209  protected:
210    void writePerModuleGlobalValueSummary();
211  
212  private:
213    void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
214                                             GlobalValueSummary *Summary,
215                                             unsigned ValueID,
216                                             unsigned FSCallsAbbrev,
217                                             unsigned FSCallsProfileAbbrev,
218                                             const Function &F);
219    void writeModuleLevelReferences(const GlobalVariable &V,
220                                    SmallVector<uint64_t, 64> &NameVals,
221                                    unsigned FSModRefsAbbrev,
222                                    unsigned FSModVTableRefsAbbrev);
223  
224    void assignValueId(GlobalValue::GUID ValGUID) {
225      GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
226    }
227  
228    unsigned getValueId(GlobalValue::GUID ValGUID) {
229      const auto &VMI = GUIDToValueIdMap.find(ValGUID);
230      // Expect that any GUID value had a value Id assigned by an
231      // earlier call to assignValueId.
232      assert(VMI != GUIDToValueIdMap.end() &&
233             "GUID does not have assigned value Id");
234      return VMI->second;
235    }
236  
237    // Helper to get the valueId for the type of value recorded in VI.
238    unsigned getValueId(ValueInfo VI) {
239      if (!VI.haveGVs() || !VI.getValue())
240        return getValueId(VI.getGUID());
241      return VE.getValueID(VI.getValue());
242    }
243  
244    std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
245  };
246  
247  /// Class to manage the bitcode writing for a module.
248  class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
249    /// Pointer to the buffer allocated by caller for bitcode writing.
250    const SmallVectorImpl<char> &Buffer;
251  
252    /// True if a module hash record should be written.
253    bool GenerateHash;
254  
255    /// If non-null, when GenerateHash is true, the resulting hash is written
256    /// into ModHash.
257    ModuleHash *ModHash;
258  
259    SHA1 Hasher;
260  
261    /// The start bit of the identification block.
262    uint64_t BitcodeStartBit;
263  
264  public:
265    /// Constructs a ModuleBitcodeWriter object for the given Module,
266    /// writing to the provided \p Buffer.
267    ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
268                        StringTableBuilder &StrtabBuilder,
269                        BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
270                        const ModuleSummaryIndex *Index, bool GenerateHash,
271                        ModuleHash *ModHash = nullptr)
272        : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
273                                  ShouldPreserveUseListOrder, Index),
274          Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
275          BitcodeStartBit(Stream.GetCurrentBitNo()) {}
276  
277    /// Emit the current module to the bitstream.
278    void write();
279  
280  private:
281    uint64_t bitcodeStartBit() { return BitcodeStartBit; }
282  
283    size_t addToStrtab(StringRef Str);
284  
285    void writeAttributeGroupTable();
286    void writeAttributeTable();
287    void writeTypeTable();
288    void writeComdats();
289    void writeValueSymbolTableForwardDecl();
290    void writeModuleInfo();
291    void writeValueAsMetadata(const ValueAsMetadata *MD,
292                              SmallVectorImpl<uint64_t> &Record);
293    void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
294                      unsigned Abbrev);
295    unsigned createDILocationAbbrev();
296    void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
297                         unsigned &Abbrev);
298    unsigned createGenericDINodeAbbrev();
299    void writeGenericDINode(const GenericDINode *N,
300                            SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
301    void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
302                         unsigned Abbrev);
303    void writeDIGenericSubrange(const DIGenericSubrange *N,
304                                SmallVectorImpl<uint64_t> &Record,
305                                unsigned Abbrev);
306    void writeDIEnumerator(const DIEnumerator *N,
307                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308    void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
309                          unsigned Abbrev);
310    void writeDIStringType(const DIStringType *N,
311                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312    void writeDIDerivedType(const DIDerivedType *N,
313                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314    void writeDICompositeType(const DICompositeType *N,
315                              SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316    void writeDISubroutineType(const DISubroutineType *N,
317                               SmallVectorImpl<uint64_t> &Record,
318                               unsigned Abbrev);
319    void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
320                     unsigned Abbrev);
321    void writeDICompileUnit(const DICompileUnit *N,
322                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323    void writeDISubprogram(const DISubprogram *N,
324                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325    void writeDILexicalBlock(const DILexicalBlock *N,
326                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327    void writeDILexicalBlockFile(const DILexicalBlockFile *N,
328                                 SmallVectorImpl<uint64_t> &Record,
329                                 unsigned Abbrev);
330    void writeDICommonBlock(const DICommonBlock *N,
331                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332    void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
333                          unsigned Abbrev);
334    void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
335                      unsigned Abbrev);
336    void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
337                          unsigned Abbrev);
338    void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
339                        unsigned Abbrev);
340    void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341                       unsigned Abbrev);
342    void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
343                                      SmallVectorImpl<uint64_t> &Record,
344                                      unsigned Abbrev);
345    void writeDITemplateValueParameter(const DITemplateValueParameter *N,
346                                       SmallVectorImpl<uint64_t> &Record,
347                                       unsigned Abbrev);
348    void writeDIGlobalVariable(const DIGlobalVariable *N,
349                               SmallVectorImpl<uint64_t> &Record,
350                               unsigned Abbrev);
351    void writeDILocalVariable(const DILocalVariable *N,
352                              SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
353    void writeDILabel(const DILabel *N,
354                      SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355    void writeDIExpression(const DIExpression *N,
356                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357    void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
358                                         SmallVectorImpl<uint64_t> &Record,
359                                         unsigned Abbrev);
360    void writeDIObjCProperty(const DIObjCProperty *N,
361                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
362    void writeDIImportedEntity(const DIImportedEntity *N,
363                               SmallVectorImpl<uint64_t> &Record,
364                               unsigned Abbrev);
365    unsigned createNamedMetadataAbbrev();
366    void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
367    unsigned createMetadataStringsAbbrev();
368    void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
369                              SmallVectorImpl<uint64_t> &Record);
370    void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
371                              SmallVectorImpl<uint64_t> &Record,
372                              std::vector<unsigned> *MDAbbrevs = nullptr,
373                              std::vector<uint64_t> *IndexPos = nullptr);
374    void writeModuleMetadata();
375    void writeFunctionMetadata(const Function &F);
376    void writeFunctionMetadataAttachment(const Function &F);
377    void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
378    void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
379                                      const GlobalObject &GO);
380    void writeModuleMetadataKinds();
381    void writeOperandBundleTags();
382    void writeSyncScopeNames();
383    void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
384    void writeModuleConstants();
385    bool pushValueAndType(const Value *V, unsigned InstID,
386                          SmallVectorImpl<unsigned> &Vals);
387    void writeOperandBundles(const CallBase &CB, unsigned InstID);
388    void pushValue(const Value *V, unsigned InstID,
389                   SmallVectorImpl<unsigned> &Vals);
390    void pushValueSigned(const Value *V, unsigned InstID,
391                         SmallVectorImpl<uint64_t> &Vals);
392    void writeInstruction(const Instruction &I, unsigned InstID,
393                          SmallVectorImpl<unsigned> &Vals);
394    void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
395    void writeGlobalValueSymbolTable(
396        DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
397    void writeUseList(UseListOrder &&Order);
398    void writeUseListBlock(const Function *F);
399    void
400    writeFunction(const Function &F,
401                  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
402    void writeBlockInfo();
403    void writeModuleHash(size_t BlockStartPos);
404  
405    unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
406      return unsigned(SSID);
407    }
408  
409    unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
410  };
411  
412  /// Class to manage the bitcode writing for a combined index.
413  class IndexBitcodeWriter : public BitcodeWriterBase {
414    /// The combined index to write to bitcode.
415    const ModuleSummaryIndex &Index;
416  
417    /// When writing a subset of the index for distributed backends, client
418    /// provides a map of modules to the corresponding GUIDs/summaries to write.
419    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
420  
421    /// Map that holds the correspondence between the GUID used in the combined
422    /// index and a value id generated by this class to use in references.
423    std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
424  
425    /// Tracks the last value id recorded in the GUIDToValueMap.
426    unsigned GlobalValueId = 0;
427  
428  public:
429    /// Constructs a IndexBitcodeWriter object for the given combined index,
430    /// writing to the provided \p Buffer. When writing a subset of the index
431    /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
432    IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
433                       const ModuleSummaryIndex &Index,
434                       const std::map<std::string, GVSummaryMapTy>
435                           *ModuleToSummariesForIndex = nullptr)
436        : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
437          ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
438      // Assign unique value ids to all summaries to be written, for use
439      // in writing out the call graph edges. Save the mapping from GUID
440      // to the new global value id to use when writing those edges, which
441      // are currently saved in the index in terms of GUID.
442      forEachSummary([&](GVInfo I, bool) {
443        GUIDToValueIdMap[I.first] = ++GlobalValueId;
444      });
445    }
446  
447    /// The below iterator returns the GUID and associated summary.
448    using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
449  
450    /// Calls the callback for each value GUID and summary to be written to
451    /// bitcode. This hides the details of whether they are being pulled from the
452    /// entire index or just those in a provided ModuleToSummariesForIndex map.
453    template<typename Functor>
454    void forEachSummary(Functor Callback) {
455      if (ModuleToSummariesForIndex) {
456        for (auto &M : *ModuleToSummariesForIndex)
457          for (auto &Summary : M.second) {
458            Callback(Summary, false);
459            // Ensure aliasee is handled, e.g. for assigning a valueId,
460            // even if we are not importing the aliasee directly (the
461            // imported alias will contain a copy of aliasee).
462            if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
463              Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
464          }
465      } else {
466        for (auto &Summaries : Index)
467          for (auto &Summary : Summaries.second.SummaryList)
468            Callback({Summaries.first, Summary.get()}, false);
469      }
470    }
471  
472    /// Calls the callback for each entry in the modulePaths StringMap that
473    /// should be written to the module path string table. This hides the details
474    /// of whether they are being pulled from the entire index or just those in a
475    /// provided ModuleToSummariesForIndex map.
476    template <typename Functor> void forEachModule(Functor Callback) {
477      if (ModuleToSummariesForIndex) {
478        for (const auto &M : *ModuleToSummariesForIndex) {
479          const auto &MPI = Index.modulePaths().find(M.first);
480          if (MPI == Index.modulePaths().end()) {
481            // This should only happen if the bitcode file was empty, in which
482            // case we shouldn't be importing (the ModuleToSummariesForIndex
483            // would only include the module we are writing and index for).
484            assert(ModuleToSummariesForIndex->size() == 1);
485            continue;
486          }
487          Callback(*MPI);
488        }
489      } else {
490        for (const auto &MPSE : Index.modulePaths())
491          Callback(MPSE);
492      }
493    }
494  
495    /// Main entry point for writing a combined index to bitcode.
496    void write();
497  
498  private:
499    void writeModStrings();
500    void writeCombinedGlobalValueSummary();
501  
502    Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
503      auto VMI = GUIDToValueIdMap.find(ValGUID);
504      if (VMI == GUIDToValueIdMap.end())
505        return None;
506      return VMI->second;
507    }
508  
509    std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
510  };
511  
512  } // end anonymous namespace
513  
514  static unsigned getEncodedCastOpcode(unsigned Opcode) {
515    switch (Opcode) {
516    default: llvm_unreachable("Unknown cast instruction!");
517    case Instruction::Trunc   : return bitc::CAST_TRUNC;
518    case Instruction::ZExt    : return bitc::CAST_ZEXT;
519    case Instruction::SExt    : return bitc::CAST_SEXT;
520    case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
521    case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
522    case Instruction::UIToFP  : return bitc::CAST_UITOFP;
523    case Instruction::SIToFP  : return bitc::CAST_SITOFP;
524    case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
525    case Instruction::FPExt   : return bitc::CAST_FPEXT;
526    case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
527    case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
528    case Instruction::BitCast : return bitc::CAST_BITCAST;
529    case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
530    }
531  }
532  
533  static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
534    switch (Opcode) {
535    default: llvm_unreachable("Unknown binary instruction!");
536    case Instruction::FNeg: return bitc::UNOP_FNEG;
537    }
538  }
539  
540  static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
541    switch (Opcode) {
542    default: llvm_unreachable("Unknown binary instruction!");
543    case Instruction::Add:
544    case Instruction::FAdd: return bitc::BINOP_ADD;
545    case Instruction::Sub:
546    case Instruction::FSub: return bitc::BINOP_SUB;
547    case Instruction::Mul:
548    case Instruction::FMul: return bitc::BINOP_MUL;
549    case Instruction::UDiv: return bitc::BINOP_UDIV;
550    case Instruction::FDiv:
551    case Instruction::SDiv: return bitc::BINOP_SDIV;
552    case Instruction::URem: return bitc::BINOP_UREM;
553    case Instruction::FRem:
554    case Instruction::SRem: return bitc::BINOP_SREM;
555    case Instruction::Shl:  return bitc::BINOP_SHL;
556    case Instruction::LShr: return bitc::BINOP_LSHR;
557    case Instruction::AShr: return bitc::BINOP_ASHR;
558    case Instruction::And:  return bitc::BINOP_AND;
559    case Instruction::Or:   return bitc::BINOP_OR;
560    case Instruction::Xor:  return bitc::BINOP_XOR;
561    }
562  }
563  
564  static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
565    switch (Op) {
566    default: llvm_unreachable("Unknown RMW operation!");
567    case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
568    case AtomicRMWInst::Add: return bitc::RMW_ADD;
569    case AtomicRMWInst::Sub: return bitc::RMW_SUB;
570    case AtomicRMWInst::And: return bitc::RMW_AND;
571    case AtomicRMWInst::Nand: return bitc::RMW_NAND;
572    case AtomicRMWInst::Or: return bitc::RMW_OR;
573    case AtomicRMWInst::Xor: return bitc::RMW_XOR;
574    case AtomicRMWInst::Max: return bitc::RMW_MAX;
575    case AtomicRMWInst::Min: return bitc::RMW_MIN;
576    case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
577    case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
578    case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
579    case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
580    }
581  }
582  
583  static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
584    switch (Ordering) {
585    case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
586    case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
587    case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
588    case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
589    case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
590    case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
591    case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
592    }
593    llvm_unreachable("Invalid ordering");
594  }
595  
596  static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
597                                StringRef Str, unsigned AbbrevToUse) {
598    SmallVector<unsigned, 64> Vals;
599  
600    // Code: [strchar x N]
601    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
602      if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
603        AbbrevToUse = 0;
604      Vals.push_back(Str[i]);
605    }
606  
607    // Emit the finished record.
608    Stream.EmitRecord(Code, Vals, AbbrevToUse);
609  }
610  
611  static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
612    switch (Kind) {
613    case Attribute::Alignment:
614      return bitc::ATTR_KIND_ALIGNMENT;
615    case Attribute::AllocSize:
616      return bitc::ATTR_KIND_ALLOC_SIZE;
617    case Attribute::AlwaysInline:
618      return bitc::ATTR_KIND_ALWAYS_INLINE;
619    case Attribute::ArgMemOnly:
620      return bitc::ATTR_KIND_ARGMEMONLY;
621    case Attribute::Builtin:
622      return bitc::ATTR_KIND_BUILTIN;
623    case Attribute::ByVal:
624      return bitc::ATTR_KIND_BY_VAL;
625    case Attribute::Convergent:
626      return bitc::ATTR_KIND_CONVERGENT;
627    case Attribute::InAlloca:
628      return bitc::ATTR_KIND_IN_ALLOCA;
629    case Attribute::Cold:
630      return bitc::ATTR_KIND_COLD;
631    case Attribute::Hot:
632      return bitc::ATTR_KIND_HOT;
633    case Attribute::ElementType:
634      return bitc::ATTR_KIND_ELEMENTTYPE;
635    case Attribute::InaccessibleMemOnly:
636      return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
637    case Attribute::InaccessibleMemOrArgMemOnly:
638      return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
639    case Attribute::InlineHint:
640      return bitc::ATTR_KIND_INLINE_HINT;
641    case Attribute::InReg:
642      return bitc::ATTR_KIND_IN_REG;
643    case Attribute::JumpTable:
644      return bitc::ATTR_KIND_JUMP_TABLE;
645    case Attribute::MinSize:
646      return bitc::ATTR_KIND_MIN_SIZE;
647    case Attribute::Naked:
648      return bitc::ATTR_KIND_NAKED;
649    case Attribute::Nest:
650      return bitc::ATTR_KIND_NEST;
651    case Attribute::NoAlias:
652      return bitc::ATTR_KIND_NO_ALIAS;
653    case Attribute::NoBuiltin:
654      return bitc::ATTR_KIND_NO_BUILTIN;
655    case Attribute::NoCallback:
656      return bitc::ATTR_KIND_NO_CALLBACK;
657    case Attribute::NoCapture:
658      return bitc::ATTR_KIND_NO_CAPTURE;
659    case Attribute::NoDuplicate:
660      return bitc::ATTR_KIND_NO_DUPLICATE;
661    case Attribute::NoFree:
662      return bitc::ATTR_KIND_NOFREE;
663    case Attribute::NoImplicitFloat:
664      return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
665    case Attribute::NoInline:
666      return bitc::ATTR_KIND_NO_INLINE;
667    case Attribute::NoRecurse:
668      return bitc::ATTR_KIND_NO_RECURSE;
669    case Attribute::NoMerge:
670      return bitc::ATTR_KIND_NO_MERGE;
671    case Attribute::NonLazyBind:
672      return bitc::ATTR_KIND_NON_LAZY_BIND;
673    case Attribute::NonNull:
674      return bitc::ATTR_KIND_NON_NULL;
675    case Attribute::Dereferenceable:
676      return bitc::ATTR_KIND_DEREFERENCEABLE;
677    case Attribute::DereferenceableOrNull:
678      return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
679    case Attribute::NoRedZone:
680      return bitc::ATTR_KIND_NO_RED_ZONE;
681    case Attribute::NoReturn:
682      return bitc::ATTR_KIND_NO_RETURN;
683    case Attribute::NoSync:
684      return bitc::ATTR_KIND_NOSYNC;
685    case Attribute::NoCfCheck:
686      return bitc::ATTR_KIND_NOCF_CHECK;
687    case Attribute::NoProfile:
688      return bitc::ATTR_KIND_NO_PROFILE;
689    case Attribute::NoUnwind:
690      return bitc::ATTR_KIND_NO_UNWIND;
691    case Attribute::NoSanitizeCoverage:
692      return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
693    case Attribute::NullPointerIsValid:
694      return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
695    case Attribute::OptForFuzzing:
696      return bitc::ATTR_KIND_OPT_FOR_FUZZING;
697    case Attribute::OptimizeForSize:
698      return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
699    case Attribute::OptimizeNone:
700      return bitc::ATTR_KIND_OPTIMIZE_NONE;
701    case Attribute::ReadNone:
702      return bitc::ATTR_KIND_READ_NONE;
703    case Attribute::ReadOnly:
704      return bitc::ATTR_KIND_READ_ONLY;
705    case Attribute::Returned:
706      return bitc::ATTR_KIND_RETURNED;
707    case Attribute::ReturnsTwice:
708      return bitc::ATTR_KIND_RETURNS_TWICE;
709    case Attribute::SExt:
710      return bitc::ATTR_KIND_S_EXT;
711    case Attribute::Speculatable:
712      return bitc::ATTR_KIND_SPECULATABLE;
713    case Attribute::StackAlignment:
714      return bitc::ATTR_KIND_STACK_ALIGNMENT;
715    case Attribute::StackProtect:
716      return bitc::ATTR_KIND_STACK_PROTECT;
717    case Attribute::StackProtectReq:
718      return bitc::ATTR_KIND_STACK_PROTECT_REQ;
719    case Attribute::StackProtectStrong:
720      return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
721    case Attribute::SafeStack:
722      return bitc::ATTR_KIND_SAFESTACK;
723    case Attribute::ShadowCallStack:
724      return bitc::ATTR_KIND_SHADOWCALLSTACK;
725    case Attribute::StrictFP:
726      return bitc::ATTR_KIND_STRICT_FP;
727    case Attribute::StructRet:
728      return bitc::ATTR_KIND_STRUCT_RET;
729    case Attribute::SanitizeAddress:
730      return bitc::ATTR_KIND_SANITIZE_ADDRESS;
731    case Attribute::SanitizeHWAddress:
732      return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
733    case Attribute::SanitizeThread:
734      return bitc::ATTR_KIND_SANITIZE_THREAD;
735    case Attribute::SanitizeMemory:
736      return bitc::ATTR_KIND_SANITIZE_MEMORY;
737    case Attribute::SpeculativeLoadHardening:
738      return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
739    case Attribute::SwiftError:
740      return bitc::ATTR_KIND_SWIFT_ERROR;
741    case Attribute::SwiftSelf:
742      return bitc::ATTR_KIND_SWIFT_SELF;
743    case Attribute::SwiftAsync:
744      return bitc::ATTR_KIND_SWIFT_ASYNC;
745    case Attribute::UWTable:
746      return bitc::ATTR_KIND_UW_TABLE;
747    case Attribute::VScaleRange:
748      return bitc::ATTR_KIND_VSCALE_RANGE;
749    case Attribute::WillReturn:
750      return bitc::ATTR_KIND_WILLRETURN;
751    case Attribute::WriteOnly:
752      return bitc::ATTR_KIND_WRITEONLY;
753    case Attribute::ZExt:
754      return bitc::ATTR_KIND_Z_EXT;
755    case Attribute::ImmArg:
756      return bitc::ATTR_KIND_IMMARG;
757    case Attribute::SanitizeMemTag:
758      return bitc::ATTR_KIND_SANITIZE_MEMTAG;
759    case Attribute::Preallocated:
760      return bitc::ATTR_KIND_PREALLOCATED;
761    case Attribute::NoUndef:
762      return bitc::ATTR_KIND_NOUNDEF;
763    case Attribute::ByRef:
764      return bitc::ATTR_KIND_BYREF;
765    case Attribute::MustProgress:
766      return bitc::ATTR_KIND_MUSTPROGRESS;
767    case Attribute::EndAttrKinds:
768      llvm_unreachable("Can not encode end-attribute kinds marker.");
769    case Attribute::None:
770      llvm_unreachable("Can not encode none-attribute.");
771    case Attribute::EmptyKey:
772    case Attribute::TombstoneKey:
773      llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
774    }
775  
776    llvm_unreachable("Trying to encode unknown attribute");
777  }
778  
779  void ModuleBitcodeWriter::writeAttributeGroupTable() {
780    const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
781        VE.getAttributeGroups();
782    if (AttrGrps.empty()) return;
783  
784    Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
785  
786    SmallVector<uint64_t, 64> Record;
787    for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
788      unsigned AttrListIndex = Pair.first;
789      AttributeSet AS = Pair.second;
790      Record.push_back(VE.getAttributeGroupID(Pair));
791      Record.push_back(AttrListIndex);
792  
793      for (Attribute Attr : AS) {
794        if (Attr.isEnumAttribute()) {
795          Record.push_back(0);
796          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
797        } else if (Attr.isIntAttribute()) {
798          Record.push_back(1);
799          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
800          Record.push_back(Attr.getValueAsInt());
801        } else if (Attr.isStringAttribute()) {
802          StringRef Kind = Attr.getKindAsString();
803          StringRef Val = Attr.getValueAsString();
804  
805          Record.push_back(Val.empty() ? 3 : 4);
806          Record.append(Kind.begin(), Kind.end());
807          Record.push_back(0);
808          if (!Val.empty()) {
809            Record.append(Val.begin(), Val.end());
810            Record.push_back(0);
811          }
812        } else {
813          assert(Attr.isTypeAttribute());
814          Type *Ty = Attr.getValueAsType();
815          Record.push_back(Ty ? 6 : 5);
816          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
817          if (Ty)
818            Record.push_back(VE.getTypeID(Attr.getValueAsType()));
819        }
820      }
821  
822      Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
823      Record.clear();
824    }
825  
826    Stream.ExitBlock();
827  }
828  
829  void ModuleBitcodeWriter::writeAttributeTable() {
830    const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
831    if (Attrs.empty()) return;
832  
833    Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
834  
835    SmallVector<uint64_t, 64> Record;
836    for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
837      AttributeList AL = Attrs[i];
838      for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
839        AttributeSet AS = AL.getAttributes(i);
840        if (AS.hasAttributes())
841          Record.push_back(VE.getAttributeGroupID({i, AS}));
842      }
843  
844      Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
845      Record.clear();
846    }
847  
848    Stream.ExitBlock();
849  }
850  
851  /// WriteTypeTable - Write out the type table for a module.
852  void ModuleBitcodeWriter::writeTypeTable() {
853    const ValueEnumerator::TypeList &TypeList = VE.getTypes();
854  
855    Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
856    SmallVector<uint64_t, 64> TypeVals;
857  
858    uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
859  
860    // Abbrev for TYPE_CODE_POINTER.
861    auto Abbv = std::make_shared<BitCodeAbbrev>();
862    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
863    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
864    Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
865    unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
866  
867    // Abbrev for TYPE_CODE_OPAQUE_POINTER.
868    Abbv = std::make_shared<BitCodeAbbrev>();
869    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
870    Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
871    unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
872  
873    // Abbrev for TYPE_CODE_FUNCTION.
874    Abbv = std::make_shared<BitCodeAbbrev>();
875    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
876    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
877    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
878    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
879    unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
880  
881    // Abbrev for TYPE_CODE_STRUCT_ANON.
882    Abbv = std::make_shared<BitCodeAbbrev>();
883    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
884    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
885    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
886    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
887    unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
888  
889    // Abbrev for TYPE_CODE_STRUCT_NAME.
890    Abbv = std::make_shared<BitCodeAbbrev>();
891    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
892    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
893    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
894    unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
895  
896    // Abbrev for TYPE_CODE_STRUCT_NAMED.
897    Abbv = std::make_shared<BitCodeAbbrev>();
898    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
899    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
900    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
901    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
902    unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
903  
904    // Abbrev for TYPE_CODE_ARRAY.
905    Abbv = std::make_shared<BitCodeAbbrev>();
906    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
907    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
908    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
909    unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
910  
911    // Emit an entry count so the reader can reserve space.
912    TypeVals.push_back(TypeList.size());
913    Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
914    TypeVals.clear();
915  
916    // Loop over all of the types, emitting each in turn.
917    for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
918      Type *T = TypeList[i];
919      int AbbrevToUse = 0;
920      unsigned Code = 0;
921  
922      switch (T->getTypeID()) {
923      case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
924      case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
925      case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
926      case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
927      case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
928      case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
929      case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
930      case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
931      case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
932      case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
933      case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
934      case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
935      case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
936      case Type::IntegerTyID:
937        // INTEGER: [width]
938        Code = bitc::TYPE_CODE_INTEGER;
939        TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
940        break;
941      case Type::PointerTyID: {
942        PointerType *PTy = cast<PointerType>(T);
943        unsigned AddressSpace = PTy->getAddressSpace();
944        if (PTy->isOpaque()) {
945          // OPAQUE_POINTER: [address space]
946          Code = bitc::TYPE_CODE_OPAQUE_POINTER;
947          TypeVals.push_back(AddressSpace);
948          if (AddressSpace == 0)
949            AbbrevToUse = OpaquePtrAbbrev;
950        } else {
951          // POINTER: [pointee type, address space]
952          Code = bitc::TYPE_CODE_POINTER;
953          TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
954          TypeVals.push_back(AddressSpace);
955          if (AddressSpace == 0)
956            AbbrevToUse = PtrAbbrev;
957        }
958        break;
959      }
960      case Type::FunctionTyID: {
961        FunctionType *FT = cast<FunctionType>(T);
962        // FUNCTION: [isvararg, retty, paramty x N]
963        Code = bitc::TYPE_CODE_FUNCTION;
964        TypeVals.push_back(FT->isVarArg());
965        TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
966        for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
967          TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
968        AbbrevToUse = FunctionAbbrev;
969        break;
970      }
971      case Type::StructTyID: {
972        StructType *ST = cast<StructType>(T);
973        // STRUCT: [ispacked, eltty x N]
974        TypeVals.push_back(ST->isPacked());
975        // Output all of the element types.
976        for (StructType::element_iterator I = ST->element_begin(),
977             E = ST->element_end(); I != E; ++I)
978          TypeVals.push_back(VE.getTypeID(*I));
979  
980        if (ST->isLiteral()) {
981          Code = bitc::TYPE_CODE_STRUCT_ANON;
982          AbbrevToUse = StructAnonAbbrev;
983        } else {
984          if (ST->isOpaque()) {
985            Code = bitc::TYPE_CODE_OPAQUE;
986          } else {
987            Code = bitc::TYPE_CODE_STRUCT_NAMED;
988            AbbrevToUse = StructNamedAbbrev;
989          }
990  
991          // Emit the name if it is present.
992          if (!ST->getName().empty())
993            writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
994                              StructNameAbbrev);
995        }
996        break;
997      }
998      case Type::ArrayTyID: {
999        ArrayType *AT = cast<ArrayType>(T);
1000        // ARRAY: [numelts, eltty]
1001        Code = bitc::TYPE_CODE_ARRAY;
1002        TypeVals.push_back(AT->getNumElements());
1003        TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1004        AbbrevToUse = ArrayAbbrev;
1005        break;
1006      }
1007      case Type::FixedVectorTyID:
1008      case Type::ScalableVectorTyID: {
1009        VectorType *VT = cast<VectorType>(T);
1010        // VECTOR [numelts, eltty] or
1011        //        [numelts, eltty, scalable]
1012        Code = bitc::TYPE_CODE_VECTOR;
1013        TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1014        TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1015        if (isa<ScalableVectorType>(VT))
1016          TypeVals.push_back(true);
1017        break;
1018      }
1019      }
1020  
1021      // Emit the finished record.
1022      Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1023      TypeVals.clear();
1024    }
1025  
1026    Stream.ExitBlock();
1027  }
1028  
1029  static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1030    switch (Linkage) {
1031    case GlobalValue::ExternalLinkage:
1032      return 0;
1033    case GlobalValue::WeakAnyLinkage:
1034      return 16;
1035    case GlobalValue::AppendingLinkage:
1036      return 2;
1037    case GlobalValue::InternalLinkage:
1038      return 3;
1039    case GlobalValue::LinkOnceAnyLinkage:
1040      return 18;
1041    case GlobalValue::ExternalWeakLinkage:
1042      return 7;
1043    case GlobalValue::CommonLinkage:
1044      return 8;
1045    case GlobalValue::PrivateLinkage:
1046      return 9;
1047    case GlobalValue::WeakODRLinkage:
1048      return 17;
1049    case GlobalValue::LinkOnceODRLinkage:
1050      return 19;
1051    case GlobalValue::AvailableExternallyLinkage:
1052      return 12;
1053    }
1054    llvm_unreachable("Invalid linkage");
1055  }
1056  
1057  static unsigned getEncodedLinkage(const GlobalValue &GV) {
1058    return getEncodedLinkage(GV.getLinkage());
1059  }
1060  
1061  static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1062    uint64_t RawFlags = 0;
1063    RawFlags |= Flags.ReadNone;
1064    RawFlags |= (Flags.ReadOnly << 1);
1065    RawFlags |= (Flags.NoRecurse << 2);
1066    RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1067    RawFlags |= (Flags.NoInline << 4);
1068    RawFlags |= (Flags.AlwaysInline << 5);
1069    return RawFlags;
1070  }
1071  
1072  // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1073  // in BitcodeReader.cpp.
1074  static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1075    uint64_t RawFlags = 0;
1076  
1077    RawFlags |= Flags.NotEligibleToImport; // bool
1078    RawFlags |= (Flags.Live << 1);
1079    RawFlags |= (Flags.DSOLocal << 2);
1080    RawFlags |= (Flags.CanAutoHide << 3);
1081  
1082    // Linkage don't need to be remapped at that time for the summary. Any future
1083    // change to the getEncodedLinkage() function will need to be taken into
1084    // account here as well.
1085    RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1086  
1087    RawFlags |= (Flags.Visibility << 8); // 2 bits
1088  
1089    return RawFlags;
1090  }
1091  
1092  static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1093    uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1094                        (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1095    return RawFlags;
1096  }
1097  
1098  static unsigned getEncodedVisibility(const GlobalValue &GV) {
1099    switch (GV.getVisibility()) {
1100    case GlobalValue::DefaultVisibility:   return 0;
1101    case GlobalValue::HiddenVisibility:    return 1;
1102    case GlobalValue::ProtectedVisibility: return 2;
1103    }
1104    llvm_unreachable("Invalid visibility");
1105  }
1106  
1107  static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1108    switch (GV.getDLLStorageClass()) {
1109    case GlobalValue::DefaultStorageClass:   return 0;
1110    case GlobalValue::DLLImportStorageClass: return 1;
1111    case GlobalValue::DLLExportStorageClass: return 2;
1112    }
1113    llvm_unreachable("Invalid DLL storage class");
1114  }
1115  
1116  static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1117    switch (GV.getThreadLocalMode()) {
1118      case GlobalVariable::NotThreadLocal:         return 0;
1119      case GlobalVariable::GeneralDynamicTLSModel: return 1;
1120      case GlobalVariable::LocalDynamicTLSModel:   return 2;
1121      case GlobalVariable::InitialExecTLSModel:    return 3;
1122      case GlobalVariable::LocalExecTLSModel:      return 4;
1123    }
1124    llvm_unreachable("Invalid TLS model");
1125  }
1126  
1127  static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1128    switch (C.getSelectionKind()) {
1129    case Comdat::Any:
1130      return bitc::COMDAT_SELECTION_KIND_ANY;
1131    case Comdat::ExactMatch:
1132      return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1133    case Comdat::Largest:
1134      return bitc::COMDAT_SELECTION_KIND_LARGEST;
1135    case Comdat::NoDeduplicate:
1136      return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1137    case Comdat::SameSize:
1138      return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1139    }
1140    llvm_unreachable("Invalid selection kind");
1141  }
1142  
1143  static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1144    switch (GV.getUnnamedAddr()) {
1145    case GlobalValue::UnnamedAddr::None:   return 0;
1146    case GlobalValue::UnnamedAddr::Local:  return 2;
1147    case GlobalValue::UnnamedAddr::Global: return 1;
1148    }
1149    llvm_unreachable("Invalid unnamed_addr");
1150  }
1151  
1152  size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1153    if (GenerateHash)
1154      Hasher.update(Str);
1155    return StrtabBuilder.add(Str);
1156  }
1157  
1158  void ModuleBitcodeWriter::writeComdats() {
1159    SmallVector<unsigned, 64> Vals;
1160    for (const Comdat *C : VE.getComdats()) {
1161      // COMDAT: [strtab offset, strtab size, selection_kind]
1162      Vals.push_back(addToStrtab(C->getName()));
1163      Vals.push_back(C->getName().size());
1164      Vals.push_back(getEncodedComdatSelectionKind(*C));
1165      Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1166      Vals.clear();
1167    }
1168  }
1169  
1170  /// Write a record that will eventually hold the word offset of the
1171  /// module-level VST. For now the offset is 0, which will be backpatched
1172  /// after the real VST is written. Saves the bit offset to backpatch.
1173  void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1174    // Write a placeholder value in for the offset of the real VST,
1175    // which is written after the function blocks so that it can include
1176    // the offset of each function. The placeholder offset will be
1177    // updated when the real VST is written.
1178    auto Abbv = std::make_shared<BitCodeAbbrev>();
1179    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1180    // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1181    // hold the real VST offset. Must use fixed instead of VBR as we don't
1182    // know how many VBR chunks to reserve ahead of time.
1183    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1184    unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1185  
1186    // Emit the placeholder
1187    uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1188    Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1189  
1190    // Compute and save the bit offset to the placeholder, which will be
1191    // patched when the real VST is written. We can simply subtract the 32-bit
1192    // fixed size from the current bit number to get the location to backpatch.
1193    VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1194  }
1195  
1196  enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1197  
1198  /// Determine the encoding to use for the given string name and length.
1199  static StringEncoding getStringEncoding(StringRef Str) {
1200    bool isChar6 = true;
1201    for (char C : Str) {
1202      if (isChar6)
1203        isChar6 = BitCodeAbbrevOp::isChar6(C);
1204      if ((unsigned char)C & 128)
1205        // don't bother scanning the rest.
1206        return SE_Fixed8;
1207    }
1208    if (isChar6)
1209      return SE_Char6;
1210    return SE_Fixed7;
1211  }
1212  
1213  /// Emit top-level description of module, including target triple, inline asm,
1214  /// descriptors for global variables, and function prototype info.
1215  /// Returns the bit offset to backpatch with the location of the real VST.
1216  void ModuleBitcodeWriter::writeModuleInfo() {
1217    // Emit various pieces of data attached to a module.
1218    if (!M.getTargetTriple().empty())
1219      writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1220                        0 /*TODO*/);
1221    const std::string &DL = M.getDataLayoutStr();
1222    if (!DL.empty())
1223      writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1224    if (!M.getModuleInlineAsm().empty())
1225      writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1226                        0 /*TODO*/);
1227  
1228    // Emit information about sections and GC, computing how many there are. Also
1229    // compute the maximum alignment value.
1230    std::map<std::string, unsigned> SectionMap;
1231    std::map<std::string, unsigned> GCMap;
1232    MaybeAlign MaxAlignment;
1233    unsigned MaxGlobalType = 0;
1234    const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1235      if (A)
1236        MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1237    };
1238    for (const GlobalVariable &GV : M.globals()) {
1239      UpdateMaxAlignment(GV.getAlign());
1240      MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1241      if (GV.hasSection()) {
1242        // Give section names unique ID's.
1243        unsigned &Entry = SectionMap[std::string(GV.getSection())];
1244        if (!Entry) {
1245          writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1246                            0 /*TODO*/);
1247          Entry = SectionMap.size();
1248        }
1249      }
1250    }
1251    for (const Function &F : M) {
1252      UpdateMaxAlignment(F.getAlign());
1253      if (F.hasSection()) {
1254        // Give section names unique ID's.
1255        unsigned &Entry = SectionMap[std::string(F.getSection())];
1256        if (!Entry) {
1257          writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1258                            0 /*TODO*/);
1259          Entry = SectionMap.size();
1260        }
1261      }
1262      if (F.hasGC()) {
1263        // Same for GC names.
1264        unsigned &Entry = GCMap[F.getGC()];
1265        if (!Entry) {
1266          writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1267                            0 /*TODO*/);
1268          Entry = GCMap.size();
1269        }
1270      }
1271    }
1272  
1273    // Emit abbrev for globals, now that we know # sections and max alignment.
1274    unsigned SimpleGVarAbbrev = 0;
1275    if (!M.global_empty()) {
1276      // Add an abbrev for common globals with no visibility or thread localness.
1277      auto Abbv = std::make_shared<BitCodeAbbrev>();
1278      Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1279      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1280      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1281      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1282                                Log2_32_Ceil(MaxGlobalType+1)));
1283      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1284                                                             //| explicitType << 1
1285                                                             //| constant
1286      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1287      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1288      if (!MaxAlignment)                                     // Alignment.
1289        Abbv->Add(BitCodeAbbrevOp(0));
1290      else {
1291        unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1292        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1293                                 Log2_32_Ceil(MaxEncAlignment+1)));
1294      }
1295      if (SectionMap.empty())                                    // Section.
1296        Abbv->Add(BitCodeAbbrevOp(0));
1297      else
1298        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1299                                 Log2_32_Ceil(SectionMap.size()+1)));
1300      // Don't bother emitting vis + thread local.
1301      SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1302    }
1303  
1304    SmallVector<unsigned, 64> Vals;
1305    // Emit the module's source file name.
1306    {
1307      StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1308      BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1309      if (Bits == SE_Char6)
1310        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1311      else if (Bits == SE_Fixed7)
1312        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1313  
1314      // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1315      auto Abbv = std::make_shared<BitCodeAbbrev>();
1316      Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1317      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1318      Abbv->Add(AbbrevOpToUse);
1319      unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1320  
1321      for (const auto P : M.getSourceFileName())
1322        Vals.push_back((unsigned char)P);
1323  
1324      // Emit the finished record.
1325      Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1326      Vals.clear();
1327    }
1328  
1329    // Emit the global variable information.
1330    for (const GlobalVariable &GV : M.globals()) {
1331      unsigned AbbrevToUse = 0;
1332  
1333      // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1334      //             linkage, alignment, section, visibility, threadlocal,
1335      //             unnamed_addr, externally_initialized, dllstorageclass,
1336      //             comdat, attributes, DSO_Local]
1337      Vals.push_back(addToStrtab(GV.getName()));
1338      Vals.push_back(GV.getName().size());
1339      Vals.push_back(VE.getTypeID(GV.getValueType()));
1340      Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1341      Vals.push_back(GV.isDeclaration() ? 0 :
1342                     (VE.getValueID(GV.getInitializer()) + 1));
1343      Vals.push_back(getEncodedLinkage(GV));
1344      Vals.push_back(getEncodedAlign(GV.getAlign()));
1345      Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1346                                     : 0);
1347      if (GV.isThreadLocal() ||
1348          GV.getVisibility() != GlobalValue::DefaultVisibility ||
1349          GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1350          GV.isExternallyInitialized() ||
1351          GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1352          GV.hasComdat() ||
1353          GV.hasAttributes() ||
1354          GV.isDSOLocal() ||
1355          GV.hasPartition()) {
1356        Vals.push_back(getEncodedVisibility(GV));
1357        Vals.push_back(getEncodedThreadLocalMode(GV));
1358        Vals.push_back(getEncodedUnnamedAddr(GV));
1359        Vals.push_back(GV.isExternallyInitialized());
1360        Vals.push_back(getEncodedDLLStorageClass(GV));
1361        Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1362  
1363        auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1364        Vals.push_back(VE.getAttributeListID(AL));
1365  
1366        Vals.push_back(GV.isDSOLocal());
1367        Vals.push_back(addToStrtab(GV.getPartition()));
1368        Vals.push_back(GV.getPartition().size());
1369      } else {
1370        AbbrevToUse = SimpleGVarAbbrev;
1371      }
1372  
1373      Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1374      Vals.clear();
1375    }
1376  
1377    // Emit the function proto information.
1378    for (const Function &F : M) {
1379      // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1380      //             linkage, paramattrs, alignment, section, visibility, gc,
1381      //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1382      //             prefixdata, personalityfn, DSO_Local, addrspace]
1383      Vals.push_back(addToStrtab(F.getName()));
1384      Vals.push_back(F.getName().size());
1385      Vals.push_back(VE.getTypeID(F.getFunctionType()));
1386      Vals.push_back(F.getCallingConv());
1387      Vals.push_back(F.isDeclaration());
1388      Vals.push_back(getEncodedLinkage(F));
1389      Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1390      Vals.push_back(getEncodedAlign(F.getAlign()));
1391      Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1392                                    : 0);
1393      Vals.push_back(getEncodedVisibility(F));
1394      Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1395      Vals.push_back(getEncodedUnnamedAddr(F));
1396      Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1397                                         : 0);
1398      Vals.push_back(getEncodedDLLStorageClass(F));
1399      Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1400      Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1401                                       : 0);
1402      Vals.push_back(
1403          F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1404  
1405      Vals.push_back(F.isDSOLocal());
1406      Vals.push_back(F.getAddressSpace());
1407      Vals.push_back(addToStrtab(F.getPartition()));
1408      Vals.push_back(F.getPartition().size());
1409  
1410      unsigned AbbrevToUse = 0;
1411      Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1412      Vals.clear();
1413    }
1414  
1415    // Emit the alias information.
1416    for (const GlobalAlias &A : M.aliases()) {
1417      // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1418      //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1419      //         DSO_Local]
1420      Vals.push_back(addToStrtab(A.getName()));
1421      Vals.push_back(A.getName().size());
1422      Vals.push_back(VE.getTypeID(A.getValueType()));
1423      Vals.push_back(A.getType()->getAddressSpace());
1424      Vals.push_back(VE.getValueID(A.getAliasee()));
1425      Vals.push_back(getEncodedLinkage(A));
1426      Vals.push_back(getEncodedVisibility(A));
1427      Vals.push_back(getEncodedDLLStorageClass(A));
1428      Vals.push_back(getEncodedThreadLocalMode(A));
1429      Vals.push_back(getEncodedUnnamedAddr(A));
1430      Vals.push_back(A.isDSOLocal());
1431      Vals.push_back(addToStrtab(A.getPartition()));
1432      Vals.push_back(A.getPartition().size());
1433  
1434      unsigned AbbrevToUse = 0;
1435      Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1436      Vals.clear();
1437    }
1438  
1439    // Emit the ifunc information.
1440    for (const GlobalIFunc &I : M.ifuncs()) {
1441      // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1442      //         val#, linkage, visibility, DSO_Local]
1443      Vals.push_back(addToStrtab(I.getName()));
1444      Vals.push_back(I.getName().size());
1445      Vals.push_back(VE.getTypeID(I.getValueType()));
1446      Vals.push_back(I.getType()->getAddressSpace());
1447      Vals.push_back(VE.getValueID(I.getResolver()));
1448      Vals.push_back(getEncodedLinkage(I));
1449      Vals.push_back(getEncodedVisibility(I));
1450      Vals.push_back(I.isDSOLocal());
1451      Vals.push_back(addToStrtab(I.getPartition()));
1452      Vals.push_back(I.getPartition().size());
1453      Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1454      Vals.clear();
1455    }
1456  
1457    writeValueSymbolTableForwardDecl();
1458  }
1459  
1460  static uint64_t getOptimizationFlags(const Value *V) {
1461    uint64_t Flags = 0;
1462  
1463    if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1464      if (OBO->hasNoSignedWrap())
1465        Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1466      if (OBO->hasNoUnsignedWrap())
1467        Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1468    } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1469      if (PEO->isExact())
1470        Flags |= 1 << bitc::PEO_EXACT;
1471    } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1472      if (FPMO->hasAllowReassoc())
1473        Flags |= bitc::AllowReassoc;
1474      if (FPMO->hasNoNaNs())
1475        Flags |= bitc::NoNaNs;
1476      if (FPMO->hasNoInfs())
1477        Flags |= bitc::NoInfs;
1478      if (FPMO->hasNoSignedZeros())
1479        Flags |= bitc::NoSignedZeros;
1480      if (FPMO->hasAllowReciprocal())
1481        Flags |= bitc::AllowReciprocal;
1482      if (FPMO->hasAllowContract())
1483        Flags |= bitc::AllowContract;
1484      if (FPMO->hasApproxFunc())
1485        Flags |= bitc::ApproxFunc;
1486    }
1487  
1488    return Flags;
1489  }
1490  
1491  void ModuleBitcodeWriter::writeValueAsMetadata(
1492      const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1493    // Mimic an MDNode with a value as one operand.
1494    Value *V = MD->getValue();
1495    Record.push_back(VE.getTypeID(V->getType()));
1496    Record.push_back(VE.getValueID(V));
1497    Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1498    Record.clear();
1499  }
1500  
1501  void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1502                                         SmallVectorImpl<uint64_t> &Record,
1503                                         unsigned Abbrev) {
1504    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1505      Metadata *MD = N->getOperand(i);
1506      assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1507             "Unexpected function-local metadata");
1508      Record.push_back(VE.getMetadataOrNullID(MD));
1509    }
1510    Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1511                                      : bitc::METADATA_NODE,
1512                      Record, Abbrev);
1513    Record.clear();
1514  }
1515  
1516  unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1517    // Assume the column is usually under 128, and always output the inlined-at
1518    // location (it's never more expensive than building an array size 1).
1519    auto Abbv = std::make_shared<BitCodeAbbrev>();
1520    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1521    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1522    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1523    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1524    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1525    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1526    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1527    return Stream.EmitAbbrev(std::move(Abbv));
1528  }
1529  
1530  void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1531                                            SmallVectorImpl<uint64_t> &Record,
1532                                            unsigned &Abbrev) {
1533    if (!Abbrev)
1534      Abbrev = createDILocationAbbrev();
1535  
1536    Record.push_back(N->isDistinct());
1537    Record.push_back(N->getLine());
1538    Record.push_back(N->getColumn());
1539    Record.push_back(VE.getMetadataID(N->getScope()));
1540    Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1541    Record.push_back(N->isImplicitCode());
1542  
1543    Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1544    Record.clear();
1545  }
1546  
1547  unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1548    // Assume the column is usually under 128, and always output the inlined-at
1549    // location (it's never more expensive than building an array size 1).
1550    auto Abbv = std::make_shared<BitCodeAbbrev>();
1551    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1552    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1553    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1554    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1555    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1556    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1557    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1558    return Stream.EmitAbbrev(std::move(Abbv));
1559  }
1560  
1561  void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1562                                               SmallVectorImpl<uint64_t> &Record,
1563                                               unsigned &Abbrev) {
1564    if (!Abbrev)
1565      Abbrev = createGenericDINodeAbbrev();
1566  
1567    Record.push_back(N->isDistinct());
1568    Record.push_back(N->getTag());
1569    Record.push_back(0); // Per-tag version field; unused for now.
1570  
1571    for (auto &I : N->operands())
1572      Record.push_back(VE.getMetadataOrNullID(I));
1573  
1574    Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1575    Record.clear();
1576  }
1577  
1578  void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1579                                            SmallVectorImpl<uint64_t> &Record,
1580                                            unsigned Abbrev) {
1581    const uint64_t Version = 2 << 1;
1582    Record.push_back((uint64_t)N->isDistinct() | Version);
1583    Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1584    Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1585    Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1586    Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1587  
1588    Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1589    Record.clear();
1590  }
1591  
1592  void ModuleBitcodeWriter::writeDIGenericSubrange(
1593      const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1594      unsigned Abbrev) {
1595    Record.push_back((uint64_t)N->isDistinct());
1596    Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1597    Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1598    Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1599    Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1600  
1601    Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1602    Record.clear();
1603  }
1604  
1605  static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1606    if ((int64_t)V >= 0)
1607      Vals.push_back(V << 1);
1608    else
1609      Vals.push_back((-V << 1) | 1);
1610  }
1611  
1612  static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1613    // We have an arbitrary precision integer value to write whose
1614    // bit width is > 64. However, in canonical unsigned integer
1615    // format it is likely that the high bits are going to be zero.
1616    // So, we only write the number of active words.
1617    unsigned NumWords = A.getActiveWords();
1618    const uint64_t *RawData = A.getRawData();
1619    for (unsigned i = 0; i < NumWords; i++)
1620      emitSignedInt64(Vals, RawData[i]);
1621  }
1622  
1623  void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1624                                              SmallVectorImpl<uint64_t> &Record,
1625                                              unsigned Abbrev) {
1626    const uint64_t IsBigInt = 1 << 2;
1627    Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1628    Record.push_back(N->getValue().getBitWidth());
1629    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1630    emitWideAPInt(Record, N->getValue());
1631  
1632    Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1633    Record.clear();
1634  }
1635  
1636  void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1637                                             SmallVectorImpl<uint64_t> &Record,
1638                                             unsigned Abbrev) {
1639    Record.push_back(N->isDistinct());
1640    Record.push_back(N->getTag());
1641    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1642    Record.push_back(N->getSizeInBits());
1643    Record.push_back(N->getAlignInBits());
1644    Record.push_back(N->getEncoding());
1645    Record.push_back(N->getFlags());
1646  
1647    Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1648    Record.clear();
1649  }
1650  
1651  void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1652                                              SmallVectorImpl<uint64_t> &Record,
1653                                              unsigned Abbrev) {
1654    Record.push_back(N->isDistinct());
1655    Record.push_back(N->getTag());
1656    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1657    Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1658    Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1659    Record.push_back(N->getSizeInBits());
1660    Record.push_back(N->getAlignInBits());
1661    Record.push_back(N->getEncoding());
1662  
1663    Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1664    Record.clear();
1665  }
1666  
1667  void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1668                                               SmallVectorImpl<uint64_t> &Record,
1669                                               unsigned Abbrev) {
1670    Record.push_back(N->isDistinct());
1671    Record.push_back(N->getTag());
1672    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1673    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1674    Record.push_back(N->getLine());
1675    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1676    Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1677    Record.push_back(N->getSizeInBits());
1678    Record.push_back(N->getAlignInBits());
1679    Record.push_back(N->getOffsetInBits());
1680    Record.push_back(N->getFlags());
1681    Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1682  
1683    // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1684    // that there is no DWARF address space associated with DIDerivedType.
1685    if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1686      Record.push_back(*DWARFAddressSpace + 1);
1687    else
1688      Record.push_back(0);
1689  
1690    Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1691    Record.clear();
1692  }
1693  
1694  void ModuleBitcodeWriter::writeDICompositeType(
1695      const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1696      unsigned Abbrev) {
1697    const unsigned IsNotUsedInOldTypeRef = 0x2;
1698    Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1699    Record.push_back(N->getTag());
1700    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1701    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1702    Record.push_back(N->getLine());
1703    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1704    Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1705    Record.push_back(N->getSizeInBits());
1706    Record.push_back(N->getAlignInBits());
1707    Record.push_back(N->getOffsetInBits());
1708    Record.push_back(N->getFlags());
1709    Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1710    Record.push_back(N->getRuntimeLang());
1711    Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1712    Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1713    Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1714    Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1715    Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1716    Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1717    Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1718    Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1719  
1720    Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1721    Record.clear();
1722  }
1723  
1724  void ModuleBitcodeWriter::writeDISubroutineType(
1725      const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1726      unsigned Abbrev) {
1727    const unsigned HasNoOldTypeRefs = 0x2;
1728    Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1729    Record.push_back(N->getFlags());
1730    Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1731    Record.push_back(N->getCC());
1732  
1733    Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1734    Record.clear();
1735  }
1736  
1737  void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1738                                        SmallVectorImpl<uint64_t> &Record,
1739                                        unsigned Abbrev) {
1740    Record.push_back(N->isDistinct());
1741    Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1742    Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1743    if (N->getRawChecksum()) {
1744      Record.push_back(N->getRawChecksum()->Kind);
1745      Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1746    } else {
1747      // Maintain backwards compatibility with the old internal representation of
1748      // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1749      Record.push_back(0);
1750      Record.push_back(VE.getMetadataOrNullID(nullptr));
1751    }
1752    auto Source = N->getRawSource();
1753    if (Source)
1754      Record.push_back(VE.getMetadataOrNullID(*Source));
1755  
1756    Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1757    Record.clear();
1758  }
1759  
1760  void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1761                                               SmallVectorImpl<uint64_t> &Record,
1762                                               unsigned Abbrev) {
1763    assert(N->isDistinct() && "Expected distinct compile units");
1764    Record.push_back(/* IsDistinct */ true);
1765    Record.push_back(N->getSourceLanguage());
1766    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1767    Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1768    Record.push_back(N->isOptimized());
1769    Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1770    Record.push_back(N->getRuntimeVersion());
1771    Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1772    Record.push_back(N->getEmissionKind());
1773    Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1774    Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1775    Record.push_back(/* subprograms */ 0);
1776    Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1777    Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1778    Record.push_back(N->getDWOId());
1779    Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1780    Record.push_back(N->getSplitDebugInlining());
1781    Record.push_back(N->getDebugInfoForProfiling());
1782    Record.push_back((unsigned)N->getNameTableKind());
1783    Record.push_back(N->getRangesBaseAddress());
1784    Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1785    Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1786  
1787    Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1788    Record.clear();
1789  }
1790  
1791  void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1792                                              SmallVectorImpl<uint64_t> &Record,
1793                                              unsigned Abbrev) {
1794    const uint64_t HasUnitFlag = 1 << 1;
1795    const uint64_t HasSPFlagsFlag = 1 << 2;
1796    Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1797    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1798    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1799    Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1800    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1801    Record.push_back(N->getLine());
1802    Record.push_back(VE.getMetadataOrNullID(N->getType()));
1803    Record.push_back(N->getScopeLine());
1804    Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1805    Record.push_back(N->getSPFlags());
1806    Record.push_back(N->getVirtualIndex());
1807    Record.push_back(N->getFlags());
1808    Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1809    Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1810    Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1811    Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1812    Record.push_back(N->getThisAdjustment());
1813    Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1814  
1815    Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1816    Record.clear();
1817  }
1818  
1819  void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1820                                                SmallVectorImpl<uint64_t> &Record,
1821                                                unsigned Abbrev) {
1822    Record.push_back(N->isDistinct());
1823    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1824    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1825    Record.push_back(N->getLine());
1826    Record.push_back(N->getColumn());
1827  
1828    Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1829    Record.clear();
1830  }
1831  
1832  void ModuleBitcodeWriter::writeDILexicalBlockFile(
1833      const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1834      unsigned Abbrev) {
1835    Record.push_back(N->isDistinct());
1836    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1837    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1838    Record.push_back(N->getDiscriminator());
1839  
1840    Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1841    Record.clear();
1842  }
1843  
1844  void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1845                                               SmallVectorImpl<uint64_t> &Record,
1846                                               unsigned Abbrev) {
1847    Record.push_back(N->isDistinct());
1848    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1849    Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1850    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1851    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1852    Record.push_back(N->getLineNo());
1853  
1854    Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1855    Record.clear();
1856  }
1857  
1858  void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1859                                             SmallVectorImpl<uint64_t> &Record,
1860                                             unsigned Abbrev) {
1861    Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1862    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1863    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864  
1865    Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1866    Record.clear();
1867  }
1868  
1869  void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1870                                         SmallVectorImpl<uint64_t> &Record,
1871                                         unsigned Abbrev) {
1872    Record.push_back(N->isDistinct());
1873    Record.push_back(N->getMacinfoType());
1874    Record.push_back(N->getLine());
1875    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1876    Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1877  
1878    Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1879    Record.clear();
1880  }
1881  
1882  void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1883                                             SmallVectorImpl<uint64_t> &Record,
1884                                             unsigned Abbrev) {
1885    Record.push_back(N->isDistinct());
1886    Record.push_back(N->getMacinfoType());
1887    Record.push_back(N->getLine());
1888    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1889    Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1890  
1891    Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1892    Record.clear();
1893  }
1894  
1895  void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1896                                           SmallVectorImpl<uint64_t> &Record,
1897                                           unsigned Abbrev) {
1898    Record.reserve(N->getArgs().size());
1899    for (ValueAsMetadata *MD : N->getArgs())
1900      Record.push_back(VE.getMetadataID(MD));
1901  
1902    Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1903    Record.clear();
1904  }
1905  
1906  void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1907                                          SmallVectorImpl<uint64_t> &Record,
1908                                          unsigned Abbrev) {
1909    Record.push_back(N->isDistinct());
1910    for (auto &I : N->operands())
1911      Record.push_back(VE.getMetadataOrNullID(I));
1912    Record.push_back(N->getLineNo());
1913    Record.push_back(N->getIsDecl());
1914  
1915    Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1916    Record.clear();
1917  }
1918  
1919  void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1920      const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1921      unsigned Abbrev) {
1922    Record.push_back(N->isDistinct());
1923    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1924    Record.push_back(VE.getMetadataOrNullID(N->getType()));
1925    Record.push_back(N->isDefault());
1926  
1927    Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1928    Record.clear();
1929  }
1930  
1931  void ModuleBitcodeWriter::writeDITemplateValueParameter(
1932      const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1933      unsigned Abbrev) {
1934    Record.push_back(N->isDistinct());
1935    Record.push_back(N->getTag());
1936    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1937    Record.push_back(VE.getMetadataOrNullID(N->getType()));
1938    Record.push_back(N->isDefault());
1939    Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1940  
1941    Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1942    Record.clear();
1943  }
1944  
1945  void ModuleBitcodeWriter::writeDIGlobalVariable(
1946      const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1947      unsigned Abbrev) {
1948    const uint64_t Version = 2 << 1;
1949    Record.push_back((uint64_t)N->isDistinct() | Version);
1950    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1951    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1952    Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1953    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1954    Record.push_back(N->getLine());
1955    Record.push_back(VE.getMetadataOrNullID(N->getType()));
1956    Record.push_back(N->isLocalToUnit());
1957    Record.push_back(N->isDefinition());
1958    Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1959    Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1960    Record.push_back(N->getAlignInBits());
1961  
1962    Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1963    Record.clear();
1964  }
1965  
1966  void ModuleBitcodeWriter::writeDILocalVariable(
1967      const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1968      unsigned Abbrev) {
1969    // In order to support all possible bitcode formats in BitcodeReader we need
1970    // to distinguish the following cases:
1971    // 1) Record has no artificial tag (Record[1]),
1972    //   has no obsolete inlinedAt field (Record[9]).
1973    //   In this case Record size will be 8, HasAlignment flag is false.
1974    // 2) Record has artificial tag (Record[1]),
1975    //   has no obsolete inlignedAt field (Record[9]).
1976    //   In this case Record size will be 9, HasAlignment flag is false.
1977    // 3) Record has both artificial tag (Record[1]) and
1978    //   obsolete inlignedAt field (Record[9]).
1979    //   In this case Record size will be 10, HasAlignment flag is false.
1980    // 4) Record has neither artificial tag, nor inlignedAt field, but
1981    //   HasAlignment flag is true and Record[8] contains alignment value.
1982    const uint64_t HasAlignmentFlag = 1 << 1;
1983    Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1984    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1985    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1986    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1987    Record.push_back(N->getLine());
1988    Record.push_back(VE.getMetadataOrNullID(N->getType()));
1989    Record.push_back(N->getArg());
1990    Record.push_back(N->getFlags());
1991    Record.push_back(N->getAlignInBits());
1992  
1993    Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1994    Record.clear();
1995  }
1996  
1997  void ModuleBitcodeWriter::writeDILabel(
1998      const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1999      unsigned Abbrev) {
2000    Record.push_back((uint64_t)N->isDistinct());
2001    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2002    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2003    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2004    Record.push_back(N->getLine());
2005  
2006    Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2007    Record.clear();
2008  }
2009  
2010  void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2011                                              SmallVectorImpl<uint64_t> &Record,
2012                                              unsigned Abbrev) {
2013    Record.reserve(N->getElements().size() + 1);
2014    const uint64_t Version = 3 << 1;
2015    Record.push_back((uint64_t)N->isDistinct() | Version);
2016    Record.append(N->elements_begin(), N->elements_end());
2017  
2018    Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2019    Record.clear();
2020  }
2021  
2022  void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2023      const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2024      unsigned Abbrev) {
2025    Record.push_back(N->isDistinct());
2026    Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2027    Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2028  
2029    Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2030    Record.clear();
2031  }
2032  
2033  void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2034                                                SmallVectorImpl<uint64_t> &Record,
2035                                                unsigned Abbrev) {
2036    Record.push_back(N->isDistinct());
2037    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2038    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2039    Record.push_back(N->getLine());
2040    Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2041    Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2042    Record.push_back(N->getAttributes());
2043    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2044  
2045    Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2046    Record.clear();
2047  }
2048  
2049  void ModuleBitcodeWriter::writeDIImportedEntity(
2050      const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2051      unsigned Abbrev) {
2052    Record.push_back(N->isDistinct());
2053    Record.push_back(N->getTag());
2054    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2055    Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2056    Record.push_back(N->getLine());
2057    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2058    Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2059  
2060    Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2061    Record.clear();
2062  }
2063  
2064  unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2065    auto Abbv = std::make_shared<BitCodeAbbrev>();
2066    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2067    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2068    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2069    return Stream.EmitAbbrev(std::move(Abbv));
2070  }
2071  
2072  void ModuleBitcodeWriter::writeNamedMetadata(
2073      SmallVectorImpl<uint64_t> &Record) {
2074    if (M.named_metadata_empty())
2075      return;
2076  
2077    unsigned Abbrev = createNamedMetadataAbbrev();
2078    for (const NamedMDNode &NMD : M.named_metadata()) {
2079      // Write name.
2080      StringRef Str = NMD.getName();
2081      Record.append(Str.bytes_begin(), Str.bytes_end());
2082      Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2083      Record.clear();
2084  
2085      // Write named metadata operands.
2086      for (const MDNode *N : NMD.operands())
2087        Record.push_back(VE.getMetadataID(N));
2088      Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2089      Record.clear();
2090    }
2091  }
2092  
2093  unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2094    auto Abbv = std::make_shared<BitCodeAbbrev>();
2095    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2096    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2097    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2098    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2099    return Stream.EmitAbbrev(std::move(Abbv));
2100  }
2101  
2102  /// Write out a record for MDString.
2103  ///
2104  /// All the metadata strings in a metadata block are emitted in a single
2105  /// record.  The sizes and strings themselves are shoved into a blob.
2106  void ModuleBitcodeWriter::writeMetadataStrings(
2107      ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2108    if (Strings.empty())
2109      return;
2110  
2111    // Start the record with the number of strings.
2112    Record.push_back(bitc::METADATA_STRINGS);
2113    Record.push_back(Strings.size());
2114  
2115    // Emit the sizes of the strings in the blob.
2116    SmallString<256> Blob;
2117    {
2118      BitstreamWriter W(Blob);
2119      for (const Metadata *MD : Strings)
2120        W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2121      W.FlushToWord();
2122    }
2123  
2124    // Add the offset to the strings to the record.
2125    Record.push_back(Blob.size());
2126  
2127    // Add the strings to the blob.
2128    for (const Metadata *MD : Strings)
2129      Blob.append(cast<MDString>(MD)->getString());
2130  
2131    // Emit the final record.
2132    Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2133    Record.clear();
2134  }
2135  
2136  // Generates an enum to use as an index in the Abbrev array of Metadata record.
2137  enum MetadataAbbrev : unsigned {
2138  #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2139  #include "llvm/IR/Metadata.def"
2140    LastPlusOne
2141  };
2142  
2143  void ModuleBitcodeWriter::writeMetadataRecords(
2144      ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2145      std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2146    if (MDs.empty())
2147      return;
2148  
2149    // Initialize MDNode abbreviations.
2150  #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2151  #include "llvm/IR/Metadata.def"
2152  
2153    for (const Metadata *MD : MDs) {
2154      if (IndexPos)
2155        IndexPos->push_back(Stream.GetCurrentBitNo());
2156      if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2157        assert(N->isResolved() && "Expected forward references to be resolved");
2158  
2159        switch (N->getMetadataID()) {
2160        default:
2161          llvm_unreachable("Invalid MDNode subclass");
2162  #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2163    case Metadata::CLASS##Kind:                                                  \
2164      if (MDAbbrevs)                                                             \
2165        write##CLASS(cast<CLASS>(N), Record,                                     \
2166                     (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2167      else                                                                       \
2168        write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2169      continue;
2170  #include "llvm/IR/Metadata.def"
2171        }
2172      }
2173      writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2174    }
2175  }
2176  
2177  void ModuleBitcodeWriter::writeModuleMetadata() {
2178    if (!VE.hasMDs() && M.named_metadata_empty())
2179      return;
2180  
2181    Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2182    SmallVector<uint64_t, 64> Record;
2183  
2184    // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2185    // block and load any metadata.
2186    std::vector<unsigned> MDAbbrevs;
2187  
2188    MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2189    MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2190    MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2191        createGenericDINodeAbbrev();
2192  
2193    auto Abbv = std::make_shared<BitCodeAbbrev>();
2194    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2195    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2196    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2197    unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2198  
2199    Abbv = std::make_shared<BitCodeAbbrev>();
2200    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2201    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2202    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2203    unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2204  
2205    // Emit MDStrings together upfront.
2206    writeMetadataStrings(VE.getMDStrings(), Record);
2207  
2208    // We only emit an index for the metadata record if we have more than a given
2209    // (naive) threshold of metadatas, otherwise it is not worth it.
2210    if (VE.getNonMDStrings().size() > IndexThreshold) {
2211      // Write a placeholder value in for the offset of the metadata index,
2212      // which is written after the records, so that it can include
2213      // the offset of each entry. The placeholder offset will be
2214      // updated after all records are emitted.
2215      uint64_t Vals[] = {0, 0};
2216      Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2217    }
2218  
2219    // Compute and save the bit offset to the current position, which will be
2220    // patched when we emit the index later. We can simply subtract the 64-bit
2221    // fixed size from the current bit number to get the location to backpatch.
2222    uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2223  
2224    // This index will contain the bitpos for each individual record.
2225    std::vector<uint64_t> IndexPos;
2226    IndexPos.reserve(VE.getNonMDStrings().size());
2227  
2228    // Write all the records
2229    writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2230  
2231    if (VE.getNonMDStrings().size() > IndexThreshold) {
2232      // Now that we have emitted all the records we will emit the index. But
2233      // first
2234      // backpatch the forward reference so that the reader can skip the records
2235      // efficiently.
2236      Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2237                             Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2238  
2239      // Delta encode the index.
2240      uint64_t PreviousValue = IndexOffsetRecordBitPos;
2241      for (auto &Elt : IndexPos) {
2242        auto EltDelta = Elt - PreviousValue;
2243        PreviousValue = Elt;
2244        Elt = EltDelta;
2245      }
2246      // Emit the index record.
2247      Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2248      IndexPos.clear();
2249    }
2250  
2251    // Write the named metadata now.
2252    writeNamedMetadata(Record);
2253  
2254    auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2255      SmallVector<uint64_t, 4> Record;
2256      Record.push_back(VE.getValueID(&GO));
2257      pushGlobalMetadataAttachment(Record, GO);
2258      Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2259    };
2260    for (const Function &F : M)
2261      if (F.isDeclaration() && F.hasMetadata())
2262        AddDeclAttachedMetadata(F);
2263    // FIXME: Only store metadata for declarations here, and move data for global
2264    // variable definitions to a separate block (PR28134).
2265    for (const GlobalVariable &GV : M.globals())
2266      if (GV.hasMetadata())
2267        AddDeclAttachedMetadata(GV);
2268  
2269    Stream.ExitBlock();
2270  }
2271  
2272  void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2273    if (!VE.hasMDs())
2274      return;
2275  
2276    Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2277    SmallVector<uint64_t, 64> Record;
2278    writeMetadataStrings(VE.getMDStrings(), Record);
2279    writeMetadataRecords(VE.getNonMDStrings(), Record);
2280    Stream.ExitBlock();
2281  }
2282  
2283  void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2284      SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2285    // [n x [id, mdnode]]
2286    SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2287    GO.getAllMetadata(MDs);
2288    for (const auto &I : MDs) {
2289      Record.push_back(I.first);
2290      Record.push_back(VE.getMetadataID(I.second));
2291    }
2292  }
2293  
2294  void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2295    Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2296  
2297    SmallVector<uint64_t, 64> Record;
2298  
2299    if (F.hasMetadata()) {
2300      pushGlobalMetadataAttachment(Record, F);
2301      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2302      Record.clear();
2303    }
2304  
2305    // Write metadata attachments
2306    // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2307    SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2308    for (const BasicBlock &BB : F)
2309      for (const Instruction &I : BB) {
2310        MDs.clear();
2311        I.getAllMetadataOtherThanDebugLoc(MDs);
2312  
2313        // If no metadata, ignore instruction.
2314        if (MDs.empty()) continue;
2315  
2316        Record.push_back(VE.getInstructionID(&I));
2317  
2318        for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2319          Record.push_back(MDs[i].first);
2320          Record.push_back(VE.getMetadataID(MDs[i].second));
2321        }
2322        Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2323        Record.clear();
2324      }
2325  
2326    Stream.ExitBlock();
2327  }
2328  
2329  void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2330    SmallVector<uint64_t, 64> Record;
2331  
2332    // Write metadata kinds
2333    // METADATA_KIND - [n x [id, name]]
2334    SmallVector<StringRef, 8> Names;
2335    M.getMDKindNames(Names);
2336  
2337    if (Names.empty()) return;
2338  
2339    Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2340  
2341    for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2342      Record.push_back(MDKindID);
2343      StringRef KName = Names[MDKindID];
2344      Record.append(KName.begin(), KName.end());
2345  
2346      Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2347      Record.clear();
2348    }
2349  
2350    Stream.ExitBlock();
2351  }
2352  
2353  void ModuleBitcodeWriter::writeOperandBundleTags() {
2354    // Write metadata kinds
2355    //
2356    // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2357    //
2358    // OPERAND_BUNDLE_TAG - [strchr x N]
2359  
2360    SmallVector<StringRef, 8> Tags;
2361    M.getOperandBundleTags(Tags);
2362  
2363    if (Tags.empty())
2364      return;
2365  
2366    Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2367  
2368    SmallVector<uint64_t, 64> Record;
2369  
2370    for (auto Tag : Tags) {
2371      Record.append(Tag.begin(), Tag.end());
2372  
2373      Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2374      Record.clear();
2375    }
2376  
2377    Stream.ExitBlock();
2378  }
2379  
2380  void ModuleBitcodeWriter::writeSyncScopeNames() {
2381    SmallVector<StringRef, 8> SSNs;
2382    M.getContext().getSyncScopeNames(SSNs);
2383    if (SSNs.empty())
2384      return;
2385  
2386    Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2387  
2388    SmallVector<uint64_t, 64> Record;
2389    for (auto SSN : SSNs) {
2390      Record.append(SSN.begin(), SSN.end());
2391      Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2392      Record.clear();
2393    }
2394  
2395    Stream.ExitBlock();
2396  }
2397  
2398  void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2399                                           bool isGlobal) {
2400    if (FirstVal == LastVal) return;
2401  
2402    Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2403  
2404    unsigned AggregateAbbrev = 0;
2405    unsigned String8Abbrev = 0;
2406    unsigned CString7Abbrev = 0;
2407    unsigned CString6Abbrev = 0;
2408    // If this is a constant pool for the module, emit module-specific abbrevs.
2409    if (isGlobal) {
2410      // Abbrev for CST_CODE_AGGREGATE.
2411      auto Abbv = std::make_shared<BitCodeAbbrev>();
2412      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2413      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2414      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2415      AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2416  
2417      // Abbrev for CST_CODE_STRING.
2418      Abbv = std::make_shared<BitCodeAbbrev>();
2419      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2420      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2421      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2422      String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2423      // Abbrev for CST_CODE_CSTRING.
2424      Abbv = std::make_shared<BitCodeAbbrev>();
2425      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2426      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2427      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2428      CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2429      // Abbrev for CST_CODE_CSTRING.
2430      Abbv = std::make_shared<BitCodeAbbrev>();
2431      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2432      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2433      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2434      CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2435    }
2436  
2437    SmallVector<uint64_t, 64> Record;
2438  
2439    const ValueEnumerator::ValueList &Vals = VE.getValues();
2440    Type *LastTy = nullptr;
2441    for (unsigned i = FirstVal; i != LastVal; ++i) {
2442      const Value *V = Vals[i].first;
2443      // If we need to switch types, do so now.
2444      if (V->getType() != LastTy) {
2445        LastTy = V->getType();
2446        Record.push_back(VE.getTypeID(LastTy));
2447        Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2448                          CONSTANTS_SETTYPE_ABBREV);
2449        Record.clear();
2450      }
2451  
2452      if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2453        Record.push_back(
2454            unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2455            unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2456  
2457        // Add the asm string.
2458        const std::string &AsmStr = IA->getAsmString();
2459        Record.push_back(AsmStr.size());
2460        Record.append(AsmStr.begin(), AsmStr.end());
2461  
2462        // Add the constraint string.
2463        const std::string &ConstraintStr = IA->getConstraintString();
2464        Record.push_back(ConstraintStr.size());
2465        Record.append(ConstraintStr.begin(), ConstraintStr.end());
2466        Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2467        Record.clear();
2468        continue;
2469      }
2470      const Constant *C = cast<Constant>(V);
2471      unsigned Code = -1U;
2472      unsigned AbbrevToUse = 0;
2473      if (C->isNullValue()) {
2474        Code = bitc::CST_CODE_NULL;
2475      } else if (isa<PoisonValue>(C)) {
2476        Code = bitc::CST_CODE_POISON;
2477      } else if (isa<UndefValue>(C)) {
2478        Code = bitc::CST_CODE_UNDEF;
2479      } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2480        if (IV->getBitWidth() <= 64) {
2481          uint64_t V = IV->getSExtValue();
2482          emitSignedInt64(Record, V);
2483          Code = bitc::CST_CODE_INTEGER;
2484          AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2485        } else {                             // Wide integers, > 64 bits in size.
2486          emitWideAPInt(Record, IV->getValue());
2487          Code = bitc::CST_CODE_WIDE_INTEGER;
2488        }
2489      } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2490        Code = bitc::CST_CODE_FLOAT;
2491        Type *Ty = CFP->getType();
2492        if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2493            Ty->isDoubleTy()) {
2494          Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2495        } else if (Ty->isX86_FP80Ty()) {
2496          // api needed to prevent premature destruction
2497          // bits are not in the same order as a normal i80 APInt, compensate.
2498          APInt api = CFP->getValueAPF().bitcastToAPInt();
2499          const uint64_t *p = api.getRawData();
2500          Record.push_back((p[1] << 48) | (p[0] >> 16));
2501          Record.push_back(p[0] & 0xffffLL);
2502        } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2503          APInt api = CFP->getValueAPF().bitcastToAPInt();
2504          const uint64_t *p = api.getRawData();
2505          Record.push_back(p[0]);
2506          Record.push_back(p[1]);
2507        } else {
2508          assert(0 && "Unknown FP type!");
2509        }
2510      } else if (isa<ConstantDataSequential>(C) &&
2511                 cast<ConstantDataSequential>(C)->isString()) {
2512        const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2513        // Emit constant strings specially.
2514        unsigned NumElts = Str->getNumElements();
2515        // If this is a null-terminated string, use the denser CSTRING encoding.
2516        if (Str->isCString()) {
2517          Code = bitc::CST_CODE_CSTRING;
2518          --NumElts;  // Don't encode the null, which isn't allowed by char6.
2519        } else {
2520          Code = bitc::CST_CODE_STRING;
2521          AbbrevToUse = String8Abbrev;
2522        }
2523        bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2524        bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2525        for (unsigned i = 0; i != NumElts; ++i) {
2526          unsigned char V = Str->getElementAsInteger(i);
2527          Record.push_back(V);
2528          isCStr7 &= (V & 128) == 0;
2529          if (isCStrChar6)
2530            isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2531        }
2532  
2533        if (isCStrChar6)
2534          AbbrevToUse = CString6Abbrev;
2535        else if (isCStr7)
2536          AbbrevToUse = CString7Abbrev;
2537      } else if (const ConstantDataSequential *CDS =
2538                    dyn_cast<ConstantDataSequential>(C)) {
2539        Code = bitc::CST_CODE_DATA;
2540        Type *EltTy = CDS->getElementType();
2541        if (isa<IntegerType>(EltTy)) {
2542          for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2543            Record.push_back(CDS->getElementAsInteger(i));
2544        } else {
2545          for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2546            Record.push_back(
2547                CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2548        }
2549      } else if (isa<ConstantAggregate>(C)) {
2550        Code = bitc::CST_CODE_AGGREGATE;
2551        for (const Value *Op : C->operands())
2552          Record.push_back(VE.getValueID(Op));
2553        AbbrevToUse = AggregateAbbrev;
2554      } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2555        switch (CE->getOpcode()) {
2556        default:
2557          if (Instruction::isCast(CE->getOpcode())) {
2558            Code = bitc::CST_CODE_CE_CAST;
2559            Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2560            Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2561            Record.push_back(VE.getValueID(C->getOperand(0)));
2562            AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2563          } else {
2564            assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2565            Code = bitc::CST_CODE_CE_BINOP;
2566            Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2567            Record.push_back(VE.getValueID(C->getOperand(0)));
2568            Record.push_back(VE.getValueID(C->getOperand(1)));
2569            uint64_t Flags = getOptimizationFlags(CE);
2570            if (Flags != 0)
2571              Record.push_back(Flags);
2572          }
2573          break;
2574        case Instruction::FNeg: {
2575          assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2576          Code = bitc::CST_CODE_CE_UNOP;
2577          Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2578          Record.push_back(VE.getValueID(C->getOperand(0)));
2579          uint64_t Flags = getOptimizationFlags(CE);
2580          if (Flags != 0)
2581            Record.push_back(Flags);
2582          break;
2583        }
2584        case Instruction::GetElementPtr: {
2585          Code = bitc::CST_CODE_CE_GEP;
2586          const auto *GO = cast<GEPOperator>(C);
2587          Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2588          if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2589            Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2590            Record.push_back((*Idx << 1) | GO->isInBounds());
2591          } else if (GO->isInBounds())
2592            Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2593          for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2594            Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2595            Record.push_back(VE.getValueID(C->getOperand(i)));
2596          }
2597          break;
2598        }
2599        case Instruction::Select:
2600          Code = bitc::CST_CODE_CE_SELECT;
2601          Record.push_back(VE.getValueID(C->getOperand(0)));
2602          Record.push_back(VE.getValueID(C->getOperand(1)));
2603          Record.push_back(VE.getValueID(C->getOperand(2)));
2604          break;
2605        case Instruction::ExtractElement:
2606          Code = bitc::CST_CODE_CE_EXTRACTELT;
2607          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2608          Record.push_back(VE.getValueID(C->getOperand(0)));
2609          Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2610          Record.push_back(VE.getValueID(C->getOperand(1)));
2611          break;
2612        case Instruction::InsertElement:
2613          Code = bitc::CST_CODE_CE_INSERTELT;
2614          Record.push_back(VE.getValueID(C->getOperand(0)));
2615          Record.push_back(VE.getValueID(C->getOperand(1)));
2616          Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2617          Record.push_back(VE.getValueID(C->getOperand(2)));
2618          break;
2619        case Instruction::ShuffleVector:
2620          // If the return type and argument types are the same, this is a
2621          // standard shufflevector instruction.  If the types are different,
2622          // then the shuffle is widening or truncating the input vectors, and
2623          // the argument type must also be encoded.
2624          if (C->getType() == C->getOperand(0)->getType()) {
2625            Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2626          } else {
2627            Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2628            Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2629          }
2630          Record.push_back(VE.getValueID(C->getOperand(0)));
2631          Record.push_back(VE.getValueID(C->getOperand(1)));
2632          Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2633          break;
2634        case Instruction::ICmp:
2635        case Instruction::FCmp:
2636          Code = bitc::CST_CODE_CE_CMP;
2637          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2638          Record.push_back(VE.getValueID(C->getOperand(0)));
2639          Record.push_back(VE.getValueID(C->getOperand(1)));
2640          Record.push_back(CE->getPredicate());
2641          break;
2642        }
2643      } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2644        Code = bitc::CST_CODE_BLOCKADDRESS;
2645        Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2646        Record.push_back(VE.getValueID(BA->getFunction()));
2647        Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2648      } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2649        Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2650        Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2651        Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2652      } else {
2653  #ifndef NDEBUG
2654        C->dump();
2655  #endif
2656        llvm_unreachable("Unknown constant!");
2657      }
2658      Stream.EmitRecord(Code, Record, AbbrevToUse);
2659      Record.clear();
2660    }
2661  
2662    Stream.ExitBlock();
2663  }
2664  
2665  void ModuleBitcodeWriter::writeModuleConstants() {
2666    const ValueEnumerator::ValueList &Vals = VE.getValues();
2667  
2668    // Find the first constant to emit, which is the first non-globalvalue value.
2669    // We know globalvalues have been emitted by WriteModuleInfo.
2670    for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2671      if (!isa<GlobalValue>(Vals[i].first)) {
2672        writeConstants(i, Vals.size(), true);
2673        return;
2674      }
2675    }
2676  }
2677  
2678  /// pushValueAndType - The file has to encode both the value and type id for
2679  /// many values, because we need to know what type to create for forward
2680  /// references.  However, most operands are not forward references, so this type
2681  /// field is not needed.
2682  ///
2683  /// This function adds V's value ID to Vals.  If the value ID is higher than the
2684  /// instruction ID, then it is a forward reference, and it also includes the
2685  /// type ID.  The value ID that is written is encoded relative to the InstID.
2686  bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2687                                             SmallVectorImpl<unsigned> &Vals) {
2688    unsigned ValID = VE.getValueID(V);
2689    // Make encoding relative to the InstID.
2690    Vals.push_back(InstID - ValID);
2691    if (ValID >= InstID) {
2692      Vals.push_back(VE.getTypeID(V->getType()));
2693      return true;
2694    }
2695    return false;
2696  }
2697  
2698  void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2699                                                unsigned InstID) {
2700    SmallVector<unsigned, 64> Record;
2701    LLVMContext &C = CS.getContext();
2702  
2703    for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2704      const auto &Bundle = CS.getOperandBundleAt(i);
2705      Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2706  
2707      for (auto &Input : Bundle.Inputs)
2708        pushValueAndType(Input, InstID, Record);
2709  
2710      Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2711      Record.clear();
2712    }
2713  }
2714  
2715  /// pushValue - Like pushValueAndType, but where the type of the value is
2716  /// omitted (perhaps it was already encoded in an earlier operand).
2717  void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2718                                      SmallVectorImpl<unsigned> &Vals) {
2719    unsigned ValID = VE.getValueID(V);
2720    Vals.push_back(InstID - ValID);
2721  }
2722  
2723  void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2724                                            SmallVectorImpl<uint64_t> &Vals) {
2725    unsigned ValID = VE.getValueID(V);
2726    int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2727    emitSignedInt64(Vals, diff);
2728  }
2729  
2730  /// WriteInstruction - Emit an instruction to the specified stream.
2731  void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2732                                             unsigned InstID,
2733                                             SmallVectorImpl<unsigned> &Vals) {
2734    unsigned Code = 0;
2735    unsigned AbbrevToUse = 0;
2736    VE.setInstructionID(&I);
2737    switch (I.getOpcode()) {
2738    default:
2739      if (Instruction::isCast(I.getOpcode())) {
2740        Code = bitc::FUNC_CODE_INST_CAST;
2741        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2742          AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2743        Vals.push_back(VE.getTypeID(I.getType()));
2744        Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2745      } else {
2746        assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2747        Code = bitc::FUNC_CODE_INST_BINOP;
2748        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2749          AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2750        pushValue(I.getOperand(1), InstID, Vals);
2751        Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2752        uint64_t Flags = getOptimizationFlags(&I);
2753        if (Flags != 0) {
2754          if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2755            AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2756          Vals.push_back(Flags);
2757        }
2758      }
2759      break;
2760    case Instruction::FNeg: {
2761      Code = bitc::FUNC_CODE_INST_UNOP;
2762      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2763        AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2764      Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2765      uint64_t Flags = getOptimizationFlags(&I);
2766      if (Flags != 0) {
2767        if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2768          AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2769        Vals.push_back(Flags);
2770      }
2771      break;
2772    }
2773    case Instruction::GetElementPtr: {
2774      Code = bitc::FUNC_CODE_INST_GEP;
2775      AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2776      auto &GEPInst = cast<GetElementPtrInst>(I);
2777      Vals.push_back(GEPInst.isInBounds());
2778      Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2779      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2780        pushValueAndType(I.getOperand(i), InstID, Vals);
2781      break;
2782    }
2783    case Instruction::ExtractValue: {
2784      Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2785      pushValueAndType(I.getOperand(0), InstID, Vals);
2786      const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2787      Vals.append(EVI->idx_begin(), EVI->idx_end());
2788      break;
2789    }
2790    case Instruction::InsertValue: {
2791      Code = bitc::FUNC_CODE_INST_INSERTVAL;
2792      pushValueAndType(I.getOperand(0), InstID, Vals);
2793      pushValueAndType(I.getOperand(1), InstID, Vals);
2794      const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2795      Vals.append(IVI->idx_begin(), IVI->idx_end());
2796      break;
2797    }
2798    case Instruction::Select: {
2799      Code = bitc::FUNC_CODE_INST_VSELECT;
2800      pushValueAndType(I.getOperand(1), InstID, Vals);
2801      pushValue(I.getOperand(2), InstID, Vals);
2802      pushValueAndType(I.getOperand(0), InstID, Vals);
2803      uint64_t Flags = getOptimizationFlags(&I);
2804      if (Flags != 0)
2805        Vals.push_back(Flags);
2806      break;
2807    }
2808    case Instruction::ExtractElement:
2809      Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2810      pushValueAndType(I.getOperand(0), InstID, Vals);
2811      pushValueAndType(I.getOperand(1), InstID, Vals);
2812      break;
2813    case Instruction::InsertElement:
2814      Code = bitc::FUNC_CODE_INST_INSERTELT;
2815      pushValueAndType(I.getOperand(0), InstID, Vals);
2816      pushValue(I.getOperand(1), InstID, Vals);
2817      pushValueAndType(I.getOperand(2), InstID, Vals);
2818      break;
2819    case Instruction::ShuffleVector:
2820      Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2821      pushValueAndType(I.getOperand(0), InstID, Vals);
2822      pushValue(I.getOperand(1), InstID, Vals);
2823      pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2824                Vals);
2825      break;
2826    case Instruction::ICmp:
2827    case Instruction::FCmp: {
2828      // compare returning Int1Ty or vector of Int1Ty
2829      Code = bitc::FUNC_CODE_INST_CMP2;
2830      pushValueAndType(I.getOperand(0), InstID, Vals);
2831      pushValue(I.getOperand(1), InstID, Vals);
2832      Vals.push_back(cast<CmpInst>(I).getPredicate());
2833      uint64_t Flags = getOptimizationFlags(&I);
2834      if (Flags != 0)
2835        Vals.push_back(Flags);
2836      break;
2837    }
2838  
2839    case Instruction::Ret:
2840      {
2841        Code = bitc::FUNC_CODE_INST_RET;
2842        unsigned NumOperands = I.getNumOperands();
2843        if (NumOperands == 0)
2844          AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2845        else if (NumOperands == 1) {
2846          if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2847            AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2848        } else {
2849          for (unsigned i = 0, e = NumOperands; i != e; ++i)
2850            pushValueAndType(I.getOperand(i), InstID, Vals);
2851        }
2852      }
2853      break;
2854    case Instruction::Br:
2855      {
2856        Code = bitc::FUNC_CODE_INST_BR;
2857        const BranchInst &II = cast<BranchInst>(I);
2858        Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2859        if (II.isConditional()) {
2860          Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2861          pushValue(II.getCondition(), InstID, Vals);
2862        }
2863      }
2864      break;
2865    case Instruction::Switch:
2866      {
2867        Code = bitc::FUNC_CODE_INST_SWITCH;
2868        const SwitchInst &SI = cast<SwitchInst>(I);
2869        Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2870        pushValue(SI.getCondition(), InstID, Vals);
2871        Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2872        for (auto Case : SI.cases()) {
2873          Vals.push_back(VE.getValueID(Case.getCaseValue()));
2874          Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2875        }
2876      }
2877      break;
2878    case Instruction::IndirectBr:
2879      Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2880      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2881      // Encode the address operand as relative, but not the basic blocks.
2882      pushValue(I.getOperand(0), InstID, Vals);
2883      for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2884        Vals.push_back(VE.getValueID(I.getOperand(i)));
2885      break;
2886  
2887    case Instruction::Invoke: {
2888      const InvokeInst *II = cast<InvokeInst>(&I);
2889      const Value *Callee = II->getCalledOperand();
2890      FunctionType *FTy = II->getFunctionType();
2891  
2892      if (II->hasOperandBundles())
2893        writeOperandBundles(*II, InstID);
2894  
2895      Code = bitc::FUNC_CODE_INST_INVOKE;
2896  
2897      Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2898      Vals.push_back(II->getCallingConv() | 1 << 13);
2899      Vals.push_back(VE.getValueID(II->getNormalDest()));
2900      Vals.push_back(VE.getValueID(II->getUnwindDest()));
2901      Vals.push_back(VE.getTypeID(FTy));
2902      pushValueAndType(Callee, InstID, Vals);
2903  
2904      // Emit value #'s for the fixed parameters.
2905      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2906        pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2907  
2908      // Emit type/value pairs for varargs params.
2909      if (FTy->isVarArg()) {
2910        for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2911             i != e; ++i)
2912          pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2913      }
2914      break;
2915    }
2916    case Instruction::Resume:
2917      Code = bitc::FUNC_CODE_INST_RESUME;
2918      pushValueAndType(I.getOperand(0), InstID, Vals);
2919      break;
2920    case Instruction::CleanupRet: {
2921      Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2922      const auto &CRI = cast<CleanupReturnInst>(I);
2923      pushValue(CRI.getCleanupPad(), InstID, Vals);
2924      if (CRI.hasUnwindDest())
2925        Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2926      break;
2927    }
2928    case Instruction::CatchRet: {
2929      Code = bitc::FUNC_CODE_INST_CATCHRET;
2930      const auto &CRI = cast<CatchReturnInst>(I);
2931      pushValue(CRI.getCatchPad(), InstID, Vals);
2932      Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2933      break;
2934    }
2935    case Instruction::CleanupPad:
2936    case Instruction::CatchPad: {
2937      const auto &FuncletPad = cast<FuncletPadInst>(I);
2938      Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2939                                           : bitc::FUNC_CODE_INST_CLEANUPPAD;
2940      pushValue(FuncletPad.getParentPad(), InstID, Vals);
2941  
2942      unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2943      Vals.push_back(NumArgOperands);
2944      for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2945        pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2946      break;
2947    }
2948    case Instruction::CatchSwitch: {
2949      Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2950      const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2951  
2952      pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2953  
2954      unsigned NumHandlers = CatchSwitch.getNumHandlers();
2955      Vals.push_back(NumHandlers);
2956      for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2957        Vals.push_back(VE.getValueID(CatchPadBB));
2958  
2959      if (CatchSwitch.hasUnwindDest())
2960        Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2961      break;
2962    }
2963    case Instruction::CallBr: {
2964      const CallBrInst *CBI = cast<CallBrInst>(&I);
2965      const Value *Callee = CBI->getCalledOperand();
2966      FunctionType *FTy = CBI->getFunctionType();
2967  
2968      if (CBI->hasOperandBundles())
2969        writeOperandBundles(*CBI, InstID);
2970  
2971      Code = bitc::FUNC_CODE_INST_CALLBR;
2972  
2973      Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2974  
2975      Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2976                     1 << bitc::CALL_EXPLICIT_TYPE);
2977  
2978      Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2979      Vals.push_back(CBI->getNumIndirectDests());
2980      for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2981        Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2982  
2983      Vals.push_back(VE.getTypeID(FTy));
2984      pushValueAndType(Callee, InstID, Vals);
2985  
2986      // Emit value #'s for the fixed parameters.
2987      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2988        pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2989  
2990      // Emit type/value pairs for varargs params.
2991      if (FTy->isVarArg()) {
2992        for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2993             i != e; ++i)
2994          pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2995      }
2996      break;
2997    }
2998    case Instruction::Unreachable:
2999      Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3000      AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3001      break;
3002  
3003    case Instruction::PHI: {
3004      const PHINode &PN = cast<PHINode>(I);
3005      Code = bitc::FUNC_CODE_INST_PHI;
3006      // With the newer instruction encoding, forward references could give
3007      // negative valued IDs.  This is most common for PHIs, so we use
3008      // signed VBRs.
3009      SmallVector<uint64_t, 128> Vals64;
3010      Vals64.push_back(VE.getTypeID(PN.getType()));
3011      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3012        pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3013        Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3014      }
3015  
3016      uint64_t Flags = getOptimizationFlags(&I);
3017      if (Flags != 0)
3018        Vals64.push_back(Flags);
3019  
3020      // Emit a Vals64 vector and exit.
3021      Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3022      Vals64.clear();
3023      return;
3024    }
3025  
3026    case Instruction::LandingPad: {
3027      const LandingPadInst &LP = cast<LandingPadInst>(I);
3028      Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3029      Vals.push_back(VE.getTypeID(LP.getType()));
3030      Vals.push_back(LP.isCleanup());
3031      Vals.push_back(LP.getNumClauses());
3032      for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3033        if (LP.isCatch(I))
3034          Vals.push_back(LandingPadInst::Catch);
3035        else
3036          Vals.push_back(LandingPadInst::Filter);
3037        pushValueAndType(LP.getClause(I), InstID, Vals);
3038      }
3039      break;
3040    }
3041  
3042    case Instruction::Alloca: {
3043      Code = bitc::FUNC_CODE_INST_ALLOCA;
3044      const AllocaInst &AI = cast<AllocaInst>(I);
3045      Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3046      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3047      Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3048      using APV = AllocaPackedValues;
3049      unsigned Record = 0;
3050      Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign()));
3051      Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3052      Bitfield::set<APV::ExplicitType>(Record, true);
3053      Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3054      Vals.push_back(Record);
3055      break;
3056    }
3057  
3058    case Instruction::Load:
3059      if (cast<LoadInst>(I).isAtomic()) {
3060        Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3061        pushValueAndType(I.getOperand(0), InstID, Vals);
3062      } else {
3063        Code = bitc::FUNC_CODE_INST_LOAD;
3064        if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3065          AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3066      }
3067      Vals.push_back(VE.getTypeID(I.getType()));
3068      Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3069      Vals.push_back(cast<LoadInst>(I).isVolatile());
3070      if (cast<LoadInst>(I).isAtomic()) {
3071        Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3072        Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3073      }
3074      break;
3075    case Instruction::Store:
3076      if (cast<StoreInst>(I).isAtomic())
3077        Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3078      else
3079        Code = bitc::FUNC_CODE_INST_STORE;
3080      pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3081      pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3082      Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3083      Vals.push_back(cast<StoreInst>(I).isVolatile());
3084      if (cast<StoreInst>(I).isAtomic()) {
3085        Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3086        Vals.push_back(
3087            getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3088      }
3089      break;
3090    case Instruction::AtomicCmpXchg:
3091      Code = bitc::FUNC_CODE_INST_CMPXCHG;
3092      pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3093      pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3094      pushValue(I.getOperand(2), InstID, Vals);        // newval.
3095      Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3096      Vals.push_back(
3097          getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3098      Vals.push_back(
3099          getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3100      Vals.push_back(
3101          getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3102      Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3103      Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3104      break;
3105    case Instruction::AtomicRMW:
3106      Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3107      pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3108      pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3109      Vals.push_back(
3110          getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3111      Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3112      Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3113      Vals.push_back(
3114          getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3115      Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3116      break;
3117    case Instruction::Fence:
3118      Code = bitc::FUNC_CODE_INST_FENCE;
3119      Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3120      Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3121      break;
3122    case Instruction::Call: {
3123      const CallInst &CI = cast<CallInst>(I);
3124      FunctionType *FTy = CI.getFunctionType();
3125  
3126      if (CI.hasOperandBundles())
3127        writeOperandBundles(CI, InstID);
3128  
3129      Code = bitc::FUNC_CODE_INST_CALL;
3130  
3131      Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3132  
3133      unsigned Flags = getOptimizationFlags(&I);
3134      Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3135                     unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3136                     unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3137                     1 << bitc::CALL_EXPLICIT_TYPE |
3138                     unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3139                     unsigned(Flags != 0) << bitc::CALL_FMF);
3140      if (Flags != 0)
3141        Vals.push_back(Flags);
3142  
3143      Vals.push_back(VE.getTypeID(FTy));
3144      pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3145  
3146      // Emit value #'s for the fixed parameters.
3147      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3148        // Check for labels (can happen with asm labels).
3149        if (FTy->getParamType(i)->isLabelTy())
3150          Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3151        else
3152          pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3153      }
3154  
3155      // Emit type/value pairs for varargs params.
3156      if (FTy->isVarArg()) {
3157        for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3158             i != e; ++i)
3159          pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3160      }
3161      break;
3162    }
3163    case Instruction::VAArg:
3164      Code = bitc::FUNC_CODE_INST_VAARG;
3165      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3166      pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3167      Vals.push_back(VE.getTypeID(I.getType())); // restype.
3168      break;
3169    case Instruction::Freeze:
3170      Code = bitc::FUNC_CODE_INST_FREEZE;
3171      pushValueAndType(I.getOperand(0), InstID, Vals);
3172      break;
3173    }
3174  
3175    Stream.EmitRecord(Code, Vals, AbbrevToUse);
3176    Vals.clear();
3177  }
3178  
3179  /// Write a GlobalValue VST to the module. The purpose of this data structure is
3180  /// to allow clients to efficiently find the function body.
3181  void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3182    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3183    // Get the offset of the VST we are writing, and backpatch it into
3184    // the VST forward declaration record.
3185    uint64_t VSTOffset = Stream.GetCurrentBitNo();
3186    // The BitcodeStartBit was the stream offset of the identification block.
3187    VSTOffset -= bitcodeStartBit();
3188    assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3189    // Note that we add 1 here because the offset is relative to one word
3190    // before the start of the identification block, which was historically
3191    // always the start of the regular bitcode header.
3192    Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3193  
3194    Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3195  
3196    auto Abbv = std::make_shared<BitCodeAbbrev>();
3197    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3198    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3199    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3200    unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3201  
3202    for (const Function &F : M) {
3203      uint64_t Record[2];
3204  
3205      if (F.isDeclaration())
3206        continue;
3207  
3208      Record[0] = VE.getValueID(&F);
3209  
3210      // Save the word offset of the function (from the start of the
3211      // actual bitcode written to the stream).
3212      uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3213      assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3214      // Note that we add 1 here because the offset is relative to one word
3215      // before the start of the identification block, which was historically
3216      // always the start of the regular bitcode header.
3217      Record[1] = BitcodeIndex / 32 + 1;
3218  
3219      Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3220    }
3221  
3222    Stream.ExitBlock();
3223  }
3224  
3225  /// Emit names for arguments, instructions and basic blocks in a function.
3226  void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3227      const ValueSymbolTable &VST) {
3228    if (VST.empty())
3229      return;
3230  
3231    Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3232  
3233    // FIXME: Set up the abbrev, we know how many values there are!
3234    // FIXME: We know if the type names can use 7-bit ascii.
3235    SmallVector<uint64_t, 64> NameVals;
3236  
3237    for (const ValueName &Name : VST) {
3238      // Figure out the encoding to use for the name.
3239      StringEncoding Bits = getStringEncoding(Name.getKey());
3240  
3241      unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3242      NameVals.push_back(VE.getValueID(Name.getValue()));
3243  
3244      // VST_CODE_ENTRY:   [valueid, namechar x N]
3245      // VST_CODE_BBENTRY: [bbid, namechar x N]
3246      unsigned Code;
3247      if (isa<BasicBlock>(Name.getValue())) {
3248        Code = bitc::VST_CODE_BBENTRY;
3249        if (Bits == SE_Char6)
3250          AbbrevToUse = VST_BBENTRY_6_ABBREV;
3251      } else {
3252        Code = bitc::VST_CODE_ENTRY;
3253        if (Bits == SE_Char6)
3254          AbbrevToUse = VST_ENTRY_6_ABBREV;
3255        else if (Bits == SE_Fixed7)
3256          AbbrevToUse = VST_ENTRY_7_ABBREV;
3257      }
3258  
3259      for (const auto P : Name.getKey())
3260        NameVals.push_back((unsigned char)P);
3261  
3262      // Emit the finished record.
3263      Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3264      NameVals.clear();
3265    }
3266  
3267    Stream.ExitBlock();
3268  }
3269  
3270  void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3271    assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3272    unsigned Code;
3273    if (isa<BasicBlock>(Order.V))
3274      Code = bitc::USELIST_CODE_BB;
3275    else
3276      Code = bitc::USELIST_CODE_DEFAULT;
3277  
3278    SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3279    Record.push_back(VE.getValueID(Order.V));
3280    Stream.EmitRecord(Code, Record);
3281  }
3282  
3283  void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3284    assert(VE.shouldPreserveUseListOrder() &&
3285           "Expected to be preserving use-list order");
3286  
3287    auto hasMore = [&]() {
3288      return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3289    };
3290    if (!hasMore())
3291      // Nothing to do.
3292      return;
3293  
3294    Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3295    while (hasMore()) {
3296      writeUseList(std::move(VE.UseListOrders.back()));
3297      VE.UseListOrders.pop_back();
3298    }
3299    Stream.ExitBlock();
3300  }
3301  
3302  /// Emit a function body to the module stream.
3303  void ModuleBitcodeWriter::writeFunction(
3304      const Function &F,
3305      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3306    // Save the bitcode index of the start of this function block for recording
3307    // in the VST.
3308    FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3309  
3310    Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3311    VE.incorporateFunction(F);
3312  
3313    SmallVector<unsigned, 64> Vals;
3314  
3315    // Emit the number of basic blocks, so the reader can create them ahead of
3316    // time.
3317    Vals.push_back(VE.getBasicBlocks().size());
3318    Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3319    Vals.clear();
3320  
3321    // If there are function-local constants, emit them now.
3322    unsigned CstStart, CstEnd;
3323    VE.getFunctionConstantRange(CstStart, CstEnd);
3324    writeConstants(CstStart, CstEnd, false);
3325  
3326    // If there is function-local metadata, emit it now.
3327    writeFunctionMetadata(F);
3328  
3329    // Keep a running idea of what the instruction ID is.
3330    unsigned InstID = CstEnd;
3331  
3332    bool NeedsMetadataAttachment = F.hasMetadata();
3333  
3334    DILocation *LastDL = nullptr;
3335    // Finally, emit all the instructions, in order.
3336    for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3337      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3338           I != E; ++I) {
3339        writeInstruction(*I, InstID, Vals);
3340  
3341        if (!I->getType()->isVoidTy())
3342          ++InstID;
3343  
3344        // If the instruction has metadata, write a metadata attachment later.
3345        NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3346  
3347        // If the instruction has a debug location, emit it.
3348        DILocation *DL = I->getDebugLoc();
3349        if (!DL)
3350          continue;
3351  
3352        if (DL == LastDL) {
3353          // Just repeat the same debug loc as last time.
3354          Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3355          continue;
3356        }
3357  
3358        Vals.push_back(DL->getLine());
3359        Vals.push_back(DL->getColumn());
3360        Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3361        Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3362        Vals.push_back(DL->isImplicitCode());
3363        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3364        Vals.clear();
3365  
3366        LastDL = DL;
3367      }
3368  
3369    // Emit names for all the instructions etc.
3370    if (auto *Symtab = F.getValueSymbolTable())
3371      writeFunctionLevelValueSymbolTable(*Symtab);
3372  
3373    if (NeedsMetadataAttachment)
3374      writeFunctionMetadataAttachment(F);
3375    if (VE.shouldPreserveUseListOrder())
3376      writeUseListBlock(&F);
3377    VE.purgeFunction();
3378    Stream.ExitBlock();
3379  }
3380  
3381  // Emit blockinfo, which defines the standard abbreviations etc.
3382  void ModuleBitcodeWriter::writeBlockInfo() {
3383    // We only want to emit block info records for blocks that have multiple
3384    // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3385    // Other blocks can define their abbrevs inline.
3386    Stream.EnterBlockInfoBlock();
3387  
3388    { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3389      auto Abbv = std::make_shared<BitCodeAbbrev>();
3390      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3391      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3392      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3393      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3394      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3395          VST_ENTRY_8_ABBREV)
3396        llvm_unreachable("Unexpected abbrev ordering!");
3397    }
3398  
3399    { // 7-bit fixed width VST_CODE_ENTRY strings.
3400      auto Abbv = std::make_shared<BitCodeAbbrev>();
3401      Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3402      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3403      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3404      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3405      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3406          VST_ENTRY_7_ABBREV)
3407        llvm_unreachable("Unexpected abbrev ordering!");
3408    }
3409    { // 6-bit char6 VST_CODE_ENTRY strings.
3410      auto Abbv = std::make_shared<BitCodeAbbrev>();
3411      Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3412      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3413      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3414      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3415      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3416          VST_ENTRY_6_ABBREV)
3417        llvm_unreachable("Unexpected abbrev ordering!");
3418    }
3419    { // 6-bit char6 VST_CODE_BBENTRY strings.
3420      auto Abbv = std::make_shared<BitCodeAbbrev>();
3421      Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3422      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3423      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3424      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3425      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3426          VST_BBENTRY_6_ABBREV)
3427        llvm_unreachable("Unexpected abbrev ordering!");
3428    }
3429  
3430    { // SETTYPE abbrev for CONSTANTS_BLOCK.
3431      auto Abbv = std::make_shared<BitCodeAbbrev>();
3432      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3433      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3434                                VE.computeBitsRequiredForTypeIndicies()));
3435      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3436          CONSTANTS_SETTYPE_ABBREV)
3437        llvm_unreachable("Unexpected abbrev ordering!");
3438    }
3439  
3440    { // INTEGER abbrev for CONSTANTS_BLOCK.
3441      auto Abbv = std::make_shared<BitCodeAbbrev>();
3442      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3443      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3444      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3445          CONSTANTS_INTEGER_ABBREV)
3446        llvm_unreachable("Unexpected abbrev ordering!");
3447    }
3448  
3449    { // CE_CAST abbrev for CONSTANTS_BLOCK.
3450      auto Abbv = std::make_shared<BitCodeAbbrev>();
3451      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3452      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3453      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3454                                VE.computeBitsRequiredForTypeIndicies()));
3455      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3456  
3457      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3458          CONSTANTS_CE_CAST_Abbrev)
3459        llvm_unreachable("Unexpected abbrev ordering!");
3460    }
3461    { // NULL abbrev for CONSTANTS_BLOCK.
3462      auto Abbv = std::make_shared<BitCodeAbbrev>();
3463      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3464      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3465          CONSTANTS_NULL_Abbrev)
3466        llvm_unreachable("Unexpected abbrev ordering!");
3467    }
3468  
3469    // FIXME: This should only use space for first class types!
3470  
3471    { // INST_LOAD abbrev for FUNCTION_BLOCK.
3472      auto Abbv = std::make_shared<BitCodeAbbrev>();
3473      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3474      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3475      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3476                                VE.computeBitsRequiredForTypeIndicies()));
3477      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3478      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3479      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3480          FUNCTION_INST_LOAD_ABBREV)
3481        llvm_unreachable("Unexpected abbrev ordering!");
3482    }
3483    { // INST_UNOP abbrev for FUNCTION_BLOCK.
3484      auto Abbv = std::make_shared<BitCodeAbbrev>();
3485      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3486      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3487      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3488      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3489          FUNCTION_INST_UNOP_ABBREV)
3490        llvm_unreachable("Unexpected abbrev ordering!");
3491    }
3492    { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3493      auto Abbv = std::make_shared<BitCodeAbbrev>();
3494      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3495      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3496      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3497      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3498      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3499          FUNCTION_INST_UNOP_FLAGS_ABBREV)
3500        llvm_unreachable("Unexpected abbrev ordering!");
3501    }
3502    { // INST_BINOP abbrev for FUNCTION_BLOCK.
3503      auto Abbv = std::make_shared<BitCodeAbbrev>();
3504      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3505      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3506      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3507      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3508      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3509          FUNCTION_INST_BINOP_ABBREV)
3510        llvm_unreachable("Unexpected abbrev ordering!");
3511    }
3512    { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3513      auto Abbv = std::make_shared<BitCodeAbbrev>();
3514      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3515      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3516      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3517      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3518      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3519      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3520          FUNCTION_INST_BINOP_FLAGS_ABBREV)
3521        llvm_unreachable("Unexpected abbrev ordering!");
3522    }
3523    { // INST_CAST abbrev for FUNCTION_BLOCK.
3524      auto Abbv = std::make_shared<BitCodeAbbrev>();
3525      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3526      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3527      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3528                                VE.computeBitsRequiredForTypeIndicies()));
3529      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3530      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3531          FUNCTION_INST_CAST_ABBREV)
3532        llvm_unreachable("Unexpected abbrev ordering!");
3533    }
3534  
3535    { // INST_RET abbrev for FUNCTION_BLOCK.
3536      auto Abbv = std::make_shared<BitCodeAbbrev>();
3537      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3538      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3539          FUNCTION_INST_RET_VOID_ABBREV)
3540        llvm_unreachable("Unexpected abbrev ordering!");
3541    }
3542    { // INST_RET abbrev for FUNCTION_BLOCK.
3543      auto Abbv = std::make_shared<BitCodeAbbrev>();
3544      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3545      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3546      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3547          FUNCTION_INST_RET_VAL_ABBREV)
3548        llvm_unreachable("Unexpected abbrev ordering!");
3549    }
3550    { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3551      auto Abbv = std::make_shared<BitCodeAbbrev>();
3552      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3553      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3554          FUNCTION_INST_UNREACHABLE_ABBREV)
3555        llvm_unreachable("Unexpected abbrev ordering!");
3556    }
3557    {
3558      auto Abbv = std::make_shared<BitCodeAbbrev>();
3559      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3560      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3561      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3562                                Log2_32_Ceil(VE.getTypes().size() + 1)));
3563      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3564      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3565      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3566          FUNCTION_INST_GEP_ABBREV)
3567        llvm_unreachable("Unexpected abbrev ordering!");
3568    }
3569  
3570    Stream.ExitBlock();
3571  }
3572  
3573  /// Write the module path strings, currently only used when generating
3574  /// a combined index file.
3575  void IndexBitcodeWriter::writeModStrings() {
3576    Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3577  
3578    // TODO: See which abbrev sizes we actually need to emit
3579  
3580    // 8-bit fixed-width MST_ENTRY strings.
3581    auto Abbv = std::make_shared<BitCodeAbbrev>();
3582    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3583    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3584    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3585    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3586    unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3587  
3588    // 7-bit fixed width MST_ENTRY strings.
3589    Abbv = std::make_shared<BitCodeAbbrev>();
3590    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3591    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3592    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3593    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3594    unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3595  
3596    // 6-bit char6 MST_ENTRY strings.
3597    Abbv = std::make_shared<BitCodeAbbrev>();
3598    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3599    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3600    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3601    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3602    unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3603  
3604    // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3605    Abbv = std::make_shared<BitCodeAbbrev>();
3606    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3607    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3608    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3609    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3610    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3611    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3612    unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3613  
3614    SmallVector<unsigned, 64> Vals;
3615    forEachModule(
3616        [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3617          StringRef Key = MPSE.getKey();
3618          const auto &Value = MPSE.getValue();
3619          StringEncoding Bits = getStringEncoding(Key);
3620          unsigned AbbrevToUse = Abbrev8Bit;
3621          if (Bits == SE_Char6)
3622            AbbrevToUse = Abbrev6Bit;
3623          else if (Bits == SE_Fixed7)
3624            AbbrevToUse = Abbrev7Bit;
3625  
3626          Vals.push_back(Value.first);
3627          Vals.append(Key.begin(), Key.end());
3628  
3629          // Emit the finished record.
3630          Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3631  
3632          // Emit an optional hash for the module now
3633          const auto &Hash = Value.second;
3634          if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3635            Vals.assign(Hash.begin(), Hash.end());
3636            // Emit the hash record.
3637            Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3638          }
3639  
3640          Vals.clear();
3641        });
3642    Stream.ExitBlock();
3643  }
3644  
3645  /// Write the function type metadata related records that need to appear before
3646  /// a function summary entry (whether per-module or combined).
3647  template <typename Fn>
3648  static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3649                                               FunctionSummary *FS,
3650                                               Fn GetValueID) {
3651    if (!FS->type_tests().empty())
3652      Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3653  
3654    SmallVector<uint64_t, 64> Record;
3655  
3656    auto WriteVFuncIdVec = [&](uint64_t Ty,
3657                               ArrayRef<FunctionSummary::VFuncId> VFs) {
3658      if (VFs.empty())
3659        return;
3660      Record.clear();
3661      for (auto &VF : VFs) {
3662        Record.push_back(VF.GUID);
3663        Record.push_back(VF.Offset);
3664      }
3665      Stream.EmitRecord(Ty, Record);
3666    };
3667  
3668    WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3669                    FS->type_test_assume_vcalls());
3670    WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3671                    FS->type_checked_load_vcalls());
3672  
3673    auto WriteConstVCallVec = [&](uint64_t Ty,
3674                                  ArrayRef<FunctionSummary::ConstVCall> VCs) {
3675      for (auto &VC : VCs) {
3676        Record.clear();
3677        Record.push_back(VC.VFunc.GUID);
3678        Record.push_back(VC.VFunc.Offset);
3679        llvm::append_range(Record, VC.Args);
3680        Stream.EmitRecord(Ty, Record);
3681      }
3682    };
3683  
3684    WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3685                       FS->type_test_assume_const_vcalls());
3686    WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3687                       FS->type_checked_load_const_vcalls());
3688  
3689    auto WriteRange = [&](ConstantRange Range) {
3690      Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3691      assert(Range.getLower().getNumWords() == 1);
3692      assert(Range.getUpper().getNumWords() == 1);
3693      emitSignedInt64(Record, *Range.getLower().getRawData());
3694      emitSignedInt64(Record, *Range.getUpper().getRawData());
3695    };
3696  
3697    if (!FS->paramAccesses().empty()) {
3698      Record.clear();
3699      for (auto &Arg : FS->paramAccesses()) {
3700        size_t UndoSize = Record.size();
3701        Record.push_back(Arg.ParamNo);
3702        WriteRange(Arg.Use);
3703        Record.push_back(Arg.Calls.size());
3704        for (auto &Call : Arg.Calls) {
3705          Record.push_back(Call.ParamNo);
3706          Optional<unsigned> ValueID = GetValueID(Call.Callee);
3707          if (!ValueID) {
3708            // If ValueID is unknown we can't drop just this call, we must drop
3709            // entire parameter.
3710            Record.resize(UndoSize);
3711            break;
3712          }
3713          Record.push_back(*ValueID);
3714          WriteRange(Call.Offsets);
3715        }
3716      }
3717      if (!Record.empty())
3718        Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3719    }
3720  }
3721  
3722  /// Collect type IDs from type tests used by function.
3723  static void
3724  getReferencedTypeIds(FunctionSummary *FS,
3725                       std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3726    if (!FS->type_tests().empty())
3727      for (auto &TT : FS->type_tests())
3728        ReferencedTypeIds.insert(TT);
3729  
3730    auto GetReferencedTypesFromVFuncIdVec =
3731        [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3732          for (auto &VF : VFs)
3733            ReferencedTypeIds.insert(VF.GUID);
3734        };
3735  
3736    GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3737    GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3738  
3739    auto GetReferencedTypesFromConstVCallVec =
3740        [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3741          for (auto &VC : VCs)
3742            ReferencedTypeIds.insert(VC.VFunc.GUID);
3743        };
3744  
3745    GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3746    GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3747  }
3748  
3749  static void writeWholeProgramDevirtResolutionByArg(
3750      SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3751      const WholeProgramDevirtResolution::ByArg &ByArg) {
3752    NameVals.push_back(args.size());
3753    llvm::append_range(NameVals, args);
3754  
3755    NameVals.push_back(ByArg.TheKind);
3756    NameVals.push_back(ByArg.Info);
3757    NameVals.push_back(ByArg.Byte);
3758    NameVals.push_back(ByArg.Bit);
3759  }
3760  
3761  static void writeWholeProgramDevirtResolution(
3762      SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3763      uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3764    NameVals.push_back(Id);
3765  
3766    NameVals.push_back(Wpd.TheKind);
3767    NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3768    NameVals.push_back(Wpd.SingleImplName.size());
3769  
3770    NameVals.push_back(Wpd.ResByArg.size());
3771    for (auto &A : Wpd.ResByArg)
3772      writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3773  }
3774  
3775  static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3776                                       StringTableBuilder &StrtabBuilder,
3777                                       const std::string &Id,
3778                                       const TypeIdSummary &Summary) {
3779    NameVals.push_back(StrtabBuilder.add(Id));
3780    NameVals.push_back(Id.size());
3781  
3782    NameVals.push_back(Summary.TTRes.TheKind);
3783    NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3784    NameVals.push_back(Summary.TTRes.AlignLog2);
3785    NameVals.push_back(Summary.TTRes.SizeM1);
3786    NameVals.push_back(Summary.TTRes.BitMask);
3787    NameVals.push_back(Summary.TTRes.InlineBits);
3788  
3789    for (auto &W : Summary.WPDRes)
3790      writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3791                                        W.second);
3792  }
3793  
3794  static void writeTypeIdCompatibleVtableSummaryRecord(
3795      SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3796      const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3797      ValueEnumerator &VE) {
3798    NameVals.push_back(StrtabBuilder.add(Id));
3799    NameVals.push_back(Id.size());
3800  
3801    for (auto &P : Summary) {
3802      NameVals.push_back(P.AddressPointOffset);
3803      NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3804    }
3805  }
3806  
3807  // Helper to emit a single function summary record.
3808  void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3809      SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3810      unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3811      const Function &F) {
3812    NameVals.push_back(ValueID);
3813  
3814    FunctionSummary *FS = cast<FunctionSummary>(Summary);
3815  
3816    writeFunctionTypeMetadataRecords(
3817        Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
3818          return {VE.getValueID(VI.getValue())};
3819        });
3820  
3821    auto SpecialRefCnts = FS->specialRefCounts();
3822    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3823    NameVals.push_back(FS->instCount());
3824    NameVals.push_back(getEncodedFFlags(FS->fflags()));
3825    NameVals.push_back(FS->refs().size());
3826    NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3827    NameVals.push_back(SpecialRefCnts.second); // worefcnt
3828  
3829    for (auto &RI : FS->refs())
3830      NameVals.push_back(VE.getValueID(RI.getValue()));
3831  
3832    bool HasProfileData =
3833        F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3834    for (auto &ECI : FS->calls()) {
3835      NameVals.push_back(getValueId(ECI.first));
3836      if (HasProfileData)
3837        NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3838      else if (WriteRelBFToSummary)
3839        NameVals.push_back(ECI.second.RelBlockFreq);
3840    }
3841  
3842    unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3843    unsigned Code =
3844        (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3845                        : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3846                                               : bitc::FS_PERMODULE));
3847  
3848    // Emit the finished record.
3849    Stream.EmitRecord(Code, NameVals, FSAbbrev);
3850    NameVals.clear();
3851  }
3852  
3853  // Collect the global value references in the given variable's initializer,
3854  // and emit them in a summary record.
3855  void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3856      const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3857      unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3858    auto VI = Index->getValueInfo(V.getGUID());
3859    if (!VI || VI.getSummaryList().empty()) {
3860      // Only declarations should not have a summary (a declaration might however
3861      // have a summary if the def was in module level asm).
3862      assert(V.isDeclaration());
3863      return;
3864    }
3865    auto *Summary = VI.getSummaryList()[0].get();
3866    NameVals.push_back(VE.getValueID(&V));
3867    GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3868    NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3869    NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3870  
3871    auto VTableFuncs = VS->vTableFuncs();
3872    if (!VTableFuncs.empty())
3873      NameVals.push_back(VS->refs().size());
3874  
3875    unsigned SizeBeforeRefs = NameVals.size();
3876    for (auto &RI : VS->refs())
3877      NameVals.push_back(VE.getValueID(RI.getValue()));
3878    // Sort the refs for determinism output, the vector returned by FS->refs() has
3879    // been initialized from a DenseSet.
3880    llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
3881  
3882    if (VTableFuncs.empty())
3883      Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3884                        FSModRefsAbbrev);
3885    else {
3886      // VTableFuncs pairs should already be sorted by offset.
3887      for (auto &P : VTableFuncs) {
3888        NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3889        NameVals.push_back(P.VTableOffset);
3890      }
3891  
3892      Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3893                        FSModVTableRefsAbbrev);
3894    }
3895    NameVals.clear();
3896  }
3897  
3898  /// Emit the per-module summary section alongside the rest of
3899  /// the module's bitcode.
3900  void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3901    // By default we compile with ThinLTO if the module has a summary, but the
3902    // client can request full LTO with a module flag.
3903    bool IsThinLTO = true;
3904    if (auto *MD =
3905            mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3906      IsThinLTO = MD->getZExtValue();
3907    Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3908                                   : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3909                         4);
3910  
3911    Stream.EmitRecord(
3912        bitc::FS_VERSION,
3913        ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3914  
3915    // Write the index flags.
3916    uint64_t Flags = 0;
3917    // Bits 1-3 are set only in the combined index, skip them.
3918    if (Index->enableSplitLTOUnit())
3919      Flags |= 0x8;
3920    Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3921  
3922    if (Index->begin() == Index->end()) {
3923      Stream.ExitBlock();
3924      return;
3925    }
3926  
3927    for (const auto &GVI : valueIds()) {
3928      Stream.EmitRecord(bitc::FS_VALUE_GUID,
3929                        ArrayRef<uint64_t>{GVI.second, GVI.first});
3930    }
3931  
3932    // Abbrev for FS_PERMODULE_PROFILE.
3933    auto Abbv = std::make_shared<BitCodeAbbrev>();
3934    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3935    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3936    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3937    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3938    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3939    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3940    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3941    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3942    // numrefs x valueid, n x (valueid, hotness)
3943    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3944    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3945    unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3946  
3947    // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3948    Abbv = std::make_shared<BitCodeAbbrev>();
3949    if (WriteRelBFToSummary)
3950      Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3951    else
3952      Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3953    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3954    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3955    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3956    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3957    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3958    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3959    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3960    // numrefs x valueid, n x (valueid [, rel_block_freq])
3961    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3962    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3963    unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3964  
3965    // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3966    Abbv = std::make_shared<BitCodeAbbrev>();
3967    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3968    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3969    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3970    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3971    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3972    unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3973  
3974    // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3975    Abbv = std::make_shared<BitCodeAbbrev>();
3976    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3977    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3978    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3979    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3980    // numrefs x valueid, n x (valueid , offset)
3981    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3982    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3983    unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3984  
3985    // Abbrev for FS_ALIAS.
3986    Abbv = std::make_shared<BitCodeAbbrev>();
3987    Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3988    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3989    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3990    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3991    unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3992  
3993    // Abbrev for FS_TYPE_ID_METADATA
3994    Abbv = std::make_shared<BitCodeAbbrev>();
3995    Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3996    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3997    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3998    // n x (valueid , offset)
3999    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4000    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4001    unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4002  
4003    SmallVector<uint64_t, 64> NameVals;
4004    // Iterate over the list of functions instead of the Index to
4005    // ensure the ordering is stable.
4006    for (const Function &F : M) {
4007      // Summary emission does not support anonymous functions, they have to
4008      // renamed using the anonymous function renaming pass.
4009      if (!F.hasName())
4010        report_fatal_error("Unexpected anonymous function when writing summary");
4011  
4012      ValueInfo VI = Index->getValueInfo(F.getGUID());
4013      if (!VI || VI.getSummaryList().empty()) {
4014        // Only declarations should not have a summary (a declaration might
4015        // however have a summary if the def was in module level asm).
4016        assert(F.isDeclaration());
4017        continue;
4018      }
4019      auto *Summary = VI.getSummaryList()[0].get();
4020      writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4021                                          FSCallsAbbrev, FSCallsProfileAbbrev, F);
4022    }
4023  
4024    // Capture references from GlobalVariable initializers, which are outside
4025    // of a function scope.
4026    for (const GlobalVariable &G : M.globals())
4027      writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4028                                 FSModVTableRefsAbbrev);
4029  
4030    for (const GlobalAlias &A : M.aliases()) {
4031      auto *Aliasee = A.getBaseObject();
4032      if (!Aliasee->hasName())
4033        // Nameless function don't have an entry in the summary, skip it.
4034        continue;
4035      auto AliasId = VE.getValueID(&A);
4036      auto AliaseeId = VE.getValueID(Aliasee);
4037      NameVals.push_back(AliasId);
4038      auto *Summary = Index->getGlobalValueSummary(A);
4039      AliasSummary *AS = cast<AliasSummary>(Summary);
4040      NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4041      NameVals.push_back(AliaseeId);
4042      Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4043      NameVals.clear();
4044    }
4045  
4046    for (auto &S : Index->typeIdCompatibleVtableMap()) {
4047      writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4048                                               S.second, VE);
4049      Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4050                        TypeIdCompatibleVtableAbbrev);
4051      NameVals.clear();
4052    }
4053  
4054    Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4055                      ArrayRef<uint64_t>{Index->getBlockCount()});
4056  
4057    Stream.ExitBlock();
4058  }
4059  
4060  /// Emit the combined summary section into the combined index file.
4061  void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4062    Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
4063    Stream.EmitRecord(
4064        bitc::FS_VERSION,
4065        ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4066  
4067    // Write the index flags.
4068    Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4069  
4070    for (const auto &GVI : valueIds()) {
4071      Stream.EmitRecord(bitc::FS_VALUE_GUID,
4072                        ArrayRef<uint64_t>{GVI.second, GVI.first});
4073    }
4074  
4075    // Abbrev for FS_COMBINED.
4076    auto Abbv = std::make_shared<BitCodeAbbrev>();
4077    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4078    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4079    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4080    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4081    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4082    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4083    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4084    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4085    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4086    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4087    // numrefs x valueid, n x (valueid)
4088    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4089    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4090    unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4091  
4092    // Abbrev for FS_COMBINED_PROFILE.
4093    Abbv = std::make_shared<BitCodeAbbrev>();
4094    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4095    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4096    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4097    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4098    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4099    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4100    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4101    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4102    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4103    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4104    // numrefs x valueid, n x (valueid, hotness)
4105    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4106    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4107    unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4108  
4109    // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4110    Abbv = std::make_shared<BitCodeAbbrev>();
4111    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4112    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4113    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4114    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4115    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4116    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4117    unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4118  
4119    // Abbrev for FS_COMBINED_ALIAS.
4120    Abbv = std::make_shared<BitCodeAbbrev>();
4121    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4122    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4123    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4124    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4125    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4126    unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4127  
4128    // The aliases are emitted as a post-pass, and will point to the value
4129    // id of the aliasee. Save them in a vector for post-processing.
4130    SmallVector<AliasSummary *, 64> Aliases;
4131  
4132    // Save the value id for each summary for alias emission.
4133    DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4134  
4135    SmallVector<uint64_t, 64> NameVals;
4136  
4137    // Set that will be populated during call to writeFunctionTypeMetadataRecords
4138    // with the type ids referenced by this index file.
4139    std::set<GlobalValue::GUID> ReferencedTypeIds;
4140  
4141    // For local linkage, we also emit the original name separately
4142    // immediately after the record.
4143    auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4144      if (!GlobalValue::isLocalLinkage(S.linkage()))
4145        return;
4146      NameVals.push_back(S.getOriginalName());
4147      Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4148      NameVals.clear();
4149    };
4150  
4151    std::set<GlobalValue::GUID> DefOrUseGUIDs;
4152    forEachSummary([&](GVInfo I, bool IsAliasee) {
4153      GlobalValueSummary *S = I.second;
4154      assert(S);
4155      DefOrUseGUIDs.insert(I.first);
4156      for (const ValueInfo &VI : S->refs())
4157        DefOrUseGUIDs.insert(VI.getGUID());
4158  
4159      auto ValueId = getValueId(I.first);
4160      assert(ValueId);
4161      SummaryToValueIdMap[S] = *ValueId;
4162  
4163      // If this is invoked for an aliasee, we want to record the above
4164      // mapping, but then not emit a summary entry (if the aliasee is
4165      // to be imported, we will invoke this separately with IsAliasee=false).
4166      if (IsAliasee)
4167        return;
4168  
4169      if (auto *AS = dyn_cast<AliasSummary>(S)) {
4170        // Will process aliases as a post-pass because the reader wants all
4171        // global to be loaded first.
4172        Aliases.push_back(AS);
4173        return;
4174      }
4175  
4176      if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4177        NameVals.push_back(*ValueId);
4178        NameVals.push_back(Index.getModuleId(VS->modulePath()));
4179        NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4180        NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4181        for (auto &RI : VS->refs()) {
4182          auto RefValueId = getValueId(RI.getGUID());
4183          if (!RefValueId)
4184            continue;
4185          NameVals.push_back(*RefValueId);
4186        }
4187  
4188        // Emit the finished record.
4189        Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4190                          FSModRefsAbbrev);
4191        NameVals.clear();
4192        MaybeEmitOriginalName(*S);
4193        return;
4194      }
4195  
4196      auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
4197        GlobalValue::GUID GUID = VI.getGUID();
4198        Optional<unsigned> CallValueId = getValueId(GUID);
4199        if (CallValueId)
4200          return CallValueId;
4201        // For SamplePGO, the indirect call targets for local functions will
4202        // have its original name annotated in profile. We try to find the
4203        // corresponding PGOFuncName as the GUID.
4204        GUID = Index.getGUIDFromOriginalID(GUID);
4205        if (!GUID)
4206          return None;
4207        CallValueId = getValueId(GUID);
4208        if (!CallValueId)
4209          return None;
4210        // The mapping from OriginalId to GUID may return a GUID
4211        // that corresponds to a static variable. Filter it out here.
4212        // This can happen when
4213        // 1) There is a call to a library function which does not have
4214        // a CallValidId;
4215        // 2) There is a static variable with the  OriginalGUID identical
4216        // to the GUID of the library function in 1);
4217        // When this happens, the logic for SamplePGO kicks in and
4218        // the static variable in 2) will be found, which needs to be
4219        // filtered out.
4220        auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4221        if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4222          return None;
4223        return CallValueId;
4224      };
4225  
4226      auto *FS = cast<FunctionSummary>(S);
4227      writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4228      getReferencedTypeIds(FS, ReferencedTypeIds);
4229  
4230      NameVals.push_back(*ValueId);
4231      NameVals.push_back(Index.getModuleId(FS->modulePath()));
4232      NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4233      NameVals.push_back(FS->instCount());
4234      NameVals.push_back(getEncodedFFlags(FS->fflags()));
4235      NameVals.push_back(FS->entryCount());
4236  
4237      // Fill in below
4238      NameVals.push_back(0); // numrefs
4239      NameVals.push_back(0); // rorefcnt
4240      NameVals.push_back(0); // worefcnt
4241  
4242      unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4243      for (auto &RI : FS->refs()) {
4244        auto RefValueId = getValueId(RI.getGUID());
4245        if (!RefValueId)
4246          continue;
4247        NameVals.push_back(*RefValueId);
4248        if (RI.isReadOnly())
4249          RORefCnt++;
4250        else if (RI.isWriteOnly())
4251          WORefCnt++;
4252        Count++;
4253      }
4254      NameVals[6] = Count;
4255      NameVals[7] = RORefCnt;
4256      NameVals[8] = WORefCnt;
4257  
4258      bool HasProfileData = false;
4259      for (auto &EI : FS->calls()) {
4260        HasProfileData |=
4261            EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4262        if (HasProfileData)
4263          break;
4264      }
4265  
4266      for (auto &EI : FS->calls()) {
4267        // If this GUID doesn't have a value id, it doesn't have a function
4268        // summary and we don't need to record any calls to it.
4269        Optional<unsigned> CallValueId = GetValueId(EI.first);
4270        if (!CallValueId)
4271          continue;
4272        NameVals.push_back(*CallValueId);
4273        if (HasProfileData)
4274          NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4275      }
4276  
4277      unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4278      unsigned Code =
4279          (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4280  
4281      // Emit the finished record.
4282      Stream.EmitRecord(Code, NameVals, FSAbbrev);
4283      NameVals.clear();
4284      MaybeEmitOriginalName(*S);
4285    });
4286  
4287    for (auto *AS : Aliases) {
4288      auto AliasValueId = SummaryToValueIdMap[AS];
4289      assert(AliasValueId);
4290      NameVals.push_back(AliasValueId);
4291      NameVals.push_back(Index.getModuleId(AS->modulePath()));
4292      NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4293      auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4294      assert(AliaseeValueId);
4295      NameVals.push_back(AliaseeValueId);
4296  
4297      // Emit the finished record.
4298      Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4299      NameVals.clear();
4300      MaybeEmitOriginalName(*AS);
4301  
4302      if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4303        getReferencedTypeIds(FS, ReferencedTypeIds);
4304    }
4305  
4306    if (!Index.cfiFunctionDefs().empty()) {
4307      for (auto &S : Index.cfiFunctionDefs()) {
4308        if (DefOrUseGUIDs.count(
4309                GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4310          NameVals.push_back(StrtabBuilder.add(S));
4311          NameVals.push_back(S.size());
4312        }
4313      }
4314      if (!NameVals.empty()) {
4315        Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4316        NameVals.clear();
4317      }
4318    }
4319  
4320    if (!Index.cfiFunctionDecls().empty()) {
4321      for (auto &S : Index.cfiFunctionDecls()) {
4322        if (DefOrUseGUIDs.count(
4323                GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4324          NameVals.push_back(StrtabBuilder.add(S));
4325          NameVals.push_back(S.size());
4326        }
4327      }
4328      if (!NameVals.empty()) {
4329        Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4330        NameVals.clear();
4331      }
4332    }
4333  
4334    // Walk the GUIDs that were referenced, and write the
4335    // corresponding type id records.
4336    for (auto &T : ReferencedTypeIds) {
4337      auto TidIter = Index.typeIds().equal_range(T);
4338      for (auto It = TidIter.first; It != TidIter.second; ++It) {
4339        writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4340                                 It->second.second);
4341        Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4342        NameVals.clear();
4343      }
4344    }
4345  
4346    Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4347                      ArrayRef<uint64_t>{Index.getBlockCount()});
4348  
4349    Stream.ExitBlock();
4350  }
4351  
4352  /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4353  /// current llvm version, and a record for the epoch number.
4354  static void writeIdentificationBlock(BitstreamWriter &Stream) {
4355    Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4356  
4357    // Write the "user readable" string identifying the bitcode producer
4358    auto Abbv = std::make_shared<BitCodeAbbrev>();
4359    Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4360    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4361    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4362    auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4363    writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4364                      "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4365  
4366    // Write the epoch version
4367    Abbv = std::make_shared<BitCodeAbbrev>();
4368    Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4369    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4370    auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4371    constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4372    Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4373    Stream.ExitBlock();
4374  }
4375  
4376  void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4377    // Emit the module's hash.
4378    // MODULE_CODE_HASH: [5*i32]
4379    if (GenerateHash) {
4380      uint32_t Vals[5];
4381      Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4382                                      Buffer.size() - BlockStartPos));
4383      StringRef Hash = Hasher.result();
4384      for (int Pos = 0; Pos < 20; Pos += 4) {
4385        Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4386      }
4387  
4388      // Emit the finished record.
4389      Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4390  
4391      if (ModHash)
4392        // Save the written hash value.
4393        llvm::copy(Vals, std::begin(*ModHash));
4394    }
4395  }
4396  
4397  void ModuleBitcodeWriter::write() {
4398    writeIdentificationBlock(Stream);
4399  
4400    Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4401    size_t BlockStartPos = Buffer.size();
4402  
4403    writeModuleVersion();
4404  
4405    // Emit blockinfo, which defines the standard abbreviations etc.
4406    writeBlockInfo();
4407  
4408    // Emit information describing all of the types in the module.
4409    writeTypeTable();
4410  
4411    // Emit information about attribute groups.
4412    writeAttributeGroupTable();
4413  
4414    // Emit information about parameter attributes.
4415    writeAttributeTable();
4416  
4417    writeComdats();
4418  
4419    // Emit top-level description of module, including target triple, inline asm,
4420    // descriptors for global variables, and function prototype info.
4421    writeModuleInfo();
4422  
4423    // Emit constants.
4424    writeModuleConstants();
4425  
4426    // Emit metadata kind names.
4427    writeModuleMetadataKinds();
4428  
4429    // Emit metadata.
4430    writeModuleMetadata();
4431  
4432    // Emit module-level use-lists.
4433    if (VE.shouldPreserveUseListOrder())
4434      writeUseListBlock(nullptr);
4435  
4436    writeOperandBundleTags();
4437    writeSyncScopeNames();
4438  
4439    // Emit function bodies.
4440    DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4441    for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4442      if (!F->isDeclaration())
4443        writeFunction(*F, FunctionToBitcodeIndex);
4444  
4445    // Need to write after the above call to WriteFunction which populates
4446    // the summary information in the index.
4447    if (Index)
4448      writePerModuleGlobalValueSummary();
4449  
4450    writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4451  
4452    writeModuleHash(BlockStartPos);
4453  
4454    Stream.ExitBlock();
4455  }
4456  
4457  static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4458                                 uint32_t &Position) {
4459    support::endian::write32le(&Buffer[Position], Value);
4460    Position += 4;
4461  }
4462  
4463  /// If generating a bc file on darwin, we have to emit a
4464  /// header and trailer to make it compatible with the system archiver.  To do
4465  /// this we emit the following header, and then emit a trailer that pads the
4466  /// file out to be a multiple of 16 bytes.
4467  ///
4468  /// struct bc_header {
4469  ///   uint32_t Magic;         // 0x0B17C0DE
4470  ///   uint32_t Version;       // Version, currently always 0.
4471  ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4472  ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4473  ///   uint32_t CPUType;       // CPU specifier.
4474  ///   ... potentially more later ...
4475  /// };
4476  static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4477                                           const Triple &TT) {
4478    unsigned CPUType = ~0U;
4479  
4480    // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4481    // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4482    // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4483    // specific constants here because they are implicitly part of the Darwin ABI.
4484    enum {
4485      DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4486      DARWIN_CPU_TYPE_X86        = 7,
4487      DARWIN_CPU_TYPE_ARM        = 12,
4488      DARWIN_CPU_TYPE_POWERPC    = 18
4489    };
4490  
4491    Triple::ArchType Arch = TT.getArch();
4492    if (Arch == Triple::x86_64)
4493      CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4494    else if (Arch == Triple::x86)
4495      CPUType = DARWIN_CPU_TYPE_X86;
4496    else if (Arch == Triple::ppc)
4497      CPUType = DARWIN_CPU_TYPE_POWERPC;
4498    else if (Arch == Triple::ppc64)
4499      CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4500    else if (Arch == Triple::arm || Arch == Triple::thumb)
4501      CPUType = DARWIN_CPU_TYPE_ARM;
4502  
4503    // Traditional Bitcode starts after header.
4504    assert(Buffer.size() >= BWH_HeaderSize &&
4505           "Expected header size to be reserved");
4506    unsigned BCOffset = BWH_HeaderSize;
4507    unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4508  
4509    // Write the magic and version.
4510    unsigned Position = 0;
4511    writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4512    writeInt32ToBuffer(0, Buffer, Position); // Version.
4513    writeInt32ToBuffer(BCOffset, Buffer, Position);
4514    writeInt32ToBuffer(BCSize, Buffer, Position);
4515    writeInt32ToBuffer(CPUType, Buffer, Position);
4516  
4517    // If the file is not a multiple of 16 bytes, insert dummy padding.
4518    while (Buffer.size() & 15)
4519      Buffer.push_back(0);
4520  }
4521  
4522  /// Helper to write the header common to all bitcode files.
4523  static void writeBitcodeHeader(BitstreamWriter &Stream) {
4524    // Emit the file header.
4525    Stream.Emit((unsigned)'B', 8);
4526    Stream.Emit((unsigned)'C', 8);
4527    Stream.Emit(0x0, 4);
4528    Stream.Emit(0xC, 4);
4529    Stream.Emit(0xE, 4);
4530    Stream.Emit(0xD, 4);
4531  }
4532  
4533  BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4534      : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4535    writeBitcodeHeader(*Stream);
4536  }
4537  
4538  BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4539  
4540  void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4541    Stream->EnterSubblock(Block, 3);
4542  
4543    auto Abbv = std::make_shared<BitCodeAbbrev>();
4544    Abbv->Add(BitCodeAbbrevOp(Record));
4545    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4546    auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4547  
4548    Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4549  
4550    Stream->ExitBlock();
4551  }
4552  
4553  void BitcodeWriter::writeSymtab() {
4554    assert(!WroteStrtab && !WroteSymtab);
4555  
4556    // If any module has module-level inline asm, we will require a registered asm
4557    // parser for the target so that we can create an accurate symbol table for
4558    // the module.
4559    for (Module *M : Mods) {
4560      if (M->getModuleInlineAsm().empty())
4561        continue;
4562  
4563      std::string Err;
4564      const Triple TT(M->getTargetTriple());
4565      const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4566      if (!T || !T->hasMCAsmParser())
4567        return;
4568    }
4569  
4570    WroteSymtab = true;
4571    SmallVector<char, 0> Symtab;
4572    // The irsymtab::build function may be unable to create a symbol table if the
4573    // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4574    // table is not required for correctness, but we still want to be able to
4575    // write malformed modules to bitcode files, so swallow the error.
4576    if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4577      consumeError(std::move(E));
4578      return;
4579    }
4580  
4581    writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4582              {Symtab.data(), Symtab.size()});
4583  }
4584  
4585  void BitcodeWriter::writeStrtab() {
4586    assert(!WroteStrtab);
4587  
4588    std::vector<char> Strtab;
4589    StrtabBuilder.finalizeInOrder();
4590    Strtab.resize(StrtabBuilder.getSize());
4591    StrtabBuilder.write((uint8_t *)Strtab.data());
4592  
4593    writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4594              {Strtab.data(), Strtab.size()});
4595  
4596    WroteStrtab = true;
4597  }
4598  
4599  void BitcodeWriter::copyStrtab(StringRef Strtab) {
4600    writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4601    WroteStrtab = true;
4602  }
4603  
4604  void BitcodeWriter::writeModule(const Module &M,
4605                                  bool ShouldPreserveUseListOrder,
4606                                  const ModuleSummaryIndex *Index,
4607                                  bool GenerateHash, ModuleHash *ModHash) {
4608    assert(!WroteStrtab);
4609  
4610    // The Mods vector is used by irsymtab::build, which requires non-const
4611    // Modules in case it needs to materialize metadata. But the bitcode writer
4612    // requires that the module is materialized, so we can cast to non-const here,
4613    // after checking that it is in fact materialized.
4614    assert(M.isMaterialized());
4615    Mods.push_back(const_cast<Module *>(&M));
4616  
4617    ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4618                                     ShouldPreserveUseListOrder, Index,
4619                                     GenerateHash, ModHash);
4620    ModuleWriter.write();
4621  }
4622  
4623  void BitcodeWriter::writeIndex(
4624      const ModuleSummaryIndex *Index,
4625      const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4626    IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4627                                   ModuleToSummariesForIndex);
4628    IndexWriter.write();
4629  }
4630  
4631  /// Write the specified module to the specified output stream.
4632  void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4633                                bool ShouldPreserveUseListOrder,
4634                                const ModuleSummaryIndex *Index,
4635                                bool GenerateHash, ModuleHash *ModHash) {
4636    SmallVector<char, 0> Buffer;
4637    Buffer.reserve(256*1024);
4638  
4639    // If this is darwin or another generic macho target, reserve space for the
4640    // header.
4641    Triple TT(M.getTargetTriple());
4642    if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4643      Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4644  
4645    BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4646    Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4647                       ModHash);
4648    Writer.writeSymtab();
4649    Writer.writeStrtab();
4650  
4651    if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4652      emitDarwinBCHeaderAndTrailer(Buffer, TT);
4653  
4654    // Write the generated bitstream to "Out".
4655    if (!Buffer.empty())
4656      Out.write((char *)&Buffer.front(), Buffer.size());
4657  }
4658  
4659  void IndexBitcodeWriter::write() {
4660    Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4661  
4662    writeModuleVersion();
4663  
4664    // Write the module paths in the combined index.
4665    writeModStrings();
4666  
4667    // Write the summary combined index records.
4668    writeCombinedGlobalValueSummary();
4669  
4670    Stream.ExitBlock();
4671  }
4672  
4673  // Write the specified module summary index to the given raw output stream,
4674  // where it will be written in a new bitcode block. This is used when
4675  // writing the combined index file for ThinLTO. When writing a subset of the
4676  // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4677  void llvm::WriteIndexToFile(
4678      const ModuleSummaryIndex &Index, raw_ostream &Out,
4679      const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4680    SmallVector<char, 0> Buffer;
4681    Buffer.reserve(256 * 1024);
4682  
4683    BitcodeWriter Writer(Buffer);
4684    Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4685    Writer.writeStrtab();
4686  
4687    Out.write((char *)&Buffer.front(), Buffer.size());
4688  }
4689  
4690  namespace {
4691  
4692  /// Class to manage the bitcode writing for a thin link bitcode file.
4693  class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4694    /// ModHash is for use in ThinLTO incremental build, generated while writing
4695    /// the module bitcode file.
4696    const ModuleHash *ModHash;
4697  
4698  public:
4699    ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4700                          BitstreamWriter &Stream,
4701                          const ModuleSummaryIndex &Index,
4702                          const ModuleHash &ModHash)
4703        : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4704                                  /*ShouldPreserveUseListOrder=*/false, &Index),
4705          ModHash(&ModHash) {}
4706  
4707    void write();
4708  
4709  private:
4710    void writeSimplifiedModuleInfo();
4711  };
4712  
4713  } // end anonymous namespace
4714  
4715  // This function writes a simpilified module info for thin link bitcode file.
4716  // It only contains the source file name along with the name(the offset and
4717  // size in strtab) and linkage for global values. For the global value info
4718  // entry, in order to keep linkage at offset 5, there are three zeros used
4719  // as padding.
4720  void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4721    SmallVector<unsigned, 64> Vals;
4722    // Emit the module's source file name.
4723    {
4724      StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4725      BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4726      if (Bits == SE_Char6)
4727        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4728      else if (Bits == SE_Fixed7)
4729        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4730  
4731      // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4732      auto Abbv = std::make_shared<BitCodeAbbrev>();
4733      Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4734      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4735      Abbv->Add(AbbrevOpToUse);
4736      unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4737  
4738      for (const auto P : M.getSourceFileName())
4739        Vals.push_back((unsigned char)P);
4740  
4741      Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4742      Vals.clear();
4743    }
4744  
4745    // Emit the global variable information.
4746    for (const GlobalVariable &GV : M.globals()) {
4747      // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4748      Vals.push_back(StrtabBuilder.add(GV.getName()));
4749      Vals.push_back(GV.getName().size());
4750      Vals.push_back(0);
4751      Vals.push_back(0);
4752      Vals.push_back(0);
4753      Vals.push_back(getEncodedLinkage(GV));
4754  
4755      Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4756      Vals.clear();
4757    }
4758  
4759    // Emit the function proto information.
4760    for (const Function &F : M) {
4761      // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4762      Vals.push_back(StrtabBuilder.add(F.getName()));
4763      Vals.push_back(F.getName().size());
4764      Vals.push_back(0);
4765      Vals.push_back(0);
4766      Vals.push_back(0);
4767      Vals.push_back(getEncodedLinkage(F));
4768  
4769      Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4770      Vals.clear();
4771    }
4772  
4773    // Emit the alias information.
4774    for (const GlobalAlias &A : M.aliases()) {
4775      // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4776      Vals.push_back(StrtabBuilder.add(A.getName()));
4777      Vals.push_back(A.getName().size());
4778      Vals.push_back(0);
4779      Vals.push_back(0);
4780      Vals.push_back(0);
4781      Vals.push_back(getEncodedLinkage(A));
4782  
4783      Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4784      Vals.clear();
4785    }
4786  
4787    // Emit the ifunc information.
4788    for (const GlobalIFunc &I : M.ifuncs()) {
4789      // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4790      Vals.push_back(StrtabBuilder.add(I.getName()));
4791      Vals.push_back(I.getName().size());
4792      Vals.push_back(0);
4793      Vals.push_back(0);
4794      Vals.push_back(0);
4795      Vals.push_back(getEncodedLinkage(I));
4796  
4797      Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4798      Vals.clear();
4799    }
4800  }
4801  
4802  void ThinLinkBitcodeWriter::write() {
4803    Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4804  
4805    writeModuleVersion();
4806  
4807    writeSimplifiedModuleInfo();
4808  
4809    writePerModuleGlobalValueSummary();
4810  
4811    // Write module hash.
4812    Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4813  
4814    Stream.ExitBlock();
4815  }
4816  
4817  void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4818                                           const ModuleSummaryIndex &Index,
4819                                           const ModuleHash &ModHash) {
4820    assert(!WroteStrtab);
4821  
4822    // The Mods vector is used by irsymtab::build, which requires non-const
4823    // Modules in case it needs to materialize metadata. But the bitcode writer
4824    // requires that the module is materialized, so we can cast to non-const here,
4825    // after checking that it is in fact materialized.
4826    assert(M.isMaterialized());
4827    Mods.push_back(const_cast<Module *>(&M));
4828  
4829    ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4830                                         ModHash);
4831    ThinLinkWriter.write();
4832  }
4833  
4834  // Write the specified thin link bitcode file to the given raw output stream,
4835  // where it will be written in a new bitcode block. This is used when
4836  // writing the per-module index file for ThinLTO.
4837  void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4838                                        const ModuleSummaryIndex &Index,
4839                                        const ModuleHash &ModHash) {
4840    SmallVector<char, 0> Buffer;
4841    Buffer.reserve(256 * 1024);
4842  
4843    BitcodeWriter Writer(Buffer);
4844    Writer.writeThinLinkBitcode(M, Index, ModHash);
4845    Writer.writeSymtab();
4846    Writer.writeStrtab();
4847  
4848    Out.write((char *)&Buffer.front(), Buffer.size());
4849  }
4850  
4851  static const char *getSectionNameForBitcode(const Triple &T) {
4852    switch (T.getObjectFormat()) {
4853    case Triple::MachO:
4854      return "__LLVM,__bitcode";
4855    case Triple::COFF:
4856    case Triple::ELF:
4857    case Triple::Wasm:
4858    case Triple::UnknownObjectFormat:
4859      return ".llvmbc";
4860    case Triple::GOFF:
4861      llvm_unreachable("GOFF is not yet implemented");
4862      break;
4863    case Triple::XCOFF:
4864      llvm_unreachable("XCOFF is not yet implemented");
4865      break;
4866    }
4867    llvm_unreachable("Unimplemented ObjectFormatType");
4868  }
4869  
4870  static const char *getSectionNameForCommandline(const Triple &T) {
4871    switch (T.getObjectFormat()) {
4872    case Triple::MachO:
4873      return "__LLVM,__cmdline";
4874    case Triple::COFF:
4875    case Triple::ELF:
4876    case Triple::Wasm:
4877    case Triple::UnknownObjectFormat:
4878      return ".llvmcmd";
4879    case Triple::GOFF:
4880      llvm_unreachable("GOFF is not yet implemented");
4881      break;
4882    case Triple::XCOFF:
4883      llvm_unreachable("XCOFF is not yet implemented");
4884      break;
4885    }
4886    llvm_unreachable("Unimplemented ObjectFormatType");
4887  }
4888  
4889  void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4890                                  bool EmbedBitcode, bool EmbedCmdline,
4891                                  const std::vector<uint8_t> &CmdArgs) {
4892    // Save llvm.compiler.used and remove it.
4893    SmallVector<Constant *, 2> UsedArray;
4894    SmallVector<GlobalValue *, 4> UsedGlobals;
4895    Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4896    GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4897    for (auto *GV : UsedGlobals) {
4898      if (GV->getName() != "llvm.embedded.module" &&
4899          GV->getName() != "llvm.cmdline")
4900        UsedArray.push_back(
4901            ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4902    }
4903    if (Used)
4904      Used->eraseFromParent();
4905  
4906    // Embed the bitcode for the llvm module.
4907    std::string Data;
4908    ArrayRef<uint8_t> ModuleData;
4909    Triple T(M.getTargetTriple());
4910  
4911    if (EmbedBitcode) {
4912      if (Buf.getBufferSize() == 0 ||
4913          !isBitcode((const unsigned char *)Buf.getBufferStart(),
4914                     (const unsigned char *)Buf.getBufferEnd())) {
4915        // If the input is LLVM Assembly, bitcode is produced by serializing
4916        // the module. Use-lists order need to be preserved in this case.
4917        llvm::raw_string_ostream OS(Data);
4918        llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4919        ModuleData =
4920            ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4921      } else
4922        // If the input is LLVM bitcode, write the input byte stream directly.
4923        ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4924                                       Buf.getBufferSize());
4925    }
4926    llvm::Constant *ModuleConstant =
4927        llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4928    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4929        M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4930        ModuleConstant);
4931    GV->setSection(getSectionNameForBitcode(T));
4932    // Set alignment to 1 to prevent padding between two contributions from input
4933    // sections after linking.
4934    GV->setAlignment(Align(1));
4935    UsedArray.push_back(
4936        ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4937    if (llvm::GlobalVariable *Old =
4938            M.getGlobalVariable("llvm.embedded.module", true)) {
4939      assert(Old->hasOneUse() &&
4940             "llvm.embedded.module can only be used once in llvm.compiler.used");
4941      GV->takeName(Old);
4942      Old->eraseFromParent();
4943    } else {
4944      GV->setName("llvm.embedded.module");
4945    }
4946  
4947    // Skip if only bitcode needs to be embedded.
4948    if (EmbedCmdline) {
4949      // Embed command-line options.
4950      ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
4951                                CmdArgs.size());
4952      llvm::Constant *CmdConstant =
4953          llvm::ConstantDataArray::get(M.getContext(), CmdData);
4954      GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4955                                    llvm::GlobalValue::PrivateLinkage,
4956                                    CmdConstant);
4957      GV->setSection(getSectionNameForCommandline(T));
4958      GV->setAlignment(Align(1));
4959      UsedArray.push_back(
4960          ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4961      if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4962        assert(Old->hasOneUse() &&
4963               "llvm.cmdline can only be used once in llvm.compiler.used");
4964        GV->takeName(Old);
4965        Old->eraseFromParent();
4966      } else {
4967        GV->setName("llvm.cmdline");
4968      }
4969    }
4970  
4971    if (UsedArray.empty())
4972      return;
4973  
4974    // Recreate llvm.compiler.used.
4975    ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4976    auto *NewUsed = new GlobalVariable(
4977        M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4978        llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4979    NewUsed->setSection("llvm.metadata");
4980  }
4981