xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Bitcode writer implementation.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/Bitcode/BitcodeWriter.h"
14  #include "ValueEnumerator.h"
15  #include "llvm/ADT/APFloat.h"
16  #include "llvm/ADT/APInt.h"
17  #include "llvm/ADT/ArrayRef.h"
18  #include "llvm/ADT/DenseMap.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SetVector.h"
21  #include "llvm/ADT/SmallPtrSet.h"
22  #include "llvm/ADT/SmallString.h"
23  #include "llvm/ADT/SmallVector.h"
24  #include "llvm/ADT/StringMap.h"
25  #include "llvm/ADT/StringRef.h"
26  #include "llvm/Bitcode/BitcodeCommon.h"
27  #include "llvm/Bitcode/BitcodeReader.h"
28  #include "llvm/Bitcode/LLVMBitCodes.h"
29  #include "llvm/Bitstream/BitCodes.h"
30  #include "llvm/Bitstream/BitstreamWriter.h"
31  #include "llvm/Config/llvm-config.h"
32  #include "llvm/IR/Attributes.h"
33  #include "llvm/IR/BasicBlock.h"
34  #include "llvm/IR/Comdat.h"
35  #include "llvm/IR/Constant.h"
36  #include "llvm/IR/ConstantRangeList.h"
37  #include "llvm/IR/Constants.h"
38  #include "llvm/IR/DebugInfoMetadata.h"
39  #include "llvm/IR/DebugLoc.h"
40  #include "llvm/IR/DerivedTypes.h"
41  #include "llvm/IR/Function.h"
42  #include "llvm/IR/GlobalAlias.h"
43  #include "llvm/IR/GlobalIFunc.h"
44  #include "llvm/IR/GlobalObject.h"
45  #include "llvm/IR/GlobalValue.h"
46  #include "llvm/IR/GlobalVariable.h"
47  #include "llvm/IR/InlineAsm.h"
48  #include "llvm/IR/InstrTypes.h"
49  #include "llvm/IR/Instruction.h"
50  #include "llvm/IR/Instructions.h"
51  #include "llvm/IR/LLVMContext.h"
52  #include "llvm/IR/Metadata.h"
53  #include "llvm/IR/Module.h"
54  #include "llvm/IR/ModuleSummaryIndex.h"
55  #include "llvm/IR/Operator.h"
56  #include "llvm/IR/Type.h"
57  #include "llvm/IR/UseListOrder.h"
58  #include "llvm/IR/Value.h"
59  #include "llvm/IR/ValueSymbolTable.h"
60  #include "llvm/MC/StringTableBuilder.h"
61  #include "llvm/MC/TargetRegistry.h"
62  #include "llvm/Object/IRSymtab.h"
63  #include "llvm/Support/AtomicOrdering.h"
64  #include "llvm/Support/Casting.h"
65  #include "llvm/Support/CommandLine.h"
66  #include "llvm/Support/Endian.h"
67  #include "llvm/Support/Error.h"
68  #include "llvm/Support/ErrorHandling.h"
69  #include "llvm/Support/MathExtras.h"
70  #include "llvm/Support/SHA1.h"
71  #include "llvm/Support/raw_ostream.h"
72  #include "llvm/TargetParser/Triple.h"
73  #include <algorithm>
74  #include <cassert>
75  #include <cstddef>
76  #include <cstdint>
77  #include <iterator>
78  #include <map>
79  #include <memory>
80  #include <optional>
81  #include <string>
82  #include <utility>
83  #include <vector>
84  
85  using namespace llvm;
86  
87  static cl::opt<unsigned>
88      IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
89                     cl::desc("Number of metadatas above which we emit an index "
90                              "to enable lazy-loading"));
91  static cl::opt<uint32_t> FlushThreshold(
92      "bitcode-flush-threshold", cl::Hidden, cl::init(512),
93      cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94  
95  static cl::opt<bool> WriteRelBFToSummary(
96      "write-relbf-to-summary", cl::Hidden, cl::init(false),
97      cl::desc("Write relative block frequency to function summary "));
98  
99  namespace llvm {
100  extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
101  }
102  
103  extern bool WriteNewDbgInfoFormatToBitcode;
104  extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
105  
106  namespace {
107  
108  /// These are manifest constants used by the bitcode writer. They do not need to
109  /// be kept in sync with the reader, but need to be consistent within this file.
110  enum {
111    // VALUE_SYMTAB_BLOCK abbrev id's.
112    VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
113    VST_ENTRY_7_ABBREV,
114    VST_ENTRY_6_ABBREV,
115    VST_BBENTRY_6_ABBREV,
116  
117    // CONSTANTS_BLOCK abbrev id's.
118    CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
119    CONSTANTS_INTEGER_ABBREV,
120    CONSTANTS_CE_CAST_Abbrev,
121    CONSTANTS_NULL_Abbrev,
122  
123    // FUNCTION_BLOCK abbrev id's.
124    FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
125    FUNCTION_INST_UNOP_ABBREV,
126    FUNCTION_INST_UNOP_FLAGS_ABBREV,
127    FUNCTION_INST_BINOP_ABBREV,
128    FUNCTION_INST_BINOP_FLAGS_ABBREV,
129    FUNCTION_INST_CAST_ABBREV,
130    FUNCTION_INST_CAST_FLAGS_ABBREV,
131    FUNCTION_INST_RET_VOID_ABBREV,
132    FUNCTION_INST_RET_VAL_ABBREV,
133    FUNCTION_INST_UNREACHABLE_ABBREV,
134    FUNCTION_INST_GEP_ABBREV,
135    FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
136  };
137  
138  /// Abstract class to manage the bitcode writing, subclassed for each bitcode
139  /// file type.
140  class BitcodeWriterBase {
141  protected:
142    /// The stream created and owned by the client.
143    BitstreamWriter &Stream;
144  
145    StringTableBuilder &StrtabBuilder;
146  
147  public:
148    /// Constructs a BitcodeWriterBase object that writes to the provided
149    /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)150    BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
151        : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
152  
153  protected:
154    void writeModuleVersion();
155  };
156  
writeModuleVersion()157  void BitcodeWriterBase::writeModuleVersion() {
158    // VERSION: [version#]
159    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
160  }
161  
162  /// Base class to manage the module bitcode writing, currently subclassed for
163  /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
164  class ModuleBitcodeWriterBase : public BitcodeWriterBase {
165  protected:
166    /// The Module to write to bitcode.
167    const Module &M;
168  
169    /// Enumerates ids for all values in the module.
170    ValueEnumerator VE;
171  
172    /// Optional per-module index to write for ThinLTO.
173    const ModuleSummaryIndex *Index;
174  
175    /// Map that holds the correspondence between GUIDs in the summary index,
176    /// that came from indirect call profiles, and a value id generated by this
177    /// class to use in the VST and summary block records.
178    std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
179  
180    /// Tracks the last value id recorded in the GUIDToValueMap.
181    unsigned GlobalValueId;
182  
183    /// Saves the offset of the VSTOffset record that must eventually be
184    /// backpatched with the offset of the actual VST.
185    uint64_t VSTOffsetPlaceholder = 0;
186  
187  public:
188    /// Constructs a ModuleBitcodeWriterBase object for the given Module,
189    /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)190    ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
191                            BitstreamWriter &Stream,
192                            bool ShouldPreserveUseListOrder,
193                            const ModuleSummaryIndex *Index)
194        : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
195          VE(M, ShouldPreserveUseListOrder), Index(Index) {
196      // Assign ValueIds to any callee values in the index that came from
197      // indirect call profiles and were recorded as a GUID not a Value*
198      // (which would have been assigned an ID by the ValueEnumerator).
199      // The starting ValueId is just after the number of values in the
200      // ValueEnumerator, so that they can be emitted in the VST.
201      GlobalValueId = VE.getValues().size();
202      if (!Index)
203        return;
204      for (const auto &GUIDSummaryLists : *Index)
205        // Examine all summaries for this GUID.
206        for (auto &Summary : GUIDSummaryLists.second.SummaryList)
207          if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) {
208            // For each call in the function summary, see if the call
209            // is to a GUID (which means it is for an indirect call,
210            // otherwise we would have a Value for it). If so, synthesize
211            // a value id.
212            for (auto &CallEdge : FS->calls())
213              if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
214                assignValueId(CallEdge.first.getGUID());
215  
216            // For each referenced variables in the function summary, see if the
217            // variable is represented by a GUID (as opposed to a symbol to
218            // declarations or definitions in the module). If so, synthesize a
219            // value id.
220            for (auto &RefEdge : FS->refs())
221              if (!RefEdge.haveGVs() || !RefEdge.getValue())
222                assignValueId(RefEdge.getGUID());
223          }
224    }
225  
226  protected:
227    void writePerModuleGlobalValueSummary();
228  
229  private:
230    void writePerModuleFunctionSummaryRecord(
231        SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
232        unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
233        unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
234    void writeModuleLevelReferences(const GlobalVariable &V,
235                                    SmallVector<uint64_t, 64> &NameVals,
236                                    unsigned FSModRefsAbbrev,
237                                    unsigned FSModVTableRefsAbbrev);
238  
assignValueId(GlobalValue::GUID ValGUID)239    void assignValueId(GlobalValue::GUID ValGUID) {
240      GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
241    }
242  
getValueId(GlobalValue::GUID ValGUID)243    unsigned getValueId(GlobalValue::GUID ValGUID) {
244      const auto &VMI = GUIDToValueIdMap.find(ValGUID);
245      // Expect that any GUID value had a value Id assigned by an
246      // earlier call to assignValueId.
247      assert(VMI != GUIDToValueIdMap.end() &&
248             "GUID does not have assigned value Id");
249      return VMI->second;
250    }
251  
252    // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)253    unsigned getValueId(ValueInfo VI) {
254      if (!VI.haveGVs() || !VI.getValue())
255        return getValueId(VI.getGUID());
256      return VE.getValueID(VI.getValue());
257    }
258  
valueIds()259    std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
260  };
261  
262  /// Class to manage the bitcode writing for a module.
263  class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
264    /// True if a module hash record should be written.
265    bool GenerateHash;
266  
267    /// If non-null, when GenerateHash is true, the resulting hash is written
268    /// into ModHash.
269    ModuleHash *ModHash;
270  
271    SHA1 Hasher;
272  
273    /// The start bit of the identification block.
274    uint64_t BitcodeStartBit;
275  
276  public:
277    /// Constructs a ModuleBitcodeWriter object for the given Module,
278    /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)279    ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
280                        BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
281                        const ModuleSummaryIndex *Index, bool GenerateHash,
282                        ModuleHash *ModHash = nullptr)
283        : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
284                                  ShouldPreserveUseListOrder, Index),
285          GenerateHash(GenerateHash), ModHash(ModHash),
286          BitcodeStartBit(Stream.GetCurrentBitNo()) {}
287  
288    /// Emit the current module to the bitstream.
289    void write();
290  
291  private:
bitcodeStartBit()292    uint64_t bitcodeStartBit() { return BitcodeStartBit; }
293  
294    size_t addToStrtab(StringRef Str);
295  
296    void writeAttributeGroupTable();
297    void writeAttributeTable();
298    void writeTypeTable();
299    void writeComdats();
300    void writeValueSymbolTableForwardDecl();
301    void writeModuleInfo();
302    void writeValueAsMetadata(const ValueAsMetadata *MD,
303                              SmallVectorImpl<uint64_t> &Record);
304    void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
305                      unsigned Abbrev);
306    unsigned createDILocationAbbrev();
307    void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
308                         unsigned &Abbrev);
309    unsigned createGenericDINodeAbbrev();
310    void writeGenericDINode(const GenericDINode *N,
311                            SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
312    void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
313                         unsigned Abbrev);
314    void writeDIGenericSubrange(const DIGenericSubrange *N,
315                                SmallVectorImpl<uint64_t> &Record,
316                                unsigned Abbrev);
317    void writeDIEnumerator(const DIEnumerator *N,
318                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319    void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
320                          unsigned Abbrev);
321    void writeDIStringType(const DIStringType *N,
322                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323    void writeDIDerivedType(const DIDerivedType *N,
324                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325    void writeDICompositeType(const DICompositeType *N,
326                              SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327    void writeDISubroutineType(const DISubroutineType *N,
328                               SmallVectorImpl<uint64_t> &Record,
329                               unsigned Abbrev);
330    void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
331                     unsigned Abbrev);
332    void writeDICompileUnit(const DICompileUnit *N,
333                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
334    void writeDISubprogram(const DISubprogram *N,
335                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
336    void writeDILexicalBlock(const DILexicalBlock *N,
337                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338    void writeDILexicalBlockFile(const DILexicalBlockFile *N,
339                                 SmallVectorImpl<uint64_t> &Record,
340                                 unsigned Abbrev);
341    void writeDICommonBlock(const DICommonBlock *N,
342                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343    void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
344                          unsigned Abbrev);
345    void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
346                      unsigned Abbrev);
347    void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
348                          unsigned Abbrev);
349    void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
350    void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
351                       unsigned Abbrev);
352    void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
353                         unsigned Abbrev);
354    void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
355                                      SmallVectorImpl<uint64_t> &Record,
356                                      unsigned Abbrev);
357    void writeDITemplateValueParameter(const DITemplateValueParameter *N,
358                                       SmallVectorImpl<uint64_t> &Record,
359                                       unsigned Abbrev);
360    void writeDIGlobalVariable(const DIGlobalVariable *N,
361                               SmallVectorImpl<uint64_t> &Record,
362                               unsigned Abbrev);
363    void writeDILocalVariable(const DILocalVariable *N,
364                              SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
365    void writeDILabel(const DILabel *N,
366                      SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
367    void writeDIExpression(const DIExpression *N,
368                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
369    void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
370                                         SmallVectorImpl<uint64_t> &Record,
371                                         unsigned Abbrev);
372    void writeDIObjCProperty(const DIObjCProperty *N,
373                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
374    void writeDIImportedEntity(const DIImportedEntity *N,
375                               SmallVectorImpl<uint64_t> &Record,
376                               unsigned Abbrev);
377    unsigned createNamedMetadataAbbrev();
378    void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
379    unsigned createMetadataStringsAbbrev();
380    void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
381                              SmallVectorImpl<uint64_t> &Record);
382    void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
383                              SmallVectorImpl<uint64_t> &Record,
384                              std::vector<unsigned> *MDAbbrevs = nullptr,
385                              std::vector<uint64_t> *IndexPos = nullptr);
386    void writeModuleMetadata();
387    void writeFunctionMetadata(const Function &F);
388    void writeFunctionMetadataAttachment(const Function &F);
389    void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
390                                      const GlobalObject &GO);
391    void writeModuleMetadataKinds();
392    void writeOperandBundleTags();
393    void writeSyncScopeNames();
394    void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
395    void writeModuleConstants();
396    bool pushValueAndType(const Value *V, unsigned InstID,
397                          SmallVectorImpl<unsigned> &Vals);
398    void writeOperandBundles(const CallBase &CB, unsigned InstID);
399    void pushValue(const Value *V, unsigned InstID,
400                   SmallVectorImpl<unsigned> &Vals);
401    void pushValueSigned(const Value *V, unsigned InstID,
402                         SmallVectorImpl<uint64_t> &Vals);
403    void writeInstruction(const Instruction &I, unsigned InstID,
404                          SmallVectorImpl<unsigned> &Vals);
405    void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
406    void writeGlobalValueSymbolTable(
407        DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
408    void writeUseList(UseListOrder &&Order);
409    void writeUseListBlock(const Function *F);
410    void
411    writeFunction(const Function &F,
412                  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
413    void writeBlockInfo();
414    void writeModuleHash(StringRef View);
415  
getEncodedSyncScopeID(SyncScope::ID SSID)416    unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
417      return unsigned(SSID);
418    }
419  
getEncodedAlign(MaybeAlign Alignment)420    unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
421  };
422  
423  /// Class to manage the bitcode writing for a combined index.
424  class IndexBitcodeWriter : public BitcodeWriterBase {
425    /// The combined index to write to bitcode.
426    const ModuleSummaryIndex &Index;
427  
428    /// When writing combined summaries, provides the set of global value
429    /// summaries for which the value (function, function alias, etc) should be
430    /// imported as a declaration.
431    const GVSummaryPtrSet *DecSummaries = nullptr;
432  
433    /// When writing a subset of the index for distributed backends, client
434    /// provides a map of modules to the corresponding GUIDs/summaries to write.
435    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
436  
437    /// Map that holds the correspondence between the GUID used in the combined
438    /// index and a value id generated by this class to use in references.
439    std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
440  
441    // The stack ids used by this index, which will be a subset of those in
442    // the full index in the case of distributed indexes.
443    std::vector<uint64_t> StackIds;
444  
445    // Keep a map of the stack id indices used by records being written for this
446    // index to the index of the corresponding stack id in the above StackIds
447    // vector. Ensures we write each referenced stack id once.
448    DenseMap<unsigned, unsigned> StackIdIndicesToIndex;
449  
450    /// Tracks the last value id recorded in the GUIDToValueMap.
451    unsigned GlobalValueId = 0;
452  
453    /// Tracks the assignment of module paths in the module path string table to
454    /// an id assigned for use in summary references to the module path.
455    DenseMap<StringRef, uint64_t> ModuleIdMap;
456  
457  public:
458    /// Constructs a IndexBitcodeWriter object for the given combined index,
459    /// writing to the provided \p Buffer. When writing a subset of the index
460    /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
461    /// If provided, \p DecSummaries specifies the set of summaries for which
462    /// the corresponding functions or aliased functions should be imported as a
463    /// declaration (but not definition) for each module.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const GVSummaryPtrSet * DecSummaries=nullptr,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)464    IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
465                       const ModuleSummaryIndex &Index,
466                       const GVSummaryPtrSet *DecSummaries = nullptr,
467                       const std::map<std::string, GVSummaryMapTy>
468                           *ModuleToSummariesForIndex = nullptr)
469        : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
470          DecSummaries(DecSummaries),
471          ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
472  
473      // See if the StackIdIndex was already added to the StackId map and
474      // vector. If not, record it.
475      auto RecordStackIdReference = [&](unsigned StackIdIndex) {
476        // If the StackIdIndex is not yet in the map, the below insert ensures
477        // that it will point to the new StackIds vector entry we push to just
478        // below.
479        auto Inserted =
480            StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()});
481        if (Inserted.second)
482          StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex));
483      };
484  
485      // Assign unique value ids to all summaries to be written, for use
486      // in writing out the call graph edges. Save the mapping from GUID
487      // to the new global value id to use when writing those edges, which
488      // are currently saved in the index in terms of GUID.
489      forEachSummary([&](GVInfo I, bool IsAliasee) {
490        GUIDToValueIdMap[I.first] = ++GlobalValueId;
491        if (IsAliasee)
492          return;
493        auto *FS = dyn_cast<FunctionSummary>(I.second);
494        if (!FS)
495          return;
496        // Record all stack id indices actually used in the summary entries being
497        // written, so that we can compact them in the case of distributed ThinLTO
498        // indexes.
499        for (auto &CI : FS->callsites()) {
500          // If the stack id list is empty, this callsite info was synthesized for
501          // a missing tail call frame. Ensure that the callee's GUID gets a value
502          // id. Normally we only generate these for defined summaries, which in
503          // the case of distributed ThinLTO is only the functions already defined
504          // in the module or that we want to import. We don't bother to include
505          // all the callee symbols as they aren't normally needed in the backend.
506          // However, for the synthesized callsite infos we do need the callee
507          // GUID in the backend so that we can correlate the identified callee
508          // with this callsite info (which for non-tail calls is done by the
509          // ordering of the callsite infos and verified via stack ids).
510          if (CI.StackIdIndices.empty()) {
511            GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
512            continue;
513          }
514          for (auto Idx : CI.StackIdIndices)
515            RecordStackIdReference(Idx);
516        }
517        for (auto &AI : FS->allocs())
518          for (auto &MIB : AI.MIBs)
519            for (auto Idx : MIB.StackIdIndices)
520              RecordStackIdReference(Idx);
521      });
522    }
523  
524    /// The below iterator returns the GUID and associated summary.
525    using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
526  
527    /// Calls the callback for each value GUID and summary to be written to
528    /// bitcode. This hides the details of whether they are being pulled from the
529    /// entire index or just those in a provided ModuleToSummariesForIndex map.
530    template<typename Functor>
forEachSummary(Functor Callback)531    void forEachSummary(Functor Callback) {
532      if (ModuleToSummariesForIndex) {
533        for (auto &M : *ModuleToSummariesForIndex)
534          for (auto &Summary : M.second) {
535            Callback(Summary, false);
536            // Ensure aliasee is handled, e.g. for assigning a valueId,
537            // even if we are not importing the aliasee directly (the
538            // imported alias will contain a copy of aliasee).
539            if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
540              Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
541          }
542      } else {
543        for (auto &Summaries : Index)
544          for (auto &Summary : Summaries.second.SummaryList)
545            Callback({Summaries.first, Summary.get()}, false);
546      }
547    }
548  
549    /// Calls the callback for each entry in the modulePaths StringMap that
550    /// should be written to the module path string table. This hides the details
551    /// of whether they are being pulled from the entire index or just those in a
552    /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)553    template <typename Functor> void forEachModule(Functor Callback) {
554      if (ModuleToSummariesForIndex) {
555        for (const auto &M : *ModuleToSummariesForIndex) {
556          const auto &MPI = Index.modulePaths().find(M.first);
557          if (MPI == Index.modulePaths().end()) {
558            // This should only happen if the bitcode file was empty, in which
559            // case we shouldn't be importing (the ModuleToSummariesForIndex
560            // would only include the module we are writing and index for).
561            assert(ModuleToSummariesForIndex->size() == 1);
562            continue;
563          }
564          Callback(*MPI);
565        }
566      } else {
567        // Since StringMap iteration order isn't guaranteed, order by path string
568        // first.
569        // FIXME: Make this a vector of StringMapEntry instead to avoid the later
570        // map lookup.
571        std::vector<StringRef> ModulePaths;
572        for (auto &[ModPath, _] : Index.modulePaths())
573          ModulePaths.push_back(ModPath);
574        llvm::sort(ModulePaths.begin(), ModulePaths.end());
575        for (auto &ModPath : ModulePaths)
576          Callback(*Index.modulePaths().find(ModPath));
577      }
578    }
579  
580    /// Main entry point for writing a combined index to bitcode.
581    void write();
582  
583  private:
584    void writeModStrings();
585    void writeCombinedGlobalValueSummary();
586  
getValueId(GlobalValue::GUID ValGUID)587    std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
588      auto VMI = GUIDToValueIdMap.find(ValGUID);
589      if (VMI == GUIDToValueIdMap.end())
590        return std::nullopt;
591      return VMI->second;
592    }
593  
valueIds()594    std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
595  };
596  
597  } // end anonymous namespace
598  
getEncodedCastOpcode(unsigned Opcode)599  static unsigned getEncodedCastOpcode(unsigned Opcode) {
600    switch (Opcode) {
601    default: llvm_unreachable("Unknown cast instruction!");
602    case Instruction::Trunc   : return bitc::CAST_TRUNC;
603    case Instruction::ZExt    : return bitc::CAST_ZEXT;
604    case Instruction::SExt    : return bitc::CAST_SEXT;
605    case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
606    case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
607    case Instruction::UIToFP  : return bitc::CAST_UITOFP;
608    case Instruction::SIToFP  : return bitc::CAST_SITOFP;
609    case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
610    case Instruction::FPExt   : return bitc::CAST_FPEXT;
611    case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
612    case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
613    case Instruction::BitCast : return bitc::CAST_BITCAST;
614    case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
615    }
616  }
617  
getEncodedUnaryOpcode(unsigned Opcode)618  static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
619    switch (Opcode) {
620    default: llvm_unreachable("Unknown binary instruction!");
621    case Instruction::FNeg: return bitc::UNOP_FNEG;
622    }
623  }
624  
getEncodedBinaryOpcode(unsigned Opcode)625  static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
626    switch (Opcode) {
627    default: llvm_unreachable("Unknown binary instruction!");
628    case Instruction::Add:
629    case Instruction::FAdd: return bitc::BINOP_ADD;
630    case Instruction::Sub:
631    case Instruction::FSub: return bitc::BINOP_SUB;
632    case Instruction::Mul:
633    case Instruction::FMul: return bitc::BINOP_MUL;
634    case Instruction::UDiv: return bitc::BINOP_UDIV;
635    case Instruction::FDiv:
636    case Instruction::SDiv: return bitc::BINOP_SDIV;
637    case Instruction::URem: return bitc::BINOP_UREM;
638    case Instruction::FRem:
639    case Instruction::SRem: return bitc::BINOP_SREM;
640    case Instruction::Shl:  return bitc::BINOP_SHL;
641    case Instruction::LShr: return bitc::BINOP_LSHR;
642    case Instruction::AShr: return bitc::BINOP_ASHR;
643    case Instruction::And:  return bitc::BINOP_AND;
644    case Instruction::Or:   return bitc::BINOP_OR;
645    case Instruction::Xor:  return bitc::BINOP_XOR;
646    }
647  }
648  
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)649  static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
650    switch (Op) {
651    default: llvm_unreachable("Unknown RMW operation!");
652    case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
653    case AtomicRMWInst::Add: return bitc::RMW_ADD;
654    case AtomicRMWInst::Sub: return bitc::RMW_SUB;
655    case AtomicRMWInst::And: return bitc::RMW_AND;
656    case AtomicRMWInst::Nand: return bitc::RMW_NAND;
657    case AtomicRMWInst::Or: return bitc::RMW_OR;
658    case AtomicRMWInst::Xor: return bitc::RMW_XOR;
659    case AtomicRMWInst::Max: return bitc::RMW_MAX;
660    case AtomicRMWInst::Min: return bitc::RMW_MIN;
661    case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
662    case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
663    case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
664    case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
665    case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
666    case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
667    case AtomicRMWInst::UIncWrap:
668      return bitc::RMW_UINC_WRAP;
669    case AtomicRMWInst::UDecWrap:
670      return bitc::RMW_UDEC_WRAP;
671    }
672  }
673  
getEncodedOrdering(AtomicOrdering Ordering)674  static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
675    switch (Ordering) {
676    case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
677    case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
678    case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
679    case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
680    case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
681    case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
682    case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
683    }
684    llvm_unreachable("Invalid ordering");
685  }
686  
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)687  static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
688                                StringRef Str, unsigned AbbrevToUse) {
689    SmallVector<unsigned, 64> Vals;
690  
691    // Code: [strchar x N]
692    for (char C : Str) {
693      if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
694        AbbrevToUse = 0;
695      Vals.push_back(C);
696    }
697  
698    // Emit the finished record.
699    Stream.EmitRecord(Code, Vals, AbbrevToUse);
700  }
701  
getAttrKindEncoding(Attribute::AttrKind Kind)702  static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
703    switch (Kind) {
704    case Attribute::Alignment:
705      return bitc::ATTR_KIND_ALIGNMENT;
706    case Attribute::AllocAlign:
707      return bitc::ATTR_KIND_ALLOC_ALIGN;
708    case Attribute::AllocSize:
709      return bitc::ATTR_KIND_ALLOC_SIZE;
710    case Attribute::AlwaysInline:
711      return bitc::ATTR_KIND_ALWAYS_INLINE;
712    case Attribute::Builtin:
713      return bitc::ATTR_KIND_BUILTIN;
714    case Attribute::ByVal:
715      return bitc::ATTR_KIND_BY_VAL;
716    case Attribute::Convergent:
717      return bitc::ATTR_KIND_CONVERGENT;
718    case Attribute::InAlloca:
719      return bitc::ATTR_KIND_IN_ALLOCA;
720    case Attribute::Cold:
721      return bitc::ATTR_KIND_COLD;
722    case Attribute::DisableSanitizerInstrumentation:
723      return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
724    case Attribute::FnRetThunkExtern:
725      return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
726    case Attribute::Hot:
727      return bitc::ATTR_KIND_HOT;
728    case Attribute::ElementType:
729      return bitc::ATTR_KIND_ELEMENTTYPE;
730    case Attribute::HybridPatchable:
731      return bitc::ATTR_KIND_HYBRID_PATCHABLE;
732    case Attribute::InlineHint:
733      return bitc::ATTR_KIND_INLINE_HINT;
734    case Attribute::InReg:
735      return bitc::ATTR_KIND_IN_REG;
736    case Attribute::JumpTable:
737      return bitc::ATTR_KIND_JUMP_TABLE;
738    case Attribute::MinSize:
739      return bitc::ATTR_KIND_MIN_SIZE;
740    case Attribute::AllocatedPointer:
741      return bitc::ATTR_KIND_ALLOCATED_POINTER;
742    case Attribute::AllocKind:
743      return bitc::ATTR_KIND_ALLOC_KIND;
744    case Attribute::Memory:
745      return bitc::ATTR_KIND_MEMORY;
746    case Attribute::NoFPClass:
747      return bitc::ATTR_KIND_NOFPCLASS;
748    case Attribute::Naked:
749      return bitc::ATTR_KIND_NAKED;
750    case Attribute::Nest:
751      return bitc::ATTR_KIND_NEST;
752    case Attribute::NoAlias:
753      return bitc::ATTR_KIND_NO_ALIAS;
754    case Attribute::NoBuiltin:
755      return bitc::ATTR_KIND_NO_BUILTIN;
756    case Attribute::NoCallback:
757      return bitc::ATTR_KIND_NO_CALLBACK;
758    case Attribute::NoCapture:
759      return bitc::ATTR_KIND_NO_CAPTURE;
760    case Attribute::NoDuplicate:
761      return bitc::ATTR_KIND_NO_DUPLICATE;
762    case Attribute::NoFree:
763      return bitc::ATTR_KIND_NOFREE;
764    case Attribute::NoImplicitFloat:
765      return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
766    case Attribute::NoInline:
767      return bitc::ATTR_KIND_NO_INLINE;
768    case Attribute::NoRecurse:
769      return bitc::ATTR_KIND_NO_RECURSE;
770    case Attribute::NoMerge:
771      return bitc::ATTR_KIND_NO_MERGE;
772    case Attribute::NonLazyBind:
773      return bitc::ATTR_KIND_NON_LAZY_BIND;
774    case Attribute::NonNull:
775      return bitc::ATTR_KIND_NON_NULL;
776    case Attribute::Dereferenceable:
777      return bitc::ATTR_KIND_DEREFERENCEABLE;
778    case Attribute::DereferenceableOrNull:
779      return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
780    case Attribute::NoRedZone:
781      return bitc::ATTR_KIND_NO_RED_ZONE;
782    case Attribute::NoReturn:
783      return bitc::ATTR_KIND_NO_RETURN;
784    case Attribute::NoSync:
785      return bitc::ATTR_KIND_NOSYNC;
786    case Attribute::NoCfCheck:
787      return bitc::ATTR_KIND_NOCF_CHECK;
788    case Attribute::NoProfile:
789      return bitc::ATTR_KIND_NO_PROFILE;
790    case Attribute::SkipProfile:
791      return bitc::ATTR_KIND_SKIP_PROFILE;
792    case Attribute::NoUnwind:
793      return bitc::ATTR_KIND_NO_UNWIND;
794    case Attribute::NoSanitizeBounds:
795      return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
796    case Attribute::NoSanitizeCoverage:
797      return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
798    case Attribute::NullPointerIsValid:
799      return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
800    case Attribute::OptimizeForDebugging:
801      return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
802    case Attribute::OptForFuzzing:
803      return bitc::ATTR_KIND_OPT_FOR_FUZZING;
804    case Attribute::OptimizeForSize:
805      return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
806    case Attribute::OptimizeNone:
807      return bitc::ATTR_KIND_OPTIMIZE_NONE;
808    case Attribute::ReadNone:
809      return bitc::ATTR_KIND_READ_NONE;
810    case Attribute::ReadOnly:
811      return bitc::ATTR_KIND_READ_ONLY;
812    case Attribute::Returned:
813      return bitc::ATTR_KIND_RETURNED;
814    case Attribute::ReturnsTwice:
815      return bitc::ATTR_KIND_RETURNS_TWICE;
816    case Attribute::SExt:
817      return bitc::ATTR_KIND_S_EXT;
818    case Attribute::Speculatable:
819      return bitc::ATTR_KIND_SPECULATABLE;
820    case Attribute::StackAlignment:
821      return bitc::ATTR_KIND_STACK_ALIGNMENT;
822    case Attribute::StackProtect:
823      return bitc::ATTR_KIND_STACK_PROTECT;
824    case Attribute::StackProtectReq:
825      return bitc::ATTR_KIND_STACK_PROTECT_REQ;
826    case Attribute::StackProtectStrong:
827      return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
828    case Attribute::SafeStack:
829      return bitc::ATTR_KIND_SAFESTACK;
830    case Attribute::ShadowCallStack:
831      return bitc::ATTR_KIND_SHADOWCALLSTACK;
832    case Attribute::StrictFP:
833      return bitc::ATTR_KIND_STRICT_FP;
834    case Attribute::StructRet:
835      return bitc::ATTR_KIND_STRUCT_RET;
836    case Attribute::SanitizeAddress:
837      return bitc::ATTR_KIND_SANITIZE_ADDRESS;
838    case Attribute::SanitizeHWAddress:
839      return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
840    case Attribute::SanitizeThread:
841      return bitc::ATTR_KIND_SANITIZE_THREAD;
842    case Attribute::SanitizeMemory:
843      return bitc::ATTR_KIND_SANITIZE_MEMORY;
844    case Attribute::SanitizeNumericalStability:
845      return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY;
846    case Attribute::SpeculativeLoadHardening:
847      return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
848    case Attribute::SwiftError:
849      return bitc::ATTR_KIND_SWIFT_ERROR;
850    case Attribute::SwiftSelf:
851      return bitc::ATTR_KIND_SWIFT_SELF;
852    case Attribute::SwiftAsync:
853      return bitc::ATTR_KIND_SWIFT_ASYNC;
854    case Attribute::UWTable:
855      return bitc::ATTR_KIND_UW_TABLE;
856    case Attribute::VScaleRange:
857      return bitc::ATTR_KIND_VSCALE_RANGE;
858    case Attribute::WillReturn:
859      return bitc::ATTR_KIND_WILLRETURN;
860    case Attribute::WriteOnly:
861      return bitc::ATTR_KIND_WRITEONLY;
862    case Attribute::ZExt:
863      return bitc::ATTR_KIND_Z_EXT;
864    case Attribute::ImmArg:
865      return bitc::ATTR_KIND_IMMARG;
866    case Attribute::SanitizeMemTag:
867      return bitc::ATTR_KIND_SANITIZE_MEMTAG;
868    case Attribute::Preallocated:
869      return bitc::ATTR_KIND_PREALLOCATED;
870    case Attribute::NoUndef:
871      return bitc::ATTR_KIND_NOUNDEF;
872    case Attribute::ByRef:
873      return bitc::ATTR_KIND_BYREF;
874    case Attribute::MustProgress:
875      return bitc::ATTR_KIND_MUSTPROGRESS;
876    case Attribute::PresplitCoroutine:
877      return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
878    case Attribute::Writable:
879      return bitc::ATTR_KIND_WRITABLE;
880    case Attribute::CoroDestroyOnlyWhenComplete:
881      return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
882    case Attribute::DeadOnUnwind:
883      return bitc::ATTR_KIND_DEAD_ON_UNWIND;
884    case Attribute::Range:
885      return bitc::ATTR_KIND_RANGE;
886    case Attribute::Initializes:
887      return bitc::ATTR_KIND_INITIALIZES;
888    case Attribute::EndAttrKinds:
889      llvm_unreachable("Can not encode end-attribute kinds marker.");
890    case Attribute::None:
891      llvm_unreachable("Can not encode none-attribute.");
892    case Attribute::EmptyKey:
893    case Attribute::TombstoneKey:
894      llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
895    }
896  
897    llvm_unreachable("Trying to encode unknown attribute");
898  }
899  
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)900  static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
901    if ((int64_t)V >= 0)
902      Vals.push_back(V << 1);
903    else
904      Vals.push_back((-V << 1) | 1);
905  }
906  
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)907  static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
908    // We have an arbitrary precision integer value to write whose
909    // bit width is > 64. However, in canonical unsigned integer
910    // format it is likely that the high bits are going to be zero.
911    // So, we only write the number of active words.
912    unsigned NumWords = A.getActiveWords();
913    const uint64_t *RawData = A.getRawData();
914    for (unsigned i = 0; i < NumWords; i++)
915      emitSignedInt64(Vals, RawData[i]);
916  }
917  
emitConstantRange(SmallVectorImpl<uint64_t> & Record,const ConstantRange & CR,bool EmitBitWidth)918  static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
919                                const ConstantRange &CR, bool EmitBitWidth) {
920    unsigned BitWidth = CR.getBitWidth();
921    if (EmitBitWidth)
922      Record.push_back(BitWidth);
923    if (BitWidth > 64) {
924      Record.push_back(CR.getLower().getActiveWords() |
925                       (uint64_t(CR.getUpper().getActiveWords()) << 32));
926      emitWideAPInt(Record, CR.getLower());
927      emitWideAPInt(Record, CR.getUpper());
928    } else {
929      emitSignedInt64(Record, CR.getLower().getSExtValue());
930      emitSignedInt64(Record, CR.getUpper().getSExtValue());
931    }
932  }
933  
writeAttributeGroupTable()934  void ModuleBitcodeWriter::writeAttributeGroupTable() {
935    const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
936        VE.getAttributeGroups();
937    if (AttrGrps.empty()) return;
938  
939    Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
940  
941    SmallVector<uint64_t, 64> Record;
942    for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
943      unsigned AttrListIndex = Pair.first;
944      AttributeSet AS = Pair.second;
945      Record.push_back(VE.getAttributeGroupID(Pair));
946      Record.push_back(AttrListIndex);
947  
948      for (Attribute Attr : AS) {
949        if (Attr.isEnumAttribute()) {
950          Record.push_back(0);
951          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
952        } else if (Attr.isIntAttribute()) {
953          Record.push_back(1);
954          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
955          Record.push_back(Attr.getValueAsInt());
956        } else if (Attr.isStringAttribute()) {
957          StringRef Kind = Attr.getKindAsString();
958          StringRef Val = Attr.getValueAsString();
959  
960          Record.push_back(Val.empty() ? 3 : 4);
961          Record.append(Kind.begin(), Kind.end());
962          Record.push_back(0);
963          if (!Val.empty()) {
964            Record.append(Val.begin(), Val.end());
965            Record.push_back(0);
966          }
967        } else if (Attr.isTypeAttribute()) {
968          Type *Ty = Attr.getValueAsType();
969          Record.push_back(Ty ? 6 : 5);
970          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
971          if (Ty)
972            Record.push_back(VE.getTypeID(Attr.getValueAsType()));
973        } else if (Attr.isConstantRangeAttribute()) {
974          Record.push_back(7);
975          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
976          emitConstantRange(Record, Attr.getValueAsConstantRange(),
977                            /*EmitBitWidth=*/true);
978        } else {
979          assert(Attr.isConstantRangeListAttribute());
980          Record.push_back(8);
981          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
982          ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList();
983          Record.push_back(Val.size());
984          Record.push_back(Val[0].getBitWidth());
985          for (auto &CR : Val)
986            emitConstantRange(Record, CR, /*EmitBitWidth=*/false);
987        }
988      }
989  
990      Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
991      Record.clear();
992    }
993  
994    Stream.ExitBlock();
995  }
996  
writeAttributeTable()997  void ModuleBitcodeWriter::writeAttributeTable() {
998    const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
999    if (Attrs.empty()) return;
1000  
1001    Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
1002  
1003    SmallVector<uint64_t, 64> Record;
1004    for (const AttributeList &AL : Attrs) {
1005      for (unsigned i : AL.indexes()) {
1006        AttributeSet AS = AL.getAttributes(i);
1007        if (AS.hasAttributes())
1008          Record.push_back(VE.getAttributeGroupID({i, AS}));
1009      }
1010  
1011      Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
1012      Record.clear();
1013    }
1014  
1015    Stream.ExitBlock();
1016  }
1017  
1018  /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()1019  void ModuleBitcodeWriter::writeTypeTable() {
1020    const ValueEnumerator::TypeList &TypeList = VE.getTypes();
1021  
1022    Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
1023    SmallVector<uint64_t, 64> TypeVals;
1024  
1025    uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
1026  
1027    // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1028    auto Abbv = std::make_shared<BitCodeAbbrev>();
1029    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
1030    Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1031    unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1032  
1033    // Abbrev for TYPE_CODE_FUNCTION.
1034    Abbv = std::make_shared<BitCodeAbbrev>();
1035    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1036    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
1037    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1038    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1039    unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1040  
1041    // Abbrev for TYPE_CODE_STRUCT_ANON.
1042    Abbv = std::make_shared<BitCodeAbbrev>();
1043    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1044    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1045    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1046    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1047    unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1048  
1049    // Abbrev for TYPE_CODE_STRUCT_NAME.
1050    Abbv = std::make_shared<BitCodeAbbrev>();
1051    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1052    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1053    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1054    unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1055  
1056    // Abbrev for TYPE_CODE_STRUCT_NAMED.
1057    Abbv = std::make_shared<BitCodeAbbrev>();
1058    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1059    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1060    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1061    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1062    unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1063  
1064    // Abbrev for TYPE_CODE_ARRAY.
1065    Abbv = std::make_shared<BitCodeAbbrev>();
1066    Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1067    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
1068    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1069    unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1070  
1071    // Emit an entry count so the reader can reserve space.
1072    TypeVals.push_back(TypeList.size());
1073    Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1074    TypeVals.clear();
1075  
1076    // Loop over all of the types, emitting each in turn.
1077    for (Type *T : TypeList) {
1078      int AbbrevToUse = 0;
1079      unsigned Code = 0;
1080  
1081      switch (T->getTypeID()) {
1082      case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
1083      case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
1084      case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
1085      case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
1086      case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
1087      case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
1088      case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
1089      case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1090      case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
1091      case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
1092      case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
1093      case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
1094      case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
1095      case Type::IntegerTyID:
1096        // INTEGER: [width]
1097        Code = bitc::TYPE_CODE_INTEGER;
1098        TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1099        break;
1100      case Type::PointerTyID: {
1101        PointerType *PTy = cast<PointerType>(T);
1102        unsigned AddressSpace = PTy->getAddressSpace();
1103        // OPAQUE_POINTER: [address space]
1104        Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1105        TypeVals.push_back(AddressSpace);
1106        if (AddressSpace == 0)
1107          AbbrevToUse = OpaquePtrAbbrev;
1108        break;
1109      }
1110      case Type::FunctionTyID: {
1111        FunctionType *FT = cast<FunctionType>(T);
1112        // FUNCTION: [isvararg, retty, paramty x N]
1113        Code = bitc::TYPE_CODE_FUNCTION;
1114        TypeVals.push_back(FT->isVarArg());
1115        TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1116        for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1117          TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1118        AbbrevToUse = FunctionAbbrev;
1119        break;
1120      }
1121      case Type::StructTyID: {
1122        StructType *ST = cast<StructType>(T);
1123        // STRUCT: [ispacked, eltty x N]
1124        TypeVals.push_back(ST->isPacked());
1125        // Output all of the element types.
1126        for (Type *ET : ST->elements())
1127          TypeVals.push_back(VE.getTypeID(ET));
1128  
1129        if (ST->isLiteral()) {
1130          Code = bitc::TYPE_CODE_STRUCT_ANON;
1131          AbbrevToUse = StructAnonAbbrev;
1132        } else {
1133          if (ST->isOpaque()) {
1134            Code = bitc::TYPE_CODE_OPAQUE;
1135          } else {
1136            Code = bitc::TYPE_CODE_STRUCT_NAMED;
1137            AbbrevToUse = StructNamedAbbrev;
1138          }
1139  
1140          // Emit the name if it is present.
1141          if (!ST->getName().empty())
1142            writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1143                              StructNameAbbrev);
1144        }
1145        break;
1146      }
1147      case Type::ArrayTyID: {
1148        ArrayType *AT = cast<ArrayType>(T);
1149        // ARRAY: [numelts, eltty]
1150        Code = bitc::TYPE_CODE_ARRAY;
1151        TypeVals.push_back(AT->getNumElements());
1152        TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1153        AbbrevToUse = ArrayAbbrev;
1154        break;
1155      }
1156      case Type::FixedVectorTyID:
1157      case Type::ScalableVectorTyID: {
1158        VectorType *VT = cast<VectorType>(T);
1159        // VECTOR [numelts, eltty] or
1160        //        [numelts, eltty, scalable]
1161        Code = bitc::TYPE_CODE_VECTOR;
1162        TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1163        TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1164        if (isa<ScalableVectorType>(VT))
1165          TypeVals.push_back(true);
1166        break;
1167      }
1168      case Type::TargetExtTyID: {
1169        TargetExtType *TET = cast<TargetExtType>(T);
1170        Code = bitc::TYPE_CODE_TARGET_TYPE;
1171        writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1172                          StructNameAbbrev);
1173        TypeVals.push_back(TET->getNumTypeParameters());
1174        for (Type *InnerTy : TET->type_params())
1175          TypeVals.push_back(VE.getTypeID(InnerTy));
1176        for (unsigned IntParam : TET->int_params())
1177          TypeVals.push_back(IntParam);
1178        break;
1179      }
1180      case Type::TypedPointerTyID:
1181        llvm_unreachable("Typed pointers cannot be added to IR modules");
1182      }
1183  
1184      // Emit the finished record.
1185      Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1186      TypeVals.clear();
1187    }
1188  
1189    Stream.ExitBlock();
1190  }
1191  
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)1192  static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1193    switch (Linkage) {
1194    case GlobalValue::ExternalLinkage:
1195      return 0;
1196    case GlobalValue::WeakAnyLinkage:
1197      return 16;
1198    case GlobalValue::AppendingLinkage:
1199      return 2;
1200    case GlobalValue::InternalLinkage:
1201      return 3;
1202    case GlobalValue::LinkOnceAnyLinkage:
1203      return 18;
1204    case GlobalValue::ExternalWeakLinkage:
1205      return 7;
1206    case GlobalValue::CommonLinkage:
1207      return 8;
1208    case GlobalValue::PrivateLinkage:
1209      return 9;
1210    case GlobalValue::WeakODRLinkage:
1211      return 17;
1212    case GlobalValue::LinkOnceODRLinkage:
1213      return 19;
1214    case GlobalValue::AvailableExternallyLinkage:
1215      return 12;
1216    }
1217    llvm_unreachable("Invalid linkage");
1218  }
1219  
getEncodedLinkage(const GlobalValue & GV)1220  static unsigned getEncodedLinkage(const GlobalValue &GV) {
1221    return getEncodedLinkage(GV.getLinkage());
1222  }
1223  
getEncodedFFlags(FunctionSummary::FFlags Flags)1224  static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1225    uint64_t RawFlags = 0;
1226    RawFlags |= Flags.ReadNone;
1227    RawFlags |= (Flags.ReadOnly << 1);
1228    RawFlags |= (Flags.NoRecurse << 2);
1229    RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1230    RawFlags |= (Flags.NoInline << 4);
1231    RawFlags |= (Flags.AlwaysInline << 5);
1232    RawFlags |= (Flags.NoUnwind << 6);
1233    RawFlags |= (Flags.MayThrow << 7);
1234    RawFlags |= (Flags.HasUnknownCall << 8);
1235    RawFlags |= (Flags.MustBeUnreachable << 9);
1236    return RawFlags;
1237  }
1238  
1239  // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1240  // in BitcodeReader.cpp.
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,bool ImportAsDecl=false)1241  static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,
1242                                           bool ImportAsDecl = false) {
1243    uint64_t RawFlags = 0;
1244  
1245    RawFlags |= Flags.NotEligibleToImport; // bool
1246    RawFlags |= (Flags.Live << 1);
1247    RawFlags |= (Flags.DSOLocal << 2);
1248    RawFlags |= (Flags.CanAutoHide << 3);
1249  
1250    // Linkage don't need to be remapped at that time for the summary. Any future
1251    // change to the getEncodedLinkage() function will need to be taken into
1252    // account here as well.
1253    RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1254  
1255    RawFlags |= (Flags.Visibility << 8); // 2 bits
1256  
1257    unsigned ImportType = Flags.ImportType | ImportAsDecl;
1258    RawFlags |= (ImportType << 10); // 1 bit
1259  
1260    return RawFlags;
1261  }
1262  
getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags)1263  static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1264    uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1265                        (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1266    return RawFlags;
1267  }
1268  
getEncodedHotnessCallEdgeInfo(const CalleeInfo & CI)1269  static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1270    uint64_t RawFlags = 0;
1271  
1272    RawFlags |= CI.Hotness;            // 3 bits
1273    RawFlags |= (CI.HasTailCall << 3); // 1 bit
1274  
1275    return RawFlags;
1276  }
1277  
getEncodedRelBFCallEdgeInfo(const CalleeInfo & CI)1278  static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1279    uint64_t RawFlags = 0;
1280  
1281    RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1282    RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1283  
1284    return RawFlags;
1285  }
1286  
getEncodedVisibility(const GlobalValue & GV)1287  static unsigned getEncodedVisibility(const GlobalValue &GV) {
1288    switch (GV.getVisibility()) {
1289    case GlobalValue::DefaultVisibility:   return 0;
1290    case GlobalValue::HiddenVisibility:    return 1;
1291    case GlobalValue::ProtectedVisibility: return 2;
1292    }
1293    llvm_unreachable("Invalid visibility");
1294  }
1295  
getEncodedDLLStorageClass(const GlobalValue & GV)1296  static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1297    switch (GV.getDLLStorageClass()) {
1298    case GlobalValue::DefaultStorageClass:   return 0;
1299    case GlobalValue::DLLImportStorageClass: return 1;
1300    case GlobalValue::DLLExportStorageClass: return 2;
1301    }
1302    llvm_unreachable("Invalid DLL storage class");
1303  }
1304  
getEncodedThreadLocalMode(const GlobalValue & GV)1305  static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1306    switch (GV.getThreadLocalMode()) {
1307      case GlobalVariable::NotThreadLocal:         return 0;
1308      case GlobalVariable::GeneralDynamicTLSModel: return 1;
1309      case GlobalVariable::LocalDynamicTLSModel:   return 2;
1310      case GlobalVariable::InitialExecTLSModel:    return 3;
1311      case GlobalVariable::LocalExecTLSModel:      return 4;
1312    }
1313    llvm_unreachable("Invalid TLS model");
1314  }
1315  
getEncodedComdatSelectionKind(const Comdat & C)1316  static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1317    switch (C.getSelectionKind()) {
1318    case Comdat::Any:
1319      return bitc::COMDAT_SELECTION_KIND_ANY;
1320    case Comdat::ExactMatch:
1321      return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1322    case Comdat::Largest:
1323      return bitc::COMDAT_SELECTION_KIND_LARGEST;
1324    case Comdat::NoDeduplicate:
1325      return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1326    case Comdat::SameSize:
1327      return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1328    }
1329    llvm_unreachable("Invalid selection kind");
1330  }
1331  
getEncodedUnnamedAddr(const GlobalValue & GV)1332  static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1333    switch (GV.getUnnamedAddr()) {
1334    case GlobalValue::UnnamedAddr::None:   return 0;
1335    case GlobalValue::UnnamedAddr::Local:  return 2;
1336    case GlobalValue::UnnamedAddr::Global: return 1;
1337    }
1338    llvm_unreachable("Invalid unnamed_addr");
1339  }
1340  
addToStrtab(StringRef Str)1341  size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1342    if (GenerateHash)
1343      Hasher.update(Str);
1344    return StrtabBuilder.add(Str);
1345  }
1346  
writeComdats()1347  void ModuleBitcodeWriter::writeComdats() {
1348    SmallVector<unsigned, 64> Vals;
1349    for (const Comdat *C : VE.getComdats()) {
1350      // COMDAT: [strtab offset, strtab size, selection_kind]
1351      Vals.push_back(addToStrtab(C->getName()));
1352      Vals.push_back(C->getName().size());
1353      Vals.push_back(getEncodedComdatSelectionKind(*C));
1354      Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1355      Vals.clear();
1356    }
1357  }
1358  
1359  /// Write a record that will eventually hold the word offset of the
1360  /// module-level VST. For now the offset is 0, which will be backpatched
1361  /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1362  void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1363    // Write a placeholder value in for the offset of the real VST,
1364    // which is written after the function blocks so that it can include
1365    // the offset of each function. The placeholder offset will be
1366    // updated when the real VST is written.
1367    auto Abbv = std::make_shared<BitCodeAbbrev>();
1368    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1369    // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1370    // hold the real VST offset. Must use fixed instead of VBR as we don't
1371    // know how many VBR chunks to reserve ahead of time.
1372    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1373    unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1374  
1375    // Emit the placeholder
1376    uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1377    Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1378  
1379    // Compute and save the bit offset to the placeholder, which will be
1380    // patched when the real VST is written. We can simply subtract the 32-bit
1381    // fixed size from the current bit number to get the location to backpatch.
1382    VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1383  }
1384  
1385  enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1386  
1387  /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1388  static StringEncoding getStringEncoding(StringRef Str) {
1389    bool isChar6 = true;
1390    for (char C : Str) {
1391      if (isChar6)
1392        isChar6 = BitCodeAbbrevOp::isChar6(C);
1393      if ((unsigned char)C & 128)
1394        // don't bother scanning the rest.
1395        return SE_Fixed8;
1396    }
1397    if (isChar6)
1398      return SE_Char6;
1399    return SE_Fixed7;
1400  }
1401  
1402  static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1403                "Sanitizer Metadata is too large for naive serialization.");
1404  static unsigned
serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata & Meta)1405  serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1406    return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1407           (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1408  }
1409  
1410  /// Emit top-level description of module, including target triple, inline asm,
1411  /// descriptors for global variables, and function prototype info.
1412  /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1413  void ModuleBitcodeWriter::writeModuleInfo() {
1414    // Emit various pieces of data attached to a module.
1415    if (!M.getTargetTriple().empty())
1416      writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1417                        0 /*TODO*/);
1418    const std::string &DL = M.getDataLayoutStr();
1419    if (!DL.empty())
1420      writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1421    if (!M.getModuleInlineAsm().empty())
1422      writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1423                        0 /*TODO*/);
1424  
1425    // Emit information about sections and GC, computing how many there are. Also
1426    // compute the maximum alignment value.
1427    std::map<std::string, unsigned> SectionMap;
1428    std::map<std::string, unsigned> GCMap;
1429    MaybeAlign MaxAlignment;
1430    unsigned MaxGlobalType = 0;
1431    const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1432      if (A)
1433        MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1434    };
1435    for (const GlobalVariable &GV : M.globals()) {
1436      UpdateMaxAlignment(GV.getAlign());
1437      MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1438      if (GV.hasSection()) {
1439        // Give section names unique ID's.
1440        unsigned &Entry = SectionMap[std::string(GV.getSection())];
1441        if (!Entry) {
1442          writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1443                            0 /*TODO*/);
1444          Entry = SectionMap.size();
1445        }
1446      }
1447    }
1448    for (const Function &F : M) {
1449      UpdateMaxAlignment(F.getAlign());
1450      if (F.hasSection()) {
1451        // Give section names unique ID's.
1452        unsigned &Entry = SectionMap[std::string(F.getSection())];
1453        if (!Entry) {
1454          writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1455                            0 /*TODO*/);
1456          Entry = SectionMap.size();
1457        }
1458      }
1459      if (F.hasGC()) {
1460        // Same for GC names.
1461        unsigned &Entry = GCMap[F.getGC()];
1462        if (!Entry) {
1463          writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1464                            0 /*TODO*/);
1465          Entry = GCMap.size();
1466        }
1467      }
1468    }
1469  
1470    // Emit abbrev for globals, now that we know # sections and max alignment.
1471    unsigned SimpleGVarAbbrev = 0;
1472    if (!M.global_empty()) {
1473      // Add an abbrev for common globals with no visibility or thread localness.
1474      auto Abbv = std::make_shared<BitCodeAbbrev>();
1475      Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1476      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1477      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1478      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1479                                Log2_32_Ceil(MaxGlobalType+1)));
1480      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1481                                                             //| explicitType << 1
1482                                                             //| constant
1483      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1484      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1485      if (!MaxAlignment)                                     // Alignment.
1486        Abbv->Add(BitCodeAbbrevOp(0));
1487      else {
1488        unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1489        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1490                                 Log2_32_Ceil(MaxEncAlignment+1)));
1491      }
1492      if (SectionMap.empty())                                    // Section.
1493        Abbv->Add(BitCodeAbbrevOp(0));
1494      else
1495        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1496                                 Log2_32_Ceil(SectionMap.size()+1)));
1497      // Don't bother emitting vis + thread local.
1498      SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1499    }
1500  
1501    SmallVector<unsigned, 64> Vals;
1502    // Emit the module's source file name.
1503    {
1504      StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1505      BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1506      if (Bits == SE_Char6)
1507        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1508      else if (Bits == SE_Fixed7)
1509        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1510  
1511      // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1512      auto Abbv = std::make_shared<BitCodeAbbrev>();
1513      Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1514      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1515      Abbv->Add(AbbrevOpToUse);
1516      unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1517  
1518      for (const auto P : M.getSourceFileName())
1519        Vals.push_back((unsigned char)P);
1520  
1521      // Emit the finished record.
1522      Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1523      Vals.clear();
1524    }
1525  
1526    // Emit the global variable information.
1527    for (const GlobalVariable &GV : M.globals()) {
1528      unsigned AbbrevToUse = 0;
1529  
1530      // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1531      //             linkage, alignment, section, visibility, threadlocal,
1532      //             unnamed_addr, externally_initialized, dllstorageclass,
1533      //             comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1534      Vals.push_back(addToStrtab(GV.getName()));
1535      Vals.push_back(GV.getName().size());
1536      Vals.push_back(VE.getTypeID(GV.getValueType()));
1537      Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1538      Vals.push_back(GV.isDeclaration() ? 0 :
1539                     (VE.getValueID(GV.getInitializer()) + 1));
1540      Vals.push_back(getEncodedLinkage(GV));
1541      Vals.push_back(getEncodedAlign(GV.getAlign()));
1542      Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1543                                     : 0);
1544      if (GV.isThreadLocal() ||
1545          GV.getVisibility() != GlobalValue::DefaultVisibility ||
1546          GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1547          GV.isExternallyInitialized() ||
1548          GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1549          GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1550          GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1551        Vals.push_back(getEncodedVisibility(GV));
1552        Vals.push_back(getEncodedThreadLocalMode(GV));
1553        Vals.push_back(getEncodedUnnamedAddr(GV));
1554        Vals.push_back(GV.isExternallyInitialized());
1555        Vals.push_back(getEncodedDLLStorageClass(GV));
1556        Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1557  
1558        auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1559        Vals.push_back(VE.getAttributeListID(AL));
1560  
1561        Vals.push_back(GV.isDSOLocal());
1562        Vals.push_back(addToStrtab(GV.getPartition()));
1563        Vals.push_back(GV.getPartition().size());
1564  
1565        Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1566                                                        GV.getSanitizerMetadata())
1567                                                  : 0));
1568        Vals.push_back(GV.getCodeModelRaw());
1569      } else {
1570        AbbrevToUse = SimpleGVarAbbrev;
1571      }
1572  
1573      Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1574      Vals.clear();
1575    }
1576  
1577    // Emit the function proto information.
1578    for (const Function &F : M) {
1579      // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1580      //             linkage, paramattrs, alignment, section, visibility, gc,
1581      //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1582      //             prefixdata, personalityfn, DSO_Local, addrspace]
1583      Vals.push_back(addToStrtab(F.getName()));
1584      Vals.push_back(F.getName().size());
1585      Vals.push_back(VE.getTypeID(F.getFunctionType()));
1586      Vals.push_back(F.getCallingConv());
1587      Vals.push_back(F.isDeclaration());
1588      Vals.push_back(getEncodedLinkage(F));
1589      Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1590      Vals.push_back(getEncodedAlign(F.getAlign()));
1591      Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1592                                    : 0);
1593      Vals.push_back(getEncodedVisibility(F));
1594      Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1595      Vals.push_back(getEncodedUnnamedAddr(F));
1596      Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1597                                         : 0);
1598      Vals.push_back(getEncodedDLLStorageClass(F));
1599      Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1600      Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1601                                       : 0);
1602      Vals.push_back(
1603          F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1604  
1605      Vals.push_back(F.isDSOLocal());
1606      Vals.push_back(F.getAddressSpace());
1607      Vals.push_back(addToStrtab(F.getPartition()));
1608      Vals.push_back(F.getPartition().size());
1609  
1610      unsigned AbbrevToUse = 0;
1611      Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1612      Vals.clear();
1613    }
1614  
1615    // Emit the alias information.
1616    for (const GlobalAlias &A : M.aliases()) {
1617      // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1618      //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1619      //         DSO_Local]
1620      Vals.push_back(addToStrtab(A.getName()));
1621      Vals.push_back(A.getName().size());
1622      Vals.push_back(VE.getTypeID(A.getValueType()));
1623      Vals.push_back(A.getType()->getAddressSpace());
1624      Vals.push_back(VE.getValueID(A.getAliasee()));
1625      Vals.push_back(getEncodedLinkage(A));
1626      Vals.push_back(getEncodedVisibility(A));
1627      Vals.push_back(getEncodedDLLStorageClass(A));
1628      Vals.push_back(getEncodedThreadLocalMode(A));
1629      Vals.push_back(getEncodedUnnamedAddr(A));
1630      Vals.push_back(A.isDSOLocal());
1631      Vals.push_back(addToStrtab(A.getPartition()));
1632      Vals.push_back(A.getPartition().size());
1633  
1634      unsigned AbbrevToUse = 0;
1635      Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1636      Vals.clear();
1637    }
1638  
1639    // Emit the ifunc information.
1640    for (const GlobalIFunc &I : M.ifuncs()) {
1641      // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1642      //         val#, linkage, visibility, DSO_Local]
1643      Vals.push_back(addToStrtab(I.getName()));
1644      Vals.push_back(I.getName().size());
1645      Vals.push_back(VE.getTypeID(I.getValueType()));
1646      Vals.push_back(I.getType()->getAddressSpace());
1647      Vals.push_back(VE.getValueID(I.getResolver()));
1648      Vals.push_back(getEncodedLinkage(I));
1649      Vals.push_back(getEncodedVisibility(I));
1650      Vals.push_back(I.isDSOLocal());
1651      Vals.push_back(addToStrtab(I.getPartition()));
1652      Vals.push_back(I.getPartition().size());
1653      Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1654      Vals.clear();
1655    }
1656  
1657    writeValueSymbolTableForwardDecl();
1658  }
1659  
getOptimizationFlags(const Value * V)1660  static uint64_t getOptimizationFlags(const Value *V) {
1661    uint64_t Flags = 0;
1662  
1663    if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1664      if (OBO->hasNoSignedWrap())
1665        Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1666      if (OBO->hasNoUnsignedWrap())
1667        Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1668    } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1669      if (PEO->isExact())
1670        Flags |= 1 << bitc::PEO_EXACT;
1671    } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1672      if (PDI->isDisjoint())
1673        Flags |= 1 << bitc::PDI_DISJOINT;
1674    } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1675      if (FPMO->hasAllowReassoc())
1676        Flags |= bitc::AllowReassoc;
1677      if (FPMO->hasNoNaNs())
1678        Flags |= bitc::NoNaNs;
1679      if (FPMO->hasNoInfs())
1680        Flags |= bitc::NoInfs;
1681      if (FPMO->hasNoSignedZeros())
1682        Flags |= bitc::NoSignedZeros;
1683      if (FPMO->hasAllowReciprocal())
1684        Flags |= bitc::AllowReciprocal;
1685      if (FPMO->hasAllowContract())
1686        Flags |= bitc::AllowContract;
1687      if (FPMO->hasApproxFunc())
1688        Flags |= bitc::ApproxFunc;
1689    } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1690      if (NNI->hasNonNeg())
1691        Flags |= 1 << bitc::PNNI_NON_NEG;
1692    } else if (const auto *TI = dyn_cast<TruncInst>(V)) {
1693      if (TI->hasNoSignedWrap())
1694        Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1695      if (TI->hasNoUnsignedWrap())
1696        Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1697    } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) {
1698      if (GEP->isInBounds())
1699        Flags |= 1 << bitc::GEP_INBOUNDS;
1700      if (GEP->hasNoUnsignedSignedWrap())
1701        Flags |= 1 << bitc::GEP_NUSW;
1702      if (GEP->hasNoUnsignedWrap())
1703        Flags |= 1 << bitc::GEP_NUW;
1704    }
1705  
1706    return Flags;
1707  }
1708  
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1709  void ModuleBitcodeWriter::writeValueAsMetadata(
1710      const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1711    // Mimic an MDNode with a value as one operand.
1712    Value *V = MD->getValue();
1713    Record.push_back(VE.getTypeID(V->getType()));
1714    Record.push_back(VE.getValueID(V));
1715    Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1716    Record.clear();
1717  }
1718  
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1719  void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1720                                         SmallVectorImpl<uint64_t> &Record,
1721                                         unsigned Abbrev) {
1722    for (const MDOperand &MDO : N->operands()) {
1723      Metadata *MD = MDO;
1724      assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1725             "Unexpected function-local metadata");
1726      Record.push_back(VE.getMetadataOrNullID(MD));
1727    }
1728    Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1729                                      : bitc::METADATA_NODE,
1730                      Record, Abbrev);
1731    Record.clear();
1732  }
1733  
createDILocationAbbrev()1734  unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1735    // Assume the column is usually under 128, and always output the inlined-at
1736    // location (it's never more expensive than building an array size 1).
1737    auto Abbv = std::make_shared<BitCodeAbbrev>();
1738    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1739    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1740    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1741    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1742    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1743    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1744    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1745    return Stream.EmitAbbrev(std::move(Abbv));
1746  }
1747  
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1748  void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1749                                            SmallVectorImpl<uint64_t> &Record,
1750                                            unsigned &Abbrev) {
1751    if (!Abbrev)
1752      Abbrev = createDILocationAbbrev();
1753  
1754    Record.push_back(N->isDistinct());
1755    Record.push_back(N->getLine());
1756    Record.push_back(N->getColumn());
1757    Record.push_back(VE.getMetadataID(N->getScope()));
1758    Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1759    Record.push_back(N->isImplicitCode());
1760  
1761    Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1762    Record.clear();
1763  }
1764  
createGenericDINodeAbbrev()1765  unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1766    // Assume the column is usually under 128, and always output the inlined-at
1767    // location (it's never more expensive than building an array size 1).
1768    auto Abbv = std::make_shared<BitCodeAbbrev>();
1769    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1770    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1771    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1772    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1773    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1774    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1775    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1776    return Stream.EmitAbbrev(std::move(Abbv));
1777  }
1778  
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1779  void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1780                                               SmallVectorImpl<uint64_t> &Record,
1781                                               unsigned &Abbrev) {
1782    if (!Abbrev)
1783      Abbrev = createGenericDINodeAbbrev();
1784  
1785    Record.push_back(N->isDistinct());
1786    Record.push_back(N->getTag());
1787    Record.push_back(0); // Per-tag version field; unused for now.
1788  
1789    for (auto &I : N->operands())
1790      Record.push_back(VE.getMetadataOrNullID(I));
1791  
1792    Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1793    Record.clear();
1794  }
1795  
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1796  void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1797                                            SmallVectorImpl<uint64_t> &Record,
1798                                            unsigned Abbrev) {
1799    const uint64_t Version = 2 << 1;
1800    Record.push_back((uint64_t)N->isDistinct() | Version);
1801    Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1802    Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1803    Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1804    Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1805  
1806    Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1807    Record.clear();
1808  }
1809  
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1810  void ModuleBitcodeWriter::writeDIGenericSubrange(
1811      const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1812      unsigned Abbrev) {
1813    Record.push_back((uint64_t)N->isDistinct());
1814    Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1815    Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1816    Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1817    Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1818  
1819    Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1820    Record.clear();
1821  }
1822  
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1823  void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1824                                              SmallVectorImpl<uint64_t> &Record,
1825                                              unsigned Abbrev) {
1826    const uint64_t IsBigInt = 1 << 2;
1827    Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1828    Record.push_back(N->getValue().getBitWidth());
1829    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1830    emitWideAPInt(Record, N->getValue());
1831  
1832    Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1833    Record.clear();
1834  }
1835  
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1836  void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1837                                             SmallVectorImpl<uint64_t> &Record,
1838                                             unsigned Abbrev) {
1839    Record.push_back(N->isDistinct());
1840    Record.push_back(N->getTag());
1841    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1842    Record.push_back(N->getSizeInBits());
1843    Record.push_back(N->getAlignInBits());
1844    Record.push_back(N->getEncoding());
1845    Record.push_back(N->getFlags());
1846  
1847    Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1848    Record.clear();
1849  }
1850  
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1851  void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1852                                              SmallVectorImpl<uint64_t> &Record,
1853                                              unsigned Abbrev) {
1854    Record.push_back(N->isDistinct());
1855    Record.push_back(N->getTag());
1856    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1857    Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1858    Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1859    Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1860    Record.push_back(N->getSizeInBits());
1861    Record.push_back(N->getAlignInBits());
1862    Record.push_back(N->getEncoding());
1863  
1864    Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1865    Record.clear();
1866  }
1867  
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1868  void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1869                                               SmallVectorImpl<uint64_t> &Record,
1870                                               unsigned Abbrev) {
1871    Record.push_back(N->isDistinct());
1872    Record.push_back(N->getTag());
1873    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1874    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1875    Record.push_back(N->getLine());
1876    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1877    Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1878    Record.push_back(N->getSizeInBits());
1879    Record.push_back(N->getAlignInBits());
1880    Record.push_back(N->getOffsetInBits());
1881    Record.push_back(N->getFlags());
1882    Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1883  
1884    // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1885    // that there is no DWARF address space associated with DIDerivedType.
1886    if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1887      Record.push_back(*DWARFAddressSpace + 1);
1888    else
1889      Record.push_back(0);
1890  
1891    Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1892  
1893    if (auto PtrAuthData = N->getPtrAuthData())
1894      Record.push_back(PtrAuthData->RawData);
1895    else
1896      Record.push_back(0);
1897  
1898    Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1899    Record.clear();
1900  }
1901  
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1902  void ModuleBitcodeWriter::writeDICompositeType(
1903      const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1904      unsigned Abbrev) {
1905    const unsigned IsNotUsedInOldTypeRef = 0x2;
1906    Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1907    Record.push_back(N->getTag());
1908    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1909    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1910    Record.push_back(N->getLine());
1911    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1912    Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1913    Record.push_back(N->getSizeInBits());
1914    Record.push_back(N->getAlignInBits());
1915    Record.push_back(N->getOffsetInBits());
1916    Record.push_back(N->getFlags());
1917    Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1918    Record.push_back(N->getRuntimeLang());
1919    Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1920    Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1921    Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1922    Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1923    Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1924    Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1925    Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1926    Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1927    Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1928  
1929    Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1930    Record.clear();
1931  }
1932  
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1933  void ModuleBitcodeWriter::writeDISubroutineType(
1934      const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1935      unsigned Abbrev) {
1936    const unsigned HasNoOldTypeRefs = 0x2;
1937    Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1938    Record.push_back(N->getFlags());
1939    Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1940    Record.push_back(N->getCC());
1941  
1942    Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1943    Record.clear();
1944  }
1945  
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1946  void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1947                                        SmallVectorImpl<uint64_t> &Record,
1948                                        unsigned Abbrev) {
1949    Record.push_back(N->isDistinct());
1950    Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1951    Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1952    if (N->getRawChecksum()) {
1953      Record.push_back(N->getRawChecksum()->Kind);
1954      Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1955    } else {
1956      // Maintain backwards compatibility with the old internal representation of
1957      // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1958      Record.push_back(0);
1959      Record.push_back(VE.getMetadataOrNullID(nullptr));
1960    }
1961    auto Source = N->getRawSource();
1962    if (Source)
1963      Record.push_back(VE.getMetadataOrNullID(Source));
1964  
1965    Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1966    Record.clear();
1967  }
1968  
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1969  void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1970                                               SmallVectorImpl<uint64_t> &Record,
1971                                               unsigned Abbrev) {
1972    assert(N->isDistinct() && "Expected distinct compile units");
1973    Record.push_back(/* IsDistinct */ true);
1974    Record.push_back(N->getSourceLanguage());
1975    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1976    Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1977    Record.push_back(N->isOptimized());
1978    Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1979    Record.push_back(N->getRuntimeVersion());
1980    Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1981    Record.push_back(N->getEmissionKind());
1982    Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1983    Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1984    Record.push_back(/* subprograms */ 0);
1985    Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1986    Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1987    Record.push_back(N->getDWOId());
1988    Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1989    Record.push_back(N->getSplitDebugInlining());
1990    Record.push_back(N->getDebugInfoForProfiling());
1991    Record.push_back((unsigned)N->getNameTableKind());
1992    Record.push_back(N->getRangesBaseAddress());
1993    Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1994    Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1995  
1996    Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1997    Record.clear();
1998  }
1999  
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2000  void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
2001                                              SmallVectorImpl<uint64_t> &Record,
2002                                              unsigned Abbrev) {
2003    const uint64_t HasUnitFlag = 1 << 1;
2004    const uint64_t HasSPFlagsFlag = 1 << 2;
2005    Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
2006    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2007    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2008    Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2009    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2010    Record.push_back(N->getLine());
2011    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2012    Record.push_back(N->getScopeLine());
2013    Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
2014    Record.push_back(N->getSPFlags());
2015    Record.push_back(N->getVirtualIndex());
2016    Record.push_back(N->getFlags());
2017    Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
2018    Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
2019    Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
2020    Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
2021    Record.push_back(N->getThisAdjustment());
2022    Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
2023    Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2024    Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
2025  
2026    Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
2027    Record.clear();
2028  }
2029  
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2030  void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
2031                                                SmallVectorImpl<uint64_t> &Record,
2032                                                unsigned Abbrev) {
2033    Record.push_back(N->isDistinct());
2034    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2035    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2036    Record.push_back(N->getLine());
2037    Record.push_back(N->getColumn());
2038  
2039    Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
2040    Record.clear();
2041  }
2042  
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2043  void ModuleBitcodeWriter::writeDILexicalBlockFile(
2044      const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2045      unsigned Abbrev) {
2046    Record.push_back(N->isDistinct());
2047    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2048    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2049    Record.push_back(N->getDiscriminator());
2050  
2051    Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
2052    Record.clear();
2053  }
2054  
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2055  void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2056                                               SmallVectorImpl<uint64_t> &Record,
2057                                               unsigned Abbrev) {
2058    Record.push_back(N->isDistinct());
2059    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2060    Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
2061    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2062    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2063    Record.push_back(N->getLineNo());
2064  
2065    Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2066    Record.clear();
2067  }
2068  
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2069  void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2070                                             SmallVectorImpl<uint64_t> &Record,
2071                                             unsigned Abbrev) {
2072    Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2073    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2074    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2075  
2076    Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2077    Record.clear();
2078  }
2079  
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2080  void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2081                                         SmallVectorImpl<uint64_t> &Record,
2082                                         unsigned Abbrev) {
2083    Record.push_back(N->isDistinct());
2084    Record.push_back(N->getMacinfoType());
2085    Record.push_back(N->getLine());
2086    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2087    Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2088  
2089    Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2090    Record.clear();
2091  }
2092  
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2093  void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2094                                             SmallVectorImpl<uint64_t> &Record,
2095                                             unsigned Abbrev) {
2096    Record.push_back(N->isDistinct());
2097    Record.push_back(N->getMacinfoType());
2098    Record.push_back(N->getLine());
2099    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2100    Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2101  
2102    Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2103    Record.clear();
2104  }
2105  
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record)2106  void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2107                                           SmallVectorImpl<uint64_t> &Record) {
2108    Record.reserve(N->getArgs().size());
2109    for (ValueAsMetadata *MD : N->getArgs())
2110      Record.push_back(VE.getMetadataID(MD));
2111  
2112    Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2113    Record.clear();
2114  }
2115  
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2116  void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2117                                          SmallVectorImpl<uint64_t> &Record,
2118                                          unsigned Abbrev) {
2119    Record.push_back(N->isDistinct());
2120    for (auto &I : N->operands())
2121      Record.push_back(VE.getMetadataOrNullID(I));
2122    Record.push_back(N->getLineNo());
2123    Record.push_back(N->getIsDecl());
2124  
2125    Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2126    Record.clear();
2127  }
2128  
writeDIAssignID(const DIAssignID * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2129  void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2130                                            SmallVectorImpl<uint64_t> &Record,
2131                                            unsigned Abbrev) {
2132    // There are no arguments for this metadata type.
2133    Record.push_back(N->isDistinct());
2134    Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2135    Record.clear();
2136  }
2137  
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2138  void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2139      const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2140      unsigned Abbrev) {
2141    Record.push_back(N->isDistinct());
2142    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2143    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2144    Record.push_back(N->isDefault());
2145  
2146    Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2147    Record.clear();
2148  }
2149  
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2150  void ModuleBitcodeWriter::writeDITemplateValueParameter(
2151      const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2152      unsigned Abbrev) {
2153    Record.push_back(N->isDistinct());
2154    Record.push_back(N->getTag());
2155    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2156    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2157    Record.push_back(N->isDefault());
2158    Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2159  
2160    Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2161    Record.clear();
2162  }
2163  
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2164  void ModuleBitcodeWriter::writeDIGlobalVariable(
2165      const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2166      unsigned Abbrev) {
2167    const uint64_t Version = 2 << 1;
2168    Record.push_back((uint64_t)N->isDistinct() | Version);
2169    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2170    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2171    Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2172    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2173    Record.push_back(N->getLine());
2174    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2175    Record.push_back(N->isLocalToUnit());
2176    Record.push_back(N->isDefinition());
2177    Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2178    Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2179    Record.push_back(N->getAlignInBits());
2180    Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2181  
2182    Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2183    Record.clear();
2184  }
2185  
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2186  void ModuleBitcodeWriter::writeDILocalVariable(
2187      const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2188      unsigned Abbrev) {
2189    // In order to support all possible bitcode formats in BitcodeReader we need
2190    // to distinguish the following cases:
2191    // 1) Record has no artificial tag (Record[1]),
2192    //   has no obsolete inlinedAt field (Record[9]).
2193    //   In this case Record size will be 8, HasAlignment flag is false.
2194    // 2) Record has artificial tag (Record[1]),
2195    //   has no obsolete inlignedAt field (Record[9]).
2196    //   In this case Record size will be 9, HasAlignment flag is false.
2197    // 3) Record has both artificial tag (Record[1]) and
2198    //   obsolete inlignedAt field (Record[9]).
2199    //   In this case Record size will be 10, HasAlignment flag is false.
2200    // 4) Record has neither artificial tag, nor inlignedAt field, but
2201    //   HasAlignment flag is true and Record[8] contains alignment value.
2202    const uint64_t HasAlignmentFlag = 1 << 1;
2203    Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2204    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2205    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2206    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2207    Record.push_back(N->getLine());
2208    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2209    Record.push_back(N->getArg());
2210    Record.push_back(N->getFlags());
2211    Record.push_back(N->getAlignInBits());
2212    Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2213  
2214    Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2215    Record.clear();
2216  }
2217  
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2218  void ModuleBitcodeWriter::writeDILabel(
2219      const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2220      unsigned Abbrev) {
2221    Record.push_back((uint64_t)N->isDistinct());
2222    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2223    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2224    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2225    Record.push_back(N->getLine());
2226  
2227    Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2228    Record.clear();
2229  }
2230  
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2231  void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2232                                              SmallVectorImpl<uint64_t> &Record,
2233                                              unsigned Abbrev) {
2234    Record.reserve(N->getElements().size() + 1);
2235    const uint64_t Version = 3 << 1;
2236    Record.push_back((uint64_t)N->isDistinct() | Version);
2237    Record.append(N->elements_begin(), N->elements_end());
2238  
2239    Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2240    Record.clear();
2241  }
2242  
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2243  void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2244      const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2245      unsigned Abbrev) {
2246    Record.push_back(N->isDistinct());
2247    Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2248    Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2249  
2250    Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2251    Record.clear();
2252  }
2253  
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2254  void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2255                                                SmallVectorImpl<uint64_t> &Record,
2256                                                unsigned Abbrev) {
2257    Record.push_back(N->isDistinct());
2258    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2259    Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2260    Record.push_back(N->getLine());
2261    Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2262    Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2263    Record.push_back(N->getAttributes());
2264    Record.push_back(VE.getMetadataOrNullID(N->getType()));
2265  
2266    Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2267    Record.clear();
2268  }
2269  
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2270  void ModuleBitcodeWriter::writeDIImportedEntity(
2271      const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2272      unsigned Abbrev) {
2273    Record.push_back(N->isDistinct());
2274    Record.push_back(N->getTag());
2275    Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2276    Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2277    Record.push_back(N->getLine());
2278    Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2279    Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2280    Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2281  
2282    Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2283    Record.clear();
2284  }
2285  
createNamedMetadataAbbrev()2286  unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2287    auto Abbv = std::make_shared<BitCodeAbbrev>();
2288    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2289    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2290    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2291    return Stream.EmitAbbrev(std::move(Abbv));
2292  }
2293  
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)2294  void ModuleBitcodeWriter::writeNamedMetadata(
2295      SmallVectorImpl<uint64_t> &Record) {
2296    if (M.named_metadata_empty())
2297      return;
2298  
2299    unsigned Abbrev = createNamedMetadataAbbrev();
2300    for (const NamedMDNode &NMD : M.named_metadata()) {
2301      // Write name.
2302      StringRef Str = NMD.getName();
2303      Record.append(Str.bytes_begin(), Str.bytes_end());
2304      Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2305      Record.clear();
2306  
2307      // Write named metadata operands.
2308      for (const MDNode *N : NMD.operands())
2309        Record.push_back(VE.getMetadataID(N));
2310      Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2311      Record.clear();
2312    }
2313  }
2314  
createMetadataStringsAbbrev()2315  unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2316    auto Abbv = std::make_shared<BitCodeAbbrev>();
2317    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2318    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2319    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2320    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2321    return Stream.EmitAbbrev(std::move(Abbv));
2322  }
2323  
2324  /// Write out a record for MDString.
2325  ///
2326  /// All the metadata strings in a metadata block are emitted in a single
2327  /// record.  The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)2328  void ModuleBitcodeWriter::writeMetadataStrings(
2329      ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2330    if (Strings.empty())
2331      return;
2332  
2333    // Start the record with the number of strings.
2334    Record.push_back(bitc::METADATA_STRINGS);
2335    Record.push_back(Strings.size());
2336  
2337    // Emit the sizes of the strings in the blob.
2338    SmallString<256> Blob;
2339    {
2340      BitstreamWriter W(Blob);
2341      for (const Metadata *MD : Strings)
2342        W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2343      W.FlushToWord();
2344    }
2345  
2346    // Add the offset to the strings to the record.
2347    Record.push_back(Blob.size());
2348  
2349    // Add the strings to the blob.
2350    for (const Metadata *MD : Strings)
2351      Blob.append(cast<MDString>(MD)->getString());
2352  
2353    // Emit the final record.
2354    Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2355    Record.clear();
2356  }
2357  
2358  // Generates an enum to use as an index in the Abbrev array of Metadata record.
2359  enum MetadataAbbrev : unsigned {
2360  #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2361  #include "llvm/IR/Metadata.def"
2362    LastPlusOne
2363  };
2364  
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)2365  void ModuleBitcodeWriter::writeMetadataRecords(
2366      ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2367      std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2368    if (MDs.empty())
2369      return;
2370  
2371    // Initialize MDNode abbreviations.
2372  #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2373  #include "llvm/IR/Metadata.def"
2374  
2375    for (const Metadata *MD : MDs) {
2376      if (IndexPos)
2377        IndexPos->push_back(Stream.GetCurrentBitNo());
2378      if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2379        assert(N->isResolved() && "Expected forward references to be resolved");
2380  
2381        switch (N->getMetadataID()) {
2382        default:
2383          llvm_unreachable("Invalid MDNode subclass");
2384  #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2385    case Metadata::CLASS##Kind:                                                  \
2386      if (MDAbbrevs)                                                             \
2387        write##CLASS(cast<CLASS>(N), Record,                                     \
2388                     (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2389      else                                                                       \
2390        write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2391      continue;
2392  #include "llvm/IR/Metadata.def"
2393        }
2394      }
2395      if (auto *AL = dyn_cast<DIArgList>(MD)) {
2396        writeDIArgList(AL, Record);
2397        continue;
2398      }
2399      writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2400    }
2401  }
2402  
writeModuleMetadata()2403  void ModuleBitcodeWriter::writeModuleMetadata() {
2404    if (!VE.hasMDs() && M.named_metadata_empty())
2405      return;
2406  
2407    Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2408    SmallVector<uint64_t, 64> Record;
2409  
2410    // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2411    // block and load any metadata.
2412    std::vector<unsigned> MDAbbrevs;
2413  
2414    MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2415    MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2416    MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2417        createGenericDINodeAbbrev();
2418  
2419    auto Abbv = std::make_shared<BitCodeAbbrev>();
2420    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2421    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2422    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2423    unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2424  
2425    Abbv = std::make_shared<BitCodeAbbrev>();
2426    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2427    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2428    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2429    unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2430  
2431    // Emit MDStrings together upfront.
2432    writeMetadataStrings(VE.getMDStrings(), Record);
2433  
2434    // We only emit an index for the metadata record if we have more than a given
2435    // (naive) threshold of metadatas, otherwise it is not worth it.
2436    if (VE.getNonMDStrings().size() > IndexThreshold) {
2437      // Write a placeholder value in for the offset of the metadata index,
2438      // which is written after the records, so that it can include
2439      // the offset of each entry. The placeholder offset will be
2440      // updated after all records are emitted.
2441      uint64_t Vals[] = {0, 0};
2442      Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2443    }
2444  
2445    // Compute and save the bit offset to the current position, which will be
2446    // patched when we emit the index later. We can simply subtract the 64-bit
2447    // fixed size from the current bit number to get the location to backpatch.
2448    uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2449  
2450    // This index will contain the bitpos for each individual record.
2451    std::vector<uint64_t> IndexPos;
2452    IndexPos.reserve(VE.getNonMDStrings().size());
2453  
2454    // Write all the records
2455    writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2456  
2457    if (VE.getNonMDStrings().size() > IndexThreshold) {
2458      // Now that we have emitted all the records we will emit the index. But
2459      // first
2460      // backpatch the forward reference so that the reader can skip the records
2461      // efficiently.
2462      Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2463                             Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2464  
2465      // Delta encode the index.
2466      uint64_t PreviousValue = IndexOffsetRecordBitPos;
2467      for (auto &Elt : IndexPos) {
2468        auto EltDelta = Elt - PreviousValue;
2469        PreviousValue = Elt;
2470        Elt = EltDelta;
2471      }
2472      // Emit the index record.
2473      Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2474      IndexPos.clear();
2475    }
2476  
2477    // Write the named metadata now.
2478    writeNamedMetadata(Record);
2479  
2480    auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2481      SmallVector<uint64_t, 4> Record;
2482      Record.push_back(VE.getValueID(&GO));
2483      pushGlobalMetadataAttachment(Record, GO);
2484      Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2485    };
2486    for (const Function &F : M)
2487      if (F.isDeclaration() && F.hasMetadata())
2488        AddDeclAttachedMetadata(F);
2489    // FIXME: Only store metadata for declarations here, and move data for global
2490    // variable definitions to a separate block (PR28134).
2491    for (const GlobalVariable &GV : M.globals())
2492      if (GV.hasMetadata())
2493        AddDeclAttachedMetadata(GV);
2494  
2495    Stream.ExitBlock();
2496  }
2497  
writeFunctionMetadata(const Function & F)2498  void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2499    if (!VE.hasMDs())
2500      return;
2501  
2502    Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2503    SmallVector<uint64_t, 64> Record;
2504    writeMetadataStrings(VE.getMDStrings(), Record);
2505    writeMetadataRecords(VE.getNonMDStrings(), Record);
2506    Stream.ExitBlock();
2507  }
2508  
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2509  void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2510      SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2511    // [n x [id, mdnode]]
2512    SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2513    GO.getAllMetadata(MDs);
2514    for (const auto &I : MDs) {
2515      Record.push_back(I.first);
2516      Record.push_back(VE.getMetadataID(I.second));
2517    }
2518  }
2519  
writeFunctionMetadataAttachment(const Function & F)2520  void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2521    Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2522  
2523    SmallVector<uint64_t, 64> Record;
2524  
2525    if (F.hasMetadata()) {
2526      pushGlobalMetadataAttachment(Record, F);
2527      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2528      Record.clear();
2529    }
2530  
2531    // Write metadata attachments
2532    // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2533    SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2534    for (const BasicBlock &BB : F)
2535      for (const Instruction &I : BB) {
2536        MDs.clear();
2537        I.getAllMetadataOtherThanDebugLoc(MDs);
2538  
2539        // If no metadata, ignore instruction.
2540        if (MDs.empty()) continue;
2541  
2542        Record.push_back(VE.getInstructionID(&I));
2543  
2544        for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2545          Record.push_back(MDs[i].first);
2546          Record.push_back(VE.getMetadataID(MDs[i].second));
2547        }
2548        Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2549        Record.clear();
2550      }
2551  
2552    Stream.ExitBlock();
2553  }
2554  
writeModuleMetadataKinds()2555  void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2556    SmallVector<uint64_t, 64> Record;
2557  
2558    // Write metadata kinds
2559    // METADATA_KIND - [n x [id, name]]
2560    SmallVector<StringRef, 8> Names;
2561    M.getMDKindNames(Names);
2562  
2563    if (Names.empty()) return;
2564  
2565    Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2566  
2567    for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2568      Record.push_back(MDKindID);
2569      StringRef KName = Names[MDKindID];
2570      Record.append(KName.begin(), KName.end());
2571  
2572      Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2573      Record.clear();
2574    }
2575  
2576    Stream.ExitBlock();
2577  }
2578  
writeOperandBundleTags()2579  void ModuleBitcodeWriter::writeOperandBundleTags() {
2580    // Write metadata kinds
2581    //
2582    // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2583    //
2584    // OPERAND_BUNDLE_TAG - [strchr x N]
2585  
2586    SmallVector<StringRef, 8> Tags;
2587    M.getOperandBundleTags(Tags);
2588  
2589    if (Tags.empty())
2590      return;
2591  
2592    Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2593  
2594    SmallVector<uint64_t, 64> Record;
2595  
2596    for (auto Tag : Tags) {
2597      Record.append(Tag.begin(), Tag.end());
2598  
2599      Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2600      Record.clear();
2601    }
2602  
2603    Stream.ExitBlock();
2604  }
2605  
writeSyncScopeNames()2606  void ModuleBitcodeWriter::writeSyncScopeNames() {
2607    SmallVector<StringRef, 8> SSNs;
2608    M.getContext().getSyncScopeNames(SSNs);
2609    if (SSNs.empty())
2610      return;
2611  
2612    Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2613  
2614    SmallVector<uint64_t, 64> Record;
2615    for (auto SSN : SSNs) {
2616      Record.append(SSN.begin(), SSN.end());
2617      Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2618      Record.clear();
2619    }
2620  
2621    Stream.ExitBlock();
2622  }
2623  
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2624  void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2625                                           bool isGlobal) {
2626    if (FirstVal == LastVal) return;
2627  
2628    Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2629  
2630    unsigned AggregateAbbrev = 0;
2631    unsigned String8Abbrev = 0;
2632    unsigned CString7Abbrev = 0;
2633    unsigned CString6Abbrev = 0;
2634    // If this is a constant pool for the module, emit module-specific abbrevs.
2635    if (isGlobal) {
2636      // Abbrev for CST_CODE_AGGREGATE.
2637      auto Abbv = std::make_shared<BitCodeAbbrev>();
2638      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2639      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2640      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2641      AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2642  
2643      // Abbrev for CST_CODE_STRING.
2644      Abbv = std::make_shared<BitCodeAbbrev>();
2645      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2646      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2647      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2648      String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2649      // Abbrev for CST_CODE_CSTRING.
2650      Abbv = std::make_shared<BitCodeAbbrev>();
2651      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2652      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2653      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2654      CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2655      // Abbrev for CST_CODE_CSTRING.
2656      Abbv = std::make_shared<BitCodeAbbrev>();
2657      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2658      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2659      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2660      CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2661    }
2662  
2663    SmallVector<uint64_t, 64> Record;
2664  
2665    const ValueEnumerator::ValueList &Vals = VE.getValues();
2666    Type *LastTy = nullptr;
2667    for (unsigned i = FirstVal; i != LastVal; ++i) {
2668      const Value *V = Vals[i].first;
2669      // If we need to switch types, do so now.
2670      if (V->getType() != LastTy) {
2671        LastTy = V->getType();
2672        Record.push_back(VE.getTypeID(LastTy));
2673        Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2674                          CONSTANTS_SETTYPE_ABBREV);
2675        Record.clear();
2676      }
2677  
2678      if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2679        Record.push_back(VE.getTypeID(IA->getFunctionType()));
2680        Record.push_back(
2681            unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2682            unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2683  
2684        // Add the asm string.
2685        const std::string &AsmStr = IA->getAsmString();
2686        Record.push_back(AsmStr.size());
2687        Record.append(AsmStr.begin(), AsmStr.end());
2688  
2689        // Add the constraint string.
2690        const std::string &ConstraintStr = IA->getConstraintString();
2691        Record.push_back(ConstraintStr.size());
2692        Record.append(ConstraintStr.begin(), ConstraintStr.end());
2693        Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2694        Record.clear();
2695        continue;
2696      }
2697      const Constant *C = cast<Constant>(V);
2698      unsigned Code = -1U;
2699      unsigned AbbrevToUse = 0;
2700      if (C->isNullValue()) {
2701        Code = bitc::CST_CODE_NULL;
2702      } else if (isa<PoisonValue>(C)) {
2703        Code = bitc::CST_CODE_POISON;
2704      } else if (isa<UndefValue>(C)) {
2705        Code = bitc::CST_CODE_UNDEF;
2706      } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2707        if (IV->getBitWidth() <= 64) {
2708          uint64_t V = IV->getSExtValue();
2709          emitSignedInt64(Record, V);
2710          Code = bitc::CST_CODE_INTEGER;
2711          AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2712        } else {                             // Wide integers, > 64 bits in size.
2713          emitWideAPInt(Record, IV->getValue());
2714          Code = bitc::CST_CODE_WIDE_INTEGER;
2715        }
2716      } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2717        Code = bitc::CST_CODE_FLOAT;
2718        Type *Ty = CFP->getType()->getScalarType();
2719        if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2720            Ty->isDoubleTy()) {
2721          Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2722        } else if (Ty->isX86_FP80Ty()) {
2723          // api needed to prevent premature destruction
2724          // bits are not in the same order as a normal i80 APInt, compensate.
2725          APInt api = CFP->getValueAPF().bitcastToAPInt();
2726          const uint64_t *p = api.getRawData();
2727          Record.push_back((p[1] << 48) | (p[0] >> 16));
2728          Record.push_back(p[0] & 0xffffLL);
2729        } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2730          APInt api = CFP->getValueAPF().bitcastToAPInt();
2731          const uint64_t *p = api.getRawData();
2732          Record.push_back(p[0]);
2733          Record.push_back(p[1]);
2734        } else {
2735          assert(0 && "Unknown FP type!");
2736        }
2737      } else if (isa<ConstantDataSequential>(C) &&
2738                 cast<ConstantDataSequential>(C)->isString()) {
2739        const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2740        // Emit constant strings specially.
2741        unsigned NumElts = Str->getNumElements();
2742        // If this is a null-terminated string, use the denser CSTRING encoding.
2743        if (Str->isCString()) {
2744          Code = bitc::CST_CODE_CSTRING;
2745          --NumElts;  // Don't encode the null, which isn't allowed by char6.
2746        } else {
2747          Code = bitc::CST_CODE_STRING;
2748          AbbrevToUse = String8Abbrev;
2749        }
2750        bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2751        bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2752        for (unsigned i = 0; i != NumElts; ++i) {
2753          unsigned char V = Str->getElementAsInteger(i);
2754          Record.push_back(V);
2755          isCStr7 &= (V & 128) == 0;
2756          if (isCStrChar6)
2757            isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2758        }
2759  
2760        if (isCStrChar6)
2761          AbbrevToUse = CString6Abbrev;
2762        else if (isCStr7)
2763          AbbrevToUse = CString7Abbrev;
2764      } else if (const ConstantDataSequential *CDS =
2765                    dyn_cast<ConstantDataSequential>(C)) {
2766        Code = bitc::CST_CODE_DATA;
2767        Type *EltTy = CDS->getElementType();
2768        if (isa<IntegerType>(EltTy)) {
2769          for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2770            Record.push_back(CDS->getElementAsInteger(i));
2771        } else {
2772          for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2773            Record.push_back(
2774                CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2775        }
2776      } else if (isa<ConstantAggregate>(C)) {
2777        Code = bitc::CST_CODE_AGGREGATE;
2778        for (const Value *Op : C->operands())
2779          Record.push_back(VE.getValueID(Op));
2780        AbbrevToUse = AggregateAbbrev;
2781      } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2782        switch (CE->getOpcode()) {
2783        default:
2784          if (Instruction::isCast(CE->getOpcode())) {
2785            Code = bitc::CST_CODE_CE_CAST;
2786            Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2787            Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2788            Record.push_back(VE.getValueID(C->getOperand(0)));
2789            AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2790          } else {
2791            assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2792            Code = bitc::CST_CODE_CE_BINOP;
2793            Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2794            Record.push_back(VE.getValueID(C->getOperand(0)));
2795            Record.push_back(VE.getValueID(C->getOperand(1)));
2796            uint64_t Flags = getOptimizationFlags(CE);
2797            if (Flags != 0)
2798              Record.push_back(Flags);
2799          }
2800          break;
2801        case Instruction::FNeg: {
2802          assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2803          Code = bitc::CST_CODE_CE_UNOP;
2804          Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2805          Record.push_back(VE.getValueID(C->getOperand(0)));
2806          uint64_t Flags = getOptimizationFlags(CE);
2807          if (Flags != 0)
2808            Record.push_back(Flags);
2809          break;
2810        }
2811        case Instruction::GetElementPtr: {
2812          Code = bitc::CST_CODE_CE_GEP;
2813          const auto *GO = cast<GEPOperator>(C);
2814          Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2815          Record.push_back(getOptimizationFlags(GO));
2816          if (std::optional<ConstantRange> Range = GO->getInRange()) {
2817            Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2818            emitConstantRange(Record, *Range, /*EmitBitWidth=*/true);
2819          }
2820          for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2821            Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2822            Record.push_back(VE.getValueID(C->getOperand(i)));
2823          }
2824          break;
2825        }
2826        case Instruction::ExtractElement:
2827          Code = bitc::CST_CODE_CE_EXTRACTELT;
2828          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2829          Record.push_back(VE.getValueID(C->getOperand(0)));
2830          Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2831          Record.push_back(VE.getValueID(C->getOperand(1)));
2832          break;
2833        case Instruction::InsertElement:
2834          Code = bitc::CST_CODE_CE_INSERTELT;
2835          Record.push_back(VE.getValueID(C->getOperand(0)));
2836          Record.push_back(VE.getValueID(C->getOperand(1)));
2837          Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2838          Record.push_back(VE.getValueID(C->getOperand(2)));
2839          break;
2840        case Instruction::ShuffleVector:
2841          // If the return type and argument types are the same, this is a
2842          // standard shufflevector instruction.  If the types are different,
2843          // then the shuffle is widening or truncating the input vectors, and
2844          // the argument type must also be encoded.
2845          if (C->getType() == C->getOperand(0)->getType()) {
2846            Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2847          } else {
2848            Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2849            Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2850          }
2851          Record.push_back(VE.getValueID(C->getOperand(0)));
2852          Record.push_back(VE.getValueID(C->getOperand(1)));
2853          Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2854          break;
2855        }
2856      } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2857        Code = bitc::CST_CODE_BLOCKADDRESS;
2858        Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2859        Record.push_back(VE.getValueID(BA->getFunction()));
2860        Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2861      } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2862        Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2863        Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2864        Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2865      } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2866        Code = bitc::CST_CODE_NO_CFI_VALUE;
2867        Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2868        Record.push_back(VE.getValueID(NC->getGlobalValue()));
2869      } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) {
2870        Code = bitc::CST_CODE_PTRAUTH;
2871        Record.push_back(VE.getValueID(CPA->getPointer()));
2872        Record.push_back(VE.getValueID(CPA->getKey()));
2873        Record.push_back(VE.getValueID(CPA->getDiscriminator()));
2874        Record.push_back(VE.getValueID(CPA->getAddrDiscriminator()));
2875      } else {
2876  #ifndef NDEBUG
2877        C->dump();
2878  #endif
2879        llvm_unreachable("Unknown constant!");
2880      }
2881      Stream.EmitRecord(Code, Record, AbbrevToUse);
2882      Record.clear();
2883    }
2884  
2885    Stream.ExitBlock();
2886  }
2887  
writeModuleConstants()2888  void ModuleBitcodeWriter::writeModuleConstants() {
2889    const ValueEnumerator::ValueList &Vals = VE.getValues();
2890  
2891    // Find the first constant to emit, which is the first non-globalvalue value.
2892    // We know globalvalues have been emitted by WriteModuleInfo.
2893    for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2894      if (!isa<GlobalValue>(Vals[i].first)) {
2895        writeConstants(i, Vals.size(), true);
2896        return;
2897      }
2898    }
2899  }
2900  
2901  /// pushValueAndType - The file has to encode both the value and type id for
2902  /// many values, because we need to know what type to create for forward
2903  /// references.  However, most operands are not forward references, so this type
2904  /// field is not needed.
2905  ///
2906  /// This function adds V's value ID to Vals.  If the value ID is higher than the
2907  /// instruction ID, then it is a forward reference, and it also includes the
2908  /// type ID.  The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2909  bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2910                                             SmallVectorImpl<unsigned> &Vals) {
2911    unsigned ValID = VE.getValueID(V);
2912    // Make encoding relative to the InstID.
2913    Vals.push_back(InstID - ValID);
2914    if (ValID >= InstID) {
2915      Vals.push_back(VE.getTypeID(V->getType()));
2916      return true;
2917    }
2918    return false;
2919  }
2920  
writeOperandBundles(const CallBase & CS,unsigned InstID)2921  void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2922                                                unsigned InstID) {
2923    SmallVector<unsigned, 64> Record;
2924    LLVMContext &C = CS.getContext();
2925  
2926    for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2927      const auto &Bundle = CS.getOperandBundleAt(i);
2928      Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2929  
2930      for (auto &Input : Bundle.Inputs)
2931        pushValueAndType(Input, InstID, Record);
2932  
2933      Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2934      Record.clear();
2935    }
2936  }
2937  
2938  /// pushValue - Like pushValueAndType, but where the type of the value is
2939  /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2940  void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2941                                      SmallVectorImpl<unsigned> &Vals) {
2942    unsigned ValID = VE.getValueID(V);
2943    Vals.push_back(InstID - ValID);
2944  }
2945  
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2946  void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2947                                            SmallVectorImpl<uint64_t> &Vals) {
2948    unsigned ValID = VE.getValueID(V);
2949    int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2950    emitSignedInt64(Vals, diff);
2951  }
2952  
2953  /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2954  void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2955                                             unsigned InstID,
2956                                             SmallVectorImpl<unsigned> &Vals) {
2957    unsigned Code = 0;
2958    unsigned AbbrevToUse = 0;
2959    VE.setInstructionID(&I);
2960    switch (I.getOpcode()) {
2961    default:
2962      if (Instruction::isCast(I.getOpcode())) {
2963        Code = bitc::FUNC_CODE_INST_CAST;
2964        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2965          AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2966        Vals.push_back(VE.getTypeID(I.getType()));
2967        Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2968        uint64_t Flags = getOptimizationFlags(&I);
2969        if (Flags != 0) {
2970          if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2971            AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2972          Vals.push_back(Flags);
2973        }
2974      } else {
2975        assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2976        Code = bitc::FUNC_CODE_INST_BINOP;
2977        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2978          AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2979        pushValue(I.getOperand(1), InstID, Vals);
2980        Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2981        uint64_t Flags = getOptimizationFlags(&I);
2982        if (Flags != 0) {
2983          if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2984            AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2985          Vals.push_back(Flags);
2986        }
2987      }
2988      break;
2989    case Instruction::FNeg: {
2990      Code = bitc::FUNC_CODE_INST_UNOP;
2991      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2992        AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2993      Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2994      uint64_t Flags = getOptimizationFlags(&I);
2995      if (Flags != 0) {
2996        if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2997          AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2998        Vals.push_back(Flags);
2999      }
3000      break;
3001    }
3002    case Instruction::GetElementPtr: {
3003      Code = bitc::FUNC_CODE_INST_GEP;
3004      AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
3005      auto &GEPInst = cast<GetElementPtrInst>(I);
3006      Vals.push_back(getOptimizationFlags(&I));
3007      Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
3008      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
3009        pushValueAndType(I.getOperand(i), InstID, Vals);
3010      break;
3011    }
3012    case Instruction::ExtractValue: {
3013      Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
3014      pushValueAndType(I.getOperand(0), InstID, Vals);
3015      const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3016      Vals.append(EVI->idx_begin(), EVI->idx_end());
3017      break;
3018    }
3019    case Instruction::InsertValue: {
3020      Code = bitc::FUNC_CODE_INST_INSERTVAL;
3021      pushValueAndType(I.getOperand(0), InstID, Vals);
3022      pushValueAndType(I.getOperand(1), InstID, Vals);
3023      const InsertValueInst *IVI = cast<InsertValueInst>(&I);
3024      Vals.append(IVI->idx_begin(), IVI->idx_end());
3025      break;
3026    }
3027    case Instruction::Select: {
3028      Code = bitc::FUNC_CODE_INST_VSELECT;
3029      pushValueAndType(I.getOperand(1), InstID, Vals);
3030      pushValue(I.getOperand(2), InstID, Vals);
3031      pushValueAndType(I.getOperand(0), InstID, Vals);
3032      uint64_t Flags = getOptimizationFlags(&I);
3033      if (Flags != 0)
3034        Vals.push_back(Flags);
3035      break;
3036    }
3037    case Instruction::ExtractElement:
3038      Code = bitc::FUNC_CODE_INST_EXTRACTELT;
3039      pushValueAndType(I.getOperand(0), InstID, Vals);
3040      pushValueAndType(I.getOperand(1), InstID, Vals);
3041      break;
3042    case Instruction::InsertElement:
3043      Code = bitc::FUNC_CODE_INST_INSERTELT;
3044      pushValueAndType(I.getOperand(0), InstID, Vals);
3045      pushValue(I.getOperand(1), InstID, Vals);
3046      pushValueAndType(I.getOperand(2), InstID, Vals);
3047      break;
3048    case Instruction::ShuffleVector:
3049      Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3050      pushValueAndType(I.getOperand(0), InstID, Vals);
3051      pushValue(I.getOperand(1), InstID, Vals);
3052      pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
3053                Vals);
3054      break;
3055    case Instruction::ICmp:
3056    case Instruction::FCmp: {
3057      // compare returning Int1Ty or vector of Int1Ty
3058      Code = bitc::FUNC_CODE_INST_CMP2;
3059      pushValueAndType(I.getOperand(0), InstID, Vals);
3060      pushValue(I.getOperand(1), InstID, Vals);
3061      Vals.push_back(cast<CmpInst>(I).getPredicate());
3062      uint64_t Flags = getOptimizationFlags(&I);
3063      if (Flags != 0)
3064        Vals.push_back(Flags);
3065      break;
3066    }
3067  
3068    case Instruction::Ret:
3069      {
3070        Code = bitc::FUNC_CODE_INST_RET;
3071        unsigned NumOperands = I.getNumOperands();
3072        if (NumOperands == 0)
3073          AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3074        else if (NumOperands == 1) {
3075          if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3076            AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3077        } else {
3078          for (unsigned i = 0, e = NumOperands; i != e; ++i)
3079            pushValueAndType(I.getOperand(i), InstID, Vals);
3080        }
3081      }
3082      break;
3083    case Instruction::Br:
3084      {
3085        Code = bitc::FUNC_CODE_INST_BR;
3086        const BranchInst &II = cast<BranchInst>(I);
3087        Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3088        if (II.isConditional()) {
3089          Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3090          pushValue(II.getCondition(), InstID, Vals);
3091        }
3092      }
3093      break;
3094    case Instruction::Switch:
3095      {
3096        Code = bitc::FUNC_CODE_INST_SWITCH;
3097        const SwitchInst &SI = cast<SwitchInst>(I);
3098        Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3099        pushValue(SI.getCondition(), InstID, Vals);
3100        Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3101        for (auto Case : SI.cases()) {
3102          Vals.push_back(VE.getValueID(Case.getCaseValue()));
3103          Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3104        }
3105      }
3106      break;
3107    case Instruction::IndirectBr:
3108      Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3109      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3110      // Encode the address operand as relative, but not the basic blocks.
3111      pushValue(I.getOperand(0), InstID, Vals);
3112      for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3113        Vals.push_back(VE.getValueID(I.getOperand(i)));
3114      break;
3115  
3116    case Instruction::Invoke: {
3117      const InvokeInst *II = cast<InvokeInst>(&I);
3118      const Value *Callee = II->getCalledOperand();
3119      FunctionType *FTy = II->getFunctionType();
3120  
3121      if (II->hasOperandBundles())
3122        writeOperandBundles(*II, InstID);
3123  
3124      Code = bitc::FUNC_CODE_INST_INVOKE;
3125  
3126      Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3127      Vals.push_back(II->getCallingConv() | 1 << 13);
3128      Vals.push_back(VE.getValueID(II->getNormalDest()));
3129      Vals.push_back(VE.getValueID(II->getUnwindDest()));
3130      Vals.push_back(VE.getTypeID(FTy));
3131      pushValueAndType(Callee, InstID, Vals);
3132  
3133      // Emit value #'s for the fixed parameters.
3134      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3135        pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3136  
3137      // Emit type/value pairs for varargs params.
3138      if (FTy->isVarArg()) {
3139        for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3140          pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3141      }
3142      break;
3143    }
3144    case Instruction::Resume:
3145      Code = bitc::FUNC_CODE_INST_RESUME;
3146      pushValueAndType(I.getOperand(0), InstID, Vals);
3147      break;
3148    case Instruction::CleanupRet: {
3149      Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3150      const auto &CRI = cast<CleanupReturnInst>(I);
3151      pushValue(CRI.getCleanupPad(), InstID, Vals);
3152      if (CRI.hasUnwindDest())
3153        Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3154      break;
3155    }
3156    case Instruction::CatchRet: {
3157      Code = bitc::FUNC_CODE_INST_CATCHRET;
3158      const auto &CRI = cast<CatchReturnInst>(I);
3159      pushValue(CRI.getCatchPad(), InstID, Vals);
3160      Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3161      break;
3162    }
3163    case Instruction::CleanupPad:
3164    case Instruction::CatchPad: {
3165      const auto &FuncletPad = cast<FuncletPadInst>(I);
3166      Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3167                                           : bitc::FUNC_CODE_INST_CLEANUPPAD;
3168      pushValue(FuncletPad.getParentPad(), InstID, Vals);
3169  
3170      unsigned NumArgOperands = FuncletPad.arg_size();
3171      Vals.push_back(NumArgOperands);
3172      for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3173        pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3174      break;
3175    }
3176    case Instruction::CatchSwitch: {
3177      Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3178      const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3179  
3180      pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3181  
3182      unsigned NumHandlers = CatchSwitch.getNumHandlers();
3183      Vals.push_back(NumHandlers);
3184      for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3185        Vals.push_back(VE.getValueID(CatchPadBB));
3186  
3187      if (CatchSwitch.hasUnwindDest())
3188        Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3189      break;
3190    }
3191    case Instruction::CallBr: {
3192      const CallBrInst *CBI = cast<CallBrInst>(&I);
3193      const Value *Callee = CBI->getCalledOperand();
3194      FunctionType *FTy = CBI->getFunctionType();
3195  
3196      if (CBI->hasOperandBundles())
3197        writeOperandBundles(*CBI, InstID);
3198  
3199      Code = bitc::FUNC_CODE_INST_CALLBR;
3200  
3201      Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3202  
3203      Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3204                     1 << bitc::CALL_EXPLICIT_TYPE);
3205  
3206      Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3207      Vals.push_back(CBI->getNumIndirectDests());
3208      for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3209        Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3210  
3211      Vals.push_back(VE.getTypeID(FTy));
3212      pushValueAndType(Callee, InstID, Vals);
3213  
3214      // Emit value #'s for the fixed parameters.
3215      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3216        pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3217  
3218      // Emit type/value pairs for varargs params.
3219      if (FTy->isVarArg()) {
3220        for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3221          pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3222      }
3223      break;
3224    }
3225    case Instruction::Unreachable:
3226      Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3227      AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3228      break;
3229  
3230    case Instruction::PHI: {
3231      const PHINode &PN = cast<PHINode>(I);
3232      Code = bitc::FUNC_CODE_INST_PHI;
3233      // With the newer instruction encoding, forward references could give
3234      // negative valued IDs.  This is most common for PHIs, so we use
3235      // signed VBRs.
3236      SmallVector<uint64_t, 128> Vals64;
3237      Vals64.push_back(VE.getTypeID(PN.getType()));
3238      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3239        pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3240        Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3241      }
3242  
3243      uint64_t Flags = getOptimizationFlags(&I);
3244      if (Flags != 0)
3245        Vals64.push_back(Flags);
3246  
3247      // Emit a Vals64 vector and exit.
3248      Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3249      Vals64.clear();
3250      return;
3251    }
3252  
3253    case Instruction::LandingPad: {
3254      const LandingPadInst &LP = cast<LandingPadInst>(I);
3255      Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3256      Vals.push_back(VE.getTypeID(LP.getType()));
3257      Vals.push_back(LP.isCleanup());
3258      Vals.push_back(LP.getNumClauses());
3259      for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3260        if (LP.isCatch(I))
3261          Vals.push_back(LandingPadInst::Catch);
3262        else
3263          Vals.push_back(LandingPadInst::Filter);
3264        pushValueAndType(LP.getClause(I), InstID, Vals);
3265      }
3266      break;
3267    }
3268  
3269    case Instruction::Alloca: {
3270      Code = bitc::FUNC_CODE_INST_ALLOCA;
3271      const AllocaInst &AI = cast<AllocaInst>(I);
3272      Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3273      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3274      Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3275      using APV = AllocaPackedValues;
3276      unsigned Record = 0;
3277      unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3278      Bitfield::set<APV::AlignLower>(
3279          Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3280      Bitfield::set<APV::AlignUpper>(Record,
3281                                     EncodedAlign >> APV::AlignLower::Bits);
3282      Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3283      Bitfield::set<APV::ExplicitType>(Record, true);
3284      Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3285      Vals.push_back(Record);
3286  
3287      unsigned AS = AI.getAddressSpace();
3288      if (AS != M.getDataLayout().getAllocaAddrSpace())
3289        Vals.push_back(AS);
3290      break;
3291    }
3292  
3293    case Instruction::Load:
3294      if (cast<LoadInst>(I).isAtomic()) {
3295        Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3296        pushValueAndType(I.getOperand(0), InstID, Vals);
3297      } else {
3298        Code = bitc::FUNC_CODE_INST_LOAD;
3299        if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3300          AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3301      }
3302      Vals.push_back(VE.getTypeID(I.getType()));
3303      Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3304      Vals.push_back(cast<LoadInst>(I).isVolatile());
3305      if (cast<LoadInst>(I).isAtomic()) {
3306        Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3307        Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3308      }
3309      break;
3310    case Instruction::Store:
3311      if (cast<StoreInst>(I).isAtomic())
3312        Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3313      else
3314        Code = bitc::FUNC_CODE_INST_STORE;
3315      pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3316      pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3317      Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3318      Vals.push_back(cast<StoreInst>(I).isVolatile());
3319      if (cast<StoreInst>(I).isAtomic()) {
3320        Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3321        Vals.push_back(
3322            getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3323      }
3324      break;
3325    case Instruction::AtomicCmpXchg:
3326      Code = bitc::FUNC_CODE_INST_CMPXCHG;
3327      pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3328      pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3329      pushValue(I.getOperand(2), InstID, Vals);        // newval.
3330      Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3331      Vals.push_back(
3332          getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3333      Vals.push_back(
3334          getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3335      Vals.push_back(
3336          getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3337      Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3338      Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3339      break;
3340    case Instruction::AtomicRMW:
3341      Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3342      pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3343      pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3344      Vals.push_back(
3345          getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3346      Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3347      Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3348      Vals.push_back(
3349          getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3350      Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3351      break;
3352    case Instruction::Fence:
3353      Code = bitc::FUNC_CODE_INST_FENCE;
3354      Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3355      Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3356      break;
3357    case Instruction::Call: {
3358      const CallInst &CI = cast<CallInst>(I);
3359      FunctionType *FTy = CI.getFunctionType();
3360  
3361      if (CI.hasOperandBundles())
3362        writeOperandBundles(CI, InstID);
3363  
3364      Code = bitc::FUNC_CODE_INST_CALL;
3365  
3366      Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3367  
3368      unsigned Flags = getOptimizationFlags(&I);
3369      Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3370                     unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3371                     unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3372                     1 << bitc::CALL_EXPLICIT_TYPE |
3373                     unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3374                     unsigned(Flags != 0) << bitc::CALL_FMF);
3375      if (Flags != 0)
3376        Vals.push_back(Flags);
3377  
3378      Vals.push_back(VE.getTypeID(FTy));
3379      pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3380  
3381      // Emit value #'s for the fixed parameters.
3382      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3383        // Check for labels (can happen with asm labels).
3384        if (FTy->getParamType(i)->isLabelTy())
3385          Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3386        else
3387          pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3388      }
3389  
3390      // Emit type/value pairs for varargs params.
3391      if (FTy->isVarArg()) {
3392        for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3393          pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3394      }
3395      break;
3396    }
3397    case Instruction::VAArg:
3398      Code = bitc::FUNC_CODE_INST_VAARG;
3399      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3400      pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3401      Vals.push_back(VE.getTypeID(I.getType())); // restype.
3402      break;
3403    case Instruction::Freeze:
3404      Code = bitc::FUNC_CODE_INST_FREEZE;
3405      pushValueAndType(I.getOperand(0), InstID, Vals);
3406      break;
3407    }
3408  
3409    Stream.EmitRecord(Code, Vals, AbbrevToUse);
3410    Vals.clear();
3411  }
3412  
3413  /// Write a GlobalValue VST to the module. The purpose of this data structure is
3414  /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3415  void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3416    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3417    // Get the offset of the VST we are writing, and backpatch it into
3418    // the VST forward declaration record.
3419    uint64_t VSTOffset = Stream.GetCurrentBitNo();
3420    // The BitcodeStartBit was the stream offset of the identification block.
3421    VSTOffset -= bitcodeStartBit();
3422    assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3423    // Note that we add 1 here because the offset is relative to one word
3424    // before the start of the identification block, which was historically
3425    // always the start of the regular bitcode header.
3426    Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3427  
3428    Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3429  
3430    auto Abbv = std::make_shared<BitCodeAbbrev>();
3431    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3432    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3433    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3434    unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3435  
3436    for (const Function &F : M) {
3437      uint64_t Record[2];
3438  
3439      if (F.isDeclaration())
3440        continue;
3441  
3442      Record[0] = VE.getValueID(&F);
3443  
3444      // Save the word offset of the function (from the start of the
3445      // actual bitcode written to the stream).
3446      uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3447      assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3448      // Note that we add 1 here because the offset is relative to one word
3449      // before the start of the identification block, which was historically
3450      // always the start of the regular bitcode header.
3451      Record[1] = BitcodeIndex / 32 + 1;
3452  
3453      Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3454    }
3455  
3456    Stream.ExitBlock();
3457  }
3458  
3459  /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)3460  void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3461      const ValueSymbolTable &VST) {
3462    if (VST.empty())
3463      return;
3464  
3465    Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3466  
3467    // FIXME: Set up the abbrev, we know how many values there are!
3468    // FIXME: We know if the type names can use 7-bit ascii.
3469    SmallVector<uint64_t, 64> NameVals;
3470  
3471    for (const ValueName &Name : VST) {
3472      // Figure out the encoding to use for the name.
3473      StringEncoding Bits = getStringEncoding(Name.getKey());
3474  
3475      unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3476      NameVals.push_back(VE.getValueID(Name.getValue()));
3477  
3478      // VST_CODE_ENTRY:   [valueid, namechar x N]
3479      // VST_CODE_BBENTRY: [bbid, namechar x N]
3480      unsigned Code;
3481      if (isa<BasicBlock>(Name.getValue())) {
3482        Code = bitc::VST_CODE_BBENTRY;
3483        if (Bits == SE_Char6)
3484          AbbrevToUse = VST_BBENTRY_6_ABBREV;
3485      } else {
3486        Code = bitc::VST_CODE_ENTRY;
3487        if (Bits == SE_Char6)
3488          AbbrevToUse = VST_ENTRY_6_ABBREV;
3489        else if (Bits == SE_Fixed7)
3490          AbbrevToUse = VST_ENTRY_7_ABBREV;
3491      }
3492  
3493      for (const auto P : Name.getKey())
3494        NameVals.push_back((unsigned char)P);
3495  
3496      // Emit the finished record.
3497      Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3498      NameVals.clear();
3499    }
3500  
3501    Stream.ExitBlock();
3502  }
3503  
writeUseList(UseListOrder && Order)3504  void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3505    assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3506    unsigned Code;
3507    if (isa<BasicBlock>(Order.V))
3508      Code = bitc::USELIST_CODE_BB;
3509    else
3510      Code = bitc::USELIST_CODE_DEFAULT;
3511  
3512    SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3513    Record.push_back(VE.getValueID(Order.V));
3514    Stream.EmitRecord(Code, Record);
3515  }
3516  
writeUseListBlock(const Function * F)3517  void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3518    assert(VE.shouldPreserveUseListOrder() &&
3519           "Expected to be preserving use-list order");
3520  
3521    auto hasMore = [&]() {
3522      return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3523    };
3524    if (!hasMore())
3525      // Nothing to do.
3526      return;
3527  
3528    Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3529    while (hasMore()) {
3530      writeUseList(std::move(VE.UseListOrders.back()));
3531      VE.UseListOrders.pop_back();
3532    }
3533    Stream.ExitBlock();
3534  }
3535  
3536  /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3537  void ModuleBitcodeWriter::writeFunction(
3538      const Function &F,
3539      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3540    // Save the bitcode index of the start of this function block for recording
3541    // in the VST.
3542    FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3543  
3544    Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3545    VE.incorporateFunction(F);
3546  
3547    SmallVector<unsigned, 64> Vals;
3548  
3549    // Emit the number of basic blocks, so the reader can create them ahead of
3550    // time.
3551    Vals.push_back(VE.getBasicBlocks().size());
3552    Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3553    Vals.clear();
3554  
3555    // If there are function-local constants, emit them now.
3556    unsigned CstStart, CstEnd;
3557    VE.getFunctionConstantRange(CstStart, CstEnd);
3558    writeConstants(CstStart, CstEnd, false);
3559  
3560    // If there is function-local metadata, emit it now.
3561    writeFunctionMetadata(F);
3562  
3563    // Keep a running idea of what the instruction ID is.
3564    unsigned InstID = CstEnd;
3565  
3566    bool NeedsMetadataAttachment = F.hasMetadata();
3567  
3568    DILocation *LastDL = nullptr;
3569    SmallSetVector<Function *, 4> BlockAddressUsers;
3570  
3571    // Finally, emit all the instructions, in order.
3572    for (const BasicBlock &BB : F) {
3573      for (const Instruction &I : BB) {
3574        writeInstruction(I, InstID, Vals);
3575  
3576        if (!I.getType()->isVoidTy())
3577          ++InstID;
3578  
3579        // If the instruction has metadata, write a metadata attachment later.
3580        NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3581  
3582        // If the instruction has a debug location, emit it.
3583        if (DILocation *DL = I.getDebugLoc()) {
3584          if (DL == LastDL) {
3585            // Just repeat the same debug loc as last time.
3586            Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3587          } else {
3588            Vals.push_back(DL->getLine());
3589            Vals.push_back(DL->getColumn());
3590            Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3591            Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3592            Vals.push_back(DL->isImplicitCode());
3593            Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3594            Vals.clear();
3595            LastDL = DL;
3596          }
3597        }
3598  
3599        // If the instruction has DbgRecords attached to it, emit them. Note that
3600        // they come after the instruction so that it's easy to attach them again
3601        // when reading the bitcode, even though conceptually the debug locations
3602        // start "before" the instruction.
3603        if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3604          /// Try to push the value only (unwrapped), otherwise push the
3605          /// metadata wrapped value. Returns true if the value was pushed
3606          /// without the ValueAsMetadata wrapper.
3607          auto PushValueOrMetadata = [&Vals, InstID,
3608                                      this](Metadata *RawLocation) {
3609            assert(RawLocation &&
3610                   "RawLocation unexpectedly null in DbgVariableRecord");
3611            if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3612              SmallVector<unsigned, 2> ValAndType;
3613              // If the value is a fwd-ref the type is also pushed. We don't
3614              // want the type, so fwd-refs are kept wrapped (pushValueAndType
3615              // returns false if the value is pushed without type).
3616              if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3617                Vals.push_back(ValAndType[0]);
3618                return true;
3619              }
3620            }
3621            // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3622            // fwd-ref. Push the metadata ID.
3623            Vals.push_back(VE.getMetadataID(RawLocation));
3624            return false;
3625          };
3626  
3627          // Write out non-instruction debug information attached to this
3628          // instruction. Write it after the instruction so that it's easy to
3629          // re-attach to the instruction reading the records in.
3630          for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3631            if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3632              Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc()));
3633              Vals.push_back(VE.getMetadataID(DLR->getLabel()));
3634              Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3635              Vals.clear();
3636              continue;
3637            }
3638  
3639            // First 3 fields are common to all kinds:
3640            //   DILocation, DILocalVariable, DIExpression
3641            // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3642            //   ..., LocationMetadata
3643            // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3644            //   ..., Value
3645            // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3646            //   ..., LocationMetadata
3647            // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3648            //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3649            DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3650            Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc()));
3651            Vals.push_back(VE.getMetadataID(DVR.getVariable()));
3652            Vals.push_back(VE.getMetadataID(DVR.getExpression()));
3653            if (DVR.isDbgValue()) {
3654              if (PushValueOrMetadata(DVR.getRawLocation()))
3655                Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3656                                  FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3657              else
3658                Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3659            } else if (DVR.isDbgDeclare()) {
3660              Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3661              Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3662            } else {
3663              assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3664              Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3665              Vals.push_back(VE.getMetadataID(DVR.getAssignID()));
3666              Vals.push_back(VE.getMetadataID(DVR.getAddressExpression()));
3667              Vals.push_back(VE.getMetadataID(DVR.getRawAddress()));
3668              Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3669            }
3670            Vals.clear();
3671          }
3672        }
3673      }
3674  
3675      if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3676        SmallVector<Value *> Worklist{BA};
3677        SmallPtrSet<Value *, 8> Visited{BA};
3678        while (!Worklist.empty()) {
3679          Value *V = Worklist.pop_back_val();
3680          for (User *U : V->users()) {
3681            if (auto *I = dyn_cast<Instruction>(U)) {
3682              Function *P = I->getFunction();
3683              if (P != &F)
3684                BlockAddressUsers.insert(P);
3685            } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3686                       Visited.insert(U).second)
3687              Worklist.push_back(U);
3688          }
3689        }
3690      }
3691    }
3692  
3693    if (!BlockAddressUsers.empty()) {
3694      Vals.resize(BlockAddressUsers.size());
3695      for (auto I : llvm::enumerate(BlockAddressUsers))
3696        Vals[I.index()] = VE.getValueID(I.value());
3697      Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3698      Vals.clear();
3699    }
3700  
3701    // Emit names for all the instructions etc.
3702    if (auto *Symtab = F.getValueSymbolTable())
3703      writeFunctionLevelValueSymbolTable(*Symtab);
3704  
3705    if (NeedsMetadataAttachment)
3706      writeFunctionMetadataAttachment(F);
3707    if (VE.shouldPreserveUseListOrder())
3708      writeUseListBlock(&F);
3709    VE.purgeFunction();
3710    Stream.ExitBlock();
3711  }
3712  
3713  // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3714  void ModuleBitcodeWriter::writeBlockInfo() {
3715    // We only want to emit block info records for blocks that have multiple
3716    // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3717    // Other blocks can define their abbrevs inline.
3718    Stream.EnterBlockInfoBlock();
3719  
3720    { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3721      auto Abbv = std::make_shared<BitCodeAbbrev>();
3722      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3723      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3724      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3725      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3726      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3727          VST_ENTRY_8_ABBREV)
3728        llvm_unreachable("Unexpected abbrev ordering!");
3729    }
3730  
3731    { // 7-bit fixed width VST_CODE_ENTRY strings.
3732      auto Abbv = std::make_shared<BitCodeAbbrev>();
3733      Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3734      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3735      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3736      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3737      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3738          VST_ENTRY_7_ABBREV)
3739        llvm_unreachable("Unexpected abbrev ordering!");
3740    }
3741    { // 6-bit char6 VST_CODE_ENTRY strings.
3742      auto Abbv = std::make_shared<BitCodeAbbrev>();
3743      Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3744      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3745      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3746      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3747      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3748          VST_ENTRY_6_ABBREV)
3749        llvm_unreachable("Unexpected abbrev ordering!");
3750    }
3751    { // 6-bit char6 VST_CODE_BBENTRY strings.
3752      auto Abbv = std::make_shared<BitCodeAbbrev>();
3753      Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3754      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3755      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3756      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3757      if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3758          VST_BBENTRY_6_ABBREV)
3759        llvm_unreachable("Unexpected abbrev ordering!");
3760    }
3761  
3762    { // SETTYPE abbrev for CONSTANTS_BLOCK.
3763      auto Abbv = std::make_shared<BitCodeAbbrev>();
3764      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3765      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3766                                VE.computeBitsRequiredForTypeIndices()));
3767      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3768          CONSTANTS_SETTYPE_ABBREV)
3769        llvm_unreachable("Unexpected abbrev ordering!");
3770    }
3771  
3772    { // INTEGER abbrev for CONSTANTS_BLOCK.
3773      auto Abbv = std::make_shared<BitCodeAbbrev>();
3774      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3775      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3776      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3777          CONSTANTS_INTEGER_ABBREV)
3778        llvm_unreachable("Unexpected abbrev ordering!");
3779    }
3780  
3781    { // CE_CAST abbrev for CONSTANTS_BLOCK.
3782      auto Abbv = std::make_shared<BitCodeAbbrev>();
3783      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3784      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3785      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3786                                VE.computeBitsRequiredForTypeIndices()));
3787      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3788  
3789      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3790          CONSTANTS_CE_CAST_Abbrev)
3791        llvm_unreachable("Unexpected abbrev ordering!");
3792    }
3793    { // NULL abbrev for CONSTANTS_BLOCK.
3794      auto Abbv = std::make_shared<BitCodeAbbrev>();
3795      Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3796      if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3797          CONSTANTS_NULL_Abbrev)
3798        llvm_unreachable("Unexpected abbrev ordering!");
3799    }
3800  
3801    // FIXME: This should only use space for first class types!
3802  
3803    { // INST_LOAD abbrev for FUNCTION_BLOCK.
3804      auto Abbv = std::make_shared<BitCodeAbbrev>();
3805      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3806      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3807      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3808                                VE.computeBitsRequiredForTypeIndices()));
3809      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3810      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3811      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3812          FUNCTION_INST_LOAD_ABBREV)
3813        llvm_unreachable("Unexpected abbrev ordering!");
3814    }
3815    { // INST_UNOP abbrev for FUNCTION_BLOCK.
3816      auto Abbv = std::make_shared<BitCodeAbbrev>();
3817      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3818      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3819      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3820      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3821          FUNCTION_INST_UNOP_ABBREV)
3822        llvm_unreachable("Unexpected abbrev ordering!");
3823    }
3824    { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3825      auto Abbv = std::make_shared<BitCodeAbbrev>();
3826      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3827      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3828      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3829      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3830      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3831          FUNCTION_INST_UNOP_FLAGS_ABBREV)
3832        llvm_unreachable("Unexpected abbrev ordering!");
3833    }
3834    { // INST_BINOP abbrev for FUNCTION_BLOCK.
3835      auto Abbv = std::make_shared<BitCodeAbbrev>();
3836      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3837      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3838      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3839      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3840      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3841          FUNCTION_INST_BINOP_ABBREV)
3842        llvm_unreachable("Unexpected abbrev ordering!");
3843    }
3844    { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3845      auto Abbv = std::make_shared<BitCodeAbbrev>();
3846      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3847      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3848      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3849      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3850      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3851      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3852          FUNCTION_INST_BINOP_FLAGS_ABBREV)
3853        llvm_unreachable("Unexpected abbrev ordering!");
3854    }
3855    { // INST_CAST abbrev for FUNCTION_BLOCK.
3856      auto Abbv = std::make_shared<BitCodeAbbrev>();
3857      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3858      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3859      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3860                                VE.computeBitsRequiredForTypeIndices()));
3861      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3862      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3863          FUNCTION_INST_CAST_ABBREV)
3864        llvm_unreachable("Unexpected abbrev ordering!");
3865    }
3866    { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3867      auto Abbv = std::make_shared<BitCodeAbbrev>();
3868      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3869      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3870      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3871                                VE.computeBitsRequiredForTypeIndices()));
3872      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3873      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3874      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3875          FUNCTION_INST_CAST_FLAGS_ABBREV)
3876        llvm_unreachable("Unexpected abbrev ordering!");
3877    }
3878  
3879    { // INST_RET abbrev for FUNCTION_BLOCK.
3880      auto Abbv = std::make_shared<BitCodeAbbrev>();
3881      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3882      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3883          FUNCTION_INST_RET_VOID_ABBREV)
3884        llvm_unreachable("Unexpected abbrev ordering!");
3885    }
3886    { // INST_RET abbrev for FUNCTION_BLOCK.
3887      auto Abbv = std::make_shared<BitCodeAbbrev>();
3888      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3889      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3890      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3891          FUNCTION_INST_RET_VAL_ABBREV)
3892        llvm_unreachable("Unexpected abbrev ordering!");
3893    }
3894    { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3895      auto Abbv = std::make_shared<BitCodeAbbrev>();
3896      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3897      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3898          FUNCTION_INST_UNREACHABLE_ABBREV)
3899        llvm_unreachable("Unexpected abbrev ordering!");
3900    }
3901    {
3902      auto Abbv = std::make_shared<BitCodeAbbrev>();
3903      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3904      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3905      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3906                                Log2_32_Ceil(VE.getTypes().size() + 1)));
3907      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3908      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3909      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3910          FUNCTION_INST_GEP_ABBREV)
3911        llvm_unreachable("Unexpected abbrev ordering!");
3912    }
3913    {
3914      auto Abbv = std::make_shared<BitCodeAbbrev>();
3915      Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3916      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3917      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3918      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3919      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3920      if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3921          FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3922        llvm_unreachable("Unexpected abbrev ordering! 1");
3923    }
3924    Stream.ExitBlock();
3925  }
3926  
3927  /// Write the module path strings, currently only used when generating
3928  /// a combined index file.
writeModStrings()3929  void IndexBitcodeWriter::writeModStrings() {
3930    Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3931  
3932    // TODO: See which abbrev sizes we actually need to emit
3933  
3934    // 8-bit fixed-width MST_ENTRY strings.
3935    auto Abbv = std::make_shared<BitCodeAbbrev>();
3936    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3937    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3938    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3939    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3940    unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3941  
3942    // 7-bit fixed width MST_ENTRY strings.
3943    Abbv = std::make_shared<BitCodeAbbrev>();
3944    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3945    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3946    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3947    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3948    unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3949  
3950    // 6-bit char6 MST_ENTRY strings.
3951    Abbv = std::make_shared<BitCodeAbbrev>();
3952    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3953    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3954    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3955    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3956    unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3957  
3958    // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3959    Abbv = std::make_shared<BitCodeAbbrev>();
3960    Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3961    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3962    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3963    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3964    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3965    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3966    unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3967  
3968    SmallVector<unsigned, 64> Vals;
3969    forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3970      StringRef Key = MPSE.getKey();
3971      const auto &Hash = MPSE.getValue();
3972      StringEncoding Bits = getStringEncoding(Key);
3973      unsigned AbbrevToUse = Abbrev8Bit;
3974      if (Bits == SE_Char6)
3975        AbbrevToUse = Abbrev6Bit;
3976      else if (Bits == SE_Fixed7)
3977        AbbrevToUse = Abbrev7Bit;
3978  
3979      auto ModuleId = ModuleIdMap.size();
3980      ModuleIdMap[Key] = ModuleId;
3981      Vals.push_back(ModuleId);
3982      Vals.append(Key.begin(), Key.end());
3983  
3984      // Emit the finished record.
3985      Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3986  
3987      // Emit an optional hash for the module now
3988      if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3989        Vals.assign(Hash.begin(), Hash.end());
3990        // Emit the hash record.
3991        Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3992      }
3993  
3994      Vals.clear();
3995    });
3996    Stream.ExitBlock();
3997  }
3998  
3999  /// Write the function type metadata related records that need to appear before
4000  /// a function summary entry (whether per-module or combined).
4001  template <typename Fn>
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS,Fn GetValueID)4002  static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
4003                                               FunctionSummary *FS,
4004                                               Fn GetValueID) {
4005    if (!FS->type_tests().empty())
4006      Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
4007  
4008    SmallVector<uint64_t, 64> Record;
4009  
4010    auto WriteVFuncIdVec = [&](uint64_t Ty,
4011                               ArrayRef<FunctionSummary::VFuncId> VFs) {
4012      if (VFs.empty())
4013        return;
4014      Record.clear();
4015      for (auto &VF : VFs) {
4016        Record.push_back(VF.GUID);
4017        Record.push_back(VF.Offset);
4018      }
4019      Stream.EmitRecord(Ty, Record);
4020    };
4021  
4022    WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
4023                    FS->type_test_assume_vcalls());
4024    WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
4025                    FS->type_checked_load_vcalls());
4026  
4027    auto WriteConstVCallVec = [&](uint64_t Ty,
4028                                  ArrayRef<FunctionSummary::ConstVCall> VCs) {
4029      for (auto &VC : VCs) {
4030        Record.clear();
4031        Record.push_back(VC.VFunc.GUID);
4032        Record.push_back(VC.VFunc.Offset);
4033        llvm::append_range(Record, VC.Args);
4034        Stream.EmitRecord(Ty, Record);
4035      }
4036    };
4037  
4038    WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
4039                       FS->type_test_assume_const_vcalls());
4040    WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
4041                       FS->type_checked_load_const_vcalls());
4042  
4043    auto WriteRange = [&](ConstantRange Range) {
4044      Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
4045      assert(Range.getLower().getNumWords() == 1);
4046      assert(Range.getUpper().getNumWords() == 1);
4047      emitSignedInt64(Record, *Range.getLower().getRawData());
4048      emitSignedInt64(Record, *Range.getUpper().getRawData());
4049    };
4050  
4051    if (!FS->paramAccesses().empty()) {
4052      Record.clear();
4053      for (auto &Arg : FS->paramAccesses()) {
4054        size_t UndoSize = Record.size();
4055        Record.push_back(Arg.ParamNo);
4056        WriteRange(Arg.Use);
4057        Record.push_back(Arg.Calls.size());
4058        for (auto &Call : Arg.Calls) {
4059          Record.push_back(Call.ParamNo);
4060          std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4061          if (!ValueID) {
4062            // If ValueID is unknown we can't drop just this call, we must drop
4063            // entire parameter.
4064            Record.resize(UndoSize);
4065            break;
4066          }
4067          Record.push_back(*ValueID);
4068          WriteRange(Call.Offsets);
4069        }
4070      }
4071      if (!Record.empty())
4072        Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4073    }
4074  }
4075  
4076  /// Collect type IDs from type tests used by function.
4077  static void
getReferencedTypeIds(FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)4078  getReferencedTypeIds(FunctionSummary *FS,
4079                       std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4080    if (!FS->type_tests().empty())
4081      for (auto &TT : FS->type_tests())
4082        ReferencedTypeIds.insert(TT);
4083  
4084    auto GetReferencedTypesFromVFuncIdVec =
4085        [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4086          for (auto &VF : VFs)
4087            ReferencedTypeIds.insert(VF.GUID);
4088        };
4089  
4090    GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4091    GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4092  
4093    auto GetReferencedTypesFromConstVCallVec =
4094        [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4095          for (auto &VC : VCs)
4096            ReferencedTypeIds.insert(VC.VFunc.GUID);
4097        };
4098  
4099    GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4100    GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4101  }
4102  
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)4103  static void writeWholeProgramDevirtResolutionByArg(
4104      SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4105      const WholeProgramDevirtResolution::ByArg &ByArg) {
4106    NameVals.push_back(args.size());
4107    llvm::append_range(NameVals, args);
4108  
4109    NameVals.push_back(ByArg.TheKind);
4110    NameVals.push_back(ByArg.Info);
4111    NameVals.push_back(ByArg.Byte);
4112    NameVals.push_back(ByArg.Bit);
4113  }
4114  
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)4115  static void writeWholeProgramDevirtResolution(
4116      SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4117      uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4118    NameVals.push_back(Id);
4119  
4120    NameVals.push_back(Wpd.TheKind);
4121    NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4122    NameVals.push_back(Wpd.SingleImplName.size());
4123  
4124    NameVals.push_back(Wpd.ResByArg.size());
4125    for (auto &A : Wpd.ResByArg)
4126      writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4127  }
4128  
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)4129  static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4130                                       StringTableBuilder &StrtabBuilder,
4131                                       const std::string &Id,
4132                                       const TypeIdSummary &Summary) {
4133    NameVals.push_back(StrtabBuilder.add(Id));
4134    NameVals.push_back(Id.size());
4135  
4136    NameVals.push_back(Summary.TTRes.TheKind);
4137    NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4138    NameVals.push_back(Summary.TTRes.AlignLog2);
4139    NameVals.push_back(Summary.TTRes.SizeM1);
4140    NameVals.push_back(Summary.TTRes.BitMask);
4141    NameVals.push_back(Summary.TTRes.InlineBits);
4142  
4143    for (auto &W : Summary.WPDRes)
4144      writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4145                                        W.second);
4146  }
4147  
writeTypeIdCompatibleVtableSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdCompatibleVtableInfo & Summary,ValueEnumerator & VE)4148  static void writeTypeIdCompatibleVtableSummaryRecord(
4149      SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4150      const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
4151      ValueEnumerator &VE) {
4152    NameVals.push_back(StrtabBuilder.add(Id));
4153    NameVals.push_back(Id.size());
4154  
4155    for (auto &P : Summary) {
4156      NameVals.push_back(P.AddressPointOffset);
4157      NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4158    }
4159  }
4160  
writeFunctionHeapProfileRecords(BitstreamWriter & Stream,FunctionSummary * FS,unsigned CallsiteAbbrev,unsigned AllocAbbrev,bool PerModule,std::function<unsigned (const ValueInfo & VI)> GetValueID,std::function<unsigned (unsigned)> GetStackIndex)4161  static void writeFunctionHeapProfileRecords(
4162      BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4163      unsigned AllocAbbrev, bool PerModule,
4164      std::function<unsigned(const ValueInfo &VI)> GetValueID,
4165      std::function<unsigned(unsigned)> GetStackIndex) {
4166    SmallVector<uint64_t> Record;
4167  
4168    for (auto &CI : FS->callsites()) {
4169      Record.clear();
4170      // Per module callsite clones should always have a single entry of
4171      // value 0.
4172      assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4173      Record.push_back(GetValueID(CI.Callee));
4174      if (!PerModule) {
4175        Record.push_back(CI.StackIdIndices.size());
4176        Record.push_back(CI.Clones.size());
4177      }
4178      for (auto Id : CI.StackIdIndices)
4179        Record.push_back(GetStackIndex(Id));
4180      if (!PerModule) {
4181        for (auto V : CI.Clones)
4182          Record.push_back(V);
4183      }
4184      Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4185                                  : bitc::FS_COMBINED_CALLSITE_INFO,
4186                        Record, CallsiteAbbrev);
4187    }
4188  
4189    for (auto &AI : FS->allocs()) {
4190      Record.clear();
4191      // Per module alloc versions should always have a single entry of
4192      // value 0.
4193      assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4194      Record.push_back(AI.MIBs.size());
4195      if (!PerModule)
4196        Record.push_back(AI.Versions.size());
4197      for (auto &MIB : AI.MIBs) {
4198        Record.push_back((uint8_t)MIB.AllocType);
4199        Record.push_back(MIB.StackIdIndices.size());
4200        for (auto Id : MIB.StackIdIndices)
4201          Record.push_back(GetStackIndex(Id));
4202      }
4203      if (!PerModule) {
4204        for (auto V : AI.Versions)
4205          Record.push_back(V);
4206      }
4207      assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size());
4208      if (!AI.TotalSizes.empty()) {
4209        for (auto Size : AI.TotalSizes)
4210          Record.push_back(Size);
4211      }
4212      Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4213                                  : bitc::FS_COMBINED_ALLOC_INFO,
4214                        Record, AllocAbbrev);
4215    }
4216  }
4217  
4218  // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsRelBFAbbrev,unsigned FSCallsProfileAbbrev,unsigned CallsiteAbbrev,unsigned AllocAbbrev,const Function & F)4219  void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4220      SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4221      unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4222      unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4223      unsigned AllocAbbrev, const Function &F) {
4224    NameVals.push_back(ValueID);
4225  
4226    FunctionSummary *FS = cast<FunctionSummary>(Summary);
4227  
4228    writeFunctionTypeMetadataRecords(
4229        Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4230          return {VE.getValueID(VI.getValue())};
4231        });
4232  
4233    writeFunctionHeapProfileRecords(
4234        Stream, FS, CallsiteAbbrev, AllocAbbrev,
4235        /*PerModule*/ true,
4236        /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4237        /*GetStackIndex*/ [&](unsigned I) { return I; });
4238  
4239    auto SpecialRefCnts = FS->specialRefCounts();
4240    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4241    NameVals.push_back(FS->instCount());
4242    NameVals.push_back(getEncodedFFlags(FS->fflags()));
4243    NameVals.push_back(FS->refs().size());
4244    NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
4245    NameVals.push_back(SpecialRefCnts.second); // worefcnt
4246  
4247    for (auto &RI : FS->refs())
4248      NameVals.push_back(getValueId(RI));
4249  
4250    const bool UseRelBFRecord =
4251        WriteRelBFToSummary && !F.hasProfileData() &&
4252        ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4253    for (auto &ECI : FS->calls()) {
4254      NameVals.push_back(getValueId(ECI.first));
4255      if (UseRelBFRecord)
4256        NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4257      else
4258        NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4259    }
4260  
4261    unsigned FSAbbrev =
4262        (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4263    unsigned Code =
4264        (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4265  
4266    // Emit the finished record.
4267    Stream.EmitRecord(Code, NameVals, FSAbbrev);
4268    NameVals.clear();
4269  }
4270  
4271  // Collect the global value references in the given variable's initializer,
4272  // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev,unsigned FSModVTableRefsAbbrev)4273  void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4274      const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4275      unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4276    auto VI = Index->getValueInfo(V.getGUID());
4277    if (!VI || VI.getSummaryList().empty()) {
4278      // Only declarations should not have a summary (a declaration might however
4279      // have a summary if the def was in module level asm).
4280      assert(V.isDeclaration());
4281      return;
4282    }
4283    auto *Summary = VI.getSummaryList()[0].get();
4284    NameVals.push_back(VE.getValueID(&V));
4285    GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4286    NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4287    NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4288  
4289    auto VTableFuncs = VS->vTableFuncs();
4290    if (!VTableFuncs.empty())
4291      NameVals.push_back(VS->refs().size());
4292  
4293    unsigned SizeBeforeRefs = NameVals.size();
4294    for (auto &RI : VS->refs())
4295      NameVals.push_back(VE.getValueID(RI.getValue()));
4296    // Sort the refs for determinism output, the vector returned by FS->refs() has
4297    // been initialized from a DenseSet.
4298    llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4299  
4300    if (VTableFuncs.empty())
4301      Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4302                        FSModRefsAbbrev);
4303    else {
4304      // VTableFuncs pairs should already be sorted by offset.
4305      for (auto &P : VTableFuncs) {
4306        NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4307        NameVals.push_back(P.VTableOffset);
4308      }
4309  
4310      Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4311                        FSModVTableRefsAbbrev);
4312    }
4313    NameVals.clear();
4314  }
4315  
4316  /// Emit the per-module summary section alongside the rest of
4317  /// the module's bitcode.
writePerModuleGlobalValueSummary()4318  void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4319    // By default we compile with ThinLTO if the module has a summary, but the
4320    // client can request full LTO with a module flag.
4321    bool IsThinLTO = true;
4322    if (auto *MD =
4323            mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4324      IsThinLTO = MD->getZExtValue();
4325    Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4326                                   : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4327                         4);
4328  
4329    Stream.EmitRecord(
4330        bitc::FS_VERSION,
4331        ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4332  
4333    // Write the index flags.
4334    uint64_t Flags = 0;
4335    // Bits 1-3 are set only in the combined index, skip them.
4336    if (Index->enableSplitLTOUnit())
4337      Flags |= 0x8;
4338    if (Index->hasUnifiedLTO())
4339      Flags |= 0x200;
4340  
4341    Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4342  
4343    if (Index->begin() == Index->end()) {
4344      Stream.ExitBlock();
4345      return;
4346    }
4347  
4348    for (const auto &GVI : valueIds()) {
4349      Stream.EmitRecord(bitc::FS_VALUE_GUID,
4350                        ArrayRef<uint64_t>{GVI.second, GVI.first});
4351    }
4352  
4353    if (!Index->stackIds().empty()) {
4354      auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4355      StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4356      // numids x stackid
4357      StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4358      StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4359      unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4360      Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4361    }
4362  
4363    // Abbrev for FS_PERMODULE_PROFILE.
4364    auto Abbv = std::make_shared<BitCodeAbbrev>();
4365    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4366    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4367    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags
4368    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4369    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4370    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4371    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4372    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4373    // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4374    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4375    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4376    unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4377  
4378    // Abbrev for FS_PERMODULE_RELBF.
4379    Abbv = std::make_shared<BitCodeAbbrev>();
4380    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4381    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4382    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4383    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4384    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4385    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4386    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4387    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4388    // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4389    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4390    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4391    unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4392  
4393    // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4394    Abbv = std::make_shared<BitCodeAbbrev>();
4395    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4396    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4397    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4398    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4399    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4400    unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4401  
4402    // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4403    Abbv = std::make_shared<BitCodeAbbrev>();
4404    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4405    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4406    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4407    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4408    // numrefs x valueid, n x (valueid , offset)
4409    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4410    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4411    unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4412  
4413    // Abbrev for FS_ALIAS.
4414    Abbv = std::make_shared<BitCodeAbbrev>();
4415    Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4416    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4417    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4418    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4419    unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4420  
4421    // Abbrev for FS_TYPE_ID_METADATA
4422    Abbv = std::make_shared<BitCodeAbbrev>();
4423    Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4424    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4425    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4426    // n x (valueid , offset)
4427    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4428    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4429    unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4430  
4431    Abbv = std::make_shared<BitCodeAbbrev>();
4432    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4433    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4434    // n x stackidindex
4435    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4436    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4437    unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4438  
4439    Abbv = std::make_shared<BitCodeAbbrev>();
4440    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4441    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4442    // n x (alloc type, numstackids, numstackids x stackidindex)
4443    // optional: nummib x total size
4444    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4445    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4446    unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4447  
4448    SmallVector<uint64_t, 64> NameVals;
4449    // Iterate over the list of functions instead of the Index to
4450    // ensure the ordering is stable.
4451    for (const Function &F : M) {
4452      // Summary emission does not support anonymous functions, they have to
4453      // renamed using the anonymous function renaming pass.
4454      if (!F.hasName())
4455        report_fatal_error("Unexpected anonymous function when writing summary");
4456  
4457      ValueInfo VI = Index->getValueInfo(F.getGUID());
4458      if (!VI || VI.getSummaryList().empty()) {
4459        // Only declarations should not have a summary (a declaration might
4460        // however have a summary if the def was in module level asm).
4461        assert(F.isDeclaration());
4462        continue;
4463      }
4464      auto *Summary = VI.getSummaryList()[0].get();
4465      writePerModuleFunctionSummaryRecord(
4466          NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4467          FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4468    }
4469  
4470    // Capture references from GlobalVariable initializers, which are outside
4471    // of a function scope.
4472    for (const GlobalVariable &G : M.globals())
4473      writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4474                                 FSModVTableRefsAbbrev);
4475  
4476    for (const GlobalAlias &A : M.aliases()) {
4477      auto *Aliasee = A.getAliaseeObject();
4478      // Skip ifunc and nameless functions which don't have an entry in the
4479      // summary.
4480      if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4481        continue;
4482      auto AliasId = VE.getValueID(&A);
4483      auto AliaseeId = VE.getValueID(Aliasee);
4484      NameVals.push_back(AliasId);
4485      auto *Summary = Index->getGlobalValueSummary(A);
4486      AliasSummary *AS = cast<AliasSummary>(Summary);
4487      NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4488      NameVals.push_back(AliaseeId);
4489      Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4490      NameVals.clear();
4491    }
4492  
4493    for (auto &S : Index->typeIdCompatibleVtableMap()) {
4494      writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4495                                               S.second, VE);
4496      Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4497                        TypeIdCompatibleVtableAbbrev);
4498      NameVals.clear();
4499    }
4500  
4501    if (Index->getBlockCount())
4502      Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4503                        ArrayRef<uint64_t>{Index->getBlockCount()});
4504  
4505    Stream.ExitBlock();
4506  }
4507  
4508  /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()4509  void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4510    Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4511    Stream.EmitRecord(
4512        bitc::FS_VERSION,
4513        ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4514  
4515    // Write the index flags.
4516    Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4517  
4518    for (const auto &GVI : valueIds()) {
4519      Stream.EmitRecord(bitc::FS_VALUE_GUID,
4520                        ArrayRef<uint64_t>{GVI.second, GVI.first});
4521    }
4522  
4523    // Write the stack ids used by this index, which will be a subset of those in
4524    // the full index in the case of distributed indexes.
4525    if (!StackIds.empty()) {
4526      auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4527      StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4528      // numids x stackid
4529      StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4530      StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4531      unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4532      Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4533    }
4534  
4535    // Abbrev for FS_COMBINED_PROFILE.
4536    auto Abbv = std::make_shared<BitCodeAbbrev>();
4537    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4538    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4539    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4540    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4542    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4543    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4544    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4545    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4546    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4547    // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4548    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4549    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4550    unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4551  
4552    // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4553    Abbv = std::make_shared<BitCodeAbbrev>();
4554    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4555    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4556    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4557    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4558    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4559    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4560    unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4561  
4562    // Abbrev for FS_COMBINED_ALIAS.
4563    Abbv = std::make_shared<BitCodeAbbrev>();
4564    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4565    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4566    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4567    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4568    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4569    unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4570  
4571    Abbv = std::make_shared<BitCodeAbbrev>();
4572    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4573    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4574    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4575    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4576    // numstackindices x stackidindex, numver x version
4577    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4578    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4579    unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4580  
4581    Abbv = std::make_shared<BitCodeAbbrev>();
4582    Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4583    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4584    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4585    // nummib x (alloc type, numstackids, numstackids x stackidindex),
4586    // numver x version
4587    // optional: nummib x total size
4588    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4589    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4590    unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4591  
4592    auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool {
4593      if (DecSummaries == nullptr)
4594        return false;
4595      return DecSummaries->count(GVS);
4596    };
4597  
4598    // The aliases are emitted as a post-pass, and will point to the value
4599    // id of the aliasee. Save them in a vector for post-processing.
4600    SmallVector<AliasSummary *, 64> Aliases;
4601  
4602    // Save the value id for each summary for alias emission.
4603    DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4604  
4605    SmallVector<uint64_t, 64> NameVals;
4606  
4607    // Set that will be populated during call to writeFunctionTypeMetadataRecords
4608    // with the type ids referenced by this index file.
4609    std::set<GlobalValue::GUID> ReferencedTypeIds;
4610  
4611    // For local linkage, we also emit the original name separately
4612    // immediately after the record.
4613    auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4614      // We don't need to emit the original name if we are writing the index for
4615      // distributed backends (in which case ModuleToSummariesForIndex is
4616      // non-null). The original name is only needed during the thin link, since
4617      // for SamplePGO the indirect call targets for local functions have
4618      // have the original name annotated in profile.
4619      // Continue to emit it when writing out the entire combined index, which is
4620      // used in testing the thin link via llvm-lto.
4621      if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4622        return;
4623      NameVals.push_back(S.getOriginalName());
4624      Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4625      NameVals.clear();
4626    };
4627  
4628    std::set<GlobalValue::GUID> DefOrUseGUIDs;
4629    forEachSummary([&](GVInfo I, bool IsAliasee) {
4630      GlobalValueSummary *S = I.second;
4631      assert(S);
4632      DefOrUseGUIDs.insert(I.first);
4633      for (const ValueInfo &VI : S->refs())
4634        DefOrUseGUIDs.insert(VI.getGUID());
4635  
4636      auto ValueId = getValueId(I.first);
4637      assert(ValueId);
4638      SummaryToValueIdMap[S] = *ValueId;
4639  
4640      // If this is invoked for an aliasee, we want to record the above
4641      // mapping, but then not emit a summary entry (if the aliasee is
4642      // to be imported, we will invoke this separately with IsAliasee=false).
4643      if (IsAliasee)
4644        return;
4645  
4646      if (auto *AS = dyn_cast<AliasSummary>(S)) {
4647        // Will process aliases as a post-pass because the reader wants all
4648        // global to be loaded first.
4649        Aliases.push_back(AS);
4650        return;
4651      }
4652  
4653      if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4654        NameVals.push_back(*ValueId);
4655        assert(ModuleIdMap.count(VS->modulePath()));
4656        NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4657        NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4658        NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4659        for (auto &RI : VS->refs()) {
4660          auto RefValueId = getValueId(RI.getGUID());
4661          if (!RefValueId)
4662            continue;
4663          NameVals.push_back(*RefValueId);
4664        }
4665  
4666        // Emit the finished record.
4667        Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4668                          FSModRefsAbbrev);
4669        NameVals.clear();
4670        MaybeEmitOriginalName(*S);
4671        return;
4672      }
4673  
4674      auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4675        if (!VI)
4676          return std::nullopt;
4677        return getValueId(VI.getGUID());
4678      };
4679  
4680      auto *FS = cast<FunctionSummary>(S);
4681      writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4682      getReferencedTypeIds(FS, ReferencedTypeIds);
4683  
4684      writeFunctionHeapProfileRecords(
4685          Stream, FS, CallsiteAbbrev, AllocAbbrev,
4686          /*PerModule*/ false,
4687          /*GetValueId*/
4688          [&](const ValueInfo &VI) -> unsigned {
4689            std::optional<unsigned> ValueID = GetValueId(VI);
4690            // This can happen in shared index files for distributed ThinLTO if
4691            // the callee function summary is not included. Record 0 which we
4692            // will have to deal with conservatively when doing any kind of
4693            // validation in the ThinLTO backends.
4694            if (!ValueID)
4695              return 0;
4696            return *ValueID;
4697          },
4698          /*GetStackIndex*/
4699          [&](unsigned I) {
4700            // Get the corresponding index into the list of StackIds actually
4701            // being written for this combined index (which may be a subset in
4702            // the case of distributed indexes).
4703            assert(StackIdIndicesToIndex.contains(I));
4704            return StackIdIndicesToIndex[I];
4705          });
4706  
4707      NameVals.push_back(*ValueId);
4708      assert(ModuleIdMap.count(FS->modulePath()));
4709      NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4710      NameVals.push_back(
4711          getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS)));
4712      NameVals.push_back(FS->instCount());
4713      NameVals.push_back(getEncodedFFlags(FS->fflags()));
4714      NameVals.push_back(FS->entryCount());
4715  
4716      // Fill in below
4717      NameVals.push_back(0); // numrefs
4718      NameVals.push_back(0); // rorefcnt
4719      NameVals.push_back(0); // worefcnt
4720  
4721      unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4722      for (auto &RI : FS->refs()) {
4723        auto RefValueId = getValueId(RI.getGUID());
4724        if (!RefValueId)
4725          continue;
4726        NameVals.push_back(*RefValueId);
4727        if (RI.isReadOnly())
4728          RORefCnt++;
4729        else if (RI.isWriteOnly())
4730          WORefCnt++;
4731        Count++;
4732      }
4733      NameVals[6] = Count;
4734      NameVals[7] = RORefCnt;
4735      NameVals[8] = WORefCnt;
4736  
4737      for (auto &EI : FS->calls()) {
4738        // If this GUID doesn't have a value id, it doesn't have a function
4739        // summary and we don't need to record any calls to it.
4740        std::optional<unsigned> CallValueId = GetValueId(EI.first);
4741        if (!CallValueId)
4742          continue;
4743        NameVals.push_back(*CallValueId);
4744        NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4745      }
4746  
4747      // Emit the finished record.
4748      Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4749                        FSCallsProfileAbbrev);
4750      NameVals.clear();
4751      MaybeEmitOriginalName(*S);
4752    });
4753  
4754    for (auto *AS : Aliases) {
4755      auto AliasValueId = SummaryToValueIdMap[AS];
4756      assert(AliasValueId);
4757      NameVals.push_back(AliasValueId);
4758      assert(ModuleIdMap.count(AS->modulePath()));
4759      NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4760      NameVals.push_back(
4761          getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS)));
4762      auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4763      assert(AliaseeValueId);
4764      NameVals.push_back(AliaseeValueId);
4765  
4766      // Emit the finished record.
4767      Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4768      NameVals.clear();
4769      MaybeEmitOriginalName(*AS);
4770  
4771      if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4772        getReferencedTypeIds(FS, ReferencedTypeIds);
4773    }
4774  
4775    if (!Index.cfiFunctionDefs().empty()) {
4776      for (auto &S : Index.cfiFunctionDefs()) {
4777        if (DefOrUseGUIDs.count(
4778                GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4779          NameVals.push_back(StrtabBuilder.add(S));
4780          NameVals.push_back(S.size());
4781        }
4782      }
4783      if (!NameVals.empty()) {
4784        Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4785        NameVals.clear();
4786      }
4787    }
4788  
4789    if (!Index.cfiFunctionDecls().empty()) {
4790      for (auto &S : Index.cfiFunctionDecls()) {
4791        if (DefOrUseGUIDs.count(
4792                GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4793          NameVals.push_back(StrtabBuilder.add(S));
4794          NameVals.push_back(S.size());
4795        }
4796      }
4797      if (!NameVals.empty()) {
4798        Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4799        NameVals.clear();
4800      }
4801    }
4802  
4803    // Walk the GUIDs that were referenced, and write the
4804    // corresponding type id records.
4805    for (auto &T : ReferencedTypeIds) {
4806      auto TidIter = Index.typeIds().equal_range(T);
4807      for (auto It = TidIter.first; It != TidIter.second; ++It) {
4808        writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4809                                 It->second.second);
4810        Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4811        NameVals.clear();
4812      }
4813    }
4814  
4815    if (Index.getBlockCount())
4816      Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4817                        ArrayRef<uint64_t>{Index.getBlockCount()});
4818  
4819    Stream.ExitBlock();
4820  }
4821  
4822  /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4823  /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)4824  static void writeIdentificationBlock(BitstreamWriter &Stream) {
4825    Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4826  
4827    // Write the "user readable" string identifying the bitcode producer
4828    auto Abbv = std::make_shared<BitCodeAbbrev>();
4829    Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4830    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4831    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4832    auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4833    writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4834                      "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4835  
4836    // Write the epoch version
4837    Abbv = std::make_shared<BitCodeAbbrev>();
4838    Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4839    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4840    auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4841    constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4842    Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4843    Stream.ExitBlock();
4844  }
4845  
writeModuleHash(StringRef View)4846  void ModuleBitcodeWriter::writeModuleHash(StringRef View) {
4847    // Emit the module's hash.
4848    // MODULE_CODE_HASH: [5*i32]
4849    if (GenerateHash) {
4850      uint32_t Vals[5];
4851      Hasher.update(ArrayRef<uint8_t>(
4852          reinterpret_cast<const uint8_t *>(View.data()), View.size()));
4853      std::array<uint8_t, 20> Hash = Hasher.result();
4854      for (int Pos = 0; Pos < 20; Pos += 4) {
4855        Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4856      }
4857  
4858      // Emit the finished record.
4859      Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4860  
4861      if (ModHash)
4862        // Save the written hash value.
4863        llvm::copy(Vals, std::begin(*ModHash));
4864    }
4865  }
4866  
write()4867  void ModuleBitcodeWriter::write() {
4868    writeIdentificationBlock(Stream);
4869  
4870    Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4871    // We will want to write the module hash at this point. Block any flushing so
4872    // we can have access to the whole underlying data later.
4873    Stream.markAndBlockFlushing();
4874  
4875    writeModuleVersion();
4876  
4877    // Emit blockinfo, which defines the standard abbreviations etc.
4878    writeBlockInfo();
4879  
4880    // Emit information describing all of the types in the module.
4881    writeTypeTable();
4882  
4883    // Emit information about attribute groups.
4884    writeAttributeGroupTable();
4885  
4886    // Emit information about parameter attributes.
4887    writeAttributeTable();
4888  
4889    writeComdats();
4890  
4891    // Emit top-level description of module, including target triple, inline asm,
4892    // descriptors for global variables, and function prototype info.
4893    writeModuleInfo();
4894  
4895    // Emit constants.
4896    writeModuleConstants();
4897  
4898    // Emit metadata kind names.
4899    writeModuleMetadataKinds();
4900  
4901    // Emit metadata.
4902    writeModuleMetadata();
4903  
4904    // Emit module-level use-lists.
4905    if (VE.shouldPreserveUseListOrder())
4906      writeUseListBlock(nullptr);
4907  
4908    writeOperandBundleTags();
4909    writeSyncScopeNames();
4910  
4911    // Emit function bodies.
4912    DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4913    for (const Function &F : M)
4914      if (!F.isDeclaration())
4915        writeFunction(F, FunctionToBitcodeIndex);
4916  
4917    // Need to write after the above call to WriteFunction which populates
4918    // the summary information in the index.
4919    if (Index)
4920      writePerModuleGlobalValueSummary();
4921  
4922    writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4923  
4924    writeModuleHash(Stream.getMarkedBufferAndResumeFlushing());
4925  
4926    Stream.ExitBlock();
4927  }
4928  
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)4929  static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4930                                 uint32_t &Position) {
4931    support::endian::write32le(&Buffer[Position], Value);
4932    Position += 4;
4933  }
4934  
4935  /// If generating a bc file on darwin, we have to emit a
4936  /// header and trailer to make it compatible with the system archiver.  To do
4937  /// this we emit the following header, and then emit a trailer that pads the
4938  /// file out to be a multiple of 16 bytes.
4939  ///
4940  /// struct bc_header {
4941  ///   uint32_t Magic;         // 0x0B17C0DE
4942  ///   uint32_t Version;       // Version, currently always 0.
4943  ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4944  ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4945  ///   uint32_t CPUType;       // CPU specifier.
4946  ///   ... potentially more later ...
4947  /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4948  static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4949                                           const Triple &TT) {
4950    unsigned CPUType = ~0U;
4951  
4952    // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4953    // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4954    // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4955    // specific constants here because they are implicitly part of the Darwin ABI.
4956    enum {
4957      DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4958      DARWIN_CPU_TYPE_X86        = 7,
4959      DARWIN_CPU_TYPE_ARM        = 12,
4960      DARWIN_CPU_TYPE_POWERPC    = 18
4961    };
4962  
4963    Triple::ArchType Arch = TT.getArch();
4964    if (Arch == Triple::x86_64)
4965      CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4966    else if (Arch == Triple::x86)
4967      CPUType = DARWIN_CPU_TYPE_X86;
4968    else if (Arch == Triple::ppc)
4969      CPUType = DARWIN_CPU_TYPE_POWERPC;
4970    else if (Arch == Triple::ppc64)
4971      CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4972    else if (Arch == Triple::arm || Arch == Triple::thumb)
4973      CPUType = DARWIN_CPU_TYPE_ARM;
4974  
4975    // Traditional Bitcode starts after header.
4976    assert(Buffer.size() >= BWH_HeaderSize &&
4977           "Expected header size to be reserved");
4978    unsigned BCOffset = BWH_HeaderSize;
4979    unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4980  
4981    // Write the magic and version.
4982    unsigned Position = 0;
4983    writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4984    writeInt32ToBuffer(0, Buffer, Position); // Version.
4985    writeInt32ToBuffer(BCOffset, Buffer, Position);
4986    writeInt32ToBuffer(BCSize, Buffer, Position);
4987    writeInt32ToBuffer(CPUType, Buffer, Position);
4988  
4989    // If the file is not a multiple of 16 bytes, insert dummy padding.
4990    while (Buffer.size() & 15)
4991      Buffer.push_back(0);
4992  }
4993  
4994  /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4995  static void writeBitcodeHeader(BitstreamWriter &Stream) {
4996    // Emit the file header.
4997    Stream.Emit((unsigned)'B', 8);
4998    Stream.Emit((unsigned)'C', 8);
4999    Stream.Emit(0x0, 4);
5000    Stream.Emit(0xC, 4);
5001    Stream.Emit(0xE, 4);
5002    Stream.Emit(0xD, 4);
5003  }
5004  
BitcodeWriter(SmallVectorImpl<char> & Buffer)5005  BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
5006      : Stream(new BitstreamWriter(Buffer)) {
5007    writeBitcodeHeader(*Stream);
5008  }
5009  
BitcodeWriter(raw_ostream & FS)5010  BitcodeWriter::BitcodeWriter(raw_ostream &FS)
5011      : Stream(new BitstreamWriter(FS, FlushThreshold)) {
5012    writeBitcodeHeader(*Stream);
5013  }
5014  
~BitcodeWriter()5015  BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
5016  
writeBlob(unsigned Block,unsigned Record,StringRef Blob)5017  void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
5018    Stream->EnterSubblock(Block, 3);
5019  
5020    auto Abbv = std::make_shared<BitCodeAbbrev>();
5021    Abbv->Add(BitCodeAbbrevOp(Record));
5022    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
5023    auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
5024  
5025    Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
5026  
5027    Stream->ExitBlock();
5028  }
5029  
writeSymtab()5030  void BitcodeWriter::writeSymtab() {
5031    assert(!WroteStrtab && !WroteSymtab);
5032  
5033    // If any module has module-level inline asm, we will require a registered asm
5034    // parser for the target so that we can create an accurate symbol table for
5035    // the module.
5036    for (Module *M : Mods) {
5037      if (M->getModuleInlineAsm().empty())
5038        continue;
5039  
5040      std::string Err;
5041      const Triple TT(M->getTargetTriple());
5042      const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
5043      if (!T || !T->hasMCAsmParser())
5044        return;
5045    }
5046  
5047    WroteSymtab = true;
5048    SmallVector<char, 0> Symtab;
5049    // The irsymtab::build function may be unable to create a symbol table if the
5050    // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5051    // table is not required for correctness, but we still want to be able to
5052    // write malformed modules to bitcode files, so swallow the error.
5053    if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
5054      consumeError(std::move(E));
5055      return;
5056    }
5057  
5058    writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
5059              {Symtab.data(), Symtab.size()});
5060  }
5061  
writeStrtab()5062  void BitcodeWriter::writeStrtab() {
5063    assert(!WroteStrtab);
5064  
5065    std::vector<char> Strtab;
5066    StrtabBuilder.finalizeInOrder();
5067    Strtab.resize(StrtabBuilder.getSize());
5068    StrtabBuilder.write((uint8_t *)Strtab.data());
5069  
5070    writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
5071              {Strtab.data(), Strtab.size()});
5072  
5073    WroteStrtab = true;
5074  }
5075  
copyStrtab(StringRef Strtab)5076  void BitcodeWriter::copyStrtab(StringRef Strtab) {
5077    writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
5078    WroteStrtab = true;
5079  }
5080  
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)5081  void BitcodeWriter::writeModule(const Module &M,
5082                                  bool ShouldPreserveUseListOrder,
5083                                  const ModuleSummaryIndex *Index,
5084                                  bool GenerateHash, ModuleHash *ModHash) {
5085    assert(!WroteStrtab);
5086  
5087    // The Mods vector is used by irsymtab::build, which requires non-const
5088    // Modules in case it needs to materialize metadata. But the bitcode writer
5089    // requires that the module is materialized, so we can cast to non-const here,
5090    // after checking that it is in fact materialized.
5091    assert(M.isMaterialized());
5092    Mods.push_back(const_cast<Module *>(&M));
5093  
5094    ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream,
5095                                     ShouldPreserveUseListOrder, Index,
5096                                     GenerateHash, ModHash);
5097    ModuleWriter.write();
5098  }
5099  
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex,const GVSummaryPtrSet * DecSummaries)5100  void BitcodeWriter::writeIndex(
5101      const ModuleSummaryIndex *Index,
5102      const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
5103      const GVSummaryPtrSet *DecSummaries) {
5104    IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries,
5105                                   ModuleToSummariesForIndex);
5106    IndexWriter.write();
5107  }
5108  
5109  /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)5110  void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5111                                bool ShouldPreserveUseListOrder,
5112                                const ModuleSummaryIndex *Index,
5113                                bool GenerateHash, ModuleHash *ModHash) {
5114    auto Write = [&](BitcodeWriter &Writer) {
5115      Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5116                         ModHash);
5117      Writer.writeSymtab();
5118      Writer.writeStrtab();
5119    };
5120    Triple TT(M.getTargetTriple());
5121    if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) {
5122      // If this is darwin or another generic macho target, reserve space for the
5123      // header. Note that the header is computed *after* the output is known, so
5124      // we currently explicitly use a buffer, write to it, and then subsequently
5125      // flush to Out.
5126      SmallVector<char, 0> Buffer;
5127      Buffer.reserve(256 * 1024);
5128      Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5129      BitcodeWriter Writer(Buffer);
5130      Write(Writer);
5131      emitDarwinBCHeaderAndTrailer(Buffer, TT);
5132      Out.write(Buffer.data(), Buffer.size());
5133    } else {
5134      BitcodeWriter Writer(Out);
5135      Write(Writer);
5136    }
5137  }
5138  
write()5139  void IndexBitcodeWriter::write() {
5140    Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5141  
5142    writeModuleVersion();
5143  
5144    // Write the module paths in the combined index.
5145    writeModStrings();
5146  
5147    // Write the summary combined index records.
5148    writeCombinedGlobalValueSummary();
5149  
5150    Stream.ExitBlock();
5151  }
5152  
5153  // Write the specified module summary index to the given raw output stream,
5154  // where it will be written in a new bitcode block. This is used when
5155  // writing the combined index file for ThinLTO. When writing a subset of the
5156  // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
writeIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex,const GVSummaryPtrSet * DecSummaries)5157  void llvm::writeIndexToFile(
5158      const ModuleSummaryIndex &Index, raw_ostream &Out,
5159      const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
5160      const GVSummaryPtrSet *DecSummaries) {
5161    SmallVector<char, 0> Buffer;
5162    Buffer.reserve(256 * 1024);
5163  
5164    BitcodeWriter Writer(Buffer);
5165    Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries);
5166    Writer.writeStrtab();
5167  
5168    Out.write((char *)&Buffer.front(), Buffer.size());
5169  }
5170  
5171  namespace {
5172  
5173  /// Class to manage the bitcode writing for a thin link bitcode file.
5174  class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5175    /// ModHash is for use in ThinLTO incremental build, generated while writing
5176    /// the module bitcode file.
5177    const ModuleHash *ModHash;
5178  
5179  public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5180    ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5181                          BitstreamWriter &Stream,
5182                          const ModuleSummaryIndex &Index,
5183                          const ModuleHash &ModHash)
5184        : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5185                                  /*ShouldPreserveUseListOrder=*/false, &Index),
5186          ModHash(&ModHash) {}
5187  
5188    void write();
5189  
5190  private:
5191    void writeSimplifiedModuleInfo();
5192  };
5193  
5194  } // end anonymous namespace
5195  
5196  // This function writes a simpilified module info for thin link bitcode file.
5197  // It only contains the source file name along with the name(the offset and
5198  // size in strtab) and linkage for global values. For the global value info
5199  // entry, in order to keep linkage at offset 5, there are three zeros used
5200  // as padding.
writeSimplifiedModuleInfo()5201  void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5202    SmallVector<unsigned, 64> Vals;
5203    // Emit the module's source file name.
5204    {
5205      StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5206      BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5207      if (Bits == SE_Char6)
5208        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5209      else if (Bits == SE_Fixed7)
5210        AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5211  
5212      // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5213      auto Abbv = std::make_shared<BitCodeAbbrev>();
5214      Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5215      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5216      Abbv->Add(AbbrevOpToUse);
5217      unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5218  
5219      for (const auto P : M.getSourceFileName())
5220        Vals.push_back((unsigned char)P);
5221  
5222      Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5223      Vals.clear();
5224    }
5225  
5226    // Emit the global variable information.
5227    for (const GlobalVariable &GV : M.globals()) {
5228      // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5229      Vals.push_back(StrtabBuilder.add(GV.getName()));
5230      Vals.push_back(GV.getName().size());
5231      Vals.push_back(0);
5232      Vals.push_back(0);
5233      Vals.push_back(0);
5234      Vals.push_back(getEncodedLinkage(GV));
5235  
5236      Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5237      Vals.clear();
5238    }
5239  
5240    // Emit the function proto information.
5241    for (const Function &F : M) {
5242      // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
5243      Vals.push_back(StrtabBuilder.add(F.getName()));
5244      Vals.push_back(F.getName().size());
5245      Vals.push_back(0);
5246      Vals.push_back(0);
5247      Vals.push_back(0);
5248      Vals.push_back(getEncodedLinkage(F));
5249  
5250      Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5251      Vals.clear();
5252    }
5253  
5254    // Emit the alias information.
5255    for (const GlobalAlias &A : M.aliases()) {
5256      // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5257      Vals.push_back(StrtabBuilder.add(A.getName()));
5258      Vals.push_back(A.getName().size());
5259      Vals.push_back(0);
5260      Vals.push_back(0);
5261      Vals.push_back(0);
5262      Vals.push_back(getEncodedLinkage(A));
5263  
5264      Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5265      Vals.clear();
5266    }
5267  
5268    // Emit the ifunc information.
5269    for (const GlobalIFunc &I : M.ifuncs()) {
5270      // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5271      Vals.push_back(StrtabBuilder.add(I.getName()));
5272      Vals.push_back(I.getName().size());
5273      Vals.push_back(0);
5274      Vals.push_back(0);
5275      Vals.push_back(0);
5276      Vals.push_back(getEncodedLinkage(I));
5277  
5278      Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5279      Vals.clear();
5280    }
5281  }
5282  
write()5283  void ThinLinkBitcodeWriter::write() {
5284    Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5285  
5286    writeModuleVersion();
5287  
5288    writeSimplifiedModuleInfo();
5289  
5290    writePerModuleGlobalValueSummary();
5291  
5292    // Write module hash.
5293    Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5294  
5295    Stream.ExitBlock();
5296  }
5297  
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5298  void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5299                                           const ModuleSummaryIndex &Index,
5300                                           const ModuleHash &ModHash) {
5301    assert(!WroteStrtab);
5302  
5303    // The Mods vector is used by irsymtab::build, which requires non-const
5304    // Modules in case it needs to materialize metadata. But the bitcode writer
5305    // requires that the module is materialized, so we can cast to non-const here,
5306    // after checking that it is in fact materialized.
5307    assert(M.isMaterialized());
5308    Mods.push_back(const_cast<Module *>(&M));
5309  
5310    ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5311                                         ModHash);
5312    ThinLinkWriter.write();
5313  }
5314  
5315  // Write the specified thin link bitcode file to the given raw output stream,
5316  // where it will be written in a new bitcode block. This is used when
5317  // writing the per-module index file for ThinLTO.
writeThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5318  void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5319                                        const ModuleSummaryIndex &Index,
5320                                        const ModuleHash &ModHash) {
5321    SmallVector<char, 0> Buffer;
5322    Buffer.reserve(256 * 1024);
5323  
5324    BitcodeWriter Writer(Buffer);
5325    Writer.writeThinLinkBitcode(M, Index, ModHash);
5326    Writer.writeSymtab();
5327    Writer.writeStrtab();
5328  
5329    Out.write((char *)&Buffer.front(), Buffer.size());
5330  }
5331  
getSectionNameForBitcode(const Triple & T)5332  static const char *getSectionNameForBitcode(const Triple &T) {
5333    switch (T.getObjectFormat()) {
5334    case Triple::MachO:
5335      return "__LLVM,__bitcode";
5336    case Triple::COFF:
5337    case Triple::ELF:
5338    case Triple::Wasm:
5339    case Triple::UnknownObjectFormat:
5340      return ".llvmbc";
5341    case Triple::GOFF:
5342      llvm_unreachable("GOFF is not yet implemented");
5343      break;
5344    case Triple::SPIRV:
5345      if (T.getVendor() == Triple::AMD)
5346        return ".llvmbc";
5347      llvm_unreachable("SPIRV is not yet implemented");
5348      break;
5349    case Triple::XCOFF:
5350      llvm_unreachable("XCOFF is not yet implemented");
5351      break;
5352    case Triple::DXContainer:
5353      llvm_unreachable("DXContainer is not yet implemented");
5354      break;
5355    }
5356    llvm_unreachable("Unimplemented ObjectFormatType");
5357  }
5358  
getSectionNameForCommandline(const Triple & T)5359  static const char *getSectionNameForCommandline(const Triple &T) {
5360    switch (T.getObjectFormat()) {
5361    case Triple::MachO:
5362      return "__LLVM,__cmdline";
5363    case Triple::COFF:
5364    case Triple::ELF:
5365    case Triple::Wasm:
5366    case Triple::UnknownObjectFormat:
5367      return ".llvmcmd";
5368    case Triple::GOFF:
5369      llvm_unreachable("GOFF is not yet implemented");
5370      break;
5371    case Triple::SPIRV:
5372      if (T.getVendor() == Triple::AMD)
5373        return ".llvmcmd";
5374      llvm_unreachable("SPIRV is not yet implemented");
5375      break;
5376    case Triple::XCOFF:
5377      llvm_unreachable("XCOFF is not yet implemented");
5378      break;
5379    case Triple::DXContainer:
5380      llvm_unreachable("DXC is not yet implemented");
5381      break;
5382    }
5383    llvm_unreachable("Unimplemented ObjectFormatType");
5384  }
5385  
embedBitcodeInModule(llvm::Module & M,llvm::MemoryBufferRef Buf,bool EmbedBitcode,bool EmbedCmdline,const std::vector<uint8_t> & CmdArgs)5386  void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5387                                  bool EmbedBitcode, bool EmbedCmdline,
5388                                  const std::vector<uint8_t> &CmdArgs) {
5389    // Save llvm.compiler.used and remove it.
5390    SmallVector<Constant *, 2> UsedArray;
5391    SmallVector<GlobalValue *, 4> UsedGlobals;
5392    Type *UsedElementType = PointerType::getUnqual(M.getContext());
5393    GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5394    for (auto *GV : UsedGlobals) {
5395      if (GV->getName() != "llvm.embedded.module" &&
5396          GV->getName() != "llvm.cmdline")
5397        UsedArray.push_back(
5398            ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5399    }
5400    if (Used)
5401      Used->eraseFromParent();
5402  
5403    // Embed the bitcode for the llvm module.
5404    std::string Data;
5405    ArrayRef<uint8_t> ModuleData;
5406    Triple T(M.getTargetTriple());
5407  
5408    if (EmbedBitcode) {
5409      if (Buf.getBufferSize() == 0 ||
5410          !isBitcode((const unsigned char *)Buf.getBufferStart(),
5411                     (const unsigned char *)Buf.getBufferEnd())) {
5412        // If the input is LLVM Assembly, bitcode is produced by serializing
5413        // the module. Use-lists order need to be preserved in this case.
5414        llvm::raw_string_ostream OS(Data);
5415        llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5416        ModuleData =
5417            ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5418      } else
5419        // If the input is LLVM bitcode, write the input byte stream directly.
5420        ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5421                                       Buf.getBufferSize());
5422    }
5423    llvm::Constant *ModuleConstant =
5424        llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5425    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5426        M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5427        ModuleConstant);
5428    GV->setSection(getSectionNameForBitcode(T));
5429    // Set alignment to 1 to prevent padding between two contributions from input
5430    // sections after linking.
5431    GV->setAlignment(Align(1));
5432    UsedArray.push_back(
5433        ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5434    if (llvm::GlobalVariable *Old =
5435            M.getGlobalVariable("llvm.embedded.module", true)) {
5436      assert(Old->hasZeroLiveUses() &&
5437             "llvm.embedded.module can only be used once in llvm.compiler.used");
5438      GV->takeName(Old);
5439      Old->eraseFromParent();
5440    } else {
5441      GV->setName("llvm.embedded.module");
5442    }
5443  
5444    // Skip if only bitcode needs to be embedded.
5445    if (EmbedCmdline) {
5446      // Embed command-line options.
5447      ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5448                                CmdArgs.size());
5449      llvm::Constant *CmdConstant =
5450          llvm::ConstantDataArray::get(M.getContext(), CmdData);
5451      GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5452                                    llvm::GlobalValue::PrivateLinkage,
5453                                    CmdConstant);
5454      GV->setSection(getSectionNameForCommandline(T));
5455      GV->setAlignment(Align(1));
5456      UsedArray.push_back(
5457          ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5458      if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5459        assert(Old->hasZeroLiveUses() &&
5460               "llvm.cmdline can only be used once in llvm.compiler.used");
5461        GV->takeName(Old);
5462        Old->eraseFromParent();
5463      } else {
5464        GV->setName("llvm.cmdline");
5465      }
5466    }
5467  
5468    if (UsedArray.empty())
5469      return;
5470  
5471    // Recreate llvm.compiler.used.
5472    ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5473    auto *NewUsed = new GlobalVariable(
5474        M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5475        llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5476    NewUsed->setSection("llvm.metadata");
5477  }
5478