1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 598 Value *getFnValueByID(unsigned ID, Type *Ty) { 599 if (Ty && Ty->isMetadataTy()) 600 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 601 return ValueList.getValueFwdRef(ID, Ty); 602 } 603 604 Metadata *getFnMetadataByID(unsigned ID) { 605 return MDLoader->getMetadataFwdRefOrLoad(ID); 606 } 607 608 BasicBlock *getBasicBlock(unsigned ID) const { 609 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 610 return FunctionBBs[ID]; 611 } 612 613 AttributeList getAttributes(unsigned i) const { 614 if (i-1 < MAttributes.size()) 615 return MAttributes[i-1]; 616 return AttributeList(); 617 } 618 619 /// Read a value/type pair out of the specified record from slot 'Slot'. 620 /// Increment Slot past the number of slots used in the record. Return true on 621 /// failure. 622 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 623 unsigned InstNum, Value *&ResVal) { 624 if (Slot == Record.size()) return true; 625 unsigned ValNo = (unsigned)Record[Slot++]; 626 // Adjust the ValNo, if it was encoded relative to the InstNum. 627 if (UseRelativeIDs) 628 ValNo = InstNum - ValNo; 629 if (ValNo < InstNum) { 630 // If this is not a forward reference, just return the value we already 631 // have. 632 ResVal = getFnValueByID(ValNo, nullptr); 633 return ResVal == nullptr; 634 } 635 if (Slot == Record.size()) 636 return true; 637 638 unsigned TypeNo = (unsigned)Record[Slot++]; 639 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 640 return ResVal == nullptr; 641 } 642 643 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 644 /// past the number of slots used by the value in the record. Return true if 645 /// there is an error. 646 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 647 unsigned InstNum, Type *Ty, Value *&ResVal) { 648 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 649 return true; 650 // All values currently take a single record slot. 651 ++Slot; 652 return false; 653 } 654 655 /// Like popValue, but does not increment the Slot number. 656 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 657 unsigned InstNum, Type *Ty, Value *&ResVal) { 658 ResVal = getValue(Record, Slot, InstNum, Ty); 659 return ResVal == nullptr; 660 } 661 662 /// Version of getValue that returns ResVal directly, or 0 if there is an 663 /// error. 664 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty) { 666 if (Slot == Record.size()) return nullptr; 667 unsigned ValNo = (unsigned)Record[Slot]; 668 // Adjust the ValNo, if it was encoded relative to the InstNum. 669 if (UseRelativeIDs) 670 ValNo = InstNum - ValNo; 671 return getFnValueByID(ValNo, Ty); 672 } 673 674 /// Like getValue, but decodes signed VBRs. 675 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 676 unsigned InstNum, Type *Ty) { 677 if (Slot == Record.size()) return nullptr; 678 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 679 // Adjust the ValNo, if it was encoded relative to the InstNum. 680 if (UseRelativeIDs) 681 ValNo = InstNum - ValNo; 682 return getFnValueByID(ValNo, Ty); 683 } 684 685 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 686 /// corresponding argument's pointee type. Also upgrades intrinsics that now 687 /// require an elementtype attribute. 688 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 689 690 /// Converts alignment exponent (i.e. power of two (or zero)) to the 691 /// corresponding alignment to use. If alignment is too large, returns 692 /// a corresponding error code. 693 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 694 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 695 Error parseModule( 696 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 697 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 698 699 Error parseComdatRecord(ArrayRef<uint64_t> Record); 700 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 701 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 702 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 703 ArrayRef<uint64_t> Record); 704 705 Error parseAttributeBlock(); 706 Error parseAttributeGroupBlock(); 707 Error parseTypeTable(); 708 Error parseTypeTableBody(); 709 Error parseOperandBundleTags(); 710 Error parseSyncScopeNames(); 711 712 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 713 unsigned NameIndex, Triple &TT); 714 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 715 ArrayRef<uint64_t> Record); 716 Error parseValueSymbolTable(uint64_t Offset = 0); 717 Error parseGlobalValueSymbolTable(); 718 Error parseConstants(); 719 Error rememberAndSkipFunctionBodies(); 720 Error rememberAndSkipFunctionBody(); 721 /// Save the positions of the Metadata blocks and skip parsing the blocks. 722 Error rememberAndSkipMetadata(); 723 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 724 Error parseFunctionBody(Function *F); 725 Error globalCleanup(); 726 Error resolveGlobalAndIndirectSymbolInits(); 727 Error parseUseLists(); 728 Error findFunctionInStream( 729 Function *F, 730 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 731 732 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 733 }; 734 735 /// Class to manage reading and parsing function summary index bitcode 736 /// files/sections. 737 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 738 /// The module index built during parsing. 739 ModuleSummaryIndex &TheIndex; 740 741 /// Indicates whether we have encountered a global value summary section 742 /// yet during parsing. 743 bool SeenGlobalValSummary = false; 744 745 /// Indicates whether we have already parsed the VST, used for error checking. 746 bool SeenValueSymbolTable = false; 747 748 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 749 /// Used to enable on-demand parsing of the VST. 750 uint64_t VSTOffset = 0; 751 752 // Map to save ValueId to ValueInfo association that was recorded in the 753 // ValueSymbolTable. It is used after the VST is parsed to convert 754 // call graph edges read from the function summary from referencing 755 // callees by their ValueId to using the ValueInfo instead, which is how 756 // they are recorded in the summary index being built. 757 // We save a GUID which refers to the same global as the ValueInfo, but 758 // ignoring the linkage, i.e. for values other than local linkage they are 759 // identical. 760 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 761 ValueIdToValueInfoMap; 762 763 /// Map populated during module path string table parsing, from the 764 /// module ID to a string reference owned by the index's module 765 /// path string table, used to correlate with combined index 766 /// summary records. 767 DenseMap<uint64_t, StringRef> ModuleIdMap; 768 769 /// Original source file name recorded in a bitcode record. 770 std::string SourceFileName; 771 772 /// The string identifier given to this module by the client, normally the 773 /// path to the bitcode file. 774 StringRef ModulePath; 775 776 /// For per-module summary indexes, the unique numerical identifier given to 777 /// this module by the client. 778 unsigned ModuleId; 779 780 public: 781 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 782 ModuleSummaryIndex &TheIndex, 783 StringRef ModulePath, unsigned ModuleId); 784 785 Error parseModule(); 786 787 private: 788 void setValueGUID(uint64_t ValueID, StringRef ValueName, 789 GlobalValue::LinkageTypes Linkage, 790 StringRef SourceFileName); 791 Error parseValueSymbolTable( 792 uint64_t Offset, 793 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 794 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 795 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 796 bool IsOldProfileFormat, 797 bool HasProfile, 798 bool HasRelBF); 799 Error parseEntireSummary(unsigned ID); 800 Error parseModuleStringTable(); 801 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 802 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 803 TypeIdCompatibleVtableInfo &TypeId); 804 std::vector<FunctionSummary::ParamAccess> 805 parseParamAccesses(ArrayRef<uint64_t> Record); 806 807 std::pair<ValueInfo, GlobalValue::GUID> 808 getValueInfoFromValueId(unsigned ValueId); 809 810 void addThisModule(); 811 ModuleSummaryIndex::ModuleInfo *getThisModule(); 812 }; 813 814 } // end anonymous namespace 815 816 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 817 Error Err) { 818 if (Err) { 819 std::error_code EC; 820 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 821 EC = EIB.convertToErrorCode(); 822 Ctx.emitError(EIB.message()); 823 }); 824 return EC; 825 } 826 return std::error_code(); 827 } 828 829 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 830 StringRef ProducerIdentification, 831 LLVMContext &Context) 832 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 833 ValueList(Context, Stream.SizeInBytes()) { 834 this->ProducerIdentification = std::string(ProducerIdentification); 835 } 836 837 Error BitcodeReader::materializeForwardReferencedFunctions() { 838 if (WillMaterializeAllForwardRefs) 839 return Error::success(); 840 841 // Prevent recursion. 842 WillMaterializeAllForwardRefs = true; 843 844 while (!BasicBlockFwdRefQueue.empty()) { 845 Function *F = BasicBlockFwdRefQueue.front(); 846 BasicBlockFwdRefQueue.pop_front(); 847 assert(F && "Expected valid function"); 848 if (!BasicBlockFwdRefs.count(F)) 849 // Already materialized. 850 continue; 851 852 // Check for a function that isn't materializable to prevent an infinite 853 // loop. When parsing a blockaddress stored in a global variable, there 854 // isn't a trivial way to check if a function will have a body without a 855 // linear search through FunctionsWithBodies, so just check it here. 856 if (!F->isMaterializable()) 857 return error("Never resolved function from blockaddress"); 858 859 // Try to materialize F. 860 if (Error Err = materialize(F)) 861 return Err; 862 } 863 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 864 865 // Reset state. 866 WillMaterializeAllForwardRefs = false; 867 return Error::success(); 868 } 869 870 //===----------------------------------------------------------------------===// 871 // Helper functions to implement forward reference resolution, etc. 872 //===----------------------------------------------------------------------===// 873 874 static bool hasImplicitComdat(size_t Val) { 875 switch (Val) { 876 default: 877 return false; 878 case 1: // Old WeakAnyLinkage 879 case 4: // Old LinkOnceAnyLinkage 880 case 10: // Old WeakODRLinkage 881 case 11: // Old LinkOnceODRLinkage 882 return true; 883 } 884 } 885 886 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 887 switch (Val) { 888 default: // Map unknown/new linkages to external 889 case 0: 890 return GlobalValue::ExternalLinkage; 891 case 2: 892 return GlobalValue::AppendingLinkage; 893 case 3: 894 return GlobalValue::InternalLinkage; 895 case 5: 896 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 897 case 6: 898 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 899 case 7: 900 return GlobalValue::ExternalWeakLinkage; 901 case 8: 902 return GlobalValue::CommonLinkage; 903 case 9: 904 return GlobalValue::PrivateLinkage; 905 case 12: 906 return GlobalValue::AvailableExternallyLinkage; 907 case 13: 908 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 909 case 14: 910 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 911 case 15: 912 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 913 case 1: // Old value with implicit comdat. 914 case 16: 915 return GlobalValue::WeakAnyLinkage; 916 case 10: // Old value with implicit comdat. 917 case 17: 918 return GlobalValue::WeakODRLinkage; 919 case 4: // Old value with implicit comdat. 920 case 18: 921 return GlobalValue::LinkOnceAnyLinkage; 922 case 11: // Old value with implicit comdat. 923 case 19: 924 return GlobalValue::LinkOnceODRLinkage; 925 } 926 } 927 928 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 929 FunctionSummary::FFlags Flags; 930 Flags.ReadNone = RawFlags & 0x1; 931 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 932 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 933 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 934 Flags.NoInline = (RawFlags >> 4) & 0x1; 935 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 936 return Flags; 937 } 938 939 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 940 // 941 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 942 // visibility: [8, 10). 943 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 944 uint64_t Version) { 945 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 946 // like getDecodedLinkage() above. Any future change to the linkage enum and 947 // to getDecodedLinkage() will need to be taken into account here as above. 948 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 949 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 950 RawFlags = RawFlags >> 4; 951 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 952 // The Live flag wasn't introduced until version 3. For dead stripping 953 // to work correctly on earlier versions, we must conservatively treat all 954 // values as live. 955 bool Live = (RawFlags & 0x2) || Version < 3; 956 bool Local = (RawFlags & 0x4); 957 bool AutoHide = (RawFlags & 0x8); 958 959 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 960 Live, Local, AutoHide); 961 } 962 963 // Decode the flags for GlobalVariable in the summary 964 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 965 return GlobalVarSummary::GVarFlags( 966 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 967 (RawFlags & 0x4) ? true : false, 968 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 969 } 970 971 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 972 switch (Val) { 973 default: // Map unknown visibilities to default. 974 case 0: return GlobalValue::DefaultVisibility; 975 case 1: return GlobalValue::HiddenVisibility; 976 case 2: return GlobalValue::ProtectedVisibility; 977 } 978 } 979 980 static GlobalValue::DLLStorageClassTypes 981 getDecodedDLLStorageClass(unsigned Val) { 982 switch (Val) { 983 default: // Map unknown values to default. 984 case 0: return GlobalValue::DefaultStorageClass; 985 case 1: return GlobalValue::DLLImportStorageClass; 986 case 2: return GlobalValue::DLLExportStorageClass; 987 } 988 } 989 990 static bool getDecodedDSOLocal(unsigned Val) { 991 switch(Val) { 992 default: // Map unknown values to preemptable. 993 case 0: return false; 994 case 1: return true; 995 } 996 } 997 998 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 999 switch (Val) { 1000 case 0: return GlobalVariable::NotThreadLocal; 1001 default: // Map unknown non-zero value to general dynamic. 1002 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1003 case 2: return GlobalVariable::LocalDynamicTLSModel; 1004 case 3: return GlobalVariable::InitialExecTLSModel; 1005 case 4: return GlobalVariable::LocalExecTLSModel; 1006 } 1007 } 1008 1009 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1010 switch (Val) { 1011 default: // Map unknown to UnnamedAddr::None. 1012 case 0: return GlobalVariable::UnnamedAddr::None; 1013 case 1: return GlobalVariable::UnnamedAddr::Global; 1014 case 2: return GlobalVariable::UnnamedAddr::Local; 1015 } 1016 } 1017 1018 static int getDecodedCastOpcode(unsigned Val) { 1019 switch (Val) { 1020 default: return -1; 1021 case bitc::CAST_TRUNC : return Instruction::Trunc; 1022 case bitc::CAST_ZEXT : return Instruction::ZExt; 1023 case bitc::CAST_SEXT : return Instruction::SExt; 1024 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1025 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1026 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1027 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1028 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1029 case bitc::CAST_FPEXT : return Instruction::FPExt; 1030 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1031 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1032 case bitc::CAST_BITCAST : return Instruction::BitCast; 1033 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1034 } 1035 } 1036 1037 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1038 bool IsFP = Ty->isFPOrFPVectorTy(); 1039 // UnOps are only valid for int/fp or vector of int/fp types 1040 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1041 return -1; 1042 1043 switch (Val) { 1044 default: 1045 return -1; 1046 case bitc::UNOP_FNEG: 1047 return IsFP ? Instruction::FNeg : -1; 1048 } 1049 } 1050 1051 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1052 bool IsFP = Ty->isFPOrFPVectorTy(); 1053 // BinOps are only valid for int/fp or vector of int/fp types 1054 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1055 return -1; 1056 1057 switch (Val) { 1058 default: 1059 return -1; 1060 case bitc::BINOP_ADD: 1061 return IsFP ? Instruction::FAdd : Instruction::Add; 1062 case bitc::BINOP_SUB: 1063 return IsFP ? Instruction::FSub : Instruction::Sub; 1064 case bitc::BINOP_MUL: 1065 return IsFP ? Instruction::FMul : Instruction::Mul; 1066 case bitc::BINOP_UDIV: 1067 return IsFP ? -1 : Instruction::UDiv; 1068 case bitc::BINOP_SDIV: 1069 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1070 case bitc::BINOP_UREM: 1071 return IsFP ? -1 : Instruction::URem; 1072 case bitc::BINOP_SREM: 1073 return IsFP ? Instruction::FRem : Instruction::SRem; 1074 case bitc::BINOP_SHL: 1075 return IsFP ? -1 : Instruction::Shl; 1076 case bitc::BINOP_LSHR: 1077 return IsFP ? -1 : Instruction::LShr; 1078 case bitc::BINOP_ASHR: 1079 return IsFP ? -1 : Instruction::AShr; 1080 case bitc::BINOP_AND: 1081 return IsFP ? -1 : Instruction::And; 1082 case bitc::BINOP_OR: 1083 return IsFP ? -1 : Instruction::Or; 1084 case bitc::BINOP_XOR: 1085 return IsFP ? -1 : Instruction::Xor; 1086 } 1087 } 1088 1089 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1090 switch (Val) { 1091 default: return AtomicRMWInst::BAD_BINOP; 1092 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1093 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1094 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1095 case bitc::RMW_AND: return AtomicRMWInst::And; 1096 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1097 case bitc::RMW_OR: return AtomicRMWInst::Or; 1098 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1099 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1100 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1101 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1102 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1103 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1104 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1105 } 1106 } 1107 1108 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1109 switch (Val) { 1110 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1111 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1112 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1113 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1114 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1115 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1116 default: // Map unknown orderings to sequentially-consistent. 1117 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1118 } 1119 } 1120 1121 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1122 switch (Val) { 1123 default: // Map unknown selection kinds to any. 1124 case bitc::COMDAT_SELECTION_KIND_ANY: 1125 return Comdat::Any; 1126 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1127 return Comdat::ExactMatch; 1128 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1129 return Comdat::Largest; 1130 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1131 return Comdat::NoDeduplicate; 1132 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1133 return Comdat::SameSize; 1134 } 1135 } 1136 1137 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1138 FastMathFlags FMF; 1139 if (0 != (Val & bitc::UnsafeAlgebra)) 1140 FMF.setFast(); 1141 if (0 != (Val & bitc::AllowReassoc)) 1142 FMF.setAllowReassoc(); 1143 if (0 != (Val & bitc::NoNaNs)) 1144 FMF.setNoNaNs(); 1145 if (0 != (Val & bitc::NoInfs)) 1146 FMF.setNoInfs(); 1147 if (0 != (Val & bitc::NoSignedZeros)) 1148 FMF.setNoSignedZeros(); 1149 if (0 != (Val & bitc::AllowReciprocal)) 1150 FMF.setAllowReciprocal(); 1151 if (0 != (Val & bitc::AllowContract)) 1152 FMF.setAllowContract(true); 1153 if (0 != (Val & bitc::ApproxFunc)) 1154 FMF.setApproxFunc(); 1155 return FMF; 1156 } 1157 1158 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1159 switch (Val) { 1160 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1161 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1162 } 1163 } 1164 1165 Type *BitcodeReader::getTypeByID(unsigned ID) { 1166 // The type table size is always specified correctly. 1167 if (ID >= TypeList.size()) 1168 return nullptr; 1169 1170 if (Type *Ty = TypeList[ID]) 1171 return Ty; 1172 1173 // If we have a forward reference, the only possible case is when it is to a 1174 // named struct. Just create a placeholder for now. 1175 return TypeList[ID] = createIdentifiedStructType(Context); 1176 } 1177 1178 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1179 StringRef Name) { 1180 auto *Ret = StructType::create(Context, Name); 1181 IdentifiedStructTypes.push_back(Ret); 1182 return Ret; 1183 } 1184 1185 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1186 auto *Ret = StructType::create(Context); 1187 IdentifiedStructTypes.push_back(Ret); 1188 return Ret; 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // Functions for parsing blocks from the bitcode file 1193 //===----------------------------------------------------------------------===// 1194 1195 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1196 switch (Val) { 1197 case Attribute::EndAttrKinds: 1198 case Attribute::EmptyKey: 1199 case Attribute::TombstoneKey: 1200 llvm_unreachable("Synthetic enumerators which should never get here"); 1201 1202 case Attribute::None: return 0; 1203 case Attribute::ZExt: return 1 << 0; 1204 case Attribute::SExt: return 1 << 1; 1205 case Attribute::NoReturn: return 1 << 2; 1206 case Attribute::InReg: return 1 << 3; 1207 case Attribute::StructRet: return 1 << 4; 1208 case Attribute::NoUnwind: return 1 << 5; 1209 case Attribute::NoAlias: return 1 << 6; 1210 case Attribute::ByVal: return 1 << 7; 1211 case Attribute::Nest: return 1 << 8; 1212 case Attribute::ReadNone: return 1 << 9; 1213 case Attribute::ReadOnly: return 1 << 10; 1214 case Attribute::NoInline: return 1 << 11; 1215 case Attribute::AlwaysInline: return 1 << 12; 1216 case Attribute::OptimizeForSize: return 1 << 13; 1217 case Attribute::StackProtect: return 1 << 14; 1218 case Attribute::StackProtectReq: return 1 << 15; 1219 case Attribute::Alignment: return 31 << 16; 1220 case Attribute::NoCapture: return 1 << 21; 1221 case Attribute::NoRedZone: return 1 << 22; 1222 case Attribute::NoImplicitFloat: return 1 << 23; 1223 case Attribute::Naked: return 1 << 24; 1224 case Attribute::InlineHint: return 1 << 25; 1225 case Attribute::StackAlignment: return 7 << 26; 1226 case Attribute::ReturnsTwice: return 1 << 29; 1227 case Attribute::UWTable: return 1 << 30; 1228 case Attribute::NonLazyBind: return 1U << 31; 1229 case Attribute::SanitizeAddress: return 1ULL << 32; 1230 case Attribute::MinSize: return 1ULL << 33; 1231 case Attribute::NoDuplicate: return 1ULL << 34; 1232 case Attribute::StackProtectStrong: return 1ULL << 35; 1233 case Attribute::SanitizeThread: return 1ULL << 36; 1234 case Attribute::SanitizeMemory: return 1ULL << 37; 1235 case Attribute::NoBuiltin: return 1ULL << 38; 1236 case Attribute::Returned: return 1ULL << 39; 1237 case Attribute::Cold: return 1ULL << 40; 1238 case Attribute::Builtin: return 1ULL << 41; 1239 case Attribute::OptimizeNone: return 1ULL << 42; 1240 case Attribute::InAlloca: return 1ULL << 43; 1241 case Attribute::NonNull: return 1ULL << 44; 1242 case Attribute::JumpTable: return 1ULL << 45; 1243 case Attribute::Convergent: return 1ULL << 46; 1244 case Attribute::SafeStack: return 1ULL << 47; 1245 case Attribute::NoRecurse: return 1ULL << 48; 1246 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1247 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1248 case Attribute::SwiftSelf: return 1ULL << 51; 1249 case Attribute::SwiftError: return 1ULL << 52; 1250 case Attribute::WriteOnly: return 1ULL << 53; 1251 case Attribute::Speculatable: return 1ULL << 54; 1252 case Attribute::StrictFP: return 1ULL << 55; 1253 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1254 case Attribute::NoCfCheck: return 1ULL << 57; 1255 case Attribute::OptForFuzzing: return 1ULL << 58; 1256 case Attribute::ShadowCallStack: return 1ULL << 59; 1257 case Attribute::SpeculativeLoadHardening: 1258 return 1ULL << 60; 1259 case Attribute::ImmArg: 1260 return 1ULL << 61; 1261 case Attribute::WillReturn: 1262 return 1ULL << 62; 1263 case Attribute::NoFree: 1264 return 1ULL << 63; 1265 default: 1266 // Other attributes are not supported in the raw format, 1267 // as we ran out of space. 1268 return 0; 1269 } 1270 llvm_unreachable("Unsupported attribute type"); 1271 } 1272 1273 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1274 if (!Val) return; 1275 1276 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1277 I = Attribute::AttrKind(I + 1)) { 1278 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1279 if (I == Attribute::Alignment) 1280 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1281 else if (I == Attribute::StackAlignment) 1282 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1283 else if (Attribute::isTypeAttrKind(I)) 1284 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1285 else 1286 B.addAttribute(I); 1287 } 1288 } 1289 } 1290 1291 /// This fills an AttrBuilder object with the LLVM attributes that have 1292 /// been decoded from the given integer. This function must stay in sync with 1293 /// 'encodeLLVMAttributesForBitcode'. 1294 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1295 uint64_t EncodedAttrs) { 1296 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1297 // the bits above 31 down by 11 bits. 1298 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1299 assert((!Alignment || isPowerOf2_32(Alignment)) && 1300 "Alignment must be a power of two."); 1301 1302 if (Alignment) 1303 B.addAlignmentAttr(Alignment); 1304 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1305 (EncodedAttrs & 0xffff)); 1306 } 1307 1308 Error BitcodeReader::parseAttributeBlock() { 1309 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1310 return Err; 1311 1312 if (!MAttributes.empty()) 1313 return error("Invalid multiple blocks"); 1314 1315 SmallVector<uint64_t, 64> Record; 1316 1317 SmallVector<AttributeList, 8> Attrs; 1318 1319 // Read all the records. 1320 while (true) { 1321 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1322 if (!MaybeEntry) 1323 return MaybeEntry.takeError(); 1324 BitstreamEntry Entry = MaybeEntry.get(); 1325 1326 switch (Entry.Kind) { 1327 case BitstreamEntry::SubBlock: // Handled for us already. 1328 case BitstreamEntry::Error: 1329 return error("Malformed block"); 1330 case BitstreamEntry::EndBlock: 1331 return Error::success(); 1332 case BitstreamEntry::Record: 1333 // The interesting case. 1334 break; 1335 } 1336 1337 // Read a record. 1338 Record.clear(); 1339 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1340 if (!MaybeRecord) 1341 return MaybeRecord.takeError(); 1342 switch (MaybeRecord.get()) { 1343 default: // Default behavior: ignore. 1344 break; 1345 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1346 // Deprecated, but still needed to read old bitcode files. 1347 if (Record.size() & 1) 1348 return error("Invalid record"); 1349 1350 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1351 AttrBuilder B; 1352 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1353 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1354 } 1355 1356 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1357 Attrs.clear(); 1358 break; 1359 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1360 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1361 Attrs.push_back(MAttributeGroups[Record[i]]); 1362 1363 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1364 Attrs.clear(); 1365 break; 1366 } 1367 } 1368 } 1369 1370 // Returns Attribute::None on unrecognized codes. 1371 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1372 switch (Code) { 1373 default: 1374 return Attribute::None; 1375 case bitc::ATTR_KIND_ALIGNMENT: 1376 return Attribute::Alignment; 1377 case bitc::ATTR_KIND_ALWAYS_INLINE: 1378 return Attribute::AlwaysInline; 1379 case bitc::ATTR_KIND_ARGMEMONLY: 1380 return Attribute::ArgMemOnly; 1381 case bitc::ATTR_KIND_BUILTIN: 1382 return Attribute::Builtin; 1383 case bitc::ATTR_KIND_BY_VAL: 1384 return Attribute::ByVal; 1385 case bitc::ATTR_KIND_IN_ALLOCA: 1386 return Attribute::InAlloca; 1387 case bitc::ATTR_KIND_COLD: 1388 return Attribute::Cold; 1389 case bitc::ATTR_KIND_CONVERGENT: 1390 return Attribute::Convergent; 1391 case bitc::ATTR_KIND_ELEMENTTYPE: 1392 return Attribute::ElementType; 1393 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1394 return Attribute::InaccessibleMemOnly; 1395 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1396 return Attribute::InaccessibleMemOrArgMemOnly; 1397 case bitc::ATTR_KIND_INLINE_HINT: 1398 return Attribute::InlineHint; 1399 case bitc::ATTR_KIND_IN_REG: 1400 return Attribute::InReg; 1401 case bitc::ATTR_KIND_JUMP_TABLE: 1402 return Attribute::JumpTable; 1403 case bitc::ATTR_KIND_MIN_SIZE: 1404 return Attribute::MinSize; 1405 case bitc::ATTR_KIND_NAKED: 1406 return Attribute::Naked; 1407 case bitc::ATTR_KIND_NEST: 1408 return Attribute::Nest; 1409 case bitc::ATTR_KIND_NO_ALIAS: 1410 return Attribute::NoAlias; 1411 case bitc::ATTR_KIND_NO_BUILTIN: 1412 return Attribute::NoBuiltin; 1413 case bitc::ATTR_KIND_NO_CALLBACK: 1414 return Attribute::NoCallback; 1415 case bitc::ATTR_KIND_NO_CAPTURE: 1416 return Attribute::NoCapture; 1417 case bitc::ATTR_KIND_NO_DUPLICATE: 1418 return Attribute::NoDuplicate; 1419 case bitc::ATTR_KIND_NOFREE: 1420 return Attribute::NoFree; 1421 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1422 return Attribute::NoImplicitFloat; 1423 case bitc::ATTR_KIND_NO_INLINE: 1424 return Attribute::NoInline; 1425 case bitc::ATTR_KIND_NO_RECURSE: 1426 return Attribute::NoRecurse; 1427 case bitc::ATTR_KIND_NO_MERGE: 1428 return Attribute::NoMerge; 1429 case bitc::ATTR_KIND_NON_LAZY_BIND: 1430 return Attribute::NonLazyBind; 1431 case bitc::ATTR_KIND_NON_NULL: 1432 return Attribute::NonNull; 1433 case bitc::ATTR_KIND_DEREFERENCEABLE: 1434 return Attribute::Dereferenceable; 1435 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1436 return Attribute::DereferenceableOrNull; 1437 case bitc::ATTR_KIND_ALLOC_SIZE: 1438 return Attribute::AllocSize; 1439 case bitc::ATTR_KIND_NO_RED_ZONE: 1440 return Attribute::NoRedZone; 1441 case bitc::ATTR_KIND_NO_RETURN: 1442 return Attribute::NoReturn; 1443 case bitc::ATTR_KIND_NOSYNC: 1444 return Attribute::NoSync; 1445 case bitc::ATTR_KIND_NOCF_CHECK: 1446 return Attribute::NoCfCheck; 1447 case bitc::ATTR_KIND_NO_PROFILE: 1448 return Attribute::NoProfile; 1449 case bitc::ATTR_KIND_NO_UNWIND: 1450 return Attribute::NoUnwind; 1451 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1452 return Attribute::NoSanitizeCoverage; 1453 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1454 return Attribute::NullPointerIsValid; 1455 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1456 return Attribute::OptForFuzzing; 1457 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1458 return Attribute::OptimizeForSize; 1459 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1460 return Attribute::OptimizeNone; 1461 case bitc::ATTR_KIND_READ_NONE: 1462 return Attribute::ReadNone; 1463 case bitc::ATTR_KIND_READ_ONLY: 1464 return Attribute::ReadOnly; 1465 case bitc::ATTR_KIND_RETURNED: 1466 return Attribute::Returned; 1467 case bitc::ATTR_KIND_RETURNS_TWICE: 1468 return Attribute::ReturnsTwice; 1469 case bitc::ATTR_KIND_S_EXT: 1470 return Attribute::SExt; 1471 case bitc::ATTR_KIND_SPECULATABLE: 1472 return Attribute::Speculatable; 1473 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1474 return Attribute::StackAlignment; 1475 case bitc::ATTR_KIND_STACK_PROTECT: 1476 return Attribute::StackProtect; 1477 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1478 return Attribute::StackProtectReq; 1479 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1480 return Attribute::StackProtectStrong; 1481 case bitc::ATTR_KIND_SAFESTACK: 1482 return Attribute::SafeStack; 1483 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1484 return Attribute::ShadowCallStack; 1485 case bitc::ATTR_KIND_STRICT_FP: 1486 return Attribute::StrictFP; 1487 case bitc::ATTR_KIND_STRUCT_RET: 1488 return Attribute::StructRet; 1489 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1490 return Attribute::SanitizeAddress; 1491 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1492 return Attribute::SanitizeHWAddress; 1493 case bitc::ATTR_KIND_SANITIZE_THREAD: 1494 return Attribute::SanitizeThread; 1495 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1496 return Attribute::SanitizeMemory; 1497 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1498 return Attribute::SpeculativeLoadHardening; 1499 case bitc::ATTR_KIND_SWIFT_ERROR: 1500 return Attribute::SwiftError; 1501 case bitc::ATTR_KIND_SWIFT_SELF: 1502 return Attribute::SwiftSelf; 1503 case bitc::ATTR_KIND_SWIFT_ASYNC: 1504 return Attribute::SwiftAsync; 1505 case bitc::ATTR_KIND_UW_TABLE: 1506 return Attribute::UWTable; 1507 case bitc::ATTR_KIND_VSCALE_RANGE: 1508 return Attribute::VScaleRange; 1509 case bitc::ATTR_KIND_WILLRETURN: 1510 return Attribute::WillReturn; 1511 case bitc::ATTR_KIND_WRITEONLY: 1512 return Attribute::WriteOnly; 1513 case bitc::ATTR_KIND_Z_EXT: 1514 return Attribute::ZExt; 1515 case bitc::ATTR_KIND_IMMARG: 1516 return Attribute::ImmArg; 1517 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1518 return Attribute::SanitizeMemTag; 1519 case bitc::ATTR_KIND_PREALLOCATED: 1520 return Attribute::Preallocated; 1521 case bitc::ATTR_KIND_NOUNDEF: 1522 return Attribute::NoUndef; 1523 case bitc::ATTR_KIND_BYREF: 1524 return Attribute::ByRef; 1525 case bitc::ATTR_KIND_MUSTPROGRESS: 1526 return Attribute::MustProgress; 1527 case bitc::ATTR_KIND_HOT: 1528 return Attribute::Hot; 1529 } 1530 } 1531 1532 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1533 MaybeAlign &Alignment) { 1534 // Note: Alignment in bitcode files is incremented by 1, so that zero 1535 // can be used for default alignment. 1536 if (Exponent > Value::MaxAlignmentExponent + 1) 1537 return error("Invalid alignment value"); 1538 Alignment = decodeMaybeAlign(Exponent); 1539 return Error::success(); 1540 } 1541 1542 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1543 *Kind = getAttrFromCode(Code); 1544 if (*Kind == Attribute::None) 1545 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1546 return Error::success(); 1547 } 1548 1549 Error BitcodeReader::parseAttributeGroupBlock() { 1550 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1551 return Err; 1552 1553 if (!MAttributeGroups.empty()) 1554 return error("Invalid multiple blocks"); 1555 1556 SmallVector<uint64_t, 64> Record; 1557 1558 // Read all the records. 1559 while (true) { 1560 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1561 if (!MaybeEntry) 1562 return MaybeEntry.takeError(); 1563 BitstreamEntry Entry = MaybeEntry.get(); 1564 1565 switch (Entry.Kind) { 1566 case BitstreamEntry::SubBlock: // Handled for us already. 1567 case BitstreamEntry::Error: 1568 return error("Malformed block"); 1569 case BitstreamEntry::EndBlock: 1570 return Error::success(); 1571 case BitstreamEntry::Record: 1572 // The interesting case. 1573 break; 1574 } 1575 1576 // Read a record. 1577 Record.clear(); 1578 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1579 if (!MaybeRecord) 1580 return MaybeRecord.takeError(); 1581 switch (MaybeRecord.get()) { 1582 default: // Default behavior: ignore. 1583 break; 1584 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1585 if (Record.size() < 3) 1586 return error("Invalid record"); 1587 1588 uint64_t GrpID = Record[0]; 1589 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1590 1591 AttrBuilder B; 1592 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1593 if (Record[i] == 0) { // Enum attribute 1594 Attribute::AttrKind Kind; 1595 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1596 return Err; 1597 1598 // Upgrade old-style byval attribute to one with a type, even if it's 1599 // nullptr. We will have to insert the real type when we associate 1600 // this AttributeList with a function. 1601 if (Kind == Attribute::ByVal) 1602 B.addByValAttr(nullptr); 1603 else if (Kind == Attribute::StructRet) 1604 B.addStructRetAttr(nullptr); 1605 else if (Kind == Attribute::InAlloca) 1606 B.addInAllocaAttr(nullptr); 1607 else if (Attribute::isEnumAttrKind(Kind)) 1608 B.addAttribute(Kind); 1609 else 1610 return error("Not an enum attribute"); 1611 } else if (Record[i] == 1) { // Integer attribute 1612 Attribute::AttrKind Kind; 1613 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1614 return Err; 1615 if (!Attribute::isIntAttrKind(Kind)) 1616 return error("Not an int attribute"); 1617 if (Kind == Attribute::Alignment) 1618 B.addAlignmentAttr(Record[++i]); 1619 else if (Kind == Attribute::StackAlignment) 1620 B.addStackAlignmentAttr(Record[++i]); 1621 else if (Kind == Attribute::Dereferenceable) 1622 B.addDereferenceableAttr(Record[++i]); 1623 else if (Kind == Attribute::DereferenceableOrNull) 1624 B.addDereferenceableOrNullAttr(Record[++i]); 1625 else if (Kind == Attribute::AllocSize) 1626 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1627 else if (Kind == Attribute::VScaleRange) 1628 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1629 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1630 bool HasValue = (Record[i++] == 4); 1631 SmallString<64> KindStr; 1632 SmallString<64> ValStr; 1633 1634 while (Record[i] != 0 && i != e) 1635 KindStr += Record[i++]; 1636 assert(Record[i] == 0 && "Kind string not null terminated"); 1637 1638 if (HasValue) { 1639 // Has a value associated with it. 1640 ++i; // Skip the '0' that terminates the "kind" string. 1641 while (Record[i] != 0 && i != e) 1642 ValStr += Record[i++]; 1643 assert(Record[i] == 0 && "Value string not null terminated"); 1644 } 1645 1646 B.addAttribute(KindStr.str(), ValStr.str()); 1647 } else { 1648 assert((Record[i] == 5 || Record[i] == 6) && 1649 "Invalid attribute group entry"); 1650 bool HasType = Record[i] == 6; 1651 Attribute::AttrKind Kind; 1652 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1653 return Err; 1654 if (!Attribute::isTypeAttrKind(Kind)) 1655 return error("Not a type attribute"); 1656 1657 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1658 } 1659 } 1660 1661 UpgradeAttributes(B); 1662 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1663 break; 1664 } 1665 } 1666 } 1667 } 1668 1669 Error BitcodeReader::parseTypeTable() { 1670 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1671 return Err; 1672 1673 return parseTypeTableBody(); 1674 } 1675 1676 Error BitcodeReader::parseTypeTableBody() { 1677 if (!TypeList.empty()) 1678 return error("Invalid multiple blocks"); 1679 1680 SmallVector<uint64_t, 64> Record; 1681 unsigned NumRecords = 0; 1682 1683 SmallString<64> TypeName; 1684 1685 // Read all the records for this type table. 1686 while (true) { 1687 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1688 if (!MaybeEntry) 1689 return MaybeEntry.takeError(); 1690 BitstreamEntry Entry = MaybeEntry.get(); 1691 1692 switch (Entry.Kind) { 1693 case BitstreamEntry::SubBlock: // Handled for us already. 1694 case BitstreamEntry::Error: 1695 return error("Malformed block"); 1696 case BitstreamEntry::EndBlock: 1697 if (NumRecords != TypeList.size()) 1698 return error("Malformed block"); 1699 return Error::success(); 1700 case BitstreamEntry::Record: 1701 // The interesting case. 1702 break; 1703 } 1704 1705 // Read a record. 1706 Record.clear(); 1707 Type *ResultTy = nullptr; 1708 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1709 if (!MaybeRecord) 1710 return MaybeRecord.takeError(); 1711 switch (MaybeRecord.get()) { 1712 default: 1713 return error("Invalid value"); 1714 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1715 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1716 // type list. This allows us to reserve space. 1717 if (Record.empty()) 1718 return error("Invalid record"); 1719 TypeList.resize(Record[0]); 1720 continue; 1721 case bitc::TYPE_CODE_VOID: // VOID 1722 ResultTy = Type::getVoidTy(Context); 1723 break; 1724 case bitc::TYPE_CODE_HALF: // HALF 1725 ResultTy = Type::getHalfTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1728 ResultTy = Type::getBFloatTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_FLOAT: // FLOAT 1731 ResultTy = Type::getFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1734 ResultTy = Type::getDoubleTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1737 ResultTy = Type::getX86_FP80Ty(Context); 1738 break; 1739 case bitc::TYPE_CODE_FP128: // FP128 1740 ResultTy = Type::getFP128Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1743 ResultTy = Type::getPPC_FP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_LABEL: // LABEL 1746 ResultTy = Type::getLabelTy(Context); 1747 break; 1748 case bitc::TYPE_CODE_METADATA: // METADATA 1749 ResultTy = Type::getMetadataTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1752 ResultTy = Type::getX86_MMXTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1755 ResultTy = Type::getX86_AMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_TOKEN: // TOKEN 1758 ResultTy = Type::getTokenTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1761 if (Record.empty()) 1762 return error("Invalid record"); 1763 1764 uint64_t NumBits = Record[0]; 1765 if (NumBits < IntegerType::MIN_INT_BITS || 1766 NumBits > IntegerType::MAX_INT_BITS) 1767 return error("Bitwidth for integer type out of range"); 1768 ResultTy = IntegerType::get(Context, NumBits); 1769 break; 1770 } 1771 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1772 // [pointee type, address space] 1773 if (Record.empty()) 1774 return error("Invalid record"); 1775 unsigned AddressSpace = 0; 1776 if (Record.size() == 2) 1777 AddressSpace = Record[1]; 1778 ResultTy = getTypeByID(Record[0]); 1779 if (!ResultTy || 1780 !PointerType::isValidElementType(ResultTy)) 1781 return error("Invalid type"); 1782 ResultTy = PointerType::get(ResultTy, AddressSpace); 1783 break; 1784 } 1785 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1786 if (Record.size() != 1) 1787 return error("Invalid record"); 1788 unsigned AddressSpace = Record[0]; 1789 ResultTy = PointerType::get(Context, AddressSpace); 1790 break; 1791 } 1792 case bitc::TYPE_CODE_FUNCTION_OLD: { 1793 // Deprecated, but still needed to read old bitcode files. 1794 // FUNCTION: [vararg, attrid, retty, paramty x N] 1795 if (Record.size() < 3) 1796 return error("Invalid record"); 1797 SmallVector<Type*, 8> ArgTys; 1798 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1799 if (Type *T = getTypeByID(Record[i])) 1800 ArgTys.push_back(T); 1801 else 1802 break; 1803 } 1804 1805 ResultTy = getTypeByID(Record[2]); 1806 if (!ResultTy || ArgTys.size() < Record.size()-3) 1807 return error("Invalid type"); 1808 1809 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1810 break; 1811 } 1812 case bitc::TYPE_CODE_FUNCTION: { 1813 // FUNCTION: [vararg, retty, paramty x N] 1814 if (Record.size() < 2) 1815 return error("Invalid record"); 1816 SmallVector<Type*, 8> ArgTys; 1817 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1818 if (Type *T = getTypeByID(Record[i])) { 1819 if (!FunctionType::isValidArgumentType(T)) 1820 return error("Invalid function argument type"); 1821 ArgTys.push_back(T); 1822 } 1823 else 1824 break; 1825 } 1826 1827 ResultTy = getTypeByID(Record[1]); 1828 if (!ResultTy || ArgTys.size() < Record.size()-2) 1829 return error("Invalid type"); 1830 1831 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1832 break; 1833 } 1834 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1835 if (Record.empty()) 1836 return error("Invalid record"); 1837 SmallVector<Type*, 8> EltTys; 1838 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1839 if (Type *T = getTypeByID(Record[i])) 1840 EltTys.push_back(T); 1841 else 1842 break; 1843 } 1844 if (EltTys.size() != Record.size()-1) 1845 return error("Invalid type"); 1846 ResultTy = StructType::get(Context, EltTys, Record[0]); 1847 break; 1848 } 1849 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1850 if (convertToString(Record, 0, TypeName)) 1851 return error("Invalid record"); 1852 continue; 1853 1854 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1855 if (Record.empty()) 1856 return error("Invalid record"); 1857 1858 if (NumRecords >= TypeList.size()) 1859 return error("Invalid TYPE table"); 1860 1861 // Check to see if this was forward referenced, if so fill in the temp. 1862 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1863 if (Res) { 1864 Res->setName(TypeName); 1865 TypeList[NumRecords] = nullptr; 1866 } else // Otherwise, create a new struct. 1867 Res = createIdentifiedStructType(Context, TypeName); 1868 TypeName.clear(); 1869 1870 SmallVector<Type*, 8> EltTys; 1871 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1872 if (Type *T = getTypeByID(Record[i])) 1873 EltTys.push_back(T); 1874 else 1875 break; 1876 } 1877 if (EltTys.size() != Record.size()-1) 1878 return error("Invalid record"); 1879 Res->setBody(EltTys, Record[0]); 1880 ResultTy = Res; 1881 break; 1882 } 1883 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1884 if (Record.size() != 1) 1885 return error("Invalid record"); 1886 1887 if (NumRecords >= TypeList.size()) 1888 return error("Invalid TYPE table"); 1889 1890 // Check to see if this was forward referenced, if so fill in the temp. 1891 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1892 if (Res) { 1893 Res->setName(TypeName); 1894 TypeList[NumRecords] = nullptr; 1895 } else // Otherwise, create a new struct with no body. 1896 Res = createIdentifiedStructType(Context, TypeName); 1897 TypeName.clear(); 1898 ResultTy = Res; 1899 break; 1900 } 1901 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1902 if (Record.size() < 2) 1903 return error("Invalid record"); 1904 ResultTy = getTypeByID(Record[1]); 1905 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1906 return error("Invalid type"); 1907 ResultTy = ArrayType::get(ResultTy, Record[0]); 1908 break; 1909 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1910 // [numelts, eltty, scalable] 1911 if (Record.size() < 2) 1912 return error("Invalid record"); 1913 if (Record[0] == 0) 1914 return error("Invalid vector length"); 1915 ResultTy = getTypeByID(Record[1]); 1916 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1917 return error("Invalid type"); 1918 bool Scalable = Record.size() > 2 ? Record[2] : false; 1919 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1920 break; 1921 } 1922 1923 if (NumRecords >= TypeList.size()) 1924 return error("Invalid TYPE table"); 1925 if (TypeList[NumRecords]) 1926 return error( 1927 "Invalid TYPE table: Only named structs can be forward referenced"); 1928 assert(ResultTy && "Didn't read a type?"); 1929 TypeList[NumRecords++] = ResultTy; 1930 } 1931 } 1932 1933 Error BitcodeReader::parseOperandBundleTags() { 1934 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1935 return Err; 1936 1937 if (!BundleTags.empty()) 1938 return error("Invalid multiple blocks"); 1939 1940 SmallVector<uint64_t, 64> Record; 1941 1942 while (true) { 1943 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1944 if (!MaybeEntry) 1945 return MaybeEntry.takeError(); 1946 BitstreamEntry Entry = MaybeEntry.get(); 1947 1948 switch (Entry.Kind) { 1949 case BitstreamEntry::SubBlock: // Handled for us already. 1950 case BitstreamEntry::Error: 1951 return error("Malformed block"); 1952 case BitstreamEntry::EndBlock: 1953 return Error::success(); 1954 case BitstreamEntry::Record: 1955 // The interesting case. 1956 break; 1957 } 1958 1959 // Tags are implicitly mapped to integers by their order. 1960 1961 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1962 if (!MaybeRecord) 1963 return MaybeRecord.takeError(); 1964 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1965 return error("Invalid record"); 1966 1967 // OPERAND_BUNDLE_TAG: [strchr x N] 1968 BundleTags.emplace_back(); 1969 if (convertToString(Record, 0, BundleTags.back())) 1970 return error("Invalid record"); 1971 Record.clear(); 1972 } 1973 } 1974 1975 Error BitcodeReader::parseSyncScopeNames() { 1976 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1977 return Err; 1978 1979 if (!SSIDs.empty()) 1980 return error("Invalid multiple synchronization scope names blocks"); 1981 1982 SmallVector<uint64_t, 64> Record; 1983 while (true) { 1984 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1985 if (!MaybeEntry) 1986 return MaybeEntry.takeError(); 1987 BitstreamEntry Entry = MaybeEntry.get(); 1988 1989 switch (Entry.Kind) { 1990 case BitstreamEntry::SubBlock: // Handled for us already. 1991 case BitstreamEntry::Error: 1992 return error("Malformed block"); 1993 case BitstreamEntry::EndBlock: 1994 if (SSIDs.empty()) 1995 return error("Invalid empty synchronization scope names block"); 1996 return Error::success(); 1997 case BitstreamEntry::Record: 1998 // The interesting case. 1999 break; 2000 } 2001 2002 // Synchronization scope names are implicitly mapped to synchronization 2003 // scope IDs by their order. 2004 2005 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2006 if (!MaybeRecord) 2007 return MaybeRecord.takeError(); 2008 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2009 return error("Invalid record"); 2010 2011 SmallString<16> SSN; 2012 if (convertToString(Record, 0, SSN)) 2013 return error("Invalid record"); 2014 2015 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2016 Record.clear(); 2017 } 2018 } 2019 2020 /// Associate a value with its name from the given index in the provided record. 2021 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2022 unsigned NameIndex, Triple &TT) { 2023 SmallString<128> ValueName; 2024 if (convertToString(Record, NameIndex, ValueName)) 2025 return error("Invalid record"); 2026 unsigned ValueID = Record[0]; 2027 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2028 return error("Invalid record"); 2029 Value *V = ValueList[ValueID]; 2030 2031 StringRef NameStr(ValueName.data(), ValueName.size()); 2032 if (NameStr.find_first_of(0) != StringRef::npos) 2033 return error("Invalid value name"); 2034 V->setName(NameStr); 2035 auto *GO = dyn_cast<GlobalObject>(V); 2036 if (GO) { 2037 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2038 if (TT.supportsCOMDAT()) 2039 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2040 else 2041 GO->setComdat(nullptr); 2042 } 2043 } 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2060 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2061 return CurrentBit; 2062 } 2063 2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2065 Function *F, 2066 ArrayRef<uint64_t> Record) { 2067 // Note that we subtract 1 here because the offset is relative to one word 2068 // before the start of the identification or module block, which was 2069 // historically always the start of the regular bitcode header. 2070 uint64_t FuncWordOffset = Record[1] - 1; 2071 uint64_t FuncBitOffset = FuncWordOffset * 32; 2072 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2073 // Set the LastFunctionBlockBit to point to the last function block. 2074 // Later when parsing is resumed after function materialization, 2075 // we can simply skip that last function block. 2076 if (FuncBitOffset > LastFunctionBlockBit) 2077 LastFunctionBlockBit = FuncBitOffset; 2078 } 2079 2080 /// Read a new-style GlobalValue symbol table. 2081 Error BitcodeReader::parseGlobalValueSymbolTable() { 2082 unsigned FuncBitcodeOffsetDelta = 2083 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2084 2085 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2086 return Err; 2087 2088 SmallVector<uint64_t, 64> Record; 2089 while (true) { 2090 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2091 if (!MaybeEntry) 2092 return MaybeEntry.takeError(); 2093 BitstreamEntry Entry = MaybeEntry.get(); 2094 2095 switch (Entry.Kind) { 2096 case BitstreamEntry::SubBlock: 2097 case BitstreamEntry::Error: 2098 return error("Malformed block"); 2099 case BitstreamEntry::EndBlock: 2100 return Error::success(); 2101 case BitstreamEntry::Record: 2102 break; 2103 } 2104 2105 Record.clear(); 2106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2107 if (!MaybeRecord) 2108 return MaybeRecord.takeError(); 2109 switch (MaybeRecord.get()) { 2110 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2111 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2112 cast<Function>(ValueList[Record[0]]), Record); 2113 break; 2114 } 2115 } 2116 } 2117 2118 /// Parse the value symbol table at either the current parsing location or 2119 /// at the given bit offset if provided. 2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2121 uint64_t CurrentBit; 2122 // Pass in the Offset to distinguish between calling for the module-level 2123 // VST (where we want to jump to the VST offset) and the function-level 2124 // VST (where we don't). 2125 if (Offset > 0) { 2126 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2127 if (!MaybeCurrentBit) 2128 return MaybeCurrentBit.takeError(); 2129 CurrentBit = MaybeCurrentBit.get(); 2130 // If this module uses a string table, read this as a module-level VST. 2131 if (UseStrtab) { 2132 if (Error Err = parseGlobalValueSymbolTable()) 2133 return Err; 2134 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2135 return JumpFailed; 2136 return Error::success(); 2137 } 2138 // Otherwise, the VST will be in a similar format to a function-level VST, 2139 // and will contain symbol names. 2140 } 2141 2142 // Compute the delta between the bitcode indices in the VST (the word offset 2143 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2144 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2145 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2146 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2147 // just before entering the VST subblock because: 1) the EnterSubBlock 2148 // changes the AbbrevID width; 2) the VST block is nested within the same 2149 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2150 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2151 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2152 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2153 unsigned FuncBitcodeOffsetDelta = 2154 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2155 2156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2157 return Err; 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 Triple TT(TheModule->getTargetTriple()); 2162 2163 // Read all the records for this value table. 2164 SmallString<128> ValueName; 2165 2166 while (true) { 2167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2168 if (!MaybeEntry) 2169 return MaybeEntry.takeError(); 2170 BitstreamEntry Entry = MaybeEntry.get(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (Offset > 0) 2178 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2179 return JumpFailed; 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2189 if (!MaybeRecord) 2190 return MaybeRecord.takeError(); 2191 switch (MaybeRecord.get()) { 2192 default: // Default behavior: unknown type. 2193 break; 2194 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2195 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2196 if (Error Err = ValOrErr.takeError()) 2197 return Err; 2198 ValOrErr.get(); 2199 break; 2200 } 2201 case bitc::VST_CODE_FNENTRY: { 2202 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2203 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2204 if (Error Err = ValOrErr.takeError()) 2205 return Err; 2206 Value *V = ValOrErr.get(); 2207 2208 // Ignore function offsets emitted for aliases of functions in older 2209 // versions of LLVM. 2210 if (auto *F = dyn_cast<Function>(V)) 2211 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2212 break; 2213 } 2214 case bitc::VST_CODE_BBENTRY: { 2215 if (convertToString(Record, 1, ValueName)) 2216 return error("Invalid record"); 2217 BasicBlock *BB = getBasicBlock(Record[0]); 2218 if (!BB) 2219 return error("Invalid record"); 2220 2221 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2222 ValueName.clear(); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2230 /// encoding. 2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2232 if ((V & 1) == 0) 2233 return V >> 1; 2234 if (V != 1) 2235 return -(V >> 1); 2236 // There is no such thing as -0 with integers. "-0" really means MININT. 2237 return 1ULL << 63; 2238 } 2239 2240 /// Resolve all of the initializers for global values and aliases that we can. 2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2242 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2243 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2244 IndirectSymbolInitWorklist; 2245 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2246 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2247 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2248 2249 GlobalInitWorklist.swap(GlobalInits); 2250 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2251 FunctionPrefixWorklist.swap(FunctionPrefixes); 2252 FunctionPrologueWorklist.swap(FunctionPrologues); 2253 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2254 2255 while (!GlobalInitWorklist.empty()) { 2256 unsigned ValID = GlobalInitWorklist.back().second; 2257 if (ValID >= ValueList.size()) { 2258 // Not ready to resolve this yet, it requires something later in the file. 2259 GlobalInits.push_back(GlobalInitWorklist.back()); 2260 } else { 2261 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2262 GlobalInitWorklist.back().first->setInitializer(C); 2263 else 2264 return error("Expected a constant"); 2265 } 2266 GlobalInitWorklist.pop_back(); 2267 } 2268 2269 while (!IndirectSymbolInitWorklist.empty()) { 2270 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2271 if (ValID >= ValueList.size()) { 2272 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2273 } else { 2274 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2275 if (!C) 2276 return error("Expected a constant"); 2277 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2278 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2279 return error("Alias and aliasee types don't match"); 2280 GIS->setIndirectSymbol(C); 2281 } 2282 IndirectSymbolInitWorklist.pop_back(); 2283 } 2284 2285 while (!FunctionPrefixWorklist.empty()) { 2286 unsigned ValID = FunctionPrefixWorklist.back().second; 2287 if (ValID >= ValueList.size()) { 2288 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2289 } else { 2290 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2291 FunctionPrefixWorklist.back().first->setPrefixData(C); 2292 else 2293 return error("Expected a constant"); 2294 } 2295 FunctionPrefixWorklist.pop_back(); 2296 } 2297 2298 while (!FunctionPrologueWorklist.empty()) { 2299 unsigned ValID = FunctionPrologueWorklist.back().second; 2300 if (ValID >= ValueList.size()) { 2301 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2302 } else { 2303 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2304 FunctionPrologueWorklist.back().first->setPrologueData(C); 2305 else 2306 return error("Expected a constant"); 2307 } 2308 FunctionPrologueWorklist.pop_back(); 2309 } 2310 2311 while (!FunctionPersonalityFnWorklist.empty()) { 2312 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2313 if (ValID >= ValueList.size()) { 2314 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2315 } else { 2316 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2317 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2318 else 2319 return error("Expected a constant"); 2320 } 2321 FunctionPersonalityFnWorklist.pop_back(); 2322 } 2323 2324 return Error::success(); 2325 } 2326 2327 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2328 SmallVector<uint64_t, 8> Words(Vals.size()); 2329 transform(Vals, Words.begin(), 2330 BitcodeReader::decodeSignRotatedValue); 2331 2332 return APInt(TypeBits, Words); 2333 } 2334 2335 Error BitcodeReader::parseConstants() { 2336 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2337 return Err; 2338 2339 SmallVector<uint64_t, 64> Record; 2340 2341 // Read all the records for this value table. 2342 Type *CurTy = Type::getInt32Ty(Context); 2343 unsigned NextCstNo = ValueList.size(); 2344 2345 struct DelayedShufTy { 2346 VectorType *OpTy; 2347 VectorType *RTy; 2348 uint64_t Op0Idx; 2349 uint64_t Op1Idx; 2350 uint64_t Op2Idx; 2351 unsigned CstNo; 2352 }; 2353 std::vector<DelayedShufTy> DelayedShuffles; 2354 while (true) { 2355 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2356 if (!MaybeEntry) 2357 return MaybeEntry.takeError(); 2358 BitstreamEntry Entry = MaybeEntry.get(); 2359 2360 switch (Entry.Kind) { 2361 case BitstreamEntry::SubBlock: // Handled for us already. 2362 case BitstreamEntry::Error: 2363 return error("Malformed block"); 2364 case BitstreamEntry::EndBlock: 2365 // Once all the constants have been read, go through and resolve forward 2366 // references. 2367 // 2368 // We have to treat shuffles specially because they don't have three 2369 // operands anymore. We need to convert the shuffle mask into an array, 2370 // and we can't convert a forward reference. 2371 for (auto &DelayedShuffle : DelayedShuffles) { 2372 VectorType *OpTy = DelayedShuffle.OpTy; 2373 VectorType *RTy = DelayedShuffle.RTy; 2374 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2375 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2376 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2377 uint64_t CstNo = DelayedShuffle.CstNo; 2378 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2379 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2380 Type *ShufTy = 2381 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2382 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2383 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2384 return error("Invalid shufflevector operands"); 2385 SmallVector<int, 16> Mask; 2386 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2387 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2388 ValueList.assignValue(V, CstNo); 2389 } 2390 2391 if (NextCstNo != ValueList.size()) 2392 return error("Invalid constant reference"); 2393 2394 ValueList.resolveConstantForwardRefs(); 2395 return Error::success(); 2396 case BitstreamEntry::Record: 2397 // The interesting case. 2398 break; 2399 } 2400 2401 // Read a record. 2402 Record.clear(); 2403 Type *VoidType = Type::getVoidTy(Context); 2404 Value *V = nullptr; 2405 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2406 if (!MaybeBitCode) 2407 return MaybeBitCode.takeError(); 2408 switch (unsigned BitCode = MaybeBitCode.get()) { 2409 default: // Default behavior: unknown constant 2410 case bitc::CST_CODE_UNDEF: // UNDEF 2411 V = UndefValue::get(CurTy); 2412 break; 2413 case bitc::CST_CODE_POISON: // POISON 2414 V = PoisonValue::get(CurTy); 2415 break; 2416 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2417 if (Record.empty()) 2418 return error("Invalid record"); 2419 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2420 return error("Invalid record"); 2421 if (TypeList[Record[0]] == VoidType) 2422 return error("Invalid constant type"); 2423 CurTy = TypeList[Record[0]]; 2424 continue; // Skip the ValueList manipulation. 2425 case bitc::CST_CODE_NULL: // NULL 2426 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2427 return error("Invalid type for a constant null value"); 2428 V = Constant::getNullValue(CurTy); 2429 break; 2430 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2431 if (!CurTy->isIntegerTy() || Record.empty()) 2432 return error("Invalid record"); 2433 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2434 break; 2435 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2436 if (!CurTy->isIntegerTy() || Record.empty()) 2437 return error("Invalid record"); 2438 2439 APInt VInt = 2440 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2441 V = ConstantInt::get(Context, VInt); 2442 2443 break; 2444 } 2445 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2446 if (Record.empty()) 2447 return error("Invalid record"); 2448 if (CurTy->isHalfTy()) 2449 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2450 APInt(16, (uint16_t)Record[0]))); 2451 else if (CurTy->isBFloatTy()) 2452 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2453 APInt(16, (uint32_t)Record[0]))); 2454 else if (CurTy->isFloatTy()) 2455 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2456 APInt(32, (uint32_t)Record[0]))); 2457 else if (CurTy->isDoubleTy()) 2458 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2459 APInt(64, Record[0]))); 2460 else if (CurTy->isX86_FP80Ty()) { 2461 // Bits are not stored the same way as a normal i80 APInt, compensate. 2462 uint64_t Rearrange[2]; 2463 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2464 Rearrange[1] = Record[0] >> 48; 2465 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2466 APInt(80, Rearrange))); 2467 } else if (CurTy->isFP128Ty()) 2468 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2469 APInt(128, Record))); 2470 else if (CurTy->isPPC_FP128Ty()) 2471 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2472 APInt(128, Record))); 2473 else 2474 V = UndefValue::get(CurTy); 2475 break; 2476 } 2477 2478 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2479 if (Record.empty()) 2480 return error("Invalid record"); 2481 2482 unsigned Size = Record.size(); 2483 SmallVector<Constant*, 16> Elts; 2484 2485 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2486 for (unsigned i = 0; i != Size; ++i) 2487 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2488 STy->getElementType(i))); 2489 V = ConstantStruct::get(STy, Elts); 2490 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2491 Type *EltTy = ATy->getElementType(); 2492 for (unsigned i = 0; i != Size; ++i) 2493 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2494 V = ConstantArray::get(ATy, Elts); 2495 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2496 Type *EltTy = VTy->getElementType(); 2497 for (unsigned i = 0; i != Size; ++i) 2498 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2499 V = ConstantVector::get(Elts); 2500 } else { 2501 V = UndefValue::get(CurTy); 2502 } 2503 break; 2504 } 2505 case bitc::CST_CODE_STRING: // STRING: [values] 2506 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2507 if (Record.empty()) 2508 return error("Invalid record"); 2509 2510 SmallString<16> Elts(Record.begin(), Record.end()); 2511 V = ConstantDataArray::getString(Context, Elts, 2512 BitCode == bitc::CST_CODE_CSTRING); 2513 break; 2514 } 2515 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2516 if (Record.empty()) 2517 return error("Invalid record"); 2518 2519 Type *EltTy; 2520 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2521 EltTy = Array->getElementType(); 2522 else 2523 EltTy = cast<VectorType>(CurTy)->getElementType(); 2524 if (EltTy->isIntegerTy(8)) { 2525 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2526 if (isa<VectorType>(CurTy)) 2527 V = ConstantDataVector::get(Context, Elts); 2528 else 2529 V = ConstantDataArray::get(Context, Elts); 2530 } else if (EltTy->isIntegerTy(16)) { 2531 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2532 if (isa<VectorType>(CurTy)) 2533 V = ConstantDataVector::get(Context, Elts); 2534 else 2535 V = ConstantDataArray::get(Context, Elts); 2536 } else if (EltTy->isIntegerTy(32)) { 2537 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2538 if (isa<VectorType>(CurTy)) 2539 V = ConstantDataVector::get(Context, Elts); 2540 else 2541 V = ConstantDataArray::get(Context, Elts); 2542 } else if (EltTy->isIntegerTy(64)) { 2543 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2544 if (isa<VectorType>(CurTy)) 2545 V = ConstantDataVector::get(Context, Elts); 2546 else 2547 V = ConstantDataArray::get(Context, Elts); 2548 } else if (EltTy->isHalfTy()) { 2549 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2550 if (isa<VectorType>(CurTy)) 2551 V = ConstantDataVector::getFP(EltTy, Elts); 2552 else 2553 V = ConstantDataArray::getFP(EltTy, Elts); 2554 } else if (EltTy->isBFloatTy()) { 2555 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2556 if (isa<VectorType>(CurTy)) 2557 V = ConstantDataVector::getFP(EltTy, Elts); 2558 else 2559 V = ConstantDataArray::getFP(EltTy, Elts); 2560 } else if (EltTy->isFloatTy()) { 2561 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2562 if (isa<VectorType>(CurTy)) 2563 V = ConstantDataVector::getFP(EltTy, Elts); 2564 else 2565 V = ConstantDataArray::getFP(EltTy, Elts); 2566 } else if (EltTy->isDoubleTy()) { 2567 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2568 if (isa<VectorType>(CurTy)) 2569 V = ConstantDataVector::getFP(EltTy, Elts); 2570 else 2571 V = ConstantDataArray::getFP(EltTy, Elts); 2572 } else { 2573 return error("Invalid type for value"); 2574 } 2575 break; 2576 } 2577 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2578 if (Record.size() < 2) 2579 return error("Invalid record"); 2580 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2581 if (Opc < 0) { 2582 V = UndefValue::get(CurTy); // Unknown unop. 2583 } else { 2584 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2585 unsigned Flags = 0; 2586 V = ConstantExpr::get(Opc, LHS, Flags); 2587 } 2588 break; 2589 } 2590 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2591 if (Record.size() < 3) 2592 return error("Invalid record"); 2593 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2594 if (Opc < 0) { 2595 V = UndefValue::get(CurTy); // Unknown binop. 2596 } else { 2597 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2598 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2599 unsigned Flags = 0; 2600 if (Record.size() >= 4) { 2601 if (Opc == Instruction::Add || 2602 Opc == Instruction::Sub || 2603 Opc == Instruction::Mul || 2604 Opc == Instruction::Shl) { 2605 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2606 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2607 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2608 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2609 } else if (Opc == Instruction::SDiv || 2610 Opc == Instruction::UDiv || 2611 Opc == Instruction::LShr || 2612 Opc == Instruction::AShr) { 2613 if (Record[3] & (1 << bitc::PEO_EXACT)) 2614 Flags |= SDivOperator::IsExact; 2615 } 2616 } 2617 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2618 } 2619 break; 2620 } 2621 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2622 if (Record.size() < 3) 2623 return error("Invalid record"); 2624 int Opc = getDecodedCastOpcode(Record[0]); 2625 if (Opc < 0) { 2626 V = UndefValue::get(CurTy); // Unknown cast. 2627 } else { 2628 Type *OpTy = getTypeByID(Record[1]); 2629 if (!OpTy) 2630 return error("Invalid record"); 2631 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2632 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2633 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2634 } 2635 break; 2636 } 2637 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2638 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2639 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2640 // operands] 2641 unsigned OpNum = 0; 2642 Type *PointeeType = nullptr; 2643 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2644 Record.size() % 2) 2645 PointeeType = getTypeByID(Record[OpNum++]); 2646 2647 bool InBounds = false; 2648 Optional<unsigned> InRangeIndex; 2649 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2650 uint64_t Op = Record[OpNum++]; 2651 InBounds = Op & 1; 2652 InRangeIndex = Op >> 1; 2653 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2654 InBounds = true; 2655 2656 SmallVector<Constant*, 16> Elts; 2657 Type *Elt0FullTy = nullptr; 2658 while (OpNum != Record.size()) { 2659 if (!Elt0FullTy) 2660 Elt0FullTy = getTypeByID(Record[OpNum]); 2661 Type *ElTy = getTypeByID(Record[OpNum++]); 2662 if (!ElTy) 2663 return error("Invalid record"); 2664 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2665 } 2666 2667 if (Elts.size() < 1) 2668 return error("Invalid gep with no operands"); 2669 2670 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2671 if (!PointeeType) 2672 PointeeType = OrigPtrTy->getElementType(); 2673 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2674 return error("Explicit gep operator type does not match pointee type " 2675 "of pointer operand"); 2676 2677 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2678 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2679 InBounds, InRangeIndex); 2680 break; 2681 } 2682 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2683 if (Record.size() < 3) 2684 return error("Invalid record"); 2685 2686 Type *SelectorTy = Type::getInt1Ty(Context); 2687 2688 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2689 // Get the type from the ValueList before getting a forward ref. 2690 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2691 if (Value *V = ValueList[Record[0]]) 2692 if (SelectorTy != V->getType()) 2693 SelectorTy = VectorType::get(SelectorTy, 2694 VTy->getElementCount()); 2695 2696 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2697 SelectorTy), 2698 ValueList.getConstantFwdRef(Record[1],CurTy), 2699 ValueList.getConstantFwdRef(Record[2],CurTy)); 2700 break; 2701 } 2702 case bitc::CST_CODE_CE_EXTRACTELT 2703 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2704 if (Record.size() < 3) 2705 return error("Invalid record"); 2706 VectorType *OpTy = 2707 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2708 if (!OpTy) 2709 return error("Invalid record"); 2710 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2711 Constant *Op1 = nullptr; 2712 if (Record.size() == 4) { 2713 Type *IdxTy = getTypeByID(Record[2]); 2714 if (!IdxTy) 2715 return error("Invalid record"); 2716 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2717 } else { 2718 // Deprecated, but still needed to read old bitcode files. 2719 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2720 } 2721 if (!Op1) 2722 return error("Invalid record"); 2723 V = ConstantExpr::getExtractElement(Op0, Op1); 2724 break; 2725 } 2726 case bitc::CST_CODE_CE_INSERTELT 2727 : { // CE_INSERTELT: [opval, opval, opty, opval] 2728 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2729 if (Record.size() < 3 || !OpTy) 2730 return error("Invalid record"); 2731 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2732 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2733 OpTy->getElementType()); 2734 Constant *Op2 = nullptr; 2735 if (Record.size() == 4) { 2736 Type *IdxTy = getTypeByID(Record[2]); 2737 if (!IdxTy) 2738 return error("Invalid record"); 2739 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2740 } else { 2741 // Deprecated, but still needed to read old bitcode files. 2742 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2743 } 2744 if (!Op2) 2745 return error("Invalid record"); 2746 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2747 break; 2748 } 2749 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2750 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2751 if (Record.size() < 3 || !OpTy) 2752 return error("Invalid record"); 2753 DelayedShuffles.push_back( 2754 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2755 ++NextCstNo; 2756 continue; 2757 } 2758 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2759 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2760 VectorType *OpTy = 2761 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2762 if (Record.size() < 4 || !RTy || !OpTy) 2763 return error("Invalid record"); 2764 DelayedShuffles.push_back( 2765 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2766 ++NextCstNo; 2767 continue; 2768 } 2769 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2770 if (Record.size() < 4) 2771 return error("Invalid record"); 2772 Type *OpTy = getTypeByID(Record[0]); 2773 if (!OpTy) 2774 return error("Invalid record"); 2775 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2776 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2777 2778 if (OpTy->isFPOrFPVectorTy()) 2779 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2780 else 2781 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2782 break; 2783 } 2784 // This maintains backward compatibility, pre-asm dialect keywords. 2785 // Deprecated, but still needed to read old bitcode files. 2786 case bitc::CST_CODE_INLINEASM_OLD: { 2787 if (Record.size() < 2) 2788 return error("Invalid record"); 2789 std::string AsmStr, ConstrStr; 2790 bool HasSideEffects = Record[0] & 1; 2791 bool IsAlignStack = Record[0] >> 1; 2792 unsigned AsmStrSize = Record[1]; 2793 if (2+AsmStrSize >= Record.size()) 2794 return error("Invalid record"); 2795 unsigned ConstStrSize = Record[2+AsmStrSize]; 2796 if (3+AsmStrSize+ConstStrSize > Record.size()) 2797 return error("Invalid record"); 2798 2799 for (unsigned i = 0; i != AsmStrSize; ++i) 2800 AsmStr += (char)Record[2+i]; 2801 for (unsigned i = 0; i != ConstStrSize; ++i) 2802 ConstrStr += (char)Record[3+AsmStrSize+i]; 2803 UpgradeInlineAsmString(&AsmStr); 2804 V = InlineAsm::get( 2805 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2806 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2807 break; 2808 } 2809 // This version adds support for the asm dialect keywords (e.g., 2810 // inteldialect). 2811 case bitc::CST_CODE_INLINEASM_OLD2: { 2812 if (Record.size() < 2) 2813 return error("Invalid record"); 2814 std::string AsmStr, ConstrStr; 2815 bool HasSideEffects = Record[0] & 1; 2816 bool IsAlignStack = (Record[0] >> 1) & 1; 2817 unsigned AsmDialect = Record[0] >> 2; 2818 unsigned AsmStrSize = Record[1]; 2819 if (2+AsmStrSize >= Record.size()) 2820 return error("Invalid record"); 2821 unsigned ConstStrSize = Record[2+AsmStrSize]; 2822 if (3+AsmStrSize+ConstStrSize > Record.size()) 2823 return error("Invalid record"); 2824 2825 for (unsigned i = 0; i != AsmStrSize; ++i) 2826 AsmStr += (char)Record[2+i]; 2827 for (unsigned i = 0; i != ConstStrSize; ++i) 2828 ConstrStr += (char)Record[3+AsmStrSize+i]; 2829 UpgradeInlineAsmString(&AsmStr); 2830 V = InlineAsm::get( 2831 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2832 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2833 InlineAsm::AsmDialect(AsmDialect)); 2834 break; 2835 } 2836 // This version adds support for the unwind keyword. 2837 case bitc::CST_CODE_INLINEASM: { 2838 if (Record.size() < 2) 2839 return error("Invalid record"); 2840 std::string AsmStr, ConstrStr; 2841 bool HasSideEffects = Record[0] & 1; 2842 bool IsAlignStack = (Record[0] >> 1) & 1; 2843 unsigned AsmDialect = (Record[0] >> 2) & 1; 2844 bool CanThrow = (Record[0] >> 3) & 1; 2845 unsigned AsmStrSize = Record[1]; 2846 if (2 + AsmStrSize >= Record.size()) 2847 return error("Invalid record"); 2848 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2849 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2850 return error("Invalid record"); 2851 2852 for (unsigned i = 0; i != AsmStrSize; ++i) 2853 AsmStr += (char)Record[2 + i]; 2854 for (unsigned i = 0; i != ConstStrSize; ++i) 2855 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2856 UpgradeInlineAsmString(&AsmStr); 2857 V = InlineAsm::get( 2858 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2859 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2860 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2861 break; 2862 } 2863 case bitc::CST_CODE_BLOCKADDRESS:{ 2864 if (Record.size() < 3) 2865 return error("Invalid record"); 2866 Type *FnTy = getTypeByID(Record[0]); 2867 if (!FnTy) 2868 return error("Invalid record"); 2869 Function *Fn = 2870 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2871 if (!Fn) 2872 return error("Invalid record"); 2873 2874 // If the function is already parsed we can insert the block address right 2875 // away. 2876 BasicBlock *BB; 2877 unsigned BBID = Record[2]; 2878 if (!BBID) 2879 // Invalid reference to entry block. 2880 return error("Invalid ID"); 2881 if (!Fn->empty()) { 2882 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2883 for (size_t I = 0, E = BBID; I != E; ++I) { 2884 if (BBI == BBE) 2885 return error("Invalid ID"); 2886 ++BBI; 2887 } 2888 BB = &*BBI; 2889 } else { 2890 // Otherwise insert a placeholder and remember it so it can be inserted 2891 // when the function is parsed. 2892 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2893 if (FwdBBs.empty()) 2894 BasicBlockFwdRefQueue.push_back(Fn); 2895 if (FwdBBs.size() < BBID + 1) 2896 FwdBBs.resize(BBID + 1); 2897 if (!FwdBBs[BBID]) 2898 FwdBBs[BBID] = BasicBlock::Create(Context); 2899 BB = FwdBBs[BBID]; 2900 } 2901 V = BlockAddress::get(Fn, BB); 2902 break; 2903 } 2904 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2905 if (Record.size() < 2) 2906 return error("Invalid record"); 2907 Type *GVTy = getTypeByID(Record[0]); 2908 if (!GVTy) 2909 return error("Invalid record"); 2910 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2911 ValueList.getConstantFwdRef(Record[1], GVTy)); 2912 if (!GV) 2913 return error("Invalid record"); 2914 2915 V = DSOLocalEquivalent::get(GV); 2916 break; 2917 } 2918 } 2919 2920 ValueList.assignValue(V, NextCstNo); 2921 ++NextCstNo; 2922 } 2923 } 2924 2925 Error BitcodeReader::parseUseLists() { 2926 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2927 return Err; 2928 2929 // Read all the records. 2930 SmallVector<uint64_t, 64> Record; 2931 2932 while (true) { 2933 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2934 if (!MaybeEntry) 2935 return MaybeEntry.takeError(); 2936 BitstreamEntry Entry = MaybeEntry.get(); 2937 2938 switch (Entry.Kind) { 2939 case BitstreamEntry::SubBlock: // Handled for us already. 2940 case BitstreamEntry::Error: 2941 return error("Malformed block"); 2942 case BitstreamEntry::EndBlock: 2943 return Error::success(); 2944 case BitstreamEntry::Record: 2945 // The interesting case. 2946 break; 2947 } 2948 2949 // Read a use list record. 2950 Record.clear(); 2951 bool IsBB = false; 2952 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2953 if (!MaybeRecord) 2954 return MaybeRecord.takeError(); 2955 switch (MaybeRecord.get()) { 2956 default: // Default behavior: unknown type. 2957 break; 2958 case bitc::USELIST_CODE_BB: 2959 IsBB = true; 2960 LLVM_FALLTHROUGH; 2961 case bitc::USELIST_CODE_DEFAULT: { 2962 unsigned RecordLength = Record.size(); 2963 if (RecordLength < 3) 2964 // Records should have at least an ID and two indexes. 2965 return error("Invalid record"); 2966 unsigned ID = Record.pop_back_val(); 2967 2968 Value *V; 2969 if (IsBB) { 2970 assert(ID < FunctionBBs.size() && "Basic block not found"); 2971 V = FunctionBBs[ID]; 2972 } else 2973 V = ValueList[ID]; 2974 unsigned NumUses = 0; 2975 SmallDenseMap<const Use *, unsigned, 16> Order; 2976 for (const Use &U : V->materialized_uses()) { 2977 if (++NumUses > Record.size()) 2978 break; 2979 Order[&U] = Record[NumUses - 1]; 2980 } 2981 if (Order.size() != Record.size() || NumUses > Record.size()) 2982 // Mismatches can happen if the functions are being materialized lazily 2983 // (out-of-order), or a value has been upgraded. 2984 break; 2985 2986 V->sortUseList([&](const Use &L, const Use &R) { 2987 return Order.lookup(&L) < Order.lookup(&R); 2988 }); 2989 break; 2990 } 2991 } 2992 } 2993 } 2994 2995 /// When we see the block for metadata, remember where it is and then skip it. 2996 /// This lets us lazily deserialize the metadata. 2997 Error BitcodeReader::rememberAndSkipMetadata() { 2998 // Save the current stream state. 2999 uint64_t CurBit = Stream.GetCurrentBitNo(); 3000 DeferredMetadataInfo.push_back(CurBit); 3001 3002 // Skip over the block for now. 3003 if (Error Err = Stream.SkipBlock()) 3004 return Err; 3005 return Error::success(); 3006 } 3007 3008 Error BitcodeReader::materializeMetadata() { 3009 for (uint64_t BitPos : DeferredMetadataInfo) { 3010 // Move the bit stream to the saved position. 3011 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3012 return JumpFailed; 3013 if (Error Err = MDLoader->parseModuleMetadata()) 3014 return Err; 3015 } 3016 3017 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3018 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3019 // multiple times. 3020 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3021 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3022 NamedMDNode *LinkerOpts = 3023 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3024 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3025 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3026 } 3027 } 3028 3029 DeferredMetadataInfo.clear(); 3030 return Error::success(); 3031 } 3032 3033 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3034 3035 /// When we see the block for a function body, remember where it is and then 3036 /// skip it. This lets us lazily deserialize the functions. 3037 Error BitcodeReader::rememberAndSkipFunctionBody() { 3038 // Get the function we are talking about. 3039 if (FunctionsWithBodies.empty()) 3040 return error("Insufficient function protos"); 3041 3042 Function *Fn = FunctionsWithBodies.back(); 3043 FunctionsWithBodies.pop_back(); 3044 3045 // Save the current stream state. 3046 uint64_t CurBit = Stream.GetCurrentBitNo(); 3047 assert( 3048 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3049 "Mismatch between VST and scanned function offsets"); 3050 DeferredFunctionInfo[Fn] = CurBit; 3051 3052 // Skip over the function block for now. 3053 if (Error Err = Stream.SkipBlock()) 3054 return Err; 3055 return Error::success(); 3056 } 3057 3058 Error BitcodeReader::globalCleanup() { 3059 // Patch the initializers for globals and aliases up. 3060 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3061 return Err; 3062 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3063 return error("Malformed global initializer set"); 3064 3065 // Look for intrinsic functions which need to be upgraded at some point 3066 // and functions that need to have their function attributes upgraded. 3067 for (Function &F : *TheModule) { 3068 MDLoader->upgradeDebugIntrinsics(F); 3069 Function *NewFn; 3070 if (UpgradeIntrinsicFunction(&F, NewFn)) 3071 UpgradedIntrinsics[&F] = NewFn; 3072 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3073 // Some types could be renamed during loading if several modules are 3074 // loaded in the same LLVMContext (LTO scenario). In this case we should 3075 // remangle intrinsics names as well. 3076 RemangledIntrinsics[&F] = Remangled.getValue(); 3077 // Look for functions that rely on old function attribute behavior. 3078 UpgradeFunctionAttributes(F); 3079 } 3080 3081 // Look for global variables which need to be renamed. 3082 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3083 for (GlobalVariable &GV : TheModule->globals()) 3084 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3085 UpgradedVariables.emplace_back(&GV, Upgraded); 3086 for (auto &Pair : UpgradedVariables) { 3087 Pair.first->eraseFromParent(); 3088 TheModule->getGlobalList().push_back(Pair.second); 3089 } 3090 3091 // Force deallocation of memory for these vectors to favor the client that 3092 // want lazy deserialization. 3093 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3094 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3095 IndirectSymbolInits); 3096 return Error::success(); 3097 } 3098 3099 /// Support for lazy parsing of function bodies. This is required if we 3100 /// either have an old bitcode file without a VST forward declaration record, 3101 /// or if we have an anonymous function being materialized, since anonymous 3102 /// functions do not have a name and are therefore not in the VST. 3103 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3104 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3105 return JumpFailed; 3106 3107 if (Stream.AtEndOfStream()) 3108 return error("Could not find function in stream"); 3109 3110 if (!SeenFirstFunctionBody) 3111 return error("Trying to materialize functions before seeing function blocks"); 3112 3113 // An old bitcode file with the symbol table at the end would have 3114 // finished the parse greedily. 3115 assert(SeenValueSymbolTable); 3116 3117 SmallVector<uint64_t, 64> Record; 3118 3119 while (true) { 3120 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3121 if (!MaybeEntry) 3122 return MaybeEntry.takeError(); 3123 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3124 3125 switch (Entry.Kind) { 3126 default: 3127 return error("Expect SubBlock"); 3128 case BitstreamEntry::SubBlock: 3129 switch (Entry.ID) { 3130 default: 3131 return error("Expect function block"); 3132 case bitc::FUNCTION_BLOCK_ID: 3133 if (Error Err = rememberAndSkipFunctionBody()) 3134 return Err; 3135 NextUnreadBit = Stream.GetCurrentBitNo(); 3136 return Error::success(); 3137 } 3138 } 3139 } 3140 } 3141 3142 bool BitcodeReaderBase::readBlockInfo() { 3143 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3144 Stream.ReadBlockInfoBlock(); 3145 if (!MaybeNewBlockInfo) 3146 return true; // FIXME Handle the error. 3147 Optional<BitstreamBlockInfo> NewBlockInfo = 3148 std::move(MaybeNewBlockInfo.get()); 3149 if (!NewBlockInfo) 3150 return true; 3151 BlockInfo = std::move(*NewBlockInfo); 3152 return false; 3153 } 3154 3155 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3156 // v1: [selection_kind, name] 3157 // v2: [strtab_offset, strtab_size, selection_kind] 3158 StringRef Name; 3159 std::tie(Name, Record) = readNameFromStrtab(Record); 3160 3161 if (Record.empty()) 3162 return error("Invalid record"); 3163 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3164 std::string OldFormatName; 3165 if (!UseStrtab) { 3166 if (Record.size() < 2) 3167 return error("Invalid record"); 3168 unsigned ComdatNameSize = Record[1]; 3169 OldFormatName.reserve(ComdatNameSize); 3170 for (unsigned i = 0; i != ComdatNameSize; ++i) 3171 OldFormatName += (char)Record[2 + i]; 3172 Name = OldFormatName; 3173 } 3174 Comdat *C = TheModule->getOrInsertComdat(Name); 3175 C->setSelectionKind(SK); 3176 ComdatList.push_back(C); 3177 return Error::success(); 3178 } 3179 3180 static void inferDSOLocal(GlobalValue *GV) { 3181 // infer dso_local from linkage and visibility if it is not encoded. 3182 if (GV->hasLocalLinkage() || 3183 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3184 GV->setDSOLocal(true); 3185 } 3186 3187 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3188 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3189 // visibility, threadlocal, unnamed_addr, externally_initialized, 3190 // dllstorageclass, comdat, attributes, preemption specifier, 3191 // partition strtab offset, partition strtab size] (name in VST) 3192 // v2: [strtab_offset, strtab_size, v1] 3193 StringRef Name; 3194 std::tie(Name, Record) = readNameFromStrtab(Record); 3195 3196 if (Record.size() < 6) 3197 return error("Invalid record"); 3198 Type *Ty = getTypeByID(Record[0]); 3199 if (!Ty) 3200 return error("Invalid record"); 3201 bool isConstant = Record[1] & 1; 3202 bool explicitType = Record[1] & 2; 3203 unsigned AddressSpace; 3204 if (explicitType) { 3205 AddressSpace = Record[1] >> 2; 3206 } else { 3207 if (!Ty->isPointerTy()) 3208 return error("Invalid type for value"); 3209 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3210 Ty = cast<PointerType>(Ty)->getElementType(); 3211 } 3212 3213 uint64_t RawLinkage = Record[3]; 3214 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3215 MaybeAlign Alignment; 3216 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3217 return Err; 3218 std::string Section; 3219 if (Record[5]) { 3220 if (Record[5] - 1 >= SectionTable.size()) 3221 return error("Invalid ID"); 3222 Section = SectionTable[Record[5] - 1]; 3223 } 3224 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3225 // Local linkage must have default visibility. 3226 // auto-upgrade `hidden` and `protected` for old bitcode. 3227 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3228 Visibility = getDecodedVisibility(Record[6]); 3229 3230 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3231 if (Record.size() > 7) 3232 TLM = getDecodedThreadLocalMode(Record[7]); 3233 3234 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3235 if (Record.size() > 8) 3236 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3237 3238 bool ExternallyInitialized = false; 3239 if (Record.size() > 9) 3240 ExternallyInitialized = Record[9]; 3241 3242 GlobalVariable *NewGV = 3243 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3244 nullptr, TLM, AddressSpace, ExternallyInitialized); 3245 NewGV->setAlignment(Alignment); 3246 if (!Section.empty()) 3247 NewGV->setSection(Section); 3248 NewGV->setVisibility(Visibility); 3249 NewGV->setUnnamedAddr(UnnamedAddr); 3250 3251 if (Record.size() > 10) 3252 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3253 else 3254 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3255 3256 ValueList.push_back(NewGV); 3257 3258 // Remember which value to use for the global initializer. 3259 if (unsigned InitID = Record[2]) 3260 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3261 3262 if (Record.size() > 11) { 3263 if (unsigned ComdatID = Record[11]) { 3264 if (ComdatID > ComdatList.size()) 3265 return error("Invalid global variable comdat ID"); 3266 NewGV->setComdat(ComdatList[ComdatID - 1]); 3267 } 3268 } else if (hasImplicitComdat(RawLinkage)) { 3269 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3270 } 3271 3272 if (Record.size() > 12) { 3273 auto AS = getAttributes(Record[12]).getFnAttributes(); 3274 NewGV->setAttributes(AS); 3275 } 3276 3277 if (Record.size() > 13) { 3278 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3279 } 3280 inferDSOLocal(NewGV); 3281 3282 // Check whether we have enough values to read a partition name. 3283 if (Record.size() > 15) 3284 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3285 3286 return Error::success(); 3287 } 3288 3289 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3290 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3291 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3292 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3293 // v2: [strtab_offset, strtab_size, v1] 3294 StringRef Name; 3295 std::tie(Name, Record) = readNameFromStrtab(Record); 3296 3297 if (Record.size() < 8) 3298 return error("Invalid record"); 3299 Type *FTy = getTypeByID(Record[0]); 3300 if (!FTy) 3301 return error("Invalid record"); 3302 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3303 FTy = PTy->getElementType(); 3304 3305 if (!isa<FunctionType>(FTy)) 3306 return error("Invalid type for value"); 3307 auto CC = static_cast<CallingConv::ID>(Record[1]); 3308 if (CC & ~CallingConv::MaxID) 3309 return error("Invalid calling convention ID"); 3310 3311 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3312 if (Record.size() > 16) 3313 AddrSpace = Record[16]; 3314 3315 Function *Func = 3316 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3317 AddrSpace, Name, TheModule); 3318 3319 assert(Func->getFunctionType() == FTy && 3320 "Incorrect fully specified type provided for function"); 3321 FunctionTypes[Func] = cast<FunctionType>(FTy); 3322 3323 Func->setCallingConv(CC); 3324 bool isProto = Record[2]; 3325 uint64_t RawLinkage = Record[3]; 3326 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3327 Func->setAttributes(getAttributes(Record[4])); 3328 3329 // Upgrade any old-style byval or sret without a type by propagating the 3330 // argument's pointee type. There should be no opaque pointers where the byval 3331 // type is implicit. 3332 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3333 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3334 Attribute::InAlloca}) { 3335 if (!Func->hasParamAttribute(i, Kind)) 3336 continue; 3337 3338 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3339 continue; 3340 3341 Func->removeParamAttr(i, Kind); 3342 3343 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3344 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3345 Attribute NewAttr; 3346 switch (Kind) { 3347 case Attribute::ByVal: 3348 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3349 break; 3350 case Attribute::StructRet: 3351 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3352 break; 3353 case Attribute::InAlloca: 3354 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3355 break; 3356 default: 3357 llvm_unreachable("not an upgraded type attribute"); 3358 } 3359 3360 Func->addParamAttr(i, NewAttr); 3361 } 3362 } 3363 3364 MaybeAlign Alignment; 3365 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3366 return Err; 3367 Func->setAlignment(Alignment); 3368 if (Record[6]) { 3369 if (Record[6] - 1 >= SectionTable.size()) 3370 return error("Invalid ID"); 3371 Func->setSection(SectionTable[Record[6] - 1]); 3372 } 3373 // Local linkage must have default visibility. 3374 // auto-upgrade `hidden` and `protected` for old bitcode. 3375 if (!Func->hasLocalLinkage()) 3376 Func->setVisibility(getDecodedVisibility(Record[7])); 3377 if (Record.size() > 8 && Record[8]) { 3378 if (Record[8] - 1 >= GCTable.size()) 3379 return error("Invalid ID"); 3380 Func->setGC(GCTable[Record[8] - 1]); 3381 } 3382 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3383 if (Record.size() > 9) 3384 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3385 Func->setUnnamedAddr(UnnamedAddr); 3386 if (Record.size() > 10 && Record[10] != 0) 3387 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3388 3389 if (Record.size() > 11) 3390 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3391 else 3392 upgradeDLLImportExportLinkage(Func, RawLinkage); 3393 3394 if (Record.size() > 12) { 3395 if (unsigned ComdatID = Record[12]) { 3396 if (ComdatID > ComdatList.size()) 3397 return error("Invalid function comdat ID"); 3398 Func->setComdat(ComdatList[ComdatID - 1]); 3399 } 3400 } else if (hasImplicitComdat(RawLinkage)) { 3401 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3402 } 3403 3404 if (Record.size() > 13 && Record[13] != 0) 3405 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3406 3407 if (Record.size() > 14 && Record[14] != 0) 3408 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3409 3410 if (Record.size() > 15) { 3411 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3412 } 3413 inferDSOLocal(Func); 3414 3415 // Record[16] is the address space number. 3416 3417 // Check whether we have enough values to read a partition name. Also make 3418 // sure Strtab has enough values. 3419 if (Record.size() > 18 && Strtab.data() && 3420 Record[17] + Record[18] <= Strtab.size()) { 3421 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3422 } 3423 3424 ValueList.push_back(Func); 3425 3426 // If this is a function with a body, remember the prototype we are 3427 // creating now, so that we can match up the body with them later. 3428 if (!isProto) { 3429 Func->setIsMaterializable(true); 3430 FunctionsWithBodies.push_back(Func); 3431 DeferredFunctionInfo[Func] = 0; 3432 } 3433 return Error::success(); 3434 } 3435 3436 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3437 unsigned BitCode, ArrayRef<uint64_t> Record) { 3438 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3439 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3440 // dllstorageclass, threadlocal, unnamed_addr, 3441 // preemption specifier] (name in VST) 3442 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3443 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3444 // preemption specifier] (name in VST) 3445 // v2: [strtab_offset, strtab_size, v1] 3446 StringRef Name; 3447 std::tie(Name, Record) = readNameFromStrtab(Record); 3448 3449 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3450 if (Record.size() < (3 + (unsigned)NewRecord)) 3451 return error("Invalid record"); 3452 unsigned OpNum = 0; 3453 Type *Ty = getTypeByID(Record[OpNum++]); 3454 if (!Ty) 3455 return error("Invalid record"); 3456 3457 unsigned AddrSpace; 3458 if (!NewRecord) { 3459 auto *PTy = dyn_cast<PointerType>(Ty); 3460 if (!PTy) 3461 return error("Invalid type for value"); 3462 Ty = PTy->getElementType(); 3463 AddrSpace = PTy->getAddressSpace(); 3464 } else { 3465 AddrSpace = Record[OpNum++]; 3466 } 3467 3468 auto Val = Record[OpNum++]; 3469 auto Linkage = Record[OpNum++]; 3470 GlobalIndirectSymbol *NewGA; 3471 if (BitCode == bitc::MODULE_CODE_ALIAS || 3472 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3473 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3474 TheModule); 3475 else 3476 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3477 nullptr, TheModule); 3478 3479 // Local linkage must have default visibility. 3480 // auto-upgrade `hidden` and `protected` for old bitcode. 3481 if (OpNum != Record.size()) { 3482 auto VisInd = OpNum++; 3483 if (!NewGA->hasLocalLinkage()) 3484 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3485 } 3486 if (BitCode == bitc::MODULE_CODE_ALIAS || 3487 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3488 if (OpNum != Record.size()) 3489 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3490 else 3491 upgradeDLLImportExportLinkage(NewGA, Linkage); 3492 if (OpNum != Record.size()) 3493 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3494 if (OpNum != Record.size()) 3495 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3496 } 3497 if (OpNum != Record.size()) 3498 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3499 inferDSOLocal(NewGA); 3500 3501 // Check whether we have enough values to read a partition name. 3502 if (OpNum + 1 < Record.size()) { 3503 NewGA->setPartition( 3504 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3505 OpNum += 2; 3506 } 3507 3508 ValueList.push_back(NewGA); 3509 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3510 return Error::success(); 3511 } 3512 3513 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3514 bool ShouldLazyLoadMetadata, 3515 DataLayoutCallbackTy DataLayoutCallback) { 3516 if (ResumeBit) { 3517 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3518 return JumpFailed; 3519 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3520 return Err; 3521 3522 SmallVector<uint64_t, 64> Record; 3523 3524 // Parts of bitcode parsing depend on the datalayout. Make sure we 3525 // finalize the datalayout before we run any of that code. 3526 bool ResolvedDataLayout = false; 3527 auto ResolveDataLayout = [&] { 3528 if (ResolvedDataLayout) 3529 return; 3530 3531 // datalayout and triple can't be parsed after this point. 3532 ResolvedDataLayout = true; 3533 3534 // Upgrade data layout string. 3535 std::string DL = llvm::UpgradeDataLayoutString( 3536 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3537 TheModule->setDataLayout(DL); 3538 3539 if (auto LayoutOverride = 3540 DataLayoutCallback(TheModule->getTargetTriple())) 3541 TheModule->setDataLayout(*LayoutOverride); 3542 }; 3543 3544 // Read all the records for this module. 3545 while (true) { 3546 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3547 if (!MaybeEntry) 3548 return MaybeEntry.takeError(); 3549 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3550 3551 switch (Entry.Kind) { 3552 case BitstreamEntry::Error: 3553 return error("Malformed block"); 3554 case BitstreamEntry::EndBlock: 3555 ResolveDataLayout(); 3556 return globalCleanup(); 3557 3558 case BitstreamEntry::SubBlock: 3559 switch (Entry.ID) { 3560 default: // Skip unknown content. 3561 if (Error Err = Stream.SkipBlock()) 3562 return Err; 3563 break; 3564 case bitc::BLOCKINFO_BLOCK_ID: 3565 if (readBlockInfo()) 3566 return error("Malformed block"); 3567 break; 3568 case bitc::PARAMATTR_BLOCK_ID: 3569 if (Error Err = parseAttributeBlock()) 3570 return Err; 3571 break; 3572 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3573 if (Error Err = parseAttributeGroupBlock()) 3574 return Err; 3575 break; 3576 case bitc::TYPE_BLOCK_ID_NEW: 3577 if (Error Err = parseTypeTable()) 3578 return Err; 3579 break; 3580 case bitc::VALUE_SYMTAB_BLOCK_ID: 3581 if (!SeenValueSymbolTable) { 3582 // Either this is an old form VST without function index and an 3583 // associated VST forward declaration record (which would have caused 3584 // the VST to be jumped to and parsed before it was encountered 3585 // normally in the stream), or there were no function blocks to 3586 // trigger an earlier parsing of the VST. 3587 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3588 if (Error Err = parseValueSymbolTable()) 3589 return Err; 3590 SeenValueSymbolTable = true; 3591 } else { 3592 // We must have had a VST forward declaration record, which caused 3593 // the parser to jump to and parse the VST earlier. 3594 assert(VSTOffset > 0); 3595 if (Error Err = Stream.SkipBlock()) 3596 return Err; 3597 } 3598 break; 3599 case bitc::CONSTANTS_BLOCK_ID: 3600 if (Error Err = parseConstants()) 3601 return Err; 3602 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3603 return Err; 3604 break; 3605 case bitc::METADATA_BLOCK_ID: 3606 if (ShouldLazyLoadMetadata) { 3607 if (Error Err = rememberAndSkipMetadata()) 3608 return Err; 3609 break; 3610 } 3611 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3612 if (Error Err = MDLoader->parseModuleMetadata()) 3613 return Err; 3614 break; 3615 case bitc::METADATA_KIND_BLOCK_ID: 3616 if (Error Err = MDLoader->parseMetadataKinds()) 3617 return Err; 3618 break; 3619 case bitc::FUNCTION_BLOCK_ID: 3620 ResolveDataLayout(); 3621 3622 // If this is the first function body we've seen, reverse the 3623 // FunctionsWithBodies list. 3624 if (!SeenFirstFunctionBody) { 3625 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3626 if (Error Err = globalCleanup()) 3627 return Err; 3628 SeenFirstFunctionBody = true; 3629 } 3630 3631 if (VSTOffset > 0) { 3632 // If we have a VST forward declaration record, make sure we 3633 // parse the VST now if we haven't already. It is needed to 3634 // set up the DeferredFunctionInfo vector for lazy reading. 3635 if (!SeenValueSymbolTable) { 3636 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3637 return Err; 3638 SeenValueSymbolTable = true; 3639 // Fall through so that we record the NextUnreadBit below. 3640 // This is necessary in case we have an anonymous function that 3641 // is later materialized. Since it will not have a VST entry we 3642 // need to fall back to the lazy parse to find its offset. 3643 } else { 3644 // If we have a VST forward declaration record, but have already 3645 // parsed the VST (just above, when the first function body was 3646 // encountered here), then we are resuming the parse after 3647 // materializing functions. The ResumeBit points to the 3648 // start of the last function block recorded in the 3649 // DeferredFunctionInfo map. Skip it. 3650 if (Error Err = Stream.SkipBlock()) 3651 return Err; 3652 continue; 3653 } 3654 } 3655 3656 // Support older bitcode files that did not have the function 3657 // index in the VST, nor a VST forward declaration record, as 3658 // well as anonymous functions that do not have VST entries. 3659 // Build the DeferredFunctionInfo vector on the fly. 3660 if (Error Err = rememberAndSkipFunctionBody()) 3661 return Err; 3662 3663 // Suspend parsing when we reach the function bodies. Subsequent 3664 // materialization calls will resume it when necessary. If the bitcode 3665 // file is old, the symbol table will be at the end instead and will not 3666 // have been seen yet. In this case, just finish the parse now. 3667 if (SeenValueSymbolTable) { 3668 NextUnreadBit = Stream.GetCurrentBitNo(); 3669 // After the VST has been parsed, we need to make sure intrinsic name 3670 // are auto-upgraded. 3671 return globalCleanup(); 3672 } 3673 break; 3674 case bitc::USELIST_BLOCK_ID: 3675 if (Error Err = parseUseLists()) 3676 return Err; 3677 break; 3678 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3679 if (Error Err = parseOperandBundleTags()) 3680 return Err; 3681 break; 3682 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3683 if (Error Err = parseSyncScopeNames()) 3684 return Err; 3685 break; 3686 } 3687 continue; 3688 3689 case BitstreamEntry::Record: 3690 // The interesting case. 3691 break; 3692 } 3693 3694 // Read a record. 3695 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3696 if (!MaybeBitCode) 3697 return MaybeBitCode.takeError(); 3698 switch (unsigned BitCode = MaybeBitCode.get()) { 3699 default: break; // Default behavior, ignore unknown content. 3700 case bitc::MODULE_CODE_VERSION: { 3701 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3702 if (!VersionOrErr) 3703 return VersionOrErr.takeError(); 3704 UseRelativeIDs = *VersionOrErr >= 1; 3705 break; 3706 } 3707 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3708 if (ResolvedDataLayout) 3709 return error("target triple too late in module"); 3710 std::string S; 3711 if (convertToString(Record, 0, S)) 3712 return error("Invalid record"); 3713 TheModule->setTargetTriple(S); 3714 break; 3715 } 3716 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3717 if (ResolvedDataLayout) 3718 return error("datalayout too late in module"); 3719 std::string S; 3720 if (convertToString(Record, 0, S)) 3721 return error("Invalid record"); 3722 TheModule->setDataLayout(S); 3723 break; 3724 } 3725 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3726 std::string S; 3727 if (convertToString(Record, 0, S)) 3728 return error("Invalid record"); 3729 TheModule->setModuleInlineAsm(S); 3730 break; 3731 } 3732 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3733 // Deprecated, but still needed to read old bitcode files. 3734 std::string S; 3735 if (convertToString(Record, 0, S)) 3736 return error("Invalid record"); 3737 // Ignore value. 3738 break; 3739 } 3740 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3741 std::string S; 3742 if (convertToString(Record, 0, S)) 3743 return error("Invalid record"); 3744 SectionTable.push_back(S); 3745 break; 3746 } 3747 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3748 std::string S; 3749 if (convertToString(Record, 0, S)) 3750 return error("Invalid record"); 3751 GCTable.push_back(S); 3752 break; 3753 } 3754 case bitc::MODULE_CODE_COMDAT: 3755 if (Error Err = parseComdatRecord(Record)) 3756 return Err; 3757 break; 3758 case bitc::MODULE_CODE_GLOBALVAR: 3759 if (Error Err = parseGlobalVarRecord(Record)) 3760 return Err; 3761 break; 3762 case bitc::MODULE_CODE_FUNCTION: 3763 ResolveDataLayout(); 3764 if (Error Err = parseFunctionRecord(Record)) 3765 return Err; 3766 break; 3767 case bitc::MODULE_CODE_IFUNC: 3768 case bitc::MODULE_CODE_ALIAS: 3769 case bitc::MODULE_CODE_ALIAS_OLD: 3770 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3771 return Err; 3772 break; 3773 /// MODULE_CODE_VSTOFFSET: [offset] 3774 case bitc::MODULE_CODE_VSTOFFSET: 3775 if (Record.empty()) 3776 return error("Invalid record"); 3777 // Note that we subtract 1 here because the offset is relative to one word 3778 // before the start of the identification or module block, which was 3779 // historically always the start of the regular bitcode header. 3780 VSTOffset = Record[0] - 1; 3781 break; 3782 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3783 case bitc::MODULE_CODE_SOURCE_FILENAME: 3784 SmallString<128> ValueName; 3785 if (convertToString(Record, 0, ValueName)) 3786 return error("Invalid record"); 3787 TheModule->setSourceFileName(ValueName); 3788 break; 3789 } 3790 Record.clear(); 3791 } 3792 } 3793 3794 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3795 bool IsImporting, 3796 DataLayoutCallbackTy DataLayoutCallback) { 3797 TheModule = M; 3798 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3799 [&](unsigned ID) { return getTypeByID(ID); }); 3800 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3801 } 3802 3803 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3804 if (!isa<PointerType>(PtrType)) 3805 return error("Load/Store operand is not a pointer type"); 3806 3807 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3808 return error("Explicit load/store type does not match pointee " 3809 "type of pointer operand"); 3810 if (!PointerType::isLoadableOrStorableType(ValType)) 3811 return error("Cannot load/store from pointer"); 3812 return Error::success(); 3813 } 3814 3815 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3816 ArrayRef<Type *> ArgsTys) { 3817 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3818 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3819 Attribute::InAlloca}) { 3820 if (!CB->paramHasAttr(i, Kind)) 3821 continue; 3822 3823 CB->removeParamAttr(i, Kind); 3824 3825 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3826 Attribute NewAttr; 3827 switch (Kind) { 3828 case Attribute::ByVal: 3829 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3830 break; 3831 case Attribute::StructRet: 3832 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3833 break; 3834 case Attribute::InAlloca: 3835 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3836 break; 3837 default: 3838 llvm_unreachable("not an upgraded type attribute"); 3839 } 3840 3841 CB->addParamAttr(i, NewAttr); 3842 } 3843 } 3844 3845 switch (CB->getIntrinsicID()) { 3846 case Intrinsic::preserve_array_access_index: 3847 case Intrinsic::preserve_struct_access_index: 3848 if (!CB->getAttributes().getParamElementType(0)) { 3849 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3850 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3851 CB->addParamAttr(0, NewAttr); 3852 } 3853 break; 3854 default: 3855 break; 3856 } 3857 } 3858 3859 /// Lazily parse the specified function body block. 3860 Error BitcodeReader::parseFunctionBody(Function *F) { 3861 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3862 return Err; 3863 3864 // Unexpected unresolved metadata when parsing function. 3865 if (MDLoader->hasFwdRefs()) 3866 return error("Invalid function metadata: incoming forward references"); 3867 3868 InstructionList.clear(); 3869 unsigned ModuleValueListSize = ValueList.size(); 3870 unsigned ModuleMDLoaderSize = MDLoader->size(); 3871 3872 // Add all the function arguments to the value table. 3873 #ifndef NDEBUG 3874 unsigned ArgNo = 0; 3875 FunctionType *FTy = FunctionTypes[F]; 3876 #endif 3877 for (Argument &I : F->args()) { 3878 assert(I.getType() == FTy->getParamType(ArgNo++) && 3879 "Incorrect fully specified type for Function Argument"); 3880 ValueList.push_back(&I); 3881 } 3882 unsigned NextValueNo = ValueList.size(); 3883 BasicBlock *CurBB = nullptr; 3884 unsigned CurBBNo = 0; 3885 3886 DebugLoc LastLoc; 3887 auto getLastInstruction = [&]() -> Instruction * { 3888 if (CurBB && !CurBB->empty()) 3889 return &CurBB->back(); 3890 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3891 !FunctionBBs[CurBBNo - 1]->empty()) 3892 return &FunctionBBs[CurBBNo - 1]->back(); 3893 return nullptr; 3894 }; 3895 3896 std::vector<OperandBundleDef> OperandBundles; 3897 3898 // Read all the records. 3899 SmallVector<uint64_t, 64> Record; 3900 3901 while (true) { 3902 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3903 if (!MaybeEntry) 3904 return MaybeEntry.takeError(); 3905 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3906 3907 switch (Entry.Kind) { 3908 case BitstreamEntry::Error: 3909 return error("Malformed block"); 3910 case BitstreamEntry::EndBlock: 3911 goto OutOfRecordLoop; 3912 3913 case BitstreamEntry::SubBlock: 3914 switch (Entry.ID) { 3915 default: // Skip unknown content. 3916 if (Error Err = Stream.SkipBlock()) 3917 return Err; 3918 break; 3919 case bitc::CONSTANTS_BLOCK_ID: 3920 if (Error Err = parseConstants()) 3921 return Err; 3922 NextValueNo = ValueList.size(); 3923 break; 3924 case bitc::VALUE_SYMTAB_BLOCK_ID: 3925 if (Error Err = parseValueSymbolTable()) 3926 return Err; 3927 break; 3928 case bitc::METADATA_ATTACHMENT_ID: 3929 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3930 return Err; 3931 break; 3932 case bitc::METADATA_BLOCK_ID: 3933 assert(DeferredMetadataInfo.empty() && 3934 "Must read all module-level metadata before function-level"); 3935 if (Error Err = MDLoader->parseFunctionMetadata()) 3936 return Err; 3937 break; 3938 case bitc::USELIST_BLOCK_ID: 3939 if (Error Err = parseUseLists()) 3940 return Err; 3941 break; 3942 } 3943 continue; 3944 3945 case BitstreamEntry::Record: 3946 // The interesting case. 3947 break; 3948 } 3949 3950 // Read a record. 3951 Record.clear(); 3952 Instruction *I = nullptr; 3953 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3954 if (!MaybeBitCode) 3955 return MaybeBitCode.takeError(); 3956 switch (unsigned BitCode = MaybeBitCode.get()) { 3957 default: // Default behavior: reject 3958 return error("Invalid value"); 3959 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3960 if (Record.empty() || Record[0] == 0) 3961 return error("Invalid record"); 3962 // Create all the basic blocks for the function. 3963 FunctionBBs.resize(Record[0]); 3964 3965 // See if anything took the address of blocks in this function. 3966 auto BBFRI = BasicBlockFwdRefs.find(F); 3967 if (BBFRI == BasicBlockFwdRefs.end()) { 3968 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3969 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3970 } else { 3971 auto &BBRefs = BBFRI->second; 3972 // Check for invalid basic block references. 3973 if (BBRefs.size() > FunctionBBs.size()) 3974 return error("Invalid ID"); 3975 assert(!BBRefs.empty() && "Unexpected empty array"); 3976 assert(!BBRefs.front() && "Invalid reference to entry block"); 3977 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3978 ++I) 3979 if (I < RE && BBRefs[I]) { 3980 BBRefs[I]->insertInto(F); 3981 FunctionBBs[I] = BBRefs[I]; 3982 } else { 3983 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3984 } 3985 3986 // Erase from the table. 3987 BasicBlockFwdRefs.erase(BBFRI); 3988 } 3989 3990 CurBB = FunctionBBs[0]; 3991 continue; 3992 } 3993 3994 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3995 // This record indicates that the last instruction is at the same 3996 // location as the previous instruction with a location. 3997 I = getLastInstruction(); 3998 3999 if (!I) 4000 return error("Invalid record"); 4001 I->setDebugLoc(LastLoc); 4002 I = nullptr; 4003 continue; 4004 4005 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4006 I = getLastInstruction(); 4007 if (!I || Record.size() < 4) 4008 return error("Invalid record"); 4009 4010 unsigned Line = Record[0], Col = Record[1]; 4011 unsigned ScopeID = Record[2], IAID = Record[3]; 4012 bool isImplicitCode = Record.size() == 5 && Record[4]; 4013 4014 MDNode *Scope = nullptr, *IA = nullptr; 4015 if (ScopeID) { 4016 Scope = dyn_cast_or_null<MDNode>( 4017 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4018 if (!Scope) 4019 return error("Invalid record"); 4020 } 4021 if (IAID) { 4022 IA = dyn_cast_or_null<MDNode>( 4023 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4024 if (!IA) 4025 return error("Invalid record"); 4026 } 4027 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4028 isImplicitCode); 4029 I->setDebugLoc(LastLoc); 4030 I = nullptr; 4031 continue; 4032 } 4033 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4034 unsigned OpNum = 0; 4035 Value *LHS; 4036 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4037 OpNum+1 > Record.size()) 4038 return error("Invalid record"); 4039 4040 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4041 if (Opc == -1) 4042 return error("Invalid record"); 4043 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4044 InstructionList.push_back(I); 4045 if (OpNum < Record.size()) { 4046 if (isa<FPMathOperator>(I)) { 4047 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4048 if (FMF.any()) 4049 I->setFastMathFlags(FMF); 4050 } 4051 } 4052 break; 4053 } 4054 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4055 unsigned OpNum = 0; 4056 Value *LHS, *RHS; 4057 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4058 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4059 OpNum+1 > Record.size()) 4060 return error("Invalid record"); 4061 4062 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4063 if (Opc == -1) 4064 return error("Invalid record"); 4065 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4066 InstructionList.push_back(I); 4067 if (OpNum < Record.size()) { 4068 if (Opc == Instruction::Add || 4069 Opc == Instruction::Sub || 4070 Opc == Instruction::Mul || 4071 Opc == Instruction::Shl) { 4072 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4073 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4074 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4075 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4076 } else if (Opc == Instruction::SDiv || 4077 Opc == Instruction::UDiv || 4078 Opc == Instruction::LShr || 4079 Opc == Instruction::AShr) { 4080 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4081 cast<BinaryOperator>(I)->setIsExact(true); 4082 } else if (isa<FPMathOperator>(I)) { 4083 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4084 if (FMF.any()) 4085 I->setFastMathFlags(FMF); 4086 } 4087 4088 } 4089 break; 4090 } 4091 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4092 unsigned OpNum = 0; 4093 Value *Op; 4094 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4095 OpNum+2 != Record.size()) 4096 return error("Invalid record"); 4097 4098 Type *ResTy = getTypeByID(Record[OpNum]); 4099 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4100 if (Opc == -1 || !ResTy) 4101 return error("Invalid record"); 4102 Instruction *Temp = nullptr; 4103 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4104 if (Temp) { 4105 InstructionList.push_back(Temp); 4106 assert(CurBB && "No current BB?"); 4107 CurBB->getInstList().push_back(Temp); 4108 } 4109 } else { 4110 auto CastOp = (Instruction::CastOps)Opc; 4111 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4112 return error("Invalid cast"); 4113 I = CastInst::Create(CastOp, Op, ResTy); 4114 } 4115 InstructionList.push_back(I); 4116 break; 4117 } 4118 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4119 case bitc::FUNC_CODE_INST_GEP_OLD: 4120 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4121 unsigned OpNum = 0; 4122 4123 Type *Ty; 4124 bool InBounds; 4125 4126 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4127 InBounds = Record[OpNum++]; 4128 Ty = getTypeByID(Record[OpNum++]); 4129 } else { 4130 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4131 Ty = nullptr; 4132 } 4133 4134 Value *BasePtr; 4135 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4136 return error("Invalid record"); 4137 4138 if (!Ty) { 4139 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4140 ->getElementType(); 4141 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4142 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4143 return error( 4144 "Explicit gep type does not match pointee type of pointer operand"); 4145 } 4146 4147 SmallVector<Value*, 16> GEPIdx; 4148 while (OpNum != Record.size()) { 4149 Value *Op; 4150 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4151 return error("Invalid record"); 4152 GEPIdx.push_back(Op); 4153 } 4154 4155 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4156 4157 InstructionList.push_back(I); 4158 if (InBounds) 4159 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4160 break; 4161 } 4162 4163 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4164 // EXTRACTVAL: [opty, opval, n x indices] 4165 unsigned OpNum = 0; 4166 Value *Agg; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4168 return error("Invalid record"); 4169 Type *Ty = Agg->getType(); 4170 4171 unsigned RecSize = Record.size(); 4172 if (OpNum == RecSize) 4173 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4174 4175 SmallVector<unsigned, 4> EXTRACTVALIdx; 4176 for (; OpNum != RecSize; ++OpNum) { 4177 bool IsArray = Ty->isArrayTy(); 4178 bool IsStruct = Ty->isStructTy(); 4179 uint64_t Index = Record[OpNum]; 4180 4181 if (!IsStruct && !IsArray) 4182 return error("EXTRACTVAL: Invalid type"); 4183 if ((unsigned)Index != Index) 4184 return error("Invalid value"); 4185 if (IsStruct && Index >= Ty->getStructNumElements()) 4186 return error("EXTRACTVAL: Invalid struct index"); 4187 if (IsArray && Index >= Ty->getArrayNumElements()) 4188 return error("EXTRACTVAL: Invalid array index"); 4189 EXTRACTVALIdx.push_back((unsigned)Index); 4190 4191 if (IsStruct) 4192 Ty = Ty->getStructElementType(Index); 4193 else 4194 Ty = Ty->getArrayElementType(); 4195 } 4196 4197 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4198 InstructionList.push_back(I); 4199 break; 4200 } 4201 4202 case bitc::FUNC_CODE_INST_INSERTVAL: { 4203 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4204 unsigned OpNum = 0; 4205 Value *Agg; 4206 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4207 return error("Invalid record"); 4208 Value *Val; 4209 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4210 return error("Invalid record"); 4211 4212 unsigned RecSize = Record.size(); 4213 if (OpNum == RecSize) 4214 return error("INSERTVAL: Invalid instruction with 0 indices"); 4215 4216 SmallVector<unsigned, 4> INSERTVALIdx; 4217 Type *CurTy = Agg->getType(); 4218 for (; OpNum != RecSize; ++OpNum) { 4219 bool IsArray = CurTy->isArrayTy(); 4220 bool IsStruct = CurTy->isStructTy(); 4221 uint64_t Index = Record[OpNum]; 4222 4223 if (!IsStruct && !IsArray) 4224 return error("INSERTVAL: Invalid type"); 4225 if ((unsigned)Index != Index) 4226 return error("Invalid value"); 4227 if (IsStruct && Index >= CurTy->getStructNumElements()) 4228 return error("INSERTVAL: Invalid struct index"); 4229 if (IsArray && Index >= CurTy->getArrayNumElements()) 4230 return error("INSERTVAL: Invalid array index"); 4231 4232 INSERTVALIdx.push_back((unsigned)Index); 4233 if (IsStruct) 4234 CurTy = CurTy->getStructElementType(Index); 4235 else 4236 CurTy = CurTy->getArrayElementType(); 4237 } 4238 4239 if (CurTy != Val->getType()) 4240 return error("Inserted value type doesn't match aggregate type"); 4241 4242 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4243 InstructionList.push_back(I); 4244 break; 4245 } 4246 4247 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4248 // obsolete form of select 4249 // handles select i1 ... in old bitcode 4250 unsigned OpNum = 0; 4251 Value *TrueVal, *FalseVal, *Cond; 4252 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4253 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4254 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4255 return error("Invalid record"); 4256 4257 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4258 InstructionList.push_back(I); 4259 break; 4260 } 4261 4262 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4263 // new form of select 4264 // handles select i1 or select [N x i1] 4265 unsigned OpNum = 0; 4266 Value *TrueVal, *FalseVal, *Cond; 4267 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4268 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4269 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4270 return error("Invalid record"); 4271 4272 // select condition can be either i1 or [N x i1] 4273 if (VectorType* vector_type = 4274 dyn_cast<VectorType>(Cond->getType())) { 4275 // expect <n x i1> 4276 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4277 return error("Invalid type for value"); 4278 } else { 4279 // expect i1 4280 if (Cond->getType() != Type::getInt1Ty(Context)) 4281 return error("Invalid type for value"); 4282 } 4283 4284 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4285 InstructionList.push_back(I); 4286 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4287 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4288 if (FMF.any()) 4289 I->setFastMathFlags(FMF); 4290 } 4291 break; 4292 } 4293 4294 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4295 unsigned OpNum = 0; 4296 Value *Vec, *Idx; 4297 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4298 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4299 return error("Invalid record"); 4300 if (!Vec->getType()->isVectorTy()) 4301 return error("Invalid type for value"); 4302 I = ExtractElementInst::Create(Vec, Idx); 4303 InstructionList.push_back(I); 4304 break; 4305 } 4306 4307 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4308 unsigned OpNum = 0; 4309 Value *Vec, *Elt, *Idx; 4310 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4311 return error("Invalid record"); 4312 if (!Vec->getType()->isVectorTy()) 4313 return error("Invalid type for value"); 4314 if (popValue(Record, OpNum, NextValueNo, 4315 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4316 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4317 return error("Invalid record"); 4318 I = InsertElementInst::Create(Vec, Elt, Idx); 4319 InstructionList.push_back(I); 4320 break; 4321 } 4322 4323 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4324 unsigned OpNum = 0; 4325 Value *Vec1, *Vec2, *Mask; 4326 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4327 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4328 return error("Invalid record"); 4329 4330 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4331 return error("Invalid record"); 4332 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4333 return error("Invalid type for value"); 4334 4335 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4336 InstructionList.push_back(I); 4337 break; 4338 } 4339 4340 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4341 // Old form of ICmp/FCmp returning bool 4342 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4343 // both legal on vectors but had different behaviour. 4344 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4345 // FCmp/ICmp returning bool or vector of bool 4346 4347 unsigned OpNum = 0; 4348 Value *LHS, *RHS; 4349 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4350 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4351 return error("Invalid record"); 4352 4353 if (OpNum >= Record.size()) 4354 return error( 4355 "Invalid record: operand number exceeded available operands"); 4356 4357 unsigned PredVal = Record[OpNum]; 4358 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4359 FastMathFlags FMF; 4360 if (IsFP && Record.size() > OpNum+1) 4361 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4362 4363 if (OpNum+1 != Record.size()) 4364 return error("Invalid record"); 4365 4366 if (LHS->getType()->isFPOrFPVectorTy()) 4367 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4368 else 4369 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4370 4371 if (FMF.any()) 4372 I->setFastMathFlags(FMF); 4373 InstructionList.push_back(I); 4374 break; 4375 } 4376 4377 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4378 { 4379 unsigned Size = Record.size(); 4380 if (Size == 0) { 4381 I = ReturnInst::Create(Context); 4382 InstructionList.push_back(I); 4383 break; 4384 } 4385 4386 unsigned OpNum = 0; 4387 Value *Op = nullptr; 4388 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4389 return error("Invalid record"); 4390 if (OpNum != Record.size()) 4391 return error("Invalid record"); 4392 4393 I = ReturnInst::Create(Context, Op); 4394 InstructionList.push_back(I); 4395 break; 4396 } 4397 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4398 if (Record.size() != 1 && Record.size() != 3) 4399 return error("Invalid record"); 4400 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4401 if (!TrueDest) 4402 return error("Invalid record"); 4403 4404 if (Record.size() == 1) { 4405 I = BranchInst::Create(TrueDest); 4406 InstructionList.push_back(I); 4407 } 4408 else { 4409 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4410 Value *Cond = getValue(Record, 2, NextValueNo, 4411 Type::getInt1Ty(Context)); 4412 if (!FalseDest || !Cond) 4413 return error("Invalid record"); 4414 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4415 InstructionList.push_back(I); 4416 } 4417 break; 4418 } 4419 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4420 if (Record.size() != 1 && Record.size() != 2) 4421 return error("Invalid record"); 4422 unsigned Idx = 0; 4423 Value *CleanupPad = 4424 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4425 if (!CleanupPad) 4426 return error("Invalid record"); 4427 BasicBlock *UnwindDest = nullptr; 4428 if (Record.size() == 2) { 4429 UnwindDest = getBasicBlock(Record[Idx++]); 4430 if (!UnwindDest) 4431 return error("Invalid record"); 4432 } 4433 4434 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4435 InstructionList.push_back(I); 4436 break; 4437 } 4438 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4439 if (Record.size() != 2) 4440 return error("Invalid record"); 4441 unsigned Idx = 0; 4442 Value *CatchPad = 4443 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4444 if (!CatchPad) 4445 return error("Invalid record"); 4446 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4447 if (!BB) 4448 return error("Invalid record"); 4449 4450 I = CatchReturnInst::Create(CatchPad, BB); 4451 InstructionList.push_back(I); 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4455 // We must have, at minimum, the outer scope and the number of arguments. 4456 if (Record.size() < 2) 4457 return error("Invalid record"); 4458 4459 unsigned Idx = 0; 4460 4461 Value *ParentPad = 4462 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4463 4464 unsigned NumHandlers = Record[Idx++]; 4465 4466 SmallVector<BasicBlock *, 2> Handlers; 4467 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4468 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4469 if (!BB) 4470 return error("Invalid record"); 4471 Handlers.push_back(BB); 4472 } 4473 4474 BasicBlock *UnwindDest = nullptr; 4475 if (Idx + 1 == Record.size()) { 4476 UnwindDest = getBasicBlock(Record[Idx++]); 4477 if (!UnwindDest) 4478 return error("Invalid record"); 4479 } 4480 4481 if (Record.size() != Idx) 4482 return error("Invalid record"); 4483 4484 auto *CatchSwitch = 4485 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4486 for (BasicBlock *Handler : Handlers) 4487 CatchSwitch->addHandler(Handler); 4488 I = CatchSwitch; 4489 InstructionList.push_back(I); 4490 break; 4491 } 4492 case bitc::FUNC_CODE_INST_CATCHPAD: 4493 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4494 // We must have, at minimum, the outer scope and the number of arguments. 4495 if (Record.size() < 2) 4496 return error("Invalid record"); 4497 4498 unsigned Idx = 0; 4499 4500 Value *ParentPad = 4501 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4502 4503 unsigned NumArgOperands = Record[Idx++]; 4504 4505 SmallVector<Value *, 2> Args; 4506 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4507 Value *Val; 4508 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4509 return error("Invalid record"); 4510 Args.push_back(Val); 4511 } 4512 4513 if (Record.size() != Idx) 4514 return error("Invalid record"); 4515 4516 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4517 I = CleanupPadInst::Create(ParentPad, Args); 4518 else 4519 I = CatchPadInst::Create(ParentPad, Args); 4520 InstructionList.push_back(I); 4521 break; 4522 } 4523 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4524 // Check magic 4525 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4526 // "New" SwitchInst format with case ranges. The changes to write this 4527 // format were reverted but we still recognize bitcode that uses it. 4528 // Hopefully someday we will have support for case ranges and can use 4529 // this format again. 4530 4531 Type *OpTy = getTypeByID(Record[1]); 4532 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4533 4534 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4535 BasicBlock *Default = getBasicBlock(Record[3]); 4536 if (!OpTy || !Cond || !Default) 4537 return error("Invalid record"); 4538 4539 unsigned NumCases = Record[4]; 4540 4541 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4542 InstructionList.push_back(SI); 4543 4544 unsigned CurIdx = 5; 4545 for (unsigned i = 0; i != NumCases; ++i) { 4546 SmallVector<ConstantInt*, 1> CaseVals; 4547 unsigned NumItems = Record[CurIdx++]; 4548 for (unsigned ci = 0; ci != NumItems; ++ci) { 4549 bool isSingleNumber = Record[CurIdx++]; 4550 4551 APInt Low; 4552 unsigned ActiveWords = 1; 4553 if (ValueBitWidth > 64) 4554 ActiveWords = Record[CurIdx++]; 4555 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4556 ValueBitWidth); 4557 CurIdx += ActiveWords; 4558 4559 if (!isSingleNumber) { 4560 ActiveWords = 1; 4561 if (ValueBitWidth > 64) 4562 ActiveWords = Record[CurIdx++]; 4563 APInt High = readWideAPInt( 4564 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4565 CurIdx += ActiveWords; 4566 4567 // FIXME: It is not clear whether values in the range should be 4568 // compared as signed or unsigned values. The partially 4569 // implemented changes that used this format in the past used 4570 // unsigned comparisons. 4571 for ( ; Low.ule(High); ++Low) 4572 CaseVals.push_back(ConstantInt::get(Context, Low)); 4573 } else 4574 CaseVals.push_back(ConstantInt::get(Context, Low)); 4575 } 4576 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4577 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4578 cve = CaseVals.end(); cvi != cve; ++cvi) 4579 SI->addCase(*cvi, DestBB); 4580 } 4581 I = SI; 4582 break; 4583 } 4584 4585 // Old SwitchInst format without case ranges. 4586 4587 if (Record.size() < 3 || (Record.size() & 1) == 0) 4588 return error("Invalid record"); 4589 Type *OpTy = getTypeByID(Record[0]); 4590 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4591 BasicBlock *Default = getBasicBlock(Record[2]); 4592 if (!OpTy || !Cond || !Default) 4593 return error("Invalid record"); 4594 unsigned NumCases = (Record.size()-3)/2; 4595 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4596 InstructionList.push_back(SI); 4597 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4598 ConstantInt *CaseVal = 4599 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4600 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4601 if (!CaseVal || !DestBB) { 4602 delete SI; 4603 return error("Invalid record"); 4604 } 4605 SI->addCase(CaseVal, DestBB); 4606 } 4607 I = SI; 4608 break; 4609 } 4610 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4611 if (Record.size() < 2) 4612 return error("Invalid record"); 4613 Type *OpTy = getTypeByID(Record[0]); 4614 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4615 if (!OpTy || !Address) 4616 return error("Invalid record"); 4617 unsigned NumDests = Record.size()-2; 4618 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4619 InstructionList.push_back(IBI); 4620 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4621 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4622 IBI->addDestination(DestBB); 4623 } else { 4624 delete IBI; 4625 return error("Invalid record"); 4626 } 4627 } 4628 I = IBI; 4629 break; 4630 } 4631 4632 case bitc::FUNC_CODE_INST_INVOKE: { 4633 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4634 if (Record.size() < 4) 4635 return error("Invalid record"); 4636 unsigned OpNum = 0; 4637 AttributeList PAL = getAttributes(Record[OpNum++]); 4638 unsigned CCInfo = Record[OpNum++]; 4639 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4640 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4641 4642 FunctionType *FTy = nullptr; 4643 if ((CCInfo >> 13) & 1) { 4644 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4645 if (!FTy) 4646 return error("Explicit invoke type is not a function type"); 4647 } 4648 4649 Value *Callee; 4650 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4651 return error("Invalid record"); 4652 4653 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4654 if (!CalleeTy) 4655 return error("Callee is not a pointer"); 4656 if (!FTy) { 4657 FTy = dyn_cast<FunctionType>( 4658 cast<PointerType>(Callee->getType())->getElementType()); 4659 if (!FTy) 4660 return error("Callee is not of pointer to function type"); 4661 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4662 return error("Explicit invoke type does not match pointee type of " 4663 "callee operand"); 4664 if (Record.size() < FTy->getNumParams() + OpNum) 4665 return error("Insufficient operands to call"); 4666 4667 SmallVector<Value*, 16> Ops; 4668 SmallVector<Type *, 16> ArgsTys; 4669 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4670 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4671 FTy->getParamType(i))); 4672 ArgsTys.push_back(FTy->getParamType(i)); 4673 if (!Ops.back()) 4674 return error("Invalid record"); 4675 } 4676 4677 if (!FTy->isVarArg()) { 4678 if (Record.size() != OpNum) 4679 return error("Invalid record"); 4680 } else { 4681 // Read type/value pairs for varargs params. 4682 while (OpNum != Record.size()) { 4683 Value *Op; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4685 return error("Invalid record"); 4686 Ops.push_back(Op); 4687 ArgsTys.push_back(Op->getType()); 4688 } 4689 } 4690 4691 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4692 OperandBundles); 4693 OperandBundles.clear(); 4694 InstructionList.push_back(I); 4695 cast<InvokeInst>(I)->setCallingConv( 4696 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4697 cast<InvokeInst>(I)->setAttributes(PAL); 4698 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4699 4700 break; 4701 } 4702 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4703 unsigned Idx = 0; 4704 Value *Val = nullptr; 4705 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4706 return error("Invalid record"); 4707 I = ResumeInst::Create(Val); 4708 InstructionList.push_back(I); 4709 break; 4710 } 4711 case bitc::FUNC_CODE_INST_CALLBR: { 4712 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4713 unsigned OpNum = 0; 4714 AttributeList PAL = getAttributes(Record[OpNum++]); 4715 unsigned CCInfo = Record[OpNum++]; 4716 4717 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4718 unsigned NumIndirectDests = Record[OpNum++]; 4719 SmallVector<BasicBlock *, 16> IndirectDests; 4720 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4721 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4722 4723 FunctionType *FTy = nullptr; 4724 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4725 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4726 if (!FTy) 4727 return error("Explicit call type is not a function type"); 4728 } 4729 4730 Value *Callee; 4731 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4732 return error("Invalid record"); 4733 4734 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4735 if (!OpTy) 4736 return error("Callee is not a pointer type"); 4737 if (!FTy) { 4738 FTy = dyn_cast<FunctionType>( 4739 cast<PointerType>(Callee->getType())->getElementType()); 4740 if (!FTy) 4741 return error("Callee is not of pointer to function type"); 4742 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4743 return error("Explicit call type does not match pointee type of " 4744 "callee operand"); 4745 if (Record.size() < FTy->getNumParams() + OpNum) 4746 return error("Insufficient operands to call"); 4747 4748 SmallVector<Value*, 16> Args; 4749 // Read the fixed params. 4750 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4751 if (FTy->getParamType(i)->isLabelTy()) 4752 Args.push_back(getBasicBlock(Record[OpNum])); 4753 else 4754 Args.push_back(getValue(Record, OpNum, NextValueNo, 4755 FTy->getParamType(i))); 4756 if (!Args.back()) 4757 return error("Invalid record"); 4758 } 4759 4760 // Read type/value pairs for varargs params. 4761 if (!FTy->isVarArg()) { 4762 if (OpNum != Record.size()) 4763 return error("Invalid record"); 4764 } else { 4765 while (OpNum != Record.size()) { 4766 Value *Op; 4767 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4768 return error("Invalid record"); 4769 Args.push_back(Op); 4770 } 4771 } 4772 4773 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4774 OperandBundles); 4775 OperandBundles.clear(); 4776 InstructionList.push_back(I); 4777 cast<CallBrInst>(I)->setCallingConv( 4778 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4779 cast<CallBrInst>(I)->setAttributes(PAL); 4780 break; 4781 } 4782 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4783 I = new UnreachableInst(Context); 4784 InstructionList.push_back(I); 4785 break; 4786 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4787 if (Record.empty()) 4788 return error("Invalid record"); 4789 // The first record specifies the type. 4790 Type *Ty = getTypeByID(Record[0]); 4791 if (!Ty) 4792 return error("Invalid record"); 4793 4794 // Phi arguments are pairs of records of [value, basic block]. 4795 // There is an optional final record for fast-math-flags if this phi has a 4796 // floating-point type. 4797 size_t NumArgs = (Record.size() - 1) / 2; 4798 PHINode *PN = PHINode::Create(Ty, NumArgs); 4799 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4800 return error("Invalid record"); 4801 InstructionList.push_back(PN); 4802 4803 for (unsigned i = 0; i != NumArgs; i++) { 4804 Value *V; 4805 // With the new function encoding, it is possible that operands have 4806 // negative IDs (for forward references). Use a signed VBR 4807 // representation to keep the encoding small. 4808 if (UseRelativeIDs) 4809 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4810 else 4811 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4812 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4813 if (!V || !BB) 4814 return error("Invalid record"); 4815 PN->addIncoming(V, BB); 4816 } 4817 I = PN; 4818 4819 // If there are an even number of records, the final record must be FMF. 4820 if (Record.size() % 2 == 0) { 4821 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4822 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4823 if (FMF.any()) 4824 I->setFastMathFlags(FMF); 4825 } 4826 4827 break; 4828 } 4829 4830 case bitc::FUNC_CODE_INST_LANDINGPAD: 4831 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4832 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4833 unsigned Idx = 0; 4834 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4835 if (Record.size() < 3) 4836 return error("Invalid record"); 4837 } else { 4838 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4839 if (Record.size() < 4) 4840 return error("Invalid record"); 4841 } 4842 Type *Ty = getTypeByID(Record[Idx++]); 4843 if (!Ty) 4844 return error("Invalid record"); 4845 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4846 Value *PersFn = nullptr; 4847 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4848 return error("Invalid record"); 4849 4850 if (!F->hasPersonalityFn()) 4851 F->setPersonalityFn(cast<Constant>(PersFn)); 4852 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4853 return error("Personality function mismatch"); 4854 } 4855 4856 bool IsCleanup = !!Record[Idx++]; 4857 unsigned NumClauses = Record[Idx++]; 4858 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4859 LP->setCleanup(IsCleanup); 4860 for (unsigned J = 0; J != NumClauses; ++J) { 4861 LandingPadInst::ClauseType CT = 4862 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4863 Value *Val; 4864 4865 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4866 delete LP; 4867 return error("Invalid record"); 4868 } 4869 4870 assert((CT != LandingPadInst::Catch || 4871 !isa<ArrayType>(Val->getType())) && 4872 "Catch clause has a invalid type!"); 4873 assert((CT != LandingPadInst::Filter || 4874 isa<ArrayType>(Val->getType())) && 4875 "Filter clause has invalid type!"); 4876 LP->addClause(cast<Constant>(Val)); 4877 } 4878 4879 I = LP; 4880 InstructionList.push_back(I); 4881 break; 4882 } 4883 4884 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4885 if (Record.size() != 4) 4886 return error("Invalid record"); 4887 using APV = AllocaPackedValues; 4888 const uint64_t Rec = Record[3]; 4889 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4890 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4891 Type *Ty = getTypeByID(Record[0]); 4892 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4893 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4894 if (!PTy) 4895 return error("Old-style alloca with a non-pointer type"); 4896 Ty = PTy->getElementType(); 4897 } 4898 Type *OpTy = getTypeByID(Record[1]); 4899 Value *Size = getFnValueByID(Record[2], OpTy); 4900 MaybeAlign Align; 4901 if (Error Err = 4902 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4903 return Err; 4904 } 4905 if (!Ty || !Size) 4906 return error("Invalid record"); 4907 4908 // FIXME: Make this an optional field. 4909 const DataLayout &DL = TheModule->getDataLayout(); 4910 unsigned AS = DL.getAllocaAddrSpace(); 4911 4912 SmallPtrSet<Type *, 4> Visited; 4913 if (!Align && !Ty->isSized(&Visited)) 4914 return error("alloca of unsized type"); 4915 if (!Align) 4916 Align = DL.getPrefTypeAlign(Ty); 4917 4918 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4919 AI->setUsedWithInAlloca(InAlloca); 4920 AI->setSwiftError(SwiftError); 4921 I = AI; 4922 InstructionList.push_back(I); 4923 break; 4924 } 4925 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4926 unsigned OpNum = 0; 4927 Value *Op; 4928 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4929 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4930 return error("Invalid record"); 4931 4932 if (!isa<PointerType>(Op->getType())) 4933 return error("Load operand is not a pointer type"); 4934 4935 Type *Ty = nullptr; 4936 if (OpNum + 3 == Record.size()) { 4937 Ty = getTypeByID(Record[OpNum++]); 4938 } else { 4939 Ty = cast<PointerType>(Op->getType())->getElementType(); 4940 } 4941 4942 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4943 return Err; 4944 4945 MaybeAlign Align; 4946 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4947 return Err; 4948 SmallPtrSet<Type *, 4> Visited; 4949 if (!Align && !Ty->isSized(&Visited)) 4950 return error("load of unsized type"); 4951 if (!Align) 4952 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4953 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4958 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4959 unsigned OpNum = 0; 4960 Value *Op; 4961 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4962 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4963 return error("Invalid record"); 4964 4965 if (!isa<PointerType>(Op->getType())) 4966 return error("Load operand is not a pointer type"); 4967 4968 Type *Ty = nullptr; 4969 if (OpNum + 5 == Record.size()) { 4970 Ty = getTypeByID(Record[OpNum++]); 4971 } else { 4972 Ty = cast<PointerType>(Op->getType())->getElementType(); 4973 } 4974 4975 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4976 return Err; 4977 4978 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4979 if (Ordering == AtomicOrdering::NotAtomic || 4980 Ordering == AtomicOrdering::Release || 4981 Ordering == AtomicOrdering::AcquireRelease) 4982 return error("Invalid record"); 4983 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4984 return error("Invalid record"); 4985 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4986 4987 MaybeAlign Align; 4988 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4989 return Err; 4990 if (!Align) 4991 return error("Alignment missing from atomic load"); 4992 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4993 InstructionList.push_back(I); 4994 break; 4995 } 4996 case bitc::FUNC_CODE_INST_STORE: 4997 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4998 unsigned OpNum = 0; 4999 Value *Val, *Ptr; 5000 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5001 (BitCode == bitc::FUNC_CODE_INST_STORE 5002 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5003 : popValue(Record, OpNum, NextValueNo, 5004 cast<PointerType>(Ptr->getType())->getElementType(), 5005 Val)) || 5006 OpNum + 2 != Record.size()) 5007 return error("Invalid record"); 5008 5009 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5010 return Err; 5011 MaybeAlign Align; 5012 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5013 return Err; 5014 SmallPtrSet<Type *, 4> Visited; 5015 if (!Align && !Val->getType()->isSized(&Visited)) 5016 return error("store of unsized type"); 5017 if (!Align) 5018 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5019 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5020 InstructionList.push_back(I); 5021 break; 5022 } 5023 case bitc::FUNC_CODE_INST_STOREATOMIC: 5024 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5025 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5026 unsigned OpNum = 0; 5027 Value *Val, *Ptr; 5028 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5029 !isa<PointerType>(Ptr->getType()) || 5030 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5031 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5032 : popValue(Record, OpNum, NextValueNo, 5033 cast<PointerType>(Ptr->getType())->getElementType(), 5034 Val)) || 5035 OpNum + 4 != Record.size()) 5036 return error("Invalid record"); 5037 5038 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5039 return Err; 5040 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5041 if (Ordering == AtomicOrdering::NotAtomic || 5042 Ordering == AtomicOrdering::Acquire || 5043 Ordering == AtomicOrdering::AcquireRelease) 5044 return error("Invalid record"); 5045 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5046 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5047 return error("Invalid record"); 5048 5049 MaybeAlign Align; 5050 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5051 return Err; 5052 if (!Align) 5053 return error("Alignment missing from atomic store"); 5054 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5055 InstructionList.push_back(I); 5056 break; 5057 } 5058 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5059 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5060 // failure_ordering?, weak?] 5061 const size_t NumRecords = Record.size(); 5062 unsigned OpNum = 0; 5063 Value *Ptr = nullptr; 5064 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5065 return error("Invalid record"); 5066 5067 if (!isa<PointerType>(Ptr->getType())) 5068 return error("Cmpxchg operand is not a pointer type"); 5069 5070 Value *Cmp = nullptr; 5071 if (popValue(Record, OpNum, NextValueNo, 5072 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5073 Cmp)) 5074 return error("Invalid record"); 5075 5076 Value *New = nullptr; 5077 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5078 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5079 return error("Invalid record"); 5080 5081 const AtomicOrdering SuccessOrdering = 5082 getDecodedOrdering(Record[OpNum + 1]); 5083 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5084 SuccessOrdering == AtomicOrdering::Unordered) 5085 return error("Invalid record"); 5086 5087 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5088 5089 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5090 return Err; 5091 5092 const AtomicOrdering FailureOrdering = 5093 NumRecords < 7 5094 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5095 : getDecodedOrdering(Record[OpNum + 3]); 5096 5097 if (FailureOrdering == AtomicOrdering::NotAtomic || 5098 FailureOrdering == AtomicOrdering::Unordered) 5099 return error("Invalid record"); 5100 5101 const Align Alignment( 5102 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5103 5104 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5105 FailureOrdering, SSID); 5106 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5107 5108 if (NumRecords < 8) { 5109 // Before weak cmpxchgs existed, the instruction simply returned the 5110 // value loaded from memory, so bitcode files from that era will be 5111 // expecting the first component of a modern cmpxchg. 5112 CurBB->getInstList().push_back(I); 5113 I = ExtractValueInst::Create(I, 0); 5114 } else { 5115 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5116 } 5117 5118 InstructionList.push_back(I); 5119 break; 5120 } 5121 case bitc::FUNC_CODE_INST_CMPXCHG: { 5122 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5123 // failure_ordering, weak, align?] 5124 const size_t NumRecords = Record.size(); 5125 unsigned OpNum = 0; 5126 Value *Ptr = nullptr; 5127 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5128 return error("Invalid record"); 5129 5130 if (!isa<PointerType>(Ptr->getType())) 5131 return error("Cmpxchg operand is not a pointer type"); 5132 5133 Value *Cmp = nullptr; 5134 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5135 return error("Invalid record"); 5136 5137 Value *Val = nullptr; 5138 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5139 return error("Invalid record"); 5140 5141 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5142 return error("Invalid record"); 5143 5144 const bool IsVol = Record[OpNum]; 5145 5146 const AtomicOrdering SuccessOrdering = 5147 getDecodedOrdering(Record[OpNum + 1]); 5148 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5149 return error("Invalid cmpxchg success ordering"); 5150 5151 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5152 5153 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5154 return Err; 5155 5156 const AtomicOrdering FailureOrdering = 5157 getDecodedOrdering(Record[OpNum + 3]); 5158 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5159 return error("Invalid cmpxchg failure ordering"); 5160 5161 const bool IsWeak = Record[OpNum + 4]; 5162 5163 MaybeAlign Alignment; 5164 5165 if (NumRecords == (OpNum + 6)) { 5166 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5167 return Err; 5168 } 5169 if (!Alignment) 5170 Alignment = 5171 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5172 5173 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5174 FailureOrdering, SSID); 5175 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5176 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5177 5178 InstructionList.push_back(I); 5179 break; 5180 } 5181 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5182 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5183 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5184 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5185 const size_t NumRecords = Record.size(); 5186 unsigned OpNum = 0; 5187 5188 Value *Ptr = nullptr; 5189 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5190 return error("Invalid record"); 5191 5192 if (!isa<PointerType>(Ptr->getType())) 5193 return error("Invalid record"); 5194 5195 Value *Val = nullptr; 5196 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5197 if (popValue(Record, OpNum, NextValueNo, 5198 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5199 Val)) 5200 return error("Invalid record"); 5201 } else { 5202 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5203 return error("Invalid record"); 5204 } 5205 5206 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5207 return error("Invalid record"); 5208 5209 const AtomicRMWInst::BinOp Operation = 5210 getDecodedRMWOperation(Record[OpNum]); 5211 if (Operation < AtomicRMWInst::FIRST_BINOP || 5212 Operation > AtomicRMWInst::LAST_BINOP) 5213 return error("Invalid record"); 5214 5215 const bool IsVol = Record[OpNum + 1]; 5216 5217 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5218 if (Ordering == AtomicOrdering::NotAtomic || 5219 Ordering == AtomicOrdering::Unordered) 5220 return error("Invalid record"); 5221 5222 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5223 5224 MaybeAlign Alignment; 5225 5226 if (NumRecords == (OpNum + 5)) { 5227 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5228 return Err; 5229 } 5230 5231 if (!Alignment) 5232 Alignment = 5233 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5234 5235 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5236 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5237 5238 InstructionList.push_back(I); 5239 break; 5240 } 5241 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5242 if (2 != Record.size()) 5243 return error("Invalid record"); 5244 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5245 if (Ordering == AtomicOrdering::NotAtomic || 5246 Ordering == AtomicOrdering::Unordered || 5247 Ordering == AtomicOrdering::Monotonic) 5248 return error("Invalid record"); 5249 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5250 I = new FenceInst(Context, Ordering, SSID); 5251 InstructionList.push_back(I); 5252 break; 5253 } 5254 case bitc::FUNC_CODE_INST_CALL: { 5255 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5256 if (Record.size() < 3) 5257 return error("Invalid record"); 5258 5259 unsigned OpNum = 0; 5260 AttributeList PAL = getAttributes(Record[OpNum++]); 5261 unsigned CCInfo = Record[OpNum++]; 5262 5263 FastMathFlags FMF; 5264 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5265 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5266 if (!FMF.any()) 5267 return error("Fast math flags indicator set for call with no FMF"); 5268 } 5269 5270 FunctionType *FTy = nullptr; 5271 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5272 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5273 if (!FTy) 5274 return error("Explicit call type is not a function type"); 5275 } 5276 5277 Value *Callee; 5278 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5279 return error("Invalid record"); 5280 5281 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5282 if (!OpTy) 5283 return error("Callee is not a pointer type"); 5284 if (!FTy) { 5285 FTy = dyn_cast<FunctionType>( 5286 cast<PointerType>(Callee->getType())->getElementType()); 5287 if (!FTy) 5288 return error("Callee is not of pointer to function type"); 5289 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5290 return error("Explicit call type does not match pointee type of " 5291 "callee operand"); 5292 if (Record.size() < FTy->getNumParams() + OpNum) 5293 return error("Insufficient operands to call"); 5294 5295 SmallVector<Value*, 16> Args; 5296 SmallVector<Type *, 16> ArgsTys; 5297 // Read the fixed params. 5298 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5299 if (FTy->getParamType(i)->isLabelTy()) 5300 Args.push_back(getBasicBlock(Record[OpNum])); 5301 else 5302 Args.push_back(getValue(Record, OpNum, NextValueNo, 5303 FTy->getParamType(i))); 5304 ArgsTys.push_back(FTy->getParamType(i)); 5305 if (!Args.back()) 5306 return error("Invalid record"); 5307 } 5308 5309 // Read type/value pairs for varargs params. 5310 if (!FTy->isVarArg()) { 5311 if (OpNum != Record.size()) 5312 return error("Invalid record"); 5313 } else { 5314 while (OpNum != Record.size()) { 5315 Value *Op; 5316 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5317 return error("Invalid record"); 5318 Args.push_back(Op); 5319 ArgsTys.push_back(Op->getType()); 5320 } 5321 } 5322 5323 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5324 OperandBundles.clear(); 5325 InstructionList.push_back(I); 5326 cast<CallInst>(I)->setCallingConv( 5327 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5328 CallInst::TailCallKind TCK = CallInst::TCK_None; 5329 if (CCInfo & 1 << bitc::CALL_TAIL) 5330 TCK = CallInst::TCK_Tail; 5331 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5332 TCK = CallInst::TCK_MustTail; 5333 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5334 TCK = CallInst::TCK_NoTail; 5335 cast<CallInst>(I)->setTailCallKind(TCK); 5336 cast<CallInst>(I)->setAttributes(PAL); 5337 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5338 if (FMF.any()) { 5339 if (!isa<FPMathOperator>(I)) 5340 return error("Fast-math-flags specified for call without " 5341 "floating-point scalar or vector return type"); 5342 I->setFastMathFlags(FMF); 5343 } 5344 break; 5345 } 5346 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5347 if (Record.size() < 3) 5348 return error("Invalid record"); 5349 Type *OpTy = getTypeByID(Record[0]); 5350 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5351 Type *ResTy = getTypeByID(Record[2]); 5352 if (!OpTy || !Op || !ResTy) 5353 return error("Invalid record"); 5354 I = new VAArgInst(Op, ResTy); 5355 InstructionList.push_back(I); 5356 break; 5357 } 5358 5359 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5360 // A call or an invoke can be optionally prefixed with some variable 5361 // number of operand bundle blocks. These blocks are read into 5362 // OperandBundles and consumed at the next call or invoke instruction. 5363 5364 if (Record.empty() || Record[0] >= BundleTags.size()) 5365 return error("Invalid record"); 5366 5367 std::vector<Value *> Inputs; 5368 5369 unsigned OpNum = 1; 5370 while (OpNum != Record.size()) { 5371 Value *Op; 5372 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5373 return error("Invalid record"); 5374 Inputs.push_back(Op); 5375 } 5376 5377 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5378 continue; 5379 } 5380 5381 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5382 unsigned OpNum = 0; 5383 Value *Op = nullptr; 5384 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5385 return error("Invalid record"); 5386 if (OpNum != Record.size()) 5387 return error("Invalid record"); 5388 5389 I = new FreezeInst(Op); 5390 InstructionList.push_back(I); 5391 break; 5392 } 5393 } 5394 5395 // Add instruction to end of current BB. If there is no current BB, reject 5396 // this file. 5397 if (!CurBB) { 5398 I->deleteValue(); 5399 return error("Invalid instruction with no BB"); 5400 } 5401 if (!OperandBundles.empty()) { 5402 I->deleteValue(); 5403 return error("Operand bundles found with no consumer"); 5404 } 5405 CurBB->getInstList().push_back(I); 5406 5407 // If this was a terminator instruction, move to the next block. 5408 if (I->isTerminator()) { 5409 ++CurBBNo; 5410 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5411 } 5412 5413 // Non-void values get registered in the value table for future use. 5414 if (!I->getType()->isVoidTy()) 5415 ValueList.assignValue(I, NextValueNo++); 5416 } 5417 5418 OutOfRecordLoop: 5419 5420 if (!OperandBundles.empty()) 5421 return error("Operand bundles found with no consumer"); 5422 5423 // Check the function list for unresolved values. 5424 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5425 if (!A->getParent()) { 5426 // We found at least one unresolved value. Nuke them all to avoid leaks. 5427 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5428 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5429 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5430 delete A; 5431 } 5432 } 5433 return error("Never resolved value found in function"); 5434 } 5435 } 5436 5437 // Unexpected unresolved metadata about to be dropped. 5438 if (MDLoader->hasFwdRefs()) 5439 return error("Invalid function metadata: outgoing forward refs"); 5440 5441 // Trim the value list down to the size it was before we parsed this function. 5442 ValueList.shrinkTo(ModuleValueListSize); 5443 MDLoader->shrinkTo(ModuleMDLoaderSize); 5444 std::vector<BasicBlock*>().swap(FunctionBBs); 5445 return Error::success(); 5446 } 5447 5448 /// Find the function body in the bitcode stream 5449 Error BitcodeReader::findFunctionInStream( 5450 Function *F, 5451 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5452 while (DeferredFunctionInfoIterator->second == 0) { 5453 // This is the fallback handling for the old format bitcode that 5454 // didn't contain the function index in the VST, or when we have 5455 // an anonymous function which would not have a VST entry. 5456 // Assert that we have one of those two cases. 5457 assert(VSTOffset == 0 || !F->hasName()); 5458 // Parse the next body in the stream and set its position in the 5459 // DeferredFunctionInfo map. 5460 if (Error Err = rememberAndSkipFunctionBodies()) 5461 return Err; 5462 } 5463 return Error::success(); 5464 } 5465 5466 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5467 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5468 return SyncScope::ID(Val); 5469 if (Val >= SSIDs.size()) 5470 return SyncScope::System; // Map unknown synchronization scopes to system. 5471 return SSIDs[Val]; 5472 } 5473 5474 //===----------------------------------------------------------------------===// 5475 // GVMaterializer implementation 5476 //===----------------------------------------------------------------------===// 5477 5478 Error BitcodeReader::materialize(GlobalValue *GV) { 5479 Function *F = dyn_cast<Function>(GV); 5480 // If it's not a function or is already material, ignore the request. 5481 if (!F || !F->isMaterializable()) 5482 return Error::success(); 5483 5484 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5485 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5486 // If its position is recorded as 0, its body is somewhere in the stream 5487 // but we haven't seen it yet. 5488 if (DFII->second == 0) 5489 if (Error Err = findFunctionInStream(F, DFII)) 5490 return Err; 5491 5492 // Materialize metadata before parsing any function bodies. 5493 if (Error Err = materializeMetadata()) 5494 return Err; 5495 5496 // Move the bit stream to the saved position of the deferred function body. 5497 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5498 return JumpFailed; 5499 if (Error Err = parseFunctionBody(F)) 5500 return Err; 5501 F->setIsMaterializable(false); 5502 5503 if (StripDebugInfo) 5504 stripDebugInfo(*F); 5505 5506 // Upgrade any old intrinsic calls in the function. 5507 for (auto &I : UpgradedIntrinsics) { 5508 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5509 UI != UE;) { 5510 User *U = *UI; 5511 ++UI; 5512 if (CallInst *CI = dyn_cast<CallInst>(U)) 5513 UpgradeIntrinsicCall(CI, I.second); 5514 } 5515 } 5516 5517 // Update calls to the remangled intrinsics 5518 for (auto &I : RemangledIntrinsics) 5519 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5520 UI != UE;) 5521 // Don't expect any other users than call sites 5522 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5523 5524 // Finish fn->subprogram upgrade for materialized functions. 5525 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5526 F->setSubprogram(SP); 5527 5528 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5529 if (!MDLoader->isStrippingTBAA()) { 5530 for (auto &I : instructions(F)) { 5531 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5532 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5533 continue; 5534 MDLoader->setStripTBAA(true); 5535 stripTBAA(F->getParent()); 5536 } 5537 } 5538 5539 for (auto &I : instructions(F)) { 5540 // "Upgrade" older incorrect branch weights by dropping them. 5541 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5542 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5543 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5544 StringRef ProfName = MDS->getString(); 5545 // Check consistency of !prof branch_weights metadata. 5546 if (!ProfName.equals("branch_weights")) 5547 continue; 5548 unsigned ExpectedNumOperands = 0; 5549 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5550 ExpectedNumOperands = BI->getNumSuccessors(); 5551 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5552 ExpectedNumOperands = SI->getNumSuccessors(); 5553 else if (isa<CallInst>(&I)) 5554 ExpectedNumOperands = 1; 5555 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5556 ExpectedNumOperands = IBI->getNumDestinations(); 5557 else if (isa<SelectInst>(&I)) 5558 ExpectedNumOperands = 2; 5559 else 5560 continue; // ignore and continue. 5561 5562 // If branch weight doesn't match, just strip branch weight. 5563 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5564 I.setMetadata(LLVMContext::MD_prof, nullptr); 5565 } 5566 } 5567 5568 // Remove incompatible attributes on function calls. 5569 if (auto *CI = dyn_cast<CallBase>(&I)) { 5570 CI->removeAttributes(AttributeList::ReturnIndex, 5571 AttributeFuncs::typeIncompatible( 5572 CI->getFunctionType()->getReturnType())); 5573 5574 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5575 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5576 CI->getArgOperand(ArgNo)->getType())); 5577 } 5578 } 5579 5580 // Look for functions that rely on old function attribute behavior. 5581 UpgradeFunctionAttributes(*F); 5582 5583 // Bring in any functions that this function forward-referenced via 5584 // blockaddresses. 5585 return materializeForwardReferencedFunctions(); 5586 } 5587 5588 Error BitcodeReader::materializeModule() { 5589 if (Error Err = materializeMetadata()) 5590 return Err; 5591 5592 // Promise to materialize all forward references. 5593 WillMaterializeAllForwardRefs = true; 5594 5595 // Iterate over the module, deserializing any functions that are still on 5596 // disk. 5597 for (Function &F : *TheModule) { 5598 if (Error Err = materialize(&F)) 5599 return Err; 5600 } 5601 // At this point, if there are any function bodies, parse the rest of 5602 // the bits in the module past the last function block we have recorded 5603 // through either lazy scanning or the VST. 5604 if (LastFunctionBlockBit || NextUnreadBit) 5605 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5606 ? LastFunctionBlockBit 5607 : NextUnreadBit)) 5608 return Err; 5609 5610 // Check that all block address forward references got resolved (as we 5611 // promised above). 5612 if (!BasicBlockFwdRefs.empty()) 5613 return error("Never resolved function from blockaddress"); 5614 5615 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5616 // delete the old functions to clean up. We can't do this unless the entire 5617 // module is materialized because there could always be another function body 5618 // with calls to the old function. 5619 for (auto &I : UpgradedIntrinsics) { 5620 for (auto *U : I.first->users()) { 5621 if (CallInst *CI = dyn_cast<CallInst>(U)) 5622 UpgradeIntrinsicCall(CI, I.second); 5623 } 5624 if (!I.first->use_empty()) 5625 I.first->replaceAllUsesWith(I.second); 5626 I.first->eraseFromParent(); 5627 } 5628 UpgradedIntrinsics.clear(); 5629 // Do the same for remangled intrinsics 5630 for (auto &I : RemangledIntrinsics) { 5631 I.first->replaceAllUsesWith(I.second); 5632 I.first->eraseFromParent(); 5633 } 5634 RemangledIntrinsics.clear(); 5635 5636 UpgradeDebugInfo(*TheModule); 5637 5638 UpgradeModuleFlags(*TheModule); 5639 5640 UpgradeARCRuntime(*TheModule); 5641 5642 return Error::success(); 5643 } 5644 5645 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5646 return IdentifiedStructTypes; 5647 } 5648 5649 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5650 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5651 StringRef ModulePath, unsigned ModuleId) 5652 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5653 ModulePath(ModulePath), ModuleId(ModuleId) {} 5654 5655 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5656 TheIndex.addModule(ModulePath, ModuleId); 5657 } 5658 5659 ModuleSummaryIndex::ModuleInfo * 5660 ModuleSummaryIndexBitcodeReader::getThisModule() { 5661 return TheIndex.getModule(ModulePath); 5662 } 5663 5664 std::pair<ValueInfo, GlobalValue::GUID> 5665 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5666 auto VGI = ValueIdToValueInfoMap[ValueId]; 5667 assert(VGI.first); 5668 return VGI; 5669 } 5670 5671 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5672 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5673 StringRef SourceFileName) { 5674 std::string GlobalId = 5675 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5676 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5677 auto OriginalNameID = ValueGUID; 5678 if (GlobalValue::isLocalLinkage(Linkage)) 5679 OriginalNameID = GlobalValue::getGUID(ValueName); 5680 if (PrintSummaryGUIDs) 5681 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5682 << ValueName << "\n"; 5683 5684 // UseStrtab is false for legacy summary formats and value names are 5685 // created on stack. In that case we save the name in a string saver in 5686 // the index so that the value name can be recorded. 5687 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5688 TheIndex.getOrInsertValueInfo( 5689 ValueGUID, 5690 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5691 OriginalNameID); 5692 } 5693 5694 // Specialized value symbol table parser used when reading module index 5695 // blocks where we don't actually create global values. The parsed information 5696 // is saved in the bitcode reader for use when later parsing summaries. 5697 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5698 uint64_t Offset, 5699 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5700 // With a strtab the VST is not required to parse the summary. 5701 if (UseStrtab) 5702 return Error::success(); 5703 5704 assert(Offset > 0 && "Expected non-zero VST offset"); 5705 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5706 if (!MaybeCurrentBit) 5707 return MaybeCurrentBit.takeError(); 5708 uint64_t CurrentBit = MaybeCurrentBit.get(); 5709 5710 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5711 return Err; 5712 5713 SmallVector<uint64_t, 64> Record; 5714 5715 // Read all the records for this value table. 5716 SmallString<128> ValueName; 5717 5718 while (true) { 5719 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5720 if (!MaybeEntry) 5721 return MaybeEntry.takeError(); 5722 BitstreamEntry Entry = MaybeEntry.get(); 5723 5724 switch (Entry.Kind) { 5725 case BitstreamEntry::SubBlock: // Handled for us already. 5726 case BitstreamEntry::Error: 5727 return error("Malformed block"); 5728 case BitstreamEntry::EndBlock: 5729 // Done parsing VST, jump back to wherever we came from. 5730 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5731 return JumpFailed; 5732 return Error::success(); 5733 case BitstreamEntry::Record: 5734 // The interesting case. 5735 break; 5736 } 5737 5738 // Read a record. 5739 Record.clear(); 5740 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5741 if (!MaybeRecord) 5742 return MaybeRecord.takeError(); 5743 switch (MaybeRecord.get()) { 5744 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5745 break; 5746 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5747 if (convertToString(Record, 1, ValueName)) 5748 return error("Invalid record"); 5749 unsigned ValueID = Record[0]; 5750 assert(!SourceFileName.empty()); 5751 auto VLI = ValueIdToLinkageMap.find(ValueID); 5752 assert(VLI != ValueIdToLinkageMap.end() && 5753 "No linkage found for VST entry?"); 5754 auto Linkage = VLI->second; 5755 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5756 ValueName.clear(); 5757 break; 5758 } 5759 case bitc::VST_CODE_FNENTRY: { 5760 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5761 if (convertToString(Record, 2, ValueName)) 5762 return error("Invalid record"); 5763 unsigned ValueID = Record[0]; 5764 assert(!SourceFileName.empty()); 5765 auto VLI = ValueIdToLinkageMap.find(ValueID); 5766 assert(VLI != ValueIdToLinkageMap.end() && 5767 "No linkage found for VST entry?"); 5768 auto Linkage = VLI->second; 5769 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5770 ValueName.clear(); 5771 break; 5772 } 5773 case bitc::VST_CODE_COMBINED_ENTRY: { 5774 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5775 unsigned ValueID = Record[0]; 5776 GlobalValue::GUID RefGUID = Record[1]; 5777 // The "original name", which is the second value of the pair will be 5778 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5779 ValueIdToValueInfoMap[ValueID] = 5780 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5781 break; 5782 } 5783 } 5784 } 5785 } 5786 5787 // Parse just the blocks needed for building the index out of the module. 5788 // At the end of this routine the module Index is populated with a map 5789 // from global value id to GlobalValueSummary objects. 5790 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5791 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5792 return Err; 5793 5794 SmallVector<uint64_t, 64> Record; 5795 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5796 unsigned ValueId = 0; 5797 5798 // Read the index for this module. 5799 while (true) { 5800 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5801 if (!MaybeEntry) 5802 return MaybeEntry.takeError(); 5803 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5804 5805 switch (Entry.Kind) { 5806 case BitstreamEntry::Error: 5807 return error("Malformed block"); 5808 case BitstreamEntry::EndBlock: 5809 return Error::success(); 5810 5811 case BitstreamEntry::SubBlock: 5812 switch (Entry.ID) { 5813 default: // Skip unknown content. 5814 if (Error Err = Stream.SkipBlock()) 5815 return Err; 5816 break; 5817 case bitc::BLOCKINFO_BLOCK_ID: 5818 // Need to parse these to get abbrev ids (e.g. for VST) 5819 if (readBlockInfo()) 5820 return error("Malformed block"); 5821 break; 5822 case bitc::VALUE_SYMTAB_BLOCK_ID: 5823 // Should have been parsed earlier via VSTOffset, unless there 5824 // is no summary section. 5825 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5826 !SeenGlobalValSummary) && 5827 "Expected early VST parse via VSTOffset record"); 5828 if (Error Err = Stream.SkipBlock()) 5829 return Err; 5830 break; 5831 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5832 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5833 // Add the module if it is a per-module index (has a source file name). 5834 if (!SourceFileName.empty()) 5835 addThisModule(); 5836 assert(!SeenValueSymbolTable && 5837 "Already read VST when parsing summary block?"); 5838 // We might not have a VST if there were no values in the 5839 // summary. An empty summary block generated when we are 5840 // performing ThinLTO compiles so we don't later invoke 5841 // the regular LTO process on them. 5842 if (VSTOffset > 0) { 5843 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5844 return Err; 5845 SeenValueSymbolTable = true; 5846 } 5847 SeenGlobalValSummary = true; 5848 if (Error Err = parseEntireSummary(Entry.ID)) 5849 return Err; 5850 break; 5851 case bitc::MODULE_STRTAB_BLOCK_ID: 5852 if (Error Err = parseModuleStringTable()) 5853 return Err; 5854 break; 5855 } 5856 continue; 5857 5858 case BitstreamEntry::Record: { 5859 Record.clear(); 5860 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5861 if (!MaybeBitCode) 5862 return MaybeBitCode.takeError(); 5863 switch (MaybeBitCode.get()) { 5864 default: 5865 break; // Default behavior, ignore unknown content. 5866 case bitc::MODULE_CODE_VERSION: { 5867 if (Error Err = parseVersionRecord(Record).takeError()) 5868 return Err; 5869 break; 5870 } 5871 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5872 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5873 SmallString<128> ValueName; 5874 if (convertToString(Record, 0, ValueName)) 5875 return error("Invalid record"); 5876 SourceFileName = ValueName.c_str(); 5877 break; 5878 } 5879 /// MODULE_CODE_HASH: [5*i32] 5880 case bitc::MODULE_CODE_HASH: { 5881 if (Record.size() != 5) 5882 return error("Invalid hash length " + Twine(Record.size()).str()); 5883 auto &Hash = getThisModule()->second.second; 5884 int Pos = 0; 5885 for (auto &Val : Record) { 5886 assert(!(Val >> 32) && "Unexpected high bits set"); 5887 Hash[Pos++] = Val; 5888 } 5889 break; 5890 } 5891 /// MODULE_CODE_VSTOFFSET: [offset] 5892 case bitc::MODULE_CODE_VSTOFFSET: 5893 if (Record.empty()) 5894 return error("Invalid record"); 5895 // Note that we subtract 1 here because the offset is relative to one 5896 // word before the start of the identification or module block, which 5897 // was historically always the start of the regular bitcode header. 5898 VSTOffset = Record[0] - 1; 5899 break; 5900 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5901 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5902 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5903 // v2: [strtab offset, strtab size, v1] 5904 case bitc::MODULE_CODE_GLOBALVAR: 5905 case bitc::MODULE_CODE_FUNCTION: 5906 case bitc::MODULE_CODE_ALIAS: { 5907 StringRef Name; 5908 ArrayRef<uint64_t> GVRecord; 5909 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5910 if (GVRecord.size() <= 3) 5911 return error("Invalid record"); 5912 uint64_t RawLinkage = GVRecord[3]; 5913 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5914 if (!UseStrtab) { 5915 ValueIdToLinkageMap[ValueId++] = Linkage; 5916 break; 5917 } 5918 5919 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5920 break; 5921 } 5922 } 5923 } 5924 continue; 5925 } 5926 } 5927 } 5928 5929 std::vector<ValueInfo> 5930 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5931 std::vector<ValueInfo> Ret; 5932 Ret.reserve(Record.size()); 5933 for (uint64_t RefValueId : Record) 5934 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5935 return Ret; 5936 } 5937 5938 std::vector<FunctionSummary::EdgeTy> 5939 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5940 bool IsOldProfileFormat, 5941 bool HasProfile, bool HasRelBF) { 5942 std::vector<FunctionSummary::EdgeTy> Ret; 5943 Ret.reserve(Record.size()); 5944 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5945 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5946 uint64_t RelBF = 0; 5947 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5948 if (IsOldProfileFormat) { 5949 I += 1; // Skip old callsitecount field 5950 if (HasProfile) 5951 I += 1; // Skip old profilecount field 5952 } else if (HasProfile) 5953 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5954 else if (HasRelBF) 5955 RelBF = Record[++I]; 5956 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5957 } 5958 return Ret; 5959 } 5960 5961 static void 5962 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5963 WholeProgramDevirtResolution &Wpd) { 5964 uint64_t ArgNum = Record[Slot++]; 5965 WholeProgramDevirtResolution::ByArg &B = 5966 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5967 Slot += ArgNum; 5968 5969 B.TheKind = 5970 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5971 B.Info = Record[Slot++]; 5972 B.Byte = Record[Slot++]; 5973 B.Bit = Record[Slot++]; 5974 } 5975 5976 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5977 StringRef Strtab, size_t &Slot, 5978 TypeIdSummary &TypeId) { 5979 uint64_t Id = Record[Slot++]; 5980 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5981 5982 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5983 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5984 static_cast<size_t>(Record[Slot + 1])}; 5985 Slot += 2; 5986 5987 uint64_t ResByArgNum = Record[Slot++]; 5988 for (uint64_t I = 0; I != ResByArgNum; ++I) 5989 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5990 } 5991 5992 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5993 StringRef Strtab, 5994 ModuleSummaryIndex &TheIndex) { 5995 size_t Slot = 0; 5996 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5997 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5998 Slot += 2; 5999 6000 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6001 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6002 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6003 TypeId.TTRes.SizeM1 = Record[Slot++]; 6004 TypeId.TTRes.BitMask = Record[Slot++]; 6005 TypeId.TTRes.InlineBits = Record[Slot++]; 6006 6007 while (Slot < Record.size()) 6008 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6009 } 6010 6011 std::vector<FunctionSummary::ParamAccess> 6012 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6013 auto ReadRange = [&]() { 6014 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6015 BitcodeReader::decodeSignRotatedValue(Record.front())); 6016 Record = Record.drop_front(); 6017 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6018 BitcodeReader::decodeSignRotatedValue(Record.front())); 6019 Record = Record.drop_front(); 6020 ConstantRange Range{Lower, Upper}; 6021 assert(!Range.isFullSet()); 6022 assert(!Range.isUpperSignWrapped()); 6023 return Range; 6024 }; 6025 6026 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6027 while (!Record.empty()) { 6028 PendingParamAccesses.emplace_back(); 6029 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6030 ParamAccess.ParamNo = Record.front(); 6031 Record = Record.drop_front(); 6032 ParamAccess.Use = ReadRange(); 6033 ParamAccess.Calls.resize(Record.front()); 6034 Record = Record.drop_front(); 6035 for (auto &Call : ParamAccess.Calls) { 6036 Call.ParamNo = Record.front(); 6037 Record = Record.drop_front(); 6038 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6039 Record = Record.drop_front(); 6040 Call.Offsets = ReadRange(); 6041 } 6042 } 6043 return PendingParamAccesses; 6044 } 6045 6046 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6047 ArrayRef<uint64_t> Record, size_t &Slot, 6048 TypeIdCompatibleVtableInfo &TypeId) { 6049 uint64_t Offset = Record[Slot++]; 6050 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6051 TypeId.push_back({Offset, Callee}); 6052 } 6053 6054 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6055 ArrayRef<uint64_t> Record) { 6056 size_t Slot = 0; 6057 TypeIdCompatibleVtableInfo &TypeId = 6058 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6059 {Strtab.data() + Record[Slot], 6060 static_cast<size_t>(Record[Slot + 1])}); 6061 Slot += 2; 6062 6063 while (Slot < Record.size()) 6064 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6065 } 6066 6067 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6068 unsigned WOCnt) { 6069 // Readonly and writeonly refs are in the end of the refs list. 6070 assert(ROCnt + WOCnt <= Refs.size()); 6071 unsigned FirstWORef = Refs.size() - WOCnt; 6072 unsigned RefNo = FirstWORef - ROCnt; 6073 for (; RefNo < FirstWORef; ++RefNo) 6074 Refs[RefNo].setReadOnly(); 6075 for (; RefNo < Refs.size(); ++RefNo) 6076 Refs[RefNo].setWriteOnly(); 6077 } 6078 6079 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6080 // objects in the index. 6081 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6082 if (Error Err = Stream.EnterSubBlock(ID)) 6083 return Err; 6084 SmallVector<uint64_t, 64> Record; 6085 6086 // Parse version 6087 { 6088 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6089 if (!MaybeEntry) 6090 return MaybeEntry.takeError(); 6091 BitstreamEntry Entry = MaybeEntry.get(); 6092 6093 if (Entry.Kind != BitstreamEntry::Record) 6094 return error("Invalid Summary Block: record for version expected"); 6095 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6096 if (!MaybeRecord) 6097 return MaybeRecord.takeError(); 6098 if (MaybeRecord.get() != bitc::FS_VERSION) 6099 return error("Invalid Summary Block: version expected"); 6100 } 6101 const uint64_t Version = Record[0]; 6102 const bool IsOldProfileFormat = Version == 1; 6103 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6104 return error("Invalid summary version " + Twine(Version) + 6105 ". Version should be in the range [1-" + 6106 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6107 "]."); 6108 Record.clear(); 6109 6110 // Keep around the last seen summary to be used when we see an optional 6111 // "OriginalName" attachement. 6112 GlobalValueSummary *LastSeenSummary = nullptr; 6113 GlobalValue::GUID LastSeenGUID = 0; 6114 6115 // We can expect to see any number of type ID information records before 6116 // each function summary records; these variables store the information 6117 // collected so far so that it can be used to create the summary object. 6118 std::vector<GlobalValue::GUID> PendingTypeTests; 6119 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6120 PendingTypeCheckedLoadVCalls; 6121 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6122 PendingTypeCheckedLoadConstVCalls; 6123 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6124 6125 while (true) { 6126 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6127 if (!MaybeEntry) 6128 return MaybeEntry.takeError(); 6129 BitstreamEntry Entry = MaybeEntry.get(); 6130 6131 switch (Entry.Kind) { 6132 case BitstreamEntry::SubBlock: // Handled for us already. 6133 case BitstreamEntry::Error: 6134 return error("Malformed block"); 6135 case BitstreamEntry::EndBlock: 6136 return Error::success(); 6137 case BitstreamEntry::Record: 6138 // The interesting case. 6139 break; 6140 } 6141 6142 // Read a record. The record format depends on whether this 6143 // is a per-module index or a combined index file. In the per-module 6144 // case the records contain the associated value's ID for correlation 6145 // with VST entries. In the combined index the correlation is done 6146 // via the bitcode offset of the summary records (which were saved 6147 // in the combined index VST entries). The records also contain 6148 // information used for ThinLTO renaming and importing. 6149 Record.clear(); 6150 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6151 if (!MaybeBitCode) 6152 return MaybeBitCode.takeError(); 6153 switch (unsigned BitCode = MaybeBitCode.get()) { 6154 default: // Default behavior: ignore. 6155 break; 6156 case bitc::FS_FLAGS: { // [flags] 6157 TheIndex.setFlags(Record[0]); 6158 break; 6159 } 6160 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6161 uint64_t ValueID = Record[0]; 6162 GlobalValue::GUID RefGUID = Record[1]; 6163 ValueIdToValueInfoMap[ValueID] = 6164 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6165 break; 6166 } 6167 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6168 // numrefs x valueid, n x (valueid)] 6169 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6170 // numrefs x valueid, 6171 // n x (valueid, hotness)] 6172 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6173 // numrefs x valueid, 6174 // n x (valueid, relblockfreq)] 6175 case bitc::FS_PERMODULE: 6176 case bitc::FS_PERMODULE_RELBF: 6177 case bitc::FS_PERMODULE_PROFILE: { 6178 unsigned ValueID = Record[0]; 6179 uint64_t RawFlags = Record[1]; 6180 unsigned InstCount = Record[2]; 6181 uint64_t RawFunFlags = 0; 6182 unsigned NumRefs = Record[3]; 6183 unsigned NumRORefs = 0, NumWORefs = 0; 6184 int RefListStartIndex = 4; 6185 if (Version >= 4) { 6186 RawFunFlags = Record[3]; 6187 NumRefs = Record[4]; 6188 RefListStartIndex = 5; 6189 if (Version >= 5) { 6190 NumRORefs = Record[5]; 6191 RefListStartIndex = 6; 6192 if (Version >= 7) { 6193 NumWORefs = Record[6]; 6194 RefListStartIndex = 7; 6195 } 6196 } 6197 } 6198 6199 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6200 // The module path string ref set in the summary must be owned by the 6201 // index's module string table. Since we don't have a module path 6202 // string table section in the per-module index, we create a single 6203 // module path string table entry with an empty (0) ID to take 6204 // ownership. 6205 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6206 assert(Record.size() >= RefListStartIndex + NumRefs && 6207 "Record size inconsistent with number of references"); 6208 std::vector<ValueInfo> Refs = makeRefList( 6209 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6210 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6211 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6212 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6213 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6214 IsOldProfileFormat, HasProfile, HasRelBF); 6215 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6216 auto FS = std::make_unique<FunctionSummary>( 6217 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6218 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6219 std::move(PendingTypeTestAssumeVCalls), 6220 std::move(PendingTypeCheckedLoadVCalls), 6221 std::move(PendingTypeTestAssumeConstVCalls), 6222 std::move(PendingTypeCheckedLoadConstVCalls), 6223 std::move(PendingParamAccesses)); 6224 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6225 FS->setModulePath(getThisModule()->first()); 6226 FS->setOriginalName(VIAndOriginalGUID.second); 6227 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6228 break; 6229 } 6230 // FS_ALIAS: [valueid, flags, valueid] 6231 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6232 // they expect all aliasee summaries to be available. 6233 case bitc::FS_ALIAS: { 6234 unsigned ValueID = Record[0]; 6235 uint64_t RawFlags = Record[1]; 6236 unsigned AliaseeID = Record[2]; 6237 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6238 auto AS = std::make_unique<AliasSummary>(Flags); 6239 // The module path string ref set in the summary must be owned by the 6240 // index's module string table. Since we don't have a module path 6241 // string table section in the per-module index, we create a single 6242 // module path string table entry with an empty (0) ID to take 6243 // ownership. 6244 AS->setModulePath(getThisModule()->first()); 6245 6246 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6247 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6248 if (!AliaseeInModule) 6249 return error("Alias expects aliasee summary to be parsed"); 6250 AS->setAliasee(AliaseeVI, AliaseeInModule); 6251 6252 auto GUID = getValueInfoFromValueId(ValueID); 6253 AS->setOriginalName(GUID.second); 6254 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6255 break; 6256 } 6257 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6258 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6259 unsigned ValueID = Record[0]; 6260 uint64_t RawFlags = Record[1]; 6261 unsigned RefArrayStart = 2; 6262 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6263 /* WriteOnly */ false, 6264 /* Constant */ false, 6265 GlobalObject::VCallVisibilityPublic); 6266 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6267 if (Version >= 5) { 6268 GVF = getDecodedGVarFlags(Record[2]); 6269 RefArrayStart = 3; 6270 } 6271 std::vector<ValueInfo> Refs = 6272 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6273 auto FS = 6274 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6275 FS->setModulePath(getThisModule()->first()); 6276 auto GUID = getValueInfoFromValueId(ValueID); 6277 FS->setOriginalName(GUID.second); 6278 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6279 break; 6280 } 6281 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6282 // numrefs, numrefs x valueid, 6283 // n x (valueid, offset)] 6284 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6285 unsigned ValueID = Record[0]; 6286 uint64_t RawFlags = Record[1]; 6287 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6288 unsigned NumRefs = Record[3]; 6289 unsigned RefListStartIndex = 4; 6290 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6291 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6292 std::vector<ValueInfo> Refs = makeRefList( 6293 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6294 VTableFuncList VTableFuncs; 6295 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6296 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6297 uint64_t Offset = Record[++I]; 6298 VTableFuncs.push_back({Callee, Offset}); 6299 } 6300 auto VS = 6301 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6302 VS->setModulePath(getThisModule()->first()); 6303 VS->setVTableFuncs(VTableFuncs); 6304 auto GUID = getValueInfoFromValueId(ValueID); 6305 VS->setOriginalName(GUID.second); 6306 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6307 break; 6308 } 6309 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6310 // numrefs x valueid, n x (valueid)] 6311 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6312 // numrefs x valueid, n x (valueid, hotness)] 6313 case bitc::FS_COMBINED: 6314 case bitc::FS_COMBINED_PROFILE: { 6315 unsigned ValueID = Record[0]; 6316 uint64_t ModuleId = Record[1]; 6317 uint64_t RawFlags = Record[2]; 6318 unsigned InstCount = Record[3]; 6319 uint64_t RawFunFlags = 0; 6320 uint64_t EntryCount = 0; 6321 unsigned NumRefs = Record[4]; 6322 unsigned NumRORefs = 0, NumWORefs = 0; 6323 int RefListStartIndex = 5; 6324 6325 if (Version >= 4) { 6326 RawFunFlags = Record[4]; 6327 RefListStartIndex = 6; 6328 size_t NumRefsIndex = 5; 6329 if (Version >= 5) { 6330 unsigned NumRORefsOffset = 1; 6331 RefListStartIndex = 7; 6332 if (Version >= 6) { 6333 NumRefsIndex = 6; 6334 EntryCount = Record[5]; 6335 RefListStartIndex = 8; 6336 if (Version >= 7) { 6337 RefListStartIndex = 9; 6338 NumWORefs = Record[8]; 6339 NumRORefsOffset = 2; 6340 } 6341 } 6342 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6343 } 6344 NumRefs = Record[NumRefsIndex]; 6345 } 6346 6347 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6348 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6349 assert(Record.size() >= RefListStartIndex + NumRefs && 6350 "Record size inconsistent with number of references"); 6351 std::vector<ValueInfo> Refs = makeRefList( 6352 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6353 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6354 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6355 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6356 IsOldProfileFormat, HasProfile, false); 6357 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6358 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6359 auto FS = std::make_unique<FunctionSummary>( 6360 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6361 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6362 std::move(PendingTypeTestAssumeVCalls), 6363 std::move(PendingTypeCheckedLoadVCalls), 6364 std::move(PendingTypeTestAssumeConstVCalls), 6365 std::move(PendingTypeCheckedLoadConstVCalls), 6366 std::move(PendingParamAccesses)); 6367 LastSeenSummary = FS.get(); 6368 LastSeenGUID = VI.getGUID(); 6369 FS->setModulePath(ModuleIdMap[ModuleId]); 6370 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6371 break; 6372 } 6373 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6374 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6375 // they expect all aliasee summaries to be available. 6376 case bitc::FS_COMBINED_ALIAS: { 6377 unsigned ValueID = Record[0]; 6378 uint64_t ModuleId = Record[1]; 6379 uint64_t RawFlags = Record[2]; 6380 unsigned AliaseeValueId = Record[3]; 6381 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6382 auto AS = std::make_unique<AliasSummary>(Flags); 6383 LastSeenSummary = AS.get(); 6384 AS->setModulePath(ModuleIdMap[ModuleId]); 6385 6386 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6387 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6388 AS->setAliasee(AliaseeVI, AliaseeInModule); 6389 6390 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6391 LastSeenGUID = VI.getGUID(); 6392 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6393 break; 6394 } 6395 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6396 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6397 unsigned ValueID = Record[0]; 6398 uint64_t ModuleId = Record[1]; 6399 uint64_t RawFlags = Record[2]; 6400 unsigned RefArrayStart = 3; 6401 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6402 /* WriteOnly */ false, 6403 /* Constant */ false, 6404 GlobalObject::VCallVisibilityPublic); 6405 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6406 if (Version >= 5) { 6407 GVF = getDecodedGVarFlags(Record[3]); 6408 RefArrayStart = 4; 6409 } 6410 std::vector<ValueInfo> Refs = 6411 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6412 auto FS = 6413 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6414 LastSeenSummary = FS.get(); 6415 FS->setModulePath(ModuleIdMap[ModuleId]); 6416 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6417 LastSeenGUID = VI.getGUID(); 6418 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6419 break; 6420 } 6421 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6422 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6423 uint64_t OriginalName = Record[0]; 6424 if (!LastSeenSummary) 6425 return error("Name attachment that does not follow a combined record"); 6426 LastSeenSummary->setOriginalName(OriginalName); 6427 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6428 // Reset the LastSeenSummary 6429 LastSeenSummary = nullptr; 6430 LastSeenGUID = 0; 6431 break; 6432 } 6433 case bitc::FS_TYPE_TESTS: 6434 assert(PendingTypeTests.empty()); 6435 llvm::append_range(PendingTypeTests, Record); 6436 break; 6437 6438 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6439 assert(PendingTypeTestAssumeVCalls.empty()); 6440 for (unsigned I = 0; I != Record.size(); I += 2) 6441 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6442 break; 6443 6444 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6445 assert(PendingTypeCheckedLoadVCalls.empty()); 6446 for (unsigned I = 0; I != Record.size(); I += 2) 6447 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6448 break; 6449 6450 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6451 PendingTypeTestAssumeConstVCalls.push_back( 6452 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6453 break; 6454 6455 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6456 PendingTypeCheckedLoadConstVCalls.push_back( 6457 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6458 break; 6459 6460 case bitc::FS_CFI_FUNCTION_DEFS: { 6461 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6462 for (unsigned I = 0; I != Record.size(); I += 2) 6463 CfiFunctionDefs.insert( 6464 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6465 break; 6466 } 6467 6468 case bitc::FS_CFI_FUNCTION_DECLS: { 6469 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6470 for (unsigned I = 0; I != Record.size(); I += 2) 6471 CfiFunctionDecls.insert( 6472 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6473 break; 6474 } 6475 6476 case bitc::FS_TYPE_ID: 6477 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6478 break; 6479 6480 case bitc::FS_TYPE_ID_METADATA: 6481 parseTypeIdCompatibleVtableSummaryRecord(Record); 6482 break; 6483 6484 case bitc::FS_BLOCK_COUNT: 6485 TheIndex.addBlockCount(Record[0]); 6486 break; 6487 6488 case bitc::FS_PARAM_ACCESS: { 6489 PendingParamAccesses = parseParamAccesses(Record); 6490 break; 6491 } 6492 } 6493 } 6494 llvm_unreachable("Exit infinite loop"); 6495 } 6496 6497 // Parse the module string table block into the Index. 6498 // This populates the ModulePathStringTable map in the index. 6499 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6500 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6501 return Err; 6502 6503 SmallVector<uint64_t, 64> Record; 6504 6505 SmallString<128> ModulePath; 6506 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6507 6508 while (true) { 6509 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6510 if (!MaybeEntry) 6511 return MaybeEntry.takeError(); 6512 BitstreamEntry Entry = MaybeEntry.get(); 6513 6514 switch (Entry.Kind) { 6515 case BitstreamEntry::SubBlock: // Handled for us already. 6516 case BitstreamEntry::Error: 6517 return error("Malformed block"); 6518 case BitstreamEntry::EndBlock: 6519 return Error::success(); 6520 case BitstreamEntry::Record: 6521 // The interesting case. 6522 break; 6523 } 6524 6525 Record.clear(); 6526 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6527 if (!MaybeRecord) 6528 return MaybeRecord.takeError(); 6529 switch (MaybeRecord.get()) { 6530 default: // Default behavior: ignore. 6531 break; 6532 case bitc::MST_CODE_ENTRY: { 6533 // MST_ENTRY: [modid, namechar x N] 6534 uint64_t ModuleId = Record[0]; 6535 6536 if (convertToString(Record, 1, ModulePath)) 6537 return error("Invalid record"); 6538 6539 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6540 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6541 6542 ModulePath.clear(); 6543 break; 6544 } 6545 /// MST_CODE_HASH: [5*i32] 6546 case bitc::MST_CODE_HASH: { 6547 if (Record.size() != 5) 6548 return error("Invalid hash length " + Twine(Record.size()).str()); 6549 if (!LastSeenModule) 6550 return error("Invalid hash that does not follow a module path"); 6551 int Pos = 0; 6552 for (auto &Val : Record) { 6553 assert(!(Val >> 32) && "Unexpected high bits set"); 6554 LastSeenModule->second.second[Pos++] = Val; 6555 } 6556 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6557 LastSeenModule = nullptr; 6558 break; 6559 } 6560 } 6561 } 6562 llvm_unreachable("Exit infinite loop"); 6563 } 6564 6565 namespace { 6566 6567 // FIXME: This class is only here to support the transition to llvm::Error. It 6568 // will be removed once this transition is complete. Clients should prefer to 6569 // deal with the Error value directly, rather than converting to error_code. 6570 class BitcodeErrorCategoryType : public std::error_category { 6571 const char *name() const noexcept override { 6572 return "llvm.bitcode"; 6573 } 6574 6575 std::string message(int IE) const override { 6576 BitcodeError E = static_cast<BitcodeError>(IE); 6577 switch (E) { 6578 case BitcodeError::CorruptedBitcode: 6579 return "Corrupted bitcode"; 6580 } 6581 llvm_unreachable("Unknown error type!"); 6582 } 6583 }; 6584 6585 } // end anonymous namespace 6586 6587 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6588 6589 const std::error_category &llvm::BitcodeErrorCategory() { 6590 return *ErrorCategory; 6591 } 6592 6593 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6594 unsigned Block, unsigned RecordID) { 6595 if (Error Err = Stream.EnterSubBlock(Block)) 6596 return std::move(Err); 6597 6598 StringRef Strtab; 6599 while (true) { 6600 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6601 if (!MaybeEntry) 6602 return MaybeEntry.takeError(); 6603 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6604 6605 switch (Entry.Kind) { 6606 case BitstreamEntry::EndBlock: 6607 return Strtab; 6608 6609 case BitstreamEntry::Error: 6610 return error("Malformed block"); 6611 6612 case BitstreamEntry::SubBlock: 6613 if (Error Err = Stream.SkipBlock()) 6614 return std::move(Err); 6615 break; 6616 6617 case BitstreamEntry::Record: 6618 StringRef Blob; 6619 SmallVector<uint64_t, 1> Record; 6620 Expected<unsigned> MaybeRecord = 6621 Stream.readRecord(Entry.ID, Record, &Blob); 6622 if (!MaybeRecord) 6623 return MaybeRecord.takeError(); 6624 if (MaybeRecord.get() == RecordID) 6625 Strtab = Blob; 6626 break; 6627 } 6628 } 6629 } 6630 6631 //===----------------------------------------------------------------------===// 6632 // External interface 6633 //===----------------------------------------------------------------------===// 6634 6635 Expected<std::vector<BitcodeModule>> 6636 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6637 auto FOrErr = getBitcodeFileContents(Buffer); 6638 if (!FOrErr) 6639 return FOrErr.takeError(); 6640 return std::move(FOrErr->Mods); 6641 } 6642 6643 Expected<BitcodeFileContents> 6644 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6645 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6646 if (!StreamOrErr) 6647 return StreamOrErr.takeError(); 6648 BitstreamCursor &Stream = *StreamOrErr; 6649 6650 BitcodeFileContents F; 6651 while (true) { 6652 uint64_t BCBegin = Stream.getCurrentByteNo(); 6653 6654 // We may be consuming bitcode from a client that leaves garbage at the end 6655 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6656 // the end that there cannot possibly be another module, stop looking. 6657 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6658 return F; 6659 6660 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6661 if (!MaybeEntry) 6662 return MaybeEntry.takeError(); 6663 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6664 6665 switch (Entry.Kind) { 6666 case BitstreamEntry::EndBlock: 6667 case BitstreamEntry::Error: 6668 return error("Malformed block"); 6669 6670 case BitstreamEntry::SubBlock: { 6671 uint64_t IdentificationBit = -1ull; 6672 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6673 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6674 if (Error Err = Stream.SkipBlock()) 6675 return std::move(Err); 6676 6677 { 6678 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6679 if (!MaybeEntry) 6680 return MaybeEntry.takeError(); 6681 Entry = MaybeEntry.get(); 6682 } 6683 6684 if (Entry.Kind != BitstreamEntry::SubBlock || 6685 Entry.ID != bitc::MODULE_BLOCK_ID) 6686 return error("Malformed block"); 6687 } 6688 6689 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6690 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6691 if (Error Err = Stream.SkipBlock()) 6692 return std::move(Err); 6693 6694 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6695 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6696 Buffer.getBufferIdentifier(), IdentificationBit, 6697 ModuleBit}); 6698 continue; 6699 } 6700 6701 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6702 Expected<StringRef> Strtab = 6703 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6704 if (!Strtab) 6705 return Strtab.takeError(); 6706 // This string table is used by every preceding bitcode module that does 6707 // not have its own string table. A bitcode file may have multiple 6708 // string tables if it was created by binary concatenation, for example 6709 // with "llvm-cat -b". 6710 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6711 if (!I->Strtab.empty()) 6712 break; 6713 I->Strtab = *Strtab; 6714 } 6715 // Similarly, the string table is used by every preceding symbol table; 6716 // normally there will be just one unless the bitcode file was created 6717 // by binary concatenation. 6718 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6719 F.StrtabForSymtab = *Strtab; 6720 continue; 6721 } 6722 6723 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6724 Expected<StringRef> SymtabOrErr = 6725 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6726 if (!SymtabOrErr) 6727 return SymtabOrErr.takeError(); 6728 6729 // We can expect the bitcode file to have multiple symbol tables if it 6730 // was created by binary concatenation. In that case we silently 6731 // ignore any subsequent symbol tables, which is fine because this is a 6732 // low level function. The client is expected to notice that the number 6733 // of modules in the symbol table does not match the number of modules 6734 // in the input file and regenerate the symbol table. 6735 if (F.Symtab.empty()) 6736 F.Symtab = *SymtabOrErr; 6737 continue; 6738 } 6739 6740 if (Error Err = Stream.SkipBlock()) 6741 return std::move(Err); 6742 continue; 6743 } 6744 case BitstreamEntry::Record: 6745 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6746 continue; 6747 else 6748 return StreamFailed.takeError(); 6749 } 6750 } 6751 } 6752 6753 /// Get a lazy one-at-time loading module from bitcode. 6754 /// 6755 /// This isn't always used in a lazy context. In particular, it's also used by 6756 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6757 /// in forward-referenced functions from block address references. 6758 /// 6759 /// \param[in] MaterializeAll Set to \c true if we should materialize 6760 /// everything. 6761 Expected<std::unique_ptr<Module>> 6762 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6763 bool ShouldLazyLoadMetadata, bool IsImporting, 6764 DataLayoutCallbackTy DataLayoutCallback) { 6765 BitstreamCursor Stream(Buffer); 6766 6767 std::string ProducerIdentification; 6768 if (IdentificationBit != -1ull) { 6769 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6770 return std::move(JumpFailed); 6771 Expected<std::string> ProducerIdentificationOrErr = 6772 readIdentificationBlock(Stream); 6773 if (!ProducerIdentificationOrErr) 6774 return ProducerIdentificationOrErr.takeError(); 6775 6776 ProducerIdentification = *ProducerIdentificationOrErr; 6777 } 6778 6779 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6780 return std::move(JumpFailed); 6781 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6782 Context); 6783 6784 std::unique_ptr<Module> M = 6785 std::make_unique<Module>(ModuleIdentifier, Context); 6786 M->setMaterializer(R); 6787 6788 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6789 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6790 IsImporting, DataLayoutCallback)) 6791 return std::move(Err); 6792 6793 if (MaterializeAll) { 6794 // Read in the entire module, and destroy the BitcodeReader. 6795 if (Error Err = M->materializeAll()) 6796 return std::move(Err); 6797 } else { 6798 // Resolve forward references from blockaddresses. 6799 if (Error Err = R->materializeForwardReferencedFunctions()) 6800 return std::move(Err); 6801 } 6802 return std::move(M); 6803 } 6804 6805 Expected<std::unique_ptr<Module>> 6806 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6807 bool IsImporting) { 6808 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6809 [](StringRef) { return None; }); 6810 } 6811 6812 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6813 // We don't use ModuleIdentifier here because the client may need to control the 6814 // module path used in the combined summary (e.g. when reading summaries for 6815 // regular LTO modules). 6816 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6817 StringRef ModulePath, uint64_t ModuleId) { 6818 BitstreamCursor Stream(Buffer); 6819 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6820 return JumpFailed; 6821 6822 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6823 ModulePath, ModuleId); 6824 return R.parseModule(); 6825 } 6826 6827 // Parse the specified bitcode buffer, returning the function info index. 6828 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6829 BitstreamCursor Stream(Buffer); 6830 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6831 return std::move(JumpFailed); 6832 6833 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6834 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6835 ModuleIdentifier, 0); 6836 6837 if (Error Err = R.parseModule()) 6838 return std::move(Err); 6839 6840 return std::move(Index); 6841 } 6842 6843 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6844 unsigned ID) { 6845 if (Error Err = Stream.EnterSubBlock(ID)) 6846 return std::move(Err); 6847 SmallVector<uint64_t, 64> Record; 6848 6849 while (true) { 6850 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6851 if (!MaybeEntry) 6852 return MaybeEntry.takeError(); 6853 BitstreamEntry Entry = MaybeEntry.get(); 6854 6855 switch (Entry.Kind) { 6856 case BitstreamEntry::SubBlock: // Handled for us already. 6857 case BitstreamEntry::Error: 6858 return error("Malformed block"); 6859 case BitstreamEntry::EndBlock: 6860 // If no flags record found, conservatively return true to mimic 6861 // behavior before this flag was added. 6862 return true; 6863 case BitstreamEntry::Record: 6864 // The interesting case. 6865 break; 6866 } 6867 6868 // Look for the FS_FLAGS record. 6869 Record.clear(); 6870 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6871 if (!MaybeBitCode) 6872 return MaybeBitCode.takeError(); 6873 switch (MaybeBitCode.get()) { 6874 default: // Default behavior: ignore. 6875 break; 6876 case bitc::FS_FLAGS: { // [flags] 6877 uint64_t Flags = Record[0]; 6878 // Scan flags. 6879 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6880 6881 return Flags & 0x8; 6882 } 6883 } 6884 } 6885 llvm_unreachable("Exit infinite loop"); 6886 } 6887 6888 // Check if the given bitcode buffer contains a global value summary block. 6889 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6890 BitstreamCursor Stream(Buffer); 6891 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6892 return std::move(JumpFailed); 6893 6894 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6895 return std::move(Err); 6896 6897 while (true) { 6898 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6899 if (!MaybeEntry) 6900 return MaybeEntry.takeError(); 6901 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6902 6903 switch (Entry.Kind) { 6904 case BitstreamEntry::Error: 6905 return error("Malformed block"); 6906 case BitstreamEntry::EndBlock: 6907 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6908 /*EnableSplitLTOUnit=*/false}; 6909 6910 case BitstreamEntry::SubBlock: 6911 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6912 Expected<bool> EnableSplitLTOUnit = 6913 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6914 if (!EnableSplitLTOUnit) 6915 return EnableSplitLTOUnit.takeError(); 6916 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6917 *EnableSplitLTOUnit}; 6918 } 6919 6920 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6921 Expected<bool> EnableSplitLTOUnit = 6922 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6923 if (!EnableSplitLTOUnit) 6924 return EnableSplitLTOUnit.takeError(); 6925 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6926 *EnableSplitLTOUnit}; 6927 } 6928 6929 // Ignore other sub-blocks. 6930 if (Error Err = Stream.SkipBlock()) 6931 return std::move(Err); 6932 continue; 6933 6934 case BitstreamEntry::Record: 6935 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6936 continue; 6937 else 6938 return StreamFailed.takeError(); 6939 } 6940 } 6941 } 6942 6943 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6944 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6945 if (!MsOrErr) 6946 return MsOrErr.takeError(); 6947 6948 if (MsOrErr->size() != 1) 6949 return error("Expected a single module"); 6950 6951 return (*MsOrErr)[0]; 6952 } 6953 6954 Expected<std::unique_ptr<Module>> 6955 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6956 bool ShouldLazyLoadMetadata, bool IsImporting) { 6957 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6958 if (!BM) 6959 return BM.takeError(); 6960 6961 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6962 } 6963 6964 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6965 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6966 bool ShouldLazyLoadMetadata, bool IsImporting) { 6967 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6968 IsImporting); 6969 if (MOrErr) 6970 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6971 return MOrErr; 6972 } 6973 6974 Expected<std::unique_ptr<Module>> 6975 BitcodeModule::parseModule(LLVMContext &Context, 6976 DataLayoutCallbackTy DataLayoutCallback) { 6977 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6978 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6979 // written. We must defer until the Module has been fully materialized. 6980 } 6981 6982 Expected<std::unique_ptr<Module>> 6983 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6984 DataLayoutCallbackTy DataLayoutCallback) { 6985 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6986 if (!BM) 6987 return BM.takeError(); 6988 6989 return BM->parseModule(Context, DataLayoutCallback); 6990 } 6991 6992 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6993 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6994 if (!StreamOrErr) 6995 return StreamOrErr.takeError(); 6996 6997 return readTriple(*StreamOrErr); 6998 } 6999 7000 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7001 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7002 if (!StreamOrErr) 7003 return StreamOrErr.takeError(); 7004 7005 return hasObjCCategory(*StreamOrErr); 7006 } 7007 7008 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7009 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7010 if (!StreamOrErr) 7011 return StreamOrErr.takeError(); 7012 7013 return readIdentificationCode(*StreamOrErr); 7014 } 7015 7016 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7017 ModuleSummaryIndex &CombinedIndex, 7018 uint64_t ModuleId) { 7019 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7020 if (!BM) 7021 return BM.takeError(); 7022 7023 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7024 } 7025 7026 Expected<std::unique_ptr<ModuleSummaryIndex>> 7027 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7028 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7029 if (!BM) 7030 return BM.takeError(); 7031 7032 return BM->getSummary(); 7033 } 7034 7035 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7036 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7037 if (!BM) 7038 return BM.takeError(); 7039 7040 return BM->getLTOInfo(); 7041 } 7042 7043 Expected<std::unique_ptr<ModuleSummaryIndex>> 7044 llvm::getModuleSummaryIndexForFile(StringRef Path, 7045 bool IgnoreEmptyThinLTOIndexFile) { 7046 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7047 MemoryBuffer::getFileOrSTDIN(Path); 7048 if (!FileOrErr) 7049 return errorCodeToError(FileOrErr.getError()); 7050 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7051 return nullptr; 7052 return getModuleSummaryIndex(**FileOrErr); 7053 } 7054