1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 static cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_UNOP_ABBREV, 116 FUNCTION_INST_UNOP_FLAGS_ABBREV, 117 FUNCTION_INST_BINOP_ABBREV, 118 FUNCTION_INST_BINOP_FLAGS_ABBREV, 119 FUNCTION_INST_CAST_ABBREV, 120 FUNCTION_INST_RET_VOID_ABBREV, 121 FUNCTION_INST_RET_VAL_ABBREV, 122 FUNCTION_INST_UNREACHABLE_ABBREV, 123 FUNCTION_INST_GEP_ABBREV, 124 }; 125 126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 127 /// file type. 128 class BitcodeWriterBase { 129 protected: 130 /// The stream created and owned by the client. 131 BitstreamWriter &Stream; 132 133 StringTableBuilder &StrtabBuilder; 134 135 public: 136 /// Constructs a BitcodeWriterBase object that writes to the provided 137 /// \p Stream. 138 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 139 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 140 141 protected: 142 void writeBitcodeHeader(); 143 void writeModuleVersion(); 144 }; 145 146 void BitcodeWriterBase::writeModuleVersion() { 147 // VERSION: [version#] 148 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 149 } 150 151 /// Base class to manage the module bitcode writing, currently subclassed for 152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 153 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 154 protected: 155 /// The Module to write to bitcode. 156 const Module &M; 157 158 /// Enumerates ids for all values in the module. 159 ValueEnumerator VE; 160 161 /// Optional per-module index to write for ThinLTO. 162 const ModuleSummaryIndex *Index; 163 164 /// Map that holds the correspondence between GUIDs in the summary index, 165 /// that came from indirect call profiles, and a value id generated by this 166 /// class to use in the VST and summary block records. 167 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 168 169 /// Tracks the last value id recorded in the GUIDToValueMap. 170 unsigned GlobalValueId; 171 172 /// Saves the offset of the VSTOffset record that must eventually be 173 /// backpatched with the offset of the actual VST. 174 uint64_t VSTOffsetPlaceholder = 0; 175 176 public: 177 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 178 /// writing to the provided \p Buffer. 179 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 180 BitstreamWriter &Stream, 181 bool ShouldPreserveUseListOrder, 182 const ModuleSummaryIndex *Index) 183 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 184 VE(M, ShouldPreserveUseListOrder), Index(Index) { 185 // Assign ValueIds to any callee values in the index that came from 186 // indirect call profiles and were recorded as a GUID not a Value* 187 // (which would have been assigned an ID by the ValueEnumerator). 188 // The starting ValueId is just after the number of values in the 189 // ValueEnumerator, so that they can be emitted in the VST. 190 GlobalValueId = VE.getValues().size(); 191 if (!Index) 192 return; 193 for (const auto &GUIDSummaryLists : *Index) 194 // Examine all summaries for this GUID. 195 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 196 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 197 // For each call in the function summary, see if the call 198 // is to a GUID (which means it is for an indirect call, 199 // otherwise we would have a Value for it). If so, synthesize 200 // a value id. 201 for (auto &CallEdge : FS->calls()) 202 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 203 assignValueId(CallEdge.first.getGUID()); 204 } 205 206 protected: 207 void writePerModuleGlobalValueSummary(); 208 209 private: 210 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 211 GlobalValueSummary *Summary, 212 unsigned ValueID, 213 unsigned FSCallsAbbrev, 214 unsigned FSCallsProfileAbbrev, 215 const Function &F); 216 void writeModuleLevelReferences(const GlobalVariable &V, 217 SmallVector<uint64_t, 64> &NameVals, 218 unsigned FSModRefsAbbrev, 219 unsigned FSModVTableRefsAbbrev); 220 221 void assignValueId(GlobalValue::GUID ValGUID) { 222 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 223 } 224 225 unsigned getValueId(GlobalValue::GUID ValGUID) { 226 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 227 // Expect that any GUID value had a value Id assigned by an 228 // earlier call to assignValueId. 229 assert(VMI != GUIDToValueIdMap.end() && 230 "GUID does not have assigned value Id"); 231 return VMI->second; 232 } 233 234 // Helper to get the valueId for the type of value recorded in VI. 235 unsigned getValueId(ValueInfo VI) { 236 if (!VI.haveGVs() || !VI.getValue()) 237 return getValueId(VI.getGUID()); 238 return VE.getValueID(VI.getValue()); 239 } 240 241 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 242 }; 243 244 /// Class to manage the bitcode writing for a module. 245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 246 /// Pointer to the buffer allocated by caller for bitcode writing. 247 const SmallVectorImpl<char> &Buffer; 248 249 /// True if a module hash record should be written. 250 bool GenerateHash; 251 252 /// If non-null, when GenerateHash is true, the resulting hash is written 253 /// into ModHash. 254 ModuleHash *ModHash; 255 256 SHA1 Hasher; 257 258 /// The start bit of the identification block. 259 uint64_t BitcodeStartBit; 260 261 public: 262 /// Constructs a ModuleBitcodeWriter object for the given Module, 263 /// writing to the provided \p Buffer. 264 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 265 StringTableBuilder &StrtabBuilder, 266 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 267 const ModuleSummaryIndex *Index, bool GenerateHash, 268 ModuleHash *ModHash = nullptr) 269 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 270 ShouldPreserveUseListOrder, Index), 271 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 272 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 273 274 /// Emit the current module to the bitstream. 275 void write(); 276 277 private: 278 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 279 280 size_t addToStrtab(StringRef Str); 281 282 void writeAttributeGroupTable(); 283 void writeAttributeTable(); 284 void writeTypeTable(); 285 void writeComdats(); 286 void writeValueSymbolTableForwardDecl(); 287 void writeModuleInfo(); 288 void writeValueAsMetadata(const ValueAsMetadata *MD, 289 SmallVectorImpl<uint64_t> &Record); 290 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 unsigned createDILocationAbbrev(); 293 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned &Abbrev); 295 unsigned createGenericDINodeAbbrev(); 296 void writeGenericDINode(const GenericDINode *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 298 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIEnumerator(const DIEnumerator *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIDerivedType(const DIDerivedType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDICompositeType(const DICompositeType *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubroutineType(const DISubroutineType *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned Abbrev); 313 void writeDICompileUnit(const DICompileUnit *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubprogram(const DISubprogram *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlock(const DILexicalBlock *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 320 SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICommonBlock(const DICommonBlock *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 336 SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIGlobalVariable(const DIGlobalVariable *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDILocalVariable(const DILocalVariable *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDILabel(const DILabel *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIExpression(const DIExpression *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIObjCProperty(const DIObjCProperty *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDIImportedEntity(const DIImportedEntity *N, 353 SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 unsigned createNamedMetadataAbbrev(); 356 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 357 unsigned createMetadataStringsAbbrev(); 358 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 359 SmallVectorImpl<uint64_t> &Record); 360 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 361 SmallVectorImpl<uint64_t> &Record, 362 std::vector<unsigned> *MDAbbrevs = nullptr, 363 std::vector<uint64_t> *IndexPos = nullptr); 364 void writeModuleMetadata(); 365 void writeFunctionMetadata(const Function &F); 366 void writeFunctionMetadataAttachment(const Function &F); 367 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 368 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 369 const GlobalObject &GO); 370 void writeModuleMetadataKinds(); 371 void writeOperandBundleTags(); 372 void writeSyncScopeNames(); 373 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 374 void writeModuleConstants(); 375 bool pushValueAndType(const Value *V, unsigned InstID, 376 SmallVectorImpl<unsigned> &Vals); 377 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 378 void pushValue(const Value *V, unsigned InstID, 379 SmallVectorImpl<unsigned> &Vals); 380 void pushValueSigned(const Value *V, unsigned InstID, 381 SmallVectorImpl<uint64_t> &Vals); 382 void writeInstruction(const Instruction &I, unsigned InstID, 383 SmallVectorImpl<unsigned> &Vals); 384 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 385 void writeGlobalValueSymbolTable( 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeUseList(UseListOrder &&Order); 388 void writeUseListBlock(const Function *F); 389 void 390 writeFunction(const Function &F, 391 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 392 void writeBlockInfo(); 393 void writeModuleHash(size_t BlockStartPos); 394 395 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 396 return unsigned(SSID); 397 } 398 }; 399 400 /// Class to manage the bitcode writing for a combined index. 401 class IndexBitcodeWriter : public BitcodeWriterBase { 402 /// The combined index to write to bitcode. 403 const ModuleSummaryIndex &Index; 404 405 /// When writing a subset of the index for distributed backends, client 406 /// provides a map of modules to the corresponding GUIDs/summaries to write. 407 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 408 409 /// Map that holds the correspondence between the GUID used in the combined 410 /// index and a value id generated by this class to use in references. 411 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 412 413 /// Tracks the last value id recorded in the GUIDToValueMap. 414 unsigned GlobalValueId = 0; 415 416 public: 417 /// Constructs a IndexBitcodeWriter object for the given combined index, 418 /// writing to the provided \p Buffer. When writing a subset of the index 419 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 420 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 421 const ModuleSummaryIndex &Index, 422 const std::map<std::string, GVSummaryMapTy> 423 *ModuleToSummariesForIndex = nullptr) 424 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 425 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 426 // Assign unique value ids to all summaries to be written, for use 427 // in writing out the call graph edges. Save the mapping from GUID 428 // to the new global value id to use when writing those edges, which 429 // are currently saved in the index in terms of GUID. 430 forEachSummary([&](GVInfo I, bool) { 431 GUIDToValueIdMap[I.first] = ++GlobalValueId; 432 }); 433 } 434 435 /// The below iterator returns the GUID and associated summary. 436 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 437 438 /// Calls the callback for each value GUID and summary to be written to 439 /// bitcode. This hides the details of whether they are being pulled from the 440 /// entire index or just those in a provided ModuleToSummariesForIndex map. 441 template<typename Functor> 442 void forEachSummary(Functor Callback) { 443 if (ModuleToSummariesForIndex) { 444 for (auto &M : *ModuleToSummariesForIndex) 445 for (auto &Summary : M.second) { 446 Callback(Summary, false); 447 // Ensure aliasee is handled, e.g. for assigning a valueId, 448 // even if we are not importing the aliasee directly (the 449 // imported alias will contain a copy of aliasee). 450 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 451 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 452 } 453 } else { 454 for (auto &Summaries : Index) 455 for (auto &Summary : Summaries.second.SummaryList) 456 Callback({Summaries.first, Summary.get()}, false); 457 } 458 } 459 460 /// Calls the callback for each entry in the modulePaths StringMap that 461 /// should be written to the module path string table. This hides the details 462 /// of whether they are being pulled from the entire index or just those in a 463 /// provided ModuleToSummariesForIndex map. 464 template <typename Functor> void forEachModule(Functor Callback) { 465 if (ModuleToSummariesForIndex) { 466 for (const auto &M : *ModuleToSummariesForIndex) { 467 const auto &MPI = Index.modulePaths().find(M.first); 468 if (MPI == Index.modulePaths().end()) { 469 // This should only happen if the bitcode file was empty, in which 470 // case we shouldn't be importing (the ModuleToSummariesForIndex 471 // would only include the module we are writing and index for). 472 assert(ModuleToSummariesForIndex->size() == 1); 473 continue; 474 } 475 Callback(*MPI); 476 } 477 } else { 478 for (const auto &MPSE : Index.modulePaths()) 479 Callback(MPSE); 480 } 481 } 482 483 /// Main entry point for writing a combined index to bitcode. 484 void write(); 485 486 private: 487 void writeModStrings(); 488 void writeCombinedGlobalValueSummary(); 489 490 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 491 auto VMI = GUIDToValueIdMap.find(ValGUID); 492 if (VMI == GUIDToValueIdMap.end()) 493 return None; 494 return VMI->second; 495 } 496 497 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 498 }; 499 500 } // end anonymous namespace 501 502 static unsigned getEncodedCastOpcode(unsigned Opcode) { 503 switch (Opcode) { 504 default: llvm_unreachable("Unknown cast instruction!"); 505 case Instruction::Trunc : return bitc::CAST_TRUNC; 506 case Instruction::ZExt : return bitc::CAST_ZEXT; 507 case Instruction::SExt : return bitc::CAST_SEXT; 508 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 509 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 510 case Instruction::UIToFP : return bitc::CAST_UITOFP; 511 case Instruction::SIToFP : return bitc::CAST_SITOFP; 512 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 513 case Instruction::FPExt : return bitc::CAST_FPEXT; 514 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 515 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 516 case Instruction::BitCast : return bitc::CAST_BITCAST; 517 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 518 } 519 } 520 521 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 522 switch (Opcode) { 523 default: llvm_unreachable("Unknown binary instruction!"); 524 case Instruction::FNeg: return bitc::UNOP_FNEG; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 567 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 568 } 569 } 570 571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 572 switch (Ordering) { 573 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 574 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 575 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 576 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 577 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 578 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 579 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 580 } 581 llvm_unreachable("Invalid ordering"); 582 } 583 584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 585 StringRef Str, unsigned AbbrevToUse) { 586 SmallVector<unsigned, 64> Vals; 587 588 // Code: [strchar x N] 589 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 590 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 591 AbbrevToUse = 0; 592 Vals.push_back(Str[i]); 593 } 594 595 // Emit the finished record. 596 Stream.EmitRecord(Code, Vals, AbbrevToUse); 597 } 598 599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 600 switch (Kind) { 601 case Attribute::Alignment: 602 return bitc::ATTR_KIND_ALIGNMENT; 603 case Attribute::AllocSize: 604 return bitc::ATTR_KIND_ALLOC_SIZE; 605 case Attribute::AlwaysInline: 606 return bitc::ATTR_KIND_ALWAYS_INLINE; 607 case Attribute::ArgMemOnly: 608 return bitc::ATTR_KIND_ARGMEMONLY; 609 case Attribute::Builtin: 610 return bitc::ATTR_KIND_BUILTIN; 611 case Attribute::ByVal: 612 return bitc::ATTR_KIND_BY_VAL; 613 case Attribute::Convergent: 614 return bitc::ATTR_KIND_CONVERGENT; 615 case Attribute::InAlloca: 616 return bitc::ATTR_KIND_IN_ALLOCA; 617 case Attribute::Cold: 618 return bitc::ATTR_KIND_COLD; 619 case Attribute::InaccessibleMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 621 case Attribute::InaccessibleMemOrArgMemOnly: 622 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 623 case Attribute::InlineHint: 624 return bitc::ATTR_KIND_INLINE_HINT; 625 case Attribute::InReg: 626 return bitc::ATTR_KIND_IN_REG; 627 case Attribute::JumpTable: 628 return bitc::ATTR_KIND_JUMP_TABLE; 629 case Attribute::MinSize: 630 return bitc::ATTR_KIND_MIN_SIZE; 631 case Attribute::Naked: 632 return bitc::ATTR_KIND_NAKED; 633 case Attribute::Nest: 634 return bitc::ATTR_KIND_NEST; 635 case Attribute::NoAlias: 636 return bitc::ATTR_KIND_NO_ALIAS; 637 case Attribute::NoBuiltin: 638 return bitc::ATTR_KIND_NO_BUILTIN; 639 case Attribute::NoCapture: 640 return bitc::ATTR_KIND_NO_CAPTURE; 641 case Attribute::NoDuplicate: 642 return bitc::ATTR_KIND_NO_DUPLICATE; 643 case Attribute::NoFree: 644 return bitc::ATTR_KIND_NOFREE; 645 case Attribute::NoImplicitFloat: 646 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 647 case Attribute::NoInline: 648 return bitc::ATTR_KIND_NO_INLINE; 649 case Attribute::NoRecurse: 650 return bitc::ATTR_KIND_NO_RECURSE; 651 case Attribute::NonLazyBind: 652 return bitc::ATTR_KIND_NON_LAZY_BIND; 653 case Attribute::NonNull: 654 return bitc::ATTR_KIND_NON_NULL; 655 case Attribute::Dereferenceable: 656 return bitc::ATTR_KIND_DEREFERENCEABLE; 657 case Attribute::DereferenceableOrNull: 658 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 659 case Attribute::NoRedZone: 660 return bitc::ATTR_KIND_NO_RED_ZONE; 661 case Attribute::NoReturn: 662 return bitc::ATTR_KIND_NO_RETURN; 663 case Attribute::NoSync: 664 return bitc::ATTR_KIND_NOSYNC; 665 case Attribute::NoCfCheck: 666 return bitc::ATTR_KIND_NOCF_CHECK; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptForFuzzing: 670 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 671 case Attribute::OptimizeForSize: 672 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 673 case Attribute::OptimizeNone: 674 return bitc::ATTR_KIND_OPTIMIZE_NONE; 675 case Attribute::ReadNone: 676 return bitc::ATTR_KIND_READ_NONE; 677 case Attribute::ReadOnly: 678 return bitc::ATTR_KIND_READ_ONLY; 679 case Attribute::Returned: 680 return bitc::ATTR_KIND_RETURNED; 681 case Attribute::ReturnsTwice: 682 return bitc::ATTR_KIND_RETURNS_TWICE; 683 case Attribute::SExt: 684 return bitc::ATTR_KIND_S_EXT; 685 case Attribute::Speculatable: 686 return bitc::ATTR_KIND_SPECULATABLE; 687 case Attribute::StackAlignment: 688 return bitc::ATTR_KIND_STACK_ALIGNMENT; 689 case Attribute::StackProtect: 690 return bitc::ATTR_KIND_STACK_PROTECT; 691 case Attribute::StackProtectReq: 692 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 693 case Attribute::StackProtectStrong: 694 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 695 case Attribute::SafeStack: 696 return bitc::ATTR_KIND_SAFESTACK; 697 case Attribute::ShadowCallStack: 698 return bitc::ATTR_KIND_SHADOWCALLSTACK; 699 case Attribute::StrictFP: 700 return bitc::ATTR_KIND_STRICT_FP; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeHWAddress: 706 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SpeculativeLoadHardening: 712 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 713 case Attribute::SwiftError: 714 return bitc::ATTR_KIND_SWIFT_ERROR; 715 case Attribute::SwiftSelf: 716 return bitc::ATTR_KIND_SWIFT_SELF; 717 case Attribute::UWTable: 718 return bitc::ATTR_KIND_UW_TABLE; 719 case Attribute::WillReturn: 720 return bitc::ATTR_KIND_WILLRETURN; 721 case Attribute::WriteOnly: 722 return bitc::ATTR_KIND_WRITEONLY; 723 case Attribute::ZExt: 724 return bitc::ATTR_KIND_Z_EXT; 725 case Attribute::ImmArg: 726 return bitc::ATTR_KIND_IMMARG; 727 case Attribute::SanitizeMemTag: 728 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 } 734 735 llvm_unreachable("Trying to encode unknown attribute"); 736 } 737 738 void ModuleBitcodeWriter::writeAttributeGroupTable() { 739 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 740 VE.getAttributeGroups(); 741 if (AttrGrps.empty()) return; 742 743 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 744 745 SmallVector<uint64_t, 64> Record; 746 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 747 unsigned AttrListIndex = Pair.first; 748 AttributeSet AS = Pair.second; 749 Record.push_back(VE.getAttributeGroupID(Pair)); 750 Record.push_back(AttrListIndex); 751 752 for (Attribute Attr : AS) { 753 if (Attr.isEnumAttribute()) { 754 Record.push_back(0); 755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 756 } else if (Attr.isIntAttribute()) { 757 Record.push_back(1); 758 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 759 Record.push_back(Attr.getValueAsInt()); 760 } else if (Attr.isStringAttribute()) { 761 StringRef Kind = Attr.getKindAsString(); 762 StringRef Val = Attr.getValueAsString(); 763 764 Record.push_back(Val.empty() ? 3 : 4); 765 Record.append(Kind.begin(), Kind.end()); 766 Record.push_back(0); 767 if (!Val.empty()) { 768 Record.append(Val.begin(), Val.end()); 769 Record.push_back(0); 770 } 771 } else { 772 assert(Attr.isTypeAttribute()); 773 Type *Ty = Attr.getValueAsType(); 774 Record.push_back(Ty ? 6 : 5); 775 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 776 if (Ty) 777 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 778 } 779 } 780 781 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 782 Record.clear(); 783 } 784 785 Stream.ExitBlock(); 786 } 787 788 void ModuleBitcodeWriter::writeAttributeTable() { 789 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 790 if (Attrs.empty()) return; 791 792 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 793 794 SmallVector<uint64_t, 64> Record; 795 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 796 AttributeList AL = Attrs[i]; 797 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 798 AttributeSet AS = AL.getAttributes(i); 799 if (AS.hasAttributes()) 800 Record.push_back(VE.getAttributeGroupID({i, AS})); 801 } 802 803 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 804 Record.clear(); 805 } 806 807 Stream.ExitBlock(); 808 } 809 810 /// WriteTypeTable - Write out the type table for a module. 811 void ModuleBitcodeWriter::writeTypeTable() { 812 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 813 814 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 815 SmallVector<uint64_t, 64> TypeVals; 816 817 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 818 819 // Abbrev for TYPE_CODE_POINTER. 820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 824 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_FUNCTION. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_STRUCT_ANON. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_NAME. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 847 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Abbrev for TYPE_CODE_STRUCT_NAMED. 850 Abbv = std::make_shared<BitCodeAbbrev>(); 851 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 855 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_ARRAY. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 863 864 // Emit an entry count so the reader can reserve space. 865 TypeVals.push_back(TypeList.size()); 866 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 867 TypeVals.clear(); 868 869 // Loop over all of the types, emitting each in turn. 870 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 871 Type *T = TypeList[i]; 872 int AbbrevToUse = 0; 873 unsigned Code = 0; 874 875 switch (T->getTypeID()) { 876 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 877 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 878 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 879 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 880 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 881 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 882 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 883 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 884 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 885 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 886 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 887 case Type::IntegerTyID: 888 // INTEGER: [width] 889 Code = bitc::TYPE_CODE_INTEGER; 890 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 891 break; 892 case Type::PointerTyID: { 893 PointerType *PTy = cast<PointerType>(T); 894 // POINTER: [pointee type, address space] 895 Code = bitc::TYPE_CODE_POINTER; 896 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 897 unsigned AddressSpace = PTy->getAddressSpace(); 898 TypeVals.push_back(AddressSpace); 899 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 900 break; 901 } 902 case Type::FunctionTyID: { 903 FunctionType *FT = cast<FunctionType>(T); 904 // FUNCTION: [isvararg, retty, paramty x N] 905 Code = bitc::TYPE_CODE_FUNCTION; 906 TypeVals.push_back(FT->isVarArg()); 907 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 908 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 909 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 910 AbbrevToUse = FunctionAbbrev; 911 break; 912 } 913 case Type::StructTyID: { 914 StructType *ST = cast<StructType>(T); 915 // STRUCT: [ispacked, eltty x N] 916 TypeVals.push_back(ST->isPacked()); 917 // Output all of the element types. 918 for (StructType::element_iterator I = ST->element_begin(), 919 E = ST->element_end(); I != E; ++I) 920 TypeVals.push_back(VE.getTypeID(*I)); 921 922 if (ST->isLiteral()) { 923 Code = bitc::TYPE_CODE_STRUCT_ANON; 924 AbbrevToUse = StructAnonAbbrev; 925 } else { 926 if (ST->isOpaque()) { 927 Code = bitc::TYPE_CODE_OPAQUE; 928 } else { 929 Code = bitc::TYPE_CODE_STRUCT_NAMED; 930 AbbrevToUse = StructNamedAbbrev; 931 } 932 933 // Emit the name if it is present. 934 if (!ST->getName().empty()) 935 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 936 StructNameAbbrev); 937 } 938 break; 939 } 940 case Type::ArrayTyID: { 941 ArrayType *AT = cast<ArrayType>(T); 942 // ARRAY: [numelts, eltty] 943 Code = bitc::TYPE_CODE_ARRAY; 944 TypeVals.push_back(AT->getNumElements()); 945 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 946 AbbrevToUse = ArrayAbbrev; 947 break; 948 } 949 case Type::VectorTyID: { 950 VectorType *VT = cast<VectorType>(T); 951 // VECTOR [numelts, eltty] or 952 // [numelts, eltty, scalable] 953 Code = bitc::TYPE_CODE_VECTOR; 954 TypeVals.push_back(VT->getNumElements()); 955 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 956 if (VT->isScalable()) 957 TypeVals.push_back(VT->isScalable()); 958 break; 959 } 960 } 961 962 // Emit the finished record. 963 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 964 TypeVals.clear(); 965 } 966 967 Stream.ExitBlock(); 968 } 969 970 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 971 switch (Linkage) { 972 case GlobalValue::ExternalLinkage: 973 return 0; 974 case GlobalValue::WeakAnyLinkage: 975 return 16; 976 case GlobalValue::AppendingLinkage: 977 return 2; 978 case GlobalValue::InternalLinkage: 979 return 3; 980 case GlobalValue::LinkOnceAnyLinkage: 981 return 18; 982 case GlobalValue::ExternalWeakLinkage: 983 return 7; 984 case GlobalValue::CommonLinkage: 985 return 8; 986 case GlobalValue::PrivateLinkage: 987 return 9; 988 case GlobalValue::WeakODRLinkage: 989 return 17; 990 case GlobalValue::LinkOnceODRLinkage: 991 return 19; 992 case GlobalValue::AvailableExternallyLinkage: 993 return 12; 994 } 995 llvm_unreachable("Invalid linkage"); 996 } 997 998 static unsigned getEncodedLinkage(const GlobalValue &GV) { 999 return getEncodedLinkage(GV.getLinkage()); 1000 } 1001 1002 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1003 uint64_t RawFlags = 0; 1004 RawFlags |= Flags.ReadNone; 1005 RawFlags |= (Flags.ReadOnly << 1); 1006 RawFlags |= (Flags.NoRecurse << 2); 1007 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1008 RawFlags |= (Flags.NoInline << 4); 1009 RawFlags |= (Flags.AlwaysInline << 5); 1010 return RawFlags; 1011 } 1012 1013 // Decode the flags for GlobalValue in the summary 1014 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1015 uint64_t RawFlags = 0; 1016 1017 RawFlags |= Flags.NotEligibleToImport; // bool 1018 RawFlags |= (Flags.Live << 1); 1019 RawFlags |= (Flags.DSOLocal << 2); 1020 RawFlags |= (Flags.CanAutoHide << 3); 1021 1022 // Linkage don't need to be remapped at that time for the summary. Any future 1023 // change to the getEncodedLinkage() function will need to be taken into 1024 // account here as well. 1025 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1026 1027 return RawFlags; 1028 } 1029 1030 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1031 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1032 return RawFlags; 1033 } 1034 1035 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1036 switch (GV.getVisibility()) { 1037 case GlobalValue::DefaultVisibility: return 0; 1038 case GlobalValue::HiddenVisibility: return 1; 1039 case GlobalValue::ProtectedVisibility: return 2; 1040 } 1041 llvm_unreachable("Invalid visibility"); 1042 } 1043 1044 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1045 switch (GV.getDLLStorageClass()) { 1046 case GlobalValue::DefaultStorageClass: return 0; 1047 case GlobalValue::DLLImportStorageClass: return 1; 1048 case GlobalValue::DLLExportStorageClass: return 2; 1049 } 1050 llvm_unreachable("Invalid DLL storage class"); 1051 } 1052 1053 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1054 switch (GV.getThreadLocalMode()) { 1055 case GlobalVariable::NotThreadLocal: return 0; 1056 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1057 case GlobalVariable::LocalDynamicTLSModel: return 2; 1058 case GlobalVariable::InitialExecTLSModel: return 3; 1059 case GlobalVariable::LocalExecTLSModel: return 4; 1060 } 1061 llvm_unreachable("Invalid TLS model"); 1062 } 1063 1064 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1065 switch (C.getSelectionKind()) { 1066 case Comdat::Any: 1067 return bitc::COMDAT_SELECTION_KIND_ANY; 1068 case Comdat::ExactMatch: 1069 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1070 case Comdat::Largest: 1071 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1072 case Comdat::NoDuplicates: 1073 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1074 case Comdat::SameSize: 1075 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1076 } 1077 llvm_unreachable("Invalid selection kind"); 1078 } 1079 1080 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1081 switch (GV.getUnnamedAddr()) { 1082 case GlobalValue::UnnamedAddr::None: return 0; 1083 case GlobalValue::UnnamedAddr::Local: return 2; 1084 case GlobalValue::UnnamedAddr::Global: return 1; 1085 } 1086 llvm_unreachable("Invalid unnamed_addr"); 1087 } 1088 1089 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1090 if (GenerateHash) 1091 Hasher.update(Str); 1092 return StrtabBuilder.add(Str); 1093 } 1094 1095 void ModuleBitcodeWriter::writeComdats() { 1096 SmallVector<unsigned, 64> Vals; 1097 for (const Comdat *C : VE.getComdats()) { 1098 // COMDAT: [strtab offset, strtab size, selection_kind] 1099 Vals.push_back(addToStrtab(C->getName())); 1100 Vals.push_back(C->getName().size()); 1101 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1102 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1103 Vals.clear(); 1104 } 1105 } 1106 1107 /// Write a record that will eventually hold the word offset of the 1108 /// module-level VST. For now the offset is 0, which will be backpatched 1109 /// after the real VST is written. Saves the bit offset to backpatch. 1110 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1111 // Write a placeholder value in for the offset of the real VST, 1112 // which is written after the function blocks so that it can include 1113 // the offset of each function. The placeholder offset will be 1114 // updated when the real VST is written. 1115 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1116 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1117 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1118 // hold the real VST offset. Must use fixed instead of VBR as we don't 1119 // know how many VBR chunks to reserve ahead of time. 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1121 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1122 1123 // Emit the placeholder 1124 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1125 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1126 1127 // Compute and save the bit offset to the placeholder, which will be 1128 // patched when the real VST is written. We can simply subtract the 32-bit 1129 // fixed size from the current bit number to get the location to backpatch. 1130 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1131 } 1132 1133 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1134 1135 /// Determine the encoding to use for the given string name and length. 1136 static StringEncoding getStringEncoding(StringRef Str) { 1137 bool isChar6 = true; 1138 for (char C : Str) { 1139 if (isChar6) 1140 isChar6 = BitCodeAbbrevOp::isChar6(C); 1141 if ((unsigned char)C & 128) 1142 // don't bother scanning the rest. 1143 return SE_Fixed8; 1144 } 1145 if (isChar6) 1146 return SE_Char6; 1147 return SE_Fixed7; 1148 } 1149 1150 /// Emit top-level description of module, including target triple, inline asm, 1151 /// descriptors for global variables, and function prototype info. 1152 /// Returns the bit offset to backpatch with the location of the real VST. 1153 void ModuleBitcodeWriter::writeModuleInfo() { 1154 // Emit various pieces of data attached to a module. 1155 if (!M.getTargetTriple().empty()) 1156 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1157 0 /*TODO*/); 1158 const std::string &DL = M.getDataLayoutStr(); 1159 if (!DL.empty()) 1160 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1161 if (!M.getModuleInlineAsm().empty()) 1162 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1163 0 /*TODO*/); 1164 1165 // Emit information about sections and GC, computing how many there are. Also 1166 // compute the maximum alignment value. 1167 std::map<std::string, unsigned> SectionMap; 1168 std::map<std::string, unsigned> GCMap; 1169 unsigned MaxAlignment = 0; 1170 unsigned MaxGlobalType = 0; 1171 for (const GlobalValue &GV : M.globals()) { 1172 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1173 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1174 if (GV.hasSection()) { 1175 // Give section names unique ID's. 1176 unsigned &Entry = SectionMap[GV.getSection()]; 1177 if (!Entry) { 1178 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1179 0 /*TODO*/); 1180 Entry = SectionMap.size(); 1181 } 1182 } 1183 } 1184 for (const Function &F : M) { 1185 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1186 if (F.hasSection()) { 1187 // Give section names unique ID's. 1188 unsigned &Entry = SectionMap[F.getSection()]; 1189 if (!Entry) { 1190 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1191 0 /*TODO*/); 1192 Entry = SectionMap.size(); 1193 } 1194 } 1195 if (F.hasGC()) { 1196 // Same for GC names. 1197 unsigned &Entry = GCMap[F.getGC()]; 1198 if (!Entry) { 1199 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1200 0 /*TODO*/); 1201 Entry = GCMap.size(); 1202 } 1203 } 1204 } 1205 1206 // Emit abbrev for globals, now that we know # sections and max alignment. 1207 unsigned SimpleGVarAbbrev = 0; 1208 if (!M.global_empty()) { 1209 // Add an abbrev for common globals with no visibility or thread localness. 1210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1215 Log2_32_Ceil(MaxGlobalType+1))); 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1217 //| explicitType << 1 1218 //| constant 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1221 if (MaxAlignment == 0) // Alignment. 1222 Abbv->Add(BitCodeAbbrevOp(0)); 1223 else { 1224 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1226 Log2_32_Ceil(MaxEncAlignment+1))); 1227 } 1228 if (SectionMap.empty()) // Section. 1229 Abbv->Add(BitCodeAbbrevOp(0)); 1230 else 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1232 Log2_32_Ceil(SectionMap.size()+1))); 1233 // Don't bother emitting vis + thread local. 1234 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1235 } 1236 1237 SmallVector<unsigned, 64> Vals; 1238 // Emit the module's source file name. 1239 { 1240 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1241 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1242 if (Bits == SE_Char6) 1243 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1244 else if (Bits == SE_Fixed7) 1245 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1246 1247 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1248 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1249 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1251 Abbv->Add(AbbrevOpToUse); 1252 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1253 1254 for (const auto P : M.getSourceFileName()) 1255 Vals.push_back((unsigned char)P); 1256 1257 // Emit the finished record. 1258 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1259 Vals.clear(); 1260 } 1261 1262 // Emit the global variable information. 1263 for (const GlobalVariable &GV : M.globals()) { 1264 unsigned AbbrevToUse = 0; 1265 1266 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1267 // linkage, alignment, section, visibility, threadlocal, 1268 // unnamed_addr, externally_initialized, dllstorageclass, 1269 // comdat, attributes, DSO_Local] 1270 Vals.push_back(addToStrtab(GV.getName())); 1271 Vals.push_back(GV.getName().size()); 1272 Vals.push_back(VE.getTypeID(GV.getValueType())); 1273 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1274 Vals.push_back(GV.isDeclaration() ? 0 : 1275 (VE.getValueID(GV.getInitializer()) + 1)); 1276 Vals.push_back(getEncodedLinkage(GV)); 1277 Vals.push_back(Log2_32(GV.getAlignment())+1); 1278 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1279 if (GV.isThreadLocal() || 1280 GV.getVisibility() != GlobalValue::DefaultVisibility || 1281 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1282 GV.isExternallyInitialized() || 1283 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1284 GV.hasComdat() || 1285 GV.hasAttributes() || 1286 GV.isDSOLocal() || 1287 GV.hasPartition()) { 1288 Vals.push_back(getEncodedVisibility(GV)); 1289 Vals.push_back(getEncodedThreadLocalMode(GV)); 1290 Vals.push_back(getEncodedUnnamedAddr(GV)); 1291 Vals.push_back(GV.isExternallyInitialized()); 1292 Vals.push_back(getEncodedDLLStorageClass(GV)); 1293 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1294 1295 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1296 Vals.push_back(VE.getAttributeListID(AL)); 1297 1298 Vals.push_back(GV.isDSOLocal()); 1299 Vals.push_back(addToStrtab(GV.getPartition())); 1300 Vals.push_back(GV.getPartition().size()); 1301 } else { 1302 AbbrevToUse = SimpleGVarAbbrev; 1303 } 1304 1305 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1306 Vals.clear(); 1307 } 1308 1309 // Emit the function proto information. 1310 for (const Function &F : M) { 1311 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1312 // linkage, paramattrs, alignment, section, visibility, gc, 1313 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1314 // prefixdata, personalityfn, DSO_Local, addrspace] 1315 Vals.push_back(addToStrtab(F.getName())); 1316 Vals.push_back(F.getName().size()); 1317 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1318 Vals.push_back(F.getCallingConv()); 1319 Vals.push_back(F.isDeclaration()); 1320 Vals.push_back(getEncodedLinkage(F)); 1321 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1322 Vals.push_back(Log2_32(F.getAlignment())+1); 1323 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1324 Vals.push_back(getEncodedVisibility(F)); 1325 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1326 Vals.push_back(getEncodedUnnamedAddr(F)); 1327 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1328 : 0); 1329 Vals.push_back(getEncodedDLLStorageClass(F)); 1330 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1331 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1332 : 0); 1333 Vals.push_back( 1334 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1335 1336 Vals.push_back(F.isDSOLocal()); 1337 Vals.push_back(F.getAddressSpace()); 1338 Vals.push_back(addToStrtab(F.getPartition())); 1339 Vals.push_back(F.getPartition().size()); 1340 1341 unsigned AbbrevToUse = 0; 1342 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1343 Vals.clear(); 1344 } 1345 1346 // Emit the alias information. 1347 for (const GlobalAlias &A : M.aliases()) { 1348 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1349 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1350 // DSO_Local] 1351 Vals.push_back(addToStrtab(A.getName())); 1352 Vals.push_back(A.getName().size()); 1353 Vals.push_back(VE.getTypeID(A.getValueType())); 1354 Vals.push_back(A.getType()->getAddressSpace()); 1355 Vals.push_back(VE.getValueID(A.getAliasee())); 1356 Vals.push_back(getEncodedLinkage(A)); 1357 Vals.push_back(getEncodedVisibility(A)); 1358 Vals.push_back(getEncodedDLLStorageClass(A)); 1359 Vals.push_back(getEncodedThreadLocalMode(A)); 1360 Vals.push_back(getEncodedUnnamedAddr(A)); 1361 Vals.push_back(A.isDSOLocal()); 1362 Vals.push_back(addToStrtab(A.getPartition())); 1363 Vals.push_back(A.getPartition().size()); 1364 1365 unsigned AbbrevToUse = 0; 1366 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1367 Vals.clear(); 1368 } 1369 1370 // Emit the ifunc information. 1371 for (const GlobalIFunc &I : M.ifuncs()) { 1372 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1373 // val#, linkage, visibility, DSO_Local] 1374 Vals.push_back(addToStrtab(I.getName())); 1375 Vals.push_back(I.getName().size()); 1376 Vals.push_back(VE.getTypeID(I.getValueType())); 1377 Vals.push_back(I.getType()->getAddressSpace()); 1378 Vals.push_back(VE.getValueID(I.getResolver())); 1379 Vals.push_back(getEncodedLinkage(I)); 1380 Vals.push_back(getEncodedVisibility(I)); 1381 Vals.push_back(I.isDSOLocal()); 1382 Vals.push_back(addToStrtab(I.getPartition())); 1383 Vals.push_back(I.getPartition().size()); 1384 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1385 Vals.clear(); 1386 } 1387 1388 writeValueSymbolTableForwardDecl(); 1389 } 1390 1391 static uint64_t getOptimizationFlags(const Value *V) { 1392 uint64_t Flags = 0; 1393 1394 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1395 if (OBO->hasNoSignedWrap()) 1396 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1397 if (OBO->hasNoUnsignedWrap()) 1398 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1399 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1400 if (PEO->isExact()) 1401 Flags |= 1 << bitc::PEO_EXACT; 1402 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1403 if (FPMO->hasAllowReassoc()) 1404 Flags |= bitc::AllowReassoc; 1405 if (FPMO->hasNoNaNs()) 1406 Flags |= bitc::NoNaNs; 1407 if (FPMO->hasNoInfs()) 1408 Flags |= bitc::NoInfs; 1409 if (FPMO->hasNoSignedZeros()) 1410 Flags |= bitc::NoSignedZeros; 1411 if (FPMO->hasAllowReciprocal()) 1412 Flags |= bitc::AllowReciprocal; 1413 if (FPMO->hasAllowContract()) 1414 Flags |= bitc::AllowContract; 1415 if (FPMO->hasApproxFunc()) 1416 Flags |= bitc::ApproxFunc; 1417 } 1418 1419 return Flags; 1420 } 1421 1422 void ModuleBitcodeWriter::writeValueAsMetadata( 1423 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1424 // Mimic an MDNode with a value as one operand. 1425 Value *V = MD->getValue(); 1426 Record.push_back(VE.getTypeID(V->getType())); 1427 Record.push_back(VE.getValueID(V)); 1428 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1429 Record.clear(); 1430 } 1431 1432 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1433 SmallVectorImpl<uint64_t> &Record, 1434 unsigned Abbrev) { 1435 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1436 Metadata *MD = N->getOperand(i); 1437 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1438 "Unexpected function-local metadata"); 1439 Record.push_back(VE.getMetadataOrNullID(MD)); 1440 } 1441 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1442 : bitc::METADATA_NODE, 1443 Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1448 // Assume the column is usually under 128, and always output the inlined-at 1449 // location (it's never more expensive than building an array size 1). 1450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1451 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1458 return Stream.EmitAbbrev(std::move(Abbv)); 1459 } 1460 1461 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1462 SmallVectorImpl<uint64_t> &Record, 1463 unsigned &Abbrev) { 1464 if (!Abbrev) 1465 Abbrev = createDILocationAbbrev(); 1466 1467 Record.push_back(N->isDistinct()); 1468 Record.push_back(N->getLine()); 1469 Record.push_back(N->getColumn()); 1470 Record.push_back(VE.getMetadataID(N->getScope())); 1471 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1472 Record.push_back(N->isImplicitCode()); 1473 1474 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1479 // Assume the column is usually under 128, and always output the inlined-at 1480 // location (it's never more expensive than building an array size 1). 1481 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1482 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1489 return Stream.EmitAbbrev(std::move(Abbv)); 1490 } 1491 1492 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1493 SmallVectorImpl<uint64_t> &Record, 1494 unsigned &Abbrev) { 1495 if (!Abbrev) 1496 Abbrev = createGenericDINodeAbbrev(); 1497 1498 Record.push_back(N->isDistinct()); 1499 Record.push_back(N->getTag()); 1500 Record.push_back(0); // Per-tag version field; unused for now. 1501 1502 for (auto &I : N->operands()) 1503 Record.push_back(VE.getMetadataOrNullID(I)); 1504 1505 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 static uint64_t rotateSign(int64_t I) { 1510 uint64_t U = I; 1511 return I < 0 ? ~(U << 1) : U << 1; 1512 } 1513 1514 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1515 SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 const uint64_t Version = 1 << 1; 1518 Record.push_back((uint64_t)N->isDistinct() | Version); 1519 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1520 Record.push_back(rotateSign(N->getLowerBound())); 1521 1522 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1530 Record.push_back(rotateSign(N->getValue())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1532 1533 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(N->getTag()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1543 Record.push_back(N->getSizeInBits()); 1544 Record.push_back(N->getAlignInBits()); 1545 Record.push_back(N->getEncoding()); 1546 Record.push_back(N->getFlags()); 1547 1548 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 Record.push_back(N->isDistinct()); 1556 Record.push_back(N->getTag()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1558 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1559 Record.push_back(N->getLine()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1562 Record.push_back(N->getSizeInBits()); 1563 Record.push_back(N->getAlignInBits()); 1564 Record.push_back(N->getOffsetInBits()); 1565 Record.push_back(N->getFlags()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1567 1568 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1569 // that there is no DWARF address space associated with DIDerivedType. 1570 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1571 Record.push_back(*DWARFAddressSpace + 1); 1572 else 1573 Record.push_back(0); 1574 1575 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDICompositeType( 1580 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 const unsigned IsNotUsedInOldTypeRef = 0x2; 1583 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1584 Record.push_back(N->getTag()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1587 Record.push_back(N->getLine()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1590 Record.push_back(N->getSizeInBits()); 1591 Record.push_back(N->getAlignInBits()); 1592 Record.push_back(N->getOffsetInBits()); 1593 Record.push_back(N->getFlags()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1595 Record.push_back(N->getRuntimeLang()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1600 1601 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDISubroutineType( 1606 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 const unsigned HasNoOldTypeRefs = 0x2; 1609 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1610 Record.push_back(N->getFlags()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1612 Record.push_back(N->getCC()); 1613 1614 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1619 SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1624 if (N->getRawChecksum()) { 1625 Record.push_back(N->getRawChecksum()->Kind); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1627 } else { 1628 // Maintain backwards compatibility with the old internal representation of 1629 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1630 Record.push_back(0); 1631 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1632 } 1633 auto Source = N->getRawSource(); 1634 if (Source) 1635 Record.push_back(VE.getMetadataOrNullID(*Source)); 1636 1637 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 assert(N->isDistinct() && "Expected distinct compile units"); 1645 Record.push_back(/* IsDistinct */ true); 1646 Record.push_back(N->getSourceLanguage()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1649 Record.push_back(N->isOptimized()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1651 Record.push_back(N->getRuntimeVersion()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1653 Record.push_back(N->getEmissionKind()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1656 Record.push_back(/* subprograms */ 0); 1657 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1659 Record.push_back(N->getDWOId()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1661 Record.push_back(N->getSplitDebugInlining()); 1662 Record.push_back(N->getDebugInfoForProfiling()); 1663 Record.push_back((unsigned)N->getNameTableKind()); 1664 1665 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 const uint64_t HasUnitFlag = 1 << 1; 1673 const uint64_t HasSPFlagsFlag = 1 << 2; 1674 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1679 Record.push_back(N->getLine()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1681 Record.push_back(N->getScopeLine()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1683 Record.push_back(N->getSPFlags()); 1684 Record.push_back(N->getVirtualIndex()); 1685 Record.push_back(N->getFlags()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1690 Record.push_back(N->getThisAdjustment()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1692 1693 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1703 Record.push_back(N->getLine()); 1704 Record.push_back(N->getColumn()); 1705 1706 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1707 Record.clear(); 1708 } 1709 1710 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1711 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1712 unsigned Abbrev) { 1713 Record.push_back(N->isDistinct()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1716 Record.push_back(N->getDiscriminator()); 1717 1718 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1723 SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 Record.push_back(N->isDistinct()); 1726 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1730 Record.push_back(N->getLineNo()); 1731 1732 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1737 SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1740 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1742 1743 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(N->getMacinfoType()); 1752 Record.push_back(N->getLine()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1755 1756 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1761 SmallVectorImpl<uint64_t> &Record, 1762 unsigned Abbrev) { 1763 Record.push_back(N->isDistinct()); 1764 Record.push_back(N->getMacinfoType()); 1765 Record.push_back(N->getLine()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1768 1769 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1770 Record.clear(); 1771 } 1772 1773 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1774 SmallVectorImpl<uint64_t> &Record, 1775 unsigned Abbrev) { 1776 Record.push_back(N->isDistinct()); 1777 for (auto &I : N->operands()) 1778 Record.push_back(VE.getMetadataOrNullID(I)); 1779 1780 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1781 Record.clear(); 1782 } 1783 1784 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1785 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1786 unsigned Abbrev) { 1787 Record.push_back(N->isDistinct()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1790 1791 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1796 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(N->getTag()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1803 1804 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 void ModuleBitcodeWriter::writeDIGlobalVariable( 1809 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1810 unsigned Abbrev) { 1811 const uint64_t Version = 2 << 1; 1812 Record.push_back((uint64_t)N->isDistinct() | Version); 1813 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1817 Record.push_back(N->getLine()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1819 Record.push_back(N->isLocalToUnit()); 1820 Record.push_back(N->isDefinition()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1823 Record.push_back(N->getAlignInBits()); 1824 1825 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1826 Record.clear(); 1827 } 1828 1829 void ModuleBitcodeWriter::writeDILocalVariable( 1830 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1831 unsigned Abbrev) { 1832 // In order to support all possible bitcode formats in BitcodeReader we need 1833 // to distinguish the following cases: 1834 // 1) Record has no artificial tag (Record[1]), 1835 // has no obsolete inlinedAt field (Record[9]). 1836 // In this case Record size will be 8, HasAlignment flag is false. 1837 // 2) Record has artificial tag (Record[1]), 1838 // has no obsolete inlignedAt field (Record[9]). 1839 // In this case Record size will be 9, HasAlignment flag is false. 1840 // 3) Record has both artificial tag (Record[1]) and 1841 // obsolete inlignedAt field (Record[9]). 1842 // In this case Record size will be 10, HasAlignment flag is false. 1843 // 4) Record has neither artificial tag, nor inlignedAt field, but 1844 // HasAlignment flag is true and Record[8] contains alignment value. 1845 const uint64_t HasAlignmentFlag = 1 << 1; 1846 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1847 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1850 Record.push_back(N->getLine()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1852 Record.push_back(N->getArg()); 1853 Record.push_back(N->getFlags()); 1854 Record.push_back(N->getAlignInBits()); 1855 1856 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1857 Record.clear(); 1858 } 1859 1860 void ModuleBitcodeWriter::writeDILabel( 1861 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1862 unsigned Abbrev) { 1863 Record.push_back((uint64_t)N->isDistinct()); 1864 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1867 Record.push_back(N->getLine()); 1868 1869 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.reserve(N->getElements().size() + 1); 1877 const uint64_t Version = 3 << 1; 1878 Record.push_back((uint64_t)N->isDistinct() | Version); 1879 Record.append(N->elements_begin(), N->elements_end()); 1880 1881 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1886 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1891 1892 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1893 Record.clear(); 1894 } 1895 1896 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1897 SmallVectorImpl<uint64_t> &Record, 1898 unsigned Abbrev) { 1899 Record.push_back(N->isDistinct()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1902 Record.push_back(N->getLine()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1905 Record.push_back(N->getAttributes()); 1906 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1907 1908 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1909 Record.clear(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeDIImportedEntity( 1913 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1914 unsigned Abbrev) { 1915 Record.push_back(N->isDistinct()); 1916 Record.push_back(N->getTag()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1919 Record.push_back(N->getLine()); 1920 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1922 1923 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1924 Record.clear(); 1925 } 1926 1927 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1929 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1932 return Stream.EmitAbbrev(std::move(Abbv)); 1933 } 1934 1935 void ModuleBitcodeWriter::writeNamedMetadata( 1936 SmallVectorImpl<uint64_t> &Record) { 1937 if (M.named_metadata_empty()) 1938 return; 1939 1940 unsigned Abbrev = createNamedMetadataAbbrev(); 1941 for (const NamedMDNode &NMD : M.named_metadata()) { 1942 // Write name. 1943 StringRef Str = NMD.getName(); 1944 Record.append(Str.bytes_begin(), Str.bytes_end()); 1945 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1946 Record.clear(); 1947 1948 // Write named metadata operands. 1949 for (const MDNode *N : NMD.operands()) 1950 Record.push_back(VE.getMetadataID(N)); 1951 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1952 Record.clear(); 1953 } 1954 } 1955 1956 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1957 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1958 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1962 return Stream.EmitAbbrev(std::move(Abbv)); 1963 } 1964 1965 /// Write out a record for MDString. 1966 /// 1967 /// All the metadata strings in a metadata block are emitted in a single 1968 /// record. The sizes and strings themselves are shoved into a blob. 1969 void ModuleBitcodeWriter::writeMetadataStrings( 1970 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1971 if (Strings.empty()) 1972 return; 1973 1974 // Start the record with the number of strings. 1975 Record.push_back(bitc::METADATA_STRINGS); 1976 Record.push_back(Strings.size()); 1977 1978 // Emit the sizes of the strings in the blob. 1979 SmallString<256> Blob; 1980 { 1981 BitstreamWriter W(Blob); 1982 for (const Metadata *MD : Strings) 1983 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1984 W.FlushToWord(); 1985 } 1986 1987 // Add the offset to the strings to the record. 1988 Record.push_back(Blob.size()); 1989 1990 // Add the strings to the blob. 1991 for (const Metadata *MD : Strings) 1992 Blob.append(cast<MDString>(MD)->getString()); 1993 1994 // Emit the final record. 1995 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1996 Record.clear(); 1997 } 1998 1999 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2000 enum MetadataAbbrev : unsigned { 2001 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2002 #include "llvm/IR/Metadata.def" 2003 LastPlusOne 2004 }; 2005 2006 void ModuleBitcodeWriter::writeMetadataRecords( 2007 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2008 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2009 if (MDs.empty()) 2010 return; 2011 2012 // Initialize MDNode abbreviations. 2013 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2014 #include "llvm/IR/Metadata.def" 2015 2016 for (const Metadata *MD : MDs) { 2017 if (IndexPos) 2018 IndexPos->push_back(Stream.GetCurrentBitNo()); 2019 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2020 assert(N->isResolved() && "Expected forward references to be resolved"); 2021 2022 switch (N->getMetadataID()) { 2023 default: 2024 llvm_unreachable("Invalid MDNode subclass"); 2025 #define HANDLE_MDNODE_LEAF(CLASS) \ 2026 case Metadata::CLASS##Kind: \ 2027 if (MDAbbrevs) \ 2028 write##CLASS(cast<CLASS>(N), Record, \ 2029 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2030 else \ 2031 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2032 continue; 2033 #include "llvm/IR/Metadata.def" 2034 } 2035 } 2036 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2037 } 2038 } 2039 2040 void ModuleBitcodeWriter::writeModuleMetadata() { 2041 if (!VE.hasMDs() && M.named_metadata_empty()) 2042 return; 2043 2044 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2045 SmallVector<uint64_t, 64> Record; 2046 2047 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2048 // block and load any metadata. 2049 std::vector<unsigned> MDAbbrevs; 2050 2051 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2052 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2053 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2054 createGenericDINodeAbbrev(); 2055 2056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2057 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2060 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2061 2062 Abbv = std::make_shared<BitCodeAbbrev>(); 2063 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2066 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2067 2068 // Emit MDStrings together upfront. 2069 writeMetadataStrings(VE.getMDStrings(), Record); 2070 2071 // We only emit an index for the metadata record if we have more than a given 2072 // (naive) threshold of metadatas, otherwise it is not worth it. 2073 if (VE.getNonMDStrings().size() > IndexThreshold) { 2074 // Write a placeholder value in for the offset of the metadata index, 2075 // which is written after the records, so that it can include 2076 // the offset of each entry. The placeholder offset will be 2077 // updated after all records are emitted. 2078 uint64_t Vals[] = {0, 0}; 2079 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2080 } 2081 2082 // Compute and save the bit offset to the current position, which will be 2083 // patched when we emit the index later. We can simply subtract the 64-bit 2084 // fixed size from the current bit number to get the location to backpatch. 2085 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2086 2087 // This index will contain the bitpos for each individual record. 2088 std::vector<uint64_t> IndexPos; 2089 IndexPos.reserve(VE.getNonMDStrings().size()); 2090 2091 // Write all the records 2092 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2093 2094 if (VE.getNonMDStrings().size() > IndexThreshold) { 2095 // Now that we have emitted all the records we will emit the index. But 2096 // first 2097 // backpatch the forward reference so that the reader can skip the records 2098 // efficiently. 2099 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2100 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2101 2102 // Delta encode the index. 2103 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2104 for (auto &Elt : IndexPos) { 2105 auto EltDelta = Elt - PreviousValue; 2106 PreviousValue = Elt; 2107 Elt = EltDelta; 2108 } 2109 // Emit the index record. 2110 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2111 IndexPos.clear(); 2112 } 2113 2114 // Write the named metadata now. 2115 writeNamedMetadata(Record); 2116 2117 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2118 SmallVector<uint64_t, 4> Record; 2119 Record.push_back(VE.getValueID(&GO)); 2120 pushGlobalMetadataAttachment(Record, GO); 2121 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2122 }; 2123 for (const Function &F : M) 2124 if (F.isDeclaration() && F.hasMetadata()) 2125 AddDeclAttachedMetadata(F); 2126 // FIXME: Only store metadata for declarations here, and move data for global 2127 // variable definitions to a separate block (PR28134). 2128 for (const GlobalVariable &GV : M.globals()) 2129 if (GV.hasMetadata()) 2130 AddDeclAttachedMetadata(GV); 2131 2132 Stream.ExitBlock(); 2133 } 2134 2135 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2136 if (!VE.hasMDs()) 2137 return; 2138 2139 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2140 SmallVector<uint64_t, 64> Record; 2141 writeMetadataStrings(VE.getMDStrings(), Record); 2142 writeMetadataRecords(VE.getNonMDStrings(), Record); 2143 Stream.ExitBlock(); 2144 } 2145 2146 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2147 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2148 // [n x [id, mdnode]] 2149 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2150 GO.getAllMetadata(MDs); 2151 for (const auto &I : MDs) { 2152 Record.push_back(I.first); 2153 Record.push_back(VE.getMetadataID(I.second)); 2154 } 2155 } 2156 2157 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2158 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2159 2160 SmallVector<uint64_t, 64> Record; 2161 2162 if (F.hasMetadata()) { 2163 pushGlobalMetadataAttachment(Record, F); 2164 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2165 Record.clear(); 2166 } 2167 2168 // Write metadata attachments 2169 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2170 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2171 for (const BasicBlock &BB : F) 2172 for (const Instruction &I : BB) { 2173 MDs.clear(); 2174 I.getAllMetadataOtherThanDebugLoc(MDs); 2175 2176 // If no metadata, ignore instruction. 2177 if (MDs.empty()) continue; 2178 2179 Record.push_back(VE.getInstructionID(&I)); 2180 2181 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2182 Record.push_back(MDs[i].first); 2183 Record.push_back(VE.getMetadataID(MDs[i].second)); 2184 } 2185 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2186 Record.clear(); 2187 } 2188 2189 Stream.ExitBlock(); 2190 } 2191 2192 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2193 SmallVector<uint64_t, 64> Record; 2194 2195 // Write metadata kinds 2196 // METADATA_KIND - [n x [id, name]] 2197 SmallVector<StringRef, 8> Names; 2198 M.getMDKindNames(Names); 2199 2200 if (Names.empty()) return; 2201 2202 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2203 2204 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2205 Record.push_back(MDKindID); 2206 StringRef KName = Names[MDKindID]; 2207 Record.append(KName.begin(), KName.end()); 2208 2209 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2210 Record.clear(); 2211 } 2212 2213 Stream.ExitBlock(); 2214 } 2215 2216 void ModuleBitcodeWriter::writeOperandBundleTags() { 2217 // Write metadata kinds 2218 // 2219 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2220 // 2221 // OPERAND_BUNDLE_TAG - [strchr x N] 2222 2223 SmallVector<StringRef, 8> Tags; 2224 M.getOperandBundleTags(Tags); 2225 2226 if (Tags.empty()) 2227 return; 2228 2229 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2230 2231 SmallVector<uint64_t, 64> Record; 2232 2233 for (auto Tag : Tags) { 2234 Record.append(Tag.begin(), Tag.end()); 2235 2236 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2237 Record.clear(); 2238 } 2239 2240 Stream.ExitBlock(); 2241 } 2242 2243 void ModuleBitcodeWriter::writeSyncScopeNames() { 2244 SmallVector<StringRef, 8> SSNs; 2245 M.getContext().getSyncScopeNames(SSNs); 2246 if (SSNs.empty()) 2247 return; 2248 2249 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2250 2251 SmallVector<uint64_t, 64> Record; 2252 for (auto SSN : SSNs) { 2253 Record.append(SSN.begin(), SSN.end()); 2254 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2255 Record.clear(); 2256 } 2257 2258 Stream.ExitBlock(); 2259 } 2260 2261 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2262 if ((int64_t)V >= 0) 2263 Vals.push_back(V << 1); 2264 else 2265 Vals.push_back((-V << 1) | 1); 2266 } 2267 2268 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2269 bool isGlobal) { 2270 if (FirstVal == LastVal) return; 2271 2272 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2273 2274 unsigned AggregateAbbrev = 0; 2275 unsigned String8Abbrev = 0; 2276 unsigned CString7Abbrev = 0; 2277 unsigned CString6Abbrev = 0; 2278 // If this is a constant pool for the module, emit module-specific abbrevs. 2279 if (isGlobal) { 2280 // Abbrev for CST_CODE_AGGREGATE. 2281 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2282 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2285 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2286 2287 // Abbrev for CST_CODE_STRING. 2288 Abbv = std::make_shared<BitCodeAbbrev>(); 2289 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2292 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2293 // Abbrev for CST_CODE_CSTRING. 2294 Abbv = std::make_shared<BitCodeAbbrev>(); 2295 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2298 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2299 // Abbrev for CST_CODE_CSTRING. 2300 Abbv = std::make_shared<BitCodeAbbrev>(); 2301 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2304 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2305 } 2306 2307 SmallVector<uint64_t, 64> Record; 2308 2309 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2310 Type *LastTy = nullptr; 2311 for (unsigned i = FirstVal; i != LastVal; ++i) { 2312 const Value *V = Vals[i].first; 2313 // If we need to switch types, do so now. 2314 if (V->getType() != LastTy) { 2315 LastTy = V->getType(); 2316 Record.push_back(VE.getTypeID(LastTy)); 2317 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2318 CONSTANTS_SETTYPE_ABBREV); 2319 Record.clear(); 2320 } 2321 2322 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2323 Record.push_back(unsigned(IA->hasSideEffects()) | 2324 unsigned(IA->isAlignStack()) << 1 | 2325 unsigned(IA->getDialect()&1) << 2); 2326 2327 // Add the asm string. 2328 const std::string &AsmStr = IA->getAsmString(); 2329 Record.push_back(AsmStr.size()); 2330 Record.append(AsmStr.begin(), AsmStr.end()); 2331 2332 // Add the constraint string. 2333 const std::string &ConstraintStr = IA->getConstraintString(); 2334 Record.push_back(ConstraintStr.size()); 2335 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2336 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2337 Record.clear(); 2338 continue; 2339 } 2340 const Constant *C = cast<Constant>(V); 2341 unsigned Code = -1U; 2342 unsigned AbbrevToUse = 0; 2343 if (C->isNullValue()) { 2344 Code = bitc::CST_CODE_NULL; 2345 } else if (isa<UndefValue>(C)) { 2346 Code = bitc::CST_CODE_UNDEF; 2347 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2348 if (IV->getBitWidth() <= 64) { 2349 uint64_t V = IV->getSExtValue(); 2350 emitSignedInt64(Record, V); 2351 Code = bitc::CST_CODE_INTEGER; 2352 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2353 } else { // Wide integers, > 64 bits in size. 2354 // We have an arbitrary precision integer value to write whose 2355 // bit width is > 64. However, in canonical unsigned integer 2356 // format it is likely that the high bits are going to be zero. 2357 // So, we only write the number of active words. 2358 unsigned NWords = IV->getValue().getActiveWords(); 2359 const uint64_t *RawWords = IV->getValue().getRawData(); 2360 for (unsigned i = 0; i != NWords; ++i) { 2361 emitSignedInt64(Record, RawWords[i]); 2362 } 2363 Code = bitc::CST_CODE_WIDE_INTEGER; 2364 } 2365 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2366 Code = bitc::CST_CODE_FLOAT; 2367 Type *Ty = CFP->getType(); 2368 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2369 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2370 } else if (Ty->isX86_FP80Ty()) { 2371 // api needed to prevent premature destruction 2372 // bits are not in the same order as a normal i80 APInt, compensate. 2373 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2374 const uint64_t *p = api.getRawData(); 2375 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2376 Record.push_back(p[0] & 0xffffLL); 2377 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2378 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2379 const uint64_t *p = api.getRawData(); 2380 Record.push_back(p[0]); 2381 Record.push_back(p[1]); 2382 } else { 2383 assert(0 && "Unknown FP type!"); 2384 } 2385 } else if (isa<ConstantDataSequential>(C) && 2386 cast<ConstantDataSequential>(C)->isString()) { 2387 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2388 // Emit constant strings specially. 2389 unsigned NumElts = Str->getNumElements(); 2390 // If this is a null-terminated string, use the denser CSTRING encoding. 2391 if (Str->isCString()) { 2392 Code = bitc::CST_CODE_CSTRING; 2393 --NumElts; // Don't encode the null, which isn't allowed by char6. 2394 } else { 2395 Code = bitc::CST_CODE_STRING; 2396 AbbrevToUse = String8Abbrev; 2397 } 2398 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2399 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2400 for (unsigned i = 0; i != NumElts; ++i) { 2401 unsigned char V = Str->getElementAsInteger(i); 2402 Record.push_back(V); 2403 isCStr7 &= (V & 128) == 0; 2404 if (isCStrChar6) 2405 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2406 } 2407 2408 if (isCStrChar6) 2409 AbbrevToUse = CString6Abbrev; 2410 else if (isCStr7) 2411 AbbrevToUse = CString7Abbrev; 2412 } else if (const ConstantDataSequential *CDS = 2413 dyn_cast<ConstantDataSequential>(C)) { 2414 Code = bitc::CST_CODE_DATA; 2415 Type *EltTy = CDS->getType()->getElementType(); 2416 if (isa<IntegerType>(EltTy)) { 2417 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2418 Record.push_back(CDS->getElementAsInteger(i)); 2419 } else { 2420 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2421 Record.push_back( 2422 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2423 } 2424 } else if (isa<ConstantAggregate>(C)) { 2425 Code = bitc::CST_CODE_AGGREGATE; 2426 for (const Value *Op : C->operands()) 2427 Record.push_back(VE.getValueID(Op)); 2428 AbbrevToUse = AggregateAbbrev; 2429 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2430 switch (CE->getOpcode()) { 2431 default: 2432 if (Instruction::isCast(CE->getOpcode())) { 2433 Code = bitc::CST_CODE_CE_CAST; 2434 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2435 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2436 Record.push_back(VE.getValueID(C->getOperand(0))); 2437 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2438 } else { 2439 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2440 Code = bitc::CST_CODE_CE_BINOP; 2441 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2442 Record.push_back(VE.getValueID(C->getOperand(0))); 2443 Record.push_back(VE.getValueID(C->getOperand(1))); 2444 uint64_t Flags = getOptimizationFlags(CE); 2445 if (Flags != 0) 2446 Record.push_back(Flags); 2447 } 2448 break; 2449 case Instruction::FNeg: { 2450 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2451 Code = bitc::CST_CODE_CE_UNOP; 2452 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2453 Record.push_back(VE.getValueID(C->getOperand(0))); 2454 uint64_t Flags = getOptimizationFlags(CE); 2455 if (Flags != 0) 2456 Record.push_back(Flags); 2457 break; 2458 } 2459 case Instruction::GetElementPtr: { 2460 Code = bitc::CST_CODE_CE_GEP; 2461 const auto *GO = cast<GEPOperator>(C); 2462 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2463 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2464 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2465 Record.push_back((*Idx << 1) | GO->isInBounds()); 2466 } else if (GO->isInBounds()) 2467 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2468 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2469 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2470 Record.push_back(VE.getValueID(C->getOperand(i))); 2471 } 2472 break; 2473 } 2474 case Instruction::Select: 2475 Code = bitc::CST_CODE_CE_SELECT; 2476 Record.push_back(VE.getValueID(C->getOperand(0))); 2477 Record.push_back(VE.getValueID(C->getOperand(1))); 2478 Record.push_back(VE.getValueID(C->getOperand(2))); 2479 break; 2480 case Instruction::ExtractElement: 2481 Code = bitc::CST_CODE_CE_EXTRACTELT; 2482 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2483 Record.push_back(VE.getValueID(C->getOperand(0))); 2484 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2485 Record.push_back(VE.getValueID(C->getOperand(1))); 2486 break; 2487 case Instruction::InsertElement: 2488 Code = bitc::CST_CODE_CE_INSERTELT; 2489 Record.push_back(VE.getValueID(C->getOperand(0))); 2490 Record.push_back(VE.getValueID(C->getOperand(1))); 2491 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2492 Record.push_back(VE.getValueID(C->getOperand(2))); 2493 break; 2494 case Instruction::ShuffleVector: 2495 // If the return type and argument types are the same, this is a 2496 // standard shufflevector instruction. If the types are different, 2497 // then the shuffle is widening or truncating the input vectors, and 2498 // the argument type must also be encoded. 2499 if (C->getType() == C->getOperand(0)->getType()) { 2500 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2501 } else { 2502 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2503 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2504 } 2505 Record.push_back(VE.getValueID(C->getOperand(0))); 2506 Record.push_back(VE.getValueID(C->getOperand(1))); 2507 Record.push_back(VE.getValueID(C->getOperand(2))); 2508 break; 2509 case Instruction::ICmp: 2510 case Instruction::FCmp: 2511 Code = bitc::CST_CODE_CE_CMP; 2512 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2513 Record.push_back(VE.getValueID(C->getOperand(0))); 2514 Record.push_back(VE.getValueID(C->getOperand(1))); 2515 Record.push_back(CE->getPredicate()); 2516 break; 2517 } 2518 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2519 Code = bitc::CST_CODE_BLOCKADDRESS; 2520 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2521 Record.push_back(VE.getValueID(BA->getFunction())); 2522 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2523 } else { 2524 #ifndef NDEBUG 2525 C->dump(); 2526 #endif 2527 llvm_unreachable("Unknown constant!"); 2528 } 2529 Stream.EmitRecord(Code, Record, AbbrevToUse); 2530 Record.clear(); 2531 } 2532 2533 Stream.ExitBlock(); 2534 } 2535 2536 void ModuleBitcodeWriter::writeModuleConstants() { 2537 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2538 2539 // Find the first constant to emit, which is the first non-globalvalue value. 2540 // We know globalvalues have been emitted by WriteModuleInfo. 2541 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2542 if (!isa<GlobalValue>(Vals[i].first)) { 2543 writeConstants(i, Vals.size(), true); 2544 return; 2545 } 2546 } 2547 } 2548 2549 /// pushValueAndType - The file has to encode both the value and type id for 2550 /// many values, because we need to know what type to create for forward 2551 /// references. However, most operands are not forward references, so this type 2552 /// field is not needed. 2553 /// 2554 /// This function adds V's value ID to Vals. If the value ID is higher than the 2555 /// instruction ID, then it is a forward reference, and it also includes the 2556 /// type ID. The value ID that is written is encoded relative to the InstID. 2557 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2558 SmallVectorImpl<unsigned> &Vals) { 2559 unsigned ValID = VE.getValueID(V); 2560 // Make encoding relative to the InstID. 2561 Vals.push_back(InstID - ValID); 2562 if (ValID >= InstID) { 2563 Vals.push_back(VE.getTypeID(V->getType())); 2564 return true; 2565 } 2566 return false; 2567 } 2568 2569 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2570 unsigned InstID) { 2571 SmallVector<unsigned, 64> Record; 2572 LLVMContext &C = CS.getInstruction()->getContext(); 2573 2574 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2575 const auto &Bundle = CS.getOperandBundleAt(i); 2576 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2577 2578 for (auto &Input : Bundle.Inputs) 2579 pushValueAndType(Input, InstID, Record); 2580 2581 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2582 Record.clear(); 2583 } 2584 } 2585 2586 /// pushValue - Like pushValueAndType, but where the type of the value is 2587 /// omitted (perhaps it was already encoded in an earlier operand). 2588 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2589 SmallVectorImpl<unsigned> &Vals) { 2590 unsigned ValID = VE.getValueID(V); 2591 Vals.push_back(InstID - ValID); 2592 } 2593 2594 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2595 SmallVectorImpl<uint64_t> &Vals) { 2596 unsigned ValID = VE.getValueID(V); 2597 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2598 emitSignedInt64(Vals, diff); 2599 } 2600 2601 /// WriteInstruction - Emit an instruction to the specified stream. 2602 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2603 unsigned InstID, 2604 SmallVectorImpl<unsigned> &Vals) { 2605 unsigned Code = 0; 2606 unsigned AbbrevToUse = 0; 2607 VE.setInstructionID(&I); 2608 switch (I.getOpcode()) { 2609 default: 2610 if (Instruction::isCast(I.getOpcode())) { 2611 Code = bitc::FUNC_CODE_INST_CAST; 2612 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2613 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2614 Vals.push_back(VE.getTypeID(I.getType())); 2615 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2616 } else { 2617 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2618 Code = bitc::FUNC_CODE_INST_BINOP; 2619 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2620 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2621 pushValue(I.getOperand(1), InstID, Vals); 2622 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2623 uint64_t Flags = getOptimizationFlags(&I); 2624 if (Flags != 0) { 2625 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2626 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2627 Vals.push_back(Flags); 2628 } 2629 } 2630 break; 2631 case Instruction::FNeg: { 2632 Code = bitc::FUNC_CODE_INST_UNOP; 2633 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2634 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2635 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2636 uint64_t Flags = getOptimizationFlags(&I); 2637 if (Flags != 0) { 2638 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2639 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2640 Vals.push_back(Flags); 2641 } 2642 break; 2643 } 2644 case Instruction::GetElementPtr: { 2645 Code = bitc::FUNC_CODE_INST_GEP; 2646 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2647 auto &GEPInst = cast<GetElementPtrInst>(I); 2648 Vals.push_back(GEPInst.isInBounds()); 2649 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2650 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2651 pushValueAndType(I.getOperand(i), InstID, Vals); 2652 break; 2653 } 2654 case Instruction::ExtractValue: { 2655 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2656 pushValueAndType(I.getOperand(0), InstID, Vals); 2657 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2658 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2659 break; 2660 } 2661 case Instruction::InsertValue: { 2662 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2663 pushValueAndType(I.getOperand(0), InstID, Vals); 2664 pushValueAndType(I.getOperand(1), InstID, Vals); 2665 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2666 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2667 break; 2668 } 2669 case Instruction::Select: { 2670 Code = bitc::FUNC_CODE_INST_VSELECT; 2671 pushValueAndType(I.getOperand(1), InstID, Vals); 2672 pushValue(I.getOperand(2), InstID, Vals); 2673 pushValueAndType(I.getOperand(0), InstID, Vals); 2674 uint64_t Flags = getOptimizationFlags(&I); 2675 if (Flags != 0) 2676 Vals.push_back(Flags); 2677 break; 2678 } 2679 case Instruction::ExtractElement: 2680 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2681 pushValueAndType(I.getOperand(0), InstID, Vals); 2682 pushValueAndType(I.getOperand(1), InstID, Vals); 2683 break; 2684 case Instruction::InsertElement: 2685 Code = bitc::FUNC_CODE_INST_INSERTELT; 2686 pushValueAndType(I.getOperand(0), InstID, Vals); 2687 pushValue(I.getOperand(1), InstID, Vals); 2688 pushValueAndType(I.getOperand(2), InstID, Vals); 2689 break; 2690 case Instruction::ShuffleVector: 2691 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2692 pushValueAndType(I.getOperand(0), InstID, Vals); 2693 pushValue(I.getOperand(1), InstID, Vals); 2694 pushValue(I.getOperand(2), InstID, Vals); 2695 break; 2696 case Instruction::ICmp: 2697 case Instruction::FCmp: { 2698 // compare returning Int1Ty or vector of Int1Ty 2699 Code = bitc::FUNC_CODE_INST_CMP2; 2700 pushValueAndType(I.getOperand(0), InstID, Vals); 2701 pushValue(I.getOperand(1), InstID, Vals); 2702 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2703 uint64_t Flags = getOptimizationFlags(&I); 2704 if (Flags != 0) 2705 Vals.push_back(Flags); 2706 break; 2707 } 2708 2709 case Instruction::Ret: 2710 { 2711 Code = bitc::FUNC_CODE_INST_RET; 2712 unsigned NumOperands = I.getNumOperands(); 2713 if (NumOperands == 0) 2714 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2715 else if (NumOperands == 1) { 2716 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2717 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2718 } else { 2719 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2720 pushValueAndType(I.getOperand(i), InstID, Vals); 2721 } 2722 } 2723 break; 2724 case Instruction::Br: 2725 { 2726 Code = bitc::FUNC_CODE_INST_BR; 2727 const BranchInst &II = cast<BranchInst>(I); 2728 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2729 if (II.isConditional()) { 2730 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2731 pushValue(II.getCondition(), InstID, Vals); 2732 } 2733 } 2734 break; 2735 case Instruction::Switch: 2736 { 2737 Code = bitc::FUNC_CODE_INST_SWITCH; 2738 const SwitchInst &SI = cast<SwitchInst>(I); 2739 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2740 pushValue(SI.getCondition(), InstID, Vals); 2741 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2742 for (auto Case : SI.cases()) { 2743 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2744 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2745 } 2746 } 2747 break; 2748 case Instruction::IndirectBr: 2749 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2750 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2751 // Encode the address operand as relative, but not the basic blocks. 2752 pushValue(I.getOperand(0), InstID, Vals); 2753 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2754 Vals.push_back(VE.getValueID(I.getOperand(i))); 2755 break; 2756 2757 case Instruction::Invoke: { 2758 const InvokeInst *II = cast<InvokeInst>(&I); 2759 const Value *Callee = II->getCalledValue(); 2760 FunctionType *FTy = II->getFunctionType(); 2761 2762 if (II->hasOperandBundles()) 2763 writeOperandBundles(II, InstID); 2764 2765 Code = bitc::FUNC_CODE_INST_INVOKE; 2766 2767 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2768 Vals.push_back(II->getCallingConv() | 1 << 13); 2769 Vals.push_back(VE.getValueID(II->getNormalDest())); 2770 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2771 Vals.push_back(VE.getTypeID(FTy)); 2772 pushValueAndType(Callee, InstID, Vals); 2773 2774 // Emit value #'s for the fixed parameters. 2775 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2776 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2777 2778 // Emit type/value pairs for varargs params. 2779 if (FTy->isVarArg()) { 2780 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2781 i != e; ++i) 2782 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2783 } 2784 break; 2785 } 2786 case Instruction::Resume: 2787 Code = bitc::FUNC_CODE_INST_RESUME; 2788 pushValueAndType(I.getOperand(0), InstID, Vals); 2789 break; 2790 case Instruction::CleanupRet: { 2791 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2792 const auto &CRI = cast<CleanupReturnInst>(I); 2793 pushValue(CRI.getCleanupPad(), InstID, Vals); 2794 if (CRI.hasUnwindDest()) 2795 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2796 break; 2797 } 2798 case Instruction::CatchRet: { 2799 Code = bitc::FUNC_CODE_INST_CATCHRET; 2800 const auto &CRI = cast<CatchReturnInst>(I); 2801 pushValue(CRI.getCatchPad(), InstID, Vals); 2802 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2803 break; 2804 } 2805 case Instruction::CleanupPad: 2806 case Instruction::CatchPad: { 2807 const auto &FuncletPad = cast<FuncletPadInst>(I); 2808 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2809 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2810 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2811 2812 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2813 Vals.push_back(NumArgOperands); 2814 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2815 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2816 break; 2817 } 2818 case Instruction::CatchSwitch: { 2819 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2820 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2821 2822 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2823 2824 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2825 Vals.push_back(NumHandlers); 2826 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2827 Vals.push_back(VE.getValueID(CatchPadBB)); 2828 2829 if (CatchSwitch.hasUnwindDest()) 2830 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2831 break; 2832 } 2833 case Instruction::CallBr: { 2834 const CallBrInst *CBI = cast<CallBrInst>(&I); 2835 const Value *Callee = CBI->getCalledValue(); 2836 FunctionType *FTy = CBI->getFunctionType(); 2837 2838 if (CBI->hasOperandBundles()) 2839 writeOperandBundles(CBI, InstID); 2840 2841 Code = bitc::FUNC_CODE_INST_CALLBR; 2842 2843 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2844 2845 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2846 1 << bitc::CALL_EXPLICIT_TYPE); 2847 2848 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2849 Vals.push_back(CBI->getNumIndirectDests()); 2850 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2851 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2852 2853 Vals.push_back(VE.getTypeID(FTy)); 2854 pushValueAndType(Callee, InstID, Vals); 2855 2856 // Emit value #'s for the fixed parameters. 2857 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2858 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2859 2860 // Emit type/value pairs for varargs params. 2861 if (FTy->isVarArg()) { 2862 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2863 i != e; ++i) 2864 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2865 } 2866 break; 2867 } 2868 case Instruction::Unreachable: 2869 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2870 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2871 break; 2872 2873 case Instruction::PHI: { 2874 const PHINode &PN = cast<PHINode>(I); 2875 Code = bitc::FUNC_CODE_INST_PHI; 2876 // With the newer instruction encoding, forward references could give 2877 // negative valued IDs. This is most common for PHIs, so we use 2878 // signed VBRs. 2879 SmallVector<uint64_t, 128> Vals64; 2880 Vals64.push_back(VE.getTypeID(PN.getType())); 2881 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2882 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2883 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2884 } 2885 2886 uint64_t Flags = getOptimizationFlags(&I); 2887 if (Flags != 0) 2888 Vals64.push_back(Flags); 2889 2890 // Emit a Vals64 vector and exit. 2891 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2892 Vals64.clear(); 2893 return; 2894 } 2895 2896 case Instruction::LandingPad: { 2897 const LandingPadInst &LP = cast<LandingPadInst>(I); 2898 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2899 Vals.push_back(VE.getTypeID(LP.getType())); 2900 Vals.push_back(LP.isCleanup()); 2901 Vals.push_back(LP.getNumClauses()); 2902 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2903 if (LP.isCatch(I)) 2904 Vals.push_back(LandingPadInst::Catch); 2905 else 2906 Vals.push_back(LandingPadInst::Filter); 2907 pushValueAndType(LP.getClause(I), InstID, Vals); 2908 } 2909 break; 2910 } 2911 2912 case Instruction::Alloca: { 2913 Code = bitc::FUNC_CODE_INST_ALLOCA; 2914 const AllocaInst &AI = cast<AllocaInst>(I); 2915 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2916 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2917 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2918 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2919 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2920 "not enough bits for maximum alignment"); 2921 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2922 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2923 AlignRecord |= 1 << 6; 2924 AlignRecord |= AI.isSwiftError() << 7; 2925 Vals.push_back(AlignRecord); 2926 break; 2927 } 2928 2929 case Instruction::Load: 2930 if (cast<LoadInst>(I).isAtomic()) { 2931 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2932 pushValueAndType(I.getOperand(0), InstID, Vals); 2933 } else { 2934 Code = bitc::FUNC_CODE_INST_LOAD; 2935 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2936 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2937 } 2938 Vals.push_back(VE.getTypeID(I.getType())); 2939 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2940 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2941 if (cast<LoadInst>(I).isAtomic()) { 2942 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2943 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2944 } 2945 break; 2946 case Instruction::Store: 2947 if (cast<StoreInst>(I).isAtomic()) 2948 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2949 else 2950 Code = bitc::FUNC_CODE_INST_STORE; 2951 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2952 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2953 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2954 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2955 if (cast<StoreInst>(I).isAtomic()) { 2956 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2957 Vals.push_back( 2958 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2959 } 2960 break; 2961 case Instruction::AtomicCmpXchg: 2962 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2963 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2964 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2965 pushValue(I.getOperand(2), InstID, Vals); // newval. 2966 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2967 Vals.push_back( 2968 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2969 Vals.push_back( 2970 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2971 Vals.push_back( 2972 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2973 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2974 break; 2975 case Instruction::AtomicRMW: 2976 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2977 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2978 pushValue(I.getOperand(1), InstID, Vals); // val. 2979 Vals.push_back( 2980 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2981 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2982 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2983 Vals.push_back( 2984 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2985 break; 2986 case Instruction::Fence: 2987 Code = bitc::FUNC_CODE_INST_FENCE; 2988 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2989 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2990 break; 2991 case Instruction::Call: { 2992 const CallInst &CI = cast<CallInst>(I); 2993 FunctionType *FTy = CI.getFunctionType(); 2994 2995 if (CI.hasOperandBundles()) 2996 writeOperandBundles(&CI, InstID); 2997 2998 Code = bitc::FUNC_CODE_INST_CALL; 2999 3000 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3001 3002 unsigned Flags = getOptimizationFlags(&I); 3003 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3004 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3005 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3006 1 << bitc::CALL_EXPLICIT_TYPE | 3007 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3008 unsigned(Flags != 0) << bitc::CALL_FMF); 3009 if (Flags != 0) 3010 Vals.push_back(Flags); 3011 3012 Vals.push_back(VE.getTypeID(FTy)); 3013 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3014 3015 // Emit value #'s for the fixed parameters. 3016 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3017 // Check for labels (can happen with asm labels). 3018 if (FTy->getParamType(i)->isLabelTy()) 3019 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3020 else 3021 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3022 } 3023 3024 // Emit type/value pairs for varargs params. 3025 if (FTy->isVarArg()) { 3026 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3027 i != e; ++i) 3028 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3029 } 3030 break; 3031 } 3032 case Instruction::VAArg: 3033 Code = bitc::FUNC_CODE_INST_VAARG; 3034 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3035 pushValue(I.getOperand(0), InstID, Vals); // valist. 3036 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3037 break; 3038 case Instruction::Freeze: 3039 Code = bitc::FUNC_CODE_INST_FREEZE; 3040 pushValueAndType(I.getOperand(0), InstID, Vals); 3041 break; 3042 } 3043 3044 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3045 Vals.clear(); 3046 } 3047 3048 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3049 /// to allow clients to efficiently find the function body. 3050 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3051 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3052 // Get the offset of the VST we are writing, and backpatch it into 3053 // the VST forward declaration record. 3054 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3055 // The BitcodeStartBit was the stream offset of the identification block. 3056 VSTOffset -= bitcodeStartBit(); 3057 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3058 // Note that we add 1 here because the offset is relative to one word 3059 // before the start of the identification block, which was historically 3060 // always the start of the regular bitcode header. 3061 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3062 3063 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3064 3065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3066 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3069 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3070 3071 for (const Function &F : M) { 3072 uint64_t Record[2]; 3073 3074 if (F.isDeclaration()) 3075 continue; 3076 3077 Record[0] = VE.getValueID(&F); 3078 3079 // Save the word offset of the function (from the start of the 3080 // actual bitcode written to the stream). 3081 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3082 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3083 // Note that we add 1 here because the offset is relative to one word 3084 // before the start of the identification block, which was historically 3085 // always the start of the regular bitcode header. 3086 Record[1] = BitcodeIndex / 32 + 1; 3087 3088 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3089 } 3090 3091 Stream.ExitBlock(); 3092 } 3093 3094 /// Emit names for arguments, instructions and basic blocks in a function. 3095 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3096 const ValueSymbolTable &VST) { 3097 if (VST.empty()) 3098 return; 3099 3100 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3101 3102 // FIXME: Set up the abbrev, we know how many values there are! 3103 // FIXME: We know if the type names can use 7-bit ascii. 3104 SmallVector<uint64_t, 64> NameVals; 3105 3106 for (const ValueName &Name : VST) { 3107 // Figure out the encoding to use for the name. 3108 StringEncoding Bits = getStringEncoding(Name.getKey()); 3109 3110 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3111 NameVals.push_back(VE.getValueID(Name.getValue())); 3112 3113 // VST_CODE_ENTRY: [valueid, namechar x N] 3114 // VST_CODE_BBENTRY: [bbid, namechar x N] 3115 unsigned Code; 3116 if (isa<BasicBlock>(Name.getValue())) { 3117 Code = bitc::VST_CODE_BBENTRY; 3118 if (Bits == SE_Char6) 3119 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3120 } else { 3121 Code = bitc::VST_CODE_ENTRY; 3122 if (Bits == SE_Char6) 3123 AbbrevToUse = VST_ENTRY_6_ABBREV; 3124 else if (Bits == SE_Fixed7) 3125 AbbrevToUse = VST_ENTRY_7_ABBREV; 3126 } 3127 3128 for (const auto P : Name.getKey()) 3129 NameVals.push_back((unsigned char)P); 3130 3131 // Emit the finished record. 3132 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3133 NameVals.clear(); 3134 } 3135 3136 Stream.ExitBlock(); 3137 } 3138 3139 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3140 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3141 unsigned Code; 3142 if (isa<BasicBlock>(Order.V)) 3143 Code = bitc::USELIST_CODE_BB; 3144 else 3145 Code = bitc::USELIST_CODE_DEFAULT; 3146 3147 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3148 Record.push_back(VE.getValueID(Order.V)); 3149 Stream.EmitRecord(Code, Record); 3150 } 3151 3152 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3153 assert(VE.shouldPreserveUseListOrder() && 3154 "Expected to be preserving use-list order"); 3155 3156 auto hasMore = [&]() { 3157 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3158 }; 3159 if (!hasMore()) 3160 // Nothing to do. 3161 return; 3162 3163 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3164 while (hasMore()) { 3165 writeUseList(std::move(VE.UseListOrders.back())); 3166 VE.UseListOrders.pop_back(); 3167 } 3168 Stream.ExitBlock(); 3169 } 3170 3171 /// Emit a function body to the module stream. 3172 void ModuleBitcodeWriter::writeFunction( 3173 const Function &F, 3174 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3175 // Save the bitcode index of the start of this function block for recording 3176 // in the VST. 3177 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3178 3179 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3180 VE.incorporateFunction(F); 3181 3182 SmallVector<unsigned, 64> Vals; 3183 3184 // Emit the number of basic blocks, so the reader can create them ahead of 3185 // time. 3186 Vals.push_back(VE.getBasicBlocks().size()); 3187 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3188 Vals.clear(); 3189 3190 // If there are function-local constants, emit them now. 3191 unsigned CstStart, CstEnd; 3192 VE.getFunctionConstantRange(CstStart, CstEnd); 3193 writeConstants(CstStart, CstEnd, false); 3194 3195 // If there is function-local metadata, emit it now. 3196 writeFunctionMetadata(F); 3197 3198 // Keep a running idea of what the instruction ID is. 3199 unsigned InstID = CstEnd; 3200 3201 bool NeedsMetadataAttachment = F.hasMetadata(); 3202 3203 DILocation *LastDL = nullptr; 3204 // Finally, emit all the instructions, in order. 3205 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3206 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3207 I != E; ++I) { 3208 writeInstruction(*I, InstID, Vals); 3209 3210 if (!I->getType()->isVoidTy()) 3211 ++InstID; 3212 3213 // If the instruction has metadata, write a metadata attachment later. 3214 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3215 3216 // If the instruction has a debug location, emit it. 3217 DILocation *DL = I->getDebugLoc(); 3218 if (!DL) 3219 continue; 3220 3221 if (DL == LastDL) { 3222 // Just repeat the same debug loc as last time. 3223 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3224 continue; 3225 } 3226 3227 Vals.push_back(DL->getLine()); 3228 Vals.push_back(DL->getColumn()); 3229 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3230 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3231 Vals.push_back(DL->isImplicitCode()); 3232 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3233 Vals.clear(); 3234 3235 LastDL = DL; 3236 } 3237 3238 // Emit names for all the instructions etc. 3239 if (auto *Symtab = F.getValueSymbolTable()) 3240 writeFunctionLevelValueSymbolTable(*Symtab); 3241 3242 if (NeedsMetadataAttachment) 3243 writeFunctionMetadataAttachment(F); 3244 if (VE.shouldPreserveUseListOrder()) 3245 writeUseListBlock(&F); 3246 VE.purgeFunction(); 3247 Stream.ExitBlock(); 3248 } 3249 3250 // Emit blockinfo, which defines the standard abbreviations etc. 3251 void ModuleBitcodeWriter::writeBlockInfo() { 3252 // We only want to emit block info records for blocks that have multiple 3253 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3254 // Other blocks can define their abbrevs inline. 3255 Stream.EnterBlockInfoBlock(); 3256 3257 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3258 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3263 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3264 VST_ENTRY_8_ABBREV) 3265 llvm_unreachable("Unexpected abbrev ordering!"); 3266 } 3267 3268 { // 7-bit fixed width VST_CODE_ENTRY strings. 3269 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3270 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3274 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3275 VST_ENTRY_7_ABBREV) 3276 llvm_unreachable("Unexpected abbrev ordering!"); 3277 } 3278 { // 6-bit char6 VST_CODE_ENTRY strings. 3279 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3280 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3284 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3285 VST_ENTRY_6_ABBREV) 3286 llvm_unreachable("Unexpected abbrev ordering!"); 3287 } 3288 { // 6-bit char6 VST_CODE_BBENTRY strings. 3289 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3290 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3294 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3295 VST_BBENTRY_6_ABBREV) 3296 llvm_unreachable("Unexpected abbrev ordering!"); 3297 } 3298 3299 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3300 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3301 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3303 VE.computeBitsRequiredForTypeIndicies())); 3304 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3305 CONSTANTS_SETTYPE_ABBREV) 3306 llvm_unreachable("Unexpected abbrev ordering!"); 3307 } 3308 3309 { // INTEGER abbrev for CONSTANTS_BLOCK. 3310 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3311 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3313 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3314 CONSTANTS_INTEGER_ABBREV) 3315 llvm_unreachable("Unexpected abbrev ordering!"); 3316 } 3317 3318 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3319 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3320 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3323 VE.computeBitsRequiredForTypeIndicies())); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3325 3326 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3327 CONSTANTS_CE_CAST_Abbrev) 3328 llvm_unreachable("Unexpected abbrev ordering!"); 3329 } 3330 { // NULL abbrev for CONSTANTS_BLOCK. 3331 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3332 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3333 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3334 CONSTANTS_NULL_Abbrev) 3335 llvm_unreachable("Unexpected abbrev ordering!"); 3336 } 3337 3338 // FIXME: This should only use space for first class types! 3339 3340 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3341 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3342 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3345 VE.computeBitsRequiredForTypeIndicies())); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3348 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3349 FUNCTION_INST_LOAD_ABBREV) 3350 llvm_unreachable("Unexpected abbrev ordering!"); 3351 } 3352 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3353 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3354 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3357 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3358 FUNCTION_INST_UNOP_ABBREV) 3359 llvm_unreachable("Unexpected abbrev ordering!"); 3360 } 3361 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3363 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3367 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3368 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3369 llvm_unreachable("Unexpected abbrev ordering!"); 3370 } 3371 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3372 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3373 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3377 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3378 FUNCTION_INST_BINOP_ABBREV) 3379 llvm_unreachable("Unexpected abbrev ordering!"); 3380 } 3381 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3382 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3383 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3388 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3389 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3390 llvm_unreachable("Unexpected abbrev ordering!"); 3391 } 3392 { // INST_CAST abbrev for FUNCTION_BLOCK. 3393 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3394 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3397 VE.computeBitsRequiredForTypeIndicies())); 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3399 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3400 FUNCTION_INST_CAST_ABBREV) 3401 llvm_unreachable("Unexpected abbrev ordering!"); 3402 } 3403 3404 { // INST_RET abbrev for FUNCTION_BLOCK. 3405 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3406 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3407 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3408 FUNCTION_INST_RET_VOID_ABBREV) 3409 llvm_unreachable("Unexpected abbrev ordering!"); 3410 } 3411 { // INST_RET abbrev for FUNCTION_BLOCK. 3412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3415 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3416 FUNCTION_INST_RET_VAL_ABBREV) 3417 llvm_unreachable("Unexpected abbrev ordering!"); 3418 } 3419 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3421 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3422 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3423 FUNCTION_INST_UNREACHABLE_ABBREV) 3424 llvm_unreachable("Unexpected abbrev ordering!"); 3425 } 3426 { 3427 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3428 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3431 Log2_32_Ceil(VE.getTypes().size() + 1))); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3434 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3435 FUNCTION_INST_GEP_ABBREV) 3436 llvm_unreachable("Unexpected abbrev ordering!"); 3437 } 3438 3439 Stream.ExitBlock(); 3440 } 3441 3442 /// Write the module path strings, currently only used when generating 3443 /// a combined index file. 3444 void IndexBitcodeWriter::writeModStrings() { 3445 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3446 3447 // TODO: See which abbrev sizes we actually need to emit 3448 3449 // 8-bit fixed-width MST_ENTRY strings. 3450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3451 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3455 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3456 3457 // 7-bit fixed width MST_ENTRY strings. 3458 Abbv = std::make_shared<BitCodeAbbrev>(); 3459 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3463 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3464 3465 // 6-bit char6 MST_ENTRY strings. 3466 Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3471 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3472 3473 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3474 Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3481 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3482 3483 SmallVector<unsigned, 64> Vals; 3484 forEachModule( 3485 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3486 StringRef Key = MPSE.getKey(); 3487 const auto &Value = MPSE.getValue(); 3488 StringEncoding Bits = getStringEncoding(Key); 3489 unsigned AbbrevToUse = Abbrev8Bit; 3490 if (Bits == SE_Char6) 3491 AbbrevToUse = Abbrev6Bit; 3492 else if (Bits == SE_Fixed7) 3493 AbbrevToUse = Abbrev7Bit; 3494 3495 Vals.push_back(Value.first); 3496 Vals.append(Key.begin(), Key.end()); 3497 3498 // Emit the finished record. 3499 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3500 3501 // Emit an optional hash for the module now 3502 const auto &Hash = Value.second; 3503 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3504 Vals.assign(Hash.begin(), Hash.end()); 3505 // Emit the hash record. 3506 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3507 } 3508 3509 Vals.clear(); 3510 }); 3511 Stream.ExitBlock(); 3512 } 3513 3514 /// Write the function type metadata related records that need to appear before 3515 /// a function summary entry (whether per-module or combined). 3516 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3517 FunctionSummary *FS) { 3518 if (!FS->type_tests().empty()) 3519 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3520 3521 SmallVector<uint64_t, 64> Record; 3522 3523 auto WriteVFuncIdVec = [&](uint64_t Ty, 3524 ArrayRef<FunctionSummary::VFuncId> VFs) { 3525 if (VFs.empty()) 3526 return; 3527 Record.clear(); 3528 for (auto &VF : VFs) { 3529 Record.push_back(VF.GUID); 3530 Record.push_back(VF.Offset); 3531 } 3532 Stream.EmitRecord(Ty, Record); 3533 }; 3534 3535 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3536 FS->type_test_assume_vcalls()); 3537 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3538 FS->type_checked_load_vcalls()); 3539 3540 auto WriteConstVCallVec = [&](uint64_t Ty, 3541 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3542 for (auto &VC : VCs) { 3543 Record.clear(); 3544 Record.push_back(VC.VFunc.GUID); 3545 Record.push_back(VC.VFunc.Offset); 3546 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3547 Stream.EmitRecord(Ty, Record); 3548 } 3549 }; 3550 3551 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3552 FS->type_test_assume_const_vcalls()); 3553 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3554 FS->type_checked_load_const_vcalls()); 3555 } 3556 3557 /// Collect type IDs from type tests used by function. 3558 static void 3559 getReferencedTypeIds(FunctionSummary *FS, 3560 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3561 if (!FS->type_tests().empty()) 3562 for (auto &TT : FS->type_tests()) 3563 ReferencedTypeIds.insert(TT); 3564 3565 auto GetReferencedTypesFromVFuncIdVec = 3566 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3567 for (auto &VF : VFs) 3568 ReferencedTypeIds.insert(VF.GUID); 3569 }; 3570 3571 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3572 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3573 3574 auto GetReferencedTypesFromConstVCallVec = 3575 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3576 for (auto &VC : VCs) 3577 ReferencedTypeIds.insert(VC.VFunc.GUID); 3578 }; 3579 3580 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3581 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3582 } 3583 3584 static void writeWholeProgramDevirtResolutionByArg( 3585 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3586 const WholeProgramDevirtResolution::ByArg &ByArg) { 3587 NameVals.push_back(args.size()); 3588 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3589 3590 NameVals.push_back(ByArg.TheKind); 3591 NameVals.push_back(ByArg.Info); 3592 NameVals.push_back(ByArg.Byte); 3593 NameVals.push_back(ByArg.Bit); 3594 } 3595 3596 static void writeWholeProgramDevirtResolution( 3597 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3598 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3599 NameVals.push_back(Id); 3600 3601 NameVals.push_back(Wpd.TheKind); 3602 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3603 NameVals.push_back(Wpd.SingleImplName.size()); 3604 3605 NameVals.push_back(Wpd.ResByArg.size()); 3606 for (auto &A : Wpd.ResByArg) 3607 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3608 } 3609 3610 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3611 StringTableBuilder &StrtabBuilder, 3612 const std::string &Id, 3613 const TypeIdSummary &Summary) { 3614 NameVals.push_back(StrtabBuilder.add(Id)); 3615 NameVals.push_back(Id.size()); 3616 3617 NameVals.push_back(Summary.TTRes.TheKind); 3618 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3619 NameVals.push_back(Summary.TTRes.AlignLog2); 3620 NameVals.push_back(Summary.TTRes.SizeM1); 3621 NameVals.push_back(Summary.TTRes.BitMask); 3622 NameVals.push_back(Summary.TTRes.InlineBits); 3623 3624 for (auto &W : Summary.WPDRes) 3625 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3626 W.second); 3627 } 3628 3629 static void writeTypeIdCompatibleVtableSummaryRecord( 3630 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3631 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3632 ValueEnumerator &VE) { 3633 NameVals.push_back(StrtabBuilder.add(Id)); 3634 NameVals.push_back(Id.size()); 3635 3636 for (auto &P : Summary) { 3637 NameVals.push_back(P.AddressPointOffset); 3638 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3639 } 3640 } 3641 3642 // Helper to emit a single function summary record. 3643 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3644 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3645 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3646 const Function &F) { 3647 NameVals.push_back(ValueID); 3648 3649 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3650 writeFunctionTypeMetadataRecords(Stream, FS); 3651 3652 auto SpecialRefCnts = FS->specialRefCounts(); 3653 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3654 NameVals.push_back(FS->instCount()); 3655 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3656 NameVals.push_back(FS->refs().size()); 3657 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3658 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3659 3660 for (auto &RI : FS->refs()) 3661 NameVals.push_back(VE.getValueID(RI.getValue())); 3662 3663 bool HasProfileData = 3664 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3665 for (auto &ECI : FS->calls()) { 3666 NameVals.push_back(getValueId(ECI.first)); 3667 if (HasProfileData) 3668 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3669 else if (WriteRelBFToSummary) 3670 NameVals.push_back(ECI.second.RelBlockFreq); 3671 } 3672 3673 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3674 unsigned Code = 3675 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3676 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3677 : bitc::FS_PERMODULE)); 3678 3679 // Emit the finished record. 3680 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3681 NameVals.clear(); 3682 } 3683 3684 // Collect the global value references in the given variable's initializer, 3685 // and emit them in a summary record. 3686 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3687 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3688 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3689 auto VI = Index->getValueInfo(V.getGUID()); 3690 if (!VI || VI.getSummaryList().empty()) { 3691 // Only declarations should not have a summary (a declaration might however 3692 // have a summary if the def was in module level asm). 3693 assert(V.isDeclaration()); 3694 return; 3695 } 3696 auto *Summary = VI.getSummaryList()[0].get(); 3697 NameVals.push_back(VE.getValueID(&V)); 3698 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3699 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3700 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3701 3702 auto VTableFuncs = VS->vTableFuncs(); 3703 if (!VTableFuncs.empty()) 3704 NameVals.push_back(VS->refs().size()); 3705 3706 unsigned SizeBeforeRefs = NameVals.size(); 3707 for (auto &RI : VS->refs()) 3708 NameVals.push_back(VE.getValueID(RI.getValue())); 3709 // Sort the refs for determinism output, the vector returned by FS->refs() has 3710 // been initialized from a DenseSet. 3711 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3712 3713 if (VTableFuncs.empty()) 3714 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3715 FSModRefsAbbrev); 3716 else { 3717 // VTableFuncs pairs should already be sorted by offset. 3718 for (auto &P : VTableFuncs) { 3719 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3720 NameVals.push_back(P.VTableOffset); 3721 } 3722 3723 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3724 FSModVTableRefsAbbrev); 3725 } 3726 NameVals.clear(); 3727 } 3728 3729 /// Emit the per-module summary section alongside the rest of 3730 /// the module's bitcode. 3731 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3732 // By default we compile with ThinLTO if the module has a summary, but the 3733 // client can request full LTO with a module flag. 3734 bool IsThinLTO = true; 3735 if (auto *MD = 3736 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3737 IsThinLTO = MD->getZExtValue(); 3738 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3739 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3740 4); 3741 3742 Stream.EmitRecord( 3743 bitc::FS_VERSION, 3744 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3745 3746 // Write the index flags. 3747 uint64_t Flags = 0; 3748 // Bits 1-3 are set only in the combined index, skip them. 3749 if (Index->enableSplitLTOUnit()) 3750 Flags |= 0x8; 3751 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3752 3753 if (Index->begin() == Index->end()) { 3754 Stream.ExitBlock(); 3755 return; 3756 } 3757 3758 for (const auto &GVI : valueIds()) { 3759 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3760 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3761 } 3762 3763 // Abbrev for FS_PERMODULE_PROFILE. 3764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3765 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3773 // numrefs x valueid, n x (valueid, hotness) 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3776 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3777 3778 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3779 Abbv = std::make_shared<BitCodeAbbrev>(); 3780 if (WriteRelBFToSummary) 3781 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3782 else 3783 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3791 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3794 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3795 3796 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3797 Abbv = std::make_shared<BitCodeAbbrev>(); 3798 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3803 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3804 3805 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3806 Abbv = std::make_shared<BitCodeAbbrev>(); 3807 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3811 // numrefs x valueid, n x (valueid , offset) 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3814 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3815 3816 // Abbrev for FS_ALIAS. 3817 Abbv = std::make_shared<BitCodeAbbrev>(); 3818 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3822 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3823 3824 // Abbrev for FS_TYPE_ID_METADATA 3825 Abbv = std::make_shared<BitCodeAbbrev>(); 3826 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3829 // n x (valueid , offset) 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3832 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3833 3834 SmallVector<uint64_t, 64> NameVals; 3835 // Iterate over the list of functions instead of the Index to 3836 // ensure the ordering is stable. 3837 for (const Function &F : M) { 3838 // Summary emission does not support anonymous functions, they have to 3839 // renamed using the anonymous function renaming pass. 3840 if (!F.hasName()) 3841 report_fatal_error("Unexpected anonymous function when writing summary"); 3842 3843 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3844 if (!VI || VI.getSummaryList().empty()) { 3845 // Only declarations should not have a summary (a declaration might 3846 // however have a summary if the def was in module level asm). 3847 assert(F.isDeclaration()); 3848 continue; 3849 } 3850 auto *Summary = VI.getSummaryList()[0].get(); 3851 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3852 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3853 } 3854 3855 // Capture references from GlobalVariable initializers, which are outside 3856 // of a function scope. 3857 for (const GlobalVariable &G : M.globals()) 3858 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3859 FSModVTableRefsAbbrev); 3860 3861 for (const GlobalAlias &A : M.aliases()) { 3862 auto *Aliasee = A.getBaseObject(); 3863 if (!Aliasee->hasName()) 3864 // Nameless function don't have an entry in the summary, skip it. 3865 continue; 3866 auto AliasId = VE.getValueID(&A); 3867 auto AliaseeId = VE.getValueID(Aliasee); 3868 NameVals.push_back(AliasId); 3869 auto *Summary = Index->getGlobalValueSummary(A); 3870 AliasSummary *AS = cast<AliasSummary>(Summary); 3871 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3872 NameVals.push_back(AliaseeId); 3873 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3874 NameVals.clear(); 3875 } 3876 3877 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3878 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3879 S.second, VE); 3880 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3881 TypeIdCompatibleVtableAbbrev); 3882 NameVals.clear(); 3883 } 3884 3885 Stream.ExitBlock(); 3886 } 3887 3888 /// Emit the combined summary section into the combined index file. 3889 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3890 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3891 Stream.EmitRecord( 3892 bitc::FS_VERSION, 3893 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3894 3895 // Write the index flags. 3896 uint64_t Flags = 0; 3897 if (Index.withGlobalValueDeadStripping()) 3898 Flags |= 0x1; 3899 if (Index.skipModuleByDistributedBackend()) 3900 Flags |= 0x2; 3901 if (Index.hasSyntheticEntryCounts()) 3902 Flags |= 0x4; 3903 if (Index.enableSplitLTOUnit()) 3904 Flags |= 0x8; 3905 if (Index.partiallySplitLTOUnits()) 3906 Flags |= 0x10; 3907 if (Index.withAttributePropagation()) 3908 Flags |= 0x20; 3909 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3910 3911 for (const auto &GVI : valueIds()) { 3912 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3913 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3914 } 3915 3916 // Abbrev for FS_COMBINED. 3917 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3918 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3928 // numrefs x valueid, n x (valueid) 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3931 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3932 3933 // Abbrev for FS_COMBINED_PROFILE. 3934 Abbv = std::make_shared<BitCodeAbbrev>(); 3935 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3945 // numrefs x valueid, n x (valueid, hotness) 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3948 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3949 3950 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3951 Abbv = std::make_shared<BitCodeAbbrev>(); 3952 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3958 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3959 3960 // Abbrev for FS_COMBINED_ALIAS. 3961 Abbv = std::make_shared<BitCodeAbbrev>(); 3962 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3967 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3968 3969 // The aliases are emitted as a post-pass, and will point to the value 3970 // id of the aliasee. Save them in a vector for post-processing. 3971 SmallVector<AliasSummary *, 64> Aliases; 3972 3973 // Save the value id for each summary for alias emission. 3974 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3975 3976 SmallVector<uint64_t, 64> NameVals; 3977 3978 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3979 // with the type ids referenced by this index file. 3980 std::set<GlobalValue::GUID> ReferencedTypeIds; 3981 3982 // For local linkage, we also emit the original name separately 3983 // immediately after the record. 3984 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3985 if (!GlobalValue::isLocalLinkage(S.linkage())) 3986 return; 3987 NameVals.push_back(S.getOriginalName()); 3988 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3989 NameVals.clear(); 3990 }; 3991 3992 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3993 forEachSummary([&](GVInfo I, bool IsAliasee) { 3994 GlobalValueSummary *S = I.second; 3995 assert(S); 3996 DefOrUseGUIDs.insert(I.first); 3997 for (const ValueInfo &VI : S->refs()) 3998 DefOrUseGUIDs.insert(VI.getGUID()); 3999 4000 auto ValueId = getValueId(I.first); 4001 assert(ValueId); 4002 SummaryToValueIdMap[S] = *ValueId; 4003 4004 // If this is invoked for an aliasee, we want to record the above 4005 // mapping, but then not emit a summary entry (if the aliasee is 4006 // to be imported, we will invoke this separately with IsAliasee=false). 4007 if (IsAliasee) 4008 return; 4009 4010 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4011 // Will process aliases as a post-pass because the reader wants all 4012 // global to be loaded first. 4013 Aliases.push_back(AS); 4014 return; 4015 } 4016 4017 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4018 NameVals.push_back(*ValueId); 4019 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4020 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4021 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4022 for (auto &RI : VS->refs()) { 4023 auto RefValueId = getValueId(RI.getGUID()); 4024 if (!RefValueId) 4025 continue; 4026 NameVals.push_back(*RefValueId); 4027 } 4028 4029 // Emit the finished record. 4030 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4031 FSModRefsAbbrev); 4032 NameVals.clear(); 4033 MaybeEmitOriginalName(*S); 4034 return; 4035 } 4036 4037 auto *FS = cast<FunctionSummary>(S); 4038 writeFunctionTypeMetadataRecords(Stream, FS); 4039 getReferencedTypeIds(FS, ReferencedTypeIds); 4040 4041 NameVals.push_back(*ValueId); 4042 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4043 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4044 NameVals.push_back(FS->instCount()); 4045 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4046 NameVals.push_back(FS->entryCount()); 4047 4048 // Fill in below 4049 NameVals.push_back(0); // numrefs 4050 NameVals.push_back(0); // rorefcnt 4051 NameVals.push_back(0); // worefcnt 4052 4053 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4054 for (auto &RI : FS->refs()) { 4055 auto RefValueId = getValueId(RI.getGUID()); 4056 if (!RefValueId) 4057 continue; 4058 NameVals.push_back(*RefValueId); 4059 if (RI.isReadOnly()) 4060 RORefCnt++; 4061 else if (RI.isWriteOnly()) 4062 WORefCnt++; 4063 Count++; 4064 } 4065 NameVals[6] = Count; 4066 NameVals[7] = RORefCnt; 4067 NameVals[8] = WORefCnt; 4068 4069 bool HasProfileData = false; 4070 for (auto &EI : FS->calls()) { 4071 HasProfileData |= 4072 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4073 if (HasProfileData) 4074 break; 4075 } 4076 4077 for (auto &EI : FS->calls()) { 4078 // If this GUID doesn't have a value id, it doesn't have a function 4079 // summary and we don't need to record any calls to it. 4080 GlobalValue::GUID GUID = EI.first.getGUID(); 4081 auto CallValueId = getValueId(GUID); 4082 if (!CallValueId) { 4083 // For SamplePGO, the indirect call targets for local functions will 4084 // have its original name annotated in profile. We try to find the 4085 // corresponding PGOFuncName as the GUID. 4086 GUID = Index.getGUIDFromOriginalID(GUID); 4087 if (GUID == 0) 4088 continue; 4089 CallValueId = getValueId(GUID); 4090 if (!CallValueId) 4091 continue; 4092 // The mapping from OriginalId to GUID may return a GUID 4093 // that corresponds to a static variable. Filter it out here. 4094 // This can happen when 4095 // 1) There is a call to a library function which does not have 4096 // a CallValidId; 4097 // 2) There is a static variable with the OriginalGUID identical 4098 // to the GUID of the library function in 1); 4099 // When this happens, the logic for SamplePGO kicks in and 4100 // the static variable in 2) will be found, which needs to be 4101 // filtered out. 4102 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4103 if (GVSum && 4104 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4105 continue; 4106 } 4107 NameVals.push_back(*CallValueId); 4108 if (HasProfileData) 4109 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4110 } 4111 4112 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4113 unsigned Code = 4114 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4115 4116 // Emit the finished record. 4117 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4118 NameVals.clear(); 4119 MaybeEmitOriginalName(*S); 4120 }); 4121 4122 for (auto *AS : Aliases) { 4123 auto AliasValueId = SummaryToValueIdMap[AS]; 4124 assert(AliasValueId); 4125 NameVals.push_back(AliasValueId); 4126 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4127 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4128 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4129 assert(AliaseeValueId); 4130 NameVals.push_back(AliaseeValueId); 4131 4132 // Emit the finished record. 4133 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4134 NameVals.clear(); 4135 MaybeEmitOriginalName(*AS); 4136 4137 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4138 getReferencedTypeIds(FS, ReferencedTypeIds); 4139 } 4140 4141 if (!Index.cfiFunctionDefs().empty()) { 4142 for (auto &S : Index.cfiFunctionDefs()) { 4143 if (DefOrUseGUIDs.count( 4144 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4145 NameVals.push_back(StrtabBuilder.add(S)); 4146 NameVals.push_back(S.size()); 4147 } 4148 } 4149 if (!NameVals.empty()) { 4150 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4151 NameVals.clear(); 4152 } 4153 } 4154 4155 if (!Index.cfiFunctionDecls().empty()) { 4156 for (auto &S : Index.cfiFunctionDecls()) { 4157 if (DefOrUseGUIDs.count( 4158 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4159 NameVals.push_back(StrtabBuilder.add(S)); 4160 NameVals.push_back(S.size()); 4161 } 4162 } 4163 if (!NameVals.empty()) { 4164 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4165 NameVals.clear(); 4166 } 4167 } 4168 4169 // Walk the GUIDs that were referenced, and write the 4170 // corresponding type id records. 4171 for (auto &T : ReferencedTypeIds) { 4172 auto TidIter = Index.typeIds().equal_range(T); 4173 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4174 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4175 It->second.second); 4176 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4177 NameVals.clear(); 4178 } 4179 } 4180 4181 Stream.ExitBlock(); 4182 } 4183 4184 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4185 /// current llvm version, and a record for the epoch number. 4186 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4187 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4188 4189 // Write the "user readable" string identifying the bitcode producer 4190 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4194 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4195 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4196 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4197 4198 // Write the epoch version 4199 Abbv = std::make_shared<BitCodeAbbrev>(); 4200 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4202 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4203 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4204 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4205 Stream.ExitBlock(); 4206 } 4207 4208 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4209 // Emit the module's hash. 4210 // MODULE_CODE_HASH: [5*i32] 4211 if (GenerateHash) { 4212 uint32_t Vals[5]; 4213 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4214 Buffer.size() - BlockStartPos)); 4215 StringRef Hash = Hasher.result(); 4216 for (int Pos = 0; Pos < 20; Pos += 4) { 4217 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4218 } 4219 4220 // Emit the finished record. 4221 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4222 4223 if (ModHash) 4224 // Save the written hash value. 4225 llvm::copy(Vals, std::begin(*ModHash)); 4226 } 4227 } 4228 4229 void ModuleBitcodeWriter::write() { 4230 writeIdentificationBlock(Stream); 4231 4232 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4233 size_t BlockStartPos = Buffer.size(); 4234 4235 writeModuleVersion(); 4236 4237 // Emit blockinfo, which defines the standard abbreviations etc. 4238 writeBlockInfo(); 4239 4240 // Emit information describing all of the types in the module. 4241 writeTypeTable(); 4242 4243 // Emit information about attribute groups. 4244 writeAttributeGroupTable(); 4245 4246 // Emit information about parameter attributes. 4247 writeAttributeTable(); 4248 4249 writeComdats(); 4250 4251 // Emit top-level description of module, including target triple, inline asm, 4252 // descriptors for global variables, and function prototype info. 4253 writeModuleInfo(); 4254 4255 // Emit constants. 4256 writeModuleConstants(); 4257 4258 // Emit metadata kind names. 4259 writeModuleMetadataKinds(); 4260 4261 // Emit metadata. 4262 writeModuleMetadata(); 4263 4264 // Emit module-level use-lists. 4265 if (VE.shouldPreserveUseListOrder()) 4266 writeUseListBlock(nullptr); 4267 4268 writeOperandBundleTags(); 4269 writeSyncScopeNames(); 4270 4271 // Emit function bodies. 4272 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4273 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4274 if (!F->isDeclaration()) 4275 writeFunction(*F, FunctionToBitcodeIndex); 4276 4277 // Need to write after the above call to WriteFunction which populates 4278 // the summary information in the index. 4279 if (Index) 4280 writePerModuleGlobalValueSummary(); 4281 4282 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4283 4284 writeModuleHash(BlockStartPos); 4285 4286 Stream.ExitBlock(); 4287 } 4288 4289 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4290 uint32_t &Position) { 4291 support::endian::write32le(&Buffer[Position], Value); 4292 Position += 4; 4293 } 4294 4295 /// If generating a bc file on darwin, we have to emit a 4296 /// header and trailer to make it compatible with the system archiver. To do 4297 /// this we emit the following header, and then emit a trailer that pads the 4298 /// file out to be a multiple of 16 bytes. 4299 /// 4300 /// struct bc_header { 4301 /// uint32_t Magic; // 0x0B17C0DE 4302 /// uint32_t Version; // Version, currently always 0. 4303 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4304 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4305 /// uint32_t CPUType; // CPU specifier. 4306 /// ... potentially more later ... 4307 /// }; 4308 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4309 const Triple &TT) { 4310 unsigned CPUType = ~0U; 4311 4312 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4313 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4314 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4315 // specific constants here because they are implicitly part of the Darwin ABI. 4316 enum { 4317 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4318 DARWIN_CPU_TYPE_X86 = 7, 4319 DARWIN_CPU_TYPE_ARM = 12, 4320 DARWIN_CPU_TYPE_POWERPC = 18 4321 }; 4322 4323 Triple::ArchType Arch = TT.getArch(); 4324 if (Arch == Triple::x86_64) 4325 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4326 else if (Arch == Triple::x86) 4327 CPUType = DARWIN_CPU_TYPE_X86; 4328 else if (Arch == Triple::ppc) 4329 CPUType = DARWIN_CPU_TYPE_POWERPC; 4330 else if (Arch == Triple::ppc64) 4331 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4332 else if (Arch == Triple::arm || Arch == Triple::thumb) 4333 CPUType = DARWIN_CPU_TYPE_ARM; 4334 4335 // Traditional Bitcode starts after header. 4336 assert(Buffer.size() >= BWH_HeaderSize && 4337 "Expected header size to be reserved"); 4338 unsigned BCOffset = BWH_HeaderSize; 4339 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4340 4341 // Write the magic and version. 4342 unsigned Position = 0; 4343 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4344 writeInt32ToBuffer(0, Buffer, Position); // Version. 4345 writeInt32ToBuffer(BCOffset, Buffer, Position); 4346 writeInt32ToBuffer(BCSize, Buffer, Position); 4347 writeInt32ToBuffer(CPUType, Buffer, Position); 4348 4349 // If the file is not a multiple of 16 bytes, insert dummy padding. 4350 while (Buffer.size() & 15) 4351 Buffer.push_back(0); 4352 } 4353 4354 /// Helper to write the header common to all bitcode files. 4355 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4356 // Emit the file header. 4357 Stream.Emit((unsigned)'B', 8); 4358 Stream.Emit((unsigned)'C', 8); 4359 Stream.Emit(0x0, 4); 4360 Stream.Emit(0xC, 4); 4361 Stream.Emit(0xE, 4); 4362 Stream.Emit(0xD, 4); 4363 } 4364 4365 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4366 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4367 writeBitcodeHeader(*Stream); 4368 } 4369 4370 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4371 4372 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4373 Stream->EnterSubblock(Block, 3); 4374 4375 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4376 Abbv->Add(BitCodeAbbrevOp(Record)); 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4378 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4379 4380 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4381 4382 Stream->ExitBlock(); 4383 } 4384 4385 void BitcodeWriter::writeSymtab() { 4386 assert(!WroteStrtab && !WroteSymtab); 4387 4388 // If any module has module-level inline asm, we will require a registered asm 4389 // parser for the target so that we can create an accurate symbol table for 4390 // the module. 4391 for (Module *M : Mods) { 4392 if (M->getModuleInlineAsm().empty()) 4393 continue; 4394 4395 std::string Err; 4396 const Triple TT(M->getTargetTriple()); 4397 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4398 if (!T || !T->hasMCAsmParser()) 4399 return; 4400 } 4401 4402 WroteSymtab = true; 4403 SmallVector<char, 0> Symtab; 4404 // The irsymtab::build function may be unable to create a symbol table if the 4405 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4406 // table is not required for correctness, but we still want to be able to 4407 // write malformed modules to bitcode files, so swallow the error. 4408 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4409 consumeError(std::move(E)); 4410 return; 4411 } 4412 4413 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4414 {Symtab.data(), Symtab.size()}); 4415 } 4416 4417 void BitcodeWriter::writeStrtab() { 4418 assert(!WroteStrtab); 4419 4420 std::vector<char> Strtab; 4421 StrtabBuilder.finalizeInOrder(); 4422 Strtab.resize(StrtabBuilder.getSize()); 4423 StrtabBuilder.write((uint8_t *)Strtab.data()); 4424 4425 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4426 {Strtab.data(), Strtab.size()}); 4427 4428 WroteStrtab = true; 4429 } 4430 4431 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4432 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4433 WroteStrtab = true; 4434 } 4435 4436 void BitcodeWriter::writeModule(const Module &M, 4437 bool ShouldPreserveUseListOrder, 4438 const ModuleSummaryIndex *Index, 4439 bool GenerateHash, ModuleHash *ModHash) { 4440 assert(!WroteStrtab); 4441 4442 // The Mods vector is used by irsymtab::build, which requires non-const 4443 // Modules in case it needs to materialize metadata. But the bitcode writer 4444 // requires that the module is materialized, so we can cast to non-const here, 4445 // after checking that it is in fact materialized. 4446 assert(M.isMaterialized()); 4447 Mods.push_back(const_cast<Module *>(&M)); 4448 4449 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4450 ShouldPreserveUseListOrder, Index, 4451 GenerateHash, ModHash); 4452 ModuleWriter.write(); 4453 } 4454 4455 void BitcodeWriter::writeIndex( 4456 const ModuleSummaryIndex *Index, 4457 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4458 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4459 ModuleToSummariesForIndex); 4460 IndexWriter.write(); 4461 } 4462 4463 /// Write the specified module to the specified output stream. 4464 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4465 bool ShouldPreserveUseListOrder, 4466 const ModuleSummaryIndex *Index, 4467 bool GenerateHash, ModuleHash *ModHash) { 4468 SmallVector<char, 0> Buffer; 4469 Buffer.reserve(256*1024); 4470 4471 // If this is darwin or another generic macho target, reserve space for the 4472 // header. 4473 Triple TT(M.getTargetTriple()); 4474 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4475 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4476 4477 BitcodeWriter Writer(Buffer); 4478 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4479 ModHash); 4480 Writer.writeSymtab(); 4481 Writer.writeStrtab(); 4482 4483 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4484 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4485 4486 // Write the generated bitstream to "Out". 4487 Out.write((char*)&Buffer.front(), Buffer.size()); 4488 } 4489 4490 void IndexBitcodeWriter::write() { 4491 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4492 4493 writeModuleVersion(); 4494 4495 // Write the module paths in the combined index. 4496 writeModStrings(); 4497 4498 // Write the summary combined index records. 4499 writeCombinedGlobalValueSummary(); 4500 4501 Stream.ExitBlock(); 4502 } 4503 4504 // Write the specified module summary index to the given raw output stream, 4505 // where it will be written in a new bitcode block. This is used when 4506 // writing the combined index file for ThinLTO. When writing a subset of the 4507 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4508 void llvm::WriteIndexToFile( 4509 const ModuleSummaryIndex &Index, raw_ostream &Out, 4510 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4511 SmallVector<char, 0> Buffer; 4512 Buffer.reserve(256 * 1024); 4513 4514 BitcodeWriter Writer(Buffer); 4515 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4516 Writer.writeStrtab(); 4517 4518 Out.write((char *)&Buffer.front(), Buffer.size()); 4519 } 4520 4521 namespace { 4522 4523 /// Class to manage the bitcode writing for a thin link bitcode file. 4524 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4525 /// ModHash is for use in ThinLTO incremental build, generated while writing 4526 /// the module bitcode file. 4527 const ModuleHash *ModHash; 4528 4529 public: 4530 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4531 BitstreamWriter &Stream, 4532 const ModuleSummaryIndex &Index, 4533 const ModuleHash &ModHash) 4534 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4535 /*ShouldPreserveUseListOrder=*/false, &Index), 4536 ModHash(&ModHash) {} 4537 4538 void write(); 4539 4540 private: 4541 void writeSimplifiedModuleInfo(); 4542 }; 4543 4544 } // end anonymous namespace 4545 4546 // This function writes a simpilified module info for thin link bitcode file. 4547 // It only contains the source file name along with the name(the offset and 4548 // size in strtab) and linkage for global values. For the global value info 4549 // entry, in order to keep linkage at offset 5, there are three zeros used 4550 // as padding. 4551 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4552 SmallVector<unsigned, 64> Vals; 4553 // Emit the module's source file name. 4554 { 4555 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4556 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4557 if (Bits == SE_Char6) 4558 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4559 else if (Bits == SE_Fixed7) 4560 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4561 4562 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4564 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4566 Abbv->Add(AbbrevOpToUse); 4567 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4568 4569 for (const auto P : M.getSourceFileName()) 4570 Vals.push_back((unsigned char)P); 4571 4572 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4573 Vals.clear(); 4574 } 4575 4576 // Emit the global variable information. 4577 for (const GlobalVariable &GV : M.globals()) { 4578 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4579 Vals.push_back(StrtabBuilder.add(GV.getName())); 4580 Vals.push_back(GV.getName().size()); 4581 Vals.push_back(0); 4582 Vals.push_back(0); 4583 Vals.push_back(0); 4584 Vals.push_back(getEncodedLinkage(GV)); 4585 4586 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4587 Vals.clear(); 4588 } 4589 4590 // Emit the function proto information. 4591 for (const Function &F : M) { 4592 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4593 Vals.push_back(StrtabBuilder.add(F.getName())); 4594 Vals.push_back(F.getName().size()); 4595 Vals.push_back(0); 4596 Vals.push_back(0); 4597 Vals.push_back(0); 4598 Vals.push_back(getEncodedLinkage(F)); 4599 4600 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4601 Vals.clear(); 4602 } 4603 4604 // Emit the alias information. 4605 for (const GlobalAlias &A : M.aliases()) { 4606 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4607 Vals.push_back(StrtabBuilder.add(A.getName())); 4608 Vals.push_back(A.getName().size()); 4609 Vals.push_back(0); 4610 Vals.push_back(0); 4611 Vals.push_back(0); 4612 Vals.push_back(getEncodedLinkage(A)); 4613 4614 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4615 Vals.clear(); 4616 } 4617 4618 // Emit the ifunc information. 4619 for (const GlobalIFunc &I : M.ifuncs()) { 4620 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4621 Vals.push_back(StrtabBuilder.add(I.getName())); 4622 Vals.push_back(I.getName().size()); 4623 Vals.push_back(0); 4624 Vals.push_back(0); 4625 Vals.push_back(0); 4626 Vals.push_back(getEncodedLinkage(I)); 4627 4628 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4629 Vals.clear(); 4630 } 4631 } 4632 4633 void ThinLinkBitcodeWriter::write() { 4634 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4635 4636 writeModuleVersion(); 4637 4638 writeSimplifiedModuleInfo(); 4639 4640 writePerModuleGlobalValueSummary(); 4641 4642 // Write module hash. 4643 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4644 4645 Stream.ExitBlock(); 4646 } 4647 4648 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4649 const ModuleSummaryIndex &Index, 4650 const ModuleHash &ModHash) { 4651 assert(!WroteStrtab); 4652 4653 // The Mods vector is used by irsymtab::build, which requires non-const 4654 // Modules in case it needs to materialize metadata. But the bitcode writer 4655 // requires that the module is materialized, so we can cast to non-const here, 4656 // after checking that it is in fact materialized. 4657 assert(M.isMaterialized()); 4658 Mods.push_back(const_cast<Module *>(&M)); 4659 4660 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4661 ModHash); 4662 ThinLinkWriter.write(); 4663 } 4664 4665 // Write the specified thin link bitcode file to the given raw output stream, 4666 // where it will be written in a new bitcode block. This is used when 4667 // writing the per-module index file for ThinLTO. 4668 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4669 const ModuleSummaryIndex &Index, 4670 const ModuleHash &ModHash) { 4671 SmallVector<char, 0> Buffer; 4672 Buffer.reserve(256 * 1024); 4673 4674 BitcodeWriter Writer(Buffer); 4675 Writer.writeThinLinkBitcode(M, Index, ModHash); 4676 Writer.writeSymtab(); 4677 Writer.writeStrtab(); 4678 4679 Out.write((char *)&Buffer.front(), Buffer.size()); 4680 } 4681 4682 static const char *getSectionNameForBitcode(const Triple &T) { 4683 switch (T.getObjectFormat()) { 4684 case Triple::MachO: 4685 return "__LLVM,__bitcode"; 4686 case Triple::COFF: 4687 case Triple::ELF: 4688 case Triple::Wasm: 4689 case Triple::UnknownObjectFormat: 4690 return ".llvmbc"; 4691 case Triple::XCOFF: 4692 llvm_unreachable("XCOFF is not yet implemented"); 4693 break; 4694 } 4695 llvm_unreachable("Unimplemented ObjectFormatType"); 4696 } 4697 4698 static const char *getSectionNameForCommandline(const Triple &T) { 4699 switch (T.getObjectFormat()) { 4700 case Triple::MachO: 4701 return "__LLVM,__cmdline"; 4702 case Triple::COFF: 4703 case Triple::ELF: 4704 case Triple::Wasm: 4705 case Triple::UnknownObjectFormat: 4706 return ".llvmcmd"; 4707 case Triple::XCOFF: 4708 llvm_unreachable("XCOFF is not yet implemented"); 4709 break; 4710 } 4711 llvm_unreachable("Unimplemented ObjectFormatType"); 4712 } 4713 4714 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4715 bool EmbedBitcode, bool EmbedMarker, 4716 const std::vector<uint8_t> *CmdArgs) { 4717 // Save llvm.compiler.used and remove it. 4718 SmallVector<Constant *, 2> UsedArray; 4719 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4720 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4721 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4722 for (auto *GV : UsedGlobals) { 4723 if (GV->getName() != "llvm.embedded.module" && 4724 GV->getName() != "llvm.cmdline") 4725 UsedArray.push_back( 4726 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4727 } 4728 if (Used) 4729 Used->eraseFromParent(); 4730 4731 // Embed the bitcode for the llvm module. 4732 std::string Data; 4733 ArrayRef<uint8_t> ModuleData; 4734 Triple T(M.getTargetTriple()); 4735 // Create a constant that contains the bitcode. 4736 // In case of embedding a marker, ignore the input Buf and use the empty 4737 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4738 if (EmbedBitcode) { 4739 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4740 (const unsigned char *)Buf.getBufferEnd())) { 4741 // If the input is LLVM Assembly, bitcode is produced by serializing 4742 // the module. Use-lists order need to be preserved in this case. 4743 llvm::raw_string_ostream OS(Data); 4744 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4745 ModuleData = 4746 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4747 } else 4748 // If the input is LLVM bitcode, write the input byte stream directly. 4749 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4750 Buf.getBufferSize()); 4751 } 4752 llvm::Constant *ModuleConstant = 4753 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4754 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4755 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4756 ModuleConstant); 4757 GV->setSection(getSectionNameForBitcode(T)); 4758 UsedArray.push_back( 4759 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4760 if (llvm::GlobalVariable *Old = 4761 M.getGlobalVariable("llvm.embedded.module", true)) { 4762 assert(Old->hasOneUse() && 4763 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4764 GV->takeName(Old); 4765 Old->eraseFromParent(); 4766 } else { 4767 GV->setName("llvm.embedded.module"); 4768 } 4769 4770 // Skip if only bitcode needs to be embedded. 4771 if (EmbedMarker) { 4772 // Embed command-line options. 4773 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4774 CmdArgs->size()); 4775 llvm::Constant *CmdConstant = 4776 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4777 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4778 llvm::GlobalValue::PrivateLinkage, 4779 CmdConstant); 4780 GV->setSection(getSectionNameForCommandline(T)); 4781 UsedArray.push_back( 4782 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4783 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4784 assert(Old->hasOneUse() && 4785 "llvm.cmdline can only be used once in llvm.compiler.used"); 4786 GV->takeName(Old); 4787 Old->eraseFromParent(); 4788 } else { 4789 GV->setName("llvm.cmdline"); 4790 } 4791 } 4792 4793 if (UsedArray.empty()) 4794 return; 4795 4796 // Recreate llvm.compiler.used. 4797 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4798 auto *NewUsed = new GlobalVariable( 4799 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4800 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4801 NewUsed->setSection("llvm.metadata"); 4802 } 4803